

XML Security

This page intentionally left blank.

XML Security

Blake Dournaee

McGraw-Hill
New York Chicago San Francisco

Lisbon London Madrid Mexico City
Milan New Delhi San Juan

Seoul Singapore Sydney Toronto

Copyright © 2002 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except

as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any

form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher.

0-07-222808-3

The material in this eBook also appears in the print version of this title: 0-07-219399-9.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trade-

marked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of

infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corpo-

rate training programs. For more information, please contact George Hoare, Special Sales, at george_hoare@mcgraw-hill.com

or (212) 904-4069.

TERMS OF USE
This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and

to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to

store and retrieve one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create deriv-

ative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-

Hill’s prior consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly

prohibited. Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS”. McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WAR-

RANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM

USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA

HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUD-

ING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR

PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your

requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you

or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.

McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall

McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that

result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This

limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or other-

wise.

DOI: 10.1036/0072228083

Dedication

To my family, who gave me endless inspiration and support

About the Author

Blake Dournaee joined the developer support team of RSA Security in
1999, specializing in support and training for the BSAFE cryptography
toolkits. He has a B.S. in computer science from California Polytechnic
State University in San Luis Obispo and is currently a graduate student
at the University of Massachusetts.

Contents at a Glance

Chapter 1 Introduction . 1

Chapter 2 Security Primer . 5

Chapter 3 XML Primer . 57

Chapter 4 Introduction to XML Digital Signatures 107

Chapter 5 Introduction to XML Digital Signatures Part 2 147

Chapter 6 XML Signature Examples . 193

Chapter 7 Introduction to XML Encryption 227

Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J 279

Chapter 9 XML Key Management Specification
and the Proliferation of Web Services 333

Appendix Additional Resources . 355

Index . 365

For more information about this title, click here.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Contents
Preface . xv

Acknowledgments . xvii

About the Reviewer . xix

Chapter 1 Introduction . 1

Chapter 2 Security Primer . 5

Encryption . 6
Symmetric Ciphers (The Nature of the Crank) . 7

Triple-DES . 8
Padding and Feedback Modes . 9
AES . 14

Symmetric Key Generation (The Nature of the Key) 15
Symmetric Encryption . 15
Asymmetric Ciphers . 16

Introduction to the RSA Algorithm . 17
Asymmetric Encryption with RSA . 19

RSA Algorithm Details . 20
Case 1: “The Engineer” . 21
Case 2: “The Theoretician” . 22
RSA Logistics . 22
RSA Problems . 25
Digital Envelopes . 28

Key Agreement . 29
Diffie-Hellman Key Agreement Logistics . 30
Digital Signature Basics . 32

Hash Functions . 33
RSA Signature Scheme . 34
DSA Signature Scheme . 36
HMAC Authentication . 37

Prelude to Trust and Standardization . 39
Raw Cryptographic Objects . 39
Cryptographic Standards . 40

Trust, Certificates, and Path Validation . 46
Path Validation . 50
Path Validation State Machine . 51
Authorization . 54
Additional Information . 54

Chapter Summary . 54

For more information about this title, click here.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Chapter 3 XML Primer . 57

What Is XML? . 58

Meta-Language and Paradigm Shift . 58

Elements, Attributes, and Documents . 62

The URI . 69

Namespaces in XML . 70

More Markup . 74

More Semantics: The Document Prolog . 75

Document Type Definition (DTD) . 78

Processing XML . 84

The Document Object Model (DOM) . 84

The XPath Data Model . 94

Document Order . 96

XPath Node Set . 104

More on XPath . 104

Chapter Summary . 104

Chapter 4 Introduction to XML Digital Signatures 107

XML Signature Basics . 108

XML Signatures and Raw Digital Signatures . 114

XML Signature Types . 120

XML Signature Syntax and Examples . 121

XML Signature Syntax . 122

Chapter Summary . 144

Chapter 5 Introduction to XML Digital Signatures Part 2 147

XML Signature Processing . 147

The �Reference� Element . 148

Core Generation . 152

The URI Attribute: Additional Features . 163

Signature Transforms . 170

Chapter Summary . 191

Chapter 6 XML Signature Examples . 193

XML Signature Examples and Frequently Asked Questions 193

Scenario 1 . 194

Proposed Solution . 194

Scenario 2 . 194

Contentsx

Proposed Solution . 195

Scenario 3 . 196

Proposed Solution . 196

Scenario 4 . 199

Proposed Solution . 199

Scenario 5 . 201

Proposed Solution 1 . 201

Proposed Solution 2 . 203

Scenario 6 . 204

Proposed Solution . 204

Scenario 7 . 206

Proposed Solution . 207

Scenario 8 . 208

Proposed Solution . 208

Scenario 9 . 209

Proposed Solution . 209

Scenario 10 . 211

Proposed Solution . 211

Scenario 11 . 214

Proposed Solution . 214

Scenario 12 . 214

Proposed Solution . 215

Scenario 13 . 221

Proposed Solution . 221

Scenario 14 . 223

Proposed Solution . 223

Chapter Summary . 225

Chapter 7 Introduction to XML Encryption 227

XML Encryption Basics and Syntax . 228

XML Encryption Use Cases . 229

The �EncryptedData� Element: Details . 234

The �ds:KeyInfo� Element . 244

Plaintext Replacement . 263

XML Encryption Processing Rules . 265

The Application . 266

The Encryptor . 266

The Decryptor . 266

The Encryptor: Process . 267

xiContents

The Decryptor: Process . 269

XML Encryption: Other Issues . 271

Security Considerations . 275

Chapter Summary . 277

Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J 279

RSA BSAFE Cert-J: Class Diagrams and Code Examples 280

Syntax and Processing Revisited . 280

XMLSignature . 281

Reference and Transformer . 285

KeyInfo . 290

Manifest . 307

The <Object> Element . 313

Signature Processing . 316

More on Manifest . 321

Additional Classes . 322

RSA BSAFE Cert-J: Specialized Code Samples . 324

Enveloping Arbitrary Binary Data . 324

Custom Transformations . 326

XPath Tester . 329

Chapter Summary . 330

Chapter 9 XML Key Management Specification
and the Proliferation of Web Services 333

XKMS Basics . 334

Validation, Verification, and Trust . 334

XKMS Components . 335

X-KISS: Tier 1 . 336

Syntax of the Locate Message . 338

X-KISS: Tier 2 . 340

Syntax of the Validate Message . 343

X-KRSS . 345

Key Registration . 345

Key Registration Message Syntax . 347

Key Revocation . 351

Security Considerations . 351

Chapter Summary . 354

Contentsxii

Appendix . 355

Additional Resources . 355
Exclusive Canonicalization . 355

XML Encryption: A List of Supported Algorithms 358

References . 360

Template Signing FAQs for RSA BSAFE Cert-J . 363

Index . 365

xiiiContents

This page intentionally left blank.

Preface

The inspiration for this book comes from an innocuous personal story. It
is hard to believe that a few simple events in the course of my day trans-
lated into a complete book.

There was a time when I knew even less about XML Security than I
do now (I should hope to convince the reader that I know something about
the subject). We shall see. In particular, I remember researching some-
thing brand new called an XML Signature. At the time, I knew nothing
about XML, but knew a few things about security. Needless to say, after
staring blankly at the XML Signature Candidate Recommendation, I
instantly knew that the marriage of XML and Security is a world all its
own, with its own personality traits, which are separate and distinct from
“traditional” applied security. Although XML Security shares common
bonds with traditional applied security, a whole new viewpoint and set of
conceptual tools are needed to understand the subject in its entirety. At
the moment I made this realization, I realized the scope of the research
and work ahead of me. I only wished that I had a guide that would explain
everything to me in an easy, understandable manner. The piece of inert
wood byproducts in your hands represents my best attempt at this vision.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Acknowledgments

The first person I would like to thank is my father, whose sacrifice and
love gave me endless inspiration. I would also like to thank Ilan Zohar.
He has thoroughly reviewed this book and been an inspiration to my pro-
fessional and academic career. He has caught some of my conceptual mis-
takes and helped ensure the technical precision of the material presented.

Jason Gillis did a great job of reviewing a few of the chapters, and I
consider him to be one of my mentors, along with Clint Chan, who also
did a great job of providing feedback. This book would surely not exist if
it were not for the collective decision of Jason Gillis, Clint Chan, Cather-
ine Huang, Patrick Lee, and Eleanor Huie to hire me as part of the
BSAFE Developer Support group in 1999.

I want to give a special thanks to Daisy Wise, who helped me with my
algorithms class. I would probably be retaking the class instead of writ-
ing this book without her patience and dedication. David Rutstein helped
keep my energy going with his dedication as a workout partner.

Dale Gundersen deserves special thanks for the artwork found in
Chapter 2; he has provided the most elaborate cryptographic machine
ever seen! Bryan Reed also deserves special thanks for providing me with
support and patience during the course of this work.

Steven Elliot deserves a special thank you for providing me with the
opportunity to write, as do Tracy Dunkelberger, Alexander Corona, and
Beth Brown, who helped make the process as painless as possible.

Other individuals that deserve special recognition include Rosie M. Fai-
fua, who supported me throughout the bulk of this work. Stephanie Blos-
som and Chris Jones also deserve a special thank you because many of
the chapters were written in the confines of their apartment. In addition,
frequent visitors to 720 Foothill Boulevard in San Luis Obispo deserve a
special thank you for providing the necessary distractions at the proper
time.

Above all, however, was the collaboration and encouragement of
Jeremy Crisp, who did absolutely nothing, but still gets his name in a pub-
lished work.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

About the Reviewer

Ilan Zohar, currently with Hewlett Packard, has been deeply involved
with various security projects, but most recently, the implementation of
XML security standards. Previously he worked with the RSA BSAFE™
CryptoC team for RSA Security Inc. Ilan graduated as an MS Electri-
cal Engineering from Stanford University in 1999, where he also
specialized in cryptography and its applications to information secu-
rity.llan holds a M.S. in Mathematics from the Technion Israel Institute
of Technology, Haifa, Israel, a B.S in Electrical Engineering Cum Laude,
and a B.A. in Mathematics Summa Cum Laude. You can reach Ilan at
ilan@stanfordalumni.org.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

This page intentionally left blank.

Introduction

CHAPTER 1

This book is an introduction to XML Security. You should be excited
because a lot of learning is about to take place. This book takes the huge
field of applied security and equally huge field of XML and smashes them
together into something small enough to hold in your hand.

This book is incomplete and bears resemblance to a split-second in the
evolutionary time-line of XML Security. It is the nature of technology to
spin far beyond the boundaries of a single book. Because of this, we pay
special attention to understanding concepts and shy away from fluid
details. The purpose of this book is to communicate concepts and often
this is done at the expense of some details. You should finish this book and
be able to explain XML Security basics in a way that can be easily under-
stood, rather than display encyclopedic knowledge of XML Security.

Before we take a swim in the sea of XML Security, we need to define
what it is we are talking about. What is XML Security? What is the scope
of this book? XML is an enabling technology for the portability of data.
XML Security is the application of applied security to XML structures.
One naïve way to break apart the subject of applied security is to make a
division between data privacy and authentication. Taking our definition
further, we can make the substitution and arrive at the following defini-
tion: XML Security is the application of data privacy and authentication
to XML structures.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Not all of my readers will have a good knowledge of data privacy or
authentication, and because of this, we begin the book with a primer on
security concepts. This is the focus of Chapter 2. The primer offers only
the bare minimum for the voyage through the high-country of cryptogra-
phy. The journey can be made with the material provided here, but it is
recommended that the reader visit the references section and travel with
another security text. Chapter 2 omits many details regarding specific
cryptographic algorithms. For example, we cover Triple-DES (a specific
cryptographic algorithm) and how it works from a high-level perspective,
but leave the actual algorithm as a black box and defer the particulars.

Similarly, not all readers will have a working knowledge of XML. This
topic rivals applied security in its depth and breadth and is full of con-
ceptual prerequisites. The reader simply cannot process the information
in this book without understanding some basic things about XML. Fortu-
nately, a primer on XML is provided, which is the subject of Chapter 3.
Chapter 3 covers the details and basic concepts behind XML as it is
related to XML Security. Chapter 3 is written to communicate the bare
minimum XML knowledge required to understand most of XML Security.

Additional XML resources may be useful for pinpointing exact details,
but they are less of a requirement. The XML primer contains all the
reader needs to know about XML to understand XML Security.

Once the primer prerequisites have been met, the real learning begins
in Chapter 4 where we begin our coverage of the XML Signature Proposed
Recommendation. All of the XML technologies we cover in this book orig-
inate in a standard that is in development by the World Wide Web Con-
sortium (W3C). You may wonder about the story behind the W3C. Instead
of giving them an introduction, I will let the W3C make their own intro-
duction (from www.w3.org):

The World Wide Web Consortium (W3C) develops interoperable technologies
(specifications, guidelines, software, and tools) to lead the Web to its full
potential as a forum for information, commerce, communication, and collec-
tive understanding.

At least three basic W3C activities relate directly to XML Security.
These include the XML Signature, XML Encryption, and the XML Key
Management Specification (XKMS). Some will argue that the list of activ-
ities related to XML Security doesn’t end here, but also includes other
technologies such as Trust Assertions (XTASSs) or transport protocols
(SOAP). While this can be argued, the three aforementioned activities are
certainly the most fundamental because they define the mechanisms for

XML Security2

basic cryptographic operations, as well as provide for the establishment
of trust.

Chapter 4 begins our adventure into understanding the XML Signa-
ture and how it works. Of the three core XML Security technologies, the
XML Signature Proposed Recommendation is the most mature. It is
highest-ranking in its status. W3C specifications follow a process toward
the pinnacle of becoming a W3C Recommendation, which is the highest
tier for a W3C specification. As of the time of writing, the XML Signature
specification is at the Proposed Recommendation status, which is one
level prior to reaching the blessing of becoming a W3C Recommendation.
Throughout our discussion of the XML Signature, I use the shortened
phrase the XML Signature Recommendation instead of the more copious
the XML Signature Proposed Recommendation. I am doing this only for
the sake of brevity of discussion. The XML Signature Proposed Recom-
mendation is simply too wordy to provide for readable prose. You should
understand, however, that the XML Signature specification is only a pro-
posed recommendation, regardless of my potentially confusing usage.

Because of the maturity of XML Signatures, the discussion spreads
across three chapters. Chapter 4 is devoted to the syntax of an XML Sig-
nature; Chapter 5 is devoted to the processing rules for the XML Signa-
ture; and Chapter 6 is a summary of proposed scenarios and frequently
asked questions. We will find that the complexity of the XML Signature
alone is enough to stun even the sharpest minds, and in keeping with our
goal of conceptual understanding, it is best to provide a playpen to try on
the new ideas.

Once we have fully understood how the XML Signature works, we
make the transition into XML Encryption in Chapter 7. XML Encryption
is a younger technology and only boasts the rank of Last Call Working
Draft, a full two steps below the Proposed Recommendation status of the
XML Signature. The XML Encryption draft is younger, and because of
this, it is subject to change. To prevent myself from executing embarrass-
ing errors, I have left out some of the details of XML Encryption, although
the foundation and ideas on which it is built remain strong. Our study of
XML Encryption will show how data privacy can be applied to XML
structures.

Chapter 8 transitions from a more conceptual discussion to a look at
how a practical toolkit implementation of XML Signatures works. The
product chosen is RSA Security’s BSAFE Cert-J toolkit, which has sup-
port for producing signed XML structures. You should flip to the back of
this book and discover how you might obtain a free evaluation copy of

3Chapter 1 Introduction

Cert-J to play with. Current export laws prevent the inclusion of a CD
directly with this book. The sample code provided in Chapter 8 can be
obtained at this book’s web site, located at www.rsasecurity.com/go/
xmlsecurity.

Chapter 9 looks at the XKMS, which is the youngest XML Security
technology covered in this book. The XKMS is at the lowest level of W3C
maturity, currently a Working Draft. Because of this, a full discussion of
how XKMS works is not covered. The reader is instead left with a good
high-level conceptual understanding of XKMS.

The book concludes with an end section called “Additional Resources.”
This section includes a references section, information on exclusive canon-
icalization, and some information about template signing for RSA BSAFE
Cert-J. I urge you to visit all of the web links provided in the back to com-
plete your knowledge of the XML Security playing field. With a preview
fresh in your mind, the excitement and pursuit of understanding is about
to begin. Enter XML Security!

XML Security4

Security Primer

CHAPTER 2

The study of cryptography and its related fields such as algorithms and
mathematics is by nature theoretical and experimental; the application of
these ideas to the real world represents the domain of applied cryptogra-
phy and applied security. This chapter seeks out some fundamental ideas
in the domain of applied cryptography and applied security that relate to
XML Security. Very little time will be spent on the details of specific cryp-
tographic algorithms. The focus is instead on basic cryptographic concepts
and enabling technologies that bridge the important gap between applied
security and XML. Special care is taken to cover all of the security con-
cepts that are related to XML Signatures, XML Encryption, and XML Key
Management (XKMS).

Because of the limited nature of a single chapter, there is not enough
room for a verbose study of cryptography from its theoretical roots up
through its real-world application. For those readers interested in a ver-
bose study of cryptography, there are a number of outstanding books on
the subject. Visit the references section at the end of this book for a rec-
ommended list. Further, many details about algorithms and processes
have been omitted from this chapter as they are better explained in other
resources. The goal of this chapter is to provide the reader with enough
background in applied security to be able to understand XML Security
and its importance.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Encryption
Finding a point to jumpstart a discussion of the immense topic of applied
security is a daunting task. There are many places to begin, and it would
be difficult to argue that one entry point is more correct than another. The
general concept of encryption, however, provides a broad launching point
and has the added benefit of being extremely visible. That is, almost all
readers should have some sort of previous encounter with the topic, either
formally or casually.

The basic idea behind encrypting data with a single key is quite simple:
provide a piece of plaintext and an encryption key to an encryption
method and turn the crank. Once the crank rests, the outcome should be
some sort of apparently random permutation of the plaintext. The idea, of
course, is that the output is undecipherable to anyone who doesn’t possess
the decryption key or can’t otherwise guess the answer (in this case, the
encryption key and decryption key are the same key). This familiar pic-
ture is shown in Figure 2-1 and is known as symmetric key encryption.

Figure 2-1 shows an example of encryption with a single key (symmet-
ric encryption). The plaintext is fed to the encryption algorithm (crank) in
blocks. These blocks combine with the encryption key and produce the
final encrypted output, which is called the cipher text.

The added complexity and confusion behind encryption lies not in the
basic idea, but instead in the plethora of additional enabling technologies
required to make encryption practical and usable. We can define some
usability constraints for encryption, based on the fundamental compo-
nents shown in Figure 2-1. In particular, it is wise to start asking ques-
tions of Figure 2-1. These questions represent the proverbial bridge that
brings mathematical ideas into the realm of reality.

The following questions apply to Figure 2-1:

� What is the nature of crank? Does the encryption method meet my
requirements in terms of speed and strength? How does the
encryption method operate on the plaintext?

� What is the nature of the plaintext? Is the data compatible in size
with the encryption function? Are alterations to the input data
necessary?

� What is the nature of the encryption key? How is it transported? Is it
of appropriate size? How was the key generated?

XML Security6

� What is the nature of the entire process? Has it been done in
accordance with an accepted or proposed standard? Is the process
secure? Is the process usable?

The previous questions cover a lot of ground and the answers comprise
most of the necessary knowledge needed to understand encryption for the
purposes of XML Security.

Symmetric Ciphers (The Nature of the Crank)
A symmetric cipher is an encryption algorithm that uses the same key for
both encryption and decryption. The symmetric ciphers that we are most
concerned with include two variations: block ciphers and stream ciphers.
A block cipher encrypts plaintext in blocks of a fixed size. The block size is
related to the specific symmetric cipher and key size. Block ciphers take
the center stage for our discussion because they are common and exten-
sively supported in XML Encryption.

A stream cipher is a slightly different animal that relies on a key
derivation function to generate a key stream. The XOR (exclusive-OR)
operation can then be used between each byte of the plaintext and each

7Chapter 2 Security Primer

Encryption Key (Ek)

Encryption Algorithm
(“Crank”)

Plaintext

Ciphertext

Figure 2-1

Encrypting
arbitrary data

byte of the key stream to produce the cipher text. Stream ciphers are usu-
ally faster and smaller to implement than block ciphers, but have an
important security trade off. If the same key stream is reused, certain
types of attacks using only the cipher text can reveal information about
the plain text. Although XML Encryption has support for stream ciphers,
none are currently specified. An example of a stream cipher is the RC4
algorithm developed by RSA Data Security. More information on RC4 can
be found in one of the recommended cryptography books found in the ref-
erences section at the end of this book.

Two important block ciphers used in XML Encryption are Triple-DES
and the AES. Triple-DES is a variation of the Data Encryption Standard
(DES) algorithm and AES is the Advanced Encryption Standard. The goal
here isn’t an extensive mathematical discussion or cryptanalysis of either
algorithm. Instead, the reader should learn how each algorithm works in
terms of its required parameters and supported key sizes. Readers who
want more detail about either algorithm should refer to the references
section at the end of this book.

Triple-DES

Triple-DES is an interesting cipher because it is actually a reincarnation
of another cipher called DES, the Data Encryption Standard. DES uses a
64-bit key consisting of 56 effective key bits and 8 parity bits. The size of
a DES key never changes—it is always 64 bits long. The block size for
Triple-DES is 8 bytes, which means it encrypts data in 8-byte chunks.

The original DES cipher proved to be susceptible to a brute force cipher
text attack. A brute force cipher text attack consists of trying every possi-
ble key in the DES key space (256 possible keys) against the cipher text
until the correct plaintext is found. To thwart this type of attack, a larger
key space is needed. This requirement is fulfilled by Triple-DES, which
executes the DES algorithm three times. The effect of executing DES
three times raises the key size to 192 bits. Of these 192 bits, only 168 bits
are effective. (This is because for each 64-bit DES key, only 56 bits are use-
ful.) The size of the key space is therefore raised to 2168, which is a much
larger key space. Current cryptanalysis of Triple-DES estimates the
cipher effective to only 108 bits, which is still considered secure.

Triple-DES is often referred to as Triple-DES EDE, meaning Encrypt,
Decrypt, Encrypt. When we say Encrypt, Decrypt, Encrypt, we are refer-

XML Security8

ring to the precise operations that comprise one pass of the Triple-DES
algorithm on a single block of data. A high-level diagram of how Triple-
DES works on each block of plaintext is shown in Figure 2-2.

In Figure 2-2 the plaintext block enters the cipher and is encrypted
using DES with the first third of the 192-bit Triple-DES key (the first 8
bytes). Next, this cipher text is decrypted with the middle third bytes of
the 192-bit Triple-DES key. Note that this decryption operation doesn’t
actually decrypt the block previously encrypted. The reason is because we
are decrypting using the wrong key. Remember, the decrypt operation
occurs with the middle 8 bytes of the initial 192-bit key (not the first 8
bytes, which would decrypt the data). The decrypt operation actually ends
up jumbling the data further. The cipher ends when the block is encrypted
with the last 8 bytes of the initial Triple-DES key. In general, Triple-DES
is a slow cipher because it is comprised of three executions of the DES
cipher on each block of the plaintext.

Padding and Feedback Modes

Two concepts that the reader should understand about block ciphers are
padding and feedback modes. Bringing up these topics in the context of
Triple-DES is useful because the reader will immediately have some sort
of frame of reference to base examples on.

9Chapter 2 Security Primer

Triple-DES Encryption Key (Ek)(192 bits)

DES Decryption

Middle 64 bitsFirst 64 bits Last 64 bits

DES Encryption

Plaintext Block Ciphertext Block

DES Encryption

8 bytes 8 bytes

Figure 2-2

Triple-DES
operation

The first concept, padding, is rather simple and will be introduced first.
The second concept of a feedback mode is slightly more complex, although
most of the complexity and details can be safely considered out of scope for
our purposes here.

Padding (The Nature of the Plaintext)

Padding is used pervasively in both symmetric key encryption and asym-
metric key encryption (discussed in the next section). Consider the prob-
lem of encrypting a 6-byte chunk of data using Triple-DES. Triple-DES
only operates on blocks of 8 bytes. At first glance it appears impossible to
encrypt our 6-byte piece of data with Triple-DES and in fact, this is cor-
rect. It is impossible to encrypt a 6-byte block of data with Triple-DES
unless padding is added, which forces the block to be 8 bytes.

One crude method of padding is to simply add random bytes to the
plaintext until it is 8 bytes long. If one were to do this, however, the origi-
nal size of the data would need to be communicated to the recipient and
this would introduce extra complexity. Similarly, one could simply pad the
data with 0’s. This might work, but will cause problems if there are trail-
ing 0’s in the plaintext. How will the verifier know the boundary between
the plaintext and the padding?

The solution is to use a padding scheme that has built-in support for
marking the plaintext with an identifier that tells the verifying applica-
tion how many bytes comprise the padding (and by implication, which
bytes to strip). A padding scheme also has the property that it doesn’t give
an attacker extra information that might compromise the cipher text. A
padding scheme should work like magic. A user of Triple-DES encryption
should think of passing an arbitrary amount of data to the cipher and the
padding scheme should add the necessary pad bytes upon encryption and
strip the necessary pad bytes upon decryption. This entire discussion
implies that Triple-DES alone is not very usable unless it is paired with
some sort of padding scheme. The most common padding scheme for sym-
metric ciphers is defined in PKCS#5 (Public Key Cryptography Stan-
dards). Padding is generally “auto-magic” for symmetric ciphers, but some
additional complexity and constraints arise when padding is used for an
asymmetric cipher such as RSA. The two padding schemes for the RSA
algorithm are discussed in the upcoming section on asymmetric ciphers.

The XML Encryption draft defines a padding scheme similar to
PKCS#5 for symmetric ciphers. This scheme is described in the following
section with some examples.

XML Security10

Suppose that we have a 6-byte block (ABCDEF) that we wish to
encrypt with Triple-DES. The block size that Triple-DES operates on is 8
bytes. This means that n � 6 and b � 8. We therefore need 8 � 6 � 1 � 1
byte of arbitrary padding. Suppose our one byte of arbitrary padding is Z.
Our plaintext block now looks something like this: ABCDEFZ. The final
step is to append a final byte with the value k � 1. The value k � 1 and
k � 1 � 2. Therefore, our padded plaintext block appears as follows:
ABCDEFZ2.

We have now padded the plaintext in such a way as to communicate to
the recipient the number of pad bytes actually added. Let’s try another
example that exercises the second case for the padding scheme. Suppose
that we have an 8-byte block (ABCDEFGH) that we wish to encrypt with
Triple-DES. The reader may claim that we don’t need to pad the 8-byte
block for Triple-DES. In this case the reader is technically correct. How-
ever, the padding scheme always assumes the existence of a pad byte at
the end. This means the recipient is expecting the last byte to communi-
cate a padding value. If we don’t pad it properly, the recipient will try to
convert the H into a number and strip padding that doesn’t exist. The
recipient has no way to determine which blocks originally required
padding and which were the perfect size. Because of this, everything is
padded—even in the cases where it is unnecessary.

For the case of an 8-byte block size and an 8-byte block, k � 7. This
means that after adding 7 arbitrary pad bytes, the block becomes:
ABCDEFGHQWERTYU. The block is 15 bytes long, and adding the last
byte, which is an 8 (k � 1) makes two perfect blocks. The final plaintext
looks as follows: ABCDEFGHQWERTYU8. The recipient will strip off the

11Chapter 2 Security Primer

XML Encryption Padding Scheme (Symmetric Ciphers)

Given an n byte plaintext block and a b byte block size where n � b:
If n is less than b:

Let k � b � n � 1 arbitrary pad bytes and append these bytes to n
If n is equal b:

Let k � b � 1 arbitrary pad bytes and append these bytes to n
In both cases (n � b and n � b), append a final byte whose value

is k � 1.

last 8 bytes (after decryption) and the plaintext now becomes ABCDE-
FGH, which is the original plaintext.

Feedback Modes

For a block cipher such as Triple-DES, a one-to-one relationship exists
between a single plaintext block and the corresponding cipher text for a
given key. In other words, repeated plaintext blocks always encrypt to the
exact same cipher text if the key is the same. If a piece of plaintext con-
tains repeated blocks, the cipher text will also contain matching patterns
that may aid an attacker.

Furthermore, a block cipher lacks an inherent relationship between
each cipher text block. This means that a possible attacker monitoring
encrypted blocks can permute or remove blocks at will. The ability to
remove cipher text blocks undetected can be dangerous as it may alter
messages completely. For example, consider the following plaintext
message:

Don’t Attack at Dawn.

The first plaintext block (8 bytes) is *Don't*, the second plaintext
block is Attack a, and the third plaintext block is t Dawn. Once
encrypted, the message becomes three cipher text blocks. Let’s assume the
first cipher text block is ABCDEFGH, the second block is IJKLMNOP, and
the third block is QRSTUVW. If these three blocks are sent in succession,
and an attacker happens to remove the first block (or otherwise block it
from being sent), the remaining two blocks would arrive and be decrypted.
Upon decryption the receiver would have the message, Attack at Dawn,
instead of the intended message, *Don’t* Attack at Dawn.

A feedback mode is a way of creating a strong relationship between out-
put cipher text blocks as well as preventing patterns from appearing in
the cipher text. There are several feedback modes, but the most common
mode is called cipher block chaining mode and is abbreviated CBC mode.
When CBC mode is used, the current plaintext block is XOR-ed with the
previous cipher text block. The XOR operation has the effect of altering
the plaintext block in such a way that it is highly unlikely to produce some
sort of repeated cipher text. Furthermore, there is now a strong relation-
ship between all of the cipher text blocks. The message cannot be fully
decrypted unless the all the cipher text blocks are present.

The careful reader may ask about the first plaintext block. If each
plaintext block is XOR-ed with the previous cipher text block, what hap-

XML Security12

pens in the case of the first plaintext block? There is no previous cipher
text block to XOR with. This special case requires something called an ini-
tialization vector (IV), which is used to kick-start the cipher block chain-
ing. The initialization vector is shared, nonsecret information that must
be communicated to the recipient in order to successfully decrypt the first
block of the message.

At this point, the reader should have enough preliminary information
to completely understand how Triple-DES works from a conceptual point
of view. To test this understanding, let’s look at the URI identifier for
Triple-DES as it appears in the XML Encryption draft. This is shown in
Listing 2-1, which is only a single line. A URI identifier is the name given
to URI strings that are chiefly used as string identifiers. More information
about URIs in general is given in Chapter 3. In any case, it’s simply an
identifier that tells a decrypting application that Triple-DES will be used.
The details of how and why are discussed in Chapter 7, and are not impor-
tant here. What is important here is to dissect the identifier and match it
against concepts learned so far.

The term URI identifier may appear redundant in and of itself. After
all, if we expand the definition of URI we will arrive at something like
this: “Uniform Resource Identifier identifier.” On the surface, this doesn’t
seem to make sense. The insight here is that these URI’s are not meant to
be de-referenced—they are simply string identifiers, hence the term URI
identifier. The term identifier here is borrowed from the equivalent “iden-
tifier” concept found in a programming language. The recognition of the
URI identifier is necessary because we will also see URIs that are meant
to be de-referenced and we need an intellectual way of differentiating
between the two.

The important element of Listing 2-1 is the string after the # sign. We
know the key size used is 192 bits, the algorithm is Triple-DES and the
feedback mode is CBC mode. What isn’t explicit is the padding scheme
used. Fortunately, this is explicit in the XML Encryption draft and is uni-
versal for all block ciphers specified therein. The padding algorithm used
is the same scheme defined in the previous section on symmetric cipher
padding.

13Chapter 2 Security Primer

Listing 2-1

Triple-DES URI
identifier

http://www.w3.org/2001/04/xmlenc#tripledes-cbc

The reader should now understand some fundamentals about block
ciphers such as the block size, padding scheme, and feedback mode. The
reader is now in great shape to tackle another supported algorithm in
XML Encryption—the Advanced Encryption Standard.

AES

The Advanced Encryption Standard (AES) replaces DES as the new gov-
ernment-sponsored block cipher. The announcement of the AES by the
Commerce Department was historic because it was the first time that a
global, open process was used to choose a government-sponsored encryp-
tion algorithm. The National Institute of Standards and Technology
(NIST) held an open competition among 15 candidate ciphers and chose a
cipher called Rijndael, developed by Joan Daemen and Vincent Rijmen.
The AES is the Rijndael block cipher and for practical purposes these two
terms can be considered equivalent.

Rijndael is a variable key size cipher. This contrasts Triple-DES, which
has a fixed key size. The AES specification specifies a 16-byte block size
and three choices for key size: 128-, 192-, and 256-bit. The AES specifica-
tion names these three flavors as AES-128, AES-192, and AES-256. These
size constraints simply mean that while it is possible for someone to
implement Rijndael with a 64-bit key size, this particular implementation
can’t be considered AES-compliant.

The details of the AES cipher are out of scope for this book. The reader
should refer to the references section for more information on the inner
workings of this algorithm. In short, there are three variations defined by
the AES specification and there are three matching URI identifiers in the
XML Encryption draft that match these variations. These are shown in
Listing 2-2.

After examining the identifiers listed in Listing 2-2, the reader should
notice that the AES as used by XML Encryption also uses the CBC feed-
back mode. It’s possible that other feedback modes can be used with the

XML Security14

Listing 2-2

XML Encryption
URI identifiers
for AES

http://www.w3.org/2001/04/xmlenc#aes128-cbc
http://www.w3.org/2001/04/xmlenc#aes192-cbc
http://www.w3.org/2001/04/xmlenc#aes256-cbc

AES (or none at all), but CBC mode is the most common feedback mode
and currently the only one defined by the XML Encryption draft.

Symmetric Key Generation
(The Nature of the Key)

The concept of a symmetric key can be reduced to a single byte string of
the appropriate size. Any string of bytes is a legal symmetric key from a
mathematical point of view. This means that one can use a symmetric key
consisting of a single string of matching bits, or all zeroes; the nature of a
symmetric encryption algorithm does not place special restrictions on the
semantics of these bytes. Some symmetric algorithms, however, are sub-
ject to the presence of weak keys and care must be taken that when a ran-
dom string of bytes is generated, a weak key is not chosen. For more
information on weak symmetric keys, see one of the cryptography books
listed in the reference section at the end of this book.

This is not the case for an asymmetric cipher such as RSA, which is dis-
cussed in following sections. What is important, however, is the choosing
of these symmetric key bytes. Symmetric keys should be derived from a
random source of information. If an attacker can reproduce or re-enact
symmetric key generation, the protection afforded by the cipher is
reduced to zero because the key is known. It is important to understand
that numbers produced by a computer program are never random, but
pseudo-random. The reason is because a computer (by definition) is sim-
ply a large state machine, and by returning the computer to the proper
state, the corresponding random number can be reproduced. This violates
a fundamental definition of randomness (reproducibility) and is the chief
reason why the term pseudo-random is used.

Symmetric Encryption
The reader should now be able to answer some of the initial questions
posed at the beginning of this chapter that relate to symmetric encryp-
tion. For example, we have discussed two types of cranks used for sym-
metric key encryption: Triple-DES and the AES. The AES is faster than

15Chapter 2 Security Primer

Triple-DES and has flavors with longer key sizes (which make these ver-
sions more resistant to a brute force attack). Moreover, we have also dis-
cussed the CBC feedback mode, which strengthens the crank by providing
strong relationships between each cipher text block as well as obfuscating
possible patterns in the cipher text. CBC feedback mode is not an add-on
feature and is used to prevent attacks against the cipher text.

We also discussed the nature of the plaintext and pondered whether
alterations are necessary. We realized that padding must be used to
ensure that arbitrarily sized blocks of plaintext are compatible with a
given block cipher. The questions still unanswered relate to the manage-
ment of the encryption key (the nature of the key) as well as the nature of
the entire process. Key management is discussed in the next section and
the section on cryptography standards helps answer questions about the
entire process.

Asymmetric Ciphers
An asymmetric cipher is an encryption algorithm that uses non-matching
keys for encryption and decryption. This contrasts symmetric key cryp-
tography, which uses the same key for both the encryption and decryption
operation. With an asymmetric cipher, one key is used for encryption but
is completely useless for decryption. Likewise, only one key can be used
for decryption and is useless for encryption.

The most popular asymmetric encryption algorithm is the RSA algo-
rithm, which was developed by Rivest, Shamir, and Adleman. While there
are other asymmetric encryption schemes, the RSA algorithm is the only
one I will cover or discuss in this book because it is the only such encryp-
tion scheme currently specified in any of the XML Security Standards.

We must be careful to distinguish imposter algorithms from the central
idea in this particular section. For example, the XML Signature Recom-
mendation has support for the DSA signature algorithm, which uses
asymmetric signature keys. This algorithm, however, cannot be used for
encryption and is discussed instead in the section on digital signatures.
Similarly, the XML Encryption draft specifies support for the Diffie-
Hellman key exchange algorithm. While this algorithm is a foundational
algorithm for public-key cryptography, it is not an asymmetric encryption
scheme even though it uses asymmetric keys. To add to the confusion, the
RSA algorithm can also be used for digital signatures and it too uses

XML Security16

asymmetric keys. Table 2-1 shows a summary of the various asymmetric
algorithms as used in the context of XML Security.

Table 2-1 lists algorithms that somehow rely on asymmetric keys to per-
form an encryption, signature, or key exchange operation. The reader
should be certain to distinguish between the algorithms listed in Table 2-1
and understand where each one is used. We begin with an overview of the
RSA encryption algorithm and the logistics of asymmetric encryption.

Introduction to the RSA Algorithm

The RSA algorithm is arguably one of the most famous asymmetric
encryption algorithms—it is conceptually simple to understand, based on
a well-known mathematical problem, and is robust and usable in many
different environments. It has been highly studied and one can estimate
that there are thousands of descriptions of the RSA algorithm floating
around on the Web. It almost seems as if adding to this plethora of prose
on the subject will accomplish little, as the details can be found with a
simple Web search. Nonetheless, I am presenting a short summary and
tour of the conceptual highpoints of the RSA algorithm here for those
readers currently offline.

My reader may argue that we have not given asymmetric encryption a
proper introduction. Most descriptions of this material begin with formu-
lating asymmetric encryption as a solution or remedy to certain problems
caused by symmetric key encryption.

Symmetric encryption as a means of data protection works just fine,
except for one detail: we need a way of distributing the actual key to the
intended recipient. In other words, we still haven’t solved our entire prob-
lem. We have merely created another, arguably smaller instance of the

17Chapter 2 Security Primer

Algorithm Used in XML Used in XML
Name Encryption? Signatures?

RSA Encryption Algorithm Yes No

RSA Signature Algorithm No Yes

DSA Signature Scheme No Yes

Diffie-Hellman Key Exchange Yes No

Table 2-1

Asymmetric
Algorithms in
XML Security

problem. This book (and others like it) might not exist if it were possible
to mentally connect with a recipient (via ESP or other extra-sensory phe-
nomenon) and transmit the key securely. Solving this key transport prob-
lem actually solves part of the larger, “I want to send data securely”
problem.

The argument goes like this: If we could meet and exchange the key,
why even bother with all of the complexity of encryption—let’s just
exchange the message and be on our way. The involved reader may even
argue further: Well, why don’t we meet ahead of time with the intended
recipient to exchange the key, and then exchange the messages? This is,
again, another simple solution. While this is a good solution for commu-
nicating with a small number of people, it falls outside the realm of prac-
tical use when access to a secure channel is needed for an increasing
magnitude of people, not to mention recipients that may be many thou-
sands of miles away. Unfortunately, symmetric key encryption also gar-
ners a host of other problems, such as repudiation. For example, one of the
members in a symmetric key exchange can simply deny that he or she
wrote a certain encrypted message. While this doesn’t seem like it would
be much of a problem, trust is a central issue when sending any type of
secure message. The receiver must be absolutely certain that any secure
message received was indeed sent by the claimed sender; a false message
thought to be true may be just as much of a menace as a compromised
symmetric key.

A symmetric cipher also makes no provisions for data integrity. The
receiver of a message has absolutely no way to verify that a message has
not been altered. Thus far, we have generated three major complaints, or
objections regarding symmetric key encryption:

� Symmetric key encryption fails to resolve the issue of scalable key
distribution.

� Symmetric key encryption fails to resolve the issue of repudiation.

� Symmetric key encryption fails to resolve the issue of data integrity.

We can clearly see that the strength of the crank or cipher is only a
small part of the story regarding the development of a secure infrastruc-
ture. What is needed here is a completely new encryption paradigm, one
that somehow avoids these three problems, without introducing too many
new problems.

XML Security18

Asymmetric Encryption with RSA

Allow me to begin with a disclaimer: the concepts surrounding asymmet-
ric encryption are not substantially difficult to understand; however, some
readers may be conditioned to believe in some innate cloud of confusion
that regularly surrounds this issue. Often, the logistics of asymmetric
encryption are shrouded in a mystery of terms (public key, private key,
signing key, decryption key, and so forth). It is my desire to end this con-
fusion and explain, in the most simple of terms, the logistics of an asym-
metric cipher as it relates to RSA. We will not spend time on the
mathematics of RSA, as this falls slightly out of scope for this particular
book.

Meet Alice, Bob, and Eve

Traditionally, three basic characters describe the logistics of asymmetric
encryption: Alice, Bob, and Eve. The logic is simple: Alice wishes to send a
message to Bob, but wishes to do so in such a way that a third party (Eve)
cannot intercept or decipher the message. The question to ask here is as
follows: How do we perform this transaction without falling prey to the
same ailments present in the older method of symmetric encryption? The
trick is a simple, but clever maneuver: Each party (Alice and Bob only)
must generate two keys. When we use the word key, think simply of a
string of bits. This simplification will deteriorate when we look at some
actual RSA keys, but it is close enough for now.

Three important points to remember regarding these generated keys
are as follows:

� These keys are mathematically related somehow.

� One key is used to encrypt messages and one key is used to decrypt
messages.

� The keys are generated using random data. The names given to these
keys are public key and private key. The public key is used for
encryption and the private key is used for decryption.

Alice and Bob now both have a key-pair or set of keys: one for encrypt-
ing messages, and one for decrypting messages. If Alice wishes to send a
message to Bob, Alice must simply obtain Bob’s public key. This public key
need not be kept secret; it is only used for encrypting data. Public keys can
be stored anywhere they are publicly accessible. The most common place
to find a public key is inside an X.509 certificate. More information on

19Chapter 2 Security Primer

X.509 certificates is found in the section entitled “Trust, Certificates, and
Path Validation.”

Once Alice has obtained Bob’s public key, she must use an encryption
algorithm compatible with the generated keypair. With the encryption
algorithm, Alice encrypts the message. Keep in mind these two points: She
has used Bob’s public key to encrypt the data, and she has used a publicly
known encryption algorithm.

Only Bob can access the resulting encrypted message. Why? Bob is the
only one who has the corresponding decryption key, or private key. This is
another defining property of the private key—it is assumed that Bob has
not given his private key to random people or otherwise divulged it pub-
licly in any way. Remember that the keys are mathematically related in
such a way that a message encrypted with a public key can only be
decrypted with the corresponding private key. The term only is loaded—
there is another way to decrypt the message, but this would involve
searching for the key itself or attacking the RSA algorithm directly. Given
an adequate key size, both attacks are currently unfeasible.

Highlights of the mathematical details for the RSA algorithm are given
in the next section. We will not spend time on these details, as their proper
place is in a cryptography book. Instead, I will note a few interesting
things about the RSA key generation process, the actual key values
(which is important for understanding how RSA keys are packaged), and
the nature of the RSA algorithm itself.

RSA Algorithm Details
The RSA algorithm is based on the difficulty of factoring numbers. We will
come to grips with what this means and how this system works shortly.
We will answer two broad questions in this section. The first concerns the
logistics of the RSA algorithm and the second concerns the security of the
algorithm itself. We can skirt a theoretical discussion about algorithms if
we make an intractability claim. That is, we will assume that a desired
property of a secure asymmetric algorithm is intractability of the funda-
mental problem on which it is based. For the RSA algorithm, the funda-
mental problem is factoring. When we say the problem of factoring, we are
referring to the fact that it is computationally expensive to factor a num-
ber into its prime factors (if the number is large enough).

XML Security20

The involved reader may wonder what intractability means from a
practical standpoint. A problem is intractable for our purposes here if it
presents a potential attacker with such an obstacle that he or she might
as well walk around in a futile attempt to get hit by lightning instead. An
attacker would have a better chance of being struck with an errant bolt of
lightning than finding a solution to an intractable problem. This is the
intuition about intractability that we are aiming for.

This small discussion of intractability is by no means complete without
the introduction of the skeptic, the man or woman who relies on the inher-
ent weakness of this largely inductive argument concerning intractability.
The skeptic might assert a claim that empirical evidence concerning the
intractability of such an algorithm has not yet been proven to exist, or
more concisely: just because no one until now has found an easy solution
to intractable problems, it does not necessarily follow that such a solution
doesn’t exist, or can’t later be discovered.

What does this mean to our discussion and how might we better under-
stand this philosophic question? We might begin by making a division in
viewpoints by assigning the argument of the theoretician on one side and
positioning the argument of the engineer on the other. Before we pursue
this dualism, I will refresh our definition of concern.

Intractable Problem:
A problem in which no easy solution has yet been found (that is, that of
polynomial time or better). Another way to phrase this is as follows: An
intractable problem is one where no solution significantly better than an
exponential solution has yet been found.

Case 1: “The Engineer”

The engineer is making a case for practicality, a case for how the world
works. The assumption here is that our computing power will not increase
substantially in the years to come, and even substantial increases in com-
puting power will not yield faster search times for it is trivial to increase
the length of an RSA key to thwart vast increases in computing power.
Increasing the key length of an RSA key has the effect of exponentially
increasing the difficulty of cracking that particular problem. The particu-
lar assumption the engineer is banking on is the assertion that computing
power cannot increase exponentially.

21Chapter 2 Security Primer

Case 2: “The Theoretician”

The theoretician or philosopher is making a case for possibility. It is
extremely difficult to prove intractability for a given mathematical prob-
lem; the distinct possibility exists that a fast, easy solution to an
intractable problem exists and can be found. Perhaps a new technique or
insight into the problem is possible. The engineer largely ignores the fact
that new ways of computing—quantum computation, biological computa-
tion, or molecular computation, for example—rapidly increase the com-
puting power in an exponential way that, in theory, may provide easy
solutions for some intractable problems.

So now the question arises: Is the RSA cryptosystem secure? What
seemed at the outset as a relatively easy question to answer has now
opened up a deep channel of philosophical quandary. Apparently, the
answer to the question is decidedly dependent upon which vision of real-
ity one has. In practice, little headway has been made in effectively break-
ing RSA. In December 2000, a 512-bit RSA modulus was successfully
factored. This effort required around 300 computers and about 5 months
of time. For every bit added to an RSA key, however, the time to factor the
number increases by a measure of 1.035. Assuming this sort of constant
increase in time, the time needed to factor a 1024-bit modulus lies some-
where in the range of 3 to 30 million years.

RSA Logistics

Thus far we have learned that asymmetric encryption systems are based
on some fundamentally intractable problem. In the case of RSA, the
intractable problem at hand is the factorization of a large number. To turn
this intractable problem into a practical solution for public-key encryption
requires only a handful of mathematical steps. The mathematical
processes can be divided up into two processes: key generation and
encryption/decryption. The key generation process and encryption/
decryption process is shown in pseudo-code format in two boxes as follows:

XML Security22

23Chapter 2 Security Primer

Key Generation:

1. We begin by choosing two large prime numbers. Traditionally,
these numbers are called p and q.

2. We compute the product n � pq. The value n is referred to as
the modulus.

3. Next we must choose two more numbers. These are referred to
as the public exponent (e) and the private exponent (d).

4. The value e must be chosen less than n and relatively prime
to (p � 1)(q � 1). The term relatively prime means that (p � 1)
(q � 1) and e have no common factors except 1.

5. The value d must be chosen such that (ed � 1) is divisible by
(p � 1)(q � 1).

6. We now have two key values:

The public key: (n,e)

The private key: (n,d)

RSA Encryption andDecryption:

1. To encrypt a message m so it results in ciphertext c we use the
following:

c � me mod n (remember, encryption is done with the public-
key)

2. To decrypt a message c so it results in plaintext m we use the
following:

m � cd mod n (remember, decryption is done with the private-
key)

Now that we are armed with the basic knowledge needed to execute an
RSA encrypted exchange, let us practice and see how the system works in
an intimate manner. We can scale down our example to such a degree as
to facilitate the simplicity of calculations. We will show the example of key
generation and leave the example of encryption/decryption as an exercise
for the reader.

XML Security24

RSA Key Generation Example

1. Take two large primes:

let p � 37

let q � 23

let n � pq � 37 � 23 � 851

find (p � 1)(q � 1) � 792

let (p � 1)(q � 1) � r

2. Find the number e:

let e be a number x such that e � n and [gcd(e,r)] is equal to 1.

let x � 5

let e � 5

3. Find the number d:

let d be a number y such that [(ed � 1) mod (p � 1)(q � 1)] is
equal to 0.

[(ed � 1) mod 792] � 0

[(5d � 1) mod 792] � 0

[(5 � 317) � 1 mod 792] � 0

let y � 317

let d �317

To conclude, we have now established two values:

The public key : (n,e) � (851,5)

The private key: (n,d) � (851,317)

The keys generated in the previous key generation sample are of
course, trivial and useful only for explicative purposes. The important
thing to note and remember, however, is that the public key and private
key are represented not by a single string of bits, but by a tuple. Two
data items comprise an RSA key: the modulus and the public or private
exponent.

RSA Problems

No encryption scheme, despite how clever or ingenious, is going to be per-
fect in every way. The RSA encryption algorithm suffers from at least two
drawbacks:

� Key generation can be very slow.

� RSA operations are much slower than similar symmetric key
operations and require special padding schemes to be usable.

RSA Key Generation Issues

RSA key generation involves choosing random prime numbers that fit the
specific constraints described in the previous key generation process. One
aspect that is glossed over in the example is the choosing of the primes. In
the previous example, we picked 37 and 23 out of the blue. These numbers
are hardly large at all and are trivial. When real RSA key generation
occurs, the numbers chosen will be hundreds of bits in size. Furthermore,
not every appropriately sized number chosen will be prime. What must be
done during RSA key generation is primality testing, which is an expen-
sive operation by itself. Finding appropriately sized prime numbers that
fit the constraints of the key generation process can be time consuming,
even on fast processors. Because of this, key generation has the potential
to take a significant amount of time if the proper primes aren’t immedi-
ately found. The key generation process is a one-time performance hit and
need not be repeated unless a new key pair is generated.

RSA Operations and RSA Padding Issues

The act of encrypting or decrypting with the RSA algorithm utilizes a
mathematical operation called modular exponentiation. This operation
contrasts a symmetric cipher, which usually relies on faster bit manipu-
lation techniques. In particular, operations done with the private key for

25Chapter 2 Security Primer

RSA are usually much slower than the corresponding operations done
with the public key. The reason for this is because the private exponent is
usually much larger than the public exponent and modular exponentia-
tion takes longer. In the key generation example, the public exponent is
the value 3 while the private exponent is the value 317. This factor of a
100 translates into private key operations that are on average 13 times
slower, even given current optimization techniques.

Furthermore, because of the modular exponentiation operation, the
input to RSA encryption or decryption must be interpreted as a number.
This constraint simply means that special padding techniques must be
used to ensure that the input data is compatible with the modular expo-
nentiation operation.

When no padding scheme is used with the RSA algorithm, there are
two constraints that must be met for encryption to work: The total length
of the data must be a multiple of the modulus size, and the data must be
numerically less than the modulus. For example, consider a 1024-bit RSA
key. Such an RSA key has a 128-byte modulus. Suppose next that we wish
to encrypt 203 bytes of data. We would need to encrypt the data in blocks
of 128 bytes and add the appropriate padding. For 203 bytes of data we
would split the data into a 128-byte block and a 75-byte block with 53
bytes of padding. This, however, only fulfills the first constraint. The sec-
ond constraint means that we have to prepend a 0 (zero) to the beginning
of each block (and shift the pad bytes accordingly) to ensure that the
numerical value of the data is smaller than the modulus size. This sort of
bit manipulation is tedious and error prone, but it is the only way to
encrypt large amounts of data with the RSA algorithm. This approach is
sometimes referred to as raw RSA.

Fortunately, padding schemes exist to handle this sort of bit manipula-
tion. The padding schemes for RSA work like magic; all that is needed is
data to be encrypted or decrypted. The padding scheme ensures the data
is compatible in size and numerical construction. Two important padding
schemes commonly used with the RSA algorithm are PKCS#1 v1.5
padding and OAEP (PKCS #1 v2.0) padding. Both of these padding
schemes are used in the XML Encryption draft. The PKCS#1 draft speci-
fies two flavors of padding. One is called PKCS#1 Block 02 and the other
is called PKCS#1 Block 01. The former is used for encryption and the lat-
ter is used for an RSA Signature.

XML Security26

In 1998 an attack called the Bleichenbacher attack was formulated
against PKCS#1 Block 02 padding. The attack is based on well-defined
checking done by the padding scheme as it checks for specific bytes in spe-
cific locations upon decryption. The attack is based on the sender sending
fake RSA messages and waiting for a specific error response from the
recipient. If enough fake messages (about 1 million) are sent, it might be
possible to recover one encrypted message. Using a different padding
scheme called Optimal Asymmetric Encryption Padding (OAEP), which
was developed in 1995 by Bellare and Rogaway, can thwart this attack. We
will not go into the details of OAEP padding in this book. Instead, the
reader should visit the references section and read the standard to learn
about implementation details.

The most important thing to understand about OAEP padding is that
it relies on a hash function (discussed in the section on digital signatures),
a mask generating function, and some seed bytes to make the padding
work. These additional inputs are evidenced in the way that padding is
specified in the XML Encryption draft, shown in Listing 2-3.

The reader doesn’t really have to know much about XML or XML Secu-
rity just yet to see how these RSA padding schemes are specified. In fact,
the reader should only concentrate on the snippets in bold. The first
<EncryptionMethod> element makes an obscure reference to rsa-1_5.
This in fact specifies the RSA algorithm for encryption using the padding
scheme specified in PKCS#1 version 1.5.

The second <EncryptionMethod> element makes the reference
to rsa-oaep-mgf1p. This convoluted string specifies RSA encryption
using the OAEP padding scheme and also specifies the mask generating
function (mgf1p). Furthermore, the references to sha1 and the
<OAEPparams> element give the padding scheme a hash function to
rely on as well as the necessary seed value. The thing to take away from
this example is the fact that different padding schemes for the same
algorithm can complicate the amount of necessary details.

27Chapter 2 Security Primer

Listing 2-3

RSA padding
schemes in XML
encryption

<EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1 5"/>

<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<OAEPparams> 65cVf9M2x </OAEPparams>

<EncryptionMethod>

Digital Envelopes

PKCS#1 padding for RSA has an important restriction. This padding
scheme places an upper limit on the size of the data that can be encrypted.
The limit is determined by the simple formula s � k � 11. The value s is
the number of bytes that can be encrypted and the value k is the size of
the modulus in bytes. This information is shown in Table 2-2.

The news of these constraints with the PKCS#1 padding scheme may
alarm new readers. Some may protest, “I can’t encrypt more than 245
bytes, even with a 2048 bit RSA key?” Unless raw RSA is used and the
blocks are managed by the implementer, the RSA algorithm with PKCS#1
padding cannot exceed the k � 11 constraint. The good news, however, is
that this constraint is almost never met because of something called a dig-
ital envelope.

A digital envelope works as follows. Instead of a recipient encrypting a
large file with the RSA algorithm, the recipient uses a symmetric cipher
(such as AES) for the large file and instead encrypts the symmetric key
with the RSA algorithm using PKCS#1 padding. This technique always
works because symmetric keys are very small. Even strong symmetric
keys are only around 200 bits long, and this fits nicely inside of any of byte
constraints given in Table 2-2. The XML Encryption draft calls this con-
cept key transport and a diagram is shown in Figure 2-3.

In Figure 2-3 the main idea includes the encryption of bulk data with a
symmetric key, and further, the encryption of this symmetric key with the
recipient’s public key. In the end, both data items are sent to the intended
recipient. This technique of digital enveloping has the advantage of mini-
mizing the amount of slower RSA operations and providing a more effi-
cient means of encryption while at the same time solving the key
distribution problem.

Upon receipt of the two encrypted items, the recipient first decrypts the
symmetric key using the proper private key and then decrypts the bulk

XML Security28

RSA Key Size Upper Limit for Encryption using PKCS#1 v1.5

512 bit 53 bytes

768 bit 85 bytes

1024 bit 117 bytes

2048 bit 245 bytes

Table 2-2

PKCS#1 Padding
Size Constraints

data using the appropriate symmetric algorithm. When a digital envelope
is used, the RSA algorithm effectively transports the decryption key from
sender to recipient, earning the name key transport. In Chapter 7 we will
see how a digital envelope is packaged using the syntax and semantics of
XML Encryption. The reader should take care to study the digital enve-
lope diagram thoroughly and be sure the logisticsare understood. This
idea is assumed knowledge in Chapter 7.

Key Agreement
Asymmetric encryption solves the symmetric key transport problem with
the use of a digital envelope. Another way of managing symmetric keys is
to rely on a key agreement algorithm. A key agreement algorithm is an
algorithm that produces some sort of shared secret value without any
prior shared secret information. In some ways, this works like magic.
Once the shared secret has been decided, a symmetric cipher can be cho-
sen and used to for encrypted communication.

Key agreement algorithms come in two flavors: synchronous key
agreement and asynchronous key agreement. Synchronous key agree-
ment refers to the act of agreeing upon a key in real time. Synchronous
key agreement is ideal for a protocol situation where both parties want to
immediately begin exchanging encrypted communication. During a syn-
chronous key agreement both parties generate the shared secret at
approximately the same time. This contrasts asynchronous key agree-
ment, which assumes that the shared secret is generated at different
times.

29Chapter 2 Security Primer

Symmetric
Cipher

RSA
Encryption

To
Recipient...

Bulk Data

Encryption Key (Ek)
Figure 2-3

Digital
enveloping

It is difficult to understand key agreement without a working example
of an actual key agreement algorithm. The XML Encryption draft has
support for the Diffie-Hellman (DH) key agreement protocol. This key
exchange algorithm is very famous and is considered foundational for the
study of public-key cryptography. Unfortunately, I will skirt the mathe-
matical details of the algorithm and focus instead on the logistics. The
details of the DH algorithm can be found inside one of the cryptography
reference books listed in the references section at the end of this book.

Diffie-Hellman Key Agreement Logistics
The DH algorithm does not encrypt data or make a digital signature. The
algorithm is solely used for the generation of a shared secret. To describe
the DH algorithm, we will assume the existence of two parties: an origi-
nator and a recipient. These terms are used to match the same nouns used
in the XML Encryption draft. I have used the term sender in previous sec-
tions to mean the same thing as originator.

The logistics of a DH key agreement can be split into three parts: Para-
meter Generation, Phase 1, and Phase 2. Parameter generation is the gen-
eration of a nonsecret public value called p. This value must be
pre-shared, but it need not be kept secret. The parameter generation
process is expensive computationally because it involves searching for a
prime number in a method similar to RSA key pair generation.

The next phase of the DH algorithm is called Phase 1 and requires that
the parties involved in the key exchange generate two values each: a pub-
lic value and a private value. The DH private value, called x, is generated
first and is a randomly chosen given a few constraints based on p. The
public value, called y is generated based on x using modular exponentia-
tion. The values x and p are mathematically related in such a way that it
is intractable to determine x given p. Once each party generates their x
and p, the public values are exchanged. We can be more careful with nota-
tion and use x1, p1 to denote the pair from the originator and x2, p2 to
denote the pair from the recipient. When we say the public values are
exchanged, we mean that the originator trades p1 for p2 and the recipient
(by definition) makes the same trade (p2 for p1). This concludes Phase 1 of
the DH algorithm.

XML Security30

Phase 2 of the DH algorithm is quite simple. The originator and recip-
ient simply compute the following function: z � (y’)x mod p. The value y’ is
replaced with either y1 or y2. That is, the originator computes z � (y2)x mod
p and the recipient computes z � (y1)x mod p. The shared secret is the
value z. Both the sender and the recipient now share a secret value that
can be used as a symmetric key (or be used as a seed value to generate a
symmetric key). In fact, the XML Encryption draft specifies additional
computations using a hash function that mixes in other information in the
generation of the shared secret. This is mentioned again in Chapter 7 and
explained in the XML Encryption draft.

In any event, this is a minor implementation detail. The logistics of the
key agreement remain of supreme importance here. Once the reader
grasps these logistics, the details fall into place. The reader is urged to
research the DH algorithm further, as it is rather fascinating and it
almost appears magical in its operation.

The DH algorithm as just described doesn’t specify any notion of time,
which is important for determining if an asynchronous key agreement or
real-time synchronous key agreement is occurring. Let’s examine the dif-
ferences with these two variations with some pictures. Consider Fig-
ure 2-4, which shows a synchronous DH key agreement.

In Figure 2-4 the steps for key agreement have been placed in tempo-
ral order. This means that the originator and recipient perform the agree-
ment in real-time simultaneously. The process begins with parameter
generation, which temporally precedes Phase 1 and can be done by the
originator, recipient, or other third party. Once parameter generation has
occurred, both the originator and the recipient must have access to the
value p, but it need not be kept secret.

This synchronous is notion of the DH algorithm is not the same notion
supported by the XML Encryption draft, which only supports asynchro-
nous key agreement. The process begins by assuming a shared p value.
The originator begins by fetching the recipient’s public value (who may be
offline or otherwise absent) and proceeds to generate the shared secret z
based on the recipient’s public value. From here, the originator encrypts
data using z and then may send the encrypted data, and the origin-
ator’s public value to the recipient. The recipient may then use the origi-
nator’s public value to generate z and decrypt the message. This process
is explained in more detail in Chapter 7.

31Chapter 2 Security Primer

Digital Signature Basics
When we transitioned from discussing symmetric encryption to asym-
metric encryption we postulated that symmetric encryption has three
major usability problems. The first is the key distribution problem, the
second is the repudiation problem, and the final problem is that of data
integrity. We saw in the previous section how the key distribution problem
is solved using RSA encryption or the DH key agreement algorithm. The
final problems of repudiation and data integrity are solved with some-
thing called a digital signature. If a digital signature is combined with a
key distribution solution such as RSA key transport or DH key agree-
ment, then all three problems are effectively solved. The three signature
methods used in the XML Signature draft are RSA signatures, DSA sig-
natures, and signatures based on a hash based method authentication

XML Security32

DH
Parameter

Gerneration

Originator Recipient Time t = 0

pp

Generate x1,y1

Swap yi values Swap yi values

Generate x2,y2 Time t = 1

Time t = 2

Generate zDH Phase
2

DH Phase
1

Generate z

Use z to encrypt data.Use z to encrypt data.

Time t = 3

Time t = 4

Figure 2-4

Synchronous DH
key agreement

code (HMAC). As we will see, HMAC is more of an authenticator than an
actual signature mechanism.

All three schemes will be explained in this section. Before we can dis-
cuss the concept of a digital signature, we need to understand an under-
lying piece of mathematical machinery called a hash function.

Hash Functions

A hash function is a mathematical function that maps an input value
from a domain to range, where the output range is smaller than the input
domain. For example, a function that maps real numbers to integers
would be a hash function. Another example of a hash function is the mod
operation as used in a simple function such as f(x) � x mod 5. If we
assume that x is in the domain of positive integers then the only possible
values for this function are 0, 1, 2, 3, and 4. The input value is the infinite
domain of positive integers and the output range is 0, 1, 2, 3, and 4.

Hash functions used in digital signatures have this basic defining prop-
erty, but also have two other important properties. Hash functions used in
a digital signature must be collision resistant and noninvertible. A hash
function that is collision resistant is one where it is intractable to find two
different inputs that produce the same output value. For example, the
function f(x) � x mod 5 is not collision resistant because we can easily
pick two values (let x1 � 20 and let x2 � 40) that produce the same out-
put value (0). Further, this function is not invertible. That is, given the
output value 0, there is no way to go back and compute the original input
value (although guesses can be made).

There are a few hash functions specified in the XML Signature and
XML Encryption drafts. The most pervasive and common hash function
used in digital signatures is the SHA-1 function. The acronym stands for
Secure Hash Algorithm 1. The function operates on an arbitrarily sized
byte array and produces a fixed 20-byte value called the digest. The exe-
cution of SHA-1 has the effect of mathematically summarizing any piece
of binary data into a compact 20-byte representation. SHA-1 is sophisti-
cated, and because it is unfeasible to find a collision, we can safely assume
that two byte arrays b1 and b2 are exactly equivalent if they have the same
SHA-1 20-byte digest. Other variations of SHA-1 include SHA-256 and
SHA-512. SHA-256 produces a 32-byte digest and SHA-512 produces a 64-
byte digest. These hash functions can be considered more secure than
SHA-1 simply because they have a smaller chance of producing a collision

33Chapter 2 Security Primer

(although no collisions have yet to be found in SHA-1). Those readers inter-
ested in the technical details of SHA-1 should visit one of the recommended
cryptography books listed in the references section at the end of this book.

Now that the reader knows how a hash function operates, we can begin
building the concept of a digital signature. The first signature scheme we
will look at is the RSA Signature scheme. This is a good starting point
because it uses the same previously discussed RSA algorithm, but with
slightly different inputs.

RSA Signature Scheme

Suppose first we have a piece of data to be digitally signed. The signer
begins by hashing the data to produce a 20-byte digest using SHA-1. This
digest is then encrypted using the signer’s private key.1 The resulting RSA
output is sent along with the original document. The recipient verifies the
signature by decrypting the signed digest with the sender’s public key. If
this is successful, the original document is then hashed using SHA-1 and
compared against the decrypted digest. If the digests match, the signature
is valid. If there is a problem with the digests or with the decrypting of the
signed digest, the signature fails. The logistics of signing are shown in Fig-
ure 2-5 and the logistics of verifying are shown in Figure 2-6.

An RSA signature provides repudiation and data integrity in two ways.
The signer is the only person who can create the signature because only
they have the private key. This means that a signer cannot deny that a
message was signed with their private key; this is called non-repudiation
and provides authenticity of the signer provided that there is an accurate

XML Security34

SHA-1 RSA private
key operation

To
Recipient...

Document D SHA-1(D) Signed
Digest

Signer's
Private KeyFigure 2-5

RSA Signature:
signing operation

1It is actually more correct to say that the digest is signed using an RSA private key operation.

binding between the signing key and an actual individual (this is
explained more in the section on certificates later in this chapter).

Data integrity for the document is provided by the combination of the
RSA algorithm and the SHA-1 hash function. Because SHA-1 is sensitive
to one-bit differences in an input document, even a single bit out of place
will cause the signature to fail. Further, because SHA-1 is collision resis-
tant, the chance of finding two documents that produce the same digest
value is infinitesimal. Often digital signatures and encryption can be com-
bined. One way of packaging a signed and encrypted document is to sign
the document first and then package the signature and original document
and then encrypt both of them. This entire package solves the key distri-
bution problem, the repudiation problem, and the data integrity problem.
This sort of mixing of technologies is seen in Chapter 7 with examples of
how an XML Signature is used in conjunction with XML encryption.

An RSA signature utilizes an RSA private key operation for signing
and an RSA public key operation for verifying. This means that a padding
scheme must be used to ensure the input data is compatible with the
mathematical constraints of the RSA algorithm. RSA signatures employ
PKCS#1 Block 01 padding. This padding scheme is very similar to
PKCS#1 Block 02 padding. The important thing to note here is that Block
01 padding is used for signatures and Block 02 padding is used for en-
cryption. For details on PKCS#1 Block 01 padding, see the PKCS refer-
ences at the end of this book in the references section.

35Chapter 2 Security Primer

SHA-1

RSA Public
Key Operation

Do these
values
match?

Document D SHA-1(D)

SHA-1(D)Encrypted
Digest

Yes: Signature
is Valid

Signer's
Public Key

No: Signature
is Invalid

Figure 2-6

RSA Signature:
verification
operation

The XML Signature Recommendation supports the use of an RSA sig-
nature as denoted by the following URI identifier:

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>

The reader should simply ignore the rest of the string and focus on the
fragment shown in bold. This part of the URI identifier signifies that an
RSA signature with the SHA-1 hash algorithm should be employed.
PKCS#1 Block 01 padding is implied in the preceding algorithm specifi-
cation as stated in the XML Signature Recommendation. An RSA signa-
ture works in a similar manner to DSA, which is the government
approved digital signature algorithm. Both are supported in the XML Sig-
nature Recommendation and DSA is the next topic of discussion.

DSA Signature Scheme

The DSA signature scheme can only be used for signing. The DSA algo-
rithm cannot perform encryption or decryption. There are a few mathe-
matical logistics that must be understood to see how DSA works. In
particular, there are three phases for the practical use of DSA. These
phases include parameter generation, key generation, and then the sign-
ing and verifying operations.

DSA uses a public key and private key in much the same way as an
RSA signature. The private key is used for generating a signature and the
public key is used for verifying a signature. These keys, however, are gen-
erated from parameter values called p, q, and g. The value p is the prime,
the value q is the subprime, and the value g is the base. Parameter gen-
eration relies on primality testing and modular exponentiation. Because
of these computationally expensive tasks, parameter generation is the
most time-consuming DSA operation. Once the parameters have been
generated, the key generation is relatively quick. Most applications in the
real world use pre-generated DSA parameters.

DSA key generation involves the choosing of a random private key
called x and a public key (derived from x) called y. The private key is used
to sign the SHA-1 hash of the input file using a procedure specified by the
DSA. The output of the signature operation is a pair of numbers called r
and s. These numbers represent the digital signature over the input file.

To verify a DSA signature, one must take the pair (r,s) and perform the
verification procedure specified by the DSA. The verification procedure
requires the parameters to be accessible and also relies on the 20-byte

XML Security36

SHA-1 hash of the input file. The specific mathematical steps are skipped
in this description, but can be found in one of the cryptography books in
the references section at the end of this book.

There are only a few basic things to remember about DSA. First off,
because it is a government mandated signature scheme, it is often used
when performing transactions with the government. Secondly, DSA para-
meter generation is extremely slow, but signing and verifying are quick in
comparison. Finally, DSA cannot be used to encrypt or decrypt data—it is
a pure signature algorithm. The XML Signature Recommendation has
support for DSA via the following URI identifier:

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-sha1"/>

Note the fragment in bold that specifies the DSA signature scheme
with the SHA-1 hash function. One can argue that this string is too ver-
bose because the DSA signature scheme is defined to use SHA-1 by
default.

The final signature scheme that will be discussed is based on a sym-
metric key and is called HMAC. This is another type of signature sup-
ported by the XML Signature Recommendation and is discussed in the
next section.

HMAC Authentication

The term HMAC stands for hash-based message authentication code. An
HMAC is a way of authenticating a message using a symmetric key. We
are using the term authenticate instead of sign. There is an important but
subtle difference between these two ideas. A signature implies that the
signed document is uniquely bound to the signer in some way. For exam-
ple, a private key is used to create an RSA or DSA signature and we
assume that this private key by definition only belongs to one person.
Consider next a symmetric key used to create a signature. A symmetric
key is usually shared by at least two people. Because of the shared nature
of a symmetric key, the key isn’t necessarily bound to one person, but both.
That is, given a message authenticated with a symmetric key, we don’t
immediately know (without some other context) if the sender or recipient
created the message. From this point of view, a symmetric key used in the
authentication of a message cannot be properly called a signature.

Now that the reader knows the difference between an authenticator
and a signature, we can describe the actual logistics of HMAC.

37Chapter 2 Security Primer

The HMAC specified in the XML Signature Recommendation uses the
SHA-1 hash function to create a 20-byte hash based on a symmetric key
k and an original message M. The actual procedure is specified in RFC
2104 and involves extending k to 64 bytes and computing the SHA-1 hash
(along with some other fixed values) of the key and the message. The end
result is a digest value that is a function of the symmetric key and the
original message. The security of HMAC comes from the fact that only the
person with the correct symmetric key and unaltered message can re-
create the proper authentication code. A diagram of an HMAC exchange
is shown in Figure 2-7.

The curious reader may wonder why only one direction of the HMAC is
shown in Figure 2-7. The answer to this question lies in the fact that the
HMAC operation is the same for both the sender and recipient. HMAC is
a one-way operation intended to authenticate a given message. This
means that the recipient will re-create the HMAC authentication code
(20-byte) value and compare this against the HMAC sent along with the
original message. HMAC doesn’t have a reverse verification operation—it
is a one-way transformation. The XML Signature Recommendation
defines the following URI identifier specifying HMAC as used in an XML
Signature:

http://www.w3.org/2000/09/xmldsig#hmac-sha1

The reader should once again concentrate on the snippet shown in bold
that denotes HMAC with SHA-1. More examples of how an XML Signa-
ture works with HMAC are given in Chapters 4 and 8.

XML Security38

HMAC

Original Message M

Symmetric key k

M

ABFF345609AE9254CDEF..

20-byte Digest ValueFigure 2-7

HMAC diagram

Prelude to Trust and Standardization
The reader now has a bird’s eye view of cryptography as seen by the XML
Security standards. The previous coverage of encryption and digital sig-
natures represent the core technologies used by the XML Signature Rec-
ommendation and the XML Encryption draft. It is important to note that
both of these standards are extensible and will likely add algorithms and
features as they mature. The third and youngest technology covered in
this book is the XML Key Management Specification or XKMS (see Chap-
ter 9). As we will see, this technology brings about a certain degree of real-
world usability to XML Signatures and XML Encryption. This section on
digital certificates does the analogous job of XKMS for cryptography in
general; that is, it brings usability to public key cryptography.

In addition to covering digital certificates, this section also answers the
last question of those posed at the beginning of the chapter, which is:
What is the nature of the entire process? Digital certificates are cumber-
some to understand without referring directly to standards or processes,
and these two topics are nicely intertwined and will be presented in lock-
step.

Cryptographic processes and objects are highly standardized to ensure
clarity of implementation across disparate platforms. We will take a look
at the existing cryptography standards and see how they compare to the
analogous emerging XML Security standards. Special focus will be on first
class cryptographic objects such as keys and certificates.

Raw Cryptographic Objects

Digital certificates and cryptographic standards add usability to raw
mathematical ideas. A digital signature or encrypted blob of data is com-
pletely useless without the proper context and auxiliary information. For
example, suppose we want to sign an important document D using an
RSA signature. What practical steps do we have to follow in order to
actual create the signature? A sample outline follows:

39Chapter 2 Security Primer

The previous steps produce something we call a raw digital signature.
The word raw is not an understatement—there is absolutely no additional
context involved. We’re talking pure bytes. An example of a raw RSA sig-
nature is shown in Listing 2-4.

Listing 2-4 shows a 64-byte PKCS#1 padded RSA signature. The key
used to create the signature is a 512-bit RSA key. The obvious problem
with Listing 2-4 is that it carries with it no additional context or infor-
mation. How on earth do we know where it belongs, who created it, which
document it represents, or which algorithm is used? In fact, Listing 2-4
can be almost anything at first glance; it’s just binary at this point.

Cryptographic Standards

This is where cryptographic standards and processes make their move.
Cryptographic standards are used to package and represent raw mathe-
matical ideas such as a raw digital signature or raw encrypted data,
including cryptographic keys and digital certificates. The motivation for
these is obvious—how can we use cryptographic objects without some sort
of standardization? At the very least we need a standard way of packag-
ing cryptographic objects and a standard way of encoding objects to sur-
vive different computing environments. XML Security is simply the

XML Security40

1. Obtain the document D to sign.

2. Represent D in binary.

3. Obtain programming tools to perform RSA key pair generation.

4. Generate an RSA key pair.

5. Represent the public key and private key in binary.

6. Perform the mathematical signing operation.

7. Represent the output signature in binary.

Listing 2-4

A raw digital
signature

63 EF 96 B2 A9 29 38 73 70 22 BD F3 89 DB C3 43
DD 97 CC F1 8B 86 9B 7F B4 39 3D 37 D4 44 E3 12
79 40 9A 3E F5 F2 A6 51 75 5F CE 44 DD 71 7A 9C
97 43 A6 44 83 78 20 C4 9D 17 5B 0B F0 BC 54 F8

introduction of XML-based standards for the XML representation of these
same cryptographic objects.

ASN.1 and Binary Encoding

Applied cryptography is based on binary format objects that are repre-
sented using something called ASN.1. ASN.1 stands for Abstract Syntax
Notation One. We will not give details about ASN.1 in this book, but it is
fundamental for understanding applied security. The reader is urged to
visit the references section for more information about ASN.1.

A commonly posed question is: So what is ASN.1? The short answer is
that ASN.1 is a language used to describe transfer syntaxes. The phrase
transfer syntax is used to describe some intermediate language used
between disparate computing environments. For example, consider a com-
puter A that uses the EBCDIC character encoding scheme and a com-
puter B that uses ASCII. If we were to transfer a raw digital signature
from machine A to machine B, the signature would not verify on machine
B because the encoding is different and the ASCII representation will cor-
respond to a different binary representation.

This problem of disparate computing environments affords the general
solution of a transfer syntax. The idea works like this: Machine A encodes
the raw digital signature into an intermediate format C and then sends
this format C to machine B. Machine B is expecting format C and decodes
this properly into the appropriate binary without wrecking the signature.
This intermediate format C is defined using the language of ASN.1. In
some respects, ASN.1 is similar to XML because it provides a way to send
data in a portable manner.

Let’s see what ASN.1 looks like. Listing 2-5 shows an RSA public key
encoded using ASN.1.

41Chapter 2 Security Primer

Listing 2-5

An example of an
ASN.1 encoded
public key

SEQUENCE {
SEQUENCE {
OBJECT IDENTIFIER rsaEncryption (1 2 840 113549 1 1 1)
NULL
}

BIT STRING 0 unused bits
30 46 02 41 00 DF 02 C3 6D 8A 55 8E FD FC 24 C8
41 42 45 9E 62 9D D0 54 30 13 89 66 14 F6 C2 95
AB DF 87 F8 F3 57 7D 5B 4E F6 BB 8A A5 98 F3 F1
8F C2 0B 16 18 24 79 17 24 27 B4 51 39 9D 26 7F
AB 45 98 EA 1F 02 01 11

}

Listing 2-5 uses the syntax of ASN.1 to create a type for an RSA public
key, which is called the SubjectPublicKeyInfo. This particular struc-
ture is defined in RFC 2459 and is a nested structure. The outer context
gives an object identifier. This is the string rsaEncryption and the cor-
responding number 1.2.840.113549.1.1.1. This tells us that the key is an
RSA public key and not some other sort of key. The BIT STRING contains
the actual key value, which is actually two values: the public exponent
and the modulus. (See the section on key generation for a refresher on the
mathematical components of an RSA public key.)

The structure shown in Listing 2-5 doesn’t answer all of the questions
about ASN.1. The most compelling question is: How is Listing 2-5
encoded? That is, there must be a way to take the structure shown and
transform it into binary. This ASN.1-to-binary transformation is done
with something called BER, which stands for Basic Encoding Rules. If one
were to apply BER encoding to Listing 2-2, it would produce the output
shown in Listing 2-6.

Listing 2-6 represents a public key that is ready to be transferred
across disparate platforms. The idea here is that this binary blob is sent
to anyone who can decode BER and that individual will obtain the exact
same byte representation once the ASN.1 structure is decoded. Many
objects are encoded using ASN.1 and BER. For example, Listing 2-7 shows
a BER encoded private key.

Listing 2-7 shows an encrypted private key. This particular structure is
called an EncryptedPrivateKeyInfo. This type of structure is used to
protect a private key that may be on disk or in transit. Private keys are
considered to be extremely sensitive and are usually encrypted to prevent
tampering and discovery. We will see in Chapter 8 how actual encrypted
private keys are used in the Cert-J toolkit.

Base-64 Printable Encoding

BER encoding provides a useful portable data type for cryptographic
objects, but often times binary is difficult to deal with. Text-based proto-

XML Security42

Listing 2-6

BER encoded
public key

30 5A 30 0D 06 09 2A 86 48 86 F7 0D 01 01 01 05
00 03 49 00 30 46 02 41 00 DF 02 C3 6D 8A 55 8E
FD FC 24 C8 41 42 45 9E 62 9D D0 54 30 13 89 66
14 F6 C2 95 AB DF 87 F8 F3 57 7D 5B 4E F6 BB 8A
A5 98 F3 F1 8F C2 0B 16 18 24 79 17 24 27 B4 51
39 9D 26 7F AB 45 98 EA 1F 02 01 11

cols such as MIME skirt the problem of printable binary representation
with a printable encoding. The most popular printable encoding scheme is
called Base-64 encoding and has been defined in RFC 1421, RFC 1521,
and RFC 2045—the latter being the RFC that describes part of the MIME
protocol. The encoding algorithm specified in these RFCs represents
binary data as a subset of 64 printable ASCII characters. This encoding is
useful for security applications that have a need to transport some sort of
binary cryptographic object via a text-based protocol. We can encode any
sort of binary data into printable characters using Base-64 encoding. For
example, Listing 2-4 encoded with Base-64 is shown in Listing 2-8.

For a recipient to verify this signature, they must first Base-64 decode
the string to obtain the raw digital signature. We can even take this a step
further and encode BER encoded binary cryptographic objects. This will
add another layer of encoding and force the BER encoded binary into a
printable representation. A Base-64 encoded SubjectPublicKeyInfo is
shown in Listing 2-9.

43Chapter 2 Security Primer

Listing 2-7

BER encoded
RSA private key

SEQUENCE {
SEQUENCE {
OBJECT IDENTIFIER
pbeWithSHAAndDES-CBC (1 2 840 113549 1 5 10)

SEQUENCE {
OCTET STRING
00 11 22 33 44 55 66 77

INTEGER 5
}

}
OCTET STRING
03 DB BF 95 98 61 B5 1A 64 68 DC C9 FF 87 08 0B
D1 3C 67 FA 43 A6 67 72 95 C5 B3 1A 35 C5 03 93
0B 10 DC D7 3E 17 20 EF 6C 02 7C C2 A8 D8 9D 0C
BE AF 41 53 46 41 26 1E 3E E4 89 69 D6 90 08 8D
E7 B9 6A 3E 9F FE D4 1A 54 FE 66 1E 08 A6 11 95
F8 F8 21 41 93 3F EB AC 2C D9 C6 D0 1E 3B 9A 5A
9E 71 87 A8 E9 3E AD B5 3F 00 E4 F9 11 AE CD 5F
3E 38 35 61 FC 16 A9 B1 7B C4 2E 03 FE B6 48 F5
...

}

Listing 2-8

Base-64 encoded
signature value

Y++WsqkpOHNwIr3zidvDQ92XzPGLhpt/tDk9N9RE4xJ5QJo+9fKmUXVfzkTdcXqcl0
OmRIN4IMSdF1sL8LxU+A==

The summary of the conceptual transformations undergone by the pub-
lic key is outlined in Figure 2-8.

The most important thing to understand about Figure 2-8 is the fact
that the actual mathematical object (public key) has undergone drastic
changes. Most of the usability problems of applied security come from a
misunderstanding of how cryptographic objects are represented. Once this
public key leaves Computing Environment A, it must be properly decoded
in order to arrive at the original public key value. As the reader may have
guessed, there are ASN.1 representations of many cryptographic objects,
including digital signatures, signed data, keys, and digital certificates.
These various cryptographic objects are defined in RFCs and the PKCS
standards. PKCS standards are denoted with the name PKCS#? where
the ? is a number identifying a particular standard. To date there are 12
published PKCS standards, most of which specify cryptographic algo-
rithms, processes, and cryptographic objects. Some of the most useful
PKCS standards are listed in Table 2-3.

XML Security44

Listing 2-9

Base-64 encoded
SubjectPublic-
KeyInfo

MFowDQYJKoZIhvcNAQEBBQADSQAwRgJBAOS6CHiE6r/38yblxc/3lnk8lZbHcaQE
MY5yNqnZSdAIWeJz8ryn/ymrY/xbqtarGmwbxGBUd4R3jXWBCrhn44kCARE=

BER
Encoding
of ASN.1

Types

Computing Environment A

RSA
KeyPair

Generation

Base-64
Printable
Encoding

BER Binary
Representation

Binary
Representation

MFowDQYJKoZIhvcNAQEBBQADSQAw
RgJBAOS6CHiE6r/38ybl
xc/3lnk8lZbHcaQEMY5yNqnZ
SdAIWeJz8ryn/ymrY/xbqtar
GmwbxGBUd4R3jXWBCrhn44kCARE=

Figure 2-8

Encoding lifecycle
of an RSA public
key

Of the standards listed in Table 2-3, PKCS#7, is important to mention
because some may argue that it competes directly with the XML Signa-
ture Recommendation and the XML Encryption draft. PKCS#7 defines an
extensible structure that enables cryptographic operations on arbitrary
data, such as a piece of data that is signed and encrypted. In addition, it
also has the mechanism to transport keys and information about the
signer. We will see these various aspects and features present in an XML
Signature in Chapter 4. Two important differences between PKCS#7 and
XML Signatures or XML Encryption are as follows:

� PKCS#7 is a binary format whereas XML Signatures and XML
Encryption use XML.

� PKCS#7 is one standard that provides support for both signed and
encrypted data simultaneously.

XML Signatures and XML Encryption support signing and encryption
separately, but can be combined to provide support for both. The details of
the PKCS standards are not the subject of this book, but are covered in
other security books. See the references section at the end of this book for
more information on the PKCS standards.

The last major subject of this chapter concerns digital certificates and
the notion of public key binding. This subject is important to understand
for Chapter 9, when the XML Key Management Specification is discussed.

45Chapter 2 Security Primer

PKCS Standard Description

PKCS#1 RSA encryption and signing processes, RSA key
formats, and cryptographic primitives

PKCS#7 Extensible cryptographic messaging syntax used for
packaging digital signatures, digital envelopes,
encrypted data, and data that is signed and encrypted.

PKCS#8 Private Key Storage

PKCS#12 A portable format for transporting private keys,
certificates and other miscellaneous cryptographic
objects.

Table 2-3

Some Important
PKCS Standards

Trust, Certificates, and Path Validation
When considering whether to validate a digital signature or send an
encrypted message to a recipient, there must be absolute certainty
regarding the binding of the public key to an identity. If this binding can-
not be trusted, then the action itself is meaningless. For example, suppose
that we would like to validate a signed document that claims to be signed
by John Doe. The type of signature used is irrelevant at this point—it
could be an XML Signature or a raw digital signature. The act of verify-
ing trust is independent of the signature packaging mechanism.

Upon inspecting the signed message, the first step is to obtain the
signer’s public key (here we are assuming that the signer is using a pub-
lic key cryptography system) if not already included. Most signature pack-
aging standards enable the inclusion of a public verification key within
the signed message itself. We will see more of this when we examine XML
Signatures in Chapter 4 and Chapter 5. In our fictional scenario here, let
us assume that John Doe’s public key is included within the signed
message.

Once we obtain the public key, we can repeat the signing algorithm
using this public key. At this point we are merely verifying the crypto-
graphic binding of the public key and nothing further. This test, however,
is not meaningful if we don’t know for certain that the public key we are
using actually belongs to the purported signer John Doe. The signature is
only meaningful if there is a verifiable link between the name John Doe
and the public key that is used to successfully verify the signed message.
To make this example clear, consider a rogue signer named Sally who
wishes to impersonate John Doe. Sally generates an RSA key pair and
signs a message using her private key. She then packages the message
with the name John Doe along with her public key. The recipient will
receive the message and attempt to perform cryptographic verification.
This cryptographic verification will be successful because the proper pub-
lic key has been included (even though it belongs to Sally, and not John).
In short, if the recipient doesn’t verify the binding between the name John
Doe and the included public key, the signature verification operation is
meaningless.

In a traditional PKI, the binding between a public key and a recipient
is represented with a digital certificate. At the very least, a certificate is a
signed data structure that contains someone’s name and public key and
asserts that these entities are bound together. In addition, it contains a

XML Security46

validity interval that states how long the certificate is valid for. The valid-
ity interval is used during path validation.

Like other cryptographic objects, a digital certificate is represented in
ASN.1 and then Distinguished Encoding Rules (DER) encoded. DER is a
subset of BER encoding which ensures a unique encoding for certain
ASN.1 types. There is only one certificate format that we will concern our-
selves with in this book, which is the ASN.1 structure defined in
RFC2459. Sometimes, a certificate will be placed inside a PKCS#12 mes-
sage and this is considered a digital certificate. This, however, is incorrect.
The PKCS#12 format is simply a container for certificates and other
objects.

Some may wonder how this binding is proven. For example, a certifi-
cate can be fabricated which claims to bind the name John Doe to Sally’s
public key. Nothing we have said thus far will stop anyone from making
this assertion. The reason this can’t be done is because some trusted third
party known as the certificate authority (CA), must verify the binding
between a name and a public key. Once the trusted CA verifies that the
binding is indeed correct, the certificate is digitally signed. The verifica-
tion of the binding of the name and public key isn’t a cryptographic oper-
ation, but usually a physical operation where the CA actually verifies that
a physical individual is bound to a public key. Such verification is done
through public records or a face-to-face interaction.

From this point on, anyone who wishes to verify the binding between
the name and the public key in a certificate must first believe that the
trusted CA has done its job correctly. If the CA who signed a given certifi-
cate is trusted, it then follows that the binding between the name and the
public key in the certificate is also trusted. When this scenario occurs, we
can say that trust emanates from the trusted CA. This simple case is
shown in Figure 2-9.

Figure 2-9 shows the high-level process of what happens when a digi-
tal certificate is created. At first, the binding between the name John Doe
and the public key is only a purported binding. This is shown with the
dashed line. Our fictional certificate authority, called Trusted CA 1, veri-
fies the binding and creates a digital certificate. Notice that the arrow
between the name and public key is solid. The assumption here is that
Trusted CA 1 actually went through the trouble of making sure that the
name John Doe is actually bound to the correct public key. The digital cer-
tificate contains an issuer name (Trusted CA 1) and a subject name John
Doe which indicates that this issuer is the one responsible for asserting

47Chapter 2 Security Primer

the binding between John Doe and John Doe’s public key. Finally,
the entire entity is digitally signed with the signing key belonging to
Trusted CA 1.

The scenario shown in Figure 2-9 is vacuous and is almost never seen
in the real world. Instead of a single trusted CA, it is often the case that
many intermediate certificate authorities form what is called a certificate
chain. This picture is similar to Figure 2-9, except for the fact that John
Doe’s certificate isn’t signed by Trusted CA 1, but is instead signed by
some other certificate authority. The implication here is that if we trust
the top of the chain, we also trust all of the intermediate certificate
authorities and finally trust the name and key binding of the end-entity.
This is shown in Figure 2-10.

In Figure 2-10 we don’t have to explicitly trust every intermediate cer-
tificate authority. Instead, trust emanates from Trusted CA 1 and by
implication the end of the chain is trusted. That is, we can be confident of
the binding between John Doe and his public key simply by trusting the
actions of Trusted CA 1. In Figure 2-10, the issuer name is the top name
in each certificate and the subject name is the bottom name in each
certificate.

The trust concept is similar to a prime mover idea, where only one
entity begins a chain of trust. The concept of a certificate chain is a
repeated theme when dealing with digital certificates and signed docu-
ments. It is often the case that a signer will have its identity verified with
a chain of certificates rather than just a single certificate and single
trusted certificate authority. In addition to asserting trust, a mechanism
called a Certificate Revocation List (CRL) lists certificates that are no

XML Security48

Trusted
CA 1

"John Doe"

John Doe's
Public Key

"John Doe"

Trusted CA 1

John Doe's
Public Key

Figure 2-9

Public key
binding

longer trusted (revoked). The trusted CA signs the CRL, and in this sense
the trusted CA can also remove the public key binding with the CRL
mechanism, therefore negating trust. The mechanics of a CRL are usually
not timely. A CRL cannot be published in an instantaneous manner, and
it is possible for a revoked certificate to be used if its use predates the
appearance of the next CRL.

Most of the details about certificate path validation, certificates, and
CRLs are found in RFC 2459. An entire series of books can be written
about RFC 2459 and because of this, most of our discussion will focus on
conceptual basics. Rigorous definitions can be helpful when discussing
trust and certificates. The first definition that we will look at captures
much of the previous discussion in a concise matter and comes directly
from RFC 2459.

49Chapter 2 Security Primer

Trusted
CA 1

Trusted
CA 1

Trusted
CA 2

Trusted
CA 1

Trusted
CA 3

Trusted
CA 2

Trusted
CA 4

Trusted
CA 3

John Doe

Trusted
CA4

Figure 2-10

A conceptual
certificate chain

Certification Path

A certification path is a sequence of n certificates such that:

� For every certificate x, in [1, (n � 1)], the subject name of
certificate x matches the issuer name of certificate x � 1.

� The first certificate in the chain is the trusted certificate author-
ity (x � 1).

� The last certificate in the chain is the end-entity certificate
(x � n).

After reading this definition, re-examine Figure 2-10 and notice that
the picture shown matches the three constraints made explicit in our def-
inition of an intractable problem. Figure 2-10 shows a sequence of five cer-
tificates, and for each certificate 1 through 4 (1 through n � 1), the subject

name and issuer names match. The careful reader may wonder why the
last certificate in the chain is not considered in this first constraint. This
is because of the way the definition is written. The nth certificate is the last
certificate in the sequence, and because of this there is no x � 1th certifi-
cate to compare to. The next constraint simply tells us which certificate is
the trusted certificate authority (this is the first certificate) and the final
constraint tells us which certificate is the end-entity certificate. The term
end-entity is used to describe any end user or end user system acting as
the subject of a given certificate.

Path Validation

Given a certification path, a number of steps must be followed to actually
validate and ensure trust over this path. These steps are numerous and
can become tedious and complicated. The complexity of path validation is
one of the contributing factors to the complexity of PKI in general. Cer-
tificate path validation begins with a number of inputs, which are enu-
merated in the following list.

1. A certification path of length n

2. The current date and time, Tc

3. An arbitrary time T for which to check against

4. A set of acceptable policy identifiers

The first item in the previous list is a certification path. This is the
same entity found in the intractable problem definition and can be a path
consisting of just two certificates (a trusted CA and an end-entity certifi-
cate), or it can be a larger chain. The size of the certification path is irrel-
evant.

The next two inputs that must be available during path validation are
date and time values. The value Tc, represents the current date and time
whereas the value T is an arbitrary time against which the path should be
validated. In most cases T � Tc, but it is often useful to roll back the value
of T to accomplish a path validation check for some time in the past.

The final input is a set of policy identifiers. A policy identifier is just a
number that represents some sort of arbitrary policy or constraint under
which a certificate has been issued. For example, some organizations that
employ certificates for their users will often have difference flavors or lev-

XML Security50

els of certificates. Certificate policies can be used to differentiate between
evaluation certificates, code-signing certificates, or certificates that have
stronger semantics, such as hardware-based private key storage.

Once a certificate is issued under a specific policy, the policy identifier
and optional qualifier information is appended to the digital certificate as
an extension. Certificate policies are entirely fictional and are invented
ideas and constraints that map to an arbitrary number. The reason they
are used in path validation is to designate acceptable certificate policies so
it is possible to provide more control over how path validation occurs. Fur-
thermore, certificate policies may also be mapped to one another. For
example, if two organizations create similar policies and wish to equate
their policies, they can be mapped to one another so they mean the same
thing during path validation. Certificate policies add considerable com-
plexity to the path validation process because of their arbitrary and
invented nature; the number of certificate policies or their meanings is
potentially limitless.

Path Validation State Machine

The path validation processed is defined as a state machine. Each node in
the state machine represents some sort of constraint that needs to be
checked. The approach taken here is to simplify the state machine to only
hit on the high points of the path validation process. This simplification
can be accomplished by combining many constraints into a single state.
For example, we will summarize the path validation state machine in
three states: state A, which consists of checking basic certificate informa-
tion; state B, which consists of checking policy information, and state C,
which consists of the checks done against the CA certificate.

Each certificate in the certification path travels through the state
machine, but only the trusted CA certificate goes through the checking
done in state C. A picture of the state machine is shown in Figure 2-11.

In Figure 2-11, the xth certificate is checked by first examining some
basic certificate information such as the signature, revocation, and name
chaining. If all of the constraints that comprise state A successfully pass,
the certificate moves on to state B, where the certificate policy extension
is checked against the initial and acceptable certificate policies. If this is
successful and the xth certificate is not the top of the chain (that is, not a
trusted CA certificate), the process ends for this certificate and the x � 1th

51Chapter 2 Security Primer

certificate in the certification path is checked. If the certificate is a trusted
CA, then the constraints that comprise state C are checked. State C will
normally be entered when the first certificate in the chain is processed
because processing always begins with some sort of trusted certificate.

This high-level process hides numerous details, some of which are
described in the explanation of each of the states in the text that follows.
Path validation is an intensive task, and as the number of certification
paths and trusted CAs grows, the potential exists for a great deal of heavy
processing. In each state, the assumption is made that we are operating
on the xth certificate.

State A

The first process required in state A is to check and see if the xth certificate
was signed using the public key from the previous certificate in the certi-
fication path. This is the x � 1th certificate. If there is no previous certifi-
cate (for example, if the first certificate is the trusted CA), then this check
is skipped. The check here involves a cryptographic signature verification

XML Security52

xth

certificate

Pass Pass

FailFail Fail

Check
CA certificate

Check
Policy
Information

Check
Basic
Certificate
Information

A B C

Figure 2-11

The path
validation state
machine

operation where the signature on the xth certificate is verified with the
appropriate public key. This integrity check prevents the certificate from
being altered or corrupted.

Following this, the validity, revocation, and name chaining are all
checked. Of these three checks, the revocation check has the potential to
be quite expensive. When a certificate is checked for revocation, it is com-
pared to the values in a recent certificate revocation list (CRL), which is
simply a signed list of revoked certificates. The CRL can be obtained from
a remote server or can be cached locally. CRLs have the potential to grow
in size as more certificates are revoked over time. The growth of the CRL,
however, won’t be unbounded because certificates fall off the CRL when
they expire. Real-time status checking is also possible where the xth cer-
tificate is passed off to a service that determines the revocation status.
This is a typically a more accurate way of determining certificate revoca-
tion because the status information obtained is more timely.

The certificate validity is checked when the validity interval in the xth

certificate is compared to the current time (Tc) and the name chaining
check involves ensuring that the issuer of the xth certificate is the subject
of the x � 1th certificate. This must be true for all certificates in the certi-
fication path except for the trusted CA that will be self-signed.

State B

This state is where policy constraints are checked and policy mapping is
performed. The certificate policies extension is parsed and the policy num-
bers (OIDs) are compared to the set of initial and acceptable certificate
policies. In general, this state is complex due to the policy-mapping algo-
rithm and various checks that must be made. Certificate policies and how
they are used falls out of scope for our purposes here. The curious reader
who wishes to learn more about certificate policies should visit the refer-
ences section for more information.

State C

This state is entered for all certificates but the end-entity certificate. This
state represents checks to ensure that the certificate is an acceptable CA
certificate and meets certain basic properties. Some of things checked
include certain certificate extensions as well as additional policy infor-
mation.

53Chapter 2 Security Primer

Authorization

Once the certification path is deemed valid and acceptable, additional
extensions that may be present in the end-entity certificate are checked.
Any other constraints over and above certificate path validation falls into
the scope of authorization. Only when the certificate is trusted can it be
further examined to see if it meets a specific purpose or use case.

Additional Information

The highlight of this section is to illustrate that path validation and trust
is a complicated task that involves many steps. Most of the additional
details such as certificate extensions and certificate policies can comprise
an entire book on their own. There is far too much detail to present here.
The complexity of path validation is important to understand when we
discuss the XML Key Management Specification (XKMS) in Chapter 9.
XKMS offers to move the problem of path validation and trust to a service
in an attempt to simplify the processing done by the client application.

Chapter Summary
This chapter begins with a quick introduction to symmetric key encryp-
tion. In particular, fundamental questions about the nature of encryption
were posed. Understanding the breadth and depth of these fundamental
questions provides the reader with a good background for understanding
applied security in general. The discussion of symmetric key encryption
includes descriptions of padding schemes (which alter the plaintext) and
feedback modes (which add security features to a symmetric cipher). The
two symmetric ciphers discussed include Triple-DES and AES. These
ciphers are currently supported in the XML Encryption draft.

The next topic of discussion for this chapter is asymmetric encryption.
We made the distinction between the RSA algorithm for encryption and
similar technologies that also rely on asymmetric keys such as RSA sig-
natures, DSA signatures and the Diffie-Hellman key exchange algorithm.
Following asymmetric encryption was a discussion of digital signatures
including RSA signatures, DSA signatures, and HMAC authenticators.

XML Security54

BER encoding and its relation to ASN.1 is also discussed, including
comparisons to raw digital signatures and raw encryption. A discussion of
how Base-64 encoding is used to encode binary cryptographic objects is
given. The chapter concludes with a lengthy description of public key
binding and trust as it relates to digital certificates, including the ratio-
nale for path validation.

55Chapter 2 Security Primer

This page intentionally left blank.

XML Primer

CHAPTER 3

The world of Extensible Markup Language (XML) is an endless ocean of
standards and technologies that mimics a living being, constantly chang-
ing and ever evolving. Trying to capture the breadth and depth of XML in
a single chapter is a hopeless task with no end. The goal here, then, is to
focus on a few anchors in the XML ocean that represent fundamental con-
cepts. There is little point in repeating details that can be found in the text
of a published standard. Instead, the reader will find an explanation of
fundamental XML concepts bolstered with real-world examples. Special
focus is on building block technologies that provide the groundwork for
the sea of XML.

This chapter is divided into two broad topics, an introduction to basic
XML syntax and a preliminary discussion of XML processing. The divi-
sion between syntax and processing is a theme that will be revisited
throughout this book. The core XML syntax topics discussed include the
basics of well-formed documents, markup concepts, some information
about namespaces, and numerous examples. XML processing is discussed
with the presentation of two topics: the Document Object Model (DOM)
and the XPath data model. The seasoned reader with previous experience
with XML might find this chapter a bit repetitive, but XML syntax and
processing is a necessary building block for XML Security.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

What Is XML?
This question reminds me of an assignment once given in high school
where the task was to answer the broad question: “What is History?” As
youngsters we were quick to respond with simple answers such as “His-
tory is what happened in the past,” or for those of us who were really lazy,
we would provide the proctor with Webster’s definition (and no doubt
receive a poor grade).

The question “What is XML?” is a loaded question that has no simple
answer. It almost seems like any simple answer given would be akin to
answering the “What is History” question with the same naiveté of some-
one in high school. For XML, the answer to this question often depends on
the audience. There are books on XML for managers, software developers,
sales representatives, and marketing people. Here we will take the view-
point of a software engineer or computer scientist as we attempt to create
yet another definition of this technology.

Meta-Language and Paradigm Shift

The topic of XML Security requires viewing XML from a slightly different
angle compared to other technologies that leverage XML to accomplish its
goals. XML Security is devoid (thankfully) of presentation semantics. That
is, the current XML Security specifications don’t focus on rendering or dis-
playing an XML Signature or encrypted XML element. In this respect,
XML Security technologies are more closely related to existing security
technologies such as the Public Key Cryptography Standards (PKCS), dis-
cussed in Chapter 2. Don’t look for any HTML or JavaScript code in this
book, because it is simply not the focus of the XML Security specifications.

Two vocabulary words that are especially useful in defining XML from
an XML Security standpoint are meta-language and paradigm shift. The
noun meta-language best describes the what part of XML Security and
the verb paradigm-shift helps describe the where part of XML Security.
Thankfully, the how part is left to the dedicated authors of the XML Secu-
rity Recommendations and Drafts.

Meta-Language

XML is not a language. Despite the name Extensible Markup Language,
it is easiest to understand XML as a meta-language. What exactly does

XML Security58

this mean? A meta-language is a language used to describe other lan-
guages. Some would call this a true language. The prefix “meta” used in
this sense has its roots in analytic philosophy and loosely means one level
up or above and beyond.

So what does this mean for you? In simple terms, XML is a syntax used
to describe other markup languages. The XML 1.0 Recommendation as
released by the W3C defines no tag set or language keywords. The skepti-
cal reader can check for himself or herself, but simply put, only a syntax
and grammar is defined by the XML 1.0 Recommendation. The term syn-
tax here refers to a set of constraints about how and where tags can be
placed, and the acceptable range of characters that are legal, as well as
the rules for markup in general. Moreover, the basic rules and syntax of
XML 1.0 are deceptively simple and can be learned in the better part of an
hour.

At this point, no examples have been provided, so the assumption is
that the reader is as lost as ever. The next question is: “If XML is a syntax
used to describe other markup languages, what are these other markup
languages?” The answer to this question is the sea of XML-related stan-
dards and, more importantly, the XML Security Standards. For example,
the XML Signature Recommendation defines a markup language used to
represent a digital signature; the XML Encryption Draft defines a
markup language used to represent encrypted elements. Similarly,
markup languages such as MathML or DocBook are also other markup
languages that are defined in accordance with the syntax put forth by the
XML 1.0 Recommendation. MathML is a markup language for represent-
ing mathematics and DocBook is a markup language used for represent-
ing articles or books.

The final part of our XML definition relates to how exactly these other
markup languages are defined: XML is a syntax used to describe other
markup languages using markup. This seems like a circular definition—
of course markup languages use markup. A short example of arbitrary
markup is given in Listing 3-1.

The preceding listing is arbitrary data with tags around it. For exam-
ple, we have a piece of data, Samuel Adams, that is marked up with the
tag <Good_Beer>. The important point here isn’t what the tags say or
even what they mean; instead, the focus should be on what the tags can
do. Tags provide markup and markup can accomplish many different
things with regards to data. In fact, the list of things that markup can
accomplish is so important that it belongs in a box.

59Chapter 3 XML Primer

With the careful use of tags around arbitrary textual data, we can
accomplish almost any sort of semantics desired. We can invent tags and
structures, give various roles to data, and define relationships between
tags. The power of markup is nearly limitless for carving up any sort of
data. This property of markup is especially powerful because the basic
concept behind markup is simple. It doesn’t take years of practice to begin
using markup, nor is the syntax complicated and difficult to understand.
It is this combined simplicity and power that makes XML an exciting
technology.

Because XML is a meta-language, every use of XML and markup to add
semantics to data results in the creation of a markup language. For exam-
ple, if someone were to look at Listing 3-1 and ask the question: “What
language is that?” the correct answer is: “It’s a fictional markup language
that uses the syntax of XML.” In short, Listing 3-1 actually defines its own
markup language. It uses the tags <Food>, <FrenchFries>, <Beers>,
<Good_Beer>, and <Bad_Beer>. While the tag set is small and rather
useless, it is a valid markup language. Before we move into the specifics
of XML syntax, we will examine the other high-level defining component
of XML as it relates to XML Security: paradigm-shift.

XML Security60

Listing 3-1

Example of
arbitrary markup

<Food>
<FrenchFries> Curly Fries </FrenchFries>
<Beers>
<Good_Beer> Samuel Adams </Good_Beer>
<Good_Beer> Guinness </Good_Beer>
<Bad_Beer> Budweiser </Bad_Beer>
<Bad_Beer> Fosters </Bad_Beer>

</Beers>
</Food>

The Roles of Markup

� Markup can add semantics to data.

� Markup can demarcate data.

� Markup can define roles for data.

� Markup can define containment.

� Markup can define relationships.

Paradigm-Shift

XML Security represents a clear paradigm-shift from ASN.1-based,
binary standards toward more portable, text-based XML solutions. Most
of the entities in the security world that relate to cryptography and public-
key infrastructure (PKI) use ASN.1 types to encode various entities. When
use the term cryptography, we are really referring to applied cryptography
that takes a standards-based approach—real cryptographers probably do
much of their work with pencil and paper.

Examples of these binary format security standards include X.509 cer-
tificates or most of the PKCS standards—all of these use ASN.1 types to
encode their pieces and parts. Examples of these formats have already
been given in Chapter 2, but the paradigm shift that XML Security
promises is a shift from BER encoded ASN.1 “objects” to the analogous
XML structures. A clear example of this shift is seen with the way a veri-
fication key (usually a public key) is represented in an XML Signature.
As discussed in Chapter 4 and Chapter 8, the <KeyValue> tag (just more
markup) is used to represent a raw public key that can be used for decryp-
tion. This is shown in Listing 3-2. This is contrasted with the X.509
SubjectPublicKeyInfo introduced in Chapter 2 and discussed again in
Chapter 8, shown again in Listing 3-3.

61Chapter 3 XML Primer

Listing 3-2

The <KeyValue>
element from an
XML signature

<KeyValue>
<RSAKeyValue>
<Modulus>
s3mkTQbzxuNFPFDtWd/9jvs8tF5ynBLilbG/sT24OglEol
1PBvRe+VUJU0eI2SRhN/KtZv4iD2jwT0Sko0eeJw==

</Modulus>
<Exponent>EQ==</Exponent>

</RSAKeyValue>
</KeyValue>

Listing 3-3

A binary
SubjectPublic-
KeyInfo
interpreted with
an ASN.1 parser

SEQUENCE {
SEQUENCE {
OBJECT IDENTIFIER rsaEncryption (1 2 840 113549 1 1 1)
NULL
}

BIT STRING 0 unused bits
30 46 02 41 00 B3 79 A4 4D 06 F3 C6 E3 45 3C 50
ED 59 DF FD 8E FB 3C B4 5E 72 9C 12 E2 95 B1 BF
B1 3D B8 38 69 44 A2 5D 4F 06 F4 5E F9 55 09 53
47 88 D9 24 61 37 F2 AD 66 FE 22 0F 68 F0 4F 44
A4 A3 47 9E 27 02 01 11

}

Both Listings 3-2 and 3-3 are showing us the same datatype, an RSA
public key. Both structures clearly demarcate the type of key as well as
the modulus and the exponent. Listing 3-3 does this a bit more covertly,
as the modulus and exponent are encoded inside the BIT STRING. List-
ing 3-2 uses XML syntax and markup while Listing 3-3 uses ASN.1 and
BER. Both encoding schemes are intended to be extensible and both
encoding schemes have tradeoffs. The XML version is certainly user-
friendly and one might argue that it is easier for an application to parse
text data with XML markup. The binary version, however, is far more
compact (once encoded in binary, half as small or smaller than the equiv-
alent XML version), but, as some would argue, harder for an application
to parse. Some would even be appalled at the space wasted by the XML
version. The difference between Listings 3-2 and 3-3 is the paradigm shift.
For better or for worse, emerging XML Security standards have a strong
“ASN.1 hate factor” and instead opt for cryptographic objects to take form
as semantically clean, easy to read, and easy to parse XML variations.

Now that the reader has some basic high-level notions about what
XML is (perhaps fuzzy notions), we can begin our descent from abstract
high-level ideas to more concrete, tedious details.

Elements, Attributes, and Documents

Three important terms for describing basic XML syntax are elements,
attributes, and documents. All three of these terms are special and impor-
tant; they encompass a large portion of the conceptual playing field for
XML and provide the foundation for the remainder of this chapter as well
as the entire book.

Elements and Attributes

We have spent some previous discussion throwing around the term
markup. A small example was given, and the reader should have seen
some tags with stuff inside, but little else should be evident besides the
fact that markup is useful for the intellectual carving of data.

Markup is often divided into two separate vocabulary words when we
are talking about XML: elements and attributes. An element is a start tag
and an end tag including the stuff inside of it and an attribute is a simple
name-value pair where the value is in single or double quotes. An

XML Security62

attribute cannot stand by itself and must be inside the start tag of a given
element. Two short examples follow:

<Food> Ice Cream </Food>
<Food Flavor="Chocolate"> Ice Cream </Food>

The first line in the previous example is an element called Food that
has Ice Cream as its element content. The second line in the previous
example is the same element with a name-value pair added to it (this is
an attribute). The name is Flavor and the value is Chocolate. Elements
may also be empty, having no element content. This is shown in the exam-
ple that follows:

<HealthyFood></HealthyFood>
<HealthyFood/>

The first line in the previous example is an element called <Healthy-
Food> that has nothing inside of it. The second line is shorthand for the
same empty element. Take note of this shorthand notation, because it is
used pervasively in many XML documents. This notation can be confusing
at first, but in all cases, it simply means an empty element.

Attributes may be used arbitrarily within start tags to add more mean-
ing to the data. In fact, there was a great deal of contention over the inclu-
sion of attributes within the XML syntax. The reason is because any data
that can be modeled with elements alone can also be modeled with an
attribute-centric approach and vice versa. Consider the following short
example. This example contains the same data as Listing 3-1, but it is
modeled almost entirely with attributes.

<Food FrenchFries = "CurlyFries"
Good_Beer1 = "Samuel Adams"
Good_Beer2 = "Guinness"
Bad_Beer1 = "Budweiser"
Bad_Beer2 = "Fosters"

</Food>

The markup used in the preceding example is certainly clumsier than
Listing 3-1, but the point here is that we are roughly modeling the same
data, but using attributes instead. There are five attributes inside the
Food element and they provide us with the same basic information as
shown in Listing 3-1. So which one is better? Both are legal XML docu-
ments; the answer to this question is really an answer to a much more
complicated data-modeling question. The convention, however, is to use

63Chapter 3 XML Primer

attributes more sparingly than elements. Elements and their contents
usually represent concrete information that will be displayed or rendered,
while attributes usually represent information required for processing.
This dichotomy, however, isn’t strict or formal and there isn’t anything
written down that says that this is how it must be. This is just convention.
XML Security-based standards use attributes heavily for algorithm infor-
mation and data sources while elements are used for concrete crypto-
graphic objects, such as keys or signature values. For example, consider
the short example that follows:

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

This <DigestMethod> empty element uses an attribute called
Algorithm with the rather long value http://www.w3.org/2000/09/
xmldsig#sha1. This element is commonly seen in an XML Signature,
and the meaning of the attribute value is intended to be the SHA-1 hash
function. Notice that even though the element is empty, it still communi-
cates information via the attribute. There is no requirement that all use-
ful elements must have content—this use of an empty element with an
attribute is frequently seen in the XML Security world. This shouldn’t
mean much to the reader at this point; these details will be hashed out in
Chapter 4 and Chapter 5.

XML Documents

Throughout this book and throughout many of the XML Security stan-
dards, reference is made to something called an XML document. This term
has a specific meaning and carries with it some implicit properties, the
most notable of which is the well-formed property. This property is the
most basic set of constraints that can be put on data represented using
XML; it defines simple syntax rules for the legal positioning of elements
and attributes. The reader is now asking, “So, what does well-formed
mean? What are these constraints?” In short, the list of constraints for a
well-formed document follows—again placed in a box because of their
importance.

There is a bit of hidden detail here, but not much. Let’s examine these
four constraints and go through some examples.

XML Security64

Root Element

The root element constraint is perhaps the easiest to see and understand.
Simply put, any data that wants to be well formed must have exactly one
root element. This means there must be one (and only one) parent ele-
ment. The root element has a synonym called document element. Some-
times we use the term root element and sometimes we use the term
document element. These refer to exactly the same thing; sometimes one
just sounds better! Listings 3-4 and 3-5 are examples of data that do not
have a single root element, while Listing 3-6 and Listing 3-7 correct these
examples to make them well formed. The additional root elements have
been added in bold.

65Chapter 3 XML Primer

Data represented in XML is well-formed if . . .

� There is exactly one root element.

� Every start tag has a matching end tag.

� No tag overlaps another tag.

� All elements and attributes must obey the naming constraints.

Listing 3-4

Sample XML
data without a
root element (not
well formed)

<Dark_Chocolate>
<Brand1>Hersheys</Brand1>
<Brand2>Ghiradelli</Brand2>

</Dark_Chocolate>
<Ice Cream>
<Brand1>Ben and Jerry</Brand1>
<Brand2>Dryers</Brand2>

</Ice Cream>

Listing 3-5

Sample XML
data without a
root element (not
well formed)

<Student> Joe </Student>
<Student> Bob </Student>
<Student> Mary </Student>

Start Tags and End Tags

The next constraints, start tags and end tags, are also simple and easy to
see. For every start tag, there must be an associated end tag. Listing 3-8
shows the incorrect data and Listing 3-9 corrects this data by adding the
proper end tags.

Again, this constraint is quite simple. It is easy to see by inspection if
end tags or start tags are missing—the syntax so far is just not compli-
cated. Let’s move along to the last two constraints.

Overlapping Tags

Tags cannot overlap each other in such a way that one tag is closed before
another tag. This constraint is difficult to describe with clarity, but suffi-
ciently easy to see in an example. Consider the next small example:

<Student>
<SSN>123-45-6789</Student>

</SSN>

The previous example is in a lot of syntactic trouble—not only is there
no clear root element, but the <Student> tag is closed before the <SSN>
tag. To fix this, you have to be sure that the elements do not overlap. The

XML Security66

Listing 3-6

Sample XML
document (well-
formed data)

<FatteningFoods>
<Dark_Chocolate>
<Brand1>Hersheys</Brand1>
<Brand2>Ghiradelli</Brand2>

</Dark_Chocolate>
<Ice Cream>
<Brand1>Ben and Jerry</Brand1>
<Brand2>Dryers</Brand2>

</Ice Cream>
</FatteningFoods>

Listing 3-7

Sample XML
document (well-
formed data)

<Students>
<Student> Joe </Student>
<Student> Bob </Student>
<Student> Mary </Student>

</Students>

following example shows how you can fix this to make it an XML docu-
ment that is well formed.

<Student>
<SSN>123-45-6789</SSN>

</Student>

Naming Constraints

Most of the tedious details of the well-formed property are contained
within the naming constraints for elements and attributes. These con-
straints are much more broad than the previous constraints because they
limit the range of acceptable characters for elements as well as some
details on white space. The least you need to know is contained in the box
that follows.

67Chapter 3 XML Primer

Listing 3-8

Sample XML
data missing
some end-tags
(not well formed)

<Candy>
<Good_Candy>
Milk Chocolate

<Bad_Candy>
Dark Chocolate

</Candy>

Listing 3-9

Sample XML
document (well-
formed data)

<Candy>
<Good_Candy>
Milk Chocolate

</Good_Candy>
<Bad_Candy>
Dark Chocolate

</Good_Candy>
</Candy>

Naming Constraints

� Element names must begin with a letter or underscore.

� Element names cannot contain embedded spaces.

� Element names are case sensitive.

� Attribute names must be unique per element (start tag).

� Attribute values must use single or double quotes.

� Attribute values cannot contain a � character.

Again, these naming constraints are still not that complicated. List-
ing 3-10 shows the gratuitous violation of every rule listed in the previous
box. The idea is to get the reader in tune with what the simplest legal
XML documents look like, and one way of reinforcing this is to look at the
illegal use of XML data.

The reader is challenged to scan Listing 3-10 and make an attempt to
find six naming constraint violations. The idea here is that well-formed
XML documents are not complex; the syntax is simple to learn and quite
intuitive.

If the reader has grasped the previous concepts with regard to XML
documents, the well-formed property and markup (elements and attrib-
utes), most of the battle is already won. At this point, the reader should
have the conceptual tools to build the simplest possible legal XML docu-
ments. We have made it this far with only three well-defined terms: docu-
ments, elements, and attributes. Once the reader can create and use XML
documents, it is possible to begin playing with and understanding the
pieces that comprise XML Security.

Aside from arbitrary binary data, any sort of XML data that is signed
or encrypted must be, at the very least, an XML document. Another point
that should be made here is that XML documents can be created using
only the simplest of tools; a text editor is all that is required. No browsers
or fancy tools are necessary. What we are looking at here is pure data,
carved up with markup and limited only by the well-formed constraint.

As a final exercise, consider Listing 3-11 that shows an XML Signature.
Using only the basic rules of XML syntax, the reader should have enough
information to determine if Listing 3-11 is a legal XML document, despite
the fact that the reader should have little or no knowledge of the meaning
of any of the elements or attributes used.

XML Security68

Listing 3-10

Sample XML
data that violates
almost every
naming
constraint (not
well formed)

<4Root_Element>
<Message> This is an invalid element </message>
<Another Message> This is also an invalid element </Another Message>
<Note color="blue" color="green"> These are colors </Note>
<Note color=red> I forgot this color </Note>
<Note lt="<"> Less than sign </Note>

</4Root_Element>

The solution is, of course, the erroneous <DigestValue> element. There
are two opening tags for this element but no corresponding closing tag.

The URI

One potential confusing aspect of XML documents is the pervasive use of
URIs. A URI is a Uniform Resource Identifier and is a short string value
intended to identify something on the Web—whether it is a file, a service,
or a person. In fact, a URI can identify any resource that has identity. An
example of a URI is the string value http://www.rsasecurity.com.

Listing 3-11 includes five URIs within the markup. At this point, it’s
not clear what they are used for (other than the fact that they are
attribute values), and they tend to clutter the markup because of their
length.

Most readers have encountered URIs that identify Web resources such
as Web pages that use the HTTP scheme. This is the same string that is
pasted into a browser and used to visit your favorite Web site, and in this
case data is retrieved from the location (Web pages, graphics, and so
forth). The URIs used in Listing 3-11 differ in that not all of these URIs
are used as a data source. That is, in the context of Listing 3-11, some of

69Chapter 3 XML Primer

Listing 3-11

XML data that is
not well formed

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
<SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<Reference URI="http://www.rsasecurity.com">
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>szlrBmSpQUJCO/ykyhS126/xMOM=<DigestValue>

</Reference>
</SignedInfo>

<SignatureValue>
UOmRz+EiYhy5LEsZ+fXBKnHlzWpJ+HFCOQlhWdb
I/DVlv7Szt11BEfn8fpC4bxG19UDd7MbpRedi
3qUeVP+GSvMElrPo8u++KsHMKGsaPoqeUOoUI
bW7biuW1rMSYpESdUeWbmy2p2/P8sulMouHrT
q+Jv92GQ+itjLimhmHLTs=

</SignatureValue>
</Signature>

the URI values are not meant to be retrieved, but instead are meant to be
used as identifiers. This may seem odd because most URIs seen outside of
XML documents are meant to be de-referenced and used as a data source.

As we examine various XML technologies we will see the distinction
between those URIs used mainly as identifiers versus those URIs that are
simply meant to be sources of data. We will see that any sort of URI can
be used as a pure identifier, even if it happens to point to some real data.
The first example of URIs used as identifiers occurs in the following sec-
tion on Namespaces in XML.

Namespaces in XML

Another conceptual hurdle is the topic of namespaces in XML. The pur-
pose of a namespace when used in an XML document is to prevent the col-
lision of semantically different elements and attributes that happen to
have the same name. For example, suppose that an author of an XML doc-
ument wants to use an element called <Fans>. This particular element
can refer to the noun fan as in a ceiling fan, or it can refer to the noun fan
as related to an attendee at a sporting event. Still more problems occur if
this element, ostensibly created by two different authors, is merged into a
single XML document. Clearly, the meaning of the element is ambiguous
and it is unreasonable to expect any sort of application to be able to make
the distinction between the different elements without some other quali-
fying information.

This problem is solved with the use of a namespace. A namespace in the
context of XML is simply a collection of element and attribute names iden-
tified by a URI Reference. The intention of an XML namespace is to pro-
vide a globally unique name for an element or attribute. The previous
sentences should mean precious little to the reader without some exam-
ples. Before the examples, a point of clarification must be made. The term
URI Reference may be confusing —what is a URI Reference? A URI Ref-
erence is a URI that is used as a string identifier; it has no purpose beyond
this. Some may argue that this term is redundant and confusing, but it is
the nature of the URI in these examples; simply an identifier.

A pertinent example is the namespace used for an XML Signature. The
URI Reference is http://www.w3.org/2000/09/xmldsig# and the
collection of element and attribute names that are associated with this
string identifier include the elements and attributes that help define an
XML Signature. The specifics of the elements used in an XML Signature

XML Security70

are given in Chapter 4 and Chapter 5. The conceptual picture looks some-
thing like Figure 3-1.

The idea behind the namespace is quite simple, but the syntax to use a
namespace inside an XML document can get quite confusing because
there are multiple ways to accomplish the same thing. Let’s work through
some short examples. First consider Listing 3-12, which shows an XML
document using elements from the XML Signature namespace without
any sort of namespace qualification. Let’s not worry about the contents of

71Chapter 3 XML Primer

<Signature>

http://www.w3.org/2000/09/xmldsig#

<Transforms><SignatureMethod>

<CanonicalizationMethod>

<Reference>

<SignedInfo>
<DigestMethod>

<DigestValue>

<SignatureValue>

Figure 3-1

The XML
Signature
namespace and
its related
elements

Listing 3-12

An XML
document using
elements from the
XML Signature
namespace
without an
explicit
namespace
qualification

<Signature>
<SignedInfo>
...

</SignedInfo>
<SignatureValue> ... </SignatureValue>

</Signature>

the elements right now; this is not essential to understanding how the
namespace declarations work.

Listing 3-12 is ambiguous as far as the namespace is concerned. This
XML document uses elements called <Signature>, <SignedInfo>, and
<SignatureValue>, but doesn’t tell us where these element names came
from. It is possible at this point that these element names belong to
another XML document (not an XML signature). Listing 3-12 is akin to
using the <Fans> element indiscriminately, leaving the semantics
ambiguous. An XML namespace is declared with some use of the xmlns
attribute. This is shown in Listing 3-13.

The syntax shown in bold in Listing 3-13 declares a default namespace
for all of the elements in the XML document, including the root element.
This means that all of the elements in this document (unless otherwise
noted) all belong to the http://www.w3.org/2000/09/xmldsig#
namespace. This syntax for namespaces is perhaps the most straightfor-
ward and easiest to see; it shows how to associate a single namespace
within an XML document. We can throw a wrench in the example to see
how the syntax becomes more complicated. Consider Listing 3-14.

Listing 3-14 poses a problem because it uses two elements, <Fans> and
<CeilingFans>, that are not part of the XML Signature namespace. We
need some way of marking these elements as part of a different name-

XML Security72

Listing 3-13

An XML
document using
elements from the
XML Signature
namespace using
a default
namespace
declaration

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>
...

</SignedInfo>
<SignatureValue> ... </SignatureValue>

</Signature>

Listing 3-14

An XML
document with an
improper element
for the default
namespace

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>
...

</SignedInfo>
<SignatureValue> ... </SignatureValue>
<Fans>
<CeilingFans> 4 </CeilingFans>

</Fans>
</Signature>

space, such that a processing application can make the proper distinction.
This is where the syntax gets a bit more complicated.

What we need to do is declare an additional namespace prefix. The
namespace prefix is an arbitrary string (usually short) associated with a
given namespace. This prefix is declared as another attribute value inside
the parent element for which the prefix is to be valid. This is shown in
Listing 3-15.

The namespace prefix chosen for Listing 3-15 is the short string foo. By
using the namespace prefix and the colon separator, we can associate a
particular element with a given namespace inside the element itself. This
is shown in Listing 3-15 when we declare the <Fans> element is a mem-
ber of http://fans.com by naming the element <foo:Fans>. This idea
is difficult to describe with much clarity, but it is easy to see with an exam-
ple. The string foo:Fans is called the qualified name and consists of the
namespace prefix (foo) and the local part (Fans).

XML documents that combine multiple technologies (such as a docu-
ment that uses elements from the XML Signature syntax and XML
Encryption syntax) will have to deal with declaring the appropriate name-
spaces and qualifying any elements used. For most of the discussion and
examples in this book, namespaces are not shown because they add to the
syntactic clutter and can cloud the understanding of some of the basic con-
cepts. That being said, they are an absolutely essential part of XML and
XML Security because without them there is no way to separate different
technologies and elements used within a given context. Further, there is
still much more to learn about namespaces! The previous discussion is
only a primer and gives the reader just enough ammunition to under-
stand the examples and usage within this book. The reader is urged to
visit the references section for places to go to read more about name-
spaces.

73Chapter 3 XML Primer

Listing 3-15

One way of using
two namespaces
in an XML
document

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#"
xmlns:foo="http://fans.com">

<SignedInfo>
...

</SignedInfo>
<SignatureValue> ... </SignatureValue>
<Object>
<foo:Fans>
<foo:CeilingFans> 4 </foo:CeilingFans>

</foo:Fans>
</Object>

</Signature>

More Markup

Elements, attributes, and namespaces represent the most fundamental
types of XML markup. Additional markup constructs that should be
briefly mentioned are comments, processing instructions, and character
data sections. While not too terribly important for the scope of this book,
they are fundamental parts of an XML document and are used in the dis-
cussion of the Document Object Model (DOM), which is discussed in the
second half of this chapter.

Comments

The idea of a comment for a programming language is pervasive for any-
one who has compiled even the simplest program. The idea is exactly the
same for XML documents; there is a way for document authors to inform
others of what is going on inside their twisted minds. The syntax is sim-
ple and a brief example follows. The text between the <!-- and -->
delimeters is a comment:

<!-- Comment on This! -->

Processing Instructions

A processing instruction is intended to be a customized instruction to the
processing application. Processing instructions are currently not widely
used in the XML Security standards and can be safely ignored for the
most part. The syntax of a processing instruction is the two character
delimeter <? followed by a target and then an arbitrary data string and
finally the closing delimeter ?> The key idea about processing instruc-
tions is that they are predefined and application specific. For example, if
you need to enumerate a certain section of markup as significant for a
custom application, you might denote this with a processing instruction.
An example of a processing instruction follows:

<? application_processor_1 do_task ?>

The reason processing instructions are even mentioned here is because
they show up in the DOM, which is discussed in the second half of this
chapter.

XML Security74

Character Data Sections

XML has some restrictions on certain text characters; for example, you
can’t create an element with the following markup characters:

<Expression> 4 < 5 </Expression>

The obvious reason for this is because the processing application that
parses the XML document can’t determine where elements begin and end.
With markup delimeters in the markup itself, it can’t match up the < and
> characters properly. To remedy this, XML defines what are called pre-
defined character entities that are used to represent markup characters
used in element and attribute names. These are shown in Table 3-1.

While these are useful, they can become cumbersome in practice. To
remedy this, the CDATA section is used to add unparsed text to an XML
document. The identifier CDATA stands for character data. The syntax
looks sort of weird, but the idea here is to be able to add arbitrary data to
the XML document without having to worry about using the predefined
character entities. A CDATA section looks like this:

<Expression> <![CDATA [4 < 5]] > </Expression

The idea is that you place the text in between the second [(left bracket)
and first] (right bracket). This example is semantically equivalent to the
first. The CDATA section doesn’t have to be used for just unparsed text. It
can be used for any arbitrary text that the parser should ignore.

More Semantics: The Document Prolog

By now the reader should have a fairly good grasp of XML basics. Some
familiarity with namespaces as well as XML document basics allows the

75Chapter 3 XML Primer

Predefined Character Entity Name Value

> �

< �

" "

& &

' '

Table 3-1

Predefined
Character
Entities

reader to understand most of the content of any given XML document.
There are, unfortunately, more details that must be hashed out. Most of
the following details will not be pursued much further in this book, but
they are essential to understanding and using XML documents outside
the scope of this book.

Most of these details come to us as part of something called the docu-
ment prolog. The term used is quite amusing; one definition for the term
prolog is an introduction to a play or a novel. Unfortunately, XML docu-
ments are never as exciting as live entertainment or a good read, but the
term is accurate. The document prolog is an optional set of declarations
used to add semantics to the current XML document. The document pro-
log always precedes the root element in an XML document and carries
with it some specific syntax constraints. To provide some motivation for
the document prolog, let’s look at some examples. Consider Listing 3-16.

Listing 3-16 is a portion of an XML Signature document. The names of
the elements are unimportant; the only important thing is the structure
of the elements and the attributes and attribute values. Notice that List-
ing 3-16 is littered with URI strings. This doesn’t represent anything too
odd—most XML documents use URIs as attribute values. The URI strings
are valid attribute values and don’t do anything sinister other than make
Listing 3-16 more difficult to read.

What if we had a way to remove these URI strings from the markup to
make the document more readable, but retain the URI values somehow?
A properly constructed document prolog with the necessary declarations
allows us to accomplish this. Let’s give the solution first and then talk
about it. See Listing 3-17.

Some might argue that Listing 3-17 is more difficult to read than List-
ing 3-16. This is only because we haven’t discussed all the funny syntax
yet. Listing 3-16 adds general entity declarations for the URI values—
simply put, replacement text. To see this, consider the isolated entity dec-
laration shown next:

<!ENTITY dsig "http://www.w3.org/2000/09/xmldsig#">

XML Security76

Listing 3-16

A portion of an
XML Signature
document

<Reference xmlns="http://www.w3.org/2000/09/xmldsig#"
URI="http://www.rsasecurity.com" >

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>60NvZvtdTB+7UnlLp/H24p7h4bs=</DigestValue>

</Reference>

The value on the left (dsig) is replaced with the string value on the
right in the actual markup. To specify the general entity within the
markup, the & and ; syntax is used to delimit the general entity name.
These are marked with bold in Listing 3-17. The use of general entities
within the markup can make the XML document much easier to read,
especially when there is a large amount of text that must be repeated
throughout a document. Some of the XML Security standards make use of
general entities to provide for more readable examples.

All three of the general entities shown in Listing 3-17 are inside the
document prolog. The document prolog consists of some mandatory pieces,
which at the very least must include the XML declaration, and the docu-
ment type declaration. The XML declaration is the string value <?xml
version="1.0"?>. If a document prolog is included in an XML docu-
ment, it must begin with this declaration. The XML declaration does little
more than communicate the version number along with some other
semantics such as the document encoding and whether the XML docu-
ment refers to external files. The XML declaration is shown in List-
ing 3-17 on the first line.

Immediately following the XML declaration is the document type dec-
laration. The document type declaration is designed to provide a grammar
for the given XML document. It begins with the string <!DOCTYPE, is fol-
lowed with a string (Signature), and must end with a closing >. Inside
the document type declaration is where markup declarations such as our
general entities belong. (The general entities are actually inside the inter-
nal subset, but we’ll ignore this detail for now.) The reader should observe
the syntax of both the XML declaration and the document type declara-
tion. These declarations do not represent well-formed XML; that is, the
syntax is special and doesn’t use the element and attribute syntax shared

77Chapter 3 XML Primer

Listing 3-17

The use of
general entities in
an XML
document

<?xml version="1.0"?>
<!DOCTYPE Signature

[
<!ENTITY dsig "http://www.w3.org/2000/09/xmldsig#">
<!ENTITY alg "http://www.w3.org/2000/09/xmldsig#sha1">
<!ENTITY val "http://www.rsasecurity.com">

]
>
<Reference xmlns="&dsig;" URI="&val;" >
<DigestMethod Algorithm="&alg;"/>
<DigestValue>60NvZvtdTB+7UnlLp/H24p7h4bs=</DigestValue>

</Reference>

by the main markup. We will return to this point later and see what is
being done to alleviate this funny syntax.

At this point the reader should have a basic grasp of the syntax of the
document prolog. Aside from the general entity (replacement text) decla-
rations, the document prolog usually fulfills a more dignified role as the
chief mechanism for assigning a formal grammar for the current XML
document via something called a document type definition. This term is
deceptively similar to document type declaration, but refers to something
a bit different. The document type definition (DTD) is the collection of
internal and external resources (internal to the current XML document)
that collectively provide a formal grammar for the XML document. This
topic is discussed in more detail in the following section.

Document Type Definition (DTD)

This section discusses the document type definition (DTD), which is the
set of rules and constraints for providing a formal grammar for an XML
document. First we will look at a simple case of a DTD with a fictional
markup language. Following this we will examine parts of a real DTD and
see if we can make our way through it.

The DTD

In an earlier section the reader was challenged to consider Listing 3-1 and
answer the question: “What language is that?” The answer was: “It is a fic-
tional markup language that uses the syntax of XML.”

This fictional language has a fairly well defined syntax described in the
well-formed constraints for XML. It is easy for us to construct legal docu-
ments because we have no rules other than those imposed by the XML
Recommendation. For example, consider Listing 3-18 that uses the same
elements as Listing 3-1.

XML Security78

Listing 3-18

A fictional
language that
uses XML with no
additional
constraints

<Good_Beer>
<Food> Samuel Adams </Food>
<FrenchFries> Guinness </FrenchFries>
<Beers>
<Bad_Beer> Budweiser </Bad_Beer>
<Bad_Beer> Fosters </Bad_Beer>

</Beers>
</Good_Beer>

The reader should be staring blankly at Listing 3-18 and probably
wondering why the elements don’t make any sense. This is intentional—
the syntax of XML is extensible. In fact, with only the well-formed con-
straints, one can argue that the syntax is too extensible. Why? Right now
we can create semantically meaningless element combinations that
amount to gibberish. We have created a fictional markup language, but at
this point we have no way to constrain it in any meaningful way. We can’t
yet tell valid XML documents from invalid XML documents for our par-
ticular language. We don’t have a measure for validity yet so we don’t
know if Listing 3-1 or Listing 3-18 is legal or illegal even though they are
both well-formed.

The term valid has a special meaning in the context of XML. An XML
document is said to be valid if it has been compared against a formal
grammar and has not violated any parts of this grammar. This grammar
is the document type definition and is usually a file somewhere that con-
tains the rules for a particular markup language. Once the document type
definition has been created, we can associate it with a given XML docu-
ment via the document type declaration. To provide some motivation for
this, let’s create a simple grammar for Listing 3-1 that allows us to discern
valid and invalid instances of our fictional markup language. Let’s call
this particular markup language the Food language, where our three food
groups consist of good beers, bad beers, and french fries—a true diet of
champions. Listing 3-19 shows an example of a simple document type def-
inition that lives in a file separate from the main markup file.

The set of constraints shown in Listing 3-19 is roughly equivalent to
the following English description: A document that uses <Food> as its
root element must contain exactly two elements, <FrenchFries> and
<Beers>. The <FrenchFries> element must contain some character
data and the <Beers> element must contain at least one <Good_Beer>
element or <Bad_Beer> element. Both a <Good_Beer> and <Bad_Beer>
element must contain character data.

The syntax used for the document type definition can be quite intuitive,
even though it looks weird. Without explicitly defining each line, the

79Chapter 3 XML Primer

Listing 3-19

Some constraints
for the Food
markup language

<!ELEMENT Food (FrenchFries, Beers)>
<!ELEMENT FrenchFries (#PCDATA)>
<!ELEMENT Beers (Good_Beer+ | Bad_Beer+)>
<!ELEMENT Good_Beer (#PCDATA)>
<!ELEMENT Bad_Beer (#PCDATA)>

XML. Other problems occur with XML Namespaces especially when sig-
natures are moved from one XML document to another. The correct canon-
icalization of XML Namespaces in a portable document often requires an
alternative canonicalization algorithm called exclusive canonicalization,
which is discussed in the Appendix for this book.

The number of cases that must be considered and dealt with in terms
of permissible changes to XML is vast. It is because of this that great care
must be taken with the use of the canonicalization algorithm. An XML
Signature application must be certain that it is not using a rogue canoni-
calization algorithm. For example, if an attacker has the means to replace
the canonicalization algorithm used during XML Signature processing,
the rogue algorithm could be used to transform the input into arbitrary
signatures that always fail or pass validation. Canonicalization is a major
security concern and therefore this algorithm must be completely trusted
at all times because an XML Signature application is essentially relying
on it to produce the original data that was signed before XML Processing
occurred.

Because the canonicalization algorithm is complex and normalizes
many cases, it is also possible for an attacker to replace the canonicaliza-
tion algorithm with an algorithm that works almost the same way as it is
supposed to. It may conveniently omit a certain normalization step that is
engineered to affect the result of a transformation that occurs further
along, which could subsequently alter the nature of what was signed.

Other potential problems with canonicalization are that it is slow in
terms of its performance and that no easy way exists for checking to see if
it has been performed ahead of time. Because of this, canonicalization
must be performed every time a signature is generated or verified. The
algorithm itself also has little room for optimizations. Every input node in
the document must be considered for canonicalization and subsequently
passed on to the output node-set or explicitly ignored.

Base64 Decoding

The second transform algorithm that we will discuss is base64 decoding.
This is a well-known algorithm and is given full treatment in the primer
in Chapter 2. Base64 decoding is used in XML Signatures to decode and
sign encoded binary files or to decode and sign data referenced in an
<Object> element or other external XML resource that contains base64-
encoded data. This transform always produces an octet-stream as output
and can accept either an XPath node-set as input or an octet stream as
input. This may seem a bit confusing at first. Newcomers to XML

181Chapter 5 Introduction to XML Digital Signatures Part 2

reader should be able to follow the given English description and deduce
the meaning of most of the notation used. The fancy name for each line in
Listing 3-19 is element declaration. Each of these element declarations
defines constraints for the element name. Let’s look at the first element
declaration:

<!ELEMENT Food (FrenchFries, Beers)>

Each element declaration begins with the string <!ELEMENT followed
by the element name, and then the content-model and finally the closing
character >. In the previous small example the element name is Food and
the content-model we are declaring for this element is a sequence of child
elements in a specific order. The order is denoted by the order of the ele-
ment names within the parentheses. The first child element must be
FrenchFries and the second (and final) child element must be Beers.
The next element declaration is even simpler:

<!ELEMENT FrenchFries (#PCDATA)>

The previous example simply says that the FrenchFries element
must contain only character data—it cannot contain any elements. The
odd-looking keyword #PCDATA stands for parsed character data. The third
element declaration gets a bit more complex, but it is still readable:

<!ELEMENT Beers (Good_Beer+ | Bad_Beer+)>

The content model here says that the Beers element must contain a
choice (denoted by the | character) of one or more (denoted by the � sym-
bol) Good_Beer or Bad_Beer elements. Cardinality operators such as �,
?, and * are used throughout document type definitions and mean one or
more, zero or one, or zero or more, respectively. We will see these cardinal-
ity operators again in Chapter 4 when we look at the structure of the XML
Signature. The last two element declarations are simply repeats of the
second declaration and merely constrain the Good_Beer and Bad_Beer
elements to only contain character data.

The reader should have a basic understanding of how to put together a
simple grammar for a custom markup language. The reader is challenged
to reconsider Listing 3-1. Is this XML document valid? Does it conform to
the grammar set forth in Listing 3-19? The correct answer is no. The rea-
son is because the <Beers> element contains more than one child ele-
ment—it contains two <Good_Beer> elements and two <Bad_Beer>
elements. Our document type definition constrains the <Beers> element

XML Security80

to a choice of either one, but not both. This is the constraint defined by the
third element declaration.

Now that we have a simple document type definition, we need to asso-
ciate this with an instance of our Food markup language. This is done so
a processing application can find the formal grammar and perform the
check in a seamless way. Luckily, the syntax to accomplish this association
is not difficult. A complete, valid, Food XML document that points to an
external document type definition is shown in Listing 3-20.

Listing 3-20 uses what is called a system identifier (denoted by the
SYSTEM keyword) to inform the processing application of the document
type definition. In this case, the DTD file lives somewhere on a server
called food.com. While a remote URI is shown in Listing 3-20, any valid
URI can be used for the system identifier value. A filename by itself usu-
ally signifies that the DTD file is in the same local directory as the XML
document.

A Real DTD

This section looks at pieces of the DTD for an XML Signature (the entire
DTD is boring). The reader doesn’t have to know much about an XML Sig-
nature yet—the details will be covered in Chapter 4. This section is
intended to give the reader some practice reading through a real DTD
instead of a fake markup language about beer and french fries.

The first piece we are going to look at is the element declaration for the
parent element, which is the <Signature> element, as follows:

<!ELEMENT Signature (SignedInfo, SignatureValue, KeyInfo?, Object*)>

Luckily, this element declaration is simple and is similar to a declara-
tion made in the DTD for the Food markup language. The declaration says
that a <Signature> element must contain a <SignedInfo> element,
<SignatureValue> element, zero or one <KeyInfo> element, and zero
or more <Object> elements. The beauty of this declaration is that it is

81Chapter 3 XML Primer

Listing 3-20

A valid instance
of the Food
markup language

<?xml version="1.0"?>
<!DOCTYPE Food SYSTEM "http://food.com/food.dtd">
<Food>
<FrenchFries> Curly Fries </FrenchFries>
<Beers>
<Good_Beer> Samuel Adams </Good_Beer>

</Beers>
</Food>

fairly easy to read and we don’t yet have to know a thing about an XML
Signature to understand the constraints. Here is another piece, which
puts a constraint on the contents of the <SignatureValue> element
such that it only contains character data and no elements:

<!ELEMENT SignatureValue (#PCDATA)>

Here is another piece of the XML Signature DTD that gives constraints
for the <SignedInfo> element:

<!ELEMENT SignedInfo (CanonicalizationMethod,SignatureMethod,Reference+)>

The constraint simply says that a <SignedInfo> element must con-
tain a <CanonicalizationMethod> element, a <SignatureMethod>
element, and one or more <Reference> elements.

Learning More about DTDs

These small sections only give the reader the absolute basics with regard
to DTDs, and the reader is urged to consult the references section at the
end of this book for more information. Some might argue that we made
the discussion easier than it really is, and in some cases we have simpli-
fied a few things. We omitted attribute declarations and parameter enti-
ties, both of which are found in the actual XML Signature DTD. An
attribute declaration is similar to an entity declaration, but it provides
constraints for attributes instead of entities and a parameter entity is
similar to a general entity, but is intended for use inside a DTD.

XML Schema

Like document type definitions, the XML Schema definition language is
used to describe the structure of XML. One view of XML Schema is an
overhaul or upgrade of DTDs. Newcomers to XML often get frustrated by
the fact that there are two tools for accomplishing roughly the same task.
The frustration continues when it is also learned that DTDs are being
replaced with corresponding XML Schema definitions.

The DTD faces two major problems:

� DTDs aren’t powerful enough to provide sophisticated constraints on
an XML document.

� DTDs don’t use XML.

XML Security82

The first issue sounds plausible, but the second needs a bit of explana-
tion. Reconsider the DTD syntax, specifically any of the previously dis-
cussed element declarations. The careful reader should notice that the
syntax doesn’t correspond to well-formed XML (that is, syntax in which
element declarations are made in between an opening <! and closing >
character). There is no end tag for the element declaration. The syntax of
DTDs is a bit ironic; it can’t be processed in the same way as the document
it constrains. There is really no reason for this. The XML syntax is pow-
erful and general enough to model constraints on instance documents
that use XML. Switching to an XML-based markup language that con-
strains XML document instances is inevitable and makes processing the
formal grammar easier. In addition, XML Schema is extensible in contrast
to the DTD language, which is fixed and part of the XML 1.0
Recommendation.

We will not go into any specifics of XML Schema in this book; the topic
is simply too large and complex to fit inside a single chapter, let alone a
single section. To give the reader a flavor for what XML Schema looks like,
we will present part of the Schema definition from the XML Signature
Recommendation for a quick tour. The reader should visit the references
section for more information on XML Schema. Consider Listing 3-21.

Fortunately, XML Schema is quite intuitive and extensive knowledge of
the schema definition language is not required for discerning some basic
constraints. XML Schema is much more general in its scope than DTDs
and has the features of a programming language.

The two basic types in XML Schema are simple types and complex types.
In general, complex types are types that contain other elements while

83Chapter 3 XML Primer

Listing 3-21

The XML Schema
Definition for the
<Signature>
element

<element name="Signature">
<complexType>
<sequence>
<element ref="ds:SignedInfo"/>
<element ref="ds:SignatureValue"/>
<element ref="ds:KeyInfo" minOccurs="0"/>
<element ref="ds:Object" minOccurs="0" maxOccurs="unbounded"/>

</sequence>
<attribute name="Id" type="ID" use="optional"/>

</complexType>
</element>

simple types cannot. In Listing 3-21, the element <Signature> is defined
to be a complex type that contains a sequence of four elements: <Signed-
Info>, <SignatureValue>, <KeyInfo>, and <Object>. The last two
elements, <KeyInfo> and <Object>, have additional constraints
declared using attributes that provide the same functionality as the DTD
cardinality operators. Both of these elements are optional and <KeyInfo>
is constrained to a single instance while <Object> is unbounded. Finally,
there is also a provision for an attribute value called Id, which is also
optional.

Processing XML
The reader should now have a fairly good idea of how XML documents are
structured and validated, and should understand the difference between
a markup language and a meta-language. Given a document that uses
XML markup, the reader should be able to tell if it is well formed and
should be able to discern some basic validity constraints with the help of
a DTD. This section of the primer marks a shift from examining the syn-
tax of XML to understanding how XML is processed. XML documents are
cool to look at and fun to create, but unless we understand how they are
processed and dealt with, the previous section is more a thumb-twiddling
exercise rather than something practical.

The next few topics on our plate include understanding the Document
Object Model (DOM), which is an API for doing practical things with
structured documents, as well as the XPath data model, which is used in
the XML Security standards. We will also look at some source code in Java
that shows how to use the Apache Xerces toolkit to do a few practical
things with XML documents such as parse them and output basic
information.

The Document Object Model (DOM)

The DOM is an Application Programming Interface (API) meant for struc-
tured documents. The reader may be wondering why we are discussing an
API at this stage in the book and may also wonder about the relevance of
this section altogether. The reason the DOM is important is because it is
highly standardized and represents a widely used and accepted program-

XML Security84

ming model for structured documents. This makes the API important
because most XML Security implementations (XML Signature or XML
Encryption) will have support in some way or another for the DOM; in
essence, these implementations are usually written directly on top of the
DOM and rely on its functionality and semantics. Because of this, it is an
important building block in XML Security.

To support standardization, there are various levels of the DOM. The
term level is akin to a version number for the DOM, where higher levels
represent increased functionality. Our discussion here will include the
features and behavior found only in DOM Level 1, and more specifically
DOM Level 1 Core, which is the smaller subset of DOM Level 1.

Structured Documents vs. Structured Data

The reader may notice that we have not explicitly mentioned XML docu-
ments, but instead began this section using the more general term struc-
tured documents. The reason for this change in terminology is related to
the definition of the Document Object Model. The DOM is an API designed
for structured documents in general and isn’t an API exclusive to XML
documents. For example, the DOM can also model HTML documents
using the same interfaces.

Our focus with the DOM will be XML documents, and because of this,
the more specific term structured data is slightly more appropriate. The
term document can be confusing because a document as such usually
implies some sort of presentation coupling such as fonts, colors, graphics,
or multimedia. These types of additional presentation semantics are out of
scope for XML documents that represent security objects such as an XML
Signature or encrypted XML element. We will look at the DOM in terms
of structured data, instead of its wider scope of structured documents.

DOM Interfaces

DOM is a collection of interfaces for manipulating structured data in
memory using objects. We are not throwing out a new term; the term
object is the same as that found in an object-oriented programming lan-
guage such as C�� or Java. Simply put, given arbitrary structured data,
the DOM specifies interfaces that can be used to access and manipulate
this data at a programming language level. A picture of this process is
shown in Figure 3-2.

Figure 3-2 shows a simplified view of how the DOM looks at structured
data. The DOM uses a tree-like structure to model the relationships

85Chapter 3 XML Primer

between its interfaces, but does not constrain the actual implementation
to a tree data structure. Put another way, the DOM appears to act like a
tree from the outside, but a particular implementation of the data struc-
tures is not constrained to a tree structure. A tree structure is an obvious
model for structured data such as an XML document. The parent element
represents the root of the tree and each child element represents child
nodes of the root and so on. A better picture of the scope of the DOM is
shown in Figure 3-3.

In Figure 3-3 a new box appears with a question mark inside of it. This
signifies that the actual implementation of the DOM is out of scope. A
direct relationship between the tree-like interface provided by the DOM
and the underlying implementation isn’t necessary. DOM merely specifies
interfaces; the underlying implementation is up to the vendor that takes
on the task of creating a usable DOM API. The outside of the DOM—the
user-accessible API—is fixed and has a logical structure that matches
that of a tree. The inside—the actual implementation of the DOM inter-
faces—is not constrained and may or may not match the outer tree view.
The idea here is that the DOM be a portable interface. For example, it may
be desirable to add a DOM interface over some other legacy API that deals
with structured data. Because of this, the DOM explicitly separates itself
from the implementation of its objects.

This key idea is important to remember; often the DOM will appear
clunky and obtuse for basic tasks. The reason is because it is not designed
with any one document format in mind, but instead for arbitrary struc-
tured documents, which may or may not include XML documents.

Inheritance View vs. Flattened View

We will examine the DOM as it is specified for an object-oriented pro-
gramming language such as Java. DOM APIs exist for many scripting lan-

XML Security86

<Food>

Structured Data DOM Document

<FrenchFries>

Curly Fries

 </FrenchFries>

<Beers>

<Good_Beer>

Samuel Adams

</Good_Beer>

 </Beers>

Figure 3-2

A simplified view
of a DOM
document object

guages and as such exist in two different views: a flattened view and an
inheritance view. Not all languages support object-oriented features such
as inheritance and this creates some redundancy in the API. This redun-
dancy adds to the feature set in terms of extra functions and can cause
confusion. The flattened view is out of scope for our discussion and the
reader should visit the references section at the end of this book for more
information on the DOM. All of the upcoming code examples will be given
in Java, and, because of this, our primary view of the DOM will be the
inheritance view.

Complete understanding of the inheritance view of the DOM comes
from understanding just two objects: Node and Document. It is difficult to
say which object is more fundamental; a clear understanding of both is a
necessity for doing anything useful with the DOM. The logical structure of
the DOM is a tree, and every object in this conceptual tree is some type of
Node object. Consider Figure 3-4.

The first thing to notice about Figure 3-4 is that every node in the
conceptual tree has been replaced with a concrete interface called
org.w3c.dom.Node. The name of the object comes from the Java lan-
guage binding for the DOM. A given language binding for the DOM is
defined by the W3C and doesn’t refer to a given DOM implementation or
API. All compliant DOM implementations for Java must use the
org.w3c.dom.* packages that define the DOM interfaces. Our focus
with the DOM will be Java and it is appropriate the use the fully qualified
interface names at this point in time.

The second thing to notice about Figure 3-4 is that all of the objects
that represent the structured document in the figure are identical. All
nodes are org.w3c.dom.Node objects. This is only true from an object-
oriented subtype relationship. This is difficult to describe, but easy to show

87Chapter 3 XML Primer

<Food>

Structured Data DOM Implementation

<FrenchFries>

Curly Fries

 </FrenchFries>

<Beers>

<Good_Beer>

Samuel Adams

</Good_Beer>

 </Beers>

DOM Document

?

Figure 3-3

The scope of the
DOM

with a picture. Figure 3-5 shows the true objects for the sample XML doc-
ument, and Figure 3-6 shows the parent-child relationships of the objects.

Figure 3-6 shows the parent child relationships of some common
org.w3c.dom.Node subtypes. Not all possible subtypes are shown, and
the most common ones are marked in bold. The most important thing to

XML Security88

<Food>

Structured Data

DOM Document

<FrenchFries>

Curly Fries

 </FrenchFries>

<Beers>

<Good_Beer>

Samuel Adams

</Good_Beer>

 </Beers>

org.w3c.dom.Node

org.w3c.dom.Node

org.w3c.dom.Node

org.w3c.dom.Node

org.w3c.dom.Node

org.w3c.dom.Node

org.w3c.dom.Node

</Food>

Figure 3-4

Node objects in
the DOM tree

<Food>

Structured Data

DOM Document

<FrenchFries>

Curly Fries

 </FrenchFries>

<Beers>

<Good_Beer>

Samuel Adams

</Good_Beer>

 </Beers>
 </Food>

org.w3c.dom.Element

org.w3c.dom.Element

org.w3c.dom.Text

org.w3c.dom.Element

org.w3c.dom.Document

org.w3c.dom.Element

org.w3c.dom.Text

Figure 3-5

DOM objects

notice about Figure 3-6 is that all of the classes shown are subclasses of
org.w3c.dom.Node and because of this they properly fulfill the subtype
relationship. Each subtype of org.w3c.dom.Node is designed to repre-
sent something in the structured document. For example, the
org.w3c.dom.Element type represents elements in an XML document
and the org.w3c.dom.Attr type represents attributes in an XML docu-
ment. The list goes on; there are over 15 different subtypes of
org.w3c.dom.Node. We will not cover them all here, because only a few
have immediate interest to us. The reader should refer to the references
section for more complete information on the DOM.

The careful reader should notice that there appears to be a mismatch
between Figure 3-5 and the structured data shown. That is, there is an
extra org.w3c.dom.Document node at the root of the conceptual tree
that has no obvious match to anything in the XML document shown in
the figure. This extra node is the main entry point into the structured

89Chapter 3 XML Primer

org.w3c.dom.Document org.w3c.dom.Attr

org.w3c.dom.Text

org.w3c.dom.Element org.w3c.dom.Node.Processing
Instruction

org.w3c.dom.Node.Comment org.w3c.dom.Node.CharacterData

org.w3c.dom.NodeFigure 3-6

DOM class
hierarchy

data and the real root of the XML document is actually the first child in
the DOM tree.

This point showcases the importance of the org.w3c.dom.Document
object, which represents the entire structured document. Once an
org.w3c.dom.Document object is obtained for a given structured docu-
ment, the user can access various org.w3c.dom.Node objects that com-
prise the document tree. Any use of the DOM to model an existing
structured document begins with the creation of a Document object. Iron-
ically, the actual bootstrapping of the Document object is left out of scope
—it is the responsibility of the specific DOM implementation to provide
the user with the necessary methods to create an instance of
org.w3c.dom.Document. The next section shows how this bootstrapping
process works with the Xerces XML Parser.

Bootstrapping with Xerces

Our first goal in this section is to use the Xerces XML Parser1 (which has
support for the DOM language bindings) to create an org.w3c.dom.
Document object from some sort of real XML data. Once we create the
org.w3c.dom.Document object, we can traverse the logical tree struc-
ture and get information about the XML document. Consider Listing 3-22.

The first things to note about Listing 3-22 are the import statements at
the top. The previously discussed DOM Java language bindings and the
Xerces DOM parser implementation are both added here. The two sepa-

XML Security90

Listing 3-22

Using Xerces

// Import the DOM Java language bindings
import org.w3c.dom.*;
// Import the DOM parser implementation
import org.apache.xerces.parsers.DOMParser;
class CodeListing31 {

public static void main (String args[]) throws Exception {
// Make a new DOM Parser
DOMParser domParser = new DOMParser();
// Parse an input document
domParser.parse("food.xml");
// Get the org.w3c.dom.Document node
Document documentNode = domParser.getDocument();
// Get the first child
Element rootNode = (Element)documentNode.getFirstChild();
// What is the name?
System.out.println("Root element: " + "<"+ rootNode.getTagName()+">");

}
}

1Xerces can be downloaded for free at htp://xml.apache.og.

rate import statements showcase the separation of the parser imple-
mentation from the DOM interfaces that are specified in the language
binding.

Once the proper DOM interfaces and the parser implementation have
been imported, the actual constructor is called for the DOMParser class.
This call and the next two calls are not relying on the DOM API; they are
calls that are proprietary to the Xerces processor. In fact, the only calls in
the code listing that use the DOM API are the second to last and last func-
tion calls.

Once an instance of the DOMParser class has been created, a call to the
parse() function occurs. This is a blocking call. In other words, the pro-
gram is halted while the DOM Parser reads from the specified XML file.
This may not seem like a big deal, but when the size of the XML file grows
to hundreds or thousands of lines this call has the potential to take a
great deal of time.

Once the parsing is complete we are ready to obtain an
org.w3c.dom.Document object with a call to getDocument(). This call
returns the org.w3c.dom.Document object as specified by the DOM. The
reader may think of this call as the transition point from the proprietary
Xerces parser to the standard DOM APIs. From here the idea is to use
only function calls that are specified by the DOM.

The first call obtains the actual root element in the XML document. In
Listing 3-22 we are assuming that the input is the food XML document
shown in Figure 3-5; the call to getFirstChild() actually obtains the
org.w3c.dom.Element object that corresponds to the <Food> element.
The actual string text in between the tag markup (< and >) in the input
document is printed out with the final getTagName() call. The result of
Listing 3-22 is the stunning output: <Food>.

This is hardly useful, but the sample does showcase how the logical
structure of the DOM works. When using the DOM it is often desirable to
rely on recursive semantics to traverse a structured document. Consider
Listing 3-23, which prints out all of the org.w3c.dom.Element nodes
and org.w3c.dom.Text nodes in the food.xml document.

All of the gory details are in the printNode() function. The idea here
is to give this function an org.w3c.dom.Node object and it will deter-
mine the type of node and then make a printing decision. In Listing 3-23
we pass the first child of the org.w3c.dom.Document node (the first
child is the document element) directly into the printNode() function.
The first thing done inside printNode() is to determine which type of
node we have; this function is trivial and only deals with two types of

91Chapter 3 XML Primer

nodes, so the choice is either Node.TEXT_NODE or Node.ELEMENT_NODE.
These static identifiers are simply integers used by the DOM implemen-
tation to distinguish between different node types. If our node is an ele-
ment, we first determine the name using getNodeName() and then print
this out.

Once the parent element has been printed, the child nodes are next
in line. A simple for loop is used to iterate through these and print them
out one by one. The object used to hold the list of nodes is the
org.w3c.dom.NodeList object. This object is a bit unique in its seman-
tics. At first glance this object appears to model a list of nodes that can be
accessed like an array. For example, in Listing 3-23 we use a for loop to
iterate through this org.w3c.dom.NodeList object with an item()

XML Security92

Listing 3-23

Some recursion
with the DOM

import org.w3c.dom.*;
// Import the DOM parser implementation
import org.apache.xerces.parsers.DOMParser;
class CodeListing32 {
public static void main (String args[]) throws Exception {
// Make a new DOM Parser
DOMParser domParser = new DOMParser();
// Parse an input document
domParser.parse("food.xml");
// Get the org.w3c.dom.Document node
Document documentNode = domParser.getDocument();
// Get the first child
Element rootNode = (Element)documentNode.getFirstChild();
// Let’s print out all the element names and text nodes
printNode(rootNode);

}
public static void printNode(Node nodeToPrint) {
int type = nodeToPrint.getNodeType();

if (type == Node.ELEMENT_NODE) {
String nodeName = nodeToPrint.getNodeName();
System.out.println("Element Node Found: <" +nodeName+">");
NodeList childNodes = nodeToPrint.getChildNodes();
if (childNodes != null) {
for (int i=0; i<childNodes.getLength(); i++) {
printNode(childNodes.item(i));

}
}

}
if (type == Node.TEXT_NODE) {
String textValue = nodeToPrint.getNodeValue();
System.out.println("Text Node Found: " +textValue);

}
}

}

function that appears to give us the contents at each position in the node
list. Despite the way this object looks, it does not have perfect list-like or
array-like semantics. This can be confusing for newcomers to the DOM.

The org.w3c.dom.NodeList is a linear view of the document tree. This
means that if you add a node to an org.w3c.dom.NodeList, you are
adding a node to the tree. Similarly, if you remove a node, a node gets
removed from the tree. As the tree gets updated, the NodeList changes;
there is no need to update the org.w3c.NodeList—it will change by itself.
NodeLists are useful when it is desirable to do operations that require
sequential access (such as printing out the children of a given node).

The second case is that of a text node. Text nodes are pervasive through-
out even the simplest XML document (such as ours) because white space
is considered significant in XML documents. This means that the
printNode() function will be called more times than the visible contents
of food.xml. Further, this means that we lied a bit in Figure 3-5. Fig-
ure 3-5 shows the document structure not counting white space in the
original document. In other words, the tree shown in Figure 3-5 has white
space nodes (which are proper org.w3c.dom.Node subclasses) removed
for the sake of clarity. For example, the reader can see how the white space
is counted by looking at the output of Listing 3-23, shown in Listing 3-24.

There are a total of seven org.w3c.dom.Text nodes found in the
food.xml document, even though only two are apparent (Curly Fries
and Samuel Adams).

Beyond DOM

The previous two sections represent a whirlwind tour of a common para-
digm for processing XML data. The DOM and its tree structure model is
only one way of processing structured documents. The tree structure

93Chapter 3 XML Primer

Listing 3-24

The output from
Listing 3-23

Element Node Found: <Food>
Text Node Found:
Element Node Found: <FrenchFries>
Text Node Found:

Curly Fries
Text Node Found:
Element Node Found: <Beers>
Text Node Found:
Element Node Found: <Good_Beer>
Text Node Found:

Samuel Adams
Text Node Found:
Text Node Found:

model is easy to understand and straightforward to implement, but it is
not always ideal for every practical situation. The previously mentioned
blocking parse() call in Xerces can present a problem for memory con-
strained environments; every time a document is parsed, a logical struc-
ture is built. Applications that only need access to a single node of the tree
must incur a large performance penalty in terms of memory.

To avoid this type of performance tradeoff, another processing para-
digm is used that sees the structured document as a stream of events. For
example, instead of building a logical structure in memory that matches
the document, the document is seen as a continuous stream of pieces and
components. Each piece of the structured document (this can be an ele-
ment or attribute) usually represents some sort of event and something
important is done upon the receipt of the event. XML documents
processed as a stream have a performance benefit because no logical in-
memory structure is created and the programmer has the flexibility to
store the pieces that are needed as they come. The standard API for this
type of processing is called the Simple API for XML Processing (SAX). We
will not discuss the SAX or its use in this book, but it should be considered
for applications that don’t want to be locked in to the more memory inten-
sive DOM paradigm. The reader should visit the references at the end of
this book for more information on SAX.

The XPath Data Model

This next section marks a shift from the practical DOM API to the more
conceptual XPath data model. The DOM structure model is intended to be
an API for applications that process XML. The XPath data model, while
similar to the DOM in its specification, is intended to be a conceptual
structure model for an XML document.

There are two potentially confusing things about XPath and the XPath
data model. First, the XPath data model appears to be very similar to the
DOM structure model. Both data models use a logical tree that relies on
nodes to represent pieces of the input document (such as elements and
attributes). Further, they also have similar constructs for representing a
collection of nodes. The key idea about the XPath data model is that it is
only conceptual and exists as a standard way of referring to an XML doc-
ument from an intellectual perspective. This means it gets used a lot in
the XML standards and drafts, including the XML Security standards.
For example, understanding the XPath data model is useful in under-

XML Security94

standing how the XML Signature Recommendation processes data as
XML. The DOM model can’t be directly used in this case because it is an
actual API and specifying XML standards in terms of the DOM would
tightly couple a given standard to a mode of implementation, which is out
of scope for most XML-related standards.

The second confusing thing about XPath is that it is also a specification
of a path language for traversing an XML document. This generally adds
to the muddle because most people use XPath to write expressions for
transforming and selecting pieces of an XML document. This will not be
our main focus here; the data model that XPath provides is what is most
important because it allows us to understand how XML standards view
an XML document. Once the data model is understood, the reader is in
good shape for understanding how XML documents are transformed.

XPath Nodes

The main construct in the XPath data model is the concept of a node. A
node represents an actual piece of an XML document. The difference
between a DOM-based org.w3c.dom.Node and an XPath node is the
scope of what can be represented. An XPath node has a smaller scope in
most respects and contributes to a slightly simplified conceptual view of
an XML document.

For example, the DOM has an interface called org.w3c.dom.Entity-
References that extends org.w3c.dom.Node and can be used to model
entity references in the input XML document. This enables a user to count
the number of entity references in an input document—the point being
that entity references show up in the DOM’s view of an XML document.
As another example, the DOM has an interface called org.w3c.dom.
DocumentType that also extends org.w3c.dom.Node. This interfaces
allows for access to information inside the document prolog, specifically
the DTD, enabling a user to read parts of the DTD and print them out.
Again, the DTD is in DOM’s view of the XML document.

The situation is a bit different for the XPath data model; there are only
seven conceptual node types. Because there are more than seven possible
constructs in an XML document, XPath can’t model everything and the
view is necessarily simplified. The data model defined by the XPath Rec-
ommendation consists of the following seven node types: root nodes, ele-
ment nodes, text nodes, attribute nodes, namespace nodes, processing
instruction nodes, and comment nodes. Our aim is to eventually describe
how a given XML document gets chopped up into these node types. That

95Chapter 3 XML Primer

is, we are about to describe the process by which the XPath data model is
applied to a given XML document.

Before we discuss the actual nodes themselves, we need to approach
something more fundamental, called document order, which is the order in
which the XPath data model is applied.

Document Order

The term document order refers to the order in which the various node
types are created, based on a real, physical XML document. This ordering
is actually quite straightforward and simple, and can be best described as
a list of rules that provide the “cooked” view of the XML document. Docu-
ment order is summarized as follows:

Document Order

Nodes are organized in the order in which they appear in the XML repre-
sentation with these constraints:

1. The root node comes first.

2. Element nodes occur before their children.

3. The attribute and namespace nodes of an element occur before the
children of the element.

4. The namespace nodes occur before the attribute nodes.

5. The relative order of namespace nodes and attribute nodes is
implementation dependent.

Everything about document order is straightforward except for the
third point. First, XPath contrasts the DOM in that it respects namespace
nodes, where DOM Level 1 just considers namespaces to be attributes
(which they properly are). Further, an element node has an associated set
of attribute nodes and namespace nodes that aren’t defined to be proper
children of the associated element node. Attribute nodes and namespace
nodes are considered to be associated with or properties of a given ele-
ment node. This view makes a lot of sense because visually an element
and its attributes are adjacent in the XML document. The last point here
is that document order looks at an XML document after general entities
have been expanded. This is where some of the simplification occurs. The
XPath data model doesn’t have an entity node and simply treats replaced

XML Security96

entities as text. Remember, with the XPath data model, whatever was in
your original XML document can only be seen as one of seven node types
(six really, since the root node is fixed).

Now it is time to examine the seven node types and see how they are
created from an example XML document. We will attempt to form the
XPath data model view of Listing 3-25, which is an updated version of an
earlier food XML document.

In Listing 3-25 we have updated our food XML document with some
comments, a default namespace, and some attributes. From here, let’s look
at the node types in detail and see what we can come up with for an XPath
data model.

Root Node

Only one root node represents every XML document in the XPath data
model in its entirety (not just the document element). This point is often
confusing for readers, many ask: “Why have a root node, when we really
want to get to the document element of the XML data?” An easy way to
explain this is to realize that other items (such as the comments shown)
appear as siblings to the document element. This means that if we are to
maintain our logical tree structure, we need a conceptual root node to hold
the rest of the nodes that are neither parent nor child to the document ele-
ment (root element). In Listing 3-25 there is one root node with three chil-
dren (in document order): a comment node, an element (the document
element), and a comment node. There is no xml declaration node, so this
piece of information is also lost in the XPath data model view. Our con-
ceptual XPath tree thus far is shown in Figure 3-7.

97Chapter 3 XML Primer

Listing 3-25

Updated “food”
XML document

<?xml version="1.0" encoding="UTF-8"?>
<!-- Here is a healthy meal -->
<Food xmlns="http://food.com">
<FrenchFries Size=Large" Salted="True">
Curly Fries

</FrenchFries>
<Beers Size="Pint">
<Good_Beer>
Samuel Adams

</Good_Beer>
</Beers>

</Food>
<!-- don’t forget to always drink good beer -->

Element Node

Element nodes represent actual elements in the physical XML document.
There is nothing too tricky here. The only other thing to note is that the
possible child nodes of an element node includes element nodes, comment
nodes, processing instruction nodes, and text nodes. All of these nodes
haven’t been discussed yet, but we will get to them.

If we add element nodes to our XPath tree, the result looks something
like Figure 3-8. A total of three element nodes are added, one for each ele-
ment in Listing 3-25 (excluding the root element).

Attribute Node

Attribute nodes are slightly more confusing than element nodes. The rela-
tionship between an element and its attributes can be thought of as asso-
ciation. An element may have attribute nodes associated with it. The
confusing part is that the XPath Recommendation defines the element
node-bearing attributes to be the parent node of the attributes, but the
attributes are not child nodes of the element node. This sentence can be
confusing because the term parent when used in discussions of a tree
structure usually logically implies the presence of children. XPath uses
the term set to describe the attributes associated with a given element—
we will expand upon this set idea and use such a notation for our
expanded XPath view of Listing 3-25, which now contains attributes. This
is shown in Figure 3-9.

The reader should notice that in Figure 3-9 the relationship of the
attribute sets to each element. Visually, it makes sense to call the element

XML Security98

Root
Node

Element
Node

Comment
Node

Comment
Node

Figure 3-7

The beginnings of
the XPath tree for
Listing 3-25

bearing the attributes a parent of the attributes, but it should also be
clear that the attributes are not proper children of the element because
they are not really intermediate nodes in the logical tree.

Another thing to note is that attribute nodes only appear in the XPath
view for attribute nodes explicitly specified in the physical XML document
being modeled (or those specified with default values in the DTD). A DTD
can specify that attributes can take on default values. This isn’t some-
thing that was covered earlier, and the reader is urged to visit the refer-
ence section at the end of the book for more information about DTDs.

99Chapter 3 XML Primer

Root
Node

Element
Node

Comment
Node

Comment
Node

Element
Node

Element
Node

Element
Node

Figure 3-8

Adding element
nodes to the
XPath tree

In short, there can be some ambiguities between XPath views of an
XML document because XPath doesn’t require that the DTD be read (the
XML Parser used may not support it). This means that it is quite possible
for two identical XML documents to produce different XPath nodes based
on the presence or absence of the DTD.

Namespace Nodes

The treatment of a namespace node is similar to an attribute node
because namespaces are spiced up attributes from an XML syntax stand-
point. Similarly, a given element node is associated with a set of name-
space nodes. There is one namespace node for every namespace that is in
scope for the current element. For example, if a namespace node was

XML Security100

Root
Node

Element
Node

Comment
Node

Comment
Node

Element
Node

Attribute
Node

Attribute
Node

Element
Node

Element
Node

{ {,
Attribute

Node
Attribute

Node{ {,

Figure 3-9

Adding attributes
to the XPath tree

declared on an ancestor node and is still in scope (it hasn’t been overrid-
den or undeclared), then there is a namespace node for this namespace.

Finally, the additional qualifier here is that the namespace nodes
should be first in the set; for the picture we will use the same set for both
the attribute nodes and namespace nodes. Listing 3-25 only has one
namespace node, the default namespace. This namespace, however, is in
scope for the entire food XML document. This means that there is a name-
space node for every element node in our picture. The updated picture is
shown in Figure 3-10.

In Figure 3-10 the picture looks a bit skewed as we try to fit everything
together. The reader should notice that we have put the namespace nodes
first in the associated set. This has to do with document order and the con-
straint that says namespace nodes must occur before attribute nodes.

Text Node

Text nodes represent any sort of text in the document. There is an XPath
text node for all text in the document except for text inside comments, pro-
cessing instructions, and attribute values. The XPath view of an XML doc-
ument simplifies text defined using predefined character entities or
residing in CDATA sections. That is, an XPath text node doesn’t tell you if
the text came from a predefined character entity or a CDATA section. This
information is essentially lost; XPath models all text the same way. Con-
sider the following short example:

<Sample>
<element1> I love XPath! </element1>
<element2> <![CDATA [I love XPath]]> </element2>

</Sample>

XPath sees both <element1> and <element2> as an element node
and a text node; the presence of the CDATA section is lost. From this it
follows that with the XPath view of an XML document it can’t be deter-
mined if a given text node had its origins as a CDATA section or simply
normal markup. Figure 3-11 shows the final picture for our XPath view of
Listing 3-25.

In Figure 3-11 two text nodes were added. One text node corresponds to
the Curly Fries text and one text node corresponds to the Samuel
Adams text.

101Chapter 3 XML Primer

XML Security102

Root
Node

Element
Node

Comment
Node

Comment
Node

Element
Node

Element
Node

Attribute
Node

Attribute
Node

Element
Node

{ {,,

Namespace
Node

Namespace
Node

{ {

Namespace
Node{ {

Attribute
Node

Attribute
Node{ {,,Namespace

Node

Figure 3-10

Adding
namespace nodes
to the XPath tree

Processing Instruction Node

This node is rather boring for our purposes. In short, XPath can model any
processing instruction in the physical XML document except for process-
ing instructions inside the DTD. There is a single processing instruction
node for every actual processing instruction found inside the body of the
document.

103Chapter 3 XML Primer

Root
Node

Element
Node

Comment
Node

Comment
Node

Element
Node

Element
Node

Attribute
Node

Attribute
Node

Element
Node

Text
Node

Text
Node

{ {,,

Namespace
Node

Namespace
Node

{ {

Namespace
Node{ {

Attribute
Node

Attribute
Node{ {,,Namespace

Node

Figure 3-11

The final XPath
view for Listing
3-24

Comment Node

We have already seen this node in action. There is one comment node for
every actual comment found in the physical XML document. Again, any
comment can be modeled except for comments inside the DTD.

XPath Node Set

Understanding the XPath data model is important because of a single
term: node-set. This term is used throughout the XML Security standards
and is an unordered collection of XPath nodes. Now that you know what
the possible node types are, you also now know what a node-set is in this
context. The node-set is simply an XPath tree that has been serialized
from a tree to a flat list. The reader should also understand that the stan-
dard org.w3c.dom.NodeList object cannot be used to model an XPath
node-set without some changes. A node-set is a proper list, while the
org.w3c.dom.NodeList is a linear view. This is an important distinc-
tion to make because, at first glance, the two concepts appear to be inter-
changeable.

More on XPath

The main focus of the XPath Recommendation is not the previous data
model. The data model is actually the last topic in the XPath Recommen-
dation (some would consider this odd, since it is foundational for XPath).
XPath is more concerned with the language and function library for tra-
versing through an XML document and selecting document subsets. This
discussion, while interesting, falls out of scope for our goals in this book.
The reader will see some simple (largely self-explanatory) XPath expres-
sions in Chapters 5 and 6 that perform some basic selection, but an in-
depth tutorial on the matter is left to another resource. The reader should
visit the references section for more information on XPath.

Chapter Summary
This chapter has been an XML primer on XML divided into two subsec-
tions: syntax and processing. The chapter began with discussing the fun-

XML Security104

damentals of XML syntax including a discussion of elements, attributes,
and documents. Well-formed XML was then discussed with some intro-
ductory material on XML namespaces and document type definitions,
including a small amount of information on XML Schema. The processing
section focused on two main topics: The Document Object Model and the
XPath data model. Both are fundamental for processing XML as a logical
tree structure. The distinction was made between the DOM, which is a
practical API, and the XPath data model, which is a conceptual tree model
used in XML standards. This distinction was noted as important because
both models use a node-based tree structure, but have a different purpose
and semantics.

105Chapter 3 XML Primer

This page intentionally left blank.

Introduction to XML
Digital Signatures

CHAPTER 4

In June 2000, the U.S. Congress approved the Electronic Signatures in
Global and National Commerce Act (E-SIGN Act). This broad legislation
gave electronically generated signatures a new legitimacy by preventing
contest of a contract or signature based solely on the fact that it is in elec-
tronic form. In other words, an electronic transaction cannot be denied
authenticity because of its electronic nature alone. The E-SIGN Act is
expected to facilitate business-to-business commerce by mitigating the
need for logistically expensive paper signatures. The portability of XML as
a data format makes it ideal for business-to-business transactions that
require a robust mechanism for both data integrity and authentication. In
response to these business requirements, as well as requirements from
the legal industry, the “XML-DSig” Charter was established. The goals of
this joint IETF/W3C Charter include the creation of a highly extensible
signature syntax that is not only tightly integrated with existing XML
technologies, but also provides a consistent means to handle composite
documents from diverse application domains.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

XML Signature Basics
An XML Signature is a rich, complex, cryptographic object. XML Signa-
tures rely on a large number of disparate XML and cryptographic tech-
nologies. The culmination of these technologies results in a signature
syntax that can be quite abstract and daunting, even to those well versed
in both security technology and XML syntax and tools. The XML Signa-
ture syntax is designed with a high degree of extensibility and flexibility;
these notions add to the abstract nature of the syntax itself, but provide a
signature syntax that is conducive to almost any signature operation.

The XML-Signature Syntax and Processing W3C Recommendation
defines the XML Signature syntax and its associated processing rules.
This recommendation, like most of the additional XML-related recom-
mendations, can be found at the World Wide Web Consortium Web site,
http://www.w3.org. The XML Signature Recommendation will likely
change in subtle ways as XML Signatures become more pervasive and
gain implementation experience. However, we are not concerned with the
nooks and crannies of the specification, but instead with the basic reason
for its existence, examples, and the fundamental properties that define an
XML Signature. One might question why we need such a rich signature
syntax that differs markedly from our existing signature infrastructure. If
we compared an existing messaging syntax, such as PKCS#71, to XML
Signatures, we would see drastic differences in the intent and implemen-
tation of the syntax.

We will first attempt to describe XML Signatures from an abstract
point of view. This will establish broad notions and definitions that can be
built upon in a systematic way towards practical examples. Readers with
little experience with digital signatures can refer to the primer in Chap-
ter 2 or to a similar section in one of the references listed in Chapter 2.
Our first definition is shown below.

XML Security108

Definition 4.1

XML Signature The specific XML syntax used to represent a dig-
ital signature over any arbitrary digital content.

1For more information on PKCS#7 see the primer in Chapter 2.

At first glance this definition seems remedial to anyone who has cre-
ated a digital signature even once. The only marked difference is that the
signature is defined to be XML. This point is especially important and pro-
vides insight into the purpose of the XML Signature. Currently, a digital
signature (either RSA or DSA) over arbitrary digital content results in
raw binary output of a relatively fixed size. The output of an RSA signa-
ture is related to the key-size used; the output of a DSA signature is
related to the representation of the encoding used. Moreover, to verify a
raw digital signature, the signer must provide additional information to
the verifier, including the type of algorithm used as well as information
about the recipient and verification key. Once these parameters are con-
figured, it is often difficult to change them or have a mechanism in place
that is robust in different scenarios. Before the advent of XML and its
related technologies, several solutions emerged to aid in this type of
extensible processing—ASN.1 and BER encoding, coupled with a hierar-
chical set of Algorithm Object Identifiers are currently used to facilitate
this type of flexible processing. Readers unfamiliar with ASN.1 and
BER/DER encoding should refer to the primer in Chapter 2. The ASN.1
definition of an Algorithm Identifier that is used to encode algorithm spe-
cific information is shown in Listing 4-1.

The actual value of OBJECT IDENTIFIER is defined by various stan-
dards bodies and is intended to be a unique bit-string that is encoded in a
raw binary format that conforms to BER/DER. For example, an
AlgorithmIdentifier that designates an RSA Signature with the
SHA-1 hash function might be encoded as in Listing 4-2.

109Chapter 4 Introduction to XML Digital Signatures

Listing 4-1

ASN.1 definition of
AlgorithmIdentifier

AlgorithmIdentifier :: SEQUENCE {
algorithm OBJECT IDENTIFIER,
parameters ANY DEFINED BY algorithm OPTIONAL }

Listing 4-2

AlgorithmIdentifier
for RSA with SHA-1

30 0D 06 09 2A 86 48 86 F7 0D 01 01 05 05 00

This bit-string is intended to merely identify a type of signature algo-
rithm. This type of compact binary representation is a rather tedious and
complex way of accomplishing the simple task of informing someone what
type of signature algorithm is to be used during application processing. In
contrast to the algorithm identifier used above, an XML Signature would
use the following identifier to denote the same RSA Signature with the
SHA-1 hash function:

http://www.w3.org/2000/09/xmldsig#rsa-sha1

Because XML is a text-based format, this type of algorithm identifier
lends itself to the type of text-based processing common for XML docu-
ments. Whereas the previous algorithm identifier is a more compact (and
therefore smaller) representation, the pervasiveness of XML parsers
makes such a text-identifier more viable and much simpler. XML Signa-
tures have tried to remove themselves from this type of compact binary
representation when possible, although the binary-encoded identifiers are
still used in the creation of the signature for backwards compatibility.

An XML Signature is itself an XML document; it carries with it all of
the properties of a well-formed XML document. All of the information
needed to process the signature can be embedded within the signature
representation itself, including the verification information. Furthermore,
all XML Signatures can undergo minimal processing even when applica-
tions do not have XML signing or verification capabilities. The elements,
attributes, and text (if present) can all be processed as “normal” XML
(except the actual signature and digest values). The added complexity of
an XML Signature lies not in the signature process or cryptographic oper-
ations used, but in the additional processing features demanded by XML
documents. XML Signatures are more closely related to a messaging syn-
tax such as PKCS#7, rather than raw binary digital signatures. An XML
Signature specifies the structure of the signature in relation to the source
documents; it also has the capability to encompass a cryptographic key or
X.509 certificate for signature verification. We can define the high-level
procedure for generating an XML Signature as follows:

XML Security110

Definition 4.2

An XML Signature is generated from a hash over the canonical
form of a signature manifest.

This “meta-algorithm” gives us a flavor for what is involved in signa-
ture generation. It does not encapsulate the specifics of signature genera-
tion, which will be covered later. Perhaps the most curious part of the
definition is the use of the term “manifest.” This term is often used in con-
junction with XML to refer to a master list of sorts, but it has its origins
in the description of cargo on a sailing vessel. It may be useful to think of
“manifest” as the collection of resources that are signed2; these may be
local to the signature itself or Web resources that are accessible via a Uni-
form Resource Identifier (URI). One can think of the XML Signature as a
sailing vessel that carries with it a cargo list (manifest) that must brave
unknown networks to arrive at its destination unscathed.

The signature manifest, or list of resources to be signed, is expressed
using XML. XML allows for syntactic variations over logically equivalent
documents. This means that it is possible for two XML documents to differ
by one byte but still be semantically equivalent. A simple example is the
addition of white space inside XML start and end tags. This liberal format
causes problems for hash functions, which are sensitive to single byte dif-
ferences. Readers unfamiliar with cryptographic hash functions may refer
to the primer in Chapter 2. To alleviate this problem, a canonicalization
algorithm is applied to the signature manifest to remove syntactic differ-
ences from semantically equivalent XML documents. This algorithm
ensures that the same bytes are hashed and subsequently signed. For
example, consider the following arbitrary empty XML element.

<Manifest Id="ReferenceList"/>

If one were to apply a SHA-1 hash to the above element, the hash out-
put would be the following octet-string:

61 16 EC F9 32 60 A1 20 65 8B DD 6C DB 96 23 3B E5 1D 33 C2

Consider what would happen if we were to modify the element by
adding some spaces:

<Manifest Id="ReferenceList"/>

The SHA-1 hash would now produce the following completely different
octet-string:

78 54 7D E6 2C 3C 4E 39 25 00 63 F7 61 08 A2 33 DC 0D 29 92

111Chapter 4 Introduction to XML Digital Signatures

2The manifest actually contains a list of digests of the resources.

The hash values do not match, but the semantics of the empty XML ele-
ment in each case are exactly the same. This subtle complication with how
XML is processed is clear evidence for the use of a robust normalization
algorithm within XML Signature processing.

The last item of interest is the use of the hash function itself. Hash
functions are used so pervasively in conjunction with digital signatures
that it often seems they are a necessary, defining component. It is possi-
ble to generate a digital signature using only a signing key and acceptable
public-key algorithm. Hash functions are convenient and when used with
digital signatures, reduce the size of what is being signed and effectively
speed up the signing operation. A hash function is used in two different
scenarios when XML Signatures are generated. Each resource included in
the manifest is hashed, and this list or collection of resources is then
hashed a second time during the signing operation. One might ask why a
manifest or list is required at all. Consider what would happen if the num-
ber of resources to be included in the signature grows. Applying a signa-
ture algorithm to each resource would be time-consuming and would
hinder the creation and verification of an XML Signature. The manifest or
list is a means to side-step this problem. Instead of signing each resource,
we hash each resource, which is much faster; then, we include the hash
value and resource location in the manifest.

At this point, we have briefly discussed the definition of an XML Sig-
nature along with an extremely high-level signature generation proce-
dure. The definitions given thus far are terse but precise and should give
the reader a strong foundation for understanding XML Signatures. The
next topic concerns the semantics of an XML Signature. Presenting a
clear idea of what it means for something to be signed by an XML Signa-
ture will help the reader understand the limits of XML Signatures from a
conceptual standpoint. (See Definition 4.3.)

XML Security112

Definition 4.3

An XML Signature associates the contents of a signature manifest
with a key via a strong one-way transformation.

These semantics are very precise—an XML Signature defines a one-
way signature operation based on a signing key. It is important to note
that the term “one-way” is used informally in this context. Most people
believe that there is no feasible way to reverse the signature transforma-
tion. The most common signature transformations that are used in con-
junction with XML Signatures are RSA Signatures, DSA Signatures, and
symmetric key message authentication codes. The term “one-way” refers
to the cryptographic properties of these or any other signature algorithms
that may be used. XML Signatures have the ability to utilize symmetric
key message authentication codes (HMACs), which can also be used as a
strong signature transformation. For more information on HMAC, refer to
the primer in Chapter 2.

Digital signatures have wide applications for associating a document or
data with an actual human, just as a normal paper signature does. Based
on this notion, an XML Signature is widely believed to provide this sort of
trust semantic. While this is extremely useful and practical, an XML Sig-
nature by itself does not associate a signing key with an individual. An
XML Signature instead provides the means to establish this sort of asso-
ciation. This is accomplished by the convenient method of packaging the
verification key within the XML Signature via an optional element. In a
sense, the XML Signature may present the verification material (either
raw public key or certificate that contains the public key) to the applica-
tion, leaving the issue of trust to the application. Well-defined mecha-
nisms for validating the identity of a signer based on public key
information already exist, such as certificate path validation. This decou-
pling of entity verification from the actual signature gives the application
more flexibility in deciding its own custom trust mechanisms. For exam-
ple, an application might wish to check if a particular entity has the
authority to sign a document or portion of a document. Not all private
keys are authorized as signing keys. A trusted authority might have
restrictions on private key usage for a particular individual, or an indi-
vidual’s key pair might have been revoked altogether. These additional
trust semantics lie outside of the scope of an XML Signature. A few legal
and technical organizations have pushed for stronger integration of addi-
tional trust semantics, but at present they are left out of the scope of XML
Signatures. The XML Signature leaves the problem of establishing trust
to another core XML Security technology called XKMS (XML Key Man-
agement Specification).

113Chapter 4 Introduction to XML Digital Signatures

XML Signatures and Raw Digital Signatures
We can now supplement the XML Signature basics with some examples.
We will first briefly examine the structure of an XML Signature in terms
of its defining tags. At the outset we will hide much of the complexity of an
XML Signature and attempt to relate it to raw digital signatures over
binary data. As we proceed through the examples, we will see how the
asymmetry of raw digital signatures makes them cumbersome, and how
the XML Signature is a superior design for many cases. Before we begin,
a definition of “raw digital signature” is in order. The referent here is the
simple case of an RSA private key operation applied to a hash of the orig-
inal document. DSA could be used for this example as well; the choice is
rather arbitrary. This type of “raw” signature assumes a basic padding
scheme (either PKCS#1 or some appropriate padding scheme) that does
little more than transform the hashed data into a valid input for the RSA
algorithm. The term “raw” does not necessitate the absence of padding (as
in raw RSA encryption), but simply implies that the signature has no
packaging mechanism applied to it that affords it additional semantics.
Readers unfamiliar with PKCS#1 or padding schemes in general should
refer to the primer in Chapter 2.

Listing 4-3 gives the outer structure or skeleton of an XML Signature.
The elements are XML tags, and their structure defines the parent-child
relationships of each element. The reader may also notice the use of car-
dinality operators. These operators denote the number of occurrences of
each element within the parent <Signature> element. The definition of
each cardinality operator is given in Table 4-1. The absence of a cardinal-
ity operator on an element or attribute denotes that exactly one occur-
rence of that element must appear.

XML Security114

Operator Description

* Zero or more occurrences

� One or more occurrences

? Zero or one occurrence

Table 4-1

Cardinality
Operators

At first glance the structure shown in Listing 4-3 may seem overly com-
plex or even a bit daunting. Many readers are probably questioning
whether the surface complexity is really necessary. We can apply an intel-
lectual knife to simplify the structure to a vacuous case shown in List-
ing 4-4. This simplification hides the added features of the XML Signature
and allows us to think of things in terms of a “raw” digital signature.

We are intentionally leaving out the cardinality operators in this
instance. Here we assume that one and only one element of each type is
allowed. Even this vacuous example may fail to make much sense without
further context. Definition 4.1 refers to the idea of a signature manifest.
Recall that the manifest is a list or collection of resources that are to be
included in the signature. These resources can be remote Web resources,
local resources, or even same document references. This list or manifest is
the contents of the <SignedInfo> element as shown in Listing 4-4. For
now, we will ignore the complexity of this element and assume that it
somehow points to everything that we wish to sign and includes all the
information necessary to produce the actual signature. This being the
case, Listing 4-4 begins to make more sense. The parent <Signature>

115Chapter 4 Introduction to XML Digital Signatures

Listing 4-3

The XML
Signature
structure

<Signature>
<SignedInfo>
<CanonicalizationMethod>
<SignatureMethod>
(<Reference (URI=)?>
(<Transforms>)?
<DigestMethod>
<DigestValue>

</Reference>)+
</SignedInfo>

<SignatureValue>
(<KeyInfo>)?
(<Object>)*
</Signature>

Listing 4-4

The vacuous XML
Signature

<Signature>
<SignedInfo>
</SignedInfo>
(SignatureValue)

</Signature>

element contains two entities: an original document, or collection of original
documents (<SignedInfo>), and an actual signature value (Signature-
Value). At this point, the <Signature> element serves to group the two
items for easy transmission to a third party. We are also intentionally omit-
ting references to terms like enveloped, enveloping, or detached at this
point. These terms have precise definitions when used in conjunction with
XML Signatures and should not be confused with their use with other stan-
dards (such as PKCS#7 or S/MIME). An example instance of the signature
syntax shown in Listing 4-4 is given in Listing 4-5.

Some readers may notice the nature of the data inside the
<SignatureValue> tag. This is the Base-64 encoded signature value.
Base-64 encoding is used pervasively in XML-related applications. Base-
64 encoding is a convenient, well-defined encoding mechanism for creat-
ing a unique, printable representation of arbitrary binary data. Because of
its text representation, Base-64 encoding is a natural solution for use in
conjunction with XML. Readers unfamiliar with Base-64 encoding should
refer to the primer in Chapter 2.

In Listing 4-5 we have again hidden the complexity of the <Signed-
Info> element. We ignore the details of this element and just assume
that it contains a reference to the original document that we are signing.
The Base-64 encoded data shown in Listing 4-5 is simply the result of
applying our chosen signature algorithm and hash function to the con-
tents of <SignedInfo>.

We now have enough background information to begin comparing our
simplified XML Signature to a “raw” digital signature. Consider the prob-
lem of signing a piece of text data residing on some local storage device

XML Security116

Listing 4-5

Instance of the
vacuous XML
Signature

<Signature>
<SignedInfo>
</SignedInfo>
<SignatureValue>
MI6rfG4XwOjzIpeDDDZB2B2G8FcBYbeYvxMrO/
Ta7nm5ShQ26KxK71Ch+4wHCMyxEkBxx2HP0/7J
tPiZTwCVEZ1F5J4vHtFTCVB8X5eEP8nmi3ksdT
Q+zMtKjQII9AbCNxdA6ZtXfaOV4euO7UtRHyK1
7Exbd9PNFxnq46b/f8I=
</SignatureValue>

</Signature>

using a “raw” signature. Listing 4-6 shows the piece of data we are going
to sign. We can assume that it is an electronic check in a simple, fictitious
format.

Let us assume we already have a private signing key and that we are
going to perform an RSA signature using the SHA-1 hash function. The
output from the signature operation using a 512 bit key might look some-
thing like Listing 4-7. An RSA signature operation is just an RSA private
key operation applied to a hash of the original document.

This signature value is not very interoperable and does not carry with
it much context. The most we could discern is that it is 64 bytes of data.
To solve this problem, we need to send along the binary algorithm identi-
fier. This is the same binary data that is shown in Listing 4-2. In List-
ing 4-8 we will show the same algorithm identifier as interpreted by an
ASN.1 parser. The text shown is generated from an ASN.1 interpreter; the
actual value that needs to be sent must still be encoded in binary.

This AlgorithmIdentifier will give a recipient some information
about how the signature was generated so it can be properly verified.

117Chapter 4 Introduction to XML Digital Signatures

Listing 4-6

Example
electronic check

check.txt
I authorize a payment of $2 from my checking account to the paperboy.
L. Meyer

Listing 4-8

ASN.1
interpretation of
the RSA with
SHA-1 algorithm
identifier

SEQUENCE {
OBJECT IDENTIFIER sha1withRSAEncryption (1 2 840 113549 1 1 5)
NULL }

Listing 4-7

Binary RSA
digital signature
(512 bit key)

92 F4 10 8C BD 29 98 C8 54 59 9D CD 62 F0 18 BE
75 69 4D 64 1A ED E7 7E 6D BD E9 7C 58 EA DE 3C
5B 4F 03 4B A0 F1 6A 1F DC 30 B4 8E 91 82 00 29
72 B6 86 0A B6 CA 3C 80 18 32 55 46 69 57 6D A8

Finally, we also need to send the original document. The original docu-
ment, which is in a text format, is required to determine if the signature
verifies. At this point we have three pieces of data that need to be sent to
a third party: the signature value, algorithm identifier, and original mes-
sage. The physical representation of the three entities differs. Two pieces
of the data are in binary format and the third is encoded in text. We can
solve this problem by applying Base-64 encoding to the two binary pieces,
which results in three pieces of data in a printable format. We now have
homogeneous data, but we still have no context or header information
that gives us clear semantics for the three pieces. A crude attempt at
packaging this raw type of signature appears in Listing 4-9.

In our contrived format above, the first line contains the algorithm
identifier, the next two lines contain the signature value, and the remain-
der is the original document. The problem with this type of crude format
is that there is no context or structure for the different pieces of the sig-
nature. The recipient of such a signature would have to know about our
proprietary format in advance. This may be acceptable if we are dealing
with a single recipient, but as the number of recipients grows, this type of
format quickly becomes unworkable.

This is where the power of XML as a portable data format begins to
show some advantages. In Listing 4-10 we will expand on our simple XML
Signature syntax and show how two new elements, <SignatureMethod>
and <Reference>, are used to identify the signature algorithm and
actual file pointed to. Note that Listing 4-10 still omits additional syntax
and features.

We have added the new elements (shown in bold) as children of
<SignedInfo>. Notice that the <Reference> element has an attribute
called URI that identifies the file that we are signing, as well as two addi-

XML Security118

Listing 4-9

Packaging a raw
digital signature

MA0GCSqGSIb3DQEBBQUA
kvQQjL0pmMhUWZ3NYvAYvnVpTWQa7ed+bb3pfFjq3jxbTwNLoPFqH9wwtI6Rgg
ApcraGCrbKPIAYMlVGaVdtqA==
I authorize a payment of $2 from my checking account to the paperboy.
L. Meyer

tional child elements that identify a digest value and a digest algorithm.
The signature operation used in XML Signatures never signs resources
directly, only hashes of resources. This not only speeds up single signature
operations, but also provides an easy way to sign multiple resources. Mul-
tiple <Reference> elements can be added to the <SignedInfo> ele-
ment. Only one is shown here. Lastly, the included <SignatureMethod>
element is an empty element that contains only a single attribute. The
attribute is called Algorithm and is a URI that describes the type of sig-
nature operation used (in this case, RSA with SHA-1).

Consider the differences between the XML Signature shown in List-
ing 4-10 and the “raw” digital signature shown in Listing 4-9. We might
describe Listing 4-10 with words like structured, context-specific, or exten-
sible, whereas Listing 4-9 might be described as fragmented, context-free,
or rigid. These adjectives encompass the nature of XML data in just about
any context, and digital signatures are no different. In fact, we have
barely touched on the different facets and features and syntax of XML
Signatures. What is shown in Listing 4-10 is a degenerate case that will
be used only in simple situations, if at all. In the next section we will
examine the additional features of XML Signatures and see how they can
be adapted to almost any digital signing situation.

119Chapter 4 Introduction to XML Digital Signatures

Listing 4-10

Expanded XML
Signature syntax

<Signature>
<SignedInfo>
<SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<Reference URI="file:///C:\check.txt">
<DigestMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#sha1"/>
<DigestValue>aZh8Eo2alIke1D5NNW+q3iHrRPQ=</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>
MI6rfG4XwPFASDFfgAFsdAdASfasdFBVWxMrO/
Ta7nm5SfQ26KxK71Ch+4wHCMyxEkBxx2HP0/7J
tPiZTHNYTEWFtgWRvfwrfbvRFWvRWVnmi3ksdT
Q+zMtKjQAsdfJHyheAWErHtw3qweavfwtRHyK1
9ExbdFWQAEDafsf/f8I=
</SignatureValue>

</Signature>

XML Signature Types
Before we concentrate our efforts on the syntax of XML Signatures, it may
be useful to examine the three basic types of signatures in terms of their
parent-child relationships. Different applications require signature deliv-
ery in certain ways, with preferred signature types. Certain applications
require that an XML Signature be modeled as closely as possible to a real,
handwritten contract that includes embedded signatures in certain parts
within the original document. Other applications may process the original
data separate from the signature and may require that the original data be
removed from the signature itself. The original document tightly coupled
with the parent <Signature> element (the original document is parent or
child to <Signature>) is an enveloped or enveloping signature. The origi-
nal document kept apart from the <Signature> element (the original doc-
ument has no parent-child relationship to <Signature>) is a detached
signature. Intricate pictures of these types of signatures can be drawn, but
a simple way of looking at them is in terms of their XML structure and
parent-child relationships. Listing 4-11 shows the XML structure of these
three types. An enveloped signature must be child to the data being signed.
An enveloping signature must be parent to the data being signed. A
detached signature is neither parent nor child to the data being signed.

Interestingly, a single <Signature> instance may be described as a
combination of the above types. It is possible for a <Signature> to have
multiple <Reference> elements, each of which may point to data local to
the <Signature> block and kept remotely. Listing 4-12 shows an exam-
ple of a <Signature> block that is both enveloping and detached.

The two <Reference> elements shown in bold point to source
data that is located in different places. Because one piece of data (the
<original_document> element, also shown in bold and referenced via

XML Security120

Listing 4-11

Enveloped,
enveloping, and
detached XML
signatures

<!-- Enveloped Signature -->
<original_document>
<Signature> ... </Signature>

</original_document>
<!-- Enveloping Signature -->
<Signature>
<original_document>
</original_document>

</Signature>

<!-- Detached Signature -->
<Signature> ... </Signature>

its attribute) is inside the document, and one piece of data is external (the
reference to importantFile.xml) this signature has the dual properties
of being both enveloping and detached.

XML Signature Syntax and Examples
Listing 4-3 gives the core structure of an XML Signature. XML Schema
definitions and Document Type Definitions (DTDs) give the formal syntax
and grammar of all child elements of <Signature> as specified in the
XML Signature Recommendation. Rather than repeat the formal syntax
given in the recommendation, we will give informal descriptions that
attempt to document the nature and intent of each element. We have

121Chapter 4 Introduction to XML Digital Signatures

Listing 4-12 Enveloping and detached XML Signature

<Signature>
<SignedInfo>
<SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<Reference URI="http://www.myserver.com/importantFile.xml">
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>aZh8Eo2alIke1D5NNW+q3iHrRPQ=</DigestValue>

</Reference>
<Reference URI="#ImportantMessage">
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>qGh8Eo2alJke1D7NNW+z3iHhRPF=</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>
MI6rfG4dwPFASDFfgAFsdAdASfasdFBVWxMrO/
Ta7nFCSDAhnTRhy45vJSDcvadrtrEQW2HP0/7J
tPQTBFfwGVwfqewrfVfewgrtgvfbwdj7jujYdT
Q+zMtKRQGRE1grewrfht32rwhnbtygrwtRHyK1
3EFfdasreEDafsfgf8I=
</SignatureValue>
<Object>
<original_document>
<very_important_element id="ImportantMessage">
Milk Chocolate is better than Dark Chocolate!

</very_important_element>
</original_document>

</Object>
</Signature>

already seen examples of how some of the elements are used in the cre-
ation of a basic XML Signature. Here we will expand our examples and
discussion to cover all of the components of the XML Signature syntax.

XML Signature Syntax

The following section lists and describes the elements that comprise the
XML Signature Syntax.

The �Signature� Element

The parent element of an XML Signature is, of course, the <Signature>
element. This element identifies a complete XML Signature within a
given context. This parent element can contain a sequence of children as
follows: <SignedInfo>, <SignatureValue>, <KeyInfo>, and
<Object>. Note that the last two elements are optional. Two things are
important about the <Signature> element. First, an optional Id
attribute can be added as an identifier. This is useful in the case of mul-
tiple <Signature> instances within a single file or context. Secondly, the
<Signature> element must be laxly-schema valid to its constraining
schema definition. This type of validity is related to a best-effort attempt
at schema validation.

The �SignedInfo� Element

The next element in the sequence is the <SignedInfo> element. This
element is the most complex element (it has the most children) and
ultimately contains a reference to every data object that is to be included
in the signature. As the name implies, <SignedInfo> encompasses all
the information that is actually signed; that is, the signed information.
The contents of <SignedInfo> includes a sequence of the following
elements: <CanonicalizationMethod>, <SignatureMethod>, and one
or more <Reference> elements. The <CanonicalizationMethod> and
<SignatureMethod> elements describe the type of canonicalization
algorithm and signature algorithm used in the generation of the
<SignatureValue>. These two elements simply contain identifiers;
they do not actually point to any data used in signature generation. These
identifiers must be included as part of the <SignedInfo> to prevent
against substitution attacks. For example, if the <SignatureMethod>
element were explicitly defined outside the <SignedInfo> element, an

XML Security122

adversary could modify the signature method identifier and wreak havoc
with someone trying to properly validate the signature.

Another interesting and important element is the <Reference> ele-
ment. References define the actual data that we are signing. Most of the
added features of XML Signatures show up in the definition and usage of
<Reference> elements. Because of their importance, they are treated
separately in Chapter 5. For now it is enough to know that they define a
data stream that will eventually be hashed and possibly transformed. The
actual data stream is referenced by a URI. URIs are a universal mecha-
nism for referencing data locally or remotely. It is possible to omit the URI
identifier on, at most, one <Reference> element if the application can
determine the source data from another context. More discussion on URIs
can be found in Chapter 3.

Discussion of hierarchy can be confusing; a visual example often helps.
Listing 4-13 shows an example of the structure that we have been piecing
together so far.

Listing 4-13 focuses on three elements: <CanonicalizationMethod>,
<SignatureMethod>, and <Reference>. The <Canonicalization
Method> points to the canonicalization method required by the XML Sig-
nature Recommendation. This specific method is called Canonical XML
Without Comments. A more thorough discussion of Canonical XML is
given in Chapter 5. The URI used here (http://www.w3.org/TR/2001/
REC-xml-c14n-20010315) is merely an identifier, not a source of data or
an algorithm source. This can be quite confusing at first; URIs are used
both as identifiers and as data streams. The two URIs specified in
<CanonicalizationMethod> and <SignatureMethod> are used as

123Chapter 4 Introduction to XML Digital Signatures

Listing 4-13

The
<SignedInfo>
element and its
children

<Signature>
<SignedInfo>

<CanonicalizationMethod Algorithm=
"http://www.w3.org/TR/2001/REC-xml-c14n-20010315">
<SignatureMethod Algorithm=
"http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<Reference URI="http://www.rsasecurity.com">
<DigestMethod Algorithm=
"http://www.w3.org/2000/07/xmldsig#sha1"/>
<DigestValue>aZh8Eo2alIke1D5NNW+q3iHrRPQ=</DigestValue>

</Reference>
</SignedInfo>
...

</Signature>

identifiers, whereas the URI specified in the <Reference> element is an
actual data stream that is digested and then subsequently signed.

In addition to a public-key signature scheme, the XML Signature rec-
ommendation requires that HMAC be implemented as an option for the
<SignatureMethod>. An HMAC is an authentication code based on a
shared secret key. For cases where a shared secret exists between two par-
ties, an HMAC might be a better choice for signature authentication. The
computation of an HMAC is considerably faster than an expensive RSA or
DSA signing operation. Listing 4-14 shows an example of a <Signed-
Info> that utilizes HMAC as its <SignatureMethod>. In addition to the
identifier that describes the HMAC algorithm used (in this case the refer-
ent is HMAC-SHA1), the <SignatureMethod> element specifies an addi-
tional child element called <HMACOutputLength>. This element allows
for modification of the HMAC output. Additional cryptographic tradeoffs
are also possible by truncating the output of the HMAC. More information
can be found in RFC 2104, or the HMAC primer, in Chapter 2.

Notice in Listing 4-14 the use of a local reference for the source file to
sign. While it is possible to sign a file that is kept locally, this may cause
problems when the recipient tries to verify the signature. When signature
verification occurs, the <Reference> elements determine where the data
to verify comes from. A remote recipient is unlikely to have access to the
same file resource kept on a local machine. With XML Signatures, it is
possible to package the original data inside the <Signature> element
with an enveloping signature (not shown in Listing 4-14; the signature
shown is a detached signature) to avoid this problem.

XML Security124

Listing 4-14

Using HMAC for
the <Signature
Method>

<Signature>
<SignedInfo>
<CanonicalizationMethod Algorithm=
"http://www.w3.org/TR/2000/CR-xml-c14n-20001026"/>
<SignatureMethod Algorithm=
"http://www.w3.org/2000/09/xmldsig#hmacsha1">
<HMACOutputLength>80</HMACOutputLength>

</SignatureMethod>
<Reference URI="file:///C:\signme.xml">
<DigestMethod Algorithm="http://www.w3.org/2000/09/
xmldsig#sha1"/>
<DigestValue>lsn6Q7VlZGRt1norERfoIelQHJA=</DigestValue>

</Reference>
</SignedInfo>

...
</Signature>

Finally, much like its parent element <Signature>, the <Signed-
Info> element also has a provision for an Id attribute. This attribute can
be used as an identifier and may be referenced from other <Signature>
elements. Following the <SignedInfo> element is the <Signature-
Value> element. We have already seen examples of this element. It is lit-
tle more than a container to hold an encoded binary signature value. The
encoding is Base-64 ASCII encoding as specified in RFC 2045.

The �KeyInfo� Element

Following <SignatureValue> is the optional <KeyInfo> element. The
<KeyInfo> element is a powerful element that allows for the integration
of trust semantics within an application that utilizes XML Signatures.
Simply put, a <KeyInfo> element contains specific information used to
verify an XML Signature. The information can be explicit, such as a raw
public key or an X.509 certificate, or the information can be indirect and
specify a remote public-key information source. <KeyInfo> is a powerful
element because it allows a recipient to verify the signature without hav-
ing to explicitly hunt for the verification key. This feature is useful for
automating signature verification, but this type of element can also be
dangerous. This element moves the problem of trust away from the sig-
nature syntax and into the domain of the application. An application that
is receiving the signature must know how to make proper trust decisions
based on any included <KeyInfo> material. A receiving application must
know when to trust material inside <KeyInfo> and when to discard it.
Without explicit trust semantics, any XML Signature with a proper
<KeyInfo> element will successfully verify, giving the recipient little rea-
son to trust the sender.

One way to manage trust in an application that relies on XML Signa-
tures is to delegate to a trust engine that takes as input a <KeyInfo> ele-
ment and makes a trust decision based on its contents. Figure 4-1 shows
how an input XML document that contains a <Signature> element can
be parsed to retrieve the <KeyInfo> element. The <KeyInfo> element in
this example contains an X.509 certificate that is subsequently passed off
to a trust engine that conveys a binary trust decision to the signature ver-
ification component. The example is simple certificate path validation; the
certificate inside <KeyInfo> is checked against a store of trusted root
certificates. This trust engine concept is one of the defining facets of
XKMS.

125Chapter 4 Introduction to XML Digital Signatures

Certificate path validation makes for a convenient example, but it is
not the only way of asserting trust over public key material. XML
Signatures allow for a wide array of components within <KeyInfo>.
Table 4-2 describes the various element choices for <KeyInfo> as defined
by the current XML Signature Recommendation.

Multiple child elements included within a single <KeyInfo> must all
refer to the same verification key (with the exception of a certificate
chain). This restriction prevents ambiguities during signature verifica-
tion. The host of available child elements for <KeyInfo> allows for a high
degree of application-specific trust processing. Furthermore, it is permis-
sible for an application to add its own custom elements, provided they
reside within a nonconflicting namespace and do not break the compati-
bility of the existing elements. Not all elements are required in compliant
implementations of XML Signatures. Only <KeyValue> is required,
whereas <RetrievalMethod> is recommended. The <KeyValue> ele-
ment is designed to hold a raw RSA or DSA public key with child ele-
ments, <RSAKeyValue> and <DSAKeyValue>, respectively. Public keys
inside <KeyValue> are represented by their Base-64 encoded raw numer-
ical components. Well-defined BER encoded formats already exist for RSA
and DSA keys. These are not explicitly used in conjunction with the
<KeyValue> element, although they might be used in the context of an
application specific, custom element. Listing 4-15 shows an example of a
standard public key format as defined by X.509.

To contrast the binary format above, Listing 4-16 shows how a similar
RSA public key would be represented as part of a <KeyValue> element.

XML Security126

XML
Parser

Trust
Engine

Root
Certificate
Store

Signature
Validation

Yes/No

<Signature>
—
<KeyInfo>
</KeyInfo>

</Signature>

<KeyInfo>
 <X509Data>
 </X509Data>
</KeyInfo>

<Signature>
</Signature>

Figure 4-1

A simple Trust
Service

127Chapter 4 Introduction to XML Digital Signatures

Element Name Description

<KeyName> A simple text-identifier for a key name.

<KeyValue> Either an RSA or DSA public key.

<RetrievalMethod> Allows for the remote reference of key
information.

<X509Data> X.509 certificates, names, or other related data.

<PGPData> PGP related keys and identifiers.

<SPKIData> SPKI keys, certificates, or other SPKI-related
data.

<MgmtData> Key agreement parameters (such as Diffie-
Hellman parameters).

Table 4-2

<KeyInfo> Child
Element Choices

Listing 4-15

ASN.1
interpretation of
an RSA public
key as defined by
X.509

0 30 90: SEQUENCE {
2 30 13: SEQUENCE {
4 06 9: OBJECT IDENTIFIER rsaEncryption (1 2 840 113549 1 1

1)
15 05 0: NULL

: }
17 03 73: BIT STRING 0 unused bits

: 30 46 02 41 00 BA EA 11 7D D0 8D 35 7D 69 9D 5D
: F7 2F 5C CE 7A 1D 5E 75 52 E8 F4 4A 02 67 D5 59
: 6A 43 E9 AF 4D 3E 1E 2E 42 0C 09 32 CA 5C 0E 21
: 4C 44 97 86 EC 47 6D 6F D0 21 AB DA 54 FA 22 DC
: 2F A3 E5 AD F7 02 01 11
: }

Listing 4-16

<KeyValue>
element that
contains an
RSA key

<KeyValue>
<RSAKeyValue>
<Modulus>uuoRfdCNNX1pnV33L1zOeh1edVLo9EoCZ9VZakPpr00
+Hi5CDAkyylwOIUxEl4bsR21v0CGr2lT6Itwvo+Wt9w==
</Modulus>
<Exponent>EQ==</Exponent>

</RSAKeyValue>
</KeyValue>

You may wonder why the standard public key format defined by X.509
is not used by XML Signatures. After all, X.509 is a widely deployed stan-
dard, and many existing applications can already handle the BER
encoded raw binary public key. The response falls within the scope of
extensibility. A rather heavyweight ASN.1 parser must be used to decode
the standard X.509 public key format. This is not the case with the XML
markup. Because of its portable nature, any XML parser can successfully
parse the <KeyValue> element, even if it does not have an XML Signa-
ture implementation to rely on. The extensible nature of XML Signatures
allows for the addition of a custom element for those applications that
wish to use the binary RSA key format.

Another useful <KeyInfo> child element is the <X509Data> element.
This element can bear a host of child elements that all relate to X.509
certificates. The selections of elements for this type reflect common meth-
ods of uniquely identifying a certificate. Table 4-3 lists the possible child
elements for <X509Data>. Any <X509Data> element must contain one
or more of the first four child elements: <X509IssuerSerial>,
<X509SKI>, <X509SubjectName>, <X509Certificate>, or a single
<X509CRL> element.

When a Certificate Authority issues a certificate, the certificate must
be given a unique serial number.

This uniqueness constraint is not shared across distinct Certificate
Authorities. For example, two separate Certificate Authorities may issue
two different certificates with matching serial numbers. Consequently, a
proper primary key for a certificate must include not only a serial number
but also an issuer name. This is the purpose of the <X509IssuerSerial>
element—it is simply an element containing an issuer distinguished

XML Security128

Element Name Description

<X509IssuerSerial> X.509 issuer distinguished name and associated
serial number

<X509SKI> X.509 SubjectKeyIdentifier extension

<X509SubjectName> X.509 subject distinguished name

<X509Certificate> X.509v3 certificate

<X509CRL> X.509 certificate revocation List

Table 4-3

<X509Data>
Child Element
Choices

name and serial number pair that uniquely identifies the certificate con-
taining the public verification key. Other methods of uniquely identifying
a signer’s certificate include the use of the <X509SubjectName> element
and the <X509SKI> element. A subject name uniquely identifies a partic-
ular end-entity, but a given end-entity might have been issued multiple
certificates from different Certificate Authorities, or may have several dif-
ferent types of certificates altogether. These possibilities imply that dif-
ferent public keys may exist among an end-entities possessive certificate
collection. To resolve the proper public key within the scope of a given sub-
ject name, the use of the <X509SKI> element may prove useful. This ele-
ment is the SubjectKeyIdentifier extension as defined by RFC 2459.
It is intended to be a unique identifier for a specific public key within an
application context. An <X509SKI> element is generated by applying a
SHA-1 hash directly to the encoded subjectPublicKey bit string. This
technique creates a unique identifier out of the public key itself. A more
concise hash is also specified; the shorter version uses a fixed, 4-bit value
with the last 60 bits of the SHA-1 hash of subjectPublicKey.

Finally, instead of specifying unique identifiers or pointers to certifi-
cates that need to be looked up in an X.500 directory, the verification cer-
tificate can be included with the use of the <X509Certificate> element.

You may ask how these binary format certificate components (distin-
guished names) are stored and encoded within the text-based XML Sig-
nature elements and tags. We have already argued against the use of a
heavyweight ASN.1 parser that would be required to process these com-
ponents during signature verification. Rather than dealing with the DER
encoded form of the certificate components directly, the XML Signature
Recommendation relies on the ASN.1 to string conversion as specified by
RFC2253. This particular RFC defines an algorithm and format for con-
verting ASN.1 distinguished names to UTF-8 string values. For example,
Listings 4-17 and 4-18 show the ASN.1 interpretation of a distinguished
name followed by its string representation as defined by RFC2253.

Distinguished names are intended to be unique identifiers. The string
representation in Listing 4-18 is much more compact and ideal for an
XML application, but it is not necessarily unique. This string representa-
tion does not absorb all of the information contained within the binary for-
mat. For example, if we were to try to reverse the transformation and
encode the string in binary, we would lose information such as object iden-
tifiers (OIDs) as well as the ASN.1 types used to encode the values (such
as, PrintableString). Because of this uniqueness constraint, a single

129Chapter 4 Introduction to XML Digital Signatures

<X509SubjectName> element used within an <X509Data> element may
not identify the proper verification key in all circumstances.

Some other important features and restrictions need to be recognized
when using the <X509Data> element. First, this element is explicitly
extensible. It is possible to add custom types from an external namespace
for use within <X509Data>. For example, the <X509Data> element does
not include a provision for rigorous certificate messaging standards such
as PKCS#7 or PKCS#12. Support for these can be added as a custom ele-
ment. Secondly, the use of the possible child elements is somewhat restric-
tive. Care was taken to prevent situations in which two different public
keys are referenced from within a single <X509Data> element. Whereas
only a single <KeyInfo> element is allowed in an XML Signature, the
number of <X509Data> elements is unbounded. This added extensibility
demands restrictions to prevent references to different public keys and
processing redundancy. The first point regarding restrictions on the
<X509Data> element is that it is quite possible to have different certifi-

XML Security130

Listing 4-17

ASN.1
interpretation of
a name object

SEQUENCE {
SET {
SEQUENCE {
OBJECT IDENTIFIER countryName (2 5 4 6)
PrintableString 'GB'

}
SEQUENCE {
OBJECT IDENTIFIER organizationName (2 5 4 10)
PrintableString 'Sceptics'

}
SEQUENCE {
OBJECT IDENTIFIER commonName (2 5 4 3)
PrintableString 'David Hume'

}
}

}

Listing 4-18

String
representation as
defined by
RFC2253

CN=David Hume+O=Sceptics+C=GB

cates that contain the same public key. If any combination of
<X509IssuerSerial>, <X509SKI>, and <X509SubjectName> appear
within a single <X509Data> element, they must refer to the same certifi-
cate or set of certificates that contain the proper verification key. Fur-
thermore, all elements that refer to a particular individual certificate
must be grouped together inside a single <X509Data> element. If the
actual certificate is also present, it must be in the same <X509Data> ele-
ment. If any such elements (<X509IssuerSerial>, <X509SKI>, and
<X509SubjectName>) refer to a particular verification key but different
certificate(s), they may be split into multiple <X509Data> elements.
Finally, any <X509Data> element may also include a Certificate Revoca-
tion List (CRL). The format of the CRL is simply a standard X.509 CRL
that has been Base-64 encoded for text-based XML element compatibility.
CRLs can be used as additional semantics for determining trust. Readers
unfamiliar with CRLs can refer to the primer in Chapter 2.

Listing 4-19 shows an example of a <KeyInfo> element containing a
single <X509Data> element that uses a Base-64 encoded X.509 certificate
for an explicit verification key.

The final <KeyInfo> child that will be discussed is the <Retrieval-
Method> child element. This element is similar to a <Reference> ele-
ment in that it uses URI syntax to identify a remote resource. In this case,

131Chapter 4 Introduction to XML Digital Signatures

Listing 4-19

An example
�KeyInfo�
element

<KeyInfo>
<X509Data>
<X509Certificate>MIICcjCCAdugAwIBAgIQxo8RBl7oeoBUJR7
1341R/DANBgkqhkiG9w0BAQUFADBsMQswCQYDVQQGEwJVUzEPMA0
GA1UECBMGQXRoZW5zMRUwEwYDVQQKEwxQaGlsb3NvcGhlcnMxETA
PBgNVBAMTCFNvY3JhdGVzMSIwIAYJKoZIhvcNAQkBFhNzb2NyYXR
lc0BhdGhlbnMuY29tMB4XDTAxMDIxNjIzMjgzNVoXDTAyMDIxNjI
zMjgzNVowbzELMAkGA1UEBhMCQ0ExDzANBgNVBAgTBkF0aGVuczE
TMBEGA1UEChMKUGhpbG9zb3BoeTEPMA0GA1UEBxMGQXRoZW5zMQ4
wDAYDVQQDEwVQbGF0bzEZMBcGA1UEDBMQRm91bmRlciBvZiBMb2d
pYzCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA1b2CY7+zN4y
KicJRLgnTLVFXMcw9Xo9jmHPX6h7sTw+W2Ld3PRZSgXlt2vkAUcU
sA49dGMTPKg/JJjvqu+wWkYbaQ39GbSvmwsO8GTpQERleuGKrptY
Y/DGU0YFdONyZS7KZ5l1KMKp54PyQNAkE9iQofYhyOfiHZ29kkEF
VJ30CAwEAAaMSMBAwDgYDVR0PAQH/BAQDAgSQMA0GCSqGSIb3DQE
BBQUAA4GBACSzFR9DWlrc9sceWaIo4ZSdHF1P3qe5WMyLvCYNyH5
FmrvKZteJ2QoiPw+aU/QX4d7sMuxGONYW4eiKTVSIfl6uNaMECLp
Tfg+rZJHVT+2vy+SwfOKMZOFTgh/hGnlNdwtjEku2hIZZlGEF4+n
6Ss4C/K+gp5K1UmQYvoyXxPK
</X509Certificate>

</X509Data>
</KeyInfo>

the resource being identified is keying material for use in signature veri-
fication. The <RetrievalMethod> element works by specifying a URI,
optional type attribute, and an optional set of transforms. We will omit
discussion of the transforms for now and return to that topic in Chapter 5,
where the details of the <Reference> element are further discussed.
When the URI specified in a <RetrievalMethod> is de-referenced, the
result is an XML document (except for a single special case) that is any
one of the child elements of <KeyInfo>. That is, a <RetrievalMethod>
describes the location of any element listed in Table 4-2 (except for
<RetrievalMethod> itself). An example usage of <RetrievalMethod>
is shown in Listing 4-20.

The example in Listing 4-20 denotes the location of a certificate chain.
The URI points to an XML file located on a remote server, and the
optional Type element is utilized to add information about what kind of
information is inside certChain.xml. Chains of certificates are often
necessary to properly identify a verification key. For example, if a given
end-entity has a certificate that was signed by an intermediate Certificate
Authority (such as, the authority who signed the certificate is itself autho-
rized by another certificate authority), a chain of certificates may be
required for a trust engine to properly complete certificate path valida-
tion. A trust engine may not have enough information about intermediate
certificate authorities that eventually signed the actual verification key.
In this case, to complete the path validation, a proper bridge of certificates
must be placed between the client’s key and the certificate authorities
accepted by the trust engine.

The content of certChain.xml is not in a special format; it relies
instead on the child elements of <X509Data> as a means to structure a
certificate chain. The only restriction given by the <RetrievalMethod>
element is that the URI must de-reference to a well-formed XML file with
some <KeyInfo> child as the root element (again, except for one special

XML Security132

Listing 4-20 A �RetrievalMethod� element that describes the location of �X509Data�

<KeyInfo>
<RetrievalMethod Type="http://www.w3.org/2000/09/xmldsig#X509Data"
URI="http://www.myserver.com/certChain.xml"/>

</KeyInfo>

case). The contents of certChain.xml could have been any valid <Key-
Info> child. The <X509Data> element is shown as a rather arbitrary
example. A certificate chain can be modeled as a single <X509Data> ele-
ment that contains multiple <X509Certificate> elements. This is
shown in Listing 4-21.

For brevity, Listing 4-21 omits the Base-64 encoded certificate content
of each <X509Certificate> element. The single special case previously
noted is the option to have <RetrievalMethod> de-reference to a binary
X.509 certificate, and not an XML document. This particular type of
<RetrievalMethod> can be useful for XML-unaware applications that
rely exclusively on standard X.509 binary certificates. In this case, the
type attribute of <RetrievalMethod> could be set to http://www.w3.
org/2000/09/xmldsig#rawX509Certificate. This URI denotes an
optional identifier. The type identifier could have been left out if the appli-
cation already has knowledge about the type of <KeyInfo> element that
will be sent when the source URI is de-referenced.

One advantage of using <RetrievalMethod> to reference a remote
certificate chain shows up when multiple <Signature> elements require
the same verification key, and a certificate chain denotes that verification
key. There is no restriction on the number of <Signature> elements that
may appear within a given file or context. Therefore, a single signer could
generate a number of such <Signature> elements that rely on a common
certificate chain for verification. Listing 4-22 shows how this might be
packaged in the case when <RetrievalMethod> is not used.

Listing 4-22 shows that we have two arbitrary <Signature> elements
that reference the same certificate chain. The entire encoded contents of
each <X509Certificate> elements are omitted for brevity. A Base-64
encoded certificate typically represents on average about 1500 bytes.
For all six such encoded certificates we are using a lot of space in our
<Signature> elements, around 9KB total, half of which is redundant

133Chapter 4 Introduction to XML Digital Signatures

Listing 4-21

An example
certificate chain
using children of
�X509Data�

<!-- certChain.xml
This file represents a certificate chain.
No ordering is explicitly implied. -->
<X509Data>
<X509Certificate> ... <X509Certificate>
<X509Certificate> ... <X509Certificate>
<X509Certificate> ... <X509Certificate>

</X509Data>

information. If we instead rely on <RetrievalMethod> to denote the cer-
tificate chain, the same <Signature> elements can be represented with
significant space savings for each <KeyInfo> element. Listing 4-23 shows
what these <Signature> elements might look like.

The <Signature> elements shown in Listing 4-23 are more compact
than the same elements shown in Listing 4-22. There are many ways to
take advantage of the possible child elements offered by <KeyInfo>. This
element is a rich source of examples because many different methods
exist for identifying a verification key and determining trust. The exten-
sible nature of <KeyInfo> itself allows for other XML technologies that
provide trust semantics to hook into the XML Signature syntax. For now
we will leave the additional features of <KeyInfo> and proceed to the
remaining element in the XML Signature syntax—the <Object> element.

The �Object� Element

One way to introduce the <Object> element is to discuss some of the
additional properties required by the nature of a digital signature. Let us
return for a moment to the simple electronic payment authorization

XML Security134

Listing 4-22

Two
�Signature�
elements that
reference a
certificate chain
using
�X509Data�

<Signature Id="Purchase Order 1" ... >
...
<KeyInfo>

<X509Data>
<X509Certificate> MIIDHzCCAgc ... </X509Certificate>
<X509Certificate> MIIC2aCWZvc ... </X509Certificate>
<X509Certificate> MIIDZTEcCCA ... </X509Certificate>

</X509Data>
</KeyInfo>

...
</Signature>
<Signature Id="Purchase Order 2" ... >
...
<KeyInfo>

<X509Data>
<X509Certificate> MIIDHzCCAgc ... </X509Certificate>
<X509Certificate> MIIC2aCWZvc ... </X509Certificate>
<X509Certificate> MIIDZTEcCCA ... </X509Certificate>

</X509Data>
</KeyInfo>

...
</Signature>

shown in Listing 4-6. If we assume that L. Meyer signs this electronic
check, the paperboy may take the check to a bank and have the bank
transfer funds from L. Meyer’s account to the paperboy’s account. If the
paperboy is a particularly malicious character, he may cash the check over
and over again by keeping copies of it. He might take it to a different
bank, or he may cash the copies slowly over time. The signature will
always verify, and the bank will have no way to know if the paperboy is
getting new checks or using the same checks repeatedly. A time-stamp is
often used to solve this type of problem. If a time-stamp is signed along
with the check, the bank can determine if the time-stamp is valid or if a
check has already been cashed with that time-stamp. The addition of a
time-stamp adds an idempotent property to the check. Repeatedly cashing
the check will have the same effect on the paperboy’s account as cashing
it a single time.

Additional properties about a signature can be useful in preventing the
fraudulent use of digital signatures. XML Signatures provide a standard
way of adding additional semantics in the form of a <Signature-
Properties> element. XML Signatures do not provide a way to interpret
these additional properties. For example, there is no provision for an XML
Signature to validate the meaning of a time-stamp. An application that
verifies XML Signatures must know how to understand when a time-
stamp is valid and invalid, and what to do when two signatures arrive
with the same time-stamp. The use of additional assertions about

135Chapter 4 Introduction to XML Digital Signatures

Listing 4-23 Two �Signature� elements that reference a certificate chain using
�RetrievalMethod�

<Signature Id="Purchase Order 1" ... >
...
<KeyInfo>
<RetrievalMethod Type="http://www.w3.org/2000/09/xmldsig#X509Data"
URI="http://www.myserver.com/purchaseOrderChain.xml"/>

</KeyInfo>
...
</Signature>
<Signature Id="Purchase Order 2" ... >
...
<KeyInfo>
<RetrievalMethod Type="http://www.w3.org/2000/09/xmldsig#X509Data"
URI="http://www.myserver.com/purchaseOrderChain.xml"/>

</KeyInfo>
...
</Signature>

signatures is useful enough to warrant a specific element for this purpose.
Rather than add another child element to <Signature>, it is more use-
ful to define a generic container that can hold a plethora of different ele-
ments. This is the job of the <Object> element. It defines a generic
container that may contain other useful elements like <Signature-
Properties> and <Manifest>. The <Manifest> element has several
interesting uses that will be discussed in the last section. The <Object>
element can contain data of any type. The only obvious restriction is that
if binary data is included within an <Object> element, it must be
encoded in a printable format suitable for representation in an XML doc-
ument. This usually means Base-64 encoding, although custom encoding
schemes are not forbidden by XML Signatures. The <Object> element
has three optional attributes: an Id, MimeType, and Encoding. The Id is
used as a unique way of referencing the <Object> element from other
places inside the <Signature> element. The MimeType is an advisory
type that indicates to a processing application the type of data that is
inside the object, independent of how the data is encoded. The Encoding
attribute is a URI identifier that describes the type of encoding mecha-
nism used. It may be difficult to see how this fits together without an
example. Listing 4-24 shows how one might include a binary GIF file as
part of an enveloping signature with the use of an <Object> element.

Note in Listing 4-24 the use of the <Reference> element, shown in
bold. This element uses the optional Type attribute that identifies the
type of object pointed to; in this case, an Object type. This attribute is
optional and may be omitted if the application can determine the type
through some other means. The URI attribute used in the <Reference>
element is a mechanism of pointing to the XML resource containing that
attribute; in this case, it is the element that has "ImportantPicture"
as an Id attribute value. The <Object> element shown uses all three
optional attributes. Notice that the MimeType does not specify the con-
tent-type of the information inside the <Object> elements, but instead
specifies the type of data in a broad sense—MimeType is used only as a
convenient identifier. For more information on MIME and MIME types,
the reader should reference RFC2045.

The encoded binary .GIF file resides inside the <Object> element and
is included in the signature because it is referenced by a <Reference>
element. The data is not signed directly, but indirectly; a hash of the data
inside the <Object> is signed (including the <Object> tags). The only
part of an XML Signature that actually has a signature algorithm applied
directly to it is the <SignedInfo> element. Because the <Object> tags

XML Security136

are digested along with the encoded data, a problem with signature valid-
ity can result if the data inside the <Object> element is moved. For
example, assume that the .GIF file we are signing as part of our enveloped
signature is moved to a remote location such as a Web server or a distrib-
uted file system. If this .GIF file is encoded and then digested, the old
digest value will not match because it was created with the inclusion of
the <Object> tags. This problem can be circumvented with the use of a
transformation that removes the <Object> tags before the signature is
created. Signature transformations used to accomplish element filtering
are discussed in Chapters 5 and 6. The problem of moving data out of a
signature and maintaining signature validity is quite subtle. An objector
might make the following claim: if we move the data object out of the
<Signature> element, we must also change the <Reference> element
that points to this data. If we change this <Reference> element, the
<SignatureValue> will change because the structure and context of
each <Reference> element is signed directly during core signature
generation. Put another way, the movement of data necessitates a
change in the <Reference> element that points to it, thereby altering
the <SignatureValue> because every <Reference> element is signed

137Chapter 4 Introduction to XML Digital Signatures

Listing 4-24 An enveloping signature over a .GIF file

<Signature>
<SignedInfo>
<Reference Type="http://www.w3.org/2000/09/xmldsig#Object"
URI="#ImportantPicture">

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<DigestValue>HfRNHKuQrDiTy3XABMFbyteg3CG=</DigestValue>

</Reference>
</SignedInfo>
<Object Id="ImportantPicture" MimeType="image/gif"
Encoding="http://www.w3.org/2000/09/xmldsig#base64">

aWcgQmxha2UncyBBdXRoZW50aWNhdGlvbiBTZXJ2aWNlMRQwEgYDVQQLEwtFbmdp
bmVlcmluZzEWMBQGA1UEAxMNQmlnIEJhZCBCbGFrZTEcMBoGCSqGSIb3DQEJARYN
YmJiQGJiYmFzLmNvbTAeFw0wMDA2MjAyMTEzMzVaFw0xMTA2MDMyMTEzMzVaMH4x
CzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpTb21lLVN0YXRlMQ8wDQYDVQQKEwZTZXJ2
ZXIxFDASBgNVBAsTC1NlcnZlciBDZXJ0MRMwEQYDVQQDEwpTZXJ2ZXJDZXJ0MR4w
HAYJKoZIhvcNAQkBFg9zZXJ2ZXJAY2VydC5jb20wgZ8wDQYJKoZIhvcNAQEBBQAD
gY0AMIGJAoGBAMg7Y9ZByAKLTf4eOaNo8i5Ttge+fT1ipOpMB7kNip+qZR2XeaJC
iS7VMetA5ysX7deDUYYkpefxJmhbL2hO+hXj72JCY0LGJEKK4eIf8LTR99LIrctz

</Object>
...
</Signature>

directly. This argument is quite convincing, but incorrect. The reason is
that the nature of a <Reference> element makes it acceptable to omit
the URI attribute on at most one <Reference> element, if it is assumed
that the application knows in advance where the data source resides. List-
ing 4-25 shows an example of a <Signature> that can maintain validity
if the data inside the <Object> tags is moved elsewhere.

In Listing 4-25, the data that we are signing happens to be inside the
<Object> element. This is arbitrary, and the omission of the URI
attribute from the <Reference> element implies that the application
knows where to get the data. Other elements that can reside inside
<Object> (other than arbitrary Base-64 encoded data) may avoid this
problem with the careful use of attribute identifiers. The use of the
<SignatureProperties> element within an <Object> element is
similar to Listing 4-24, but many of the optional attributes can be omitted
because the identifying attributes are now stored as part of the
<SignatureProperties> element. The use of this element is shown in
Listing 4-26. The properties listed inside <SignatureProperties> are
arbitrary and fictional,—any application-defined semantics can be placed
inside this element. In Listing 4-26 we will think up a simple arbitrary

XML Security138

Listing 4-25 A �Signature� element that omits the URI attribute in the <Reference>
element

<Signature>
<SignedInfo>
<Reference>
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<DigestValue>HfRNHKuQrDiTy3XABMFbyteg3CG=</DigestValue>

</Reference>
</SignedInfo>
<Object Id="ImportantPicture" MimeType="image/gif"
Encoding="http://www.w3.org/2000/09/xmldsig#base64">

aWcgQmxha2UncyBBdXRoZW50aWNhdGlvbiBTZXJ2aWNlMRQwEgYDVQQLEwtFbmdp
bmVlcmluZzEWMBQGA1UEAxMNQmlnIEJhZCBCbGFrZTEcMBoGCSqGSIb3DQEJARYN
YmJiQGJiYmFzLmNvbTAeFw0wMDA2MjAyMTEzMzVaFw0xMTA2MDMyMTEzMzVaMH4x
CzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpTb21lLVN0YXRlMQ8wDQYDVQQKEwZTZXJ2
ZXIxFDASBgNVBAsTC1NlcnZlciBDZXJ0MRMwEQYDVQQDEwpTZXJ2ZXJDZXJ0MR4w
HAYJKoZIhvcNAQkBFg9zZXJ2ZXJAY2VydC5jb20wgZ8wDQYJKoZIhvcNAQEBBQAD
gY0AMIGJAoGBAMg7Y9ZByAKLTf4eOaNo8i5Ttge+fT1ipOpMB7kNip+qZR2XeaJC
iS7VMetA5ysX7deDUYYkpefxJmhbL2hO+hXj72JCY0LGJEKK4eIf8LTR99LIrctz

</Object>
...
</Signature>

XML format for the electronic check shown in Listing 4-6 and include this
in an XML enveloping signature along with a <SignatureProperties>
element. The use of the <SignatureProperties> element here is to con-
vey assertions about the electronic check. Note that we could have signed
the check in its native format (text file), but casting it as XML makes for
a better example because the information inside the check is immediately
visible to the reader. We are leaving out additional elements and features

139Chapter 4 Introduction to XML Digital Signatures

Listing 4-26 Use of �SignatureProperties� to convey signature assertions

<Signature Id="SignedCheckToPaperBoy">
<SignedInfo>

<Reference URI="#CheckToPaperBoy">
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>3846JEYbJymGoDfgMRaH5PYeNQv=</DigestValue>

</Reference>
<Reference URI="#FictionalSignatureAssertions"
Type="http://www.w3.org/2000/09/xmldsig#SignatureProperties">
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>r3653rvQTO0gKtMyu4VfeVu9ns=</DigestValue>

</Reference>
</SignedInfo>
<Object>

<ElectronicCheck Id="CheckToPaperBoy">
<RecipientName>PaperBoy</RecipientName>
<SenderName>L.Meyer </SendName>
<AccountNumber>765121-2420</AccountNumber>
<Amount>$2</Amount>

</ElectronicCheck>
</Object>
<Object>
<SignatureProperties>
<SignatureProperty Id="FictionalSignatureAssertions"

Target="#SignedCheckToPaperBoy">
<Assertion>
<GenerationTime>
Mon Jun 11 19:10:27 UTC 2001

</GenerationTime>
</Assertion>
<Assertion>

<Note> Can only be cashed at Bank Foobar </Note>
</Assertion>
<Assertion>
<ValidityDays> 90 </ValidityDays>

</Assertion>
</SignatureProperty>

</SignatureProperties>
</Object>

</Signature>

XML Security140

that make Listing 4-26 a proper XML Signature. The intent here is to
show how one might use the <Object> element.

Notice the use of the two <Reference> elements. The first
<Reference> element points to the electronic check with the use of an
attribute identifier, CheckToPaperBoy. The digest value appearing in
this first <Reference> element is the digest of the <Object> element
that contains the <ElectronicCheck> element. More about how this
processing is accomplished will be discussed in Chapter 5, when we
look at XML Signature processing. Unlike Listing 4-24, when both
<References> are digested, the <Object> tags are not included in the
digest calculation. This is because the data pointed at is referenced by an
XML attribute that points directly at the desired XML element, effectively
skipping the <Object> tags.

The second <Reference> element shown in Listing 4-26 identifies
our set of fictional signature assertions with the attribute identifier
FictionalSignatureAssertions. Notice also that we have used the
Type attribute to denote the type of object that we are pointing to. This is
an optional attribute but may be useful for applications that require addi-
tional context during signature processing. A <SignatureProperties>
element may have an unbounded number of child <Signature
Property> elements. These child elements provide a natural way to
create groups of signature assertions that may be applied to distinct
signatures. The <SignatureProperty> element has two attributes: an
optional Id and a required Target attribute. If <SignatureProperty>
is used, the target signature to which it applies must be specified. In our
example, the Target specified is "SignedCheckToPaperBoy," which is
the identifying attribute of the parent <Signature> element used in
Listing 4-26. The Target element is required to ensure a strong relation
between a set of signature assertions and the actual signature. Mis-
matching assertions and signatures can be a security risk; if this element
were optional, a group of assertions within a file that contained multiple
<Signature> elements might be ambiguous. It would be difficult to know
which assertions were intended for which <Signature> elements.

The <SignatureProperty> element contains a set of assertions
about the electronic check. It is up to the application to process these cor-
rectly and make proper trust decisions based on their semantics. The
assertions shown are completely fictional.

The �Manifest� Element

The <Manifest> element is another well-defined child element of
<Object>. This element is powerful and useful for providing flexible solu-
tions for various signature processing and signature packaging complica-
tions. The term “manifest” is used here again and is distinct from the
abstract manifest discussed in Definition 4.2. The <Manifest> element
used here has a similar meaning—it is simply another collection of
<Reference> elements, much like the <SignedInfo> element. The
main difference between the two lies in the amount of processing that is
required. The <SignedInfo> element is a defining part of the XML Sig-
nature and is the actual data that has a signature algorithm applied to it.
Consequently, it is also the element that is verified via the signature
transformation during the verification process. The <Manifest> element
contrasts <SignedInfo> in that its contents are not explicitly verified,
only its structure. There is no requirement to actually verify any
<Reference> elements specified inside a <Manifest> element. One
might think of <SignedInfo> as more constrained in its semantics, while
<Manifest> is more relaxed. A <Manifest> element is a collection
of resources and is also a resource itself. If used in a <Signature> ele-
ment, it is explicitly specified as a <Reference> inside <SignedInfo>.
Listing 4-27 shows how a <Manifest> element might be used inside
<Signature>.

The best way to understand Listing 4-27 is to first direct your attention
to the <Manifest> element. This element contains a list of <Reference>
elements and uses an Id attribute much like previously discussed ele-
ments. The number of <Reference> elements allowed in a <Manifest>
is unbounded, but the element must contain at least one <Reference>
element. In Listing 4-27, the references point to two binary files that
reside on a remote server. In this example, we can assume that the files
represent some type of important report specified in two formats, GIF for-
mat and PDF. When we refer to the <Manifest> from the <Reference>
element inside <SignedInfo>, we are really signing the canonical form
of the <Manifest> element itself. We are signing the structure of the
<Manifest> element and not the binary data referenced by the
<Manifest> element. This means that when we verify the signature at a
later time, the integrity of the actual data referenced by the <Manifest>
element (such as, one of the report files is altered) may be lost, but the

141Chapter 4 Introduction to XML Digital Signatures

signature will still verify if the <Manifest> structure remains intact. In
other words, when the <Reference> that points to the <Manifest> is
created, the data that is actually digested is only the list of elements
inside <Manifest> and not the data that comprises these elements.

What this means in practice is that the validation of the data listed in
a <Manifest> is under application control. Certain circumstances may
exist where it is acceptable for an application under certain well-defined
circumstances, to accept as valid a signature with one or more references
that fail reference validation. For example, Listing 4-27 references two
reports. Let us assume that in the given application context, the receiving
application knows that these two reports are semantically equivalent but
are in different formats. It may be acceptable for the contents of one of the
report files to change and therefore fail reference validation, as long as the
other report remains unchanged. In this case, the application still has
enough information to continue processing and should not throw an
exception or halt due to a single reference validation failure. Other exam-
ples of usage for this type of feature include applications that use a large
number of <Reference> elements—it may be acceptable in this case for

XML Security142

Listing 4-27

An example
<Signature>
element that uses
a <Manifest>

<Signature Id="ManifestExample">
<SignedInfo>

<Reference URI="#ReportList"
Type="http://www.w3.org/2000/09/xmldsig#Manifest">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>545x3rVEyOWvKfMup9NbeTujUk=</DigestValue>

</Reference>
</SignedInfo>
<Object>
<Manifest Id="ReportList">
<Reference URI="http://www.myserver.com/Report.pdf">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<DigestValue>20BvZvrVN498RfdUsAfgjk7h4bs=</DigestValue>

</Reference>
<Reference URI="http://www.myserver.com/Report.gif">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<DigestValue>40NvZfDGFG7jnlLp/HF4p7h7gh=</DigestValue>

</Reference>
</Manifest>

</Object>
...
</Signature>

a subset of the <Reference> elements to fail the digest check if an appro-
priately large number of these <Reference> elements pass the digest
check.

The <Manifest> element also can provide an efficient means of allow-
ing for the prospect of multiple signers over a set of <Reference> ele-
ments. Certain application domains need contracts and electronic
documents that are disparate in their contents (for example, they contain
multiple types of data such as a mixture of text and graphics) and also
require multiple signers. To see the problem that <Manifest> tries to
solve, we can try to solve the problem without the use of the <Manifest>
element and ponder the results. Listing 4-28 shows the sequence of events
and <Signature> structures that are formed if three different people
attempt to sign three different <Reference> elements using three sepa-
rate signing keys.

The main problem is the redundancy of the <SignedInfo> elements.
Each <SignedInfo> element must be repeated for each XML Signature.
In the example, this might not seem like a major issue, but when
the <SignedInfo> element grows to hundreds or thousands of
<Reference> elements, potential exists for a lot of wasted space. Em-
ploying the <Manifest> element can reduce this redundancy. The
<Manifest> element can be used as a sort of global resource list that can
be referenced by any number of <Signature> elements. Instead of the
signatures signing a duplicate <SignedInfo>, each signature signs the
contents of a <Manifest> element. The only caveat is that because a
<Manifest> element is usually (but not necessarily) a part of some par-
ent <Signature> block (it resides inside an <Object> element), the
signing may not be perfectly symmetric. The resulting structure still
implies that the <Signature> element that contains the <Manifest>
element is more significant than the others in some way, but this result is
much better than the duplication shown in Listing 4-28. Listing 4-29
shows how the <Manifest> element can be used in the creation of a sig-
nature with multiple signers and multiple documents.

The resulting signature in Listing 4-29 is more efficient than
that shown in Listing 4-28. The signature with the Id value of
"EfficientSignature1" will usually be generated first, because it
houses the <Manifest> element. The three <Signature> elements
shown are at the same nesting level and can appear within a single XML
document. Each separate <Signature> element has an attribute refer-
ence to "ThreeReferences" that ultimately refers to the <Manifest>
element inside the first signature element shown.

143Chapter 4 Introduction to XML Digital Signatures

Chapter Summary
At this point, the reader should have a good understanding of the syntax
used to express XML Signatures. We started with some abstract defini-
tions to provide a foundation for the nature of XML Signatures, how
they are generated, and what they mean. We went through each of the
elements in a systematic fashion and showed examples of their use. An
XML Signature begins with a parent <Signature> element that pro-
vides structure and an identifier for the signature. The next element is

XML Security144

Listing 4-28

Multiple signers
and multiple
references
without the use of
<Manifest>

Step 1: The first signer collects the necessary references and signs
them.

<Signature Id="InefficientSignature1">
<SignedInfo>
<Reference URI="#reference1">...</Reference>
<Reference URI="#reference2">...</Reference>
<Reference URI="#reference3">...</Reference>

</SignedInfo>
<SignatureValue> ... </SignatureValue>

</Signature>

Step 2: The second signer needs to sign the same information.

<Signature Id="InefficientSignature2">
<SignedInfo>
<Reference URI="#reference1">...</Reference>
<Reference URI="#reference2">...</Reference>
<Reference URI="#reference3">...</Reference>

</SignedInfo>
<SignatureValue> ... </SignatureValue>

</Signature>

Step 3: The third signer needs to sign the same information.

<Signature Id="InefficientSignature3">
<SignedInfo>
<Reference URI="#reference1">...</Reference>
<Reference URI="#reference2">...</Reference>
<Reference URI="#reference3">...</Reference>

</SignedInfo>
<SignatureValue> ... </SignatureValue>

</Signature>

145Chapter 4 Introduction to XML Digital Signatures

Listing 4-29

The use of
<Manifest> with
multiple signers
and multiple
documents

<Signature Id="EfficientSignature1">
<SignedInfo>
<Reference URI="#ThreeReferences"
Type="http://www.w3.org/2000/09/xmldsig#Manifest">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>725x3fVasdfvBGFGjhjyDSFvUk=</DigestValue>
</Reference>

</SignedInfo>
<SignatureValue> ... </SignatureValue> <!-- From signer #1-->
<Manifest Id="ThreeReferences">
<Reference>
...
</Reference>
<Reference>
...
</Reference>
<Reference>
...
</Reference>

</Manifest>
...
</Signature>

<!-- Here comes the second signature -->

<Signature Id="EfficientSignature2">
<SignedInfo>
<Reference URI="#ThreeReferences"
Type="http://www.w3.org/2000/09/xmldsig#Manifest">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>725x3fVasdfvBGFGjhjyDSFvUk=</DigestValue>
</Reference>

</SignedInfo>
<SignatureValue> ... </SignatureValue> <!-- From signer #2-->

...
</Signature>
<!-- Here comes the third signature -->

<Signature Id="EfficientSignature3">
<SignedInfo>
<Reference URI="#ThreeReferences"
Type="http://www.w3.org/2000/09/xmldsig#Manifest">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>725x3fVasdfvBGFGjhjyDSFvUk=</DigestValue>
</Reference>

</SignedInfo>
<SignatureValue> ... </SignatureValue> <!-- From signer #3-->

...
</Signature>

the <SignedInfo> element—the list of things that we are going to sign,
the signed information. Specific data streams to digest are denoted by
<Reference> elements, and URI syntax is used to specify this stream.
We also saw how the �KeyInfo� element can be used to help facilitate
the automatic processing of XML Signatures by providing a mechanism
for identifying verification key material. Finally, we ended with discus-
sion of the <Object> element, a generic container for any type of data
object. Two specific types defined by the XML Signature recommenda-
tion are useful for inclusion inside an <Object> element, <Signature-
Properties>, and <Manifest>. The <SignatureProperties>
element is a convenient, predefined container for signature assertions.
This element contains assertions about the signature that it points to.
These assertions are useful for determining additional trust semantics
over and above what is provided by mere signature validation and data
integrity. The <Manifest> element is used to solve two problems: it
appropriates reference validation to the application domain and pro-
vides a convenient means for multiple signers to sign multiple docu-
ments. Without the <Manifest> element, the resulting signature is
larger, has redundant semantics, and incurs a performance penalty dur-
ing creation and verification.

XML Security146

Introduction to XML
Digital Signatures Part 2

CHAPTER 5

XML Signature Processing
In Chapter 4, we spent most of our time discussing the syntax of XML Sig-
natures. We studied the outer structure and the meaning of the various
parent-child relationships that exist in an XML Signature. In addition to
the basic syntax, we also made a careful investigation through the defin-
ing elements of an XML Signature—we looked at the purpose or idea
behind each element and made a note of the required and optional
attribute values. The only element that received casual discussion was the
<Reference> element. Deferring discussion about the <Reference> ele-
ment is necessary because a good understanding of <Reference> and its
child elements is contingent upon a clear understanding of the XML Sig-
nature processing model. This chapter is devoted to introducing the pro-
cessing model and signature transforms for XML Signatures. The
processing model is quite rigid and makes for rather tedious discussion,
while the signature transforms are very interesting and are arguably one
of the most powerful aspects of XML Signatures.

XML Signatures are created and verified in two steps. Signature gen-
eration is referred to as core generation and signature validation is
referred to as core validation. The definitions of these terms are very
hierarchical and algorithmic—it is recommended that the reader make

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

note of the process that is associated with these definitions. A clear
understanding of how XML Signatures are created and verified is help-
ful in grasping the purpose behind many of the additional features used
by XML Signatures.

The �Reference� Element

Before we segue into a discussion of the processing model, it is time to
elaborate on the role and specifics of the <Reference> element. This ele-
ment is really at the heart of the XML Signature; it ultimately describes
how resources are obtained and possibly transformed to produce the data
that is digested and subsequently signed as part of the <SignedInfo>
element. The <Reference> element represents a resource of potentially
any type or format. A <Reference> can represent any arbitrary binary
format. This point is especially important because it is often assumed that
XML Signatures are signatures over XML data exclusively.

Although it is true that many features and tricks can be done with an
XML document as a signature source, this does not preclude arbitrary
octets from participating in an XML Signature. In fact, an XML document
that is referenced as a remote resource is treated as a binary file and
processed as octets. XML documents are processed differently only in the
case of an enveloped or enveloping signature, or if one of the transforms
used requires the XML data to be processed as an abstract set of nodes (a
node-set).

A node-set is the recommended data model for processing XML within
XML Signatures; it is specified in the XML Path Language Recommenda-
tion (XPath) and is given a treatment in the XPath primer in Chapter 3.
For those readers who are unfamiliar with a node-set, one can think if it
simply as a set of different nodes types, each of which represent some part
of an XML document. Seven types of nodes exist: root nodes, element
nodes, attribute nodes, processing instruction nodes, comment nodes, text
nodes, and namespace nodes. Each of these node-types are part of the
XPath data model described in Chapter 3.

The syntax of the <Reference> element is similar to the previously
discussed elements—it contains three child elements: <Transforms>,
<DigestValue>, and <DigestMethod>, and three optional attributes:
Id, Type, and URI. In the simplest case of a <Reference> element, the
only required elements are <DigestMethod> and <DigestValue>. All
other attributes and elements are purely optional. The Id and Type

XML Security148

attributes represent additional processing semantics that can be placed
upon a specific <Reference> element. The Id attribute is a generic
unique identifier that can be used to facilitate remote referencing. Such
an Id attribute is common among the elements used in XML Signatures
—it provides a hook for including <Reference> elements that may reside
outside of the current application context.

The Type attribute specifies the type of the <Reference> being
pointed to. The word type is used here in a broad sense, like a data type in
a programming language. It does not refer to the actual data or file format
of the data referenced by the <Reference> element. For example, con-
sider the following <Reference> element:

<Reference Type="http://www.w3.org/2000/09/xmldsig#Object"
URI="#myobject">
<DigestMethod Algorithm="http://www.w3.org/2000/09 /xmldsig#sha1" />
<DigestValue>70NvZxcdTB+7UnlLp/J724p8h4zx=</DigestValue>

</Reference>

Next, suppose that the referent is an <Object> element identified by
the attribute myobject and contains base64-encoded data as follows:

<Object Id="myobject">
lczCCAbYwggErBgcqhkjOOAQBMIIBHgKBgQDaJjfDTrawMHf8MiUt
Y54b37hSmYNnR3KpGT10uU1Dqppcju06uN0iGbqf947DjkBC25hKnq

</Object>

The example here shows that the Type attribute of the <Reference>
element does not refer to the actual data referenced, but instead to the
container in which the data resides. In this case, it is an <Object>
element.

The XML Signature recommendation specifies two optional values for
this Type attribute: http://www.w3.org/2000/09/xmldsig#Object
and http://www.w3.org/2000/09/xmldsig#Manifest. These URIs
are once again being used as identifiers that may help an XML Processor
make better choices about how to parse a given XML document. Such an
identifier might be useful in a situation where a processing application
wants to pinpoint the location of a <Manifest> element without manu-
ally parsing multiple <Object> elements. For example, it is an easy task
to identify an XML element by an attribute value—an XML Processor can
look for elements with attribute value http://www.w3.org/2000/09/
xmldsig#Manifest and it would know that this <Object> element
probably contains a <Manifest> element.

This “data typing” of the elements, however, is not required. No explicit
requirement specifies that these Type identifiers be used, and the XML

149Chapter 5 Introduction to XML Digital Signatures Part 2

Signature Recommendation requires no validation of their correctness. An
application can use the Type identifier as it pleases, inventing its own
types, or even use it improperly. None of these uses would invalidate the
signature or the requirements of the XML Signature Recommendation,
although doing so is not recommended due to interoperability concerns.

The most interesting attribute of <Reference> is the URI attribute.
This attribute describes the data resource that will eventually be digested.
Notice that we have used the qualifier eventually—this is because the
data may have additional transformations applied to it before digesting
takes place. That is, the data that is actually digested is the octet stream
that is the result of optional transforms that are specified (if present) by
a <Transforms> child element. The <Transforms> element is in turn a
container for one or more <Transform> elements that specify the type of
transform that will be performed.

Another way of thinking about this is that the URI element and the
<Transforms> collectively describe in an abstract sense how the data to
be digested is arrived at. The <Transforms> work in a cascading manner
—the output from one transform is fed into the next. One useful mental
picture is a waterfall. The data flows from its source, which is ultimately
going to be a URI of some type (in most cases), and proceeds to travel
down the steps of a waterfall. Each time the data descends a step, a new
transformation is applied until the data arrives at the sink, where it is
digested and included in the <DigestValue> element. Figure 5-1 shows
the waterfall view of signature transforms. We will often use the informal
term “transform waterfall” to denote transformations that occur in this
manner.

The lateral movement of the “water” in Figure 5-1 represents the trans-
formation that is happening to the data, and the vertical falling of the
water represents a possible conversion from octets (binary) to an abstract
node-set or vice versa. Some transformation algorithms (such as XPath)
require that the data be processed as an XPath node-set. If the transfor-
mation requires a node-set, the incoming binary data must be converted;
likewise, if the transformation requires octets, the node-set must be con-
verted to octets.

After transformations are applied, the resulting data is digested as
specified by the <DigestMethod> element. This empty element specifies
a digest method using an attribute URI identifier. Again, the use of the
URI for multiple purposes (as a data source when specified in a URI
attribute and as a identifier when specified in a <DigestMethod> ele-
ment) can be quite confusing, but its use here merely identifies the

XML Security150

selected digest function. For example, the only digest function that is
supported in the current XML Signature Recommendation is SHA-1.
The identifying URI for SHA-1 is http://www.w3.org/2000/09/
xmldsig#sha1. This identifier used in a <DigestMethod> empty ele-
ment would appear as follows:

<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

A complete, fully featured <Reference> element that uses all of the pos-
sible specified attributes and child elements appears as follows:

<Reference
Id="Full-Reference"
URI�"#EnvelopedText"
Type�"http://www.w3.org/2000/09/xmldsig#Object">
<Transforms>
<Transform Algorithm�"http://www.w3.org/2000/09/xmldsig#base64"/>

151Chapter 5 Introduction to XML Digital Signatures Part 2

T1

T1.......Tn Represents the

transformations happening to the
input data.

The notation "c" denotes a possible
conversion from node-set to octets
or vice-versa.

c

URI

T2

c

T3

c

Tn
c

c

Digest
Function
(SHA 1)

Figure 5-1

The
transformation
waterfall

</Transforms>
<DigestMethod Algorithm�"http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>90NvBvtdTB�7UnlLp/V424p8o5cxs�</DigestValue>

</Reference>

In the previous example, notice that this <Reference> element is
given an Id attribute, a URI attribute, and a Type attribute. In addition,
it has a <Transforms> element that contains a single transform (base64
decoding). Finally, the two required elements, <DigestMethod> and
<DigestValue>, are specified. They contain the digest value and digest
method.

To contrast this example, consider the following example. This is the
smallest syntactically valid <Reference> element. It contains only the
<DigestMethod> and <DigestValue> elements. Notice that the URI
attribute is omitted; in this case, it is assumed that the location of the
source data is delegated to the application.

<Reference>
<DigestMethod Algorithm="http://www.w3.org/2000/09 /xmldsig#sha1"/>
<DigestValue>GBVZy3Ucg7CyFcPRms9C7bA3qCO=</DigestValue>

</Reference>

Thus far, we have given a whirlwind tour of most of the features of the
<Reference> element. We have expanded on the various attributes and
child elements and seen their purposes at a basic level. All that is left is a
thorough discussion of the optional <Transforms> element—as we have
mentioned previously, signature transforms are some of the most power-
ful features of an XML Signature and must be given a full treatment. For
now, we will continue and focus on the XML Signature processing model.

Core Generation

The XML Signature Recommendation defines core generation in two
steps: reference generation and signature generation. The first step defines
how the digest value of each <Reference> element is calculated, and the
second step defines how the actual <SignatureValue> is calculated. The
ultimate goal of reference generation is to create actual <Reference> ele-
ments that are fully featured and have all of their intended pieces (such
as transforms, attributes, and digest values). Likewise, the ultimate goal
of signature generation is to produce the actual signature value and con-
struct the entire parent <Signature> block with all of the attributes and

XML Security152

child elements intact. Figures 5-2 and 5-3 show the steps for reference gen-
eration and signature generation.

A few points concerning the description of core generation in the box
below may need some extra clarification. In signature generation, it is
important to note that in the first step we are not applying a canonicaliza-
tion method or signature method. This step simply creates an element with
the appropriate URI identifiers for each. This is done because both the sig-
nature method and the canonicalization method should be signed (such as
included in the <SignedInfo> element) to resist substitution attacks.

The second step of signature generation is where the actual signature
operation takes place. The object that is being signed, namely the
<SignedInfo>, defines the signature algorithm and canonicalization
method used. Remember, in all cases the <SignedInfo> element must be
canonicalized before it is signed. The reason for this is because the

153Chapter 5 Introduction to XML Digital Signatures Part 2

Core Generation Steps

Reference Generation

For each resource being signed,

1. Apply transforms (if present).

2. Calculate the digest value of the transformed resource.

3. Create a <Reference> element. This includes optional attrib-
utes, transforms, the identifier for the digest algorithm and
the actual digest value.

Signature Generation

1. Using the references created in reference generation, create a
<SignedInfo> element that specifies a signature method and
canonicalization method.

2. Apply the canonicalization method and signature method to
the <SignedInfo> element.

3. Form the parent <Signature> element using the just-created
<SignatureValue> and the previously created
<SignedInfo>, as well as all optional elements and
attributes.

physical representation of the <SignedInfo> may change as the XML
document that contains this element is sent through XML Processors in
various application domains. Canonicalization simply ensures that the
same actual octets are signed and compared against the hash value that
ensures the signature’s validity.

At this point, we have not given a good treatment of canonicalization or
its inner workings and purpose. It is, however, an essential part of the core
processing rules. Full details on canonicalization are given in the “Signa-
ture Transforms” section later in this chapter. For now, it is enough to
know that canonicalization is a required step for the core processing rules
that helps ensure that the same octet stream is signed and subsequently
verified.

It may be interesting to note that the way core generation is defined is
a bit odd. The decision to demarcate the core generation steps into two
subcomponents with exactly three substeps each seems oddly symmetric
and rather arbitrary. Another way of thinking about XML signature gen-
eration is to think of it in terms of a raw digital signature. That is, it is
useful to think of the creation and formation of the <SignedInfo> ele-
ment as a single operation and therefore a single step.

The second and final step in this alternate processing scheme is
to canonicalize and sign the <SignedInfo> and create the parent
<Signature> element. The <SignedInfo> is really the data we are
signing as part of the signature operation and one might think of it as the
data in a raw digital signature if you omit the canonicalization step. This
scheme is simply another way of mentally simplifying the core generation
process. Most of what makes an XML signature different than a raw dig-
ital signature is encapsulated in how the <SignedInfo> element is
formed—inside this element lives the <Reference> elements and their
child elements along with all of the necessary information (the signature
method and canonicalization method) required to produce the signature.

It is often hard to visualize what core generation might look like without
a picture. Figure 5-2 shows a pictorial representation of reference genera-
tion, and Figure 5-3 shows a pictorial representation of signature genera-
tion. Figure 5-2 shows three Web resources that undergo transformations
and a message digest to become <Reference> elements. What is not
shown in the picture is the detail of each reference element. The omitted
details include the identifying URI for the data source (if present), the type
of transforms used, the type of digest method and the digest value.
In Figure 5-3, the three <Reference> elements join with a specified
<SignatureMethod> element and a <CanonicalizationMethod>

XML Security154

155Chapter 5 Introduction to XML Digital Signatures Part 2

<Reference>
...
</Reference>

Message Digest Message Digest Message Digest

Transforms

<Reference>
...
</Reference>

<Reference>
...
</Reference>

Transforms Transforms

XML GIF HTMLFigure 5-2

Reference
generation

element to form a <SignedInfo> element. This <SignedInfo> element is
subsequently canonicalized and then signed with a private key to yield the
<SignatureValue>. Finally, the parent <Signature> block is formed.

The core generation process is complemented by the reverse process
called core validation. Core validation is specified in a similar manner as
core generation. It is also composed of two substeps: reference validation
and signature validation. The purpose of reference validation is to verify
that any data referenced by <Reference> elements has not been altered.
Digesting the data source and making a comparison against the digest
stored in the <DigestValue> child element accomplishes this task. Sim-
ilarly, the purpose of signature validation is to compare the canonical form
of the <SignedInfo> element against the stored <SignatureValue>.
The specifics of what happens during core validation are listed in the
“Core Validation Steps” box.

XML Security156

Canonicalizer

<SignatureValue>
WWKdFGDkjfnj3x423 ...
</SignatureValue>

<Signature>
 <SignedInfo>
 …
 </SignedInfo>
 <SignatureValue> … </SignatureValue>
</Signature>

Signature

<SignedInfo>

<SignatureMethod> <CanonicalizationMethod>
<Reference>
...
</Reference>

<Reference>
...
</Reference>

<Reference>
...
</Reference>

Figure 5-3

Signature
generation

Core validation is more complex than core generation; a number of
issues warrant discussion and further explanation. To begin with, notice
that when reference validation is performed, we begin by canonicalizing
the <SignedInfo> element. The careful reader may have noticed that
this canonicalization step seems extraneous. The outward syntax of the
<SignedInfo> element is unrelated to the actual data referenced by a

157Chapter 5 Introduction to XML Digital Signatures Part 2

Core Validation Steps

Reference Validation

First, the <SignedInfo> element must be canonicalized.

For each <Reference> being validated, perform these steps:

1. The data stream to be digested is obtained by de-referencing
the URI attribute of each <Reference> element. If no URI
attribute is present, the application must know the location of
the data source. The final data to be digested is a result of
optional transforms that are applied in a cascading manner.

2. The data stream obtained in step 1 must now be digested
using the hash function specified in the <DigestMethod> ele-
ment for the current <Reference> element being processed.

3. The digest value computed in step 2 is now compared against
the <DigestValue> element content for the current
<Reference> element being processed. If these values do
not match, reference validation fails.

Signature Validation

1. Retrieve the verification key from a <KeyInfo> element or
application-specific key source.

2. Using the canonical form of <SignatureMethod>, determine
the signature algorithm being used and calculate a signature
value over the canonical form of the <SignedInfo> element.
Compare this signature value with the value inside the
<SignatureValue> element. If these values do not match,
signature validation fails.

<Reference> element. That is, canonicalization only alters the syntax of
the <SignedInfo> element and does not affect the data stream that
flows out of a URI included in a <Reference>. One can make the argu-
ment that nothing is gained from a security standpoint by applying
canonicalization at this stage, and it may seem more correct to include
canonicalization as an operation that is performed as part of the signature
validation step instead.

The reason why canonicalization is included in reference generation
has to do with an additional requirement that XML Signatures “see” what
is signed. When data is included in an XML Signature, it is the trans-
formed data that is signed, not the original data. Because of this problem,
the possibility exists for a discrepancy between what a user “sees” when a
signature is made with the actual signed octets. We will revisit this con-
cept when we give a further treatment of signature transforms. For now,
it is enough to know that canonicalization is applied in the first step of ref-
erence generation in order to bolster the process requirement that XML
Signatures “see” what is signed.

Previous versions of the XML Signature Recommendation specified
that the canonicalization algorithm be executed for each <Reference>
element in the <SignedInfo> element. This has the effect of executing
the canonicalization algorithm n�1 extra times where n is the number of
<Reference> elements in the <SignedInfo> element. Canonicalization
only needs to happen a single time (provided that the <SignedInfo> ele-
ment isn’t being modified during reference validation).

Secondly, in step two of reference validation, the phrase “de-reference a
URI” is being used. This phrase hides a great deal of complexity because
a URI can represent almost any abstract resource either locally or
remotely. Consequently, the means by which a URI is de-referenced is
rather important in making sure signatures validate properly. The most
common type of URI that will be used is a URI that specifies HTTP as its
protocol scheme, although any valid URI scheme is possible. This being
the case, it is also possible to specify a bare hostname for signing, such as
http://www.fictional-site.com. This use of a data source often baffles
XML Signature newcomers who are accustomed to raw digital signatures.
The question most often asked here is: “If a hostname is specified as a
data source, what data is actually signed?” The answer to this question
lies in how the URI is de-referenced.

A <Reference> element doesn’t look at the outward syntax of the
URI; it only cares about the raw data itself, whether it is octets or an XML
node-set. The phrase “de-referencing a URI” is not well defined in terms of

XML Security158

159Chapter 5 Introduction to XML Digital Signatures Part 2

the XML Signature recommendation. Instead, the definition comes from
the basic concept of de-referencing a pointer and obtaining the data
pointed to. In the case of the URI, we are obtaining the data pointed to by
following the specified protocol scheme and eventually arriving at the
data itself. For HTTP, the XML Signature Recommendation states that
when a URI is de-referenced, any HTTP status codes that cause redirec-
tion must be followed to obtain the final response data.

With this new information in mind, we can now address the previous
question regarding the bare hostname URI. When such a URI is used in a
<Reference> element, the actual data that is signed is the result of a
HTTP request to that hostname. The data that is returned is rather
mutable because Web sites may change servers, index pages, or switch
from HTML to JavaScript for the response data.

Because of the transient nature of such a Web resource, there is little
utility in specifying a bare hostname or Web site as part of an authenti-
cated XML Signature. A simple one-byte change by a pragmatic Webmas-
ter can break the hash value for such a URI reference. One convenient
way to see the data that is being hashed as part of a <Reference> ele-
ment is to use a simple Java program to de-reference the URI and print
out the data. Listing 5-1 shows a simple Java program that takes as input
a URI from the command line and prints out the de-referenced data.

It is imperative to note that Listing 5-1 shows how a URI is de-
referenced to produce octets. Not all URIs are de-referenced in this man-
ner—for example, some signature transforms expect a node-set as input
instead of binary octets. An XML node-set is an abstract representation of
the underlying form of an XML document. A URI is de-referenced as a
node-set when a specific signature transform calls for this type of input or
when the URI is a same-document reference. We will discuss these issues
further when we expand upon URIs and signature transforms. For now, it
is enough to know that most external files used in an XML Signature will
be de-referenced as binary in the manner described in Listing 5-1.

The final part of step 2 in the “Core Validation Steps” box for reference
generation is concerned with transforms. The data to be digested may have
transforms applied to it. If any transforms are used, they ultimately pro-
duce the actual octets that are digested and verified. If transforms are pre-
sent, it is not an explicit requirement to apply these in every instance of
core validation. Likewise, the core generation process does not ensure that
transforms were applied in the recommended cascading manner (if at all).

For example, an XML Signature may be validated based on cached data
that has already been transformed, or commutable transforms may be

XML Security160

Listing 5-1 URIDereference.java

// import the necessary Java packages
import java.io.*;
import java.util.*;
import java.net.URL;
import java.io.ByteArrayInputStream;
/**
* URIDereference.java
*
* This program takes as input a URI and de-references the URI as octets
* and prints out the octets to the screen via the platform’s default
* character encoding.
*
* @author Blake H. Dournaee
*
**/
class URIDereference {

public static void main (String args[]) {
if (args.length < 1) {

System.out.println("Usage: URIDereference <URI>");
System.exit(1);

}
String sourceURI = args[0];
URL url = null;
byte[] dereferencedData = null;
InputStream is = null;

// Load URI using Java’s URL class
try {

url = new URL(sourceURI);
} catch (Exception xp) {

System.out.println("Caught Exception while initializing URL object");
p.printStackTrace();

}

// Create byte-array representation of URL data

try {

is = url.openStream();
int incomingByte;
Vector v = new Vector();
Object[] byteArray = null;

try {

while ((incomingByte = is.read()) != -1) {
Byte temp = new Byte((byte)incomingByte);
v.add(temp);

}
} catch (Exception xp) {

xp.printStackTrace();
System.out.println("Caught Exception while reading bytes");

substituted. The XML Signature Recommendation merely requires that
the application finally obtain the data to be digested. A hyperbole that
brings this point home would be a software developer doing a rain-dance
and somehow obtaining the octets to be digested. This method would be
acceptable and would fulfill the requirements of the XML Signature
Recommendation.

Reference validation continues in a looping manner until all
<Reference> elements inside the <SignedInfo> have been processed.
Once all of the references have been validated, the actual structure of
<SignedInfo> is verified using the appropriate <SignatureMethod>
and verification key.

The first step of signature validation specifies that verification key
materials need to be obtained. The XML Signature Recommendation does
not normatively specify how to obtain this key information, but it suggests
that it may be obtained from a <KeyInfo> element. This point is impor-
tant and should be repeated: XML Signatures themselves do not offer

161Chapter 5 Introduction to XML Digital Signatures Part 2

Listing 5-1 URIDereference.java (continued)

}

byteArray = v.toArray();
dereferencedData = new byte[byteArray.length];

// Convert Byte objects to primitive types

for (int i=0; i<byteArray.length; i++) {
dereferencedData[i] = ((Byte)byteArray[i]).byteValue();

}

// Convert the byte array to the default character encoding and
// store it in a String object.

String output = new String(dereferencedData);
System.out.println("De-Referenced Data:\n");

// Output the String
System.out.println(output);

} catch (Exception xp) {
System.out.println("Caught Exception while reading URL stream");
xp.printStackTrace();

}
}

trust semantics. It is up to the processing application to make its own
trust decisions. The issue of trust is delegated to another proposed XML
security standard called XKMS. XKMS stands for XML Key Management
Specification and attempts to pick up the issue of trust where XML Sig-
natures leave it. XKMS uses the <KeyInfo> element as a normative ref-
erence and attempts to define a vehicle for trust decisions.

In the final step of signature validation, another detail must be noted.
The <SignatureMethod> is obtained from the <SignedInfo> element
itself. This means that the name of the signature algorithm used is an
integral part of the signature itself and it is signed to prevent substitution
attacks.

The entire validation process has many steps, but it is a complete,
well-defined process that authenticates the data referenced by the
signature. It is important to note that according to the XML Signature
Recommendation, a signature is invalid unless both reference validation
and signature validation are successful. There is no further qualifier here
—all references in the <SignedInfo> element must pass the digest
comparison.

This rather strict view of signature validity is often too strong for prac-
tical use. For example, a <SignedInfo> element with hundreds of
<Reference> elements may be able to tolerate some reference validation
failures within certain application-defined circumstances. Some applica-
tions may decide that it is OK to accept a signature as valid if reference
validation or signature validation fails. It is possible for reference gener-
ation to fail if the data referred to by a <Reference> element changes,
and it is also possible for signature validation to fail (but reference vali-
dation to succeed) if the structure of the <SignedInfo> changes.

These additional weaker semantics represent a hack of the definition
provided by the XML Signature Recommendation. The definition of core
validation is very strict; it is defined to include both reference validation
and signature validation. Whether or not it is possible to ascribe validity
to a signature that only fulfills part of core validation falls outside the
scope of the XML Signature Recommendation.

These additional trust semantics concerning the validity of an XML
Signature can be quite confusing to those who have only dealt with raw
binary signatures. That is, if we were to take a raw digital signature block
(such as a binary RSA signature) and verify the signature against an orig-
inal document, the answer is always going to be valid or invalid. No gray
area exists in terms of the signature validity; there is no additional gran-
ularity in assessing validity. If the hashes in a raw digital signature fail to

XML Security162

match, the signature is invalid by definition. For an XML Signature, the
answer to the question of validity ideally comes from a positive core gen-
eration result, but an application may also take other variables into con-
sideration and ascribe validity based on its own semantics. This can be
done because of the added granularity of core validation that is just not
present in raw digital signatures.

Many reference implementations of XML Signatures in popular devel-
oper toolkits have features for demarcating signature validity from refer-
ence validity. Whether or not this feature is a blessing or a burden has yet
to be seen. The answer lies in the strength of the additional trust seman-
tics that are commonly used when XML signature validity is assessed.

The URI Attribute: Additional Features

Thus far, we have seen how local or remote resources can be specified by
location through the use of a URI. To access data that resides at a distant
location, one might use the HTTP scheme, and to access a file locally one
could use the FILE scheme (such as file:///C:\myfile.txt for a
Windows-based machine). Remember, any valid URI scheme is possible,
although the method by which the data is obtained is left outside the
scope of the XML Signature Recommendation.

The granularity of what we can access using these two methods is
rather sparse. We can access an entire remote file or an entire local file
using the two before-mentioned URI schemes, but nothing more. To some-
one accustomed to a raw digital signature, this may seem sufficient, but in
reality this is largely inadequate because these basic schemes overlook
the rich structure of an XML document. More specifically, great utility
exists in being able to pinpoint sections of an XML document to partici-
pate in a digital signature. Ideally, we would like to be able to include a
sub-structure of a large XML document, or even the content of a single
element. Listing 5-2 shows an example of the components of an XML doc-
ument that we might want to isolate.

In Listing 5-2, we can think of this XML structure as the entirety of a
given XML document. If this is the case, we already have the means to
sign the outermost element (and its children): <MartialArts>. This
would be equivalent to a URI reference that specifies the entire file. What
about signing the child element <Aikido> and explicitly excluding the
parent element <MartialArts> and its remaining children from the sig-
nature? Or what about focusing solely on the <Grading3> element that

163Chapter 5 Introduction to XML Digital Signatures Part 2

resides inside the <Aikido> parent? The possibilities here are endless
and very application-specific. Most of the processing that is done to isolate
a subset of a given XML document is accomplished by signature trans-
forms, although some minimal selection processing can be done with URIs
alone.

Before we delve into transforms further, we need to examine the spe-
cific URI syntax that is used to enable an XML Signature to deal with sit-
uations where XML document subsets are going to be processed. That is,
the question we are about to answer is concerned with how we write URIs
in a <Reference> element in cases when we are not signing an entire
file. Listing 5-3 shows three possibilities, each of which attempts to spec-
ify some subset of an XML document.

In Listing 5-3(a), we are using a fragment identifier to select a specific
element inside a remote XML file. This type of fragment identifier
denotes the octet-stream beginning with the <Aikido> element inside
martialarts.xml. The data selected is equivalent to the <Aikido> ele-
ment and all of its children (but not the following <Karate> element), as
shown in Listing 5-2. For those readers familiar with HTML, the behav-
ior shown here resembles an HTML fragment identifier that is based on
an anchor element. The difference here is that the fragment identifier
used in conjunction with an XML document can specify any element, not
just an anchor (<a>) element, as in HTML.

The XML Signature Recommendation gives us a special caveat with
regard to this type of fragment identifier and cautions against it. The
semantics of the fragment identifier are based on the type of data refer-

XML Security164

Listing 5-2

XML document
components:
martialarts.xml

<MartialArts>
<Aikido Id�"FirstElement">
<Gradings>
<Grading1>San Dan</Grading1>
<Grading2>Ni Dan</Grading2>
<Grading3>Sho Dan</Grading3>
</Gradings>

</Aikido>
<Karate Id="SecondElement">
<Gradings>
<Grading1>Yellow Belt</Grading1>
<Grading2>Brown Belt</Grading2>
<Grading3>Black Belt</Grading3>

</Gradings>
</Karate>

</MartialArts>

enced and may produce different results based on how the referent data
is processed. One example of this is the use of a fragment identifier in an
HTML document. If two anchor elements are present that have the same
attribute value, the behavior of fragment processing is undefined. That is,
if an HTML document, file.html, has two anchor elements of the form
 and this element is referenced via a fragment iden-
tifier via http://www.foo.com/file.html#Marcy, it is largely unde-
fined which element will be chosen. It is true that we have jumped from
talking about XML documents to HTML documents, but the reasoning is
the same. The XML Recommendation has a cleaner, more standardized
way of selecting XML subcomponents and cautions against fragment
identifiers that follow URIs, as shown in Listing 5-3(a). More information
on this type of fragment identifier is given in Chapter 6.

In Listing 5-3(b), the referent here is to the node-set of the element
(including all its children) that has "FirstElement" as its Id attribute
value. The potentially confusing point here is that this type of reference
alludes to the element within the current XML document. It is a self-
reference (this is why there is no preceding URI scheme or location) to
an element somewhere in the current XML document containing the
<Signature> element. This type of reference is used most often within
enveloping XML Signatures to include <Object> or <Manifest>
elements as part of a signature.

165Chapter 5 Introduction to XML Digital Signatures Part 2

Listing 5-3

URI syntax for an
XML document
subset

Listing 5-3(a)

<Reference Id="ExampleA"
URI�"http://www.foo.com/martialarts.xml#FirstElement">
. . .
</Reference>

Listing 5-3(b)

<Reference Id="ExampleB" URI�"#FirstElement">
. . .
</Reference>

Listing 5-3(c)

<Reference Id="ExampleC" URI�"">
. . .
</Reference>

XML Security166

The other thing to note is the use of the term node-set in this example,
as contrasted with octet-stream used in the previous example. When
we say node-set, this means that the XML document is going to be
processed as XML and when we say octet-stream this means that the
XML document is going to be processed as binary. This subtle distinction
will be explored further when we examine signature transforms. A
concrete example of how a bare fragment identifier is used can be seen in
Listing 5-4.

A few important things should be noted about Listing 5-4. First off,
the signature appears to be an enveloped signature. This however, is incor-
rect. The careful reader will notice that this signature is actually a
detached signature. The URI reference signs a sibling element in the cur-
rent XML document (in this case, the <Aikido> element) and not the
entire parent document (which would make it a proper enveloped signa-
ture). Next, focus your attention on the <Reference> element (high-
lighted in bold). This <Reference> element uses a bare fragment
identifier #FirstElement. This effectively includes the contents of the
<Aikido> element in the signature and excludes the remaining child ele-
ments of <MartialArts>. That is, we can alter any element (except for
the <Aikido> element, which is signed) of the original document without
breaking the signature. This property is especially powerful and exciting
because it enables us to pass our signed document to others who can
change or add certain pieces without affecting the signature validity. For
example, we could make the change shown in Listing 5-5 without affect-
ing the validity of the signature.

The change made in Listing 5-5 is quite significant in terms of changed
octets. This change does not affect the validity of the signature because of
the property of the fragment identifier used. It is also important to note
that such a bare fragment identifier can also be used in an enveloping sig-
nature—we have seen examples of enveloping signatures in Chapter 4
when we discussed the particular syntax of the <Object> element.

The last type of URI identifier shown in Listing 5-3(c) is an empty set
of double quotes. This is called a same document reference and is related
to the bare fragment identifier just discussed and shown in Listing 5-4. In
fact, the empty URI same document reference is a more general reference
that simply includes the entire node-set of the current XML document.
This sort of document reference is used when arbitrary signature trans-
forms are going to be applied to the document. For example, with the bare
fragment identifier, we have the ability to demarcate and sign a single
child element and its descendants. What about a situation where we need

167Chapter 5 Introduction to XML Digital Signatures Part 2

Listing 5-4 Example of a bare fragment identifier for a URI reference

<?xml version="1.0" encoding="UTF-8"?>
<MartialArts>

<Aikido Id="FirstElement">
<Gradings>

<Grading1>San Dan</Grading1>
<Grading2>Ni Dan</Grading2>
<Grading3>Sho Dan</Grading3>

</Gradings>
</Aikido>
<Karate Id="SecondElement">
<Gradings>

<Grading1>Yellow Belt</Grading1>
<Grading2>Brown Belt</Grading2>
<Grading3>Black Belt</Grading3>

</Gradings>
</Karate>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>
<CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
<SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<Reference URI="#FirstElement">

<Transforms>
<Transform

Algorithm="http://www.w3.org/2000/09 /xmldsig#enveloped-signature"/>
<Transform

Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2000/09 /xmldsig#sha1"/>
<DigestValue>ktEp0766IBHkRN8mxV5U9o1FIYs=</DigestValue>

</Reference>
</SignedInfo>

<SignatureValue>
s5zdhPftVea+3z12CwP0rYn
CMgBjg03Owa+/9ZZVwo089Bzl74Rjt1Ulf7Z+z2R
oz0NH75bFrg7XBzoI2gzEwg==

</SignatureValue>
<KeyInfo>
<KeyValue>
<RSAKeyValue>
<Modulus>
1u4kN2qOpGbP2rqvj7tl6Pp6dvo7IhuOlb
dJywBFTFdB0h5eAMyGkrGyi6VpXnGRRxEe
0S8iPgs3A7NewkQrqw==

</Modulus>
<Exponent>EQ==</Exponent>
</RSAKeyValue>
</KeyValue>

</KeyInfo>
</Signature>

</MartialArts>

XML Security168

Listing 5-5 Changing the original document to maintain signature validity

<?xml version="1.0" encoding="UTF-8"?>
<MartialArts>

<Aikido Id="FirstElement">
<Gradings>

<Grading1>San Dan</Grading1>
<Grading2>Ni Dan</Grading2>
<Grading3>Sho Dan</Grading3>

</Gradings>
</Aikido>
<!-- I have deleted the <Karate> element because we ran out of belts. All
we have left is neon-green and pink belts -->
<KungFu Id="SecondElement">
<!-- I need to research gradings for this martial art. -->
<Gradings/>

</KungFu>

<Signature xmlns="http://www.w3.org/2000/09 /xmldsig#">
<SignedInfo>
<CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
<SignatureMethod
Algorithm="http://www.w3.org/2000/09 /xmldsig#rsa-sha1"/>
<Reference URI5"#FirstElement">
<Transforms>
<Transform
Algorithm5"http://www.w3.org/2000/09/xmldsig#enveloped-signature"/>
<Transform
Algorithm5"http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
</Transforms>
<DigestMethod Algorithm5"http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>ktEp0766IBHkRN8mxV5U9o1FIYs5</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>
s5zdhPftVea+3z12CwP0rYn
CMgBjg03Owa+/9ZZVwo089Bzl74Rjt1Ulf7Z+z2R
oz0NH75bFrg7XBzoI2gzEwg==

</SignatureValue>
<KeyInfo>
<KeyValue>
<RSAKeyValue>
<Modulus>
1u4kN2qOpGbP2rqvj7tl6Pp6dvo7IhuOlb
dJywBFTFdB0h5eAMyGkrGyi6VpXnGRRxEe
0S8iPgs3A7NewkQrqw==

</Modulus>
<Exponent>EQ==</Exponent>
</RSAKeyValue>
</KeyValue>

</KeyInfo>
</Signature>

</MartialArts>

to sign a more complex subset? Listing 5-6 shows such a requirement. In
this example, we would like to sign just the elements in bold.

The elements we want to include in the signature (shown in Listing 5-6
in bold) are as follows: The first and third elements of the first
<Gradings> element in the document, as well as the entire contents of
the <Karate> element. This sort of complex content selection cannot be
done with a bare fragment identifier. The job of the same-document refer-
ence helps us obtain sophisticated signature results because it refers to
the entire node-set, which is subsequently passed to various signature
transforms (an XPath transform would be able to accomplish the selection
required previously). In a sense, the same document reference is in itself
a simpler reference, but the ultimate utility in this type of reference lies
in what happens to this node-set as various signature transforms are
applied to it.

Jumping back and forth between remote external documents and self-
referring resources can be quite confusing. One point of confusion here lies
in the logistical obstacles for the signing to actually happen. For remote
references, the way the reference is specified when it is signed is sym-
metric with the way it is specified when it is validated. For example, in
core generation, we think of a picture that shows <Reference> elements
being formed and then placed into a <SignedInfo> element for signing
to happen. It is clear that the data to be signed resides at a given URI.
When a same-document reference is used, however, we are only specifying
an empty set of quotes or a one-word identifier. It is clear that the XML
Signature application must still obtain the source document to sign from

169Chapter 5 Introduction to XML Digital Signatures Part 2

Listing 5-6

A complex XML
document subset

<MartialArts>
<Aikido Id="FirstElement">
<Gradings>
<Grading1>San Dan</Grading1>
<Grading2>Ni Dan</Grading2>
<Grading3>Sho Dan</Grading3>
</Gradings>

</Aikido>
<Karate Id�"SecondElement">
<Gradings>
<Grading1>Yellow Belt</Grading1>
<Grading2>Brown Belt</Grading2>
<Grading3>Black Belt</Grading3>

</Gradings>
</Karate>

</MartialArts>

somewhere. When the signature is verified, the source document is
embedded along with the XML Signature when an enveloped or envelop-
ing signature is used. The question remains then, where does the actual
source document come from that is filtered for an XML document subset?

This complexity lies outside of the XML Signature-processing rules and
is actually an application-specific task. Typically, the source XML docu-
ment in a same document reference or bare fragment identifier is some-
how given to the processing application in a customized manner
beforehand. That is, an explicit mechanism specifies an actual filename or
URI where the location of the source document can be specified. We will
see how this practical issue is dealt with when we look at a specific XML
Signature implementation in Chapter 8.

Signature Transforms
It can be argued that the true power of XML as a portable data format lies
within the vast array of possibilities for transforming XML in a standard
way. Most introductory books on XML contain a section on how an XML
document can be transformed and filtered to produce various types of for-
matted output ideal for presentation. XML Signatures have the potential
to take transformations to a new level of utility in terms of security appli-
cations. For example, it is possible to apply transformations that include
or exclude specific portions of a source document.

This type of feature might be useful for electronic contracts in the legal
domain that require multiple signers, endorsements, or any manipulation
of structure (such as moving or inserting signature blocks) without break-
ing the digital signature. If digital signatures act like normal, hand-
written contracts, their adoption and use will eventually become more
widespread. The use of signature transforms, however, is not limited to
the legal domain exclusively. There have also been applications of XML
Signatures to Web forms, online contract signing, and e-commerce—all of
which are impossible without the capability to provide a reliable means to
be selective about the data being signed while still including additional
mutable information in the signature itself.

When we discussed the basics of signature transforms in Figure 5-1, we
used the analogy of a waterfall to show how the data flows from a source
and goes through a series of transformations to finally become the data

XML Security170

that is provided as input to the digest function. In this sense, a signature
transforms plays two distinct roles. The abstract high-level role of a set of
signature transforms is to ultimately describe the data to be digested. At
a more concrete level, a single signature transform is simply an algorithm
that operates on at least one input parameter: the result of a URI de-
reference or the output of an earlier transform.

To complicate things further, the XML Signature Recommendation
enables custom transforms to be used. This will probably hinder interop-
erability between implementations because an XML Signature that uses
a custom transform will be useless to an application that doesn’t support
or know about this custom transform algorithm. The current XML Signa-
ture Recommendation mentions five transforms, four of which are either
required or recommended transform algorithms. This list is shown in
Table 5-1 and will probably see new additions as XML Signatures mature
and new versions of the Recommendation are devised.

Each transform listed in Table 5-1 has a specific purpose and intent. The
first potentially confusing point is the appearance of Canonical XML in the
list of transform algorithms. In previous discussions, we mentioned that
canonicalization was used as a part of core validation and core generation to
ensure that the <SignedInfo> element is stripped of syntactic processing
changes. It turns out that canonicalization is used in a subtle way inside the
transformation waterfall. In short, it is also a transformation itself. The
default transformations specified in the XML Signature Recommendation
are specified to operate on two basic, broad data types: binary octets or a
node-set. When a URI is de-referenced or subsequently transformed, the
result is either an octet stream or an XPath node-set. For example,Table 5-2
shows common ways of specifying a source URI in a <Reference> element
and the data type that would result from such a reference.

171Chapter 5 Introduction to XML Digital Signatures Part 2

Transform Name Keyword

Canonical XML Required

Base64 decoding Required

XPath filtering Recommended

Enveloped transform Required

XSLT transform Optional

Table 5-1

XML Signature
Transforms

Canonical XML (canonicalization algorithm) is used when any given
transformation requires a conversion from a node-set to binary octets. For
example, suppose we are de-referencing the URI, “#SomeElement”.
According to the XML Signature Recommendation, this type of URI Ref-
erence must be treated as a node-set. To treat data as a node-set means
that it will be processed as XML. Because of this, the possibility exists for
syntactic changes to the data that do not affect its meaning.

For example, if we were to de-reference “#SomeElement” and pass the
node-set to a DOM parser for processing, the simple act of reading the
XML data and spitting it back out without any explicit changes may result
in syntactic changes. Furthermore, the final resting place for the data from
a URI is going to be input for a digest function, which operates solely on
binary octets. This means that the XML must be canonicalized before it is
digested to ensure that a one-to-one mapping takes place between the
meaning of the XML data and its hash value. Canonicalization converts
the node-set to binary octets before it is input into the digest function.

If a transformation operates in the other direction, canonicalization is
not explicitly required, because it is done anyway. To see this, consider
what would happen if we had a transform that operated in the opposite
direction. Begin with binary octets and use a transform that operates on
a node-set. For example, suppose we are de-referencing the URI,
file:///C:\foo.xml. According to the XML Signature Recommenda-
tion, this type of URI Reference must be treated as binary octets. Suppose
next that foo.xml is a well-formed XML document that we would like to
process as XML (and perhaps exclude portions of the original document
from the signature). This could be done with an XPath transformation
using the proper XPath expression (we will visit this in more detail
later on).

XML Security172

URI Type Data Type

URI="http://www.fictional-site.com/foo.gif" Binary octets

URI="http://www.fictional-site.com/foo.xml" Binary octets

URI="http://www.fictional-site.com/foo.pdf" Binary octets

URI="file:///C:\files\foo.doc" Binary octets

URI="#SomeElement" Node-set

URI="" Node-set

Table 5-2

URI Types and
Resultant Data
Types

The problem inherent with our processing thus far is that the XPath
transform requires a node-set as input. We can convert the octets to a
node-set, but canonicalization here would be redundant because the final
digest algorithm operates on binary octets. The node-set would have to be
converted to binary (canonicalized) at the end of the transformation
waterfall anyway. As long as the digest algorithm always operates on
binary octets, canonicalization used in a previous transformation would
be redundant. Figure 5-4 shows the transformation lifecycle of a URI that
is de-referenced as binary octets, converted into a node-set, and then
finally digested.

Notice in Figure 5-4 the source URI is de-referenced as binary octets.
These binary octets are subsequently transformed into a node-set (C1) and
then passed to an XPath transform (T1). Next, the node-set that is output
by the XPath transform must be canonicalized and converted to an octet
stream. Both the canonicalization and the conversion from node-set to

173Chapter 5 Introduction to XML Digital Signatures Part 2

file: / / /C: \ foo.xml
<e1> <c1><c2>... <c1><c2>...

<DigestValue>ktEp0766IBHkRN8mxV5U9o1FIYs=</DigestValue>

1. The data is de-referenced as octets.
2. The data is then converted (C1) into an XPath node-set.
3. An XPath transformation occurs (T1), which requires a node-
 set as input.
4. The data is then converted (C2) from an xPath node-set back
 to octets using the canonicalization algorithm.
5. The data is digested and stored in a <DigestValue> element.

C2

010101...

110101...

T1

C1
Figure 5-4

The
transformation
lifecycle of a
binary URI-
Reference

octet stream happen in one step; the default canonicalization algorithm
used by the XML Signature Recommendation (Canonical XML) outputs
its result in octets. Finally, the octets can be passed to a digest function
and hashed to become part of a <DigestValue> element.

As a general rule, any time XML data in the transformation waterfall
is operated on as XML (node-set), it must be canonicalized before it is
digested. XML canonicalization is arguably one of the most confusing and
potentially dangerous (but nonetheless necessary) aspects of XML Signa-
ture processing. The next section explores some of the basics about how
canonicalization works and we’ll dig a bit deeper into why it is such a crit-
ical part of XML Signature processing.

Canonicalization

Canonicalization is the first transform that we will examine of the four
recommended and required transforms. The canonicalization method is
set via an empty element with an attribute identifier. The identifier is
once again a URI identifier. Here’s an example:

<CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

This empty element resides inside the <SignedInfo> element and is
therefore signed to resist replacement attacks. The default canonicaliza-
tion algorithm is Canonical XML 1.0 (specified previously), but any
acceptable canonicalization algorithm can be used. We will only consider
Canonical XML in our discussion here, so we might often interchange ref-
erences to canonicalization algorithm and Canonical XML, even though
the first term is far broader than the second. To gain a strong under-
standing of something as complex as XML canonicalization, it is best to
begin with some general truths and definitions that bring about the need
for canonicalization.

XML Security174

XML Truths

1. Syntactic changes are permissible by XML 1.0 that preserve
logical equivalence.

2. Syntactic changes are permissible by Namespaces in XML that
preserve logical equivalence.

Notice that we have made our first reference to XML Namespaces. An
XML Namespace is simply a mechanism for grouping element and
attribute names. For more information on XML Namespaces, see the
primer in Chapter 3.

Definitions are all well and good, but we probably need to look at some
examples to get our minds rolling. First, consider the following pair of
XML documents:

Document D:

<d>Four score and seven years ago</d>

Document D’:

<d>4 score and 7 years ago</d>

175Chapter 5 Introduction to XML Digital Signatures Part 2

Definition 5-1

Canonical XML A method for generating a physical representa-
tion of an XML document that accounts for permissible changes that
preserve logical equivalence.

Definition 5-2

Canonical XML Goal If two documents, D and D’, have the same
canonical form, then the two documents are logically equivalent,
subject to a specific application context.

Because of these broad truths, we can define Canonical XML. See Def-
inition 5-1.

Next, we can define the theoretical goal of Canonical XML. See Defini-
tion 5-2.

Although we haven’t explicitly defined what canonical form is yet, let’s
assume that both D and D’ are in canonical form for the sake of this exam-
ple. Consider the question, “Are D and D’ logically equivalent?” The
answer is both yes and no. The reason for the duality here lies in the qual-
ifier tacked on to the end of Definition 5-2. If we were to consider the hash
values of D and D’, then clearly the octets are different and each document
would produce a different hash value. A change like this would break an
XML Signature; however, at this point in our discussion, we are evaluat-
ing the theoretical goal of Canonical XML, and if we choose to let “Four”
be equivalent to “4” within our application, then we could say that these
two documents are indeed logically equivalent.

To push this example further, consider the following pair of XML
Documents:

Document D:

<d>throw my basketball into the hoop</d>

Document D’:

<d>throw my boss into the pool</d>

Suppose that in our application, we decided that “boss” is logically
equivalent to “basketball” and “hoop” is logically equivalent to “pool.” This
would be an outlandish thing to do, but this example shows that we can-
not possibly account for application-customized semantics in a single
canonicalization algorithm. If we made D and D’ logically equivalent
within our application, it would be impossible to incorporate this sort of
arbitrary association within a generalized algorithm like Canonical XML.
This realization leads us to our last definition regarding canonicalization.
This statement is a negative statement and explicitly specifies a nongoal
of Canonical XML:

XML Security176

Definition 5-3

Canonical XML Nongoal Two XML Documents, D and D’, are
equivalent if and only if their canonical forms are identical.

As we have seen from our previous examples, Definition 5-3 is com-
pletely unachievable and is not the ultimate goal of Canonical XML.

Now that we have some broad notions in place, we can begin to look at
the specifics of how Canonical XML works and some of the important
things to notice. First off, two flavors of Canonical XML are available. One
version of the algorithm preserves comments in the original input data,
which is called Canonical XML with comments. The version of Canonical
XML that omits (removes) comments from the final canonicalized form is
called Canonical XML without comments. The XML Signature Recom-
mendation refers to these two canonicalization algorithms as separate
transformation algorithms; the distinction between the two is really quite
trivial. Both define the same algorithm, but one version explicitly omits
comments from the input node-set with a simple boolean test.

Secondly, Canonical XML uses the concept of a node-set for its main
processing mechanism. A node-set is more correctly referred to as an
XPath node-set and is the same abstraction discussed in the XPath primer
in Chapter 3. A node-set is defined in the data model for XPath and is sim-
ply a logical representation of an XML document. The types of possible
nodes include element, attribute, namespace, text, comment, processing
instruction, and root.

The ultimate product of Canonical XML is a physical representation;
that is, it produces binary octets as its final output data type. It takes as
its input either an octet stream or a node-set. If the input is an octet
stream, it must be first be converted to a node-set. The reason why is
because all of the processing done by Canonical XML is based around the
abstraction of a node-set.

Canonical XML can be thought of as operating on two node-sets, an
input node-set and an output node-set. If a node is in the output node-set,
it will be rendered as text in the final physical representation. The trans-
formation of the input node-set to the output node-set defines the nature
of the canonicalization. For example, data comes into an instance of the
Canonical XML transformation. If it is binary, the octets are converted to
an input node-set. If it is already a node-set, then this node-set becomes
the input node-set.

From here, we select all of the nodes in the input node-set and go to
work. At this point, if we are performing canonical XML without com-
ments, we will omit the comments in this selection process. Then we apply
the rules of Canonical XML, which are detailed in the following list (taken
from the Canonical XML 1.0 Recommendation: http://www.w3.org/TR/
2001/REC-xml-c14n-20010315. The rules listed here summarize two

177Chapter 5 Introduction to XML Digital Signatures Part 2

steps of the canonicalization algorithm: (1) the transformations that hap-
pen to convert the input node-set to the output node-set and (2) the steps
that occur when Canonical XML converts the output node-set to binary
octets. For those readers interested in more detailed implementation
information for Canonical XML, they should refer to the current Canoni-
cal XML Recommendation.

� The document is encoded in UTF-8.

� Line breaks are normalized to #xA on input before any node-set
operations occur.

� Attribute values are normalized, as if by a validating processor.

� Character and parsed entity references are replaced.

� CDATA sections are replaced with their character content.

� The XML declaration and document type declaration are removed.

� Empty elements are converted to start-end tag pairs.

� Whitespace outside of the document element and within the start and
end tags is normalized.

� All whitespace in character content is retained (excluding characters
removed during linefeed normalization).

� Attribute value delimiters are set to quotation marks (double quotes).

� Special characters in attribute values and character content are
replaced by character references.

� Superfluous namespace declarations are removed from each
element.

� Default attributes are added to each element.

� Lexicographic order is imposed on the namespace declarations and
attributes of each element.

A list of changes like this does little to convey any real understanding.
As mentioned before, canonicalization is a complex operation with many
aspects. Another way of understanding Canonical XML 1.0 is to fixate
around the common permissible changes that occur during XML process-
ing. The XML Signature Recommendation defines four basic types of
change categories that are expected. These categories include XML
Processor changes, XML Parser changes, UTF conversion changes, and
Namespace changes. Let us examine these four categories.

XML Security178

XML Processor Changes The simple act of reading an XML document
incurs some basic normalization. The easiest example of basic normal-
ization is concerned with line endings. Different operating systems use
different combinations of the carriage-return and line-feed characters to
denote ends of lines. XML attempts to put an end to this madness by spec-
ifying that when an XML document is processed, before it is parsed, all
line-endings must be normalized to the single line-feed character. That is,
any combination of line-feed and carriage return or just a lone carriage-
return are all normalized to a single line feed character.

In addition to line feed normalization, the XML 1.0 Recommendation
also specifies what is called attribute-value normalization. This is
normalization that also happens before an XML document is parsed. This
type of normalization includes replacing character references, entities ref-
erences, and normalizing whitespace within attribute values.

Finally, additional normalization that is done when XML is processed
includes providing values for attributes with default values (if they are
missing) and replacing character and entity references that appear out-
side of attribute values. All the details of this type of normalization are
spelled out in great detail in the XML 1.0 Recommendation and the XML
Signature Recommendation. Remember, we are focusing on these changes
because they are material changes to the physical representation of an
XML document that preserve the semantics of the document. For example,
the computed hash value of an XML document with a carriage-return and
line feed for a line ending is completely different than the hash value for
a line-feed alone, although the meaning or intent of the character
sequences are exactly the same. They both denote an end of line.

XML Parser Changes Two well-known methods are used for creating a
data-structure representation of an XML document. One is to use the doc-
ument Object Model (DOM), which views an XML document as a tree of
nodes. The other is to use Simple API for XML (SAX), which views an
XML document as a string of events. The simple use of these parsers also
incurs material physical changes that do not affect the meaning of the
data.

UTF Conversion Changes The XML Recommendation specifies that both
UTF-8 and UTF-16 (full Unicode) must be supported as a viable charac-
ter encoding. Because of this, it is possible that an XML Processor may
convert from one encoding to the other and introduce subtle syntactic
changes. For example, if an XML Processor reads an XML document as

179Chapter 5 Introduction to XML Digital Signatures Part 2

UTF-8 and then subsequently converts it to UTF-16 and adds characters
outside of the UTF-8 character set, these characters must be converted
to numbered character entities if yet another XML Processor uses
UTF-8. This amounts to a material syntactic change that preserves the
meaning of the data (a well-defined relationship exists between a num-
bered character entity and its corresponding character). Such a change
would break a signature because the two documents would produce dif-
ferent hash values.

Namespace Changes When XML namespaces are used, assigning a
namespace to a particular element or a group of elements can be done in
a number of ways. This is another case where the syntax is different, but
the meaning is the same. For example, consider the following two XML
documents:

Document D:

<?xml version="1.0"?>
<superns:herolist
xmlns:superns="http://www.superheroes.org/superns/">
<superns:superheroes>
<superns:hero>Superman</superns:hero>
<superns:hero>Batman</superns:hero>
<superns:hero>Wonderwoman</superns:her>

</superns:superheroes>
</superns:herolist>

Document D’:

<?xml version="1.0"?>
<herolist xmlns="http://www.superheroes.org/superns/">
<superheroes>
<hero>Superman</hero>
<hero>Batman</hero>
<hero>Wonderwoman</hero>

</superheroes>
</herolist>

It is clear that the syntax of these two documents is completely differ-
ent, but according to the allowable rules for Namespaces in XML, these
two documents mean the same thing. Document D relies on an explicit
namespace declaration to provide the association between the elements in
the document, and their associated namespace and document D’ relies on
the default namespace declaration to accomplish the same thing. This
example, however, isn't something that is handled by Canonical XML.
When the explicit namespace prefix is used, the name of the element is
effectively changed. This isn't something that can be forseen by Canonical

XML Security180

XML. Other problems occur with XML Namespaces especially when sig-
natures are moved from one XML document to another. The correct canon-
icalization of XML Namespaces in a portable document often requires an
alternative canonicalization algorithm called exclusive canonicalization,
which is discussed in the Appendix for this book.

The number of cases that must be considered and dealt with in terms
of permissible changes to XML is vast. It is because of this that great care
must be taken with the use of the canonicalization algorithm. An XML
Signature application must be certain that it is not using a rogue canoni-
calization algorithm. For example, if an attacker has the means to replace
the canonicalization algorithm used during XML Signature processing,
the rogue algorithm could be used to transform the input into arbitrary
signatures that always fail or pass validation. Canonicalization is a major
security concern and therefore this algorithm must be completely trusted
at all times because an XML Signature application is essentially relying
on it to produce the original data that was signed before XML Processing
occurred.

Because the canonicalization algorithm is complex and normalizes
many cases, it is also possible for an attacker to replace the canonicaliza-
tion algorithm with an algorithm that works almost the same way as it is
supposed to. It may conveniently omit a certain normalization step that is
engineered to affect the result of a transformation that occurs further
along, which could subsequently alter the nature of what was signed.

Other potential problems with canonicalization are that it is slow in
terms of its performance and that no easy way exists for checking to see if
it has been performed ahead of time. Because of this, canonicalization
must be performed every time a signature is generated or verified. The
algorithm itself also has little room for optimizations. Every input node in
the document must be considered for canonicalization and subsequently
passed on to the output node-set or explicitly ignored.

Base64 Decoding

The second transform algorithm that we will discuss is base64 decoding.
This is a well-known algorithm and is given full treatment in the primer
in Chapter 2. Base64 decoding is used in XML Signatures to decode and
sign encoded binary files or to decode and sign data referenced in an
<Object> element or other external XML resource that contains base64-
encoded data. This transform always produces an octet-stream as output
and can accept either an XPath node-set as input or an octet stream as
input. This may seem a bit confusing at first. Newcomers to XML

181Chapter 5 Introduction to XML Digital Signatures Part 2

Signatures view base64 decoding as an algorithm that operates on text
and produces binary as its output. It isn’t defined on a node-set data type.

The reason why support for this is necessary is because of the same-
document URI references that were discussed in Table 5-2. For example,
consider Listing 5-7.

A few things should be noticed about this example. First is the base64-
encoded data that resides in the <Object> element at the bottom of the
signature. This element contains arbitrary base64-encoded data and must
be decoded in order to verify the digest value. The same document refer-
ence used here (URI=#object) identifies a node-set.

It is precisely here where we have the data type problem. Base64
decoding normally relies on an octet stream as input. We now have a sit-
uation where the node-set must be converted to an octet stream. The
mechanism for how this is done is specified in the XML Signature Rec-
ommendation and involves stripping the tags to get at the actual data.
Notice that the way the <Object> element is processed is dependent

XML Security182

Listing 5-7 Enveloping a XML Signature with an embedded <Object> element

<?xml version="1.0" encoding="UTF-8"?>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
<SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<Reference URI="#object">
<Transforms>
<Transform
Algorithm="http://www.w3.org/2000/09/xmldsig#base64"/>
</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2000/09 /xmldsig#sha1"/>
<DigestValue>DiHakF8GUVLTCii+GPBhB3gEJMk=</DigestValue>

</Reference>
</SignedInfo>

<SignatureValue>
Byg6L8qTg5a7vqDd9ViPgkoGW7mBpUlIDx9/aYAd2NdiU4ev
0S+9Df5YtCv9I/G1TlIr5pYxuHpl1gXDFzlNkQ==

</SignatureValue>
<Object Id="object">
PE1hcnRpYWxBcnRzPg0KICA8QWlraWRvIElkPSJGaXJzdEV
sZW1lbnQiPg0KICAgIDxHcmFkaW5ncz4NCiAgICAgIDxHcm
FkaW5nMT5TYW4gRGFuPC9HcmFkaW5nMT4NCiAgICAgIDxHc
mFkaW5nMj5OaSBEYW48L0dyYWRpbmcyPg0KICAgICAgPEdy
Pg0KPC9NYXJ0aWFsQXJ0cz4NCg==

</Object>
</Signature>

upon the transforms used. If base64 decoding is not specified as a trans-
form, the entire contents of the <Object> element (including start and
end tags) would have been digested, giving us the digest value of the
base64 representation instead of the underlying data.

It is also pertinent to note that the <Object> element needs to be
canonicalized before processing. In the previous situation, the canonical-
ization transform is explicitly left out because it would have ruined the
example. The reason why is because the canonicalization algorithm would
have produced octets as its output, successfully canonicalizing the node-
set for the <Object> element. We would now have a situation where
octets are being supplied to the base64 decoding algorithm, giving us
nothing interesting to talk about for the example.

Careful readers may have noticed that only base64 decoding is men-
tioned as a transform, not base64 encoding. This may seem odd at first,
but Base64 encoding is a pervasive operation frequently used to transmit
binary data in a text format. Because of this notion, it seems like a perfect
addition to XML Signatures. To add to the confusion, the XML Signature
Recommendation lists base64 under the heading “Encoding” in the XML
Signature Recommendation. This can be confusing because it is referred
to as an encoding algorithm, but it is only used for decoding in XML Sig-
natures. Base64 encoding is not used as a transform because the
<Object> element is the standard way of including additional data
(whether encoded or not), and this data isn’t modified as part of the trans-
formation waterfall. Further, user-defined transforms are possible, so an
application that really wanted to implement this transform could do so.

XPath Filtering

The XPath transform is an interesting transform because it lets us filter
the document to a very fine level of granularity. XPath is used in a
straightforward manner in XML Signatures. The expression itself is sim-
ply embedded inside an <XPath> element that is placed inside a
<Transform> element. When it comes time for this particular transform
to be applied within the transformation waterfall, the XPath transform
operates on a node-set as input. More specifically, all nodes that comprise
the document are selected, and then the XPath expression is evaluated
for each node in the document.

The result of the XPath evaluation is always a Boolean value, true or
false. The XPath transform produces an output node-set; a value of true
means that the node just evaluated will be placed in the output node-set
and a value of false implies that the node will be discarded. Because this

183Chapter 5 Introduction to XML Digital Signatures Part 2

evaluation happens for each node in the document, XPath filtering can be
quite slow. An example of the syntax of an XPath transform as it is used
in an XML Signature is shown in Listing 5-8.

Notice that the transform is called XPath filtering, which is an impor-
tant point. The XPath transform enables us to select pieces and portions
of a document. Consider the following example XML document, as shown
in Listing 5-9.

Suppose we are concerned with only selecting the subset of Listing 5-9
containing the <Good_Cheese> element and all of its descendents, but
nothing more. A proper expression for selecting <Good_Cheese> and its
children would be the expression ancestor-or-self:Good_Cheese.
This expression is evaluated for each node in the XML document. In this
case, the expression asks the question: “ Am I (the current node) a
<Good_Cheese> element, or do I have <Good_Cheese> as my ancestor?”
Once this expression is evaluated, if the answer to the question is yes,
then the node is placed in the output node-set. The output node-set result
of this expression is shown here:

<Good_Cheese>
<Cheddar_Type> Extra Sharp Cheddar </Cheddar_Type>

</Good_Cheese>

XML Security184

Listing 5-9

An example XML
Document for
describing XPath
filtering

<Cheese_Types>
<Favorite_Cheese>
<Good_Cheese>
<Cheddar_Type> Extra Sharp Cheddar </Cheddar_Type>

</Good_Cheese>
</Favorite_Cheese>
<Bad_Cheese>
<Soft_Type> Gouda </Soft_Type>

</Bad_Cheese>
</Cheese_Types>

Listing 5-8

An example
showing the
syntax of the
<XPath> element

<Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116
<XPath>
ancestor-or-self:Good_Cheese
</XPath>

</Transform>

It is also important to notice that the XPath expression used here
would collect all occurrences of <Good_Cheese>, not just the first occur-
rence. That is, if Listing 5-9 contained four or five distinct
<Good_Cheese> elements, all of them would be selected for the final
node-set. This is because all such elements would evaluate to true for the
given XPath expression. To expand this expression such that it selects
occurrences of <Good_Cheese> that have <Favorite_Cheese> as a
parent, one might instead use ancestor-or-self:Good_Cheese
[parent:Favorite_Cheese].

Enveloped Signature Transform

The final transform that we are going to discuss is the enveloped signa-
ture transform. An enveloped signature is a <Signature> element that is
child to the data being signed. This type of signature configuration is use-
ful for modeling real-world documents that have signature blocks in var-
ious places. Enveloped signatures are also extremely useful because the
signature and the original document are tightly coupled, effectively
removing a need to hunt down and match up original documents during
verification.

This transform is a required transform for implementations of XML
Signatures. To place some motivation behind this transform, consider the
core generation process for an enveloped XML Signature. During core gen-
eration, <Reference> elements must be created and subsequently
hashed to obtain a digest value. For example, the use of a same document
reference to include the current document will probably be used (see List-
ing 5-10).

185Chapter 5 Introduction to XML Digital Signatures Part 2

Listing 5-10 A snapshot of an enveloped signature being created

<document1>
<msg> This document needs to be signed, it is very important </msg>
<Signature>
<SignedInfo>
<Reference URI="">
<DigestMethod Algorithm="http://www.w3.org/2000/09 /xmldsig#sha1"/>
<DigestValue>ktEp0766IBHkHN8mxV5U9o1FIYs=</DigestValue>

</SignedInfo>
<SignatureValue> . . . </SignatureValue>
</Signature>

</document1>

Suppose this is a snapshot of core generation. We haven’t done
signature generation yet, but only calculated the digest value of our
<Reference> element. In this case, it is the digest value of the node-
set that represents the entire <document1> XML document, including
all of its children. Because a node-set is provided as input to the digest
operation, it must be canonicalized and converted to an octet stream
before it is digested. Once the digest happens, we store the digest value
in the <DigestValue> element and continue on our way, proceeding to
add the signature value.

However, an inherent problem exists in our process thus far. If we
complete signature generation and proceed to add the contents of
<SignatureValue>, we will have already broken our signature because
the digest content has already been changed. That is, the content of the
<DigestValue> element shown previously is the result of digesting the
document before the <SignatureValue> has been added. Once we add
the actual <SignatureValue>, we have changed the original document
that we are signing. When the signature is verified at a later time, the
digest values won’t match and core validation will fail. Further, because
the signature value must always be generated after the <Reference>
elements have been digested, no means exists for generating the
<SignatureValue> beforehand.

The solution to this messy situation provided by the XML Signature
Recommendation is to use what is called an enveloped signature trans-
form. This transform removes the entire <Signature> element from the
digest calculation. An XPath transform can be used to accomplish the
enveloped signature transform, but the XML Signature Recommendation
doesn’t explicitly specify that XPath must be used. It is simply one way of
performing the transformation. For example, the XPath expression for
removing the <Signature> element from a node-set is shown in List-
ing 5-11. This is the same expression that is given in the XML Signature
Recommendation.

XML Security186

Listing 5-11

XPath expression
for accomplishing
the enveloped
signature
transform

<XPath>
not(ancestor-or-self:dsig:Signature)

</XPath>

This expression removes the <Signature> element from the input
node-set by explicitly adding only those nodes that are not a
<Signature> element or don’t have <Signature> as an ancestor.

Transform Security: Seeing What Is Signed

The XML Signature Recommendation is very flexible in the number of
transforms that are allowed. For example, a handful of transforms are
specified in the XML Signature Recommendation and custom transform
algorithms are permitted for application-specific purposes. Also, no
explicit restriction has been made on the inherent power of the trans-
forms used.

Transformations like XPath and XSLT are very powerful and robust;
because of this, they carry with them an inherent danger. They have the
potential to make drastic changes to the input document. As an example,
the XML Signature Recommendation does not preclude the use of a trans-
form that deletes all elements in an input document, changes arbitrary
octets, or otherwise corrupts the data to be signed.

To provide some motivation for this topic, let’s consider a fictional
courtroom example where an XML Signature is presented as evidence of
a contract. Suppose that Clint (a fictional person) is signing an electronic
contract with the use of an XML Signature. The contract is shown to Clint
over the Web in HMTL. Clint reads the document, understands the terms
and conditions of the contract, and provides his private key to the XML
Signing engine and creates the signature. Let’s suppose for the sake of
simplicity that the contract is for a job from the local middle school to pro-
vide after-hours janitorial services.

A week passes and Clint finds himself with a subpoena from the school
asking him why he hasn’t handed over his automobile, house, and con-
tents of his bank account. Puzzled by the action taken by the school, Clint
goes to court to defend himself. On the witness stand, the plaintiff pre-
sents the contract signed with Clint’s private key. The contract says:
“I, Clint, will hand over my automobile, house, and contents of my bank
account.” Obviously, the contract has been changed before it was signed,
yet the signature still verifies. How could this have happened?

This concocted scenario is possible if rogue transforms are used. For
example, the contract that Clint saw when he made the decision to sign
was not the same contract that was actually digested and included as a

187Chapter 5 Introduction to XML Digital Signatures Part 2

part of the <Signature> element. The signer didn’t see what was signed
because the transforms were not made explicit to the signer. Transforms
are powerful enough to easily deceive users because they have the capa-
bility to change the document in arbitrary and unbounded ways. The fol-
lowing scenario brings about the first of three maxims for understanding
the security issues surrounding transforms:

XML Security188

The term seen used previously is a broad term that implies that the
signer needs to understand what he or she is signing in a general sense,
including all transforms that will be applied to the data. This is some-
times difficult to achieve because some transforms are harmless, such as
a transform that alters the presentation of a document. For example, the
HTML document that Clint signed could have been transformed into
plain, unformatted text. Clint would look at the document and might say
that this isn’t the same document that was initially signed. On some level,
he would be correct because the document has gone through a transfor-
mation, albeit one that did not alter semantics. A natural logical conclu-
sion from the previous maxim and the example scenario is the second
maxim:

Security Transform Maxim II

Only what is signed is secure.

Security Transform Maxim I

A signer should only sign what is seen.

This maxim follows from the way core generation works. The trans-
forms and source URI collectively describe the data to be signed, not the
URI alone. This means that when an XML Signature is applied to a URI,
you are not securing the source URI, but instead the result of the signa-
ture transforms applied to the octet stream or node-set from the source

URI. That is, if a transform discards or changes information, the original
document is not actually secured, only the transformed document. This
maxim implies the last maxim, which places some responsibility on the
application:

189Chapter 5 Introduction to XML Digital Signatures Part 2

Security Transform Maxim III

An application should see what is signed.

This maxim implies that an application should only make trust deci-
sions based on the transformed document, not the original document.
Again, the word see is used here again in a broad sense. Because only doc-
uments that are signed are secure (Maxim II), it would be erroneous for
an application to make a security decision based on an untransformed
document. The untransformed document may be completely different
from the transformed document (this is exemplified with Clint’s problem
with the middle school in the scenario described).

All three of these maxims provide evidence for each other in a syllogis-
tic, circular way. The problem with these maxims is they are quite strict in
and of themselves. For example, some applications may try to make infer-
ences about the relationship between the transforms used and the origi-
nal document. Extra inferences can help with some aspects of workflow
efficiency, while some inferences, if understood correctly, may enable an
XML Signature application to operate on the original, untransformed doc-
ument. This concept is called document closure and was invented by John
Boyer. A simplified version of document closure says that if an application
understands the transforms that are being applied to an original docu-
ment, then it may also understand and continue to “see” the transformed
document in terms of the relationship between the transforms and the
original document. That is, when transforms are well understood, the
result of a transformation is a member of a finite set of well-understood
transformed documents. An XML Signature application that signs some-
thing using document closure as a conceptual model would not be signing
the result of the transformed document, but instead the relationship
between the source document and the transforms applied.

Document closure can be thought of as a conceptual compromise
between the strict maxims presented here and a loose interpretation of
what it means to transform an original document even given arbitrary
transforms. The point is largely theoretical and gives us another way of
thinking about the security of transforms. Figure 5-5 shows a pictorial
representation of the semantics of document closure.

Again, document closure only has meaning if the application under-
stands the transforms used. For example, consider an arbitrary, fictional,
transform T that produces different outputs based on dynamic state in
the operating system. That is, it is hard to predict the output of the trans-
form because it is always changing, and the internals of how the trans-
form works are complex or hidden. It would be difficult to argue that an
application understands this transform well enough to make inferences
based on the transformed content. It would also be hard to argue for doc-
ument closure because the set of possible relationships between the orig-
inal document and the transformed output is difficult to fully define.

Contrast this with a transform T2 that adds a large amount of reoccur-
ring “boilerplate” text to a document. This type of transform is quite sim-
ple and the set of possible relationships is better understood. It might be

XML Security190

S1: We are signing the original document given any
arbitrary transforms.
S2: We are signing a well-defined relationship
between an original document and the transforms
used (Document Closure).
S3: We are only signing the result of transformations
that are applied. We are signing no part of the
original document.

Transform Semantics

S1 S3S2

Weak Transform Semantics Strong Transform SemanticsFigure 5-5

A pictorial
representation of
transformation
semantics

possible to make trust inferences about the original document without
having to go through the trouble of applying the well-defined T2 transfor-
mation each time processing needs to happen on the document. Document
closure can be useful for optimizing workflow in the sense that certain
applications, when using well-defined, well-understood transforms, can
cut down on the amount of processing that must happen.

To bring this theoretical discussion back down to the real world, the
bottom line (for Clint’s case) is that he should have applied the transforms
before signing and looked at the document. This would have enabled Clint
to see what he was signing, instead of what was presented to him initially.
In the same vein, applications need to understand and try to effectively
“see” (or understand) the implications of signing or verifying data that has
undergone (or that will undergo) transformations.

Chapter Summary
This chapter was concerned with examining how XML Signatures
are processed. We began the chapter by first adding detail to the
<Reference> element and expanded on the use of the URI attribute as
an identifier for the source data to be transformed. We looked at the var-
ious ways of identifying the data source for an XML Signature and noted
that two basic, broad data types are used when processing XML Signa-
tures: octets and node-sets. A node-set is an abstract data model for pro-
cessing an XML document as XML and is defined in the XML Path
Language Recommendation (XPath). Further, we discussed the core gen-
eration process for creating a XML Signature. Core generation is divided
into two steps: reference generation and signature generation. Reference
generation creates the data objects to be digested and signature genera-
tion executes the actual signature algorithm.

An XML Signature is verified using core validation. Core validation is
also divided into two sub-steps: reference validation and signature vali-
dation. Some applications may deem an XML Signature valid even if some
portions of core validation fail. This feature is not part of the XML Signa-
ture Recommendation, but it is instead an application-specific notion that
aids in the practical use of XML Signatures when the number of reference
elements grows.

191Chapter 5 Introduction to XML Digital Signatures Part 2

Finally, we ended the chapter with a discussion of signature trans-
forms. We covered canonicalization, XPath, enveloped signatures, and
base64 decoding transforms. We examined canonicalization in some depth
and learned how XPath can be used as a filtering mechanism. The last
topic of discussion included a brief look at the semantics of signature
transforms, and how one should interpret what it means for a transform
to be applied to an original document. We also looked at the maxims pro-
vided by the XML Signature Recommendation as well as John Boyer’s
document closure concept.

XML Security192

XML Signature Examples

CHAPTER 6

An XML Signature is rich in its features and syntax. The sheer number of
elements and the number of valid permutations of elements and transfor-
mations tend to make the XML Signature confusing, especially when
applied to practical scenarios. In order to facilitate better understanding
of the intended use of XML Signatures, we will move from a more concep-
tual discussion to practical use cases of XML Signatures. The source for
many of the questions or problems posed here comes from an early XML
Signature Scenarios FAQ W3C Note as well as practical experience. The
specific W3C Note is given in the references section. This chapter repre-
sents a cornucopia of differing questions and scenarios that should assist
the reader in applying XML Signature concepts to real-world applications.

XML Signature Examples
and Frequently Asked Questions

Each example begins with an intended goal, question, or simply a clarifi-
cation concerning a particular aspect of XML Signatures. Some of the sce-
narios are quite simple and general, while others are quite specific to a
particular problem that has risen during the practical use of XML signing.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Scenario 1

Consider an arbitrary XML document D. Next, consider the problem of
creating a new XML document D’ that is tightly coupled with an XML Sig-
nature S, where S signs the document element of D’. That is, we would
like S to appear in the same document as D’. What are the two document
models that would allow for this?

Proposed Solution

The XML Signature Recommendation provides for enveloped and envelop-
ing signatures. Recall from Chapter 4 that an enveloped signature is
defined to have the <Signature> element as child to the element being
signed. Similarly, an enveloping signature has the <Signature> element
as parent to the element being signed. Both of these document models
tightly couple the <Signature> element with the data being signed, irre-
spective of the relationship of the <Signature> element to the document
element or vice versa. Listing 6-1 and 6-2 shows two high-level examples
of this coupling.

Notice that in Listing 6-2, the document that we are signing appears
inside an <Object> tag.

Scenario 2

Consider the problem of signing an arbitrary octet stream. What are two
ways in which an XML Signature can reference and sign arbitrary octets?

XML Security194

Listing 6-1

Enveloped XML
Signature

<DocumentD>
<Signature>
</Signature>

</DocumentD>

Listing 6-2

Enveloping XML
Signature

<Signature>
<Object>
<DocumentD>
</DocumentD>

</Object>
</Signature>

Proposed Solution

There are two ways of including an arbitrary octet stream in an XML Sig-
nature. The simplest (and arguably less useful) way to do this is to create
a detached signature and reference the octets via a Uniform Resource
Identifier (URI). This is shown in Listing 6-3. It is important to note that
although it is possible to reference a local arbitrary file in the URI
attribute of a <Reference> element, doing so has little utility. If the
intended recipient wants to verify a signature that uses a local binary file,
the recipient must have the same original document in the same location.

It can be argued, however, that a detached signature over a local file via
a URI reference has value in certain restricted cases. Consider the case
where the recipient ignores the URI attribute of the <Reference> ele-
ment and knows a priori where to obtain the necessary octets for digest-
ing. In this case, it matters little where the sender obtained the octets to
sign, as long as the recipient obtains the same octets, the signature can
still be effective.

The more complex (and arguably more useful) way to include arbitrary
octets is to use an <Object> element. In Chapter 4, we discussed the
<Object> element and mentioned that this element is the chief mecha-
nism for including arbitrary data objects in an XML Signature. When the
<Object> element is used, the data inside will ultimately be child to the
parent document element and consequently, the <Signature> will be
enveloping.

195Chapter 6 XML Signature Examples

Listing 6-3

A detached XML
Signature over a
local binary file

<Signature>
<SignedInfo>

<CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
<SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<Reference URI="file:///C:\foo.bin">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>qR73c21p0dfJB4OuZEaC46WE1qg=</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>
az14TVzmAUzq53cdQ6PF5Z/wNO9akwEhW7lVTVuy5hLh+TJLZpKhx8dtnnZoFx+cW
AumfQbvhdCP8jmuLrwnH2nwtbPLqQg5Lf3fK4a4Qrk2XOUAkwjxZEoAELbGVfKQaU
nOo84oPUvXDhiY5oJCIgJhtw4kCGmlHdVKeFb3Js=

</SignatureValue>
</Signature>

To actually make this scenario work, the arbitrary octets must be
encoded in a printable format for inclusion in an <Object> element. This
<Object> element is then treated as a normal XML document subset and
signed via a bare fragment identifier with <Reference> element. The
potentially confusing part of this process is that the encoding that must
happen is orthogonal to the transformations that are permissible with the
XML Signature Recommendation. That is, the octet stream must be
encoded before it is placed in the <Object> element. Because transforms
happen as a means to produce the data to be digested, there is no way to
encode the octet stream as a part of the transforms. The transforms refer
to the <Object> element, which in the case of an enveloping signature,
must already have printable data inside of it. Put another way, if one were
to use a printable encoding mechanism (such as Base-64 encoding) as a
part of the transformation waterfall, one would have to include octets in
the <Object> element, which is impossible by the rules of XML (all ele-
ment context must be in a text format). The printable encoding that will
be used in this case is going to be Base-64 encoding. This process is shown
in Figure 6-1. The input is an octet stream that is encoded in a printable
format and then placed inside an <Object> element. From here it is
treated as normal XML and is processed as such. The XML Signature
doesn’t know the difference between arbitrary printable data and print-
able data that encodes some underlying binary data object.

Scenario 3

Consider the problem of signing a multiple references with n signing keys.
Describe XML Signature syntax to accomplish this.

Proposed Solution

A simple approach is to create n separate <Signature> elements. Each
<Signature> element has a duplicate <SignedInfo> element contain-
ing the referenced resources. That is, each <Signature> element uses the
same <SignedInfo> child element. To reduce the complexity of this syn-
tax, a <Manifest> element can be utilized to consolidate the shared
resources. One detail that is often overlooked with this approach is the
location of the <Signature> elements in relation to the <Manifest>

XML Security196

197Chapter 6 XML Signature Examples

 <Reference URI=?>
 <DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue> ? </DigestValue>
 </Reference>
 </SignedInfo>

</Signature>

<Signature>
 <SignedInfo>

01101010101
01010101011
01010101010
01….

BHDj39eldfj
39qwaFEduj3
4Fad9r43jFC
DsakRMF…

<Signature>
<SignedInfo>

 <Reference URI=”#arbitraryId”>
 <DigestMethod
 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
 <DigestValue>hR7gd2jpgd4JGDFuZEgfd6WE1qg=</DigestValue>
 </Reference>

 </SignedInfo>

 <Object Id=”arbitraryId”>

 BHDj39eldfj39qwaFEduj34Fad9r43jFCDsakRMF…

</Object>

</Signature>

Finally, we include Bp in an <Object> element and give it an arbitrary Id. Now we
can finish reference generation and complete the signature.

Second, encode an arbitrary binary octet stream B to produce a printable version of Bp.

First, consider a snapshot of reference generation for an arbitrary XML Signature S.

 B Bp

Encoding

Figure 6-1

Including an
arbitrary octet
stream as part of
an Enveloping
XML Signature

element. For example, reconsider Listing 4-29. All of the <Signature>
elements are placed in the XML document, and the appropriate bare frag-
ment identifier is used to reference the <Manifest> element (such as,
#ThreeReferences). XML Signatures are not limited in this respect—
each <Signature> element that references a <Manifest> may exist
outside of the current XML document. Furthermore, the <Manifest> ele-
ment may be fully divorced from the XML Signature if so desired. This
malleable feature of XML Signatures provides for a great deal of flexibil-
ity within the syntax itself. Figure 6-2 shows a <Manifest> element in a
separate XML document that is referenced by several <Signature> ele-
ments. Compare this to Listing 4-29. The difference here is the coupling of
the <Manifest> element. In Listing 4-29, the <Manifest> is in the same
document (and is part of an enveloping signature), while in Figure 6-2, the
<Signature> elements shown are purely detached signatures.

In Figure 6-2, there are some important things to note. Consider the
structure and location of the <Manifest> element. It is shown nested
below two arbitrary ancestor elements—p1 and e1. The idea here is to
show that a <Manifest> element can exist quite happily outside a
-<Signature> block. There is no explicit requirement to tightly couple a

XML Security198

<Signature Id="FirstSigner">
 <SignedInfo>
 <Reference URI="http://remote.server.com/XMLDoc.xml">
 <Transforms>
 <Transform Algorithm=
 "http://www.w3.org/TR/1999/REC-xpath-19991116">
 <XPath>
 ancestor-or-self::Manifest
 </XPath>
 </Transform>
 </Transforms>
 </Reference>
…

<Signature Id="SecondSigner">
 <SignedInfo>
 <Reference URI="http://remote.server.com/XMLDoc.xml">
 <Transforms>
 <Transform Algorithm=
 "http://www.w3.org/TR/1999/REC-xpath-19991116">
 <XPath>
 ancestor-or-self::Manifest
 </XPath>
 </Transform>
 </Transforms>
 </Reference>
…

<p1>
 <e1>
 <Manifest>
 <Reference> … </Reference>
 <Reference> … </Reference>
 <Reference> … </Reference>
 </Manifest>
 </e1>
</p1>

XMLDoc.xml

Figure 6-2

Multiple
references with n
signers via a
<Manifest>

<Manifest> element within an existing XML Signature. It may be the
case that an arbitrary XML document contains many <Manifest> ele-
ments scattered throughout its structure.

Furthermore, notice how the <Manifest> element has been refer-
enced. In Listing 4-29, the <Manifest> was pointed at via a bare frag-
ment identifier. In Figure 6-2, it is done instead with a very simple XPath
expression that looks for an element (and all children of) called Manifest.
Although useful as an example, this XPath expression will likely be too
simple for most real-world scenarios. It doesn’t incorporate very much
context and omits things like namespace information. For example, if
multiple <Manifest> elements were present in XMLDoc.xml, the entire
set of them would be selected—in most cases, we would want just a single
<Manifest> element.

Scenario 4

Consider the problem of signing an arbitrary element E within an XML
document where E is not the document element. What are some possible
ways to make this type of signature?

Proposed Solution

Targeting an individual element to participate in an XML Signature is
one of the most powerful features of XML Signatures. This specific feature
is often used to exclude other portions of the source document. If only a
portion of an XML document is signed and the granularity is at the ele-
ment level, what is happening is that we are really providing a mecha-
nism for enabling changes to the rest of the XML document that are
irrelevant to validity of the signature.

There are some obvious ways to pinpoint a specific element, and
most of these mechanisms have been previously discussed. Listing 6-4
shows two ways of attempting to sign a particular element (called
<myElement>) in an XML document via a detached signature.

In Listing 6-4, notice the use of the XPath expression once again. This
particular expression is used pervasively in the examples here because it
conveniently includes those nodes that are themselves myElement nodes
or those that have myElement as an ancestor node. Also in Listing 6-4 is
the use of a fragment identifier. This type of reference can be used to select

199Chapter 6 XML Signature Examples

a particular element within an XML document, but the XML Signature
Recommendation cautions against it.

To be more precise, the fragment identifier shown is actually shorthand
for a slightly more complex expression defined by a language referred to
as XPointer. XPointer is used in places where a traditional HTML frag-
ment identifier is employed. The intention of XPointer is to provide a rich
language for selecting portions of XML documents. In this respect,
XPointer provides some of the same functionality as XPath in the context
of XML Signatures. The fragment identifier shown in Listing 6-4 is called
a bare name XPointer and is a syntactical shorthand for the expression:
xpointer(id(myElement)). This expression simply says: Give me the
element whose Id value is myElement, which is exactly what we want in
the scenario shown in Listing 6-4. The reader should understand that we
are looking for an element whose Id value is MyElement. This means that
the actual element inside file.xml would look as follows:

<MyElement Id="MyElement"> ... </MyElement>

It is merely coincidental that the Id attribute value and element name
match, this doesn’t have to be the case. The Id can be artibrary, such as
"elem1". In this case, the URI Reference in Listing 6-4 would need to be
changed as follows:

URI="http://www.fake-site.com/file.xml#elem1"

XML Security200

Listing 6-4

Two ways of
referencing an
element via a
detached
signature

<SignedInfo>
<Reference URI="http://www.fake-site.com/file.xml#myElement">

. . .
</Reference>

<Reference URI="http://www.fake-site.com/file.xml">
<Transforms>
<Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-
19991116">
<XPath>
ancestor-or-self:myElement

</XPath>
</Transform>

</Transforms>
. . .

</Reference>
. . .

</SignedInfo>

The reason why the XML Signature Recommendation cautions against
the use of a bare name XPointer reference is because bare name XPointer
resolution is not in scope for the XML Signature Recommendation. Per-
vasive use of bare name XPointer syntax can cause interoperability prob-
lems if these identifiers are not de-referenced in a standard way. The XML
Signature Recommendation instead advises the use of an XPath expres-
sion for element level selection.

Scenario 5

Consider a similar scenario to Scenario 4, but add the requirement of mul-
tiple signers to an arbitrary element E where E is not the document ele-
ment. Further, add the requirement that the signatures must be tightly
coupled with the source XML document. What are two ways of accom-
plishing this type of signature?

Proposed Solution 1

The first solution involves adding separate <Signature> elements as
children to the original document. This is a curious case because although
the <Signature> elements appear to be enveloped, they are in fact
detached. The reason why is because the document element is not
included in the signature. The <Signature> elements are side-by-side
the data being signed—the signature is neither parent nor child to the
data being signed. This is a case where a detached signature appears to
behave like an enveloped or enveloping signature in its relation to the
source document. Listing 6-5 shows an example of three signers signing
an arbitrary element within a source XML document.

The first thing to notice about Listing 6-5, like some of the other exam-
ples, is that it is not a complete signature. Elements, such as the signature
value, signature method, digest value, and others have been left out for
clarity. The thing to focus on is the arbitrary element, which has been
named <Element1>. This element is a child element of the document ele-
ment <SourceDocument>. In order to sign <Element1> with multiple
signers, we have added three <Signature> child elements to <Source-
Document>. Each of these three child <Signature> elements references
<Element1>. Two of the <Signature> elements use a bare name frag-
ment identifier to identify <Element1> by its Id value and one of the

201Chapter 6 XML Signature Examples

<Signature> elements uses an XPath expression to target the desired
element. The point here is to show that the <Signature> elements may
reference <Element1> in any way they want.

The XPath expression shown is similar to the same ancestor-or-
self expression used in previous examples. The difference here is that
this expression is a bit more robust. The additional [parent:Source-
Document] syntax indicates that a node should be signed if it has
<SourceDocument> as a parent. This additional constraint would be use-
ful in situations where <SourceDocument> was placed into another XML
document as a child that also had an element named <Element1>. That
is, ancestor-or-self:Element1[parent:SourceDocument] means
a node should be included in the node-set to be signed if the node is an
<Element1> node with <SourceDocument> as the parent, or has
<Element1> as its ancestor, with <SourceDocument> as the parent.

XML Security202

Listing 6-5

Example of
Multiple
Detached
Signatures over
an arbitrary
element

<SourceDocument>
<Element1 Id="SignHere"> This is important information!

</Element1>
<Signature Id="Signer1">

<SignedInfo>
<Reference URI="#SignHere"> ... </Reference>

</SignedInfo>
...

</Signature>
<Signature Id="Signer2">
<SignedInfo>
<Reference URI="">

<Transforms>
<Transform
Algorithm="http://www.w3.org/TR/1999/REC-xpath-
19991116">
<XPath>
ancestor-or-self:Element1[parent:SourceDocument]
</XPath>

</Transform>
</Transforms>

...
</Reference>

</SignedInfo>
...
</Signature>
<Signature Id="Signer3">
<SignedInfo>
<Reference URI="#SignHere"> . . . </Reference>

</SignedInfo>
...
</Signature>

</SourceDocument>

Proposed Solution 2

Another way of adding multiple signers to an arbitrary element E within
an XML document involves making enveloping signatures over E. This
method of creating an XML Signature contrasts the previous solution in
that it is a bit more complex. Each <Signature> element is tightly
attached to the previous, creating a more cumbersome structure. This
type of solution might be useful if it is anticipated that the <Signature>
element may be moved at a later date. If it is removed, the original docu-
ment goes with it. In the previous example, one would have to remove the
original document and <Signature> blocks separately and maintain the
child relationships between them. This solution makes for more portable
signature elements. Listing 6-6 shows an example of how this might be
accomplished.

Notice in Listing 6-6 the increased complexity of the structure. Only
two signers are shown in this example to reduce confusion. The first
signer is denoted by the <Signature> element with an Id attribute of
Signer1. This <Signature> element references the arbitrary element,
Element1 inside an <Object> element using a bare fragment identifier
called <#thisElement>. The next signer, which is denoted by the <Sig-
nature> element with the Id attribute of Signer2 further envelopes the

203Chapter 6 XML Signature Examples

Listing 6-6

Example of
Multiple
Enveloping
Signatures over
an arbitrary
element

<SourceDocument>
<Signature Id="Signer2">
<SignedInfo>
<Reference URI="#thisElement">

. . .
</Reference>

</SignedInfo>
<Object Id="FirstSigner">
<Signature Id="Signer1">
<SignedInfo>
<Reference URI="#thisElement">

. . .
</Reference>

</SignedInfo>
<Object Id="thisElement">
<Element1 Id="SignHere">
This is important information!

</Element1>
</Object>

</Signature>
</Object>
. . .
</Signature>

</SourceDocument>

first signature, which is also placed inside an <Object> element. Notice
how the second signer uses the same bare fragment identifier to sign
Element1. Furthermore, because of the way the <Object> element is
defined (see Chapter 4), the beginning and ending <Object> tags are also
signed. That is, in the previous solution (see Listing 6-5), when we signed
<Element1>, we signed the following data in all cases:

<Element1 Id="SignHere"> This is important information! </Element1>

In the solution shown in Listing 6-6 the data that is actually signed is
as follows:

<Object Id="thisElement">
<Element1 Id="SignHere"> This is important information!
</Element1>

</Object>

The reason why this happens is because of the way that the XML Sig-
nature Recommendation defines <Object>. When an element is signed
as a part of an enveloping signature, the encasing <Object> tags are also
signed. In this case, then, it may be desirable to add an XPath transform
that omits the <Object> tags in the node-set being signed. This type of
transform would make Listing 6-5 and Listing 6-6 equivalent in terms of
the data actually being signed.

Scenario 6

Consider the problem of signing an entire XML document. What is the
obvious problem associated with signing a full-featured XML document?

Proposed Solution

At first, this scenario may seem trivial, but a fully featured XML docu-
ment may not be well formed for the purposes of insertion into a <Signa-
ture> element. For example, consider the sample XML document shown
in Listing 6-7 that uses a variation of an XML application called DocBook,
which is used for authoring books or articles:

The interesting problem here is that although this document contains
well-formed XML, the entirety of the document is not well-formed XML.
In particular, the XML declaration and the document type declaration do
not have ending tags, yet they are required for most XML parsing appli-

XML Security204

cations in order to process and possibly validate the document properly.
This means that it would be impossible to simply insert the entire con-
tents of Listing 6-7 into an enveloping signature.

There are at least three possibilities for dealing with a fully featured
XML document similar to the one shown in Listing 6-7. The document can
be treated as arbitrary octets and referenced via a detached signature, or
the document can be encoded in a printable format and inserted into an
enveloping signature. Both of these possibilities mean that the XML doc-
ument is treated in exactly the same way as described in Scenario 2—
arbitrary octets. One solution for treating the XML document as XML is
to sign the document element of Listing 6-7 with an enveloped signature.
This is shown in Listing 6-8 and is a useful way of inserting an XML Sig-
nature into an existing XML document. It may be disappointing or
counter-intuitive that a fully-featured XML document must be treated as
binary in the context of XML Signatures when an enveloped signature is
not used, but the nature and syntax of the XML declaration and document
type declaration leave little other choice.

The <Reference> element shown in Listing 6-8 refers to the document
element, <article>. The association is made with a bare fragment iden-
tifier using the Id attribute of the <article> element. If <article> had
no Id attribute, the element could still be signed with an XPath expres-
sion. Another nuance is the presence of the enveloped-signature trans-
form. This transform is required for all enveloped signatures and is used
to exclude the <Signature> block from the computation of the digest
value. Another detail that is overlooked in this example is the possibility
of conflicting namespaces. Our DocBook instance doesn’t use any of the
same element names as XML Signatures, but care must be taken to
include the appropriate namespace declaration to prevent conflicts

205Chapter 6 XML Signature Examples

Listing 6-7

An Example
DocBook XML
Instance

<?xml version='1.0'?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD Docbook XML V4.1.2//EN"

"http://www.oasis-
open.org/docbook/xml/4.1.2/docbookx.dtd">
<article>
<title>Chocolate: The definitive guide</title>
<sect1>
<title>Why dark chocolate is bad</title>
<para>
Everyone knows that dark chocolate is vastly inferior to milk
chocolate.

</para>
</sect1>

</article>

between elements of the same name. An easy way to do this is to add a
default namespace declaration to the <Signature> element as follows:

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#" Id="Signer1">

The correct XML Signature namespace should be included anytime
there is a possibility of merging an XML Signature with an existing XML
document—in fact, it is good practice to include it all of the time to pre-
vent name conflicts in general. We have been omitting it from most of the
examples thus far in an effort to avoid confusing details.

Scenario 7

What types of considerations arise when using XPath as a selection mech-
anism for pinpointing elements to participate in an XML Signature? That
is, common XPath expressions such as /element seem to give erroneous
results for the XPath transform.

XML Security206

Listing 6-8

Inserting an
enveloped
signature into a
fully featured
XML document

<?xml version='1.0'?>
<!DOCTYPE article PUBLIC "-//OASIS//DTD Docbook XML V4.1.2//EN"

"http://www.oasis-
open.org/docbook/xml/4.1.2/docbookx.dtd">
<article Id="chocolate">
<title>Chocolate: The definitive guide</title>
<sect1>
<title>Why dark chocolate is bad</title>
<para>
Everyone knows that dark chocolate is vastly inferior to milk
chocolate.

</para>
</sect1>
<Signature Id="Signer1">
<SignedInfo>
<Reference URI�"#chocolate">
<Transforms>
<Transform
Algorithm�
"http://www.w3.org/2000/09/xmldsig#enveloped-signature"

/>
</Transforms>
. . .

</Reference>
. . .
</SignedInfo>
. . .
</Signature>

</article>

Proposed Solution

When XPath is used as a transformation for an XML Signature, it is used
as a filtering mechanism and not as a selection mechanism. This nuance
causes headaches for those who have worked with XPath as a selection
mechanism. Before an XPath transform occurs, the entire node-set of the
current document is collected. For each node in this node-set, the desired
XPath expression is evaluated against the current node and the result is
converted into a Boolean value. If the value is true, the node is included in
the node-set that will eventually be canonicalized and then signed. If the
value is false, the node is excluded from the output node-set. For simple
XPath processing, this type of Boolean conversion complicates simpler
selection expressions. Consider Listing 6-9, which shows an arbitrary
well-formed XML document.

Suppose that it is our job to write an XPath expression to select
<element3> and all of its children. A vacuous XPath expression that
might be considered for this task would simply be: /element1/
element2/element3. This particular expression exemplifies the nature
of XPath as a simple selection language based on the concept of a path
similar to its use in a URI. Unfortunately, this particular XPath expres-
sion will produce a completely erroneous result if it is used with an XML
Signature. In fact, instead of selecting only the <element3> node, it will
usually inadvertently select all nodes of the input document. The reason
why this occurs is because of the way the XPath expression is interpreted
based on the XML Signature Recommendation. The given XPath expres-
sion is evaluated against each node, and the result is converted to a
Boolean value. Furthermore, the XPath Recommendation defines that any
non-empty node-set be evaluated as true when it is converted into a
Boolean value. The expression /element1/element2/element3 will
always be a non-empty node-set and will cause every node in the input
node-set to be evaluated as true and transferred to the output node-set.
This is why the expression ancestor-or-self is used pervasively as an

207Chapter 6 XML Signature Examples

Listing 6-9

An arbitrary well-
formed XML
document

<element1>
<element2>
<element3> This is my target ! </element3>

</element2
</element1>

element selection mechanism. This particular expression produces the
correct Boolean value for selecting an element and its children. Care must
be taken when designing XPath expressions to ensure that they evaluate
to a proper Boolean value. This is especially important with XML Signa-
tures, because it is often too difficult to discern what the XPath expression
produces because the result is canonicalized and then signed—the signer
must have complete confidence that the XPath expression chosen is
indeed correct. Because the XPath transform and canonicalization
method together define the data that is actually signed, a rogue or poorly
understood XPath expression can completely alter the actual bytes that
participate in the signature. This security consideration is related to the
security maxims discussed in Chapter 5, specifically the third security
maxim that states that an application should see what is signed.

Scenario 8

Consider an arbitrary <Signature> element that contains a <Signed-
Info> element with several <Reference> elements. Each of the <Ref-
erence> elements refers to data external to the <Signature> element.
That is, the <Signature> element is the document element of the given
XML document. It is expected that this particular signature will be veri-
fied by a large number of recipients over an extended period of time. More-
over, it is anticipated that the semantics of the signature will change over
time; some of the items referred to will be removed or changed. It is desir-
able to maintain the validity of the signature throughout material
changes to external data. How can this requirement be met using XML
Signatures?

Proposed Solution

The details of Scenario 8 represent a very application-specific require-
ment that can be met with the use of a <Manifest> element. This ele-
ment has been discussed before, and by now this solution is most likely
review for the reader. The use of a <Manifest> to house <Reference>
elements is a convenient way of beating the definition of core validation.
Each <Reference> element that anticipates change should be placed in
a <Manifest> element. From here, it is up to the application to validate
the <Reference> element as it sees fit—the validation of <Reference>

XML Security208

elements that reside inside a <Manifest> element is not part of the core
validation process. For completeness, another example use of the <Mani-
fest> element is shown in Listing 6-10.

Listing 6-10 illustrates the use of the <Manifest> element once again.
The files that are referenced, file1.bin and file2.bin, can change at
will without affecting the value of core-validation as defined by the XML
Signature processing model.

Scenario 9

Canonicalization is an expensive operation and seems to be used in vari-
ous places within the processing model for XML Signatures. How can we
know if canonicalization is being used unnecessarily? Is it possible to omit
canonicalization to save on performance?

Proposed Solution

There are three places where canonicalization is specified for the
XML Signature processing model. It is a required operation during core
validation and core generation and must be used to normalize the
<SignedInfo> element before signing and verification. Unless a highly
customized XML Signature implementation is being used, it is unlikely

209Chapter 6 XML Signature Examples

Listing 6-10

Another example
use of
<Manifest>

<Signature>
<SignedInfo>
<Reference URI="#refList">
. . .

</Reference>
. . .
</SignedInfo>
<Object>
<Manifest Id="refList">
<Reference URI="http://www.some-site.com/file1.bin">

. . .
</Reference>
<Reference URI="http://www.some-site.com/file2.bin">

. . .
</Reference>

</Manifest>
</Object>
. . .

</Signature>

that canonicalization can be omitted at this stage. The second place where
canonicalization is required is directly before the data from a <Refer-
ence> element is digested. If the <Reference> element is being treated
as binary, then canonicalization is meaningless because the operation is
only defined on XML data—arbitrary octets cannot be canonicalized.
When a <Reference> element specifies a node-set (as in a same-docu-
ment reference), this node-set is canonicalized implicitly when it is con-
verted to an octet stream. Canonicalization is defined to produce a
physical representation based on a node-set, and it is this node-set that is
converted into binary form to be used in the digest algorithm. This
implicit canonicalization is a defined part of the processing model and
cannot be omitted. The third place where canonicalization can be used is
as an explicit transform from within the transformation waterfall. At first
glance, this may seem like a redundant operation (see Listing 6-11).

If canonicalization is used implicitly before the digest operation, isn’t
adding the canonicalization method as an exclusive transform a redun-
dant operation? In short, the answer here is that the addition of a canon-
icalization algorithm in the transform waterfall shouldn’t be redundant in
proper implementations of XML Signatures. The reason why is because
the canonicalization algorithm produces an octet stream as its output.
This means that the implicit canonicalization will be skipped because the
output will already be the octet stream that is necessary for the digest
function. A redundant use of canonicalization would be two transforms
back-to-back within the transformation waterfall. This scenario is
unlikely to occur for any practical situation and will probably be a non-
issue.

XML Security210

Listing 6-11

Using
canonicalization
as an explicit
transform

<Signature>
<SignedInfo>
<Reference URI="">
<Transforms>
<Tranform
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315" />

</Transforms>
</Reference>
. . .

</SignedInfo>
. . .

</Signature>

Scenario 10

Consider a situation where it is desirable to tightly couple arbitrary
binary data with an XML Signature. A solution for this would be to use an
enveloping XML signature and encode the binary data in some printable
format (see Scenario 2). The most popular pintable-encoding scheme used
is Base-64 encoding—defined in RFC 1421, 1521, and 2045. Base-64
encoding makes use of the carriage return and line feed character to
denote a line break. What sort of practical implications does this have for
XML and Canonical XML, which normalize carriage return characters?

Proposed Solution

It is natural to experience problems with reference validation on a <Ref-
erence> element that specifies some arbitrary Base-64 encoded data. To
give a concrete example, consider Listing 6-12, which shows some arbi-
trary Base-64 encoded data produced with a commercial cryptography
toolkit.

Next, suppose we take this data and interpret it as binary. We can get
more information about exactly how this particular piece of data was
encoded by looking at the actual underlying octets. The resulting hexa-
decimal values that correspond to the ASCII printable characters are
shown in Listing 6-13.

The carriage return and line feed (CRLF) characters that break up the
Base-64 encoded data into separate lines are shown in bold in List-
ing 6-13. Furthermore, the XML Recommendation specifies that all occur-
rences of CRLF should be converted into a single LF character (see
Section 2.11 in the XML 1.0 Recommendation). The problem, then, occurs
when this particular piece of data is added to an XML Signature after the
XML has been processed; it is expected that the data has already had its
line endings converted. This situation is likely to occur any time an XML
Signature is added to an existing DOM tree (for more information on

211Chapter 6 XML Signature Examples

Listing 6-12

Arbitrary Base-64
encoded data

hH6wIolYX86HCvgTNFMFn/vFAqcYry2vjnVlwZsHwCdLXH3EtTfNYVx3YTgvUYAIOfey
G7/8HqkkEBXvcAU5a09ynnfuqhtI/XagQ2NCjcCIobypJCD8jS/QksHLmxcHdqmN8/9
n9T+o8SvvHkarj7oAHC3IYjChCbyELYR8EyvRf5HePYY7tgXxM3OxNVVy3u/LTLaeJt2
BzQudP3uBtQ==

DOM, see the primer in chapter 3). That is, the carriage return character
is not considered a valid line-ending character in the context of XML, and
when the XML is canonicalized, occurrences of x0D are converted to a
character reference (). This has the undesirable side effect of altering
the meaning of the Base-64 encoded data and subsequently the digest
value, making reference validation nearly impossible for applications that
aren’t aware of this normalization. To make this point more salient, List-
ing 6-14 shows the actual data that is digested after canonicalization
occurs. Remember, the data is canonicalized when it is converted from a
node-set to an octet stream. If Base-64 encoded data is added to an
<Object> element, this type of reference will be treated as a node-set and
will be canonicalized in all cases.

Notice the additional characters references that have been added to the
data shown in Listing 6-14. These additional references are included by
the definition of Canonical XML, which states that any occurrences of car-
riage return are converted to . From here, the data is digested, and
the digest value is placed inside a <DigestValue> element. This situa-
tion, however, may seem irrelevant at first glance. A common objection
says that because the input data should be canonicalized before it is ver-
ified, these changes are irrelevant. The reason why this objection is not
valid in this case is because in the case of an enveloping signature, the
XML document containing the signature will most likely be processed by
a conformant XML processor before verification. By definition of XML line
feed normalization, any carriage return characters will be normalized and
converted to line feed characters, and the recipient will be unable to suc-
cessfully verify the signature even though the actual data inside the
<Reference> remains unchanged. To further clarify the situation, sup-

XML Security212

Listing 6-13

Hexadecimal
values for
Listing 6-12

68 48 36 77 49 6F 6C 59 58 38 36 48 43 76 67 54
4E 46 4D 46 6E 2F 76 46 41 71 63 59 72 79 32 76
6A 6E 56 6C 77 5A 73 48 77 43 64 4C 58 48 33 45
74 54 66 4E 59 56 78 33 59 54 67 76 55 59 41 49
4F 66 65 79 47 37 2F 38 48 71 6B 6B 0D 0A 45 42
58 76 63 41 55 35 61 30 39 79 6E 6E 66 75 71 68
74 49 2F 58 61 67 51 32 4E 43 6A 63 43 49 6F 62
79 70 4A 43 44 38 6A 53 2F 51 6B 73 48 4C 6D 78
63 48 64 71 6D 4E 38 2F 39 6E 39 54 2B 6F 38 53
76 76 48 6B 61 72 6A 37 6F 41 0D 0A 48 43 33 49
59 6A 43 68 43 62 79 45 4C 59 52 38 45 79 76 52
66 35 48 65 50 59 59 37 74 67 58 78 4D 33 4F 78
4E 56 56 79 33 75 2F 4C 54 4C 61 65 4A 74 32 42
7A 51 75 64 50 33 75 42 74 51 3D 3D

pose that the data shown in Listing 6-14 produces an arbitrary digest
value, such as the one shown as part of a <Reference> element that ref-
erences the data shown in Listing 6-13:

<Reference URI="encoded-data">
<DigestMethod Algorithm="http://www.w3.org/2000/09 /xmldsig#sha1" />
<DigestValue>cvjp9GJOX69990Kqew9ioBGGEio�</DigestValue>

</Reference>

The source URI is simply the Id of an <Object> element that houses
the encoded data. The full <Object> element is shown as follows:

<Object Id="encoded-data">
hH6wIolYX86HCvgTNFMFn/vFAqcYry2vjnVlwZsHwCdLXH3EtTfNYVx3YTgvUYAIOfeyG7
/8HqkkEBXvcAU5a09ynnfuqhtI/XagQ2NCjcCIobypJCD8jS/QksHLmxcHdqmN8/9
n9T+o8SvvHkarj7oAHC3IYjChCbyELYR8EyvRf5HePYY7tgXxM3OxNVVy3u/LTLaeJt2Bz
QudP3uBtQ==
</Object>

It is very important to re-iterate that the digest value shown is not
actually the digest value of <Object> element with the Id value of
encoded-data, but it is instead the digest value of the <Object> tags
and the data shown in Listing 6-14. The reason why is, again, because of
Canonical XML, which converts carriage return characters to character
references. Furthermore, suppose that this signature was written to a file
and transmitted to a recipient. When the recipient reads the XML docu-
ment containing the XML Signature, the carriage return characters that
are not visible in the transmitted data are stripped as a part of standard
XML normalization. This means that when the digest value of the
<Object> element is calculated as a part of signature validation, the
digest value will be different because the  character references do
not participate in the digest value. These character references are
stripped out even before the data can be canonicalized for verification.

This particular situation represents a clash between the XML Recom-
mendation, RFC 2045, and the XML Signature Recommendation. The

213Chapter 6 XML Signature Examples

Listing 6-14

Arbitrary Base-64
encoded data
after
canonicalization

hH6wIolYX86HCvgTNFMFn/vFAqcYry2vjnVlwZsHwCdLXH3EtTfNYVx3YTgvUYAIOfeyG7/8
Hqkk෫XvcAU5a09ynnfuqhtI/XagQ2NCjcCIobypJCD8jS/QksHLmxcHdqmN8/9
n9T+o8SvvHkarj7oAHC3IYjChCbyELYR8EyvRf5HePYY7tgXxM3OxNVVy3u/LTLaeJt2
BzQudP3uBtQ==

proper solution for this situation is to ensure that any Base-64 encoded
data that is added to an XML Signature after line-ending normalization
has occurred (such as to a DOM tree), should be free of any carriage
return values. This is a tricky situation in particular because any Base-64
encoded data that is removed from MIME messages must be further mas-
saged before it is added directly to an XML Signature.

Scenario 11

What are the implications of creating a <Reference> element whose URI
attribute has a value that uses https as its protocol scheme?

Proposed Solution

An XML Signature can rely on any resource accessible via a URI for use
in a digital signature. If a URI reference uses https as its protocol
scheme, the referent is a web resource that resides on a server that sup-
ports SSL or TLS. The existence of https as a protocol scheme implies
nothing about how the <Reference> element that contains this URI is
handled. That is, de-referencing a Web resource is out of scope for the XML
Signature processing model. This point may be especially confusing for
some readers because processing a <Reference> element that uses an
https URI seems to mix security technologies. The XML Signature pro-
cessing model simply demands data residing at a particular URI; whether
this data is protected by another security protocol or is sent in the clear is
of no concern to the XML Signature processing model.

Scenario 12

Consider a remote URI reference used an XML Signature. Suppose it is
anticipated that over time, the URI will change, but the actual data
signed will remain constant. For example, let the original URI reference
be http://www.server1.com/document.xml. The anticipated change
moves document.xml to http://www.server2.com/document.xml.
How would one create an XML Signature that would enable the validity
of the signature to survive a change in the source location?

XML Security214

Proposed Solution

The way to achieve this is to utilize a <Manifest> element and add
semantics to the core validation process with the use of a transform that
omits the URI attribute. In a strict sense, the processing model for XML
Signatures does not enable for such a change in the source location, and
signature validity will be delegated to the application. The use of the
<Manifest> element, however, enables the application to reserve some
reference validation semantics for itself. This scenario is very similar to
Scenario 8 discussed previously. The only addition is a signature trans-
form that pinpoints the desired URI attribute and leaves it out of the final
data that is signed. This type of transformation can be dangerous, and the
signer must implicitly trust this change in server location. The digital sig-
nature no longer protects the location, and the application must properly
validate the location beforehand. This is part of the requirement that the
application “sees what it signs.”

A new concept that is introduced in this section is the XSLT transform.
This type of transform is an optional transform of the XML Signature
Recommendation. XSLT is the Extensible Stylesheet Language for Trans-
formations. This technology is an integral part of transforming XML in
general. It relies on XPath as well as the language defined by Extensible
Stylesheet Language (XSL). We have chosen this type of transformation
for this particular scenario because we need a robust way of providing
transformation semantics that may be confusing or impossible to do with
an XPath transformation alone. To bolster this scenario with some
concrete examples consider Listing 6-15; this figure shows an example
<Manifest> element containing several <Reference> elements that
will participate in an XML Signature.

Our goal here is to target the first <Reference> element with the Id
attribute SubjectToChange. Suppose we know in advance that the loca-
tion of the data object will change over time. This means that we would
like to exclude the string URI=http://www.server1.com/document
.xml from the actual digest value. By excluding this URI attribute from
the computation, we are allowing for the location of this document to
change from one server to another without breaking the signature. Real-
ize, however, that these extra processing rules are going to be application-
specific. What we mean here is that the application will have to decide
its own rules for processing the internals of the <Manifest> element; The
<Reference> elements inside <Manifest> are not processed as a part of
core generation. Furthermore, if the application feels that it doesn’t need

215Chapter 6 XML Signature Examples

the URI attribute at all, nothing precludes the application from obtaining
the proper document from a cache or from an alternate location. Our final
goal is to create an XSLT transform that produces the same XML docu-
ment shown in Figure 6-10, but with the URI attribute omitted.

When the <Manifest> element shown in Listing 6-16 is finally vali-
dated, the XML verification engine doesn’t know or even care about a URI
attribute that once appeared in an attribute list inside a <Reference>
element somewhere in a <Manifest> element. Once the transformation
is performed, the verification happens, and the URI attribute is forgotten
—in a sense, it is completely out of scope for the XML Signature verifica-
tion. The URI attribute is removed long before the XML digest value is
checked as a part of core validation. To make this picture a bit more
explicit, consider Figure 6-3, which shows a pictorial representation of the
relationship between the application, the two XML documents and the
core validation process.

Figure 6-3 is quite rich, and there are a lot of things described in the
picture. To begin with, the figure is split into two parts. Figure 6-3(a)
shows the meta-steps of core generation; Figure 6-3(b) shows the same for
core validation. The complete syntax for the <Signature> and <Refer-
ence> elements is omitted for clarity, and not all of the core generation
steps are shown. There are two main points of concern about Fiure 6-3(a).
The first point is the presence of the large bubble that is prepended to
the core generation process. This bubble denotes application-specific

XML Security216

Listing 6-15

A <Manifest>
element with
three
<Reference>
elements

<Manifest Id="Manifest1">
<Reference Id="SubjectToChange"

URI="http://www.server1.com/document.xml">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue>vvVZy3yga7CyFcPzPt0C7cA3as8=</DigestValue>

</Reference>
<Reference URI="#ref2">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<DigestValue>mBeIaZFGfdsDI48HGcvzQA3qio=</DigestValue>

</Reference>
<Reference URI="http://www.server5.com/document5.xml">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<DigestValue>qBeBaZFGqweDI48KZcvztv3qyo=</DigestValue>

</Reference>
</Manifest>

217Chapter 6 XML Signature Examples

Listing 6-16

Omitting a URI
attribute

<Manifest Id="Manifest1">
<Reference Id="SubjectToChange">

<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

<DigestValue>vvVZy3yga7CyFcPzPt0C7cA3as8=</DigestValue>
</Reference>
<Reference URI="#ref2">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<DigestValue>mBeIaZFGfdsDI48HGcvzQA3qio=</DigestValue>

</Reference>
<Reference URI="http://www.server5.com/document5.xml">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
<DigestValue>qBeBaZFGqweDI48KZcvztv3qyo=</DigestValue>

</Reference>
</Manifest>

(a) Core Generation

(b) Core Validation

Validate Manifest

Create
Manifest

<Signature>

 …

 <Manifest>

 <Reference
 URI="server1">
 …
 </Manifest>

</Signature>

<Signature>

 …

 <Manifest>

 <Reference
 URI="server2">
 …
 </Manifest>

</Signature>

<Manifest>

 <Reference
 URI="server1">
 …
</Manifest>

<Manifest>
 <Reference>…
</Manifest>

<SignatureValue>

<SignatureValue>
<Manifest>
 <Reference>…
</Manifest>

Yes

No

<Manifest>

 <Reference
 URI="server1">
 …
</Manifest>

Application
Specific
Processing

Application
Specific
Processing

 XSLT
Transform

 XSLT
Transform

Figure 6-3

Signature
Creation and
Validation with
an XSLT
Transform to
omit a URI

processing that is happening outside of the normal core generation
process. In particular, the scenario with the <Manifest> element requires
that the <Reference> elements inside this element be de-referenced and
subsequently digested. If you look back at the definition of core generation
in Chapter 5, you will notice that reference generation is defined around
the contents of a <SignedInfo> element. It is these <Reference> ele-
ments that are explicitly de-referenced and digested. That is, the applica-
tion that houses the signing engine cannot necessarily rely on the
semantics of core generation for XML Signatures to de-reference and
digest its <Reference> elements in any other place but the <Signed-
Info> element. Most XML signing packages provide for this functionality
as a convenience, but it is not a required part of the processing model.

The second point is the XSLT transform. Notice that this transform
omits the URI attribute in the <Reference> (after the transform,
server1 has been omitted) element. The actual data that is signed is
comprised of the <Reference> element except for its URI attribute. This
has the obvious consequence of allowing anyone to change the URI
attribute without altering the signature. Finally, the <Manifest> ele-
ment is digested, and then the signature value is created. This last step
omits several intermediate steps (if only for lack of room on the page).
Remember, the <Manifest> that is digested is just one of many data
objects (it too is referred to from a <Reference> element), so to be com-
plete, Figure 6-3(a) should probably also show the <SignedInfo> ele-
ment being signed to create the final <SignatureValue>.

Figure 6-3(b) shows the same process for core validation. It is extremely
important to reiterate that the application is responsible for establishing
the proper validity semantics when a <Manifest> element is used. The
<Reference> elements that live inside a <Manifest> element are not
de-referenced and validated as a part of core validation (to double check
this, reconsider the core validation process shown in Chapter 5). To
rephrase, each <SignatureValue> calculated in Figure 6-3 is identical
and is impervious to changes in the location of the file (URI) and the con-
tents of the file. The URI and the file can change or be completely
removed, and core validation would still pass in this instance. This fact
provides justification for the bubble that is attached to the <Manifest>
element in Figure 6-3(b). In this case, the application is responsible for
dereferencing the <Reference> inside the <Manifest> element and
checking the digest itself.

Some readers may be wondering about the technical details of the
XSLT transform and how it fits into the logistics of signature creation.

XML Security218

The XSLT transform is a transform just like any other; the only main dif-
ference between this transform and others is that it is an optional trans-
form for the XML Signature Recommendation. This means that you might
not find it in all implementations of XML Signatures. Listing 6-17 shows
a sample XSLT transformation that contains logic to omit a URI attribute
within a <Manifest> element provided that it has a certain Id attribute.
In this case, if the <Reference> element has an Id attribute
of SubjectToChange, then the URI attribute of that particular
<Reference> element will be left out of the result set for the transform.
We will not discuss the specifics of how XSLT works in this book. It is rec-
ommended that the reader visit the references section at the end of the
book for more information on XSLT.

The XSLT code in Listing 6-17 consists of two meta-steps. The first step
has the effect of an identity transform and collects all of the nodes in the

219Chapter 6 XML Signature Examples

Listing 6-17

A sample XSLT
transform for
excluding an
attribute

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output encoding="UTF-8" indent="no" method="xml" />

<!-- Collect all nodes in the document -->
<xsl:template match="node()|@*">

<xsl:copy>
<xsl:apply-templates select="node()|@*"/>

</xsl:copy>
</xsl:template>

<!-- Find the element with the URI we want to nuke -->
<xsl:template match="Reference[@Id='SubjectToChange']">

<xsl:element name="Reference">
<xsl:attribute name="Id">

<xsl:value-of select="@Id" />
</xsl:attribute>

<!-- Recreate the DigestMethod element -->
<xsl:element name="DigestMethod">

<xsl:attribute name="Algorithm">
<xsl:value-of select="DigestMethod/@Algorithm" />

</xsl:attribute>
</xsl:element>

<!-- Recreate the DigestValue element -->
<xsl:element name="DigestValue">

<xsl:value-of select="DigestValue" />
</xsl:element>

</xsl:element>
</xsl:template>
</xsl:stylesheet>

input document. The second step catches all <Reference> elements with
an Id attribute of SubjectToChange and recreates these elements with-
out their URI attribute. This can be done because the schema definition
for <Reference> is well defined with regard to the ordering of its child
elements <DigestMethod> and <DigestValue>.

The final topic of discussion for this scenario is how to associate an
XSLT transform with a particular <Reference> element. We have seen
the syntax for an actual XSLT transform; now it is time to see how this
XSLT code is associated with the proper <Reference> element. We must
be especially careful and remember that we are talking about the <Ref-
erence> element in two distinct ways: There is the set of <Reference>
elements inside the <Manifest> (where we would like to omit the URI
attribute), and then there is the set of <Reference> elements inside the
<SignedInfo>. It is one of these <Reference> elements that will ulti-
mately refer to the <Manifest> element. Figure 6-4 makes this point
explicit in a pictorial view.

We have seen figures similar to Figure 6-4 in previous discussions. This
picture is repeated again for clarity. Creating a <Transforms> child ele-
ment with the proper <Transform> subchild and necessary URI identi-
fier is the designated way of adding an XSLT transform to a
<Reference> element. In most cases, the XSLT style sheet code is added
directly to the <Transform> child element, but it can be inline within the
XML document being signed. Listing 6-18 shows how the XSLT code
(given initially in Listing 6-17) is added to become part of a <Reference>
element that references the necessary list of resources inside the <Mani-
fest> element.

Notice in Listing 6-18, we have simply taken the XSLT code and placed
it inside a <Transforms> element. Notice the URI identifier (shown in
bold) for XSLT; this is the URI identifier specified by the XML Signature
Recommendation for use with the XSLT transform. The only thing that
prevents our XSLT transform from becoming completely functional is its
lack of namespace-qualified elements. When using an XSLT transform, all
of the names of the elements that are referred to should be namespace-
qualified; this prevents the transformation from getting confused between
possible name clashes when the transformation is underway. In this case,
we would add the XML Signature Namespace, xmlns=“http://www.
w3.org/2000/09/xmldsig#”, which was explicitly left out of the exam-
ple in the interest of clarity.

XML Security220

Scenario 13

How is it possible for an XML document D containing an XML Signature
S to exhibit all three types of XML signatures (enveloped, enveloping, and
detached) simultaneously?

Proposed Solution

As the complexity of a signed XML document increases, the classification
of an XML Signature into three distinct types begins to decay. All three
types of signatures can be combined and exhibited in a single document.

221Chapter 6 XML Signature Examples

<Signature>

 <SignedInfo>

 <Reference URI="#Manifest1">

 </Reference>

 </SignedInfo>

 <Object>
 <Manifest URI="Manifest1">

 <Reference
 Id="SubjectToChange"
 URI=
 "http://www.server1.com/document.xml">

 </Reference>

 </Manifest>

 </Object>

</Signature>

XSLT

Figure 6-4

Associating the
XSLT Transform
with a
<Reference>
element

This leads to a signed XML document that cannot be neatly grouped into
one of the three categories. Listing 6-19 shows an example XML Signa-
ture whose <SignedInfo> element contains three disparate resources,
all of which represent a different signature type.

Notice in Listing 6-19 that the <Signature> element (with an Id
value of ThreeTypes) is enveloped by the <Contract1> element. This
particular association gives the XML Signature the enveloped property.

XML Security222

Listing 6-18

Adding XSLT
code to a
<Reference>
element as a
transformation

<Reference URI="#Manifest1">
<Transforms>

<Transform Algorithm="http://www.w3.org/TR/1999/REC-xslt-
19991116">
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output encoding="UTF-8" indent="no" method="xml" />

<!-- Collect all nodes in the document -->
<xsl:template match="node()|@*">

<xsl:copy>
<xsl:apply-templates select="node()|@*"/>

</xsl:copy>
</xsl:template>

<!-- Find the element with the URI we want to nuke -->
<xsl:template match="Reference[@Id='SubjectToChange']">

<xsl:element name="Reference">
<xsl:attribute name="Id">

<xsl:value-of select="@Id" />
</xsl:attribute>

<!-- Recreate the DigestMethod element -->
<xsl:element name="DigestMethod">

<xsl:attribute name="Algorithm">
<xsl:value-of select="DigestMethod/@Algorithm" />

</xsl:attribute>
</xsl:element>

<!-- Recreate the DigestValue element -->
<xsl:element name="DigestValue">

<xsl:value-of select="DigestValue" />
</xsl:element>

</xsl:element>
</xsl:template>
</xsl:stylesheet>
</Transform>

</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2000/09 /xmldsig#sha1"
/>
<DigestValue>b4wq5Qxos7IqNVkiPy7/ffI+dCd=</DigestValue>

</Reference>

Furthermore, because the <Signature> element also does some of its
own enveloping (it signs the <Object> element that houses <Con-
tract2>), the signature is enveloping. Finally, the XML Signature also
references a remote file (http://www.remote-server.com/file.
doc). This gives the signature the detached property.

Scenario 14

An XML document containing an XML Signature S has white space
added to the <SignedInfo> element. The addition of white space seems
to change the <SignatureValue> and result in a broken signature,
despite the fact that Canonical XML is being employed. How can this be
explained?

Proposed Solution

Canonical XML only normalizes white space in certain areas of the XML
document being canonicalized. That is, placing white space haphazardly
inside a signed XML document cannot be done without breaking the sig-
nature because Canonical XML treats some white space as semantically

223Chapter 6 XML Signature Examples

Listing 6-19

An XML
Signature that is
detached,
enveloped, and
enveloping

<Contract1>
<ImportantContent Id="ImportantElement">

This is important content!
</ImportantContent>
<Signature Id="ThreeTypes">
<SignedInfo>
<Reference URI�"http://www.remote-server.com/file.doc">

. . .
</Reference>
<Reference URI�"#contract2">

. . .
</Reference>
<Reference URI�"#ImportantElement">

. . .
</Reference>

</SignedInfo>
<SignatureValue> . . . </SignatureValue>
<Object Id="contract2">
<Contract2> This is also very important content! </Contract2>

</Object>
</Signature>

</Contract1>

meaningful. For example, consider Listing 6-20. Notice that there is white
space between elements in the XML document—this type of white space
is actually preserved by Canonical XML, despite the fact that one might
think otherwise.

Canonical XML treats white space outside of the document element or
inside start and end tag pairs as semantically meaningless. Notice that
we have said inside start and end tags, not between. Consider List-
ing 6-21(a), which shows an input XML document before canonicalization
takes place. Listing 6-21(b) shows the same document after applying
Canonical XML.

XML Security224

Listing 6-21(a)

Superfluous
white space is
inside tags and
outside the
document
element.

<Cheese_Types >

<Cheese> Swiss </Cheese >

<Cheese> Monterey Jack </Cheese>

<Cheese> Cheddar </Cheese>

</Cheese_Types >

<!-- These are my favorite Types of Cheese! -->

Listing 6-20

Canonical XML
preserves white
space between
elements.

<Cheese_Types>

<Cheese> Swiss </Cheese>

<Cheese> Monterey Jack </Cheese>

<Cheese> Cheddar </Cheese>

</Cheese_Types>

Chapter Summary
This chapter looks at a number of different problems and scenarios where
XML Signatures are used. Some scenarios try to solve a particular prob-
lem, while others show general solutions for constructing XML Signatures
of different types. There is focus in this chapter on how signatures look
when different scenarios are applied that require multiple signers, multi-
ple keys, or application-specific constraints. There is also some discussion
on Base-64 encoding and how the format for Base-64 printable encoding
conflicts with normalization done as a part of standard XML processing
and the application of Canonical XML. The main goal of this chapter is to
provide a playing field where the reader can test out the knowledge
learned in Chapters 4 and 5.

225Chapter 6 XML Signature Examples

Listing 6-21(b)

Superfluous
white space is
normalized after
applying
Canonical
XML 1.0.

<Cheese_Types>

<Cheese> Swiss </Cheese>

<Cheese> Monterey Jack </Cheese>

<Cheese> Cheddar </Cheese>

</Cheese_Types>

<!-- These are my favorite Types of Cheese! -->

This page intentionally left blank.

Introduction to XML
Encryption

CHAPTER 7

Unlike XML Signatures, XML Encryption has a somewhat less exciting
introduction. However, this shouldn’t be the case. XML Encryption builds
on some of the elements and ideas present in the XML Signature syntax
and allows for some interesting combinations of XML documents that
exhibit both signed and encrypted properties. This normative dependence
of one technology on another is a recurring theme in XML Security (as
well as a useful general idea for any set of related standards). XML
Encryption and the XML Key Management Specification (XKMS) (dis-
cussed in Chapter 9) share elements, algorithms, and general concepts
that were first introduced in the XML Signature drafts.

Throughout this chapter, the reader will notice the mixing of elements
from different namespaces; some confusing situations arise from the shar-
ing of elements between XML Signatures and XML Encryption. To keep
things clear, the reader should assume that all elements shown in this
chapter belong in the XML Encryption namespace unless they are
prepended with the ds (digital signature) namespace prefix, which means
that they are from the XML Signature namespace. For instance, consider
the following example. The <EncryptionMethod> element is in the XML
Encryption namespace, but the <DigestMethod> element belongs to the
XML Signature Recommendation:

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p">
<ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

</EncryptionMethod>

The abbreviation ds comes from a namespace declaration that maps
the ds prefix to the XML Signature namespace. The previous example
isn’t complete and doesn’t represent a very useful construct for XML
Encryption. This is intentional; the goal is to simply show an example of
how we can differentiate between various namespaces in a somewhat
standard way. Namespace designation is a very important aspect of XML
documents that rely on different standards or technologies, because this is
the only way to disambiguate between element names.

XML Encryption Basics and Syntax
Some people might argue that that XML Encryption is a bit simpler than
XML Signatures. This argument might come from the fact that the phys-
ical size of the standard is shorter than the XML Signature Recommen-
dation. Some people might also argue that the normative dependence of
XML Encryption on XML Signatures simply means that some of the
material is repeated. Still, others might claim that XML Encryption has
simpler semantics; no messy transforms get in the way of the actual plain-
text being encrypted and there are far fewer optional elements that com-
plicate things. Whether or not these statements are true makes little
difference; we will proceed in the same rigorous manner as we did in
Chapter 4 and focus on how XML Encryption works from a conceptual
point of view.

When we approached XML Signatures, we looked at some fundamental
definitions that helped us understand the nature of an XML Signature. In
order to keep the discussion consistent, we will do the same with XML
Encryption. The only problem is that XML Encryption doesn’t have a
proper noun to define. For example, in Chapter 4 we were able to define
an XML Signature. That is, we were able to identify a single entity as “an
XML Signature” with certain properties. There is no such thing as an XML
Encryption. This sentence isn’t even grammatical.

Instead, XML Encryption defines a process for encrypting data and
representing the result using the syntax of XML. In some ways, the XML

XML Security228

Encryption draft is more of a packaging technology rather than a com-
pletely new idea. In order to see how XML Encryption packages data, it is
useful to examine some use cases for this technology.

XML Encryption Use Cases

It is useful to divide the operation of XML Encryption into two broad use
cases: encrypting arbitrary octets and encrypting XML data. This division
may seem like a line in the sand because one can argue that XML data
can also be considered arbitrary data. The reason why this division is nec-
essary is because the XML Encryption draft recommends slightly differ-
ent semantics for the encryption of XML data versus just plain octets. In
particular, in some cases it is convenient to perform a replacement opera-
tion on the source XML document where the encrypted XML replaces the
source plaintext in the original XML document. This use case and others
will be examined in the coming sections and will be called plaintext
replacement.

The first broad use case that we will examine is encrypting arbitrary
octets. This is perhaps the simplest case and makes it easy to see the
nature of XML Encryption. Let us consider a standard web resource in the
form of a Uniform Resource Identifier (URI). Suppose that we want to
dereference the URI and apply an encryption algorithm to the data to cre-
ate an encrypted XML representation. The high-level view is shown in
Figure 7-1.

229Chapter 7 Introduction to XML Encryption

Source
URI

Encryption Algorithm

Encryption Key (Ek)

<?xml version=”1.0” ?>

Encrypted
XML document

Figure 7-1

A bird’s eye view
of XML
Encryption on
arbitrary data

The high-level view shown in Figure 7-1 is a simplification of the entire
encryption process, but all of the necessary pieces are present. The source
URI can be a remote web resource that is retrievable by any sort of pro-
tocol scheme, or it can be a local file. The encryption algorithm is a block
cipher or stream cipher that operates with an encryption key (Ek), and the
output is an encrypted form of the source URI as represented in XML. The
overall picture looks almost like normal non-XML encryption. The two
changes include the input data, which is specified as a web resource
instead of just arbitrary octets, and the final encrypted form, which is rep-
resented in XML instead of raw octets. The fact that we have modeled the
input data as a URI is quite significant and is part of a paradigm shift
toward disparate distributed resources that persist across potentially vast
networks. Shifting the perception of the plaintext from a single stationary
physical document to a URI changes the scope of encryption and expands
its role. This contrasts with the classic view of encryption, which views the
plaintext as simple binary. At some level, however, this high-level view
breaks down because the actual encryption algorithm treats the input
data as octets.

The result of the encryption operation is some sort of XML document.
We haven’t yet described what this is yet, but we’ll discuss it soon. The
requirements of the output document include some of the same properties
as an XML Signature. It should be human-readable and should provide a
facility for the discovery of the decryption key. Furthermore, it should also
provide enough context and additional information about the algorithm
used and any additional required semantics. This XML representation is
the <EncryptedData> element, which is discussed in the following
section.

The �EncryptedData� Element

The <EncryptedData> element is one of the fundamental elements in
the XML Encryption syntax. Some people might say that this element is
the most fundamental; this point can be argued because the
<EncryptedData> element actually derives from a more general
<EncryptedType> element that exists only in the XML Encryption
schema definitions. The reader should ignore this distinction for now, as it
will be revisited with more detail at a later time.

When arbitrary data is encrypted (such as in Figure 7-1), the result is
an <EncryptedData> element. The <EncryptedData> element has the
structure shown in Listing 7-1.

XML Security230

At first glance, the <EncryptedData> element looks very confusing. In
order to get around the initial confusion, we will take an intellectual knife
(once again) and create the vacuous version of <EncryptedData>. The
vacuous <EncryptedData> element is intended to represent the simplest
case of the encryption syntax and make it comparable to raw encryption,
as presented in Chapter 2. The vacuous <EncryptedData> element is
shown in Listing 7-2.

The vacuous <EncryptedData> element has only one direct child ele-
ment called <CipherData>. The <CipherData> element is responsible
for housing the actual encrypted value in some form or another. In this
example, the encrypted data is inside the <CipherValue> element; in
Listing 7-2, we show only the opening tag <CipherValue> and omit any
content. To fill this element and make it a real example, an instance of the
vacuous <EncryptedData> element is presented in Listing 7-3.

Listing 7-3 shows the addition of some arbitrary encrypted data inside
the <CipherValue> child element. The reader should notice the nature of
the data inside the <CipherValue> tag—it is printable ASCII as encoded
via RFC 2045. In other words, it is Base-64-encoded data. Naturally, Base-
64-encoded data is used to provide a printable representation of the oth-
erwise binary output from the encryption operation.

The most important thing to notice about Listing 7-3 is that the basic
concept is simple and intuitive. We have a single element called
<EncryptedData> that has cipher data inside of it. This cipher data is
given as a direct value, and the value is shown. There is nothing to hide
and very little confusion at this point. In this broad use case, we are

231Chapter 7 Introduction to XML Encryption

Listing 7-1

The
<Encrypted-
Data> element

<EncryptedData Id? Type?>
<EncryptionMethod/>?
<ds:KeyInfo>
<EncryptedKey>?
<AgreementMethod>?
<ds:KeyName>?
<ds:RetrievalMethod>?
<ds:*>?

</ds:KeyInfo>?
<CipherData>
<CipherValue>?
<CipherReference URI?>?

</CipherData>
<EncryptionProperties/>?

</EncryptedData>

treating the source data as an octet stream. It could be an entire XML doc-
ument or a binary format graphic file; the nature of the binary stream is
irrelevant. When we treat the source plaintext as XML, the semantics of
XML Encryption take a slight turn.

Plaintext Replacement

Suppose we have an XML document that contains sensitive data. This
sensitive data can be one or more elements and their children (document
subsets), or element content (just the text). XML Encryption allows for
element-level and element-content encryption. Because XML is struc-
tured using markup, this markup takes on a role of establishing a bound-
ary between the data that needs to be protected and the data that can be
sent in the clear. As the number of sensitive elements in an XML docu-
ment grows, the number of potential privacy configurations increases. The
additional possible application semantics that are provided based on
element-level encryption is rather exciting and contrasts with raw
encryption, which is usually a binary operation (either the data is
encrypted or sent in the clear). It is difficult to create a piece of plaintext
that can be selectively encrypted without severely fragmenting the plain-
text or using a heavyweight encoding scheme such as ASN.1. The picture
for plaintext replacement is much different than the picture presented in
Figure 7-1. Most diagrams in security or cryptography books show the
same ho-hum Alice and Bob picture; Figure 7-2 is quite different and
showcases one of the powerful features of XML Encryption.

XML Security232

Listing 7-2

The vacuous
<Encrypted-
Data> element

<EncryptedData>
<CipherData>
<CipherValue>

</CipherData>
</EncryptedData>

Listing 7-3

An instance of the
vacuous
<Encrypted-
Data> element

<EncryptedData>
<CipherData>
<CipherValue>
EwJVUzEPMA0GA1UECBMGQXRoZW5zMRUwEwYDVQ
QKEwxQaGlsb3NvcGhlcnMxETAPBgNVBAMTCFNv
Y3JhdGVzMSIwIAYJKoZIhvcNAQkBFhNzb2NyYX
Rlc0BhdGhlbnMuY29tMB4XDTAxMDIxNjIzMjgz

</CipherValue>
</CipherData>

</EncryptedData>

In Figure 7-2, our input plaintext represents an employee record writ-
ten using a fictional XML-based markup language. The employee record
has four elements: <Name>, <SSN>, <Title>, and <Salary>. For the sake
of the example, let us assume that the entire <SSN> element and the con-
tents of the <Salary> element are sensitive and need to be encrypted.
With XML Encryption, this can be done using plaintext replacement. In
Figure 7-2, the relevant data (the entire <SSN> element and the contents
of the <Salary> element) are encrypted and replaced with an
<EncryptedData> element. The actual encrypted data appears as the
Base-64-encoded text content of <CipherValue>.

Figure 7-2 leaves out many details of the <EncryptedData> element.
The figure shows a simple case to illustrate the main idea: Many
<EncryptedData> elements are possible in a single XML document, and
each of these <EncryptedData> elements represents the encrypted form
of an element, a set of elements, or element content.

The other subtle point that should be mentioned is that the encryption
keys used can be numerous for the given plaintext XML document. For
example, the first <EncryptedData> element in the ciphertext XML doc-
ument may be encrypted with encryption key E1, the second such
<EncryptedData> element may be encrypted with encryption key E2,
and so on. This idea is a bit different than normal raw encryption, where
it is usually assumed that the plaintext will be encrypted in its entirety
with a single key. The XML Encryption process enables element-level
encryption using multiple symmetric or asymmetric keys.

233Chapter 7 Introduction to XML Encryption

Plaintext XML
Document

Ciphertext XML
Document

Encryption Algorithm
(Plaintext

Replacement)

Encryption Key (E1, ..., En)

<?xml version=''1.0'' ?>
<Employee>
 <Name>Clint</Name>
 <EncryptedData>
 <CipherValue>
 bhg6JIjjFCNVVRjksqdlOP
 </CipherValue>
 </EncryptedData>
 <Title>Engineer</Title>
 <Salary>
 <EncryptedData>
 <CipherValue>
 xCd5ygfSDgSjIaSpX
 </CipherValue>
 </EncryptedData>
 </Salary>
</Employee>

<?xml version=''1.0'' ?>
<Employee>
 <Name>Clint</Name>
 <SSN>123-45-6789</SSN>
 <Title>Engineer</Title>
 <Salary>50000</SSN>
</Employee>

Figure 7-2

Element-level
and element-
content
encryption

The two previously discussed XML Encryption use cases are founda-
tional to the rest of the syntax and processing rules. In order to avoid as
much confusion as possible, we will leave the plaintext replacement use
case for now and return to the discussion of encrypting arbitrary octets.
From here, we will look at the rest of the features of <EncryptedData>
as well as <EncryptedKey> and the schema-defined <EncryptedType>
parent. Once we have exhausted the possibilities for the arbitrary octets
use case, we will return to plaintext replacement and apply the details.

The �EncryptedData� Element: Details

Listing 7-1 shows the possible elements used in the <EncryptedData>
structure. There are a total of four possible child elements as well as two
attributes: Id and Type. The Id element is a straightforward arbitrary
identifier that can be used for application-specific processing or for some-
thing as simple as distinguishing between multiple <EncryptedData>
elements in a single XML document. This Id attribute is similar to the
one found in the <ds:Signature> element, as discussed in Chapter 4.
The Type attribute is a bit more interesting and is used to identify the
type of the plaintext. We are using the term type in a broad sense here; the
actual attribute value can be a media type (in the case of arbitrary octet
encryption) or one of two prespecified values: Element or Content.

If the Type attribute is specified as media type, this means we chose an
Internet Address Naming Authority (IANA) media type from the tree
hosted at www.isi.edu. For example, if our plaintext is an HTML docu-
ment, we should use http://www.isi.edu/in-notes/iana/
assignments/media-types/text/html as the attribute value. The
other prespecified values, Element and Content, are used when the
plaintext is an XML document subset. That is, if we perform plaintext
replacement, we must identify what we are encrypting: an element or ele-
ment content. For example, if we were to use XML Encryption to encrypt
a single element or a set of elements, we would use http://www.w3.
org/2001/04/xmlenc#Element as the attribute value. Similarly, if we
were performing plaintext replacement on element content, we would use
http://www.w3.org/20001/04/xmlenc#Content as the attribute
value.

The Type attribute, although optional, is vitally important in order to
correctly process an XML document that contains <EncryptedData> ele-
ments. For example, in the case of plaintext replacement, the decrypting

XML Security234

application must know the original type of the plaintext (either Content
or Element) in order to correctly reconstruct the original plaintext XML
document. This differs from the similar Type attribute (in the <ds:
Reference> element) used in the XML Signature syntax (discussed in
Chapter 4). In the XML Signature processing rules, the correct processing
of the Type element is not required and might not be necessary in all
cases. The XML Encryption processing rules will be discussed further in
coming sections. The information about Type usage for <Encrypted-
Data> is summarized in Table 7-1.

The Id and Type attributes are the only two possible attributes defined
for the <EncryptedData> element. The possible child elements for
<EncryptedData> follow next. There are only four possible child ele-
ments for <EncryptedData>, including <ds:KeyInfo>, which we have
seen in previous chapters. <ds:KeyInfo> is borrowed from the XML Sig-
nature Recommendation.

The �EncryptionMethod� Element

The <EncryptionMethod> element is the first possible child element of
<EncryptedData> and is responsible for identifying the encryption algo-
rithm along with possible auxiliary parameters such as key size padding
scheme (for asymmetric ciphers), or encryption mode. The encryption
algorithm is denoted with a URI identifier in the same vein as similar ele-
ments defined in the XML Signature Recommendation (such as
<ds:DigestMethod> or <ds:SignatureMethod>). The <Encryption-
Method> element, however, differs markedly from <ds:DigestMethod>
or <ds:SignatureMethod> in that it has possible child elements.
<ds:DigestMethod> and <ds:SignatureMethod> are always empty
and usually comprise only a single line.

The XML Encryption draft makes the distinction between implicit
algorithm parameters and explicit algorithm parameters. The implicit

235Chapter 7 Introduction to XML Encryption

Plaintext Type Type Attribute Value

An XML element http://www.w3.org/2001/04/
xmlenc#Element

XML element content http://www.w3.org/20001/04/
(includes a set of elements) xmlenc#Content

IANA media type http://www.isi.edu/in-notes/iana/
assignments/media-types/*/*

Table 7-1

Content Types for
XML Encryption

parameters of an encryption algorithm include the plaintext data, the
encryption key, and the initialization vector (IV). The IV is used in some
modes of symmetric cipher operation and provides a kickstart for a block
cipher. For more information on IVs, see the primer in Chapter 2. Implicit
parameters for cipher operation are not shown in any of the
<EncryptionMethod> child elements or attributes. It is assumed that
the application knows where to get things such as the plaintext and key
(these are obvious implementation issues). The IV is actually melded into
the ciphertext (in the case of a decryption operation). Finding the IV is
functionally equivalent to finding the ciphertext.

The implicit algorithm parameters contrast the explicit parameters,
which are either part of the URI identifier or a child element of
<EncryptionMethod>. Explicit parameters denote things like key size,
encryption mode, padding scheme, or any optional algorithm-dependent
parameters. The <EncryptionMethod> element enables the addition of
arbitrary namespace qualified child elements for any parameters
required of custom encryption algorithms. The set of algorithms specified
with the XML Encryption draft is not rigid; it is possible to add new algo-
rithms as they become available. The XML Encryption syntax supports a
number of encryption algorithms. An example of identifying Triple-DES
in Cipher Block Chaining (CBC) mode as the encryption algorithm would
look like the following:

<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

In a similar manner, the Advanced Encryption Standard (AES) cipher
(also in CBC mode) is denoted as follows:

<EncryptionMethod
Algorithm=http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>

The reader should note that this URI identifier contains explicit para-
meters in the string itself. In the case of Triple-DES, the substring cbc is
appended to the identifier for CBC mode. For the case of AES, the sub-
string 128 and cbc are both appended, indicating that 128-bit AES is
being specified in CBC mode.

Given that many explicit cipher parameters are present in the string,
the reader may be wondering about some of the possible child elements of
<EncryptionMethod>. The XML Encryption draft relies on three such
elements: <KeySize>, <ds:DigestMethod>, and <OAEPparams>. The

XML Security236

<KeySize> element is used to denote the size of the encryption key, the
<DigestMethod> element specifies the digest method to use during cer-
tain padding operations, and the <OAEPparams> object is used for trans-
mitting parameters necessary for RSA operations that use the Optimal
Asymmetric Encryption Padding (OAEP) scheme. For more information
on OAEP, see the primer in Chapter 2. It is important to note that the
<ds:DigestMethod> element used is the same one from the XML Sig-
nature Recommendation; this is a clear case of the normative dependence
of one XML Security technology on another.

The <KeySize> child element may seem odd because we have just
looked at two examples of ciphers that specify the key size in the string
itself. The reader may be asking, Why specify the key size twice? The
answer to this objection lies in the fact that some ciphers (such as stream
ciphers) take a variable key size. That is, not all uses of a stream cipher
implicitly denote a given key size, and a mechanism must exist to make
this explicit so the decryption operation is possible. Further, some block
ciphers can use variable key sizes (such as RC5). The <KeySize> element
fulfills this role for ciphers that are not specified by the XML Encryption
draft. The XML Encryption draft does, however, offer a constraint on the
use of the <KeySize> child element. The value inside the <KeySize> ele-
ment must match the key size implied in the URI identifier for the given
cipher. If there is a mismatch, an error must be reported. For example, the
following example would be invalid because the <KeySize> element does
not match the implied key size of the chosen symmetric cipher. (Triple-
DES uses a key size of 192 bits.)

<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc">
<KeySize>256</KeySize>

</EncryptionMethod>

The next two elements, <ds:DigestMethod> and <OAEPParams>, are
specific to the OAEP padding scheme used for RSA operations. There is no
restriction, however, from using <ds:DigestMethod> along with another
padding scheme that might also require a hash function. The contents of
the <OAEPParams> corresponds to the optional encoding parameter P, as
specified in RFC2437 (PKCS#1). This parameter is an arbitrary Base-64-
encoded octet string that is hashed during the encoding operation for
OAEP.

237Chapter 7 Introduction to XML Encryption

The �CipherData� and �EncryptionProperties� Elements

The next element immediately after <EncryptionMethod> inside the
<EncryptedData> is <ds:KeyInfo>. The <ds:KeyInfo> element is the
same element shared from the XML Signature Recommendation with a
few additions. It makes sense to defer our discussion of this element, skip-
ping over to the last two elements of <EncryptedData>, which are
<CipherData> and <EncryptionProperties>. We defer talking about
<ds:KeyInfo> because this element opens the door to additional com-
plexity for XML Encryption. The <ds:KeyInfo> element displays the
recursive nature of XML Encryption and helps introduce the important
<EncryptedKey> element. It’s best to hold off on the excitement right
now and finish up with the two simpler elements <CipherData> and
<EncryptionProperties>.

The <CipherData> element is one of the few mandatory child ele-
ments of <EncryptedData>. <CipherData> either envelopes or refer-
ences the encrypted data. If <CipherData> is acting as an envelope, the
<CipherValue> child element will be present and contain the Base-
64-encoded cipher data (this enveloping is shown in Listing 7-3). Con-
versely, if <CipherData> is acting as a reference, the <Cipher-
Reference> element will be present. The <CipherReference> element
behaves a lot like the <ds:Reference> element from the XML Signature
Recommendation. The only marked difference is that <Cipher-
Reference> references cipher data (encrypted), whereas <ds:
Reference> references plaintext for signing. In all cases, the XML
Encryption schema restricts <CipherData> to either <Cipher-
Reference> or <CipherValue>. Both elements cannot be present.

The <CipherReference> child element is useful in cases where the
encrypted data becomes so large that it becomes infeasible to put it in a
text representation for participation in an XML document. In this case,
the location of the ciphertext is specified with a URI. This is shown in the
following example.

<CipherData>
<CipherReference URI="www.fake-site.com/encryptedfile.bin"/>

</CipherData>

In the previous example, the <CipherData> element points to an
encrypted file somewhere on www.fake-site.com. One subtle complica-
tion to mention is the format of the encrypted data. In the case of
<CipherValue>, the cipher data has been Base-64 encoded. In the alter-

XML Security238

native case of <CipherReference>, the raw (unencoded) octet stream is
expected. This slight variation must be taken into consideration if cipher-
text is transported from a <CipherValue> element to a file on a remote
host.

Fortunately, the <CipherReference> element supports transforms
that are similar to those used in the XML Signature Recommendation.
For example, it is possible to specify a Base-64 decoding transform that
would decode any Base-64-encoded ciphertext and yield the raw octet
stream. This would be useful for transporting the contents of a <Cipher-
Value> element directly into a file; this would enable the decryption of
the content without further altering the cipher data. Assuming that
encryptedfile.b64 contains some Base-64-encoded cipher data, we
might alter the previous example as follows:

<CipherData>
<CipherReference URI="www.fake-site.com/encryptedfile.bin"/>
<Transforms>
<ds:Transform Algorithm="http://www.w3.org/2000/09/xmldsig#base64"/>

</Transforms>
</CipherData>

The careful reader might notice that there is no ds prefix on the
<Transforms> child element, but there is a ds prefix on the actual
<Transform> element used. In fact, the <Transforms> element shown
in the previous example actually belongs to the XML Encryption draft
and isn’t part of the XML Signature Recommendation. This is because the
<Transforms> element specified in XML Encryption has different
semantics. Namely, the transforms in this example are a means to pro-
duce the decrypted octet stream and aren’t defined for the encryption
operation. This contrasts with the <ds:Transforms> element, which
specifies that transformations should be applied during signature gener-
ation as well as during signature validation.

Nonce Value in �EncryptedData�

The <EncryptedData> element has a single optional attribute called
nonce, which is used to alert the decrypting application that a nonce value
has been mixed in with the encrypted data. The attribute specifies the
length of the nonce value so that it may be stripped off once the decryption
is complete.

A nonce value used in this context is a means to add more entropy to
plaintext and thwart some forms of attack. In the case of XML documents,
the plaintext data may have a great deal of known structure. That is, an

239Chapter 7 Introduction to XML Encryption

attacker may have access to a schema or document type definition (DTD)
and might be able to perform a dictionary attack of some sort on the
encrypted data. The nonce value prevents this from happening in this
instance by increasing the size of the plaintext with some prepended ran-
domness. The length of the nonce is specified as an integer attribute value
and is stripped off during the decryption stage. The specifics of how the
nonce is handled will be covered in the section “XML Encryption Process-
ing Rules.” The utility of a nonce value used with a block cipher in cipher
block chaining mode can be argued. In particular, the initialization vector
plays the same sole as the nonce value and doesn’t add extra security
properties for this specific case. It is likely that the nonce value will be
removed from the XML Encryption drafts as it matures.

The �EncryptionProperties� Element

The final element in the <EncryptedData> structure is the
<EncryptionProperties> element. This element is inspired from the
<ds:SignatureProperties> element from the XML Signature Recom-
mendation. It carries the same basic function: to include extra semantics
and properties along with the encrypted data. The <Encryption-
Properties> element contains one or more <EncryptionProperty>
child elements, which can contain arbitrary elements from any name-
space. Each <EncryptionProperty> element also has a provision for a
Target attribute that enables the matching of a given <Encryption-
Property> to an <EncryptedData> element. Furthermore, the XML
Encryption draft also allocates a type value for use with the XML Signa-
ture Recommendation. That is, it may be useful to sign an <Encryption-
Properties> element using an XML Signature. The value http://
www.w3.org/20001/04/xmlenc#EncryptionProperties can be used
in a <ds:Reference> element as the value of the Type attribute. This is
one example where the standards mix together and share semantics eas-
ily. Listing 7-4 shows how the <EncryptionProperties> element can
be signed using an XML Signature. Some readers may have skipped
around a bit and haven’t yet studied the previous chapters on XML Sig-
natures. In order to understand what is happening in Listing 7-4, it is rec-
ommended that the reader understand how a basic XML Signature
works. The discussion of XML Signatures covers Chapters 4, 5, and 6.
Another point to note is that the signing operation used has the potential
to affect overall performance because the signing operation is consider-
ably slower than symmetric key encryption.

XML Security240

In Listing 7-4, we have an XML document called <SecureDoc> that
contains a <ds:Signature> element as well as an <EncryptedData>
element. Although this example is incomplete (many of the required ele-
ments from the XML Signature are omitted for brevity), it does include
the namespace declarations, which are very important for disambiguating
between the elements of XML Encryption and XML Signatures.

Listing 7-4 contains a <ds:Reference> element that signs the
<EncryptionProperties> element using a fragment identifier with a
detached signature. The signature is detached because it is neither a par-
ent nor child to the data actually being signed (the <Encryption-
Properties> element). In addition, the Type attribute on the
<ds:Reference> element is also used. This enables a processing appli-
cation to make better decisions about reference processing (in this case, it
is an <EncryptionProperties> element); however, this Type attribute
is not mandatory and may be omitted. Moreover, the Target attribute is
also used to match the <EncryptionProperties> element to the

241Chapter 7 Introduction to XML Encryption

Listing 7-4

Signing an
<Encryption-
Properties>
element with an
XML Signature

<SecureDoc>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
...

<Reference
URI="#EncProps"
Type="http://www.w3.org/2001/04/xmlenc#EncryptionProperties">
<DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>60NvZvtdTB+7UnlLp/H24p7h4bs=</DigestValue>

</Reference>
<SignatureValue>
SJTDijgDflhdMlNjrWWKdkgj1hDhvhsdfx5BwpjfAuJ6T3ZysdfggA==

</SignatureValue>
</Signature>
<EncryptedData Id="EncData1" xmlns='http://www.w3.org/2001/04/xmlenc#'>
<CipherData>
<CipherValue>
ErBgcqhkjOOAQBMIIBHgKBgQDaJjfDTrawMHf8MiUt
Y54b37hSmYNnR3KpGT10uU1Dqppcju06uN0iGbqf94
7DjkBC25hKnqykK31xBw0E

</CipherValue>
</CipherData>

<EncryptionProperties Id="EncProps">
<EncryptionProperty Target="EncData1">
<TokenId>123456789</TokenId>

</EncryptionProperty>
</EncryptionProperties>

</EncryptedData>
...

</SecureDoc>

correct <EncryptedData>. Although the use of the Target attribute in
Listing 7-4 may seem trivial (no confusion is possible because there is only
a single <EncryptedData> element), a case may arise where multiple
<EncryptedData> elements reside in the same XML document context.
The careful reader might notice that the use of <Encryption-
Properties> in Listing 7-4 contrasts with the way <ds:Signature-
Properties> is used. In the case of an XML Signature, the
<ds:SignatureProperties> element resides inside a <ds:Object>
container element. This difference in structure is fully expected because
<EncryptionProperties> is specified as part of the <Encrypted-
Data> element and must be part of the <EncryptedData> element.

Listing 7-4 is an interesting use case because it allows for the authen-
tication of the <EncryptionProperties> element. In this example, the
<EncryptionProperties> element contains a single <Encryption-
Property> child that denotes a fictional serial number of a hardware
token (one that ostensibly contains an encryption or decryption key).
Without an XML Signature, an attacker would be able to modify the con-
tents of the <EncryptionProperties> element with little recourse. It is
important to realize that the <EncryptedData> element doesn’t offer
any sort of authentication other than that provided by the ciphertext.
Altering the ciphertext will cause the plaintext to be incorrect upon
decryption, but it is not certain that the change was malicious; for exam-
ple, a data transfer error could have occurred.

Listing 7-4 shows one way of signing the <EncryptionProperties>
element. In addition to the detached signature shown, another useful case
would be an enveloped signature. For example, the <ds:Signature> ele-
ment can reside inside the <EncryptionProperties> as an actual
<EncryptionProperty>. This type of signature is shown in Listing 7-5.

Some people might argue that the use of <EncryptionProperties> in
Listing 7-5 isn’t semantically correct. A <ds:Signature> is not a property
of the encrypted data, but instead it adds a property to the <Encryption-
Properties> element, namely the signed property. It is possible to stick
the <ds:Signature> element here because the schema definition for
<EncryptionProperty> allows for arbitrary child elements.

This use case may seem a bit odd, but it may be useful in some circum-
stances because it provides a clean way of packaging the <ds:
Signature> block within the <EncryptionProperties> element. The
evidence for this can be seen in Listing 7-5, which has a cleaner structure
than Listing 7-4. The important point to note is that we are not signing
the actual contents of the <EncryptedData> element, we are

XML Security242

only signing the <EncryptionProperties> element. Signing the
<EncryptedData> element is also very important because XML Encryp-
tion doesn’t have a mechanism for structural integrity checking (unlike an
XML Signature). For example, it is possible for an attacker to arbitrarily
change (delete or remove) components of an <EncryptedData> element.
An example of such an attack is altering the encryption algorithm specified
in the <EncryptionMethod> element. Doing something like this might
cause an otherwise properly encrypted message to fail the decryption step
(the algorithm would now be incorrect and the recipient would receive
garbage instead of the real plaintext). The reader might argue that this is
okay in this case because the attacker hasn’t actually received any secret
information. Although this is entirely true, such antics leave the recipient
unclear of the status of the sender as well as the integrity of all data that
might be received. The other issue is the weight of the performance toll.
The signature operation is much more expensive than symmetric key

243Chapter 7 Introduction to XML Encryption

Listing 7-5

An enveloped
signature for
<Encryption-
Properties>

<SecureDoc>
<EncryptedData Id="EncData1" xmlns='http://www.w3.org/2001/04/xmlenc#'>
<CipherData>
<CipherValue>
ErBgcqhkjOOAQBMIIBHgKBgQDaJjfDTrawMHf8MiUt
Y54b37hSmYNnR3KpGT10uU1Dqppcju06uN0iGbqf94
7DjkBC25hKnqykK31xBw0E

</CipherValue>
</CipherData>
<EncryptionProperties Id="EncProps">
<EncryptionProperty Target="EncData1">
<TokenId>123456789</TokenId>

</EncryptionProperty>
<EncryptionProperty Target="EncData1>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

. . .
<Reference URI="#EncProps"

Type="http://www.w3.org/2001/04/xmlenc#EncryptionProperties">
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

<DigestValue>60NvZvtdTB+7UnlLp/H24p7h4bs=</DigestValue>
</Reference>
<SignatureValue>
RJTDhjgsalhdMlNjrWWKdkgjfhDh7hsddj5BwpjfAuJ6T3ZysdfbvA=

</SignatureValue>
</Signature>

</EncryptionProperty>
</EncryptionProperties>

</EncryptedData>
...

</SecureDoc>

encryption and the signature doesn’t authenticate the plaintext; it only
authenticates the structure of the <EncryptedData> element.

The �ds:KeyInfo� Element

The <ds:KeyInfo> element is the second element in the <Encrypted-
Data> parent and is probably one of the most important elements in the
XML Encryption syntax. The <ds:KeyInfo> element opens the door to
complexity for XML Encryption by introducing (among other elements)
the <EncryptedKey> element. The <EncryptedKey> element is another
fundamental type of the XML Encryption draft, and once the reader
understands how <ds:KeyInfo> and <EncryptedKey> work, he or she
will have nearly mastered the XML Encryption syntax.

Thus far, we have assumed that the retrieval of the decryption key is
designated by the application. Although this case is entirely possible, it is
more likely that hints or direct pointers to decryption keys will be more
usable and common for real-world scenarios. Listing 7-6 repeats the struc-
ture of <ds:KeyInfo> as it is described in the XML Encryption draft.
This listing is provided as a convenience to the reader (this is the same
structure that is embedded inside Listing 7-1).

Simply put, the <ds:KeyInfo> element describes where to obtain the
key to decrypt the contents of the <CipherData> element. The basic pur-
pose of <ds:KeyInfo> for XML Encryption is analogous to its use for an
XML Signature. There is, however, one very important distinction. For a
signed object, it is possible (and recommended) to package the verification
key inside the <Signature> element. This is done because it is assumed
that the recipient will first assert trust over the holder of the verification
key and then proceed to perform the signature verification. This contrasts
with an encrypted object, which must omit the actual decryption key. An
encrypted object that is packaged with a decryption key is rather useless
for data privacy unless the key itself is somehow protected!

XML Security244

Listing 7-6

<ds:KeyInfo>
as defined in the
XML Encryption
draft

<ds:KeyInfo>
<EncryptedKey>?
<AgreementMethod>?
<ds:KeyName>?
<ds:RetrievalMethod>?
<ds:*>?

</ds:KeyInfo>?

The previous discussion highlights the differences between how
<ds:KeyInfo> is used in XML Encryption versus how an XML Signature
is used. For the case of XML Encryption, there are two broad categories of
items that belong inside <ds:KeyInfo>: pointer information and
encrypted keys. When we use the term pointer information, we are talk-
ing about ways of identifying an end recipient, either by name, digital cer-
tificate, or some other means. When we use the term encrypted keys, we
are talking about the <EncryptedKey> element that is defined in the
XML Encryption draft. As the name suggests, the <EncryptedKey> ele-
ment is an element designed to package encrypted keys. We have been
very good so far about starting with simple examples, and this case will be
no different. First we will look at some examples of possible pointer infor-
mation that might be stored inside <ds:KeyInfo>, and then from there
we will proceed into a discussion of the <EncryptedKey> element.

Pointer Information for �ds:KeyInfo�

The <KeyName> element is the most basic type of pointer information. In
vacuous cases, it may hold the name of the recipient, but not necessarily.
The <KeyName> element represents a hint of sorts and is meant to iden-
tify the ostensible holder of the decryption key (whether it is symmetric or
asymmetric). Other types of pointer information include <ds:
RetrievalMethod> and the mysterious <ds:*> element. The <ds:
RetrievalMethod> element is the same element used in the XML Sig-
nature syntax, but it has been extended to handle the <EncryptedKey>
element. That is, one can designate the location of an <EncryptedKey>
element remotely by setting the Type attribute (an attribute of
<ds:RetrievalMethod>) to http://www.w3.org/2001/04/xmlenc#
EncryptedKey. Even though the <ds:RetrievalMethod> is a proper
pointer, we will wait and show an example of its use when we discuss the
<EncryptedKey> element in full detail in the next section. Aside from
<KeyName>, the XML Encryption draft also specifies the <ds:*> element.
This notation simply means that any child element defined previously in
the XML Signature Recommendation can be used in an instance of
<ds:KeyInfo>. The reader may be wondering about this statement and
may question the use of XML Signature <ds:KeyInfo> child elements
for an <EncryptedData> element. The most useful additional element
defined by the <ds:KeyInfo> element is the <ds:X509Data> element.
The list of possible child elements for <ds:X509Data> as specified in the
XML Signature Recommendation is repeated in Table 7-2.

245Chapter 7 Introduction to XML Encryption

The careful reader will notice that each of the child elements of
<X509Data> serves to identify a public verification key. As a side effect,
however, all of these child elements (except for <X509CRL>) also uniquely
identify an end-entity. This fact is significant because although a simple
string value (as is used in <KeyName>) may be used, it can be an ambigu-
ous way of identifying an individual.

In some cases, the element directly identifies an end-entity and in other
cases, the individual is indirectly identified. For example, in the case of
<X509Certificate> and <X509SubjectName>, we are identifying the
recipient in a very strong manner. The distinguished name that is used in
an X.509 certificate is intended to be unique by design. In this case, we
can either get the entire certificate (which contains the subject name) or
the subject name itself (the <X509SubjectName> element). The distin-
guished name or X.509 certificate itself cannot help us because it doesn’t
directly contain the decryption key. Instead, it might be useful to look up
the proper decryption key based on this nonambiguous information.

This contrasts with other child elements such as <X509Issuer-
Serial> and <X509SKI>. For this case, the certificate must be first
retrieved based on the issuer name and serial number or the subject key
identifier. These elements only implicitly identify a given certificate; some
sort of database lookup or retrieval must occur to find the name of the
end-entity. Figure 7-3 shows a pictorial view of some of the different types
of objects that <ds:KeyInfo> can point to for an encrypted data element.

In Figure 7-3(a), the vanilla case of a simple string name is shown.
Remember, we are attempting to identify a particular decryption key, not
a verification key (as is the case with an XML Signature). In Figure 7-3(b),
the <ds:KeyInfo> element points to an X.509 certificate (which maps to
someone who has the private key). Finally, in Figure 7-3(c), the <ds:Key-
Info> element points to a X.509 SubjectKeyIdentifier. In this case,
some additional mapping must be done by the application to first locate

XML Security246

Element Name Description

<X509IssuerSerial> X.500 issuer name and serial number

<X509SKI> X.509 subject key identifier

<X509SubjectName> X.500 subject name

<X509Certificate> X.509 certificate

<X509CRL> X.509 CRL

Table 7-2

Possible
<X509Data>
Child Elements

the identity of the certificate to which the SubjectKeyIdentifier
points. The idea with the SubjectPublicKeyIdentifier is to identify
a given public key, which will eventually map to an X.509 certificate. This
type of identifier is a less-direct way of specifying an X.509 certificate.

Encrypted Keys and the �EncryptedType� Element

A likely scenario for the <ds:KeyInfo> element is the inclusion of an
encrypted decryption key. This seems a bit odd a first because we are
adding another recursive step. That is, we have an <EncryptedData>

247Chapter 7 Introduction to XML Encryption

50F1 861B C105
D8B7 15F4 BF25
99CC 20C2 1942
2C1D

<EncryptedData>

…

 <KeyInfo>

 </KeyInfo>
…

</EncryptedData>

(a)

<EncryptedData>

…

 <KeyInfo>

 </KeyInfo>
…

</EncryptedData>

(b)

<EncryptedData>

…

 <KeyInfo>

 </KeyInfo>
…

</EncryptedData>

(c)

X.509
Certificate

John Q. Recipient

Figure 7-3

Some choices for
the <KeyInfo>
element

element that points to or contains sensitive cipher data to be decrypted.
Further, the actual decryption key is specified as being encrypted (which
means it must also be decrypted). At this point, one might argue that the
distinction between a decryption key and the actual encrypted data
begins to blur. After all, an encryption key (for the case of symmetric
encryption) is simply a string of bits. This means that one could think of
the encrypted key as simply another <EncryptedData> element. Why
does it really matter? The content of the ciphertext is simply binary data!
Any string of bits that is the appropriate size can serve as a usable sym-
metric key for most symmetric encryption algorithms. Because of this
fact, the <EncryptedKey> element matches the structure of
<EncryptedData> exactly (with the exception of a few additional attrib-
utes and an additional element). The reader should think of these two ele-
ments as being functionally equivalent in what they represent (some
encrypted data), but one marks this encrypted data as a key and the other
designates the encrypted data as arbitrary.

The realization of this trait of symmetric encryption keys yields the
<EncryptedType> element, which is an abstract type defined in the XML
Encryption schema and provides the basic behavior for both <Encrypted-
Data> and <EncryptedKey>. A picture of how <EncryptedData>,
<EncryptedKey>, and <EncryptedType> are related is shown in Fig-
ure 7-4.

The object-oriented concept of inheritance is a loose analog to the way
Figure 7-4 is arranged. The reader will never see an <EncryptedType>
element in the wild because it is an abstract parent type that dictates its
behavior to those elements that borrow from it. Figure 7-4 shows the fic-
tional shorthand notation for <EncryptedType>. This is fictional nota-
tion because an actual instance of <EncryptedType> will never be
created—only elements that derive from it such as <EncryptedData>
and <EncryptedKey> will be created. The reader should notice that
<EncryptedData> has the exact same structure as <EncryptedType>.
This contrasts with <EncryptedKey>, which adds an attribute value
called Recipient as well as two elements: <CarriedKeyName> and
<ReferenceList>. These additional data items are shown in bold in Fig-
ure 7-4.

Another property of <EncryptedType> is the possibility for recursive
nesting. This has been alluded to before and occurs when a given
<EncryptedData> element contains an <EncryptedKey> element (this
is inside <ds:KeyInfo>). At this point, we have essentially nested
<EncryptedType> inside of itself a single time. The chain doesn’t have to

XML Security248

stop here and can continue. It is possible for a given <EncryptedKey>
element to be encrypted by another <EncryptedKey> element (the most
common case of this a digital envelope). There are two common cases
where recursive nesting will appear. These cases are shown in Figure 7-5.

At first glance, Figure 7-5 may seem a bit abstract. The trouble is that
many details have been omitted and some assumptions must be made. For
example, consider Figure 7-5(a). In this case, we have an <Encrypted-
Data> element whose <ds:KeyInfo> points to an <EncryptedKey>.
This <EncryptedKey> element is the end of the chain on the recursion
because it doesn’t point to anything else. The unstated assumption for this
example is that the <ds:KeyInfo> element contains some sort of tangi-
ble identifier for the decryption key (instead of a reference to yet another
<EncryptedKey> element). This case represents a digital envelope where
an asymmetric key represents the end of the chain and is responsible for
encrypting a symmetric key, which then actually encrypts the original
plaintext. The concept of a digital envelope is not new and is known as the

249Chapter 7 Introduction to XML Encryption

<EncryptedType Id? Type?>
 <EncryptionMethod/>?
 <ds:KeyInfo>?
 <CipherData>
 <EncryptionProperties/>?
</EncryptedType>

<EncryptedData Id? Type?>
 <EncryptionMethod/>?
 <ds:KeyInfo>?
 <CipherData>
 <EncryptionProperties/>?
</EncryptedData>

<EncryptedKey Id? Type? Recipient?>
 <EncryptionMethod/>?
 <ds:KeyInfo>?
 <CipherData>
 <EncryptionProperties/>?
 <ReferenceList>?
 <CarriedKeyName>?
</EncryptedType>

Figure 7-4

The abstract
<Encrypted-
Type> element

equally obscure term key transport. More information on digital envelopes
and why they are useful for data privacy is provided in Chapter 2. One
thing to note is that in most cases where a digital envelope is used, the
asymmetric decryption key is also encrypted (usually with a password-
based scheme). The password-based encryption scheme is convenient from
a usability standpoint for human users.

Finally, Figure 7-5(b) shows the last case of symmetric key wrap,
whereby one symmetric key is encrypted by another symmetric key
(which is also encrypted and so on). This chain can be arbitrarily long, but
it will usually be fairly short in the interest of usability. In general, the
most important thing that the reader should take away from Figure 7-5
is the fact that <EncryptedKey> can be nested inside another
<EncryptedKey> element.

At this point, it is best to proceed with some examples. It is challenging
to see how everything fits together without something to look at. List-
ing 7-7 is meant to simply mirror the structure shown in Figure 7-5(a).

Listing 7-7 shows some cipher data that has been encrypted with AES
using a 128-bit key. In this example, the media type is text/html, so the
assumption is that we are encrypting an HTML document. The encryp-
tion key used is encrypted (this is represented by the <EncryptedKey>

XML Security250

<EncryptedData>
 <ds:KeyInfo>

 </ds:KeyInfo>
</EncryptedData>

<EncryptedKey>
 <ds:KeyInfo>

 …

 </ds:KeyInfo>
</EncryptedKey>

<EncryptedKey>
…
</EncryptedKey>

(a)

<EncryptedData>
 <ds:KeyInfo>

 </ds:KeyInfo>
</EncryptedData>

(b)

<EncryptedKey>
 <ds:KeyInfo>

 …

 </ds:KeyInfo>
</EncryptedKey>

Figure 7-5

Recursive
containment for
the
<EncryptedKey>
element

structure, which is shown in bold). This symmetric key has been
encrypted using the RSA algorithm with Public Key Cryptography Stan-
dards (PKCS) #1 padding. Moreover, the specific RSA key used to perform
the encryption was John Q. Recipient’s public key. The only person who
should be able to decrypt the AES key and read the message is John Q.
Recipient. The reader should understand that the enforcement of unique-
ness for the <KeyName> element is implementation dependent and is not
part of the XML Encryption draft. Practical scenarios suggest that a key
identifier that is more unique than the string John Q. Recipient will be
used.

The reader should notice that we haven’t used any of the new features
of <EncryptedKey> (such as the <ReferenceList> element) yet. We’ll
get to these elements in a later section. The most important thing to
notice about Listing 7-7 is the nesting of <EncryptedKey> inside
<EncryptedData>.

A case similar to Figure 7-5(a) is shown in Listing 7-8 and is a sym-
metric key wrap. This corresponds to Figure 7-5(b).

Listing 7-8 is structurally identical to Listing 7-7. There are only two
significant differences. The first is the fact that we are encrypting a file

251Chapter 7 Introduction to XML Encryption

Listing 7-7

The
<Encrypted-
Data> element
with an
<EncryptedKey>
(digital envelope)

<EncryptedData
xmlns="http://www.w3.org/2001/04/xmlenc#"
Type="http://www.isi.edu/in-notes/iana/assignments/media-types/text/html">
<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<EncryptedKey>
<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:KeyName> John Q. Recipient </ds:KeyName>

</ds:KeyInfo>
<CipherData>
<CipherValue>
zc1msFhM1GKMYDgYQAAoGActA8YG

</CipherValue>
</CipherData>

</EncryptedKey>
</ds:KeyInfo>
<CipherData>
<CipherValue>
NFNNJoqMcT2ZfCPrfvYvQ2jRzBFMB4GA1UdEQQXMBWBE2

</CipherValue>
</CipherData>

</EncryptedData>

that has a media type of image/gif instead of image/html (as is done in
Listing 7-8). Secondly, we specify a very different encryption algorithm for
the encryption key. That is, we are using the value http://www.w3
.org/2001/04/xmlenc#kw-tripledes instead of specifying an asym-
metric encryption algorithm like RSA. Thirdly, for variety we have chosen
the Triple-DES encryption algorithm instead of AES. This is denoted by
the <EncryptionMethod> element whose Algorithm attribute value is
http://www.w3.org/2001/04/xmlenc#tripledes-cbc. To summa-
rize Listing 7-8, one might say that we have encrypted some data (a gif
file) with a symmetric encryption key using the Triple-DES algorithm.
This key has also been encrypted, using a key-wrapping algorithm that
includes Triple-DES as the chief encryption mechanism. The concept of
symmetric key wrapping can be a bit odd at times. The reader may be
thinking, Why bother encrypting a symmetric key with another symmet-
ric key? The act itself seems a bit redundant. There are, however, some
good reasons for doing something like this. For example, if a lot of effort
was put into generating a given symmetric key (as with a key exchange
algorithm such as Diffie-Hellman), it might be useful to encrypt this with
another symmetric key.

XML Security252

Listing 7-8

The
<Encrypted-
Data> element
with an
<EncryptedKey>
(symmetric key
wrap)

<EncryptedData
xmlns="http://www.w3.org/2001/04/xmlenc#"
Type="http://www.isi.edu/in-notes/iana/assignments/media-types/image/gif">
<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<EncryptedKey>
<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#kw-tripledes"/>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:KeyName> John Q. Recipient </ds:KeyName>

</ds:KeyInfo>
<CipherData>
<CipherValue>
49dGMTPKg/JJjvqu+wWkYbaQ39G

</CipherValue>
</CipherData>

</EncryptedKey>
</ds:KeyInfo>
<CipherData>
<CipherValue>
ZIhvcNAQkBFhNzb2NyYXRlc0BhdGhlbnMuY29tMB4XDTAxMD

</CipherValue>
</CipherData>

</EncryptedData>

Another case is a situation where a set of keys is encrypted with one
master key (this situation might arise in some sort of database context).
To unlock a given field or record, the master key must be obtained; this
master key is simply a symmetric encryption key that wraps other sym-
metric keys. This example assumes that each field or record is encrypted
with a different symmetric key. Listing 7-8 only shows one level of recur-
sive nesting; the reader should understand, however, that more levels are
permitted by the XML Encryption draft, although their use will be quite
seldom.

The �EncryptedKey� Element: Details

The previous examples (Listings 7-7 and 7-8) showcase some common
uses of the <EncryptedKey> element. There are, however, some extra
details that must be mentioned about <EncryptedKey>, which provide
some additional semantics. The structure of the <EncryptedKey> ele-
ment is repeated in Listing 7-9.

The goal of this section is to teach the reader about the additional
Recipient attribute as well as the <CarriedKeyName> and
<ReferenceList> elements.

�ReferenceList� Details

So far we have seen a general paradigm in terms of how keying informa-
tion is associated with an XML structure (either an XML Signature or
encrypted XML element). That is, the assumption has been that the given
XML structure envelops or references (for encryption) the keying mater-
ial. In addition, we have also assumed that a key is tightly wed with a
given structure. That is, we only talk about a <ds:KeyInfo> as a compo-
nent element and not as a first-class object.

The careful reader may have noticed that we can turn this association
around and begin to think of the decryption key as a first-class object and

253Chapter 7 Introduction to XML Encryption

Listing 7-9

<EncryptedKey>
element details

<EncryptedKey Id? Type? Recipient?>
<EncryptionMethod/>?
<ds:KeyInfo>?
<CipherData>
<EncryptionProperties/>?
<ReferenceList>?
<CarriedKeyName>?

</EncryptedType>

the data it encrypts is the item being referenced. The reason why this is
possible is because the <EncryptedKey> element inherits from
<EncryptedType>, which is the parent object of XML Encryption. This
means that an <EncryptedType> can be the root of its own XML docu-
ment and reference the data (or keys) that have been encrypted by it. This
reverse referencing is done with the <ReferenceList> element. A
<ReferenceList> points to data items that have been encrypted with a
given <EncryptedKey>. Furthermore, the <ReferenceList> element
might also employ transforms, if, for example, the actual data or key
encrypted is part of some larger XML document (or stored in a com-
pressed or encoded form). The <ReferenceList> element is simple; its
structure is given in the following example:

<ReferenceList>
<DataReference URI?>*
<KeyReference URI?>*

</ReferenceList>

There are only two elements that can be inside a <ReferenceList>
element: <DataReference>, which identifies some encrypted data, and
<KeyReference>, which identifies some encrypted key. In both cases, the
data item is specified with the use of a URI. The URI can be used in the
same way as it is used in an XML Signature and can specify either an
absolute URI or a bare name fragment identifier. Listing 7-10 shows an
example of how <EncryptedKey> references the data that it has
encrypted when both <EncryptedKey> and <EncryptedData> reside in
the same XML document.

Listing 7-10 shows an XML document with a parent element called
<SecureDoc>. Inside this document are two elements from the XML
Encryption syntax. The reader should assume that other arbitrary ele-
ments also exist in <SecureDoc>, but they are not shown for brevity. The
<EncryptedKey> element represents some sort of decryption key that
has been encrypted with the RSA algorithm for key transport. This
<EncryptedKey> contains a <ReferenceList> element with a URI
attribute value of #EncryptedDataItem1. This bare name fragment
identifier has the same semantics as a URI attribute that is used in a
<ds:Reference> element. That is, it refers to the element whose Id
attribute value is EncryptedDataItem1.

Listing 7-10 shows a one-way association between the <Encrypted-
Key> element and the <EncryptedData> element. That is, if one was to
stumble across only the <EncryptedData> element first, it would be dif-
ficult to determine the appropriate decryption key. However, if we begin

XML Security254

with the <EncryptedKey> element, we can refer to the <Reference-
List> element to determine where an encrypted data item resides. This
will be either directly inside the <EncryptedData> element with a
<CipherValue> child element (shown in Listing 7-10) or indirectly with
a <CipherReference> element. The reader should think of a
<ReferenceList> as an arrow (or set of arrows if multiple data items
are included) to other <EncryptedData> or <EncryptedKey> elements.
The conceptual picture of this is shown in Figure 7-6.

Figure 7-6 simply shows an <EncryptedKey> element that points to
two pieces of encrypted data and one encrypted key, indicating that those
items can be decrypted with the initial <EncryptedKey>. At this point,
the reader may be wondering about the reverse association. That is, it
might be useful to identify the particular <EncryptedKey> structure
associated with a given <EncryptedData> element (instead of just the

255Chapter 7 Introduction to XML Encryption

Listing 7-10

An example of
using
<Reference-
List>

<SecureDoc>
...
<EncryptedKey>
<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1 5"/>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:KeyName> John Q. Recipient </ds:KeyName>

</ds:KeyInfo>
<CipherData>
<CipherValue>
mPCadVfOMx1NzhDaKMHNgFkR9upTW4kgBxyPWjFdW
UhiE4uQpww+t68lUIuZ9y5QVhRlEdfZ5H4Ytza2v8
anvv6YwVwBhjHU3vSm49FgZp

</CipherValue>
</CipherData>
<ReferenceList>
<DataReference URI="#EncryptedDataItem1"/>

</ReferenceList>
</EncryptedKey>

. . .

<EncryptedData Id="EncryptedDataItem1">
<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
<CipherData>
<CipherValue>
7KZ5l1KMKp54PyQNAkE9iQofYhyOfiHZ29kkEFV
J30CAwEAAaMSMBAwDgYDVR0PAQH/BAQDAgSQMA0
GCSqGSIb3DQEBBQUAA4GBACSzF

</CipherValue>
</CipherData>

</EncryptedData>

</SecureDoc>

identity of the private key holder). This can be confusing at first because
we mentioned previously that discerning a decryption key is the role of
<ds:KeyInfo>. Although this is entirely correct, in the case where we
want direct access to the actual <EncryptedKey> element, the XML
Encryption draft has us rely on the <CarriedKeyName> element. We are
in essence drawing an arrow back from the various encrypted data items
(keys or otherwise) directly to the proper <EncryptedKey> structure.
Although the <ReferenceList> element shown in Figure 7-6 points to
two <EncryptedData> elements and one <EncryptedKey> element, the
schema definition for <ReferenceList> constrains its contents to choice
but not both.

The �CarriedKeyName� Element

The <CarriedKeyName> element is meant to identify an <Encrypted-
Key> structure and not necessarily the identity of a recipient. It is the
name carried by a given <EncryptedKey> structure. This means that it
is used as an identifier and is referenced from another <Encrypted-
Data> element.

The introduction of the <CarriedKeyName> element also brings about
another semantic for <ds:KeyName>. Thus far, we have assumed that
<ds:KeyName> is a mechanism to identify some holder of a verification

XML Security256

<EncryptedData Id=''Data1''>
…
</EncryptedData>

<EncryptedKey Id=''Key1''>
…
</EncryptedKey>

<EncryptedData Id=''Data2''>
…
</EncryptedData>

<EncryptedKey>
…

 <ReferenceList>

 </ReferenceList>

</EncryptedKey>

Figure 7-6

The conceptual
view of
<Reference-
List>

key. Although it is possible to use this element for such a task, it is also
used to refer to the value given to <CarriedKeyName>, which isn’t nec-
essarily the name of a recipient. An example of this is shown in List-
ing 7-11, which is simply a repeat of Listing 7-10 but with
<CarriedKeyName> and <ds:KeyName>.

Listing 7-11 adds a <CarriedKeyName> element with a value of
MasterEncryptionKey to <EncryptedKey> as well as a <ds:Key-
Name> element to <EncryptedData>. This means that an association can
be made from the <EncryptedData> element to the <EncryptedKey>
using the value MasterEncryptionKey.

257Chapter 7 Introduction to XML Encryption

Listing 7-11

The addition of
<CarriedKey-
Name> and
<ds:KeyName> to
Listing 7-10

<SecureDoc>
...
<EncryptedKey Id="Key1">
<EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1 5"/>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:KeyName> John Q. Recipient </ds:KeyName>

</ds:KeyInfo>
<CipherData>
<CipherValue>
mPCadVfOMx1NzhDaKMHNgFkR9upTW4kgBxyPWjFdW
UhiE4uQpww+t68lUIuZ9y5QVhRlEdfZ5H4Ytza2v8
anvv6YwVwBhjHU3vSm49FgZp

</CipherValue>
</CipherData>
<ReferenceList>
<DataReference URI="#EncryptedDataItem1"/>

</ReferenceList>
<CarriedKeyName> MasterEncryptionKey </CarriedKeyName>

</EncryptedKey>

. . .

<EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#"
Id="EncryptedDataItem1">
<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
<ds:KeyInfo>
<KeyName> MasterEncryptionKey </KeyName>

</ds:KeyInfo>
<CipherData>
<CipherValue>
7KZ5l1KMKp54PyQNAkE9iQofYhyOfiHZ29kkEFV
J30CAwEAAaMSMBAwDgYDVR0PAQH/BAQDAgSQMA0
GCSqGSIb3DQEBBQUAA4GBACSzF

</CipherValue>
</CipherData>

</EncryptedData>
</SecureDoc>

Another thing to notice about the use of <ds:KeyName> and
<CarriedKeyName> is that the association between <EncryptedData>
and <EncryptedKey> isn’t direct. That is, if a processing application
were to begin with <EncryptedData> and then proceed to discern the
key, it would be an application task to actually find the key given only the
value of <CarriedKeyName>. To help with this problem, the
<ds:RetrievalMethod> element can be used.

The �ds:RetrievalMethod� Element

The <ds:RetrievalMethod> element is borrowed from the XML Signa-
ture Recommendation. In the context of an XML Signature, the
<ds:RetrievalMethod> element is designed to associate remote verifi-
cation key information with a given <ds:KeyInfo> element. The role of
<ds:RetrievalMethod> is similar for the case of XML Encryption.
Instead of pointing to a signature verification key, the <ds:Retrieval-
Method> points to a decryption key and, more specifically, an
<EncryptedKey> element. The reader can think of <ds:Retrieval-
Method> as a way of providing a functional link to a given <Encrypted-
Key> element. To illustrate this point, it is useful to repeat the
<EncryptedData> structure as shown in Listing 7-11 with the added
<ds:RetrievalMethod> element, which is shown in Listing 7-12.

There are two things to notice about <ds:RetrievalMethod> as it is
shown in Listing 7-12. First of all, it uses a bare name fragment identifier

XML Security258

Listing 7-12

Providing a
functional link to
<EncryptedKey>

<EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#"
Id="EncryptedDataItem1">
<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
<ds:KeyInfo>
<ds:KeyName> MasterEncryptionKey </KeyName>
<ds:RetrievalMethod URI="#Key1"
Type="http://www.w3.org/2001/04/xmlenc#EncryptedKey"/>

</ds:KeyInfo>
<CipherData>
<CipherValue>
7KZ5l1KMKp54PyQNAkE9iQofYhyOfiHZ29kkEFV
J30CAwEAAaMSMBAwDgYDVR0PAQH/BAQDAgSQMA0
GCSqGSIb3DQEBBQUAA4GBACSzF

</CipherValue>
</CipherData>

</EncryptedData>

to link to an <EncryptedKey> element with an Id value of Key1 (this is
the same <EncryptedKey> element that is shown in Listing 7-11). Fur-
ther, the <ds:RetrievalMethod> element qualifies what it is linking to
with the use of the Type attribute. The value used, http://www.w3
.org/2001/04/xmlenc#EncryptedKey, is fixed for <ds:Retrieval-
Method> as used in the XML Encryption draft. Multiple instances of
<ds:RetrievalMethod> can appear within a given <ds:KeyInfo> ele-
ment, but if they do, they must all point to the same key. The reader can
think of three conceptual links between the <EncryptedData> element
and the <EncryptedKey> element. First, there is a link from the
<EncryptedKey> element by virtue of the <ReferenceList> element.
Second, there is a link from the <EncryptedData> element to the
<EncryptedKey> with the use of <ds:KeyName> and <CarriedKey-
Name>. Finally, there is a functional link from <EncryptedData> to
<EncryptedKey> with the use of the <ds:RetrievalMethod> and its
bare name fragment identifier.

The Recipient Attribute The final addition to <EncryptedKey> is the
Recipient attribute. This attribute is used to offer an application-depen-
dent hint for the recipient of the <EncryptedKey> in which it appears.
Some people may argue that we already have a vehicle for denoting the
recipient of an encrypted key; for example, the <ds:KeyName> attribute
does this quite easily. The reason why the Recipient attribute might be
required in some situations comes from the fact that the <ds:KeyName>
(if used) may contain the name or identifier of a key, rather than a recip-
ient. This case is more common when a single key is encrypted for multi-
ple recipients. As an example, consider Listing 7-13, which is based on
Listing 7-11.

Listing 7-13 includes the Recipient attribute with the value of John
Q. Recipient as well as a second <EncryptedKey> element with the

259Chapter 7 Introduction to XML Encryption

Listing 7-13

Using the
Recipient
attribute in
<EncryptedKey>

<SecureDoc>
...
<EncryptedKey Id="Key1"

Recipient="John Q. Recipient">
<EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1 5"/>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:KeyName> MasterEncryptionKey.bin </ds:KeyName>

</ds:KeyInfo>
<CipherData>

(continues)

XML Security260

Listing 7-13
cont.

Using the
Recipient
attribute in
<EncryptedKey>

<CipherValue>
mPCadVfOMx1NzhDaKMHNgFkR9upTW4kgBxyPWjFdW
UhiE4uQpww+t68lUIuZ9y5QVhRlEdfZ5H4Ytza2v8
anvv6YwVwBhjHU3vSm49FgZp

</CipherValue>
</CipherData>
<ReferenceList>
<DataReference URI="#EncryptedDataItem1"/>

</ReferenceList>
<CarriedKeyName> MasterEncryptionKey </CarriedKeyName>

</EncryptedKey>

<EncryptedKey Id="Key2"
Recipient="Sue B. Recipient">

<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5"/>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:KeyName> MasterEncryptionKey.bin </ds:KeyName>

</ds:KeyInfo>
<CipherData>
<CipherValue>
FRlY2hub2xvZ2llcywgTHRkKupTW4kgBxyPWjFdW
AkGA1UEBhMCSUUxDzANBgNVJhRlEdfZ5H4Ytza2v8
KFwo0qgn5aKIkICGMlv6SgAH

</CipherValue>
</CipherData>
<ReferenceList>
<DataReference URI="#EncryptedDataItem1"/>

</ReferenceList>
<CarriedKeyName> MasterEncryptionKey </CarriedKeyName>

</EncryptedKey>
. . .

<EncryptedData Id="EncryptedDataItem1"
xmlns="http://www.w3.org/2001/04/xmlenc#">
<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
<ds:KeyInfo>
<ds:KeyName> MasterEncryptionKey </KeyName>
<ds:RetrievalMethod URI="#Key1"
Type="http://www.w3.org/2001/04/xmlenc#EncryptedKey"/>
<ds:RetrievalMethod URI="#Key2"
Type="http://www.w3.org/2001/04/xmlenc#EncryptedKey"/>

</ds:KeyInfo>
<CipherData>
<CipherValue>
7KZ5l1KMKp54PyQNAkE9iQofYhyOfiHZ29kkEFV
J30CAwEAAaMSMBAwDgYDVR0PAQH/BAQDAgSQMA0
GCSqGSIb3DQEBBQUAA4GBACSzF

</CipherValue>
</CipherData>

</EncryptedData>
. . .

</SecureDoc>

value of Sue B. Recipient. The <ds:KeyName> no longer identifies the
identity of the recipient, but identifies the name of the actual key instead.
In Listing 7-13, we have some encrypted data that has been encrypted for
multiple recipients using their RSA public keys. Each recipient has a dif-
ferent encrypted form of MasterEncryptionKey, but the reader should
notice that <CarriedKeyName> has the same element value for both
encryption keys. This would not be possible if a reference was made to the
Id attribute of <EncryptedKey> because Id attributes must be unique
in a given XML document context. Finally, the reader should notice that
we have added another <ds:RetrievalMethod> element. This second
element points to the second encrypted key with an Id value of Key2. This
signifies that the <EncryptedData> element in Listing 7-13 has been
encrypted with the same key, but is for different recipients. That is, one
could decrypt the <EncryptedData> with either Key1 or Key2.

The �AgreementMethod� Element

At this point, we have exhausted most of the details of the <Encrypted-
Key> element. The last element to be covered is the <AgreementMethod>
element, which is the second element in <ds:KeyInfo>. The
<AgreementMethod> element is used to support the agreement to a
shared secret value for the purposes of data encryption.

The XML Encryption draft only supports asynchronous key agree-
ment. This means that the sender and recipient participating in the key
agreement will generate their keys at different times. This contrasts with
the key agreement that might be used in a communications protocol,
where it is generally expected that a key will be negotiated by both par-
ties simultaneously and then used for encryption.

In XML Encryption, a sender must first retrieve the recipient’s public
value and compute a shared secret. This shared secret is then used to
encrypt data as part of an <EncryptedData> element. It is expected at
this point that the sender will include his or her public value so that the
recipient can compute the shared secret and decrypt the message. This
process can be a bit confusing and is normally divided into two phases or
parts. The first phase or part is shown in Figure 7-7.

In Figure 7-7, a recipient begins by generating some sort of key agree-
ment material. Once this material is finally generated, it is stored in a
central repository. This can be a certificate database or some sort of key

261Chapter 7 Introduction to XML Encryption

XML Security262

Recipient

Central Repository

Key Agreement
Material Generation

Figure 7-7

Asynchronous
key agreement
(recipient)

directory. Once the recipient generates the proper key agreement mater-
ial, the sender can do the appropriate lookup and create an encrypted
message. This phase is shown in Figure 7-8.

In Figure 7-8, the sender wants to encrypt data for the recipient using
a shared secret. To do this, the central repository must be queried to
obtain the recipient key agreement material (public value). Once
obtained, the sender performs the shared secret generation and proceeds
to encrypt data and send it to the recipient. The only detail that must be
considered is the presence of the sender’s public values. The recipient
must have the sender’s key agreement material (public value) in order to
generate the shared secret and decrypt the information. The sender’s key
agreement material is communicated with the <OriginatorKeyInfo>
element, which is shown in bold in Figure 7-8. The <AgreementMethod>
element is considered a proper child of <ds:KeyInfo> for XML Encryp-
tion because it eventually produces a key value. In addition to the
<OriginatorKeyInfo> element, the <AgreementMethod> element
also communicates an optional nonce value and digest method that is

used for the actual key derivation. For example, the XML Encryption
draft supports a key derivation function that produces any number of key
bytes based on the shared secret value, nonce, key size, and string URI
identifier.

Plaintext Replacement

In every example so far, we have talked about encrypting arbitrary data.
This can be an entire XML document, an HTML file, or some binary for-
mat file or resource. Now it is time to transition to the case of plaintext
replacement. We began this chapter with an overview of plaintext
replacement, which is illustrated in Figure 7-2 (the reader should flip
back now and refresh themselves). It is useful to note that almost nothing
changes in terms of the syntax for the case of plaintext replacement. The
only difference is that the <EncryptedData> element replaces the origi-
nal XML plaintext (element or element content), effectively creating a
new XML document. One syntax change that is necessary is the designa-
tion of the type of XML structure being replaced. This is going to be either

263Chapter 7 Introduction to XML Encryption

Sender

Recipient
Public
Information

Recipient

Data
Encryption

Shared
Secret

 Generation

Central Repository

<EncryptedData>
 …
 <ds:KeyInfo>
 <AgreementMethod>
 <OriginatorKeyInfo>
 …
 </OriginatreKeyInfo>
 </AgreementMethod>
 </ds:KeyInfo>
</EncryptedData>

Figure 7-8

Asynchronous
key agreement
(sender)

an element or element content (attribute encryption is not currently pos-
sible). The identifiers that will be used in the Type attribute for the
<EncryptedData> element are given in Table 7-1. The behavior of the
plaintext replacement case is very similar to the examples given previ-
ously; the only thing that changes is the addition of <EncryptedData> to
form the new ciphertext. Consider Listing 7-14, which shows a bank
transfer authored in a fictional markup language that uses the syntax
of XML.

In Listing 7-14, there are disparate elements and content. Not all of the
data items enumerated in Listing 7-14 can be considered especially sen-
sitive. For example, the client name and the transaction ID are probably
not very sensitive. Contrast this with the account numbers or transfer
amount. This type of information might be considered sensitive. Further-
more, it may not be practical to encrypt the entire structure. For example,
some application-specific processing or routing may need to take place
that is based on the <TransferTime> or the <TransactionID> ele-
ment. In order to selectively encrypt on the sensitive information, we can
rely on plaintext replacement. The updated, encrypted structure is shown
in Listing 7-15.

In Listing 7-15, we have actually encrypted a set of elements, namely
the content of the <SensitiveInformation> element. This means
that <SourceAccountNumber>, <DestinationAccountNumber>, and
<TransferAmount> have all been encrypted using Triple-DES in CBC
mode. Furthermore, the key has been given a <ds:KeyName> called
TransactionKey. It is assumed that the recipient who is receiving the
message knows how to obtain the proper decryption key based on this
identifier. Another equally likely scenario is embedding an <Encrypted-

XML Security264

Listing 7-14

A fictional
markup language
for a banking
transaction

<Transfer>
<TransactionId> 548356 </TransactionId>
<ClientName> Dale Reed </ClientName>
<ClientSSN> 123-45-6789 </ClientSSN>
<TransferTime> 08/13/01 11:03:36.23 </TransferTime>
<SensitiveInformation>
<SourceAccountNumber> 123456789 </SourceAccountNumber>
<DestinationAccountNumber> 987654321 </DestinationAccountNumber>
<TransferAmount> 500.00 </TransferAmount>

</SensitiveInformation>
<CurrencyType> USD </CurrencyType>

</Transfer>

Key> structure inside the <Transfer> parent element if we desire to
transport the decryption key along with the message.

The other thing to notice in Listing 7-15 is the designation of type infor-
mation for <EncryptedData>. That is, we have given the Type attribute
a value of http://www.w3.org/2001/04/xmlenc#Content. This may
seem odd because we are encrypting elements and one might think that
the http://www.w3.org/2001/04/xmlenc#Element identifier is more
appropriate. We use the Content identifier because we are really encrypt-
ing the contents of the <SensitiveData> element. The Element desig-
nation is used when we are encrypting a single element.

XML Encryption Processing Rules
At this point, we have covered the majority of the useful syntax for XML
Encryption and now it is time to transition into a discussion of the XML
Encryption processing rules. For XML Signatures, the processing rules
comprise a great deal of discussion and make up the bulk of Chapter 5.

265Chapter 7 Introduction to XML Encryption

Listing 7-15

Encrypted
banking
transaction using
plaintext
replacement

<Transfer>
<TransactionId> 548356 </TransactionId>
<ClientName> Dale Reed </ClientName>
<ClientSSN> 123-45-6789 </ClientSSN>
<TransferTime> 08/13/01 11:03:36.23 </TransferTime>
<SensitiveInformation>
<EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#"
Type="http://www.w3.org/2001/04/xmlenc#Content"/>
<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>
<ds:KeyInfo>
<ds:KeyName> TransactionKey </KeyName>

</ds:KeyInfo>
<CipherData>
<CipherValue>
A1UEChMcQmFsdGltb3JlIFRlY2hub
2xvZ2llcywgTHRkLjEWMBQGA1UEAx
MNTWVybGluIEh1Z2hlczCCAbYwggE
rBgcqhkjOOAQBMIIBHgKBgQDaJjfDT
rawMHf8MiUt

</CipherValue>
</CipherData>
</EncryptedData>

</SensitiveInformation>
<CurrencyType> USD </CurrencyType>
</Transfer>

For XML Encryption, the processing rules are a bit simpler and more
straightforward. The XML Encryption draft specifies three entities for
describing the processing rules: the application, the encryptor, and the
decryptor.

The Application

The term application refers to any sort of entity that relies on a given
XML Encryption implementation. This distinction is necessary because
some actions are left out of scope for XML Encryption. Certain things such
as plaintext validation (after decryption has been performed) and serial-
ization (the conversion of XML to octets) are left to the application.

The Encryptor

The term encryptor has a very specific meaning in terms of XML Encryp-
tion. In short, it is a processing entity that performs the actual encryption
operation. The encryptor is defined around the operations it performs to
produce some sort of <EncryptedType> element, whether this is a key or
data. The encryptor is responsible for generating and properly combining
all of the elements of the XML Encryption syntax including keys, encoded
data, and all attributes. It is also responsible for the storage of keys and
intermediate structures during the actual processing steps. Its job is to
put together and build up a package that contains the encrypted data.

The Decryptor

The term decryptor refers to the entity that performs the exact opposite
function of the encryptor. It is responsible for tearing down and decrypt-
ing any packaged <EncryptedType> elements that exist in a given XML
document context. It is responsible for decoding and decrypting any
encrypted data and provides the result back to the application. The
decryptor is not responsible for validating the result of the decryption
operation or ensuring that any resultant XML is well formed or valid.

XML Security266

The Encryptor: Process

The entire process for the actions of the encryptor can be captured in a
single flowchart. This process is shown in Figure 7-9. The reader should
look this over and try to follow it. The process is extremely straightfor-
ward and is shown with only a few simplifications. This process comes
from the text description in the XML Encryption draft and should be con-
sidered repurposed and non-normative. The full normative process should
be obtained from the latest XML Encryption draft. The flowchart notation
shown is simple—ovals represent actions and diamonds represent
choices.

The encryptor process begins with accepting three inputs: the encryp-
tion key, the algorithm, and the input data. The encryption process com-
pletes when we perform plaintext replacement or return an
<EncryptedType>. These states are shown in bold. The information
about the algorithm that will be used implicitly includes things like key

267Chapter 7 Introduction to XML Encryption

Serialize
Input Data

Encryptor
Processing

Replace
Original
Content

Return
<EncryptedType>

Input Data

Encryption Key (Ek)
Encryption Algorithm

and parameters

Replace
Plaintext?

Cipher
Location?

Add
Nonce?

Encrypt
<KeyInfo>?

Create
<KeyInfo>?

Yes

No

Build
<CipherReference>

Element

Build
<EncryptedType>

Build
<CipherData>

Element

Prepend
Nonce

Inside
<EncryptedData>

Yes

Yes

No

No

Outside
<EncryptedData>

Figure 7-9

The encryptor
process flowchart

size and encryption mode, if applicable. At this point, we are not making
any assumptions about the input data (whether it is treated as XML or as
octets) because it will eventually be serialized into octets for actual
encryption. Once these three inputs are processed, the next step is to
decide whether or not we are including a <ds:KeyInfo> element in the
<EncryptedType>. Notice that we are on the path to the creation of the
<EncryptedType>. The final result can be either an <EncryptedData>
element or an <EncryptedKey> element and depends on which path is
taken farther down in the flowchart.

If we decide that a <ds:KeyInfo> should be created, we will then ask
if we need to add an <EncryptedKey> element to the <ds:KeyInfo> ele-
ment. If so, we follow the path back to the beginning of the process and
proceed to create the <EncryptedKey> element. This step is the only
recursive step in the entire process; the careful reader should notice that
there is no upper bound on the number of times a given <EncryptedKey>
element can be encrypted. It is possible to have many levels of encrypted
keys (although most practical scenarios will afford just a few). Once this
recursive step is finished and we have created the proper <ds:KeyInfo>
element, we then proceed to serialize the input data. When we use the
word serialize, we are referring to converting the input data into octets. It
is possible that an application might use some other encoding or data con-
tent type, but in the end the encryption algorithm must operate on the
raw binary form.

Once we have properly serialized the input data into octets, it is time to
decide on a nonce value. A nonce value is usually a good idea if the type of
data you are encrypting has some sort of a priori known structure. This
means that if you have a structure markup language that only allows a
few values by virtue of its schema definition or DTD, it is a good idea to
add the nonce value at this time to prevent an attacker from deducing too
much information. The nonce adds entropy to the plaintext and helps pro-
tect against certain cryptographic attacks. The reader should also note
that a nonce value is not used in the case of an <EncryptedKey> ele-
ment; it is only used in an <EncryptedData> element.

To build the <EncryptedType>, we need to know if we are going to be
using a <CipherReference> element or a <CipherValue> element. We
are in effect asking if the cipher data is enveloped by or referenced by the
<EncryptedType> element. If we are using the <CipherReference>
element, the element must be created and the appropriate URI location
for the cipher data must be provided, as well as any applicable trans-
forms. If we are using the <CipherValue> element, the encryptor is

XML Security268

responsible for Base-64-encoding the cipher data and including the
encrypted data directly.

Finally, once we have built our <EncryptedType> element, we need to
make a determination about plaintext replacement. This is easy if it is an
<EncryptedKey> element because encrypted keys can’t be used for
plaintext replacement. However, if the final <EncryptedType> is an
<EncryptedData> element, the encryptor needs to check the Type
attribute and determine the type. This will be Element, Content, or a
media type of some sort (this is specified in Table 7-1). If the Type
attribute is not Element or Content (it is some media type), then the
encryptor must return this <EncryptedData> element to the application
(plaintext replacement cannot be performed).

If the <EncryptedType> is supposed to replace some original XML
plaintext, the application must provide the entry point and the encryptor
should be able to perform this replacement. You should note that an
<EncryptedData> element with a Type attribute of Element or
Content isn’t required to perform plaintext replacement; it may also
return the <EncryptedData> element to the application. This is useful in
circumstances where the XML data is being used as a flat file database.
For example, there would be no need to replace the original plaintext, but
there might be a need to send a piece of the original XML document in
encrypted form to some other recipient.

The Decryptor: Process

The decryptor fulfills the reverse process of the role of the encryptor and
is responsible for decrypting and pulling apart an incoming <Encrypted-
Type> element. The flowchart for the decryption process is shown in Fig-
ure 7-10.

The decryptor process begins by assuming that it has all of the neces-
sary inputs to kickstart the decryption. The necessary parameters include
the algorithm, parameters, padding information, and encryption mode.
The IV (initialization vector) for block ciphers is implicit in the <Cipher-
Data> and is assumed to be prepended to the ciphertext. If any informa-
tion is missing from the <EncryptedType> that is required for the
decryption process, the application must somehow supply it.

Once the algorithm and parameters are known, the first step is to
check and see if a <ds:KeyInfo> element is present in the <Encrypted-
Type>. If the <ds:KeyInfo> element is not present, the application must

269Chapter 7 Introduction to XML Encryption

supply the necessary decryption key. If the <ds:KeyInfo> element is pre-
sent and is not encrypted (for example, a <ds:KeyName> is used), the
application must successfully map this name or identifier to some type of
nonencrypted key for use in the decryption process. However, if the
<ds:KeyInfo> contains an <EncryptedKey> type, then the recursive
step comes into play and we must repeat the process from the beginning
until we somehow arrive at an unencrypted key. The astute reader should
realize that this recursive process must eventually stop because some key
must exist as a prime mover in order to be able to decrypt the
<EncryptedData> element.

Once the decryption key has been obtained in some usable form (unen-
crypted), the decryptor must discern the location of the <CipherData>.
That is, the actual encrypted data may be pointed to by a URI reference
and transforms (in the case of a <CipherReference> element), or it may
be enveloped directly inside the <EncryptedData> element. Either way,
the end result of this step is the same—the cipher data must be decoded

XML Security270

Return UTF-
8 encoded
plaintext

Decrypt
<CipherData>

Replace
XML

element or
content Return Type

designation
to

application

Save for
future

decryption
operation

De-reference
URL, apply
Transforms,

decrypt

Remove
Nonce

Base-64
Decode

Cipher Data,
decrypt

Obtain
Key Map Key

Decryptor
Processing

Nonce
Present?

Add
Nonce?

Replace
Plaintext?

Is the
decrypted

value a
key?

Does
<KeyInfo>

Exist?

<EncryptedType>Application
Information

Is
<KeyInfo>
Encrypted?

Yes

Yes

Yes

Yes

Yes

No No

No

No

Inside
<EncryptedData>

Outside
<EncryptedData>

Figure 7-10

The decryptor
process flowchart

and eventually decrypted. If a nonce is present, it also must be stripped at
this time to ensure that the proper plaintext is eventually generated.

Once the nonce is stripped, the decryptor must determine if the value
decrypted is a key value. If so, it must be saved at this time for use in a
repeated instance of the decryptor operation. If the value decrypted is not
a key value (for example, it is an <EncryptedData> element), the Type
information must be returned to the application. This means that the
decryptor is responsible for returning one of the values in Table 7-1.
Finally, if plaintext replacement is to be performed, the decryptor is
responsible for replacing the <EncryptedData> element with the proper
plaintext. It is important to note that the decryptor is not required to actu-
ally validate that the end result of the decryption was proper XML; this
task is delegated to the application. At this point, we have either per-
formed a replacement operation on the input ciphertext or have returned
the decrypted plaintext to the application. The work of the decryptor is
finished for this specific <EncryptedType> element. If the XML docu-
ment contains other <EncryptedType> elements, the decryption process
must be repeated for each of these.

XML Encryption: Other Issues

At this point, the reader should have a good understanding of how XML
Encryption works in terms of its basic syntax and processes. At the time
of this writing, the XML Encryption draft is still young and more complex
examples and implementations have yet to be worked out. This means
that this entire chapter held slightly less detail than the material on XML
Signatures (which are much more mature at this time). Specific informa-
tion that is left out includes the specification of the actual symmetric key
wrap functions as well as the shared secret derivation function provided
by the XML Encryption draft. For those readers interested in more details
about XML Encryption, the References section at the end of this book
includes a link to the official World Wide Web Consortium (W3C) working
draft.

This final section discusses some aspects of XML Encryption that just
don’t seem to fit well in any other broad category. The remaining topics of
discussion include more information on key transport, decryption trans-
form for XML Signatures, and a quick word on security considerations for
XML Encryption.

271Chapter 7 Introduction to XML Encryption

More Information on Key Transport

The asymmetric key transport algorithms that are defined by the XML
Encryption draft include the RSA algorithm with PKCS#1 padding and
the RSA algorithm with OAEP padding. Both of these algorithms are use-
ful for encrypting key data, but we have not mentioned these algorithms
for encrypting arbitrary plaintext. That is, our previous discussion doesn’t
include examples or a discussion of how one might encrypt some arbitrary
plaintext using the RSA algorithm. Instead, we specify how the RSA algo-
rithm can be used to encrypt a symmetric key. This is the nature of asym-
metric key transport and is also known by the term digital enveloping
(this concept is touched on in the primer in Chapter 2).

The question remains, however, of whether it is possible (or useful) to
use the key-transport algorithm defined in XML Encryption for the pro-
tection of arbitrary data. In fact, the XML Encryption draft doesn’t pro-
hibit the use of the key transport algorithm for arbitrary data, but there
are two reasons why this may not be an especially useful operation. The
first reason is because the nature of the padding scheme used in the RSA
operation puts an artificial limit on the length of the data that can be
encrypted. For example, if RSA with PKCS#1 padding is used, the upper
bound on the number of bytes that can be encrypted is k-11, where k is the
size of the modulus in bytes. So for a 512-bit RSA key, the largest possible
piece of data that can be encrypted with the RSA PKCS#1 key transport
algorithm is 53 bytes (64 � 11). Although the amount of data increases
with the key size, this operation is still limiting (for a 2,048-bit key, the
largest piece of data that can be encrypted is 245 bytes). The second rea-
son for avoiding direct RSA operations on plaintext is because the opera-
tion is horrendously slow compared to analogous symmetric key
encryption operations. In short, the key transport is designed to only
encrypt symmetric keys and although it can be used for arbitrary plain-
text, it should probably be avoided unless a special fringe case arises.

The Decryption Transform for XML Signatures

This topic actually comprises a short separate W3C working draft. The
purpose of the decryption transform is to help manage the complexity that
arises when XML documents begin to mix XML Signatures and XML
Encryption (which is a common use case). The decryption transform is
still in its early stages (at the time of this writing), so a conceptual
overview of how it works will be shown, but the actual normative algo-
rithm will be left up to the appropriate W3C document. Once the reader

XML Security272

understands the purpose behind the decryption transform, the rest is just
details. The decryption transform is a transform that is intended to be
used within an XML Signature, but it is meaningless without knowledge
of XML Encryption. This is why it is included in this chapter rather than
earlier chapters.

Decryption Transform Motivation

An easy way to understand why the decryption transform is necessary is
to think about the plaintext replacement case for decryption. That is,
when we have an incoming XML document that contains both a
<ds:Signature> element and at least one <EncryptedData> element,
it is possible in some cases that decrypting the <EncryptedData> ele-
ment will break an XML Signature. This happens if the <Encrypted-
Data> element is signed with an XML Signature because when we
perform the plaintext replacement, we are in effect altering the original
document. When signature verification occurs, the hash values won’t
match because plaintext replacement has been performed on the
<EncryptedData> element. We can build up to an example of what we
mean by this by first considering Listing 7-16, which shows an arbitrary
XML document that we might want to sign and encrypt.

Suppose we begin by performing plaintext replacement and encrypt
<SensitiveInfo1>. This is shown in Listing 7-17 in bold.

So far things are still simple. We have merely performed some content
encryption on the value Send 5 million to the North base!. We
have used the Triple-DES algorithm in CBC mode and have assumed that
the receiver implicitly knows the decryption key. Let’s now take this a step
further and create an enveloping XML Signature over the <SecureDoc>
element. The final output from this operation appears in Listing 7-18.

Things have gotten a bit more complex, but all that has really hap-
pened is that we have placed the <SecureDoc> element inside a
<ds:Object> element and signed its structure. At this point, there is

273Chapter 7 Introduction to XML Encryption

Listing 7-16

An arbitrary
XML document to
encrypt and sign

<SecureDoc>
<SensitiveInfo1>
Send 5 million to the North base!
</SensitiveInfo1>
<SensitiveInfo2>
Attack at dawn!

</SensitiveInfo2>
</SecureDoc>

already an ordering problem. That is, if the receiver decides to decrypt the
data before verifying the signature, plaintext replacement will occur and
the digest value of the #envelopedData reference will be incorrect. One
can argue that this is not an issue at this point because it is fairly clear
that the data inside <ds:Object> has been signed by inspecting the
source reference. However, consider what happens when we modify
the contents of <ds:Object> further by encrypting (but not signing) the
<SensitiveInfo2> element. Only the extracted <ds:Object> element
is shown in Listing 7-19.

At this point, the document is more complicated than ever before. The
<ds:Object> element now contains two <EncryptedData> elements,
and a recipient has no way to know the order in which the signing or
encryption operations were performed. That is, if a recipient were to try to
validate the XML signature, it would break because the signature is only
over one of the <EncryptedData> elements. A transform that designates
which <EncryptedData> elements should be excepted from the decryp-
tion operation is needed. For example, if we can specify to the verifier that
the <EncryptedData> element with an Id value of ED1 should not be
decrypted (but all other instances of <EncryptedData> should be), then
we would have a way to properly verify the XML Signature over
<SecureDoc>. This is the nature of the decryption transform for XML
Signatures—it is a list of <EncryptedData> elements that should be
skipped over in order to preserve the proper order for signature verifica-
tion to be successful. Those readers who want more details about the

XML Security274

Listing 7-17

Encrypting the
<Sensitive-
Info1> element
of Listing 7-16

<SecureDoc>
<SensitiveInfo1>
<EncryptedData Id="ED1"

Type="http://www.w3.org/2001/04/xmlenc#Content"
xmlns="http://www.w3.org/2001/04/xmlenc#">

<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

<CipherData>
<CipherValue>
qF1z+e5Jwvy49vVmZpMkb/3aMdr4ESGmTbc7FcQ

</CipherValue>
</CipherData>

</EncryptedData>
</SensitiveInfo1>
<SensitiveInfo2>
Attack at dawn!

</SensitiveInfo2>
</SecureDoc>

decryption transform should visit the References section at the end of this
book for links to web resources and the current W3C Note regarding this
subject.

Security Considerations

There are a few security considerations for the XML Encryption syntax as
well as for XML documents that exhibit both signed and encrypted prop-
erties. The first issue is that of data integrity, or authenticity, of a given
<EncryptedType> element. The XML Encryption draft does not provide

275Chapter 7 Introduction to XML Encryption

Listing 7-18

Signing the
<SecureDoc>
element

<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

<SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<Reference URI="#envelopedData">
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>3NMzvYIWFHiF3LStTgxtQkS9NpI=</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>
F2dXbU267Zaw/bsDfpM4GkqbDIl7JcdU6mR+yYtvEFAK87v6j5vyf8X8TF0HWqMK
BPlvQthSFBEcKurEkHxcvQ==

</SignatureValue>
<ds:Object Id="envelopedData" xmlns=""
xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<SecureDoc>
<SensitiveInfo1>
<EncryptedData Id="ED1"

Type="http://www.w3.org/2001/04/xmlenc#Content"
xmlns="http://www.w3.org/2001/04/xmlenc#">

<EncryptionMethod
Algorithm="http://www.w3.org/2001/04 /xmlenc#tripledescbc"/>

<CipherData>
<CipherValue>
qF1z+e5Jwvy49vVmZpMkb/3aMdr4ESGmTbc7FcQ

</CipherValue>
</CipherData>

</EncryptedData>
</SensitiveInfo1>
<SensitiveInfo2>
Attack at dawn!

</SensitiveInfo2>
</SecureDoc>
</ds:Object>

</Signature>

the integrity of its structure. For example, an attacker listening in on
encrypted messages can easily change (or delete) pieces of the
<EncryptedType> structure that may be present, such as the <ds:Key-
Info> element or the <EncryptionMethod> element. This will obviously
cause havoc with the recipient, who will most likely be unable to continue
processing the given <EncryptedType>message. Once the reader realizes
this, the importance of applying a digital signature to any <Encrypted-
Type> elements becomes especially clear. This issue should not be over-
looked—there is no structural integrity built into XML Encryption.

The second issue has been noted by Hal Finney (as noted in the current
XML Encryption draft) and is in regards to XML data that is signed and
then encrypted. There is a slight security issue here because in the case of
an XML Signature, the <DigestValue> element is still in the clear. This
means that there is extra information about the plaintext along with the
ciphertext. This information is a digest of the plaintext, which means that

XML Security276

Listing 7-19

The extracted
<ds:Object>
element with an
additional
<Encrypted-
Data> element

<ds:Object Id="envelopedData" xmlns=""
xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<SecureDoc>
<SensitiveInfo1>
<EncryptedData Id="ED1"

Type="http://www.w3.org/2001/04/xmlenc#Content"
xmlns="http://www.w3.org/2001/04/xmlenc#">

<EncryptionMethod
Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc"/>

<CipherData>
<CipherValue>
qF1z+e5Jwvy49vVmZpMkb/3aMdr4ESGmTbc7FcQ

</CipherValue>
</CipherData>

</EncryptedData>
</SensitiveInfo1>
<SensitiveInfo2>
<EncryptedData Id="ED2"

Type="http://www.w3.org/2001/04 /xmlenc#Content"
xmlns="http://www.w3.org/2001/04 /xmlenc#">

<EncryptionMethod
Algorithm="http://www.w3.org/2001/04 /xmlenc#tripledes-cbc"/>
<CipherData>
<CipherValue>
tvEFAK87v6j5vyf8X8TF0HWqMKBPlvQthSFBEcKu

</CipherValue>
</CipherData>

</EncryptedData>
</SensitiveInfo2>

</SecureDoc>
</ds:Object>

it may be possible to try arbitrary plaintext guesses (which might be pos-
sible or likely if the XML structure is known ahead of time) and see if the
correct digest value can be computed. Once this has been computed, the
encryption key can be determined with ciphertext, plaintext, and knowl-
edge of the encryption algorithm.

Chapter Summary
This chapter provides an overview of XML Encryption with an end goal
of conveying a conceptual understanding of XML Encryption syntax and
processes. The chapter begins with a distinction between encrypting arbi-
trary octets and encrypting XML. The former case produces an
<EncryptedData> element as its result, whereas the latter case may
result in plaintext replacement, where the original plaintext will have
pieces of its structure replaced with one or more <EncryptedData> ele-
ments. The chapter then transitions into a piece-by-piece discussion of
the possible child elements of <EncryptedData>, including the
<ds:KeyInfo> element, which opens the door to complexity for XML
Encryption. The <ds:KeyInfo> element is responsible for communicat-
ing information about the decryption key and can house the
<EncryptedKey> element, which is a type similar to <Encrypted-
Data>. Both <EncryptedData> and <EncryptedKey> are derived
types from the parent <EncryptedType> element, which provides
default behavior for these elements.

After a discussion of syntax, the main processing rules for XML
Encryption are shown in a flowchart format. Three entities are defined by
the XML Encryption draft: the application, the encryptor, and the decryp-
tor. The application refers to any entity that uses a given XML Encryption
implementation. The encryptor is the entity that is responsible for the cre-
ation of a given <EncryptedType> element. The decryptor is responsible
for decrypting and breaking apart a given <EncryptedType> element.
The chapter concludes with a quick discussion of the decryption transform
for XML Signatures as well as a brief look at some security considerations
for XML Encryption.

277Chapter 7 Introduction to XML Encryption

This page intentionally left blank.

XML Signature
Implementation: RSA

BSAFE© Cert-J

CHAPTER 8

This chapter explores the design and usage of XML Signatures in RSA’s
Cert-J product. Cert-J is a PKI toolkit for Java that contains an imple-
mentation of the XML Signature Recommendation. Cert-J is layered on
top of RSA’s cryptography toolkit for Java, called Crypto-J. The XML Sig-
nature implementation relies on classes from Cert-J, Crypto-J, and
Apache’s Xerces and Xalan packages. Cert-J uses the Document Object
Model (DOM) for representing and processing XML structures within
memory. For more information on DOM, see the primer in Chapter 3.

The class hierarchy is presented using class diagrams. This approach
gives the reader an overall view of the design approach taken by Cert-J as
well as important relationships between classes in the toolkit. Code exam-
ples are given that illustrate the most important and useful function calls
and classes. The anxious reader looking to get something up and running
quickly should look at the Signature Processing section. This section has
quick and dirty examples of creating and verifying an XML Signature.
Finally, the chapter concludes by showing some more advanced code
examples that aim to solve certain specialized problems.

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

RSA BSAFE Cert-J: Class
Diagrams and Code Examples

One way to gain an understanding of a toolkit product is to look at how
the class relationships are structured. Knowledge of the inheritance hier-
archy can provide insight into the subclass relationships and help the pro-
grammer understand when subtype polymorphism is useful. Class
diagrams also illustrate how Cert-J sees the world of XML Signatures by
showing abstractions for the corresponding XML syntax.

This section represents a walk-through of the public classes that are of
any use to the developer. Class diagrams are given where appropriate; the
intent is not to flesh out the entire design, but instead to show specific
classes and their relationships. The class diagrams are presented using
syntax similar to the Unified Modeling Language (UML). Readers unfa-
miliar with class diagrams or the UML should have little trouble follow-
ing along; the syntax is decidedly simple, and the real goal is to convey
relationships and conceptual understanding.

Syntax and Processing Revisited

The XML Signature Recommendation divides the specification of XML
Signatures into syntax and processing rules. A similar dichotomy is pre-
sent within the class hierarchy for XML Signatures as they are imple-
mented in Cert-J. There is a clear division between classes designed to
handle the syntax of an XML Signature versus classes that deal directly
with the parsing or processing of an XML Signature as it relates to the
DOM. Table 8-1 shows this loose division.

XML Security280

XML Signature related classes Processing related classes

XMLSignature ParserHandler

Reference VerificationInfo

Transformer

KeyInfo

Manifest

Table 8-1

XML Signature
Classes in Cert-J

In general, all of the classes on the left side of the table are strongly
related with some corresponding element or concept that is central to
XML Signatures while the classes on the right side of the table represent
classes that are necessary for the practical implementation of XML Sig-
natures. Table 8-1 is not a complete list of classes, but simply the most
central ones in each category. Cert-J makes heavy use of subclassing and
most of the classes shown in Table 8-1 have multiple child classes that
extend the behavior of the parent class. Discussion will begin with syntax-
oriented classes followed by the classes that pertain to the processing and
actual creation of XML Signatures.

XMLSignature

The most important and fundamental class for XML Signatures as they
are implemented in Cert-J is the XMLSignature class. This class encap-
sulates the entire <Signature> element. Its contents eventually come to
represent a fully featured <Signature> element as shown in Listing 4-3
(see Chapter 4). Most of the work done when creating an XML Signature
with Cert-J begins with creating an instance of XMLSignature. This
instance is modified with accessor functions and finishes when the
sign() method is called.

There are a number of constructor options for the XMLSignature class.
The choice of constructor is strongly related to the type of signature that one
wants to create. For example, if the goal is a detached signature, then the
toolkit needs no additional data up front, and the empty constructor can be
used.The data to be signed will be added later as a Reference object. If the
goal is an enveloped or enveloping signature, the toolkit needs additional
data to envelope or become enveloped by. In most cases, this means addi-
tional XML data will be added as an argument to the constructor. Finally,
regardless of the constructor used, Cert-J provides methods for adding
additional data to an instance of XMLSignature through the use of an
accessor function called setDocument(). This means that even if the empty
constructor is chosen, XML data can be added for use in an enveloped or
enveloping signature at any time before the signature is created. List-
ing 8-1 shows different ways in which an XMLSignature instance can be
created. There are three separate examples inside Listing 8-1.

In Listing 8-1, the code marked in bold shows the use of the XML-
Signature constructor and the related setDocument() function.
Examples 2 and 3 accomplish the same thing, but example 3 does it in

281Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

a more roundabout way. Example 3 might be used in situations where
the program already has access to an org.w3.dom.Document type.

Once an instance of XMLSignature is made, the type of signature must
be explicitly communicated to the object. For example, if we create an
instance of XMLSignature with a filename (as is done in example 2 inside
Listing 8-1), how will the library know which type of signature to create?
If we create an XMLSignature instance as done in example 2, it is possi-
ble that an enveloped or enveloping signature can be created.

To solve this particular problem, the library uses three static
integer variables to denote the signature type. The available types
are DETACHED_SIGNATURE, ENVELOPING_SIGNATURE, and
ENVELOPED_SIGNATURE. The chosen type is set with the use of the
setSignatureType() method. An additional SIGNATURE_MASK inte-

XML Security282

Listing 8-1

Using the
XMLSignature
constructor

import com.rsa.certj.xml.*;
import org.w3c.dom.*;
import java.io.FileInputStream;
import org.apache.xerces.parsers.DOMParser;
import org.xml.sax.InputSource;

class CodeListing81 {
public static void main (String args[]) throws Exception {
/* Example #1:

Empty XMLSignature constructor.
Most often used for a detached signature.*/
XMLSignature xmlSig1 = new XMLSignature();

/* Example #2:
Instantiates an XMLSignature object with file.xml as the input
data
for an enveloped or enveloping signature.*/
XMLSignature xmlSig2 = new XMLSignature("file.xml");

/* Example #3:
Creates a org.w3.dom.Document from a file and adds it to an
empty
XMLSignature object. */
InputSource inputSource =
new InputSource(new FileInputStream("file.xml"));
// Creates a new DOM Parser for reading in file.xml
DOMParser domParser = new DOMParser();
domParser.parse(inputSource);
Document xmlDoc = domParser.getDocument();
// Use Cert-J to associate the org.w3.Document with an
XMLSignature
XMLSignature xmlSig3 = new XMLSignature();
xmlSig3.setDocument(xmlDoc);

}
}

ger is used to determine which type of signature has been selected. This
code is shown in Listing 8-2 and is prevalent throughout the sample code
that is included with Cert-J.

Once the signature type is set, the details of the <Signature>
element need to be fleshed out. Considering the previous discussion, the
toolkit only knows about the type of signature to create and any possible
input data used to create the signature. Details, such as the list of
<Reference> elements, the signature algorithm, and canonicalization
method, have yet to be specified. Furthermore, we still need to make
provisions for additional optional elements such as <KeyInfo> or
<Manifest>. There are two important accessor functions that help us fill
in some of this information: setSignatureMethod() and
setCanonicalizationMethod(). As their names imply, these func-
tions are used for specifying the URI identifiers for the corresponding
signature method and canonicalization method. These functions operate
on string objects, and the URI identifiers specified in the XML Signature

283Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

Listing 8-2

Setting the
signature type on
an instance of
XMLSignature

import com.rsa.certj.xml.*;

class CodeListing82 {
public static void main (String args[]) throws Exception {
// First create an instance of XMLSignature
XMLSignature xmlSig = new XMLSignature();
// Set the signature type to be used
xmlSig.setSignatureType(XMLSignature.ENVELOPING_SIGNATURE);
int sigType = xmlSig.getSignatureType();
int maskResult = (XMLSignature.SIGNATURE_MASK & sigType);

/* This following code snippet shows how one might want
to check and see what type of signature we have. */

if (maskResult == XMLSignature.DETACHED_SIGNATURE) {
System.out.println("Signature object is a Detached
Signature");

} else if (maskResult == XMLSignature.ENVELOPING_SIGNATURE) {
System.out.println("Signature object is an Enveloping
Signature");

} else if (maskResult == XMLSignature.ENVELOPED_SIGNATURE) {
System.out.println("Signature object is an Enveloped
Signature");

} else {
System.out.println("Unknown Signature type");

}
}

}

Recommendation should be used as input. An example of how these are
used is shown as follows:

// Set the signature method to RSA with SHA-1
xmlSig.setSignatureMethod
("http://www.w3.org/2000/09/xmldsig#rsa-sha1");
// Set the canonicalization method to Canonical XML without
comments
xmlSig.setCanonicalizationMethod
("http://www.w3.org/TR/2001/REC-xml-c14n-20010315");

The signature method chosen is RSA with SHA-1, and the canonical-
ization method chosen is Canonical XML 1.0 without comments. Notice
that the string URI identifiers are taken directly from the XML Signature
Recommendation.

At this point, we have filled in most of the details required to actually
sign some data. The remaining structures that need to be specified are the
list of <Reference> elements and accompanying transforms as well any
additional optional elements such as <KeyInfo>, <Object>, or
<Manifest>. Figure 8-1 shows a class diagram that represents class
association. That is, the figure represents how the XMLSignature class
is associated with additional classes that will enable us to fill in the
final details of the <Signature> element.

Figure 8-1 is telling us that an XMLSignature instance is composed of
(this is the diamond notation) one or more instances of Reference and
zero or one instance of KeyInfo. A valid XML Signature can be created
without a <KeyInfo> element (<KeyInfo> is optional), but at least one

XML Security284

XMLSignature Reference

0..1

1..*

KeyInfo

Figure 8-1

XMLSignature
class
relationships

<Reference> element is required. Once a Reference object is created, it
can be added to an XMLSignature instance with the accessor function
setReferences(). This function takes an array of Reference objects; it
is possible to add many References to an XMLSignature at a single time.
The next section discusses the Reference class in more depth.

Reference and Transformer

The Reference class is perhaps the second most important class next to
the XMLSignature class. Although it is possible to give data to an
XMLSignature object with the use of the correct constructor, the toolkit
doesn’t know which portion of this data to sign without the use of a
Reference object. If no data is given to the XMLSignature object, a
Reference object fully defines the data source.

The simplest possible <Reference> element in an XML Signature may
omit everything but the <DigestValue> and <DigestMethod> child ele-
ments (see Chapter 5). Furthermore, a practical implementation cannot
create a digest value without some sort of digest method or algorithm to
use. This being the case, the simplest possible useful Reference object
that can be created must specify a digest method. From here, additional
properties, such as the URI, Type, and <Transforms>, can be added.
Cert-J offers a simple constructor and accessor functions for creating a
Reference object. A small code listing is shown in the following example:

// First use the default Constructor
Reference ref = new Reference();
// Set the Digest Method (URI Identifier)
ref.setDigestMethod("http://www.w3.org/2000/09/xmldsig#sha1");
// Set the URI (Detached Signature)
ref.setURI("http://www.server.com/foo.xml");

Adding transforms to a Reference object involves just another acces-
sor function call. To understand how transforms are implemented in Cert-
J, consider Figure 8-2 that shows the class hierarchy and subtype
relationships between a Reference object and the Transformer parent
class.

The Transformer class is an abstract parent class that has four chil-
dren that implement its interfaces. The four children represent the four
required and recommended transformations as specified in the XML Sig-
nature Recommendation: Base-64 decoding, Canonical XML 1.0,
enveloped signature, and XPath processing. The corresponding classes are
Base64Transformer, C14NTransformer, EnvelopedTransformer,

285Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

and XPATHTransformer. The TransformUtils class shown in Fig-
ure 8-2 is used for adding user-defined transforms to the list of acceptable
transformations. This topic is revisited in a later section where we will
investigate how to add our own custom transformation that does ZIP
decompression.

There are two ways to instantiate Transformer instances in Cert-J, a
standard constructor and a factory method. For some applications, the fac-
tory pattern might be more appropriate, but the end result is the same.
The factory method is convenient if you need to instantiate a Trans-
former in a general way; this is shown in Listing 8-3.

In Listing 8-3, the Transformer base class is used for all types of
Transformer objects. The input URI identifier determines the type of

XML Security286

Reference

*

Transformer

Base64Transformer

EnvelopedTransformer XPATHTransformer

C14NTransformer

TransformUtils

Figure 8-2

Reference class
relationships and
Transformer
subtypes

Transformer generated—this is especially useful in cases where older
namespaces must be supported. For example, the last example in
Listing 8-3 uses an old namespace for Canonical XML as specified in RFC
3075. Support for generating signatures with older namespaces is useful
for maintaining interoperability between different XML Signature
implementations, which may have implemented an older revision of the
specification.

287Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

Listing 8-3

Factory method
for instantiating
a Transformer
type

import com.rsa.certj.xml.*;
class CodeListing83 {

public static void main (String args[]) throws Exception {

String[] algs = {
"http://www.w3.org/TR/2001/REC-xml-c14n-20010315",
"http://www.w3.org/2000/09/xmldsig#base64",
"http://www.w3.org/2000/09/xmldsig#enveloped-signature",
"http://www.w3.org/TR/1999/REC-xpath-19991116",
"http://www.w3.org/TR/2000/CR-xml-c14n-20001026" };

/* Factory method for a Canonical XML Transformer (Without
Comments) */
C14NTransformer c14n =
(C14NTransformer)Transformer.getInstance(algs[0]);
System.out.println("Transformer: " +
c14n.getTransformAlgorithm());

/* Factory method for a Base64 Transformer */
Base64Transformer b64 =
(Base64Transformer)Transformer.getInstance(algs[1]);
System.out.println("Transformer: " +
base64.getTransformAlgorithm());

/* Factory method for an EnvelopedSignature Transformer */
EnvelopedTransformer env =
(EnvelopedTransformer)Transformer.getInstance(algs[2]);
System.out.println("Transformer: " +
envSig.getTransformAlgorithm());

/* Factory method for instantiating an XPath Transformer */
XPATHTransformer xpath =
(XPATHTransformer)Transformer.getInstance(algs[3]);
System.out.println("Transformer: " +
xpath.getTransformAlgorithm());

/* Factory method for Canonical XML under an older namespace */
C14NTransformer c14nOld =
(C14NTransformer)Transformer.getInstance(algs[4]);
System.out.println("Transformer: " +
c14nOld.getTransformAlgorithm());

}
}

Using XPATHTransformer

All of the Transformer objects shown in Listing 8-3 are instantiated
using only the URI identifier; no other initialization information for these
objects is required. This is acceptable for all of the Transformer objects
except for the XPATHTransformer. The reason why is because the user
needs a way to give the toolkit an XPath expression to use as the basis of
the transformation. There are two ways to provide an XPath expression to
the toolkit, a simple accessor function that accepts a string input, or a
function that accepts a org.w3c.dom.Node type. Both of these functions
operate on an instance of the XPATHTransformer object. The first
method is quite easy and is shown in a code snippet as follows:

// First make a new XPATHTransformer. Use the normal constructor
here.
XPATHTransformer xpath = new XPATHTransformer();
// Here is a simple String XPath Expression
String xpathExpression = "ancestor-or-self:Element1";
// Use an accessor function to set the String
xpath.setXPathExpression(xpathExpression);

The second method of initializing the XPATHTransformer with a valid
expression involves using the Xerces org.w3c.dom package to manually
create the actual <XPath> element and text content. The XML Signature
Recommendation specifies that the expression to be evaluated appears as
the content of an element named <XPath>. Cert-J gives the user the
option of adding this element manually as an org.w3c.dom.Element
type. The primary reason for this application programming interface
(API) in the toolkit is to provide for additional flexibility. In the first
method where only the accessor function is used, Cert-J will internally
create the <XPath> element appropriate text content. The Xerces and
Cert-J code required for the creation of this element is shown in List-
ing 8-4.

In Listing 8-4, most of the work done is with the Xerces API to create
the proper <XPath> element and expression content. There are only two
calls made to Cert-J in this instance, one call to create an instance of the
XPATHTransformer and one call to add the org.w3c.Node type to this
Transformer. Both Cert-J specific calls are shown in bold in Listing 8-4.
The creation of the org.w3c.Element type (which is a subtype of
org.w3c.Node) also includes initializing the namespace of the <XPath>
element that contains the expression.

XML Security288

Multiple Transforms

Multiple transforms are usually associated with a given <Reference>
element. This processing is accomplished with a method called set-
Transform() that operates on an array of Transformer object types.
An example code snippet is shown in the following example:

Transformer b64 = << previously initialized Base64 transformer >>
Transformer xpath = << previously initialized XPath transformer >>
Transformer[] transforms = {b64,xpath};
Reference ref = new Reference();
ref.setTransform(transforms)

289Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

Listing 8-4

Manually
creating the
<XPath> element

// Import the Crypto-J Classes
import com.rsa.certj.xml.*;
// Import Xerces packages
import org.apache.xerces.dom.DocumentImpl;
import org.w3c.dom.Node;
import org.w3c.dom.Element;
import org.w3c.dom.Text;
class CodeListing84 {
public static void main (String args[]) throws Exception {
// First create a new XPATHTransformer instance.
XPATHTransformer xpath = (XPATHTransformer)
Transformer.getInstance("http://www.w3.org/TR/1999/REC-xpath-
19991116");
// Arbitrary XPath Expression
String xpathExpression = "ancestor-or-self:Element1";
// Create a <XPath> element that wraps the XPath expression using
the DOM
DocumentImpl documentImpl = new DocumentImpl();
Element xpathNode = documentImpl.createElement("XPath");
Text textNode = documentImpl.createTextNode(xpathExpression);
xpathNode.appendChild(textNode);
// Finally, add the org.w3c.Node to the XPATHTransformer
xpath.setXPathExpression(xpathNode);
}
}

In the previous code example, the Reference object in question now
has two transforms associated with it, Base64Transformer and XPATH-
Transformer. Conceptually, the <Reference> element should appear as
follows when the signature is finally created:

<Reference URI="file:///C:\file.b64">
<Transforms>
<Transform Algorithm="http://www.w3.org/2000/09 /xmldsig#base64"/>
<Transform Algorithm="http://www.w3.org/TR/1999/REC-xpath-
19991116">
<XPath>
ancestor-or-self:Element1

</XPath>
</Transform>

</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2000/09 /xmldsig#sha1"/>
<DigestValue>T2UhxvKRnqtupNLDuIkYanwZBYg=</DigestValue>

</Reference>

In this example, the source file has been Base-64 encoded and needs to
be decoded (here we assume the decoded file is an XML document). Once
we obtain the raw XML document, it is converted to a node-set and sent to
the XPATHTransformer, which filters the document with the given
expression (ancestor-or-self:Element1). This particular expression
selects an element named <Element1> and all of its children for the
actual reference data used in the signature.

KeyInfo

The <KeyInfo> element defined by the XML Signature Recommendation
is shared by two other XML Security related technologies: XML Encryp-
tion and XML Key Management (XKMS). Discussion of the <KeyInfo>
element here will be constrained to its practical use in Cert-J with XML
Signatures.

The <KeyInfo> element is represented in Cert-J with the KeyInfo
class. According to the XML Signature Recommendation, there can be at
most one <KeyInfo> element per <Signature> element. The same con-
straint holds true with the KeyInfo class and its relationship to the
XMLSignature class. Figure 8-3 shows a class diagram that describes the
relationships KeyInfo has to other classes in Cert-J.

Figure 8-3 shows the KeyInfo class and its three subclasses, Key-
Value, RetrievalMethod, and X509Data. The KeyInfo class is an

XML Security290

abstract class and is designed in much the same way as the Transformer
class. The XML Signature Recommendation specifies seven elements that
can appear as children of <KeyInfo>. Cert-J only implements three of
these: <KeyValue<, <RetrievalMethod>, and <X509Data>. New Key-
Info child classes can be added through the use of the KeyInfoUtils class
—it is possible for the user to add the missing types or create application-
specific KeyInfo types.

For most practical applications that intend to interface with a tradi-
tional PKI, the contents of the <KeyInfo> element can be best under-
stood as a container for an X.509 certificate or public verification key. The
<KeyInfo> child elements that are designed to store these two types of
cryptographic objects include <KeyValue> and <X509Data>. These ele-
ments are represented in Cert-J with the KeyValue and X509Data sub-
classes, respectively.

291Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

XML Signature

0..1

KeyInfo

RetreivalMethodKeyValue X509Data

KeyInfoUtils

Figure 8-3

KeyInfo class
relationships

KeyValue with Raw Key Data

Perhaps the easiest way to think of the KeyInfo class and its subclasses
is to think of a simple public verification key. When a digital signature is
created, it must be verified with some sort of public verification key (See
the primer in Chapter 2). The KeyValue subclass is designed to represent
the raw, mathematical key data that is divorced from any sort of encoding
scheme. In simple terms, it is just a key value. Creating a KeyValue type
is simple; the factory pattern is used here again much like the Trans-
former class. Listing 8-5 shows how to create a KeyValue type and set
the verification key with raw public key data.

There are a number of important things to note in Listing 8-5. The first
thing to realize is that you will almost never see a raw verification key
used in practice. Most public verification keys are in a BER encoded
binary format. The example is shown for illustrative purposes and high-
lights how Cert-J and Crypto-J fit together. The first line of code shows
the factory constructor used to make a KeyValue type. From here on,
work is done to create a JSAFE_PublicKey instance. The JSAFE_
PublicKey class is part of Crypto-J and is the concrete class that holds
any sort of key data, whether it is raw or encoded. Once a JSAFE_
PublicKey is instantiated, the raw key data (in this case, a 512-bit RSA
key) is used to complete the initialization. The JSAFE_PublicKey is fur-
ther used to complete the initialization of the KeyValue type. The last
point of possible confusion is the setKeyInfos() method. The name of
this method implies that it creates more than one <KeyInfo> element in
the final signature, but in reality, it is simply creating a single <KeyInfo>
element, and the contents of the KeyInfo[] array contains the child ele-
ments that will appear inside the <KeyInfo> element when the signature
is finally created.

KeyValue with an Encoded Key

Setting the raw public key data manually is a very impractical way of
handling verification key information. Most public keys arrive in a single
binary encoded blob or live inside an X.509 certificate. Fortunately, the
basic process for creating a KeyValue is the same. The KeyValue type
has its value set with the setKey() function and it always takes a
JSAFE_PublicKey as input. This means that the problem of handling the
encoded key type is deferred to the JSAFE_PublicKey class. We have
already seen how to create a JSAFE_PublicKey with raw key data; this

XML Security292

293Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

Listing 8-5

Using raw key
data to create a
KeyValue type

import com.rsa.certj.xml.*;
import com.rsa.jsafe.*;
class CodeListing85 {
public static void main (String args[]) throws Exception {
// First create a KeyValue type using the factory constructor
KeyValue keyValue = (KeyValue)KeyInfo.getInstance("KeyValue");
// Create an empty key object. This is a call to Crypto-J
JSAFE_PublicKey verificationKey �

JSAFE_PublicKey.getInstance("RSA","Java");
// Here comes the raw key data
byte[] modulus = {
(byte)0xC5,(byte)0xAC,(byte)0x92,(byte)0xE8,(byte)0x9E,(byte)0x96,
(byte)0xBC,(byte)0xC8,(byte)0x3A,(byte)0x36,(byte)0x2D,(byte)0x22,
(byte)0xE1,(byte)0xD7,(byte)0x99,(byte)0x52,(byte)0xAC,(byte)0x71,
(byte)0x73,(byte)0xE1,(byte)0x80,(byte)0x60,(byte)0xA5,(byte)0xE5,
(byte)0xDA,(byte)0x62,(byte)0xAE,(byte)0xF7,(byte)0x32,(byte)0x00,
(byte)0x12,(byte)0x39,(byte)0x9E,(byte)0x05,(byte)0x46,(byte)0x83,
(byte)0xD1,(byte)0x03,(byte)0x68,(byte)0xDD,(byte)0x41,(byte)0xE3,
(byte)0x74,(byte)0x86,(byte)0x69,(byte)0x81,(byte)0x7D,(byte)0xDB,
(byte)0xE0,(byte)0x70,(byte)0xB7,(byte)0x39,(byte)0xDE,(byte)0x05,
(byte)0xA9,(byte)0xDC,(byte)0xD4,(byte)0x5F,(byte)0xDE,(byte)0xF2,
(byte)0x72,(byte)0x18,(byte)0x9C,(byte)0xF9

};
byte[] exponent = { (byte)0x11 };
byte[][] rawKeyData = {
modulus,
exponent

};
// Now we have a key object created with raw key data
verificationKey.setKeyData(rawKeyData);
// This is where Cert-J and Crypto-J meet
keyValue.setKey(verificationKey);
KeyInfo[] keyInfos � { keyValue };
// We need an instance of XML Signature.
XMLSignature xmlSig � new XMLSignature();
// This creates a <KeyInfo> element with a single <KeyValue> child
xmlSig.setKeyInfos(keyInfos);

}
}

means that the problem of handling encoded public keys is reduced to
understanding how JSAFE_PublicKey deals with this key type. The
standard format defined by RFC2459 is the SubjectPublicKeyInfo
type and is commonly referred to as a BER encoded X.509 public key. For
more information on this key format, see the primer in Chapter 2. The
X.509 public key is BER encoded and differs from the raw key data in that
it appears as a single blob and can be thought of as a single byte array.
The raw key data is two entities: a modulus and an exponent; in the X.509
public key type, the modulus and the exponent are included in the BER
encoding. Furthermore, the SubjectPublicKeyInfo type is also an

integral part of any X.509 certificate. An ideal situation would be to have
some code that deals with both situations. That is, we need a way to read
a binary encoded public key from a disk and create a JSAFE_PublicKey
instance as well as a way to extract a raw public key from an X.509 cer-
tificate. Once we have the JSAFE_PublicKey instance, it becomes useful
to the programmer as input to the setKey() function for the initializa-
tion of the KeyValue type. Listing 8-6 shows how to read a BER encoded
X.509 public key (SubjectPublicKeyInfo) from a file and creates a
JSAFE_PublicKey instance.

Listing 8-6 assumes that there is a file on disk that contains the BER
encoded public key called publicKey.ber. This file is opened, and its con-
tents are read into a byte array called publicKeyBER. From here, this byte
array is used to construct the JSAFE_PublicKey instance. Once this call
is made, the rest of the code should match Listing 8-5. The KeyValue type
simply accepts the JSAFE_PublicKey; it has no knowledge of where this
key came from. The two snippets shown in bold in Listing 8-6 represent

XML Security294

Listing 8-6

Creating a
JSAFE_
PublicKey from
an X.509
SubjectPublic-
KeyInfo

import com.rsa.certj.xml.*;
import java.io.*;
import com.rsa.jsafe.*;
class CodeListing86 {
public static void main (String args[]) throws Exception {

// Read the file containing the SubjectPublicKeyInfo into a
byte array
File publicKeyFile = new File("publicKey.ber");
long fileLength = publicKeyFile.length();
FileInputStream publicKeyStream = new
FileInputStream(publicKeyFile);
byte[] publicKeyBER = new byte[(int)fileLength];
publicKeyStream.read(publicKeyBER);
publicKeyStream.close();
// Create a new JSAFE_PublicKey object
JSAFE_PublicKey verificationKey �
JSAFE_PublicKey.getInstance(publicKeyBER,0,"Java");
// Create a new KeyValue type
KeyValue keyValue � (KeyValue)KeyInfo.getInstance("KeyValue");
keyValue.setKey(verificationKey);
KeyInfo[] keyInfos � {keyValue};
// Add it to an XMLSignature instance
XMLSignature xmlSig = new XMLSignature();
xmlSig.setKeyInfos(keyInfos);

}
}

the salient points of this example, the creation of a JSAFE_PublicKey
instance from the raw encoded public key and the interface between the
JSAFE_PublicKey object and the KeyValue type.

KeyValue and an X.509 Certificate

Although an encoded public key is certainly more pervasive than raw pub-
lic key data, an X.509 certificate is far more likely to be used as a source
of verification information. Certificates represent the chief authentication
method in a traditional PKI. Perhaps we would like to include a public key
from a certificate inside a <KeyValue> element; that is, our verification
key is inside an X.509 certificate, and we want to use it for our verification
material. The reader may begin thinking about the <X509Data> element
that has been previously mentioned. We are not yet discussing this ele-
ment, which implicitly includes more trust-based information. There is a
subtle but important distinction here. We are merely trying to use a veri-
fication key inside a certificate to verify a signature. We are not
considering a trust assertion about the certificate yet. In this example, the
X.509 certificate isn’t being viewed as a trustable entity, only as a conve-
nient container for a public key (which is often the case).

Let us proceed by assuming that we have an X.509 certificate and want
to create a KeyValue type that includes the public key from this certifi-
cate. All X.509 certificates contain a SubjectPublicKeyInfo object (this
is the same as the binary blob used in Listing 8-6). Our goal is to reduce
the problem of extracting the SubjectPublicKeyInfo object (which con-
tains a SubjectPublicKey) from the certificate. Once we have this
binary blob, we can proceed down the same path as Listing 8-6. List-
ing 8-7 shows how this can be done using Cert-J.

The careful reader may have noticed that we did not actually extract
the encoded key from the certificate; instead, we used a shortcut accessor
function called getSubjectPublicKey() that returns a JSAFE_PublicKey
type. This code assumes that we are working with the JSAFE_PublicKey
type; there is also a function called getSubjectPublicKeyBER() that will
return the raw encoded key in the standard format defined by RFC 2459.
Once we have the JSAFE_PublicKey type, we can create a KeyValue
type and use this as a <KeyInfo> child element.

At this point, we have seen a modest amount of code, and it is likely
that a small summary of what we are aiming at is useful. Listings 8-5, 8-6,
and 8-7, have been centered around the <KeyValue> child element of

295Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

<KeyInfo>. The goal with these code listings is to show practical ways of
creating a KeyValue type from common (or possible) sources of verifica-
tion key material. We have not yet begun discussion on how (or if) we trust
this key material. Figure 8-4 shows a pictorial view of the three previous
code listings and discussion.

The X509Data Type

The X509Data type is the most complex KeyInfo child that is also tightly
coupled with a standard PKI. The X509Data type needs to be able to
include various X.509 fields and objects. Each of the possible X509Data
child elements (with the exception of X509CRL) serves to uniquely iden-
tify an X.509 certificate. Once the certificate itself has been identified, the
key inside can be used to verify the signature. It is extremely important
to note that any signature with a valid key will verify properly; this
means that unless trust is asserted over the key or certificate somehow,
the signature is meaningless. Because X509Data resolves (in most cases)
to a X.509 certificate, the obvious thing to do once the certificate has been
retrieved is to perform path validation and make a trust assertion over
the certificate. Path validation may be simple and may only include chain-

XML Security296

Listing 8-7

Extracting a
SubjectPublic-
Key from an
X.509 certificate

import com.rsa.certj.cert.X509Certificate;
import com.rsa.jsafe.*;
import java.io.*;

class CodeListing87 {
public static void main (String args[]) throws Exception {

// Read the file containing the X.509 certificate into a byte
array
File certFile = new File("x509.cer");
long fileLength = certFile.length();
FileInputStream certStream = new FileInputStream(certFile);
byte[] certBER = new byte[(int)fileLength];
certStream.read(certBER);
certStream.close();
// Create an X509Certificate instance from a byte array
X509Certificate x509Cert = new X509Certificate(certBER,0,0);
// Get the public key as a JSAFE_PublicKey object (shortcut)
JSAFE_PublicKey publicKey =

x509Cert.getSubjectPublicKey("Java");
}

}

ing to trusted root certificate, or it may become more involved and perform
status checks to ensure the certificate has not been revoked and can still
be trusted. For more information on path validation, see the primer in
Chapter 2. Sample code that shows how XML Signature verification is
connected to path validation in Cert-J is shown in a later section. There
are four child elements of X509Data that uniquely identify a certificate;
these include <X509IssuerSerial>, <X509SubjectName>, <X509SKI>,
and <X509Certificate>. The last element is a rather vacuous case
because it is a certificate. Listing 8-8 shows how to create an X509Data
type that contains all four of these child elements.

297Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

<KeyInfo>

</KeyInfo>

<KeyValue>
...
</KeyValue>

Encoded Key
(SubjectPublicKeyInfo)

Raw Key Data
Modulus+Exponent

Encoded Key
(SubjectPublicKeyInfo)

X.509 CertificateFigure 8-4

Possible sources
for a KeyValue
type

XML Security298

Listing 8-8

Creating an
<X509Data>
element with the
X509Data type

import com.rsa.certj.xml.*;
import com.rsa.certj.cert.*;
import com.rsa.certj.cert.extensions.*;
import java.io.*;
class CodeListing88 {
public static void main (String args[]) throws Exception {
// Read the file containing the X.509 certificate into a byte
array
File certFile = new File("testcert.cer");
long fileLength = certFile.length();
FileInputStream certStream = new FileInputStream(certFile);
byte[] certBER = new byte[(int)fileLength];
certStream.read(certBER);
certStream.close();
// Create an X509Certificate instance from a byte array
X509Certificate x509Cert = new X509Certificate(certBER,0,0);
// Create a new X509Data type using the factory constructor
X509Data x509Data = (X509Data)KeyInfo.getInstance("X509Data");
// Set the X509IssuerSerial
x509Data.setX509IssuerSerial(x509Cert.getIssuerName(),
x509Cert.getSerialNumber());
// Set the X509SKI (Subject Key Identifier)
X509V3Extensions extensions = x509Cert.getExtensions();
// Find the Subject Key Identifier
SubjectKeyID subjectKeyId =

(SubjectKeyID)extensions.getExtensionByType(X509V3Extension.SUBJECT
_KEY_ID);

// Add the Subject Key Identifier to the <X509Data> element
x509Data.setX509SKI(subjectKeyId);
// Set the Subject Name
x509Data.setX509SubjectName(x509Cert.getSubjectName());
// Set the entire certificate
X509Certificate certs[] = { x509Cert };
x509Data.setCertificates(certs);
// Now add the the X509Data type to an XMLSignature instance
XMLSignature xmlSig = new XMLSignature();
KeyInfo[] keyInfos = {x509Data};
xmlSig.setKeyInfos(keyInfos);

}
}

Listing 8-8 begins by assuming that we have an arbitrary certificate
(testcert.cer) that contains a SubjectKeyIdentifier extension. All
standard X.509 certificates must have an issuer name and a serial num-
ber and most will have a subject name field. The code begins by creating
an X509Certificate object and from here we extract the necessary
fields (issuer name, serial number, subject key identifier, and subject
name). Finally, the entire certificate itself is added. All of the fields are
then added to the X509Data type and included in the <KeyInfo> parent
with a call to setKeyInfos(). Once the signature is created, the <Key-
Info> element will appear as follows:

<KeyInfo>
<X509Data>
<X509IssuerSerial>
<X509IssuerName>CN=Super Entity,ST=California,C=US</X509IssuerName>
<X509SerialNumber>5293E647FD80DA8A86A02B4C2226A0F6</X509SerialNumber>
</X509IssuerSerial>
<X509SubjectName>CN=Super
Entity,ST=California,C=US</X509SubjectName>
<X509SKI>0102020202020202020202020202020302020202</X509SKI>
<X509Certificate>
MIICKDCCAZGgAwIBAgIQUpPmR/2A2oqGoCtMIi
ag9jANBgkqhkiG9w0BAQUFADA5MQswCQYDVQQG
EwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEVMB
MGA1UEAxMMU3VwZXIgRW50aXR5MB4XDTAxMDkw
NDA2NTkwOFoXDTAyMDkwNDA2NTkwOFowOTELM
AkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3
JuaWExFTATBgNVBAMTDFN1cGVyIEVudGl0eTC
BnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA
ma4+Q/PmdPK2y9yLgAKltZe/8CKrtEBZ3nn5m
eu9w+JCVRghgpB0VebZ9Ok55CXTa1UsGjc0Fq
8wb7iZoaYdTOuciKZg7E+b3Ez0Z+yShPlUy8k
vPyTaNOjVeN0Z5HgwOTorS08pWdYb+649LcWy
Pj5HJN/hl0xEMXtEQuzcJzMCAwEAAaMxMC8wD
gYDVR0PAQH/BAQDAgSQMB0GA1UdDgQWBBQBAg
ICAgICAgICAgICAgIDAgICAjANBgkqhkiG9w0
BAQUFAAOBgQASWO6Tgz9EZu1OcGBWlWOPFj6d
ez3st8UCUsU8DhPcMMItH5MGHfIgMR6dPlwdz
SegTFFt77KsfqtNUMJNYom5cbjCqF2I1eHGzh
2X36HOQwIjB/DAJGzXaTZWynCNZnqJrprU2tM
f3/yK1MuzXflSIzhl5zWOJSoz5Ff4bMbY2g==

</X509Certificate>
</X509Data>

</KeyInfo>

All possible X509Data child types are shown in the previous example,
but not all are actually required. Because any single X509Data child ele-
ment uniquely identifies a certificate, a single such child element is suffi-
cient. The choice of child elements inside the <KeyInfo> parent is
application-specific and is strongly related to the existing PKI infrastruc-
ture used.

RetrievalMethod

The final KeyInfo child type implemented by Cert-J is the Retrieval-
Method type. This type represents the <RetrievalMethod> element as
specified in the XML Signature Recommendation. This child element is
used to obtain verification information from an external source. For exam-
ple, if the certificate containing the verification key resides on a remote
server, a RetrievalMethod type would be useful for identifying the loca-
tion of this certificate. In addition to conveying location information, the

299Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

RetrievalMethod element shares some of the properties of the <Refer-
ence> element. Specifically, it is possible to add a <Transforms> child
element to a <RetrievalMethod> such that transformations (such as
decoding) can occur if the verification information is stored in a different
format. RetrievalMethod also implements a typing scheme that identi-
fies (using a URI identifier) the specific KeyInfo child that is pointed to.
The URI identifier appears as the value of the type attribute of the
<RetrievalMethod> element. The possible identifiers defined by the
XML Signature Recommendation are listed in Table 8-2.

The careful reader may have noticed that the <KeyValue> type is
absent from Table 8-2. Instead, two other types are present: DSAKey-
Value and RSAKeyValue. These child elements are direct children of
<KeyValue> and give the application more specific information about
what type of key is being processed. Instead of a just a key, we know if it
is a DSA key or an RSA key. One useful application of RetrievalMethod
is to use it to reference a raw X.509 certificate that contains the verifica-
tion key. Listing 8-9 shows how to use the factory method to create a
RetrievalMethod type.

Once the signature has been generated, the resulting <KeyInfo> ele-
ment appears similar to the snippet of XML shown in the following exam-
ple. The URI given is fictional; in practice, the URI location should contain
the X.509 certificate in a raw binary format (such as non-encoded). For
more information on certificate formats, see the primer in Chapter 2.

XML Security300

RetrievalMethod

Type URI Identifier

DSAKeyValue http://www.w3.org/2000/09/xmldsig#DSAKeyValue

RSAKeyValue http://www.w3.org/2000/09/xmldsig#RSAKeyValue

X509Data http://www.w3.org/2000/09/xmldsig#X509Data

PGPData http://www.w3.org/2000/09/xmldsig#PGPData

SPKIData http://www.w3.org/2000/09/xmldsig#SPKIData

MgmtData http://www.w3.org/2000/09/xmldsig#MgmtData

Raw X.509 http://www.w3.org/2000/09/xmldsig#
Certificate rawX509Certificate

Table 8-2

Retrieval-
Method
Identifiers

<KeyInfo>
<RetrievalMethod
Type="http://www.w3.org/2000/09 /xmldsig#rawX509Certificate"
URI="http://www.rsasecurity.com/x509.cer"/>

</KeyInfo>

Other useful scenarios for RetrievalMethod include referencing a
chain of certificates that may be long or cumbersome to transport. In this
case, RetrievalMethod is initialized with the <X509Data> type, and the
<X509Data> element contains multiple children that uniquely identify a
certificate chain. This could be a set of <X509Certificate> elements or
any other <X509Data> child types that uniquely identify a certificate:
<X509IssuerSerial>, <X509SubjectName>, or <X509SKI>.

Custom �KeyInfo� Types

One of the powerful features of the XML Signature Recommendation is
the ability to add customized <KeyInfo> child elements for application-
specific purposes. Cert-J enables the user to implement custom KeyInfo
types with the KeyInfoUtils class. This class boasts a single function
called addKeyInfoClass() that adds a user-defined KeyInfo type to the
internal hash table that stores all of the supported KeyInfo types. As a
simple example, we will implement the <KeyName> child element as
defined in the XML Signature Recommendation. The idea here is to
extend the KeyInfo abstract class and implement all of the functions nec-
essary for the useful operation of <KeyName>. This case is almost trivial
because the <KeyName> child element is nothing more than a string iden-
tifier for a key. There are no special constraints on the string; the idea

301Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

Listing 8-9

Using
Retrieval-
Method to point
to a raw X.509
certificate

import com.rsa.certj.xml.*;
class CodeListing89 {

public static void main (String args[]) throws Exception {
// Create an instance of RetrievalMethod
RetrievalMethod rMethod =
(RetrievalMethod)KeyInfo.getInstance("RetrievalMethod");
// Set the type of <KeyInfo> we are referencing

rMethod.setType("http://www.w3.org/2000/09/xmldsig#rawX509Certificate");
// Set the URI to where our raw X.509 certificate lives
rMethod.setURI("http://www.rsasecurity.com/x509.cer");
}

}

here is to have a way to communicate a flippant but useful string identi-
fier that our recipient knows how to map to a real key. The mapping of the
string value to a key is application specific and does not necessarily rely
on any existing standard.

In addition to extending KeyInfo to enable us to represent a <Key-
Name> element, we also have to implement functions that enable the ver-
ifier (if the verifier is also using Cert-J) to automatically parse the
KeyName child element and obtain a real verification key. There are two
problems that need to be solved; the first is informing Cert-J how to rep-
resent a <KeyName> element, and the second is informing Cert-J how to
obtain the actual verification key associated with the <KeyName> string
value. Both problems are solved with a single child subclass of KeyInfo.
Figure 8-5 shows a pictorial diagram of what we are trying to do.

Perhaps the most innocuous step in Figure 8-5 is Step 2. This doesn’t
say much; what is meant here is that we need to make our KeyName type
work within the confines of Cert-J. The KeyName type holds a string value
that will eventually map to a public key. This means at the very least that
our implementation will need a way to set a string value and get a string
value. The idea is to hook our KeyName type into Cert-J such that we can
use it just like the other KeyInfo types we have discussed (KeyValue,
X509Data, and RetrievalMethod). An example code snippet of what we
might want out of KeyName is shown in the following example:

// Create a KeyName KeyInfo type
KeyName keyName = (KeyName)KeyInfo.getInstance("KeyName");
// Set the name of the KeyName
keyName.setKeyName("Dales Key");
Furthermore, the actual signature, when generated, should have a
<KeyInfo> element as follows:
<KeyInfo>
<KeyName>Dales Key</KeyName>

</KeyInfo>

It is expected that the verifying application will know what the string
Dales Key means and will be able to trust that this string value maps to
a viable verification key. In addition to a function that will store and
retrieve a string value, we need to properly implement the rest of the
KeyInfo abstract functions. We can tell which functions we need to imple-
ment by getting a list of the abstract functions with the javap command
(I have removed the throws clauses and fully qualified class names for
readability). This list is shown in the following example:

public abstract int getKeyInfoType();
public abstract String getKeyInfoName();

XML Security302

public abstract boolean hasKey()
public abstract boolean hasCertificate()
public abstract Certificate[] getCertificates(CertJ)
public abstract JSAFE_PublicKey getKey()
public abstract void setKey(JSAFE_PublicKey)
public abstract void setCertificates(Certificate[])
protected abstract Element generateKeyInfo(Document)
protected abstract void parseKeyInfo(Element)

All of the functions are simple accessor functions except for the last two
shown in bold. The generateKeyInfo() function is used to create the
actual <KeyName> element. This shouldn’t be too difficult—<KeyName> is
just an org.w3c.dom.Element with a single text child element. The
Document input argument is used to ensure that the org.w3c.dom.
Element is created under the proper parent org.w3c.dom.Document.

303Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

KeyInfo

KeyInfoUtils

KeyName

KeyName

KeyName

RetrievalMethod

Step 1: Create a KeyName type that extends KeyInfo.

Step 2: Implement/Add functions to make KeyName useful.

Step 3: Add the new KeyName class to the list of available KeyInfo types using
KeyInfoUtils.

KeyValue

X509Data

KeyInfo

Figure 8-5

The process for
adding a new
KeyInfo type

The parseKeyInfo() function is used to map the string to a verifica-
tion key and will be called during signature verification. Its job is to take
a <KeyName> element and decide how to map it to a real key. This is
where our application-specific code will live. Conceptually, our <KeyName>
element doesn’t have a key because it is just a string, but the design of the
toolkit is such that every KeyInfo type must somehow resolve to a key.
This is one of the defining properties of the <KeyInfo> element in gen-
eral. This is why the KeyInfo types have accessor functions for a
JSAFE_PublicKey and/or an array of certificate objects. Eventually, a
key or certificate containing a key must be added to the object so the sig-
nature can be verified. The fully implemented KeyName.java class is
shown in Listing 8-10.

XML Security304

Listing 8-10

The fully
implemented
KeyName Type

/* KeyName.java
This class implements the KeyName child element of KeyInfo
as described in the XML Signature Recommendation

*/
import com.rsa.certj.cert.*;
import com.rsa.jsafe.*;
import com.rsa.certj.*;
import com.rsa.certj.xml.*;
import org.w3c.dom.*;
import java.io.*;
public class KeyName extends KeyInfo
implements Cloneable, Serializable {
// This is the key that <KeyName> resolves to
private JSAFE_PublicKey publicKey = null;
// This is the actual KeyName
String keyName = null;
/* This function Is used to retrieve the certificates */
public Certificate[] getCertificates(CertJ certJ) {
/* No certificates in this KeyInfo object! */
return null;

}
/* We can retrieve the resolved key */
public JSAFE_PublicKey getKey() {
return this.publicKey;

}
/* Here is the name of our KeyInfo type */
public String getKeyInfoName() {

return "KeyName";
}
/* This is the type of KeyInfo class we have */
public int getKeyInfoType() {
return KeyInfo.KEYNAME_KEYINFO;

}
/* Check and see if this KeyInfo type has certificates */
public boolean hasCertificate() {
// No certificate here!

(continues)

305Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

Listing 8-10
(cont.)

The fully
implemented
KeyName Type

return false;
}
/* Check and see if this KeyInfo type has a key */
public boolean hasKey() {
return true;

}
/* Initialize this KeyInfo type with certificates */
public void setCertificates(Certificate[] certificates)
throws XMLException {

throw new XMLException ("KeyName should not contain
certificates");
}
/* Initialize this KeyInfo type with a public key */
public void setKey(JSAFE_PublicKey publicKey)
throws XMLException {
this.publicKey = publicKey;

}
/* This is the accessor function for initializing the name */
public void setKeyName(String keyName) {
this.keyName = keyName;

}
/* This is our accessor function for retrieving the name */
public String getKeyName() {
return keyName;

}
/* This function parses the KeyName and calls MapKeyName() */
protected void parseKeyInfo (Element keyInfoNode) throws
XMLException {
// Check to make sure the Element is not empty
if (keyInfoNode == null)
throw new XMLException ("KeyName is empty");
String keyNameValue =
keyInfoNode.getFirstChild().getNodeValue();
try {
this.publicKey = ExternalApp.MapKeyName(keyNameValue);

} catch (Exception xp) {
throw new XMLException("Could not map the key");

}
}
/* This function generates the actual <KeyName> element */
protected Element generateKeyInfo (Document document)
throws XMLException {
if (this.keyName == null)
throw new XMLException

("Error in generating KeyName element: KeyName not set");
String keyNameString = "KeyName";
Element keyName = document.createElement (keyNameString);
keyName.appendChild (document.createTextNode (this.keyName));
return keyName;

}
}

All of the functions in KeyName are trivial except for the last two shown
in bold. The very last function, generateKeyInfo(), does the job of cre-
ating the <KeyName> element. The function first checks to see if a string
key name has been set (this.KeyName). Then, using the Xerces API, the
first thing done is the creation of a new org.w3c.dom.Element type
called KeyName. Conceptually, this is the <KeyName> element. To add con-
tent to this, we create a text node and set the key name (this.KeyName)
as the value. This element is created under the passed in org.w3c
.dom.Document that refers to the parent document that Cert-J is using
to create the signature. Once the element is created, it is returned, and
Cert-J does the rest of the work by placing it correctly in the DOM tree in
which the <Signature> element is being created.

The penultimate function, parseKeyInfo(), has the job of parsing the
<KeyName> element in an incoming signature (such as a signature to be
verified) and mapping the value to a JSAFE_PublicKey. The function ini-
tiates by checking to see if the node that we are parsing is null; if it is non-
null, we go to the first child of the org.w3c.dom.Node (an element is also
a node) and get the node value. This value is the string value inside <Key-
Name>. After storing the node value in a string object, a call is made to a
static function called MapKeyName(). This user-defined function is
responsible for translating the string value into a JSAFE_PublicKey.
The JSAFE_PublicKey that is returned is used to initialize the pub-
licKey member inside KeyName. This member variable will be queried
during signature validation and used as a verification key source. Figure
8-6(a) shows a pictorial representation of the generation process; Fig-
ure 8-6(b) shows the validation process.

All of the pieces necessary for supporting KeyName have been shown
except the details of the MapKeyName() function. This is the application-
specific code that does the mapping to actual keys. The keys can be in a
database or in some sort of indexed list, or they can come across a network
or a web service. A vacuous case is shown for example purposes in List-
ing 8-11.

The MapKeyName() function shown in Listing 8-11 simply matches the
string Dales Key to a filename on the local disk. If no match is found, an
exception is thrown. A custom application would probably do a search on
a key directory or key database.

XML Security306

Manifest

The Manifest class is used to represent the <Manifest> element that
stores a list of <Reference> elements. Discussion of this class brings
with it more discussion about the Reference class. The Manifest class

307Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

KeyName

KeyNameInstance

KeyInfo

Step1: The KeyName type is added to the list of possible KeyInfo types.

Step 2: A new KeyName type is created.

KeyNameInstance

KeyNameInstance

"Dales Key"

<Signature>
 …

<KeyInfo>
 <KeyName>
 Dales Key
 </KeyName>
</KeyInfo>

</Signature>

Step 3: The key name is set with setKeyName().

Step 4: During signature generation, the <KeyName> element is created with
generateKeyInfo().

"Dales Key"

Figure 8-6(a)

The creation of
<KeyName>

can be confusing at first because it is related to at least two different
<Reference> elements. Any given <Manifest> element within the
scope of Cert-J will have an associated <Reference> element inside
<SignedInfo>. This is separate and distinct from the list of <Refer-
ence> elements inside the <SignedInfo>. Listing 8-12 is shown in
Chapters 4 through 6, but it is shown again here for clarity.

In the interest of clarity, we will assign vocabulary words to the differ-
ent <Reference> elements associated with <Manifest>. Let the source

XML Security308

KeyName KeyInfo

Step1: The KeyName type is added to the list of possible KeyInfo types.

Step 2: A new KeyName type is created.

Public Key

Public Key "Dales Key"

Step 3: The parseKeyInfo
function calls an external
application that maps the
string to a key.

<Signature>
 …

<KeyInfo>
 <KeyName>
 Dales Key
 </KeyName>
</KeyInfo>

</Signature>

Step 4: The Public Key is used to
complete Core Validation.

parseKeyInfo()

MapKeyName
Core

Validation

Figure 8-6(b)

The processing of
<KeyName>

309Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

Listing 8-11

Mapping a name
to an actual key

import com.rsa.jsafe.*;
import java.io.*;
class ExternalApp {
/* This function turns a string key name into an actual key. This

is
an application specific function */

public static JSAFE_PublicKey MapKeyName(String keyNameValue)
throws Exception {
JSAFE_PublicKey pubKey = null;
if (keyNameValue.equals("Dales Key")) {
File keyfile = new File("dale.key");
long length = keyfile.length();
byte[] keyData = new byte[(int)length];
FileInputStream fis = new FileInputStream(keyfile);
fis.read(keyData);
fis.close();
pubKey = JSAFE_PublicKey.getInstance(keyData,0,"Java");
return (pubKey);

} else {
throw new Exception
("Could not map key, unknown KeyName" + keyNameValue);

}
}

}

<Signature>

<SignedInfo>
<Reference URI="#manifest" Id="Source">
</Reference>

</SignedInfo>

<Object>
<Manifest Id="manifest">
<Reference Id="Target1" URI=?>
</Reference>

<Reference Id="Target2" URI=?>
</Reference>

</Manifest>
</Object>

</Signature>

Listing 8-12

The <Manifest>
element and its
relationship to
<Reference>
elements

reference be the single <Reference> element that refers to a list of target
references inside a <Manifest> element. In Figure 8-7, the source refer-
ence is the <Reference> element whose Id value is Source, and the tar-
get references are those that have the Id values of Target1 and Target2.
With these new terms in hand, we can easily slice apart the Manifest
class and see how it is implemented within Cert-J. Figure 8-8 shows how
the Manifest class relates to the Reference class.

Figure 8-8 can be confusing; it is telling us that an instance of Refer-
ence can be composed of zero or more instances of Manifest, and an
instance of Manifest can be composed of one or more instances of Ref-
erence. Manifest is a container for references, but also is used in the
creation of a Reference element itself. In short, if a Manifest is to be
used in the creation of an XML Signature, it needs to be added to a source
reference. Listing 8-13 shows how to create a set of target references and
associate these with a source reference.

There are some additional typing features used by the Reference
class that become evident when other classes, such as Manifest, are
employed. Specifically, it is possible to designate the target URI as an
<Object>, <SignatureProperties>, or <Manifest>. This is useful for
additional application processing semantics. This is seen in Listing 8-13
with the use of the Reference.MANIFEST_TYPE identifier. The signature

XML Security310

<Signature>

 <SignedInfo>
 <Reference URI="#manifest" Id="Source">
 </Reference>
 </SignedInfo>

 <Object>
 <Manifest Id="manifest">
 <Reference Id="Target1" URI=?>
 </Reference>

 <Reference Id="Target2" URI=?>
 </Reference>
 </Manifest>
 </Object>

</Signature>

Figure 8-7

The <Manifest>
element and its
relationship to
<Reference>
elements

311Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

Reference

Reference

0..1

1..*
Manifest

Figure 8-8

Manifest class
relationships

Listing 8-13

Creating an
instance of
Manifest

// Import the Crypto-J Classes
import com.rsa.certj.xml.*;
class CodeListing812 {

public static void main (String args[]) throws Exception {
/* Create three target references with a URI,
digest function and empty list of Transformers */
String hashAlg = "http://www.w3.org/2000/09/xmldsig#sha1";

Reference target1 =
new Reference("http://www.rsasecurity.com",hashAlg,null);
Reference target2 =
new Reference("http://www.securant.com",hashAlg,null);
Reference target3 =
new Reference("http://www.xcert.com",hashAlg,null);
Reference[] targetReferences = {target1, target2, target3};
// Create a Manifest with 3 target References and an Id
Manifest manifest = new Manifest(targetReferences,"manifest1");
// Now create a source Reference and designate the type
Reference sourceReference = new
Reference("manifest1",hashAlg,null,Reference.MANIFEST_TYPE,
manifest);
// Now add the source Reference to an XMLSignature instance
XMLSignature xmlSig = new XMLSignature();
Reference[] refs = {sourceReference};
xmlSig.setReferences(refs);
// Signing code not shown ...
}

}

generated from these source and target reference configurations and
Manifest is shown in the following example. The source and target ref-
erences are shown in bold:

<?xml version="1.0" encoding="UTF-8"?>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>
<CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>

<SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<Reference
Type="http://www.w3.org/2000/09 /xmldsig#Manifest"
URI="#manifest1">
<DigestMethod
Algorithm�"http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>1JsfksFOWRWthQt0VQS995SJfOU�</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>
ROKKGwMgMtXYlUzEZ9ZGv6tsx1Kt9ISjR7M5oPmtjlcJ
cY9amiNuHsQsdL2hiUDtrd6z5QbaxWQwjf1ssZLeng==
</SignatureValue>
<Object>
<Manifest Id�"manifest1">
<Reference URI�"http://www.rsasecurity.com">
<DigestMethod
Algorithm�"http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>tptm5huZKMkSd/Y5FBletU/LtL8�</DigestValue>

</Reference>
<Reference URI�"http://www.securant.com">
<DigestMethod
Algorithm�"http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>tptm5huZKMkSd/Y5FBletU/LtL8�</DigestValue>

</Reference>
<Reference URI�"http://www.xcert.com">
<DigestMethod
Algorithm�"http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>tptm5huZKMkSd/Y5FBletU/LtL8�</DigestValue>

</Reference>
</Manifest>

</Object>
</Signature>

Another point that should be mentioned is the <Manifest> element
is shown inside an <Object> element. The <Object> element is created
automatically by Cert-J; the user doesn’t have to worry about placing
this element in the signature tree manually when creating the signa-
ture. This case differs from the more general case where an <Object>
element is used to transport arbitrary data or application-specific signa-
ture information such as a <SignatureProperties> element or Base-
64 encoded data. Both of these cases will be visited in detail in a later

XML Security312

section. The remaining functions that deal with the Manifest class are
tightly integrated into the core validation processing done by Cert-J. We
will save these additional details for the section on creating and verify-
ing signatures.

The <Object> Element

Unlike the <Manifest> element, there is no associated Java class in
Cert-J for creating an <Object> element. The creation of an <Object>
element for an XMLSignature instance is deferred to the Xerces API. The
reason for this is quite simple; because of the extensible nature of
<Object> and its contents, it is hard to write a consistent interface for
what might be placed inside this element. Instead, Cert-J uses the
setXMLObjects() to enable the user to add any number of org.w3c
.dom.Element objects as children of the main <Signature> element.
The elements added by this function are placed in a vector and are added
as children during the signature generation process. All Element
instances added with setXMLObjects() must have the same parent doc-
ument.

A useful example for the <Object> element is the <Signature-
Properties> element. The <SignatureProperties> element appears
within a given <Object> as a means to convey signed assertions about a
specific XML Signature. Suppose we wanted to add (and sign) the ficti-
tious <SignatureProperties> element shown in Chapter 4. The com-
plete set of assertions and <Object> parent are shown in the following
example:

<Object>
<SignatureProperties>
<SignatureProperty Id�"FictionalSignatureAssertions"

Target�"#SignedCheckToPaperBoy">
<Assertion>
<GenerationTime>
Mon Jun 11 19:10:27 UTC 2001

</GenerationTime>
</Assertion>
<Assertion>
<Note> Can only be cashed at Bank Foobar </Note>

</Assertion>
<Assertion>
<ValidityDays> 90 </ValidityDays>

</Assertion>
</SignatureProperty>
</SignatureProperties>

</Object>

313Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

All of the contents of the <SignatureProperty> element shown pre-
viously are fictional, and the tag names are invented. The way to add this
to an XML Signature is to create the DOM representation of this
<Object> element and then use setXMLObjects() to add the structure
to an instance of XMLSignature. The <SignatureProperty> tag shown
in bold has the Id value of the parent <Signature> as well as its own Id
(FictionalSignatureAssertions) that will be used as a fragment
identifier from within a <Reference> element.

Listing 8-13 shows how to create a <SignatureProperties> element
and the first <Assertion> child element. Remember, the <Assertion>
element is invented and is used for explanatory purposes. If this sort of
custom markup is used, it is the application’s responsibility to know how
to understand and make decisions based on its meaning.

Listing 8-14 probably looks like a mess; the bulk of the confusing code
is the use of Xerces to create the <SignatureProperties> element and
child elements. Only one <Assertion> tag is shown in Listing 8-14; try-
ing to fit them all in would only serve to confuse the reader with needless
details. This code creates the <SignatureProperties> element as well
as two <Reference> elements. The first <Reference> is for the actual
electronic check (which in this case is assumed to reside on a remote
server). The second <Reference> is the source reference for the
<SignatureProperties> element. This means that our set of signature
properties is signed along with the check, providing some protection
against alterations. There are a few important things to notice about List-
ing 8-14. First, the signature type is set to XMLSignature.DETACHED
_SIGNATURE. This may seem confusing at first, because the actual signa-
ture when generated would actually be both detached (reference to a
remote file) and enveloping (reference to signature properties). This is an
example where the classification of XML Signatures into distinct types
begins to break down.

Amid the confusion of Listing 8-14, there are a few items shown in bold
that are of special importance. The first item is the setSignatureID()
function. This function is required here because it may be useful to match
the Target attribute in the <SignatureProperties> element back to the
signature that it refers to. The third item shown in bold is the creation of
the DocumentImpl type. This provides a root Document type from which
to create the <SignatureProperties> element and its children. The
next call shown in bold is the setXMLObjects() call that takes an array of
org.w3c.dom.Element types. This call actually initializes the XML-
Signature with the list of child elements that will be added during the
signing process. The following function is the important setDocument() call.

XML Security314

315Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

Listing 8-14

Adding a
<Signature-
Properties>
element to
XMLSignature

import com.rsa.certj.xml.*;
import java.io.*;
import java.util.*;
import org.w3c.dom.*;
import org.apache.xerces.dom.DocumentImpl;
class CodeListing813 {
public static void main (String args[]) throws Exception {
XMLSignature xmlSig = new XMLSignature();
xmlSig.setSignatureType(XMLSignature.DETACHED_SIGNATURE);
// Set the signature type to be used
xmlSig.setSignatureID("SignedCheckToPaperBoy");
// First we have to create an <Object> element.
DocumentImpl documentImpl = new DocumentImpl();
Element objectNode = documentImpl.createElement("Object");
// Create the <SignatureProperties> element, Id and Target
String sigId = "FictionalSignatureAssertions";
String sigTarget = "SignedCheckToPaperBoy";
Element sigPropsNode =
documentImpl.createElement("SignatureProperties");
sigPropsNode.setAttribute("Id",sigId);
sigPropsNode.setAttribute("Target",sigTarget);
// Create the <SignatureProperty> element
Element sigPropNode =
documentImpl.createElement("SignatureProperty");
// Create the <Assertion> element. This is a fictional tag
Element assertNode = documentImpl.createElement("Assertion");
// Create the <GenerationTime> element. This is a fictional tag
Element gtNode = documentImpl.createElement("GenerationTime");
// Create the text contents of this tag
Text textNode =
documentImpl.createTextNode("Mon Jun 11 19:10:27 UTC 2001");
// Append the text node to <GenerationTime>
gtNode.appendChild(textNode);
// Append <GenerationTime> to <Assertion>
assertNode.appendChild(gtNode);
// Append <Assertion> to <SignatureProperty>
sigPropNode.appendChild(assertNode);
// Append <SignatureProperty> to <SignatureProperties>
sigPropsNode.appendChild(sigPropNode);
// Set the XML Objects to be enveloped by <Signature>
Element[] elems = {sigPropsNode};
xmlSig.setXMLObjects(elems);
// Tell Cert-J about the parent Document type
xmlSig.setDocument(documentImpl);
// Reference element for the check
Reference checkRef = new Reference();
checkRef.setURI("http://somelocation.com/check.txt");
checkRef.setDigestMethod("http://www.w3.org/2000/09/
xmldsig#sha1");
// Reference element for the <SignatureProperties>
Reference sigPropsRef = new Reference();
sigPropsRef.setURI("#FictionalSignatureAssertions");
sigPropsRef.setDigestMethod("http://www.w3.org/2000/09
/xmldsig#sha1");
Reference[] refs = {checkRef,sigPropsRef};
// Actually add the Reference element.
xmlSig.setReferences(refs);

}
}

This function initializes the XMLSignature with the proper root Document
type that will be used when generating the signature. Failure to make this
call with the correct Document type will result in an exception thrown by
Cert-J. The final calls shown in bold comprise the creation of the Refer-
ence that points to the <SignatureProperties> element. The
setURI() call shows how a fragment identifier is used to point to the ID
attribute of the <SignatureProperties> element. The value used here
is #FictionalSignatureAssertions. The last thing to note here is that
Listing 8-14 is not a complete signature. It is missing the designation of
the canonicalization algorithm and signature method, as well as the code
that actually does the signing operation. If this code were completed, the
output signature (pictorial view) would look something like Figure 8-9.

The arrows in Figure 8-9 show what is signed. In this case, two entities
are signed, an external piece of data (the electronic check) and the
enveloped <SignatureProperties> element.

Signature Processing

At this point, we have covered all of the important classes for initializing
and creating the syntax of an XML Signature. We have yet to see how to

XML Security316

XML Signature

Check to Paperboy

Signature Properties

Figure 8-9

A pictorial view of
the signature
generated with
code from Listing
8-14

317Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

actually create an XML Signature. The previous classes are primarily
used to build a structure in memory that is going to be signed. This next
section covers the classes necessary for actually creating and writing sig-
natures to a useful location such as a file or stream. For those readers who
just want to sign something and just want to verify something, the next
two examples are the first fully functional code examples that will actu-
ally create and verify a digital signature. First we will show the code, and
then we will talk about how the processing and verification actually works
(see Listing 8-15).

One of the most overlooked entities at this point has been the actual
signing key. An XML Signature cannot be created without a cryptographic
key of some sort, whether it is a symmetric key for use in an HMAC or an
RSA or DSA key. For the previous example, code is shown that uses the
Crypto-J toolkit to generate a new RSA key pair at run time. The previous
code can be considered example code and is not really secure for a real
application because the seeding method shown is extremely poor (the date
is used). In reality, a good source of randomness should be used to seed the
random number generator. More about random number generators and
seeding can be found in Chapter 2. The first thing done in Listing 8-15 is
to create the key pair. This is done with a static function called
createKeys() shown in bold. This function does the job of initializing the
two static objects that represent the private key and the public key
(JSAFE_PrivateKey and JSAFE_PublicKey). Most of the gory details
regarding the key generation are going to be skipped here; they are fully
explained in the Chapter 2 primer.

Listing 8-15

Complete XML
Signing example

import com.rsa.certj.xml.*;
import com.rsa.jsafe.*;
import java.util.*;
import java.io.*;
class CodeListing814 {
private static JSAFE_PrivateKey privateKey = null;
private static JSAFE_PublicKey publicKey = null;
public static void main (String args[]) throws Exception {
// First create the keys
createKeys();
// Create the XMLSignature instance
XMLSignature xmlSig = new XMLSignature();
xmlSig.setSignatureType(XMLSignature.DETACHED_SIGNATURE);
xmlSig.setSignatureMethod("http://www.w3.org/2000/09/
xmldsig#rsa-sha1");
xmlSig.setCanonicalizationMethod
("http://www.w3.org/TR/2001/REC-xml-c14n-20010315");

(continues)

XML Security318

Listing 8-15
(cont.)

Complete XML
Signing example

// Create a reference to a URI
Reference ref = new Reference();
ref.setURI("http://www.rsasecurity.com");
ref.setDigestMethod("http://www.w3.org/2000/09/xmldsig#sha1");
Reference[] refs = {ref};
xmlSig.setReferences(refs);

// Add the public key so we can verify the signature
KeyValue kv = (KeyValue)KeyInfo.getInstance("KeyValue");
kv.setKey(publicKey);
KeyInfo keyInfos[] = {kv};
xmlSig.setKeyInfos(keyInfos);

// Make sure the DTD doesn’t show up for now
ParserHandler.DTD_LOCATION = null;

// Perform the signing operation and write the signature
to the screen.
xmlSig.sign(privateKey,null,"Java");
ParserHandler.write(System.out,xmlSig);

}
private static void createKeys() {
JSAFE_KeyPair keyPair = null;
JSAFE_SecureRandom random = null;

try {
System.out.println("Generating RSA key pair.");
random = (JSAFE_SecureRandom)
JSAFE_SecureRandom.getInstance ("SHA1Random", "Java");
random.seed (new Date().toString().getBytes());
keyPair = JSAFE_KeyPair.getInstance("RSA", "Java");
int[] keyGenParams = { 512, 17 };
System.out.println ("Modulus size: " + keyGenParams[0]);
System.out.println ("Public Exponent: " + keyGenParams[1]);
keyPair.generateInit(null, keyGenParams, random);
System.out.println ("Generating the RSA keypair...");
keyPair.generate();
privateKey = keyPair.getPrivateKey();
publicKey = keyPair.getPublicKey();
keyPair.clearSensitiveData();

} catch (Exception anyException) {
System.out.println ("Exception caught while generating

keys");
System.out.println (anyException.toString());

}
}

}

Before the signing operation takes place, there is an odd flag being set
on the ParserHandler class. The flag is DTD_LOCATION, and it is being
set to null. When the signature is verified, some recipients may want to
validate the structure of the XML Signature and check to see if it is valid.
Here the term valid does not refer to the authenticity of the signed data,

but refers to valid XML. The choice of vocabulary words is unfortunate.
For now, we will set it to null; this means that Cert-J will not include a
document-type declaration in the output XML. For most applications, this
will probably be acceptable, but some recipients require this declaration
as well as a valid path to the actual document type definition (DTD). For
more information on DTDs, consult the primer in Chapter 3.

Once we have a JSAFE_PrivateKey object in hand, we can use the
sign() function (shown in bold in Listing 8-15) to actually create the
signed XML structure in memory. The null second argument is for a ran-
dom object that is only required during DSA signature generation. The
third argument is a string value that represents the device setting. When
the device setting is set to Java, we are telling Cert-J to attempt the sign-
ing operation using only software calls. Once the sign() function has
been called, the ParserHandler class is required to actually write the
signature to an OutputStream or file. In the simple case of Listing 8-15,
we are simply writing to System.out.The second argument is the actual
XMLSignature instance that we would like to send to an OutputStream.
If we had multiple signatures, we would need to use the Parser-
Handler.write() function multiple times, once for each signature to
generate. This previous description is a bare-bones case of how signing
works in Cert-J. Signature verification is quite similar and possibly even
simpler because there is no need to generate a key pair. One thing to note
about Listing 8-15 is that a <KeyInfo> element is added to the signature,
making it easy to verify. If no <KeyInfo> element is present, the applica-
tion must do the necessary work to obtain the verification key. List-
ing 8-16 shows how to verify an XML Signature stored in a file.

Listing 8-16 is quite subtle and fairly restrictive on what can be used as
input, but it does the job of verifying an XML Signature stored in a file.
Some assumptions are made; the first is that the input file contains a sin-
gle XML Signature with a <KeyInfo> element containing a verification
key. ParserHandler.read() is called and reads from an input file,
returning an array of possible XMLSignature instances. This call returns
as many <Signature> elements found in the input file. In our simple
case, we assume that the <Signature> to verify is the first element in
this array. A more practical example consists of looping through the array
and verifying each signature found.

Next, the verification key is removed from the XMLSignature instance
with getKeyInfos(). This call returns a list of all the KeyInfo types
found inside the given XMLSignature instance. Although there can be
only one <KeyInfo> element in an XMLSignature, this element may con-
tain many KeyInfo types (such as a key, certificate, subject name, and so

319Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

on). Once the list is obtained, the first element in the list is assumed to
contain a verification key. This verification key is retrieved with
getKey() and stored in a JSAFE_PublicKey object. The careful reader
might ask the question: Why can’t Cert-J automatically use the <Key-
Info> element provided? Why must we manually extract the key and
give something back to the toolkit that it presumably already has? The
answer here lies in the fact that <KeyInfo> may contain many different
types and not all of them may contain an actual key (some KeyInfo types
serve to identify a key via X.509 entities). Additional application process-
ing might have to be done (such as to a directory server) that will eventu-
ally provide the verification key.

Once we have the JSAFE_PublicKey object, we can use it directly with
the XMLSignature.verify() method. This method is very similar to the
sign() method shown previously, it takes a key and a device setting. In
this case, we are going to perform verification with software and use the
Java string.

The object returned after the verify() call is a VerificationInfo
object. This object stores the result of what happened during signature
verification. There are a number of static variables defined inside
VerificationInfo that give the application more information about the
granularity of signature validation. That is, Cert-J divides core validation

XML Security320

Listing 8-16

Complete XML
Verification
example

import com.rsa.certj.xml.*;
import com.rsa.jsafe.*;
import java.io.*;
class CodeListing815 {
public static void main (String args[]) throws Exception {
// Assume the first argument contains a String filename
XMLSignature[] sigs = ParserHandler.read(args[0]);
// Assume the first signature is the one we want to verify
XMLSignature sig1 = sigs[0];

// Assume the signature has a <KeyInfo> element
KeyInfo[] keyInfos = sig1.getKeyInfos();
JSAFE_PublicKey publicKey = keyInfos[0].getKey();

VerificationInfo info = sig1.verify(publicKey,"Java");
// Find out what happened
if (info.getStatus() == VerificationInfo.CORE_VERIFY_SUCCESS) {
System.out.println("Core Validation Succeeded");

} else {
System.out.println("Core Validation Failed");

}
}

}

into two possible steps: reference validation and signature validation. The
set of possible return values and their meaning are shown in Table 8-3.

According to the processing model defined by the XML Signature Rec-
ommendation, a signature fails verification if core validation fails. The
previous constants enable an application to proceed under other circum-
stances, specifically when reference generation or signature generation
fails. This might not always be a secure thing to do, but an application can
make this decision when and if it needs to if it has enough contextual
information.

Once a VerificationInfo object is generated, the call to get-
Status() retrieves the integer constant, and a check is made to deter-
mine the status of the signature. This check is shown in the last bold line
in Listing 8-16. Only the simplest case of core validation is considered
here. The next section returns to the discussion of the Manifest class and
showcases how verification works with this class to provide more infor-
mation about the Reference objects kept within.

More on Manifest

We have seen in a previous section how to create an XML Signature that
contains a <Manifest> element. We talked about a source reference that
refers to the actual <Manifest> element and the list of target references
inside the <Manifest>. Cert-J is designed such that the Manifest object

321Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

Identifier Name Description

CORE_VERIFY_FAILURE Both signature validation and reference
validation failed.

CORE_VERIFY_SUCCESS Signature validation and reference
validation succeeded.

OTHER_FAILURE Some other failure occurred, such as unable
to de-reference a URI or an unsupported
algorithm.

REFERENCE_VALIDATION_ Signature validation succeeded, but
FAILURE reference validation failed.

SIGNATURE_VERIFICATION_ Reference validation succeeded, but
FAILURE signature validation failed.

Table 8-3

Core Validation
Semantics

must be accessed through a source reference. Any code that attempts to
verify a <Manifest> should search through the <Reference> elements
in the signature and find one that refers to a <Manifest> element. An
easy way of doing this is to rely on the Type attribute of the <Refer-
ence> element. Listing 8-17 shows some example code that attempts to
verify a <Manifest> in a given XML Signature.

The first thing done in Listing 8-17 is to read from a file and create a
list of XMLSignature instances. Each instance in the list corresponds to
a <Signature> element in the source file. In this sample, we are assum-
ing that the input file only contains a single <Signature> element. The
next thing done is similar to Listing 8-16. We extract the verification key
(and make the assumption that one exists). From here we verify the sig-
nature using the JSAFE_PublicKey inside the provided <KeyInfo> ele-
ment. This concludes the core validation process thus far.

Once the source reference is located, the next thing done is to count the
number of Reference objects stored inside the Manifest. Once the
number of Reference objects has been determined, a StringBuffer
must be initialized for each Reference object. This StringBuffer object
stores the descriptions of what happened once the Manifest is verified.
After the StringBuffer objects have been initialized, the actual
verify() method is called. Note that this method is called on the
Reference object, the source reference, and not a Manifest object as one
might think. The Manifest is accessed and verified through the source
reference. The descriptions will not get printed unless the <Manifest>
element fails completely, that is, at least one <Reference> element
inside the <Manifest> element fails the digest value check. The output
might look something like this if all of the <Reference> elements failed
the digest check:

Verified the signature
Digest value not matched
Digest value not matched
Digest value not matched

Additional Classes

The classes covered in depth thus far include the syntax-based classes
(XMLSignature, Reference, Transformer, KeyInfo, and Manifest)
and the processing-based classes (ParserHandler and Verification-
Info). Although these classes represent the most important and visible

XML Security322

323Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

Listing 8-17

Verifying a
Manifest

import com.rsa.certj.xml.*;
import com.rsa.jsafe.*;

class CodeListing816 {

public static void main (String args[]) throws Exception {

XMLSignature xmlSigs[] = ParserHandler.read(args[0]);
// Verify the first signature
XMLSignature sig = xmlSigs[0];
// Get a key
KeyInfo keyInfos[] = sig.getKeyInfos();
JSAFE_PublicKey publicKey = keyInfos[0].getKey();
// Verify the signature
VerificationInfo vi = sig.verify(publicKey,"Java");
if (vi.getStatus() == VerificationInfo.CORE_VERIFY_SUCCESS) {
System.out.println("Verified the signature");

} else {
System.out.println("Signature verification failed");

}
// Now find the source reference and verify the Manifest....
Reference refs[] = sig.getReferences();
int sourceRefIndex = -1;
for (int k=0; k<refs.length; k++) {
Reference currentRef = refs[k];
if

(currentRef.getReferenceType().equals(Reference.MANIFEST_TYPE)) {
sourceRefIndex = k;

}
}
if (sourceRefIndex == -1) {
System.out.println("No soure Reference found");
System.exit(1);

}
Reference sourceRef = refs[sourceRefIndex];
// Figure out how many target References we have
int numTargets =
sourceRef.getManifest().getManifestContent().length;
StringBuffer[] descriptions = new StringBuffer[numTargets];
for (int j=0; j<descriptions.length; j++)
descriptions[j] = new StringBuffer();

// Try to verify the manifest
boolean manifestResult =
sourceRef.verifyManifest(sig,descriptions);
if (manifestResult == true) {
System.out.println("Verified the manifest");

} else {
// We couldn’t verify all of the manifest
for (int i�0; i<descriptions.length; i��)
System.out.println(descriptions[i]);

}
}

}

classes in the toolkit, they do not represent all of the classes. There are a
few additional helper classes that the user will probably never interact
with, but they are listed for information purposes. Table 8-4 lists the
remaining classes and a brief description of their function.

RSA BSAFE Cert-J: Specialized Code Samples
This section is devoted to showcasing three code samples that try to solve
certain specialized problems. The first sample is called XMLEnveloping-
Binary and shows how to create an XML Signature that signs some piece
of arbitrary binary data and packages the data inside the <Signature>
element (enveloping signature). The second code sample gives an example
of a custom transformation that shows how the Java classes can be used
to perform ZIP decompression. Finally, the last example is called
XPathTester and is useful for viewing an input XML document after an
XPath transformation and canonicalization takes place to help see what
you sign.

Enveloping Arbitrary Binary Data

One application of XML Signatures is the ability to sign non-XML data.
This can be done easily with a detached signature, but becomes more com-
plicated with an enveloped or enveloping signature because the binary
data must be encoded in a printable format. The other problem in this
area is the conflict of the XML 1.0 Recommendation and existing MIME
specifications with regards to line endings. The XMLEnvelopingBinary

XML Security324

Class Name Description

Canonicalizer Stores the details of Canonical XML. The methods in this
class should almost never be called directly.

FunctionHere Adds the here() function for XPath evaluation.

SigNodeNameList Stores the element names defined by the XML Signature
Recommendation.

XMLException Exception class for exception messages related to XML
Signing.

Table 8-4

Additional Helper
XMLSignature
Classes

sample uses Crypto-J to omit the carriage return-line feed (CRLF) char-
acters at the end of each line of Base-64 encoded text, thereby sidestep-
ping the problem of line-ending problems when the resulting signature is
normalized when read in by the XML Processor. For more information on
this particular problem, see the relevant scenario in Chapter 6.

The entire XMLEnvelopingBinary sample is simply too large to
present in its entirety, and presenting excerpts is also cumbersome
because the actual file can be obtained at www.rsasecurity.com/
go/xmlsecurity. The best thing to do is a simple discussion of some of the
salient points of the sample. First of all, because the sample aims to cre-
ate an enveloping signature, the data to envelop must somehow be deref-
erenced (it is assumed to be a URI because this is the standard access
mechanism for data in a distributed web environment) and encoded. Once
this happens, it needs to be placed in an <Object> element. This is done
using the Xerces API in much the same way as Listing 8-14. Once this is
done, it is now considered to be XML data (start tags, content, and end
tags) and can be signed with a fragment identifier and a normal Refer-
ence object. When encoded with Base-64 encoding, the line breaks are set
to 0, which means that no CRLF characters will be added to the enveloped
data effectively skirting the problem of inconsistent line endings during
normalization. Sample output from XMLEnvelopingBinary is shown in
the following:

<?xml version="1.0" encoding="UTF-8"?>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
<SignatureMethod
Algorithm="http://www.w3.org/2000/09 /xmldsig#rsa-sha1"/>
<Reference
Type�"http://www.w3.org/2000/09/xmldsig#Object"
URI�"#object">
<DigestMethod
Algorithm�"http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>9g95CeL/92y7rFMGMuLbZkjKljM�</DigestValue>

</Reference>
</SignedInfo>

<SignatureValue>qgDWBL9WM+3imJ8ID4EG5yhiGor6PVlFpxNSKx0Ol5EhjkyiyNH
vmczvoYcZ6gLBqNG+Ug7xCy7elrcLDCVuVA==</SignatureValue>
<KeyInfo>
<KeyValue>
<RSAKeyValue>
<Modulus>
r34zgMQpajMQWtFghKa+YglTcyxeJ7e13Gey
M6nxIuRmkeXmxc84sp+vpLr1axBjQ5JdnrTkDip9
ldPiafmPzw==

</Modulus>
<Exponent>EQ==</Exponent>

325Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

</RSAKeyValue>
</KeyValue>

</KeyInfo>
<ObjectId�"object">
eVBjL2Y1dzJRdnpXaTRaUktJTjhCUWs0VUw5PQ��
</Object>

</Signature>

The most notable feature of the previous listing is the last <Object>
element shown in bold. This element contains the actual enveloped binary
data. It is created using Xerces and added to the XMLSignature instance
before signing occurs. The ID value for this <Object> element is arbi-
trary; the one used in the sample is called object.

Custom Transformations

It is possible to add a user-defined transformation algorithm to Cert-J
with the use of the TransformUtils class. This utility class is used to
add a custom transform algorithm to the list of possible transforms stored
inside Transformer. As an example, we will show here how to add a
decompression transform that can decompress source files and use their
uncompressed form as source data for a signature. The algorithm we will
use is ZIP decompression, and the implementation will rely on the
java.util.zip package that is part of Java.

To create a custom transformation algorithm, one must extend the
Transformer class and implement the proper methods. There are two
steps to implementing a custom transform algorithm. The first step is the
creation of the class file that does the work. The second step comprises the
calls needed when the transform algorithm is used in the creation of a sig-
nature. It is important to realize that because this is a custom transform
algorithm, it will not be interoperable with all recipients. A recipient that
wants to verify a signature using a custom transformation algorithm
must not only have access to the algorithm itself, but must know of the
string identifier used to denote this specific custom transform. List-
ing 8-18 shows the details of the ZIPDecompressionTransformer class.

Despite the length of Listing 8-18, there are really only four important
functions: Two accessor functions for setting and getting the name of the
Transformer and two functions that perform the transformation. The
reader should consider the two performTransformation() functions
first. Notice that the perfomTransformation() function that accepts a
NodeList as input returns null. This is because ZIP decompression is not
defined on a node-set. That is, given a set of abstract nodes, there is no

XML Security326

327Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

Listing 8-18

The ZIP-
Decompression-
Transformer
class

import com.rsa.certj.xml.Transformer;
import com.rsa.certj.xml.XMLException;
import java.io.*;
import java.util.zip.*;
import java.util.Vector;
import org.w3c.dom.NodeList;
class ZIPDecompressionTransformer extends Transformer

implements Cloneable, Serializable {
private String transformAlgorithm = null;
protected void setTransformAlgorithm (String transformAlgorithm) {
this.transformAlgorithm = transformAlgorithm;

}
public String getTransformAlgorithm () {
return this.transformAlgorithm;

}
public byte[] performTransformation(byte[] input, int inOffset, int
inputLength) throws XMLException {
return (zipDecompress(input));

}
public static byte[] zipDecompress(byte[] compressedData) throws
XMLException {
// Byte array for returning the uncompressed data.
byte[] uncompData = null;
// Buffer used for reading a byte at a time.
byte[] buffer = new byte[1];
// Vector for growing the decompressed data
Vector decompressedSoFar = new Vector();
// For converting the Vector to an array
Object[] objectArray = null;
int ret = 0;
int bytesDecompressed = 0;
// Create a ByteArrayInputStream for reading ZIP compressed data
ByteArrayInputStream baIs = new
ByteArrayInputStream(compressedData);
// Create a new ZipInputStream
ZipInputStream zIn = new ZipInputStream(baIs);
try {
ZipEntry ze = zIn.getNextEntry();
if (ze == null) {
throw new XMLException
("Error, no zip entry. Source is not a zip file");

} else {
// Crude way to figure out how many bytes we have decompressed.
while ((ret = zIn.read(buffer,0,1)) != -1) {
Byte thisByte = new Byte(buffer[0]);
decompressedSoFar.add(thisByte);
bytesDecompressed++;

}
zIn.close();
uncompData = new byte[bytesDecompressed];
objectArray = decompressedSoFar.toArray();
for (int i=0; i<uncompData.length; i++)
uncompData[i] = ((Byte)objectArray[i]).byteValue();;

}
} catch (Exception xp) {

xp.printStackTrace();
System.out.println

(continues)

meaningful way to decompress these because the algorithm itself only
operates on octets. It follows then that we only need to implement the
performTransformation() function that accepts a byte[] array as
input. The public performTransformation() algorithm calls down to
an internal function called zipDecompress() that does the work of calling
down to the java.util.zip package to do the actual decompression.
Once the appropriate performTransformation() function has been
called, the last thing that must be done is to ensure that there is a way to
assign a string identifier to the transformation. Once these two tasks are
completed, the class is generally ready to be used as a transform in an
actual signature. Using the new transformation requires only a few calls
shown in the following:

Reference ref = << previously initialized Reference object >>
// Make an instance of the ZIPDecompressionTransformer
ZIPDecompressionTransformer unzipper = new
ZIPDecompressionTransformer();
unzipper.setTransformAlgorithm("ZIPDecompression");
TransformUtils.addTransformer(unzipper);
ref.addTransform(unzipper);

There are really only two special calls that must be made. The first
call assigns an identifier to the transformation algorithm. This is where
a URI resides for other transformation algorithms already defined by
the XML Signature Recommendation. In this example, the string ZIP-
Decompression is used, and this is the identifier that will appear when
the signature is generated (shown in the following):

<Reference URI="file:///C:\test.zip">
<Transforms>
<Transform Algorithm�"ZIPDecompression"/>

</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2000/09
/xmldsig#sha1"/>
<DigestValue>X7sktJA/j4fBnfHg3Wb97i+Tt4M=</DigestValue>

</Reference>

XML Security328

Listing 8-18
(cont.)

The ZIP-
Decompression-
Transformer
class

("Caught an Exception while decompressing using ZIP");
}
return (uncompData);
}
public NodeList performTransformation(NodeList inputNodes) {
NodeList nl = null;
return (nl);

}
}

The verifier must be able to recognize this specific string (ZIPDecom-
pression) and must know that it refers to actual ZIP decompression. Inter-
operability problems that arise from failures to understand these string
identifiers are a chief reason as to why custom transformation algorithms
are likely to be scarce in practice.

XPath Tester

Transforms are very powerful as they are specified in the XML Signature
Recommendation. Because it is the transformed data that is actually
signed, signers must be extremely aware of what it is that is being signed.
Often a string of transformations in the transform waterfall can obscure
the final result sent into the digest function. The XPathTester sample
enables for the visualization of an XPath transformation (along with
Canonicalization) to aid implementers and testers in seeing what
they sign.

The basic idea behind the XPathTester is two inputs, an input XML
document and an input string XPath expression. This sample works dif-
ferently from other XPath visualization tools because it performs the
XPath processing as specified in the XML Signature Recommendation. It
converts the result of each expression to a Boolean value and uses this
value to determine if the current node should appear in the output node
set. This means that a basic expression to obtain an element, such as
//ElementName, will not work. This type of expression will be converted
to a Boolean for each node, and all nodes will be included; this expression
does not do any sort of Boolean test.

The sample relies on protected functions in the ParserHandler class;
because of this, it is necessary for the XPathTester class file to subclass
ParserHandler. Furthermore, a node-set implementation is also
required for the resultant node-set after the transformation is executed.
The details of this sample can be found at the web site for this book at
www.rsasecurity.com/go/xmlsecurity. A sample run is shown in the
following. It is important to note that the input parameters should be
placed in double quotes on some systems to prevent the shell from misin-
terpreting the input; XPath expressions can get fairly complex:

java XPathTester file:///sample.xml "ancestor-or-self:Karate"
Original Input Data
<?xml version="1.0" encoding="UTF-8"?>
<MartialArts>
<Aikido Id="FirstElement">

329Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

<Gradings>
<Grading1>San Dan</Grading1>
<Grading2>Ni Dan</Grading2>
<Grading3>Sho Dan</Grading3>
</Gradings>

</Aikido>
<Karate Id="SecondElement">
<Gradings>
<Grading1>Yellow Belt</Grading1>
<Grading2>Brown Belt</Grading2>
<Grading3>Black Belt</Grading3>

</Gradings>
</Karate>

</MartialArts>
**
XPath Expression: ancestor-or-self:Karate
**
Transformed Data
<Karate Id="SecondElement">

<Gradings>
<Grading1>Yellow Belt</Grading1>
<Grading2>Brown Belt</Grading2>
<Grading3>Black Belt</Grading3>

</Gradings>
</Karate>

In the previous example, we attempted to target the <Karate> element
for signing. After testing our XPath expression with XPathTester
(ancestor-or-self:Karate), we can see what the transformed output
looks like; this is the actual data that will be signed. XPathTester only
works on simple documents without namespace declarations.

Chapter Summary
This chapter represents an in-depth tour of a real XML Signature imple-
mentation in RSA’s Cert-J product. The chapter begins with a walk-
through of each of the classes that comprise the toolkit. Class diagrams
are given, and relationships are explained. The discussion of the classes is
divided into classes that support the syntax and processing of XML Sig-
natures, much the same way as the XML Signature Recommendation
itself is structured.

We saw how the XMLSignature class provides the main abstraction for
an XML Signature, including accessor functions to set various algorithms
such as the canonicalization method and the signature method. The
Reference class is used to store a data stream to sign as well as trans-
form algorithms. This class represents the <Reference> element as it is
defined in the XML Signature Recommendation. An in-depth discussion of

XML Security330

the KeyInfo class was also given; this class is an abstraction for the
<KeyInfo> element. We saw how this class can be used as a container for
public keys and certificates as well as a container for a customized <Key-
Info> child element. Furthermore, the ParserHandler class is respon-
sible for actually creating the final XML structure and writing the
structure to a file or stream. Similarly, ParserHandler is also used to
read from a file or stream and create a number of XMLSignature
instances, one instance per <Signature> structure.

The chapter concludes by discussing three customized pieces of sample
code that are used to solve certain specialized problems. The first piece of
sample code discussed is the XMLEnvelopingBinary sample. This sam-
ple shows how to envelope arbitrary data as a Base-64 encoded <Object>
element. The second piece of sample code is the ZIPDecompression-
Transformer; this sample shows how to extend the Transformer base
class and create a customized transformation that does ZIP decompres-
sion. The final piece of sample code discussed is the XPathTransformer.
This sample is an aid in developing XPath expressions and helps users see
what they sign by performing the transformations explicitly. The XPath-
Transformer takes a well-formed XML document as input and a string
XPath expression and produces the transformed XML document as spec-
ified via the XML Signature Recommendation.

331Chapter 8 XML Signature Implementation: RSA BSAFE© Cert-J

This page intentionally left blank.

XML Key Management
Specification and the

Proliferation of Web Services

CHAPTER 9

XML Encryption builds upon the XML Signature Recommendation in an
axiomatic way. It relies on shared elements and semantics, and uses XML
to provide a simpler vision of applied security. While XML Signatures and
XML Encryption can be considered powerful and elegant, it can be argued
that they still need the help of a traditional PKI. For example, an appli-
cation that verifies an XML Signature must properly validate the signers’
identity before accepting a signed message. Similarly, an application that
sends encrypted correspondence to a recipient must properly retrieve the
encryption key. Moreover, traditional PKI issues such as key-pair genera-
tion and certificate revocation aren’t considered in either XML Encryption
or XML Signatures.

Traditional PKI issues are out of scope for XML Signatures or XML
Encryption, but are in scope for another XML Security technology called
XKMS, which stands for XML Key Management Specification. At this
time, XKMS is a much younger body of work than the XML Signature
Recommendation or the XML Encryption drafts. Because of this, a dis-
cussion of the details has been omitted and a more conceptual approach
has been taken. The goal of this chapter is for the reader to understand
what XKMS is, why it is considered important, and how it is used. The
details are left to the XKMS draft, which is currently in progress. (See the
references section at the end of this book.)

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

XKMS Basics
The topic of XKMS is large and covers many areas of applied security and
key management. The first scenario that we will look at provides some
intuition about how XKMS works and what it is used for.

Validation, Verification, and Trust

In Chapter 4, we drew a picture of XML Signature verification from a
high-level point of view. This is shown again in Figure 9-1 and is the same
picture shown in Figure 4-1.

Figure 9-1 shows a trust engine and denotes the difference between sig-
nature verification and signature validation. In Figure 4-1, cryptographic
verification is performed using the public key contained in the accompa-
nying X.509 certificate, but the issue of signer trust is delegated to a fic-
tional trust engine. In Chapter 4, we didn’t describe this engine further or
say how it worked; it was assumed that some sort of simple result is
returned (for example, trusted or not trusted).

Some readers may wonder why a trust engine is necessary; isn’t cryp-
tographic verification of the signature good enough? The reason this is not
good enough is because any XML Signature can be doctored to pass cryp-
tographic verification. That is, it is trivial to generate a key pair and sign
a document to make a claim of identity. What is required here is an asser-

XML Security334

<Signature>
…

<KeyInfo>
</KeyInfo>

</Signature>

<KeyInfo>
 <X509Data>
 </X509Data>
</KeyInfo>

<Signature>
</Signature>

Root
Certificate
Store

Yes/No
XML

Parser

Trust
Engine

Signature
Validation

Figure 9-1

XML Signature
verification and
trust

tion between an identity and a public key. This assertion is typically veri-
fied using path validation and is the same concept discussed in Chapter 2.

When we discussed path validation in Chapter 2, a number of things
are mentioned. First and foremost, path validation is described with a
state machine that is comprised of many steps and checks. Actions such as
signature validation (for each certificate except the trusted CA), validity
checking, name chaining, and certificate revocation must all be per-
formed. Some checks, such as certificate revocation have the potential to
be very expensive. It is possible that a certificate revocation list of hun-
dreds or thousands of certificates must be checked for each certificate in
the certification path.

In addition to the cryptographic load and revocation checking that
must be performed, path validation also consists of policy mapping and
certificate policy checking, both of which have the potential to be arbi-
trarily complicated.

Lastly, path validation is performed by the application receiving the
certificate (this is called the relying party). This contrasts Figure 9-1,
which shows a trust engine performing this validation step. The trust
engine role is played by something called X-KISS, which stands for XML
Key Information Service Specification. This particular acronym is one of
the two parts of XKMS and defines a service for obtaining information
about public keys, including trust assertions. The result of this design is
the opportunity to offload the expensive and tedious path validation step
to a service. As long as we access the service with a well-defined protocol,
there is no need to have this heavy-duty path validation processing per-
formed by the client.

This is one example of how XKMS promises to simplify the design of a
client application that uses digital certificates. With X-KISS, the client
application that wishes to verify a certificate doesn’t have to create a cer-
tification path, verify numerous digital signatures, and perform revoca-
tion checking or policy mapping. All of this complexity is pushed away and
only queries to a service are made.

XKMS Components

Two major components comprise XKMS. We have already briefly dis-
cussed one of them, X-KISS. The other component is called X-KRSS, which
stands for XML Key Registration Service Specification. This component is
responsible for registering public-key information to be used with X-KISS.

335Chapter 9 XML Key Management

At this point, the reader can safely ignore X-KRSS because it is difficult
to fully explain without a working knowledge of X-KISS. We will return to
X-KRSS after X-KISS has been fully discussed. The bird’s eye view of
XKMS is shown in Figure 9-2.

Figure 9-2 is quite simple and reiterates previous discussion in the
form of a picture. At this point, we will dig deeper into X-KISS and look at
how X-KISS works with an XML Signature, as well as some sample
X-KISS messages. Following this, a similar discussion will be presented
with X-KRSS.

X-KISS: Tier 1
Suppose that we have a fictional application that needs to verify incoming
XML documents that contain XML Signatures. That is, our program
accepts files, streams, or URI values that eventually de-reference to well-
formed XML documents containing <ds:Signature> elements. Given
this, it follows that we would like to verify and validate these signatures.
From Figure 9-1, we know that there is a big difference between crypto-
graphic signature verification and signature validation. The former
amounts to an integrity check that is only meaningful if we can assert
trust over the purported signer. Asserting this trust usually comes from
certificate path validation, which is described in some detail in Chapter 2.

Suppose, however, that the XML Signature that we are attempting to ver-
ify does not include a public key or a certificate, only a <ds:KeyName> element
specifying a key identifier. Such an XML Signature is shown in Listing 9-1.

XML Security336

XKMS

X-KISS X-KRSS

XML Key Information Service Specification XML Key Registration Service Specification

Figure 9-2

Bird’s eye view
of XKMS

Notice the odd nature of the <KeyName> element in Listing 9-1. The ele-
ment value is an odd-looking identifier that doesn’t appear to have any
relation to a user readable name. Suppose that this is a key identifier for
a public key in a large organizational database. It could be a primary key
in a database entry or some custom identification scheme. In any event, it
needs to be mapped to a real public key value or the proper certificate that
contains the verification key. What we are asking for here is a key location
function. In particular, it might be nice to send the <ds:KeyName> element
off to a service and have the service return a new <ds:KeyInfo> element
containing a public key or certificate. This process is shown in Figure 9-3.

Figure 9-3 begins with an incoming XML Signature. The <ds:
Signature> element is parsed for the <ds:KeyInfo> element that con-
tains a <ds:KeyName> element including the odd key identifier. We are
assuming that the signature processing application doesn’t understand
this identifier and must delegate the processing to a key location service.
This key location service processes the key identifier and makes a data-
base query that matches it to an X.509 certificate. This certificate is then
formatted as a <ds:KeyInfo> element and passed back to the signature
processing application. At this point the signature processing application
has enough information to perform cryptographic validation of the signa-
ture. It now has a public key (contained in the certificate), whereas before
it only had a single key identifier. The signature processing application
may now choose to perform path validation on its own, or it may decide to
delegate this action to a service as well. The key location service is the

337Chapter 9 XML Key Management

Listing 9-1

An XML
Signature
containing only a
<KeyName>

<?xml version="1.0" encoding="UTF-8"?>
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
<SignedInfo>
<CanonicalizationMethod
Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-20010315"/>
<SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<Reference URI="file:///C:\foo.xml">
<DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>91cq1G+EfylJS6EPyy0kMWUOpVs=</DigestValue>

</Reference>
</SignedInfo>
<SignatureValue>Y++WsqkpOHNwIr3zidvDQ92XzPGLhpt/t
Dk9N9RE4xJ5QJo+9fKmUXVfzkTdcXqcl0OmRIN4IMSdF1sL8LxU+A==
</SignatureValue>
<KeyInfo>
<KeyName> QR9432YZ5 </KeyName>

</KeyInfo>
</Signature>

first tier of X-KISS, which is called the Locate service. In addition to pass-
ing off <ds:KeyInfo> elements, the signature processing application
may also pass off a <ds:RetrievalMethod> element if the signature
processing application doesn’t have access to the necessary network or
server location. The syntax and meaning of the <ds:RetrievalMethod>
element is discussed in Chapter 4.

Another subtle use for the Locate service is to parse an X.509 certificate.
For example, consider a small signature processing application that does-
n’t have the capability to parse an X.509 certificate, but requires the con-
tained public key to perform signature verification. The Locate service can
be queried with a <ds:KeyInfo> element that specifies a Base-64 encoded
X.509 Certificate. The X-KISS Tier 1 service can then parse the certificate
and return the actual public key value as a <ds:KeyValue> element con-
taining an <ds:RSAKeyValue> or <ds:DSAKeyValue> child element.

Syntax of the Locate Message

This is the first section where we actually look at an XKMS protocol mes-
sage for the Locate service, which is defined as a pair of messages. One
message, <Locate> is the request message, and the matching

XML Security338

Key Location
Service

Signature
Processing
Application

<Signature>
…

 <KeyInfo>
 <KeyName>
 QR9432YZ5
 </KeyName>
 </KeyInfo>

</Signature>

Key Database

X.509
Cert

QR9432YZ5

<X509Data>
 <X509Certificate>
 MIICXTCCA..
 </X509Certificate>
<X509Data>

<KeyName>
 QR9432YZ5
</KeyName>

Figure 9-3

Key location
procedure

<LocateResult> element is the response message. The Locate service
can be thought of as a function that maps <ds:KeyInfo> elements to
<ds:KeyInfo> elements where the input <ds:KeyInfo> element is usu-
ally inadequate for any sort of cryptographic processing. Listing 9-2 shows
an example <Locate> message that asks a Locate service to map a string
name to an X.509 certificate.

There are a few things to notice about Listing 9-2. First, notice that we
are mixing namespaces. The <ds:KeyInfo> element comes from the
XML Signature Recommendation (and is borrowed by XKMS). Further,
XKMS has its own namespace, which has been given the identifier xkms.
The proper use of namespaces is important when mixing XML Security
technologies.

Listing 9-2 shows a few of the elements used in the <Locate> message.
The essence of the <Locate> message is the <Query> element and the
<Respond> element. The <Query> element asks the Locate service about
the contained <ds:KeyInfo> element, and asks for specific information
in return. The response requested is a Base-64 encoded X.509 certificate
containing the public key bound to the name John Doe. The response
message, <LocateResult> might look something like Listing 9-3.

In Listing 9-3, the <LocateResult> message contains a Base-64
encoded X.509 certificate containing the public key that corresponds to
the name John Doe, as well as an indication of success or failure. It is
extremely important to note that the Locate service does not assert valid-
ity over the binding of the name John Doe and the public key in the
returned certificate. The Locate service simply maps <ds:KeyInfo> ele-
ments to <ds:KeyInfo> elements without any further assertions. In the
case of the protocol exchange denoted by Listings 9-2 and 9-3, the client
application is still responsible for ensuring that the binding between the

339Chapter 9 XML Key Management

Listing 9-2

A sample
<Locate>
message

<?xml version="1.0" encoding="UTF-8"?>
<xkms:Locate xmlns:xkms="http://www.xkms.org/schema/xkms-2001-01-20">
<xkms:TransactionID>cb6f923a05d016575</xkms:TransactionID>
<xkms:Query>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsiga"
<ds:KeyName>John Doe</ds:KeyName>

</ds:KeyInfo>
</xkms:Query>
<xkms:Respond>
<xkms:string>X509Cert</xkms:string>

</xkms:Respond>
</xkms:Locate>

name John Doe and the public key contained in the resultant certificate
is valid.

The careful reader may question the usefulness of the Locate service
under these circumstances. What has been gained? In this case, we
started with simply a name, John Doe, and the Locate service provided a
purported matching public key. It follows then that we gained the actual
verification key whereas before we only had a name. In this case we can
perform cryptographic verification of a signature whereas before it was
impossible because we had no key. If we also want an indication of trust,
we must turn to the next tier in the X-KISS protocol, which is called the
Validate service.

X-KISS: Tier 2
The second tier is called the Validate service and is responsible for assert-
ing trust over the binding of a name and a public key. The Validate service
is a superset of the Locate service. This means that in addition to provid-
ing name-key assertions, it can also locate public key values. A more
detailed example of the logistics of the validate service is shown in Fig-
ure 9-4.

In Figure 9-4 we have a situation similar to the one presented in Fig-
ure 9-3. The signature processing application receives an XML Signature
with an X.509 certificate in the <ds:KeyInfo> element. In order for the
signature application to assert validity over the signature, a proper certi-

XML Security340

Listing 9-3

A sample
<LocateResult>
message

<?xml version="1.0" encoding="UTF-8"?>
<xkms:LocateResult xmlns:xkms="http://www.xkms.org/schema/xkms-2001-01-20">
<xkms:TransactionID>gh5436f54923a05d65435</xkms:TransactionID>
<xkms:Result>Success</xkms:Result>
<xkms:Answer>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsiga">
<ds:X509Data>
<ds:X509Certificate>
MIICcjCCAdugAwIBAgIQxo8RBl7oeoBUJR713
41R/DANBgkqhkiG9w0BAQUFADBsMQswCQYDVQ
...

</ds:X509Certificate>
</ds:X509Data>

</ds:KeyInfo>
</xkms:Answer>

fication path must be built. Suppose that our signature processing appli-
cation is quite simple and doesn’t have any X.509 functionality or any
other certificates. In short, our signature processing application can’t
build a certification path, nor can status checking (revocation) or policy
mapping be performed. The solution is to ask a trust service using the pro-
tocol defined by X-KISS Tier 2.

The trust service shown in Figure 9-4 has access to the proper certifi-
cate store and relies on an additional module to perform the path valida-
tion. We can also assume that any CRLs (certificate revocation lists) can
be retrieved from Certificate Repository 1. This figure shows one way in
which processing complexity is moved from a client application to a ser-
vice. The X-KISS Tier 2 service eventually completes with some sort of
affirmative or negative result. In addition, the actual X-KISS protocol
messages can communicate additional evidence to support or refute the
final validation decision.

Some may argue that while path validation is complex, delegating the
entire process to a service is not really necessary. Why can’t the signature
processing application simply perform these tasks? The answer to this
argument lies in Figure 9-5, which shows a situation where the trust
service must make further requests in order to build the proper certifica-
tion path.

341Chapter 9 XML Key Management

Trust Service

Signature
Processing
Application

<Signature>
…

 <KeyInfo>
 <X509Data>
 <X509Certificate>
 MIICXTCCA..
 </X509Certificate>
 <X509Data>
 </KeyInfo>

</Signature>

Certificate
Repository

<Result> Success </Result>

 <KeyInfo>
 <X509Data>
 <X509Certificate>
 MIICXTCCA..
 </X509Certificate>
 <X509Data>
 </KeyInfo>

Certificate
Path

Validation
Module

Figure 9-4

Validate service

Figure 9-5 depicts a situation where the first trust service queried
didn’t have enough information to build a certification path. Instead of
just returning an invalid result, the trust service instead asks another
trust service about the purported certificate to be validated. This service
can then ask another service and so on. This model is called service chain-
ing and is one of the exciting capabilities of XKMS. The most important
thing to notice about Figure 9-5 is that this additional complexity is hid-
den from the signature processing application, which just sees the end
result of the query (basically a yes or no answer). This enables additional
flexibility for the client application in that there is really no need to decide
from multiple trust services. Any trust service can be queried with the
expectation that it will do the dirty work and delegate further queries if
necessary. A client application required to support the same type of
chained functionality would be horrendously complex and would defeat
the purpose of XKMS, which is simple client design.

XML Security342

Trust Service 1
Signature

Processing
Application

<Signature>
…

 <KeyInfo>
 <X509Data>
 <X509Certificate>
 MIICXTCCA..
 </X509Certificate>
 <X509Data>
 </KeyInfo>

</Signature>

<Result> Success </Result>

 <KeyInfo>
 <X509Data>
 <X509Certificate>
 MIICXTCCA..
 </X509Certificate>
 <X509Data>
 </KeyInfo>

Certificate
Path

Validation
Module

Certificate
Repository 1

Certificate
Repository 2

Trust Service 3 Trust Service 2

Certificate
Repository 3

Trust Service n

Certificate
Repository n

Figure 9-5

Service chaining

Syntax of the Validate Message

The Validate service is defined as a message pair in the same way as the
Locate service. The request message is a <Validate> element and the
response message is a <ValidateResponse> element. A sample
<Validate> message is shown in Listing 9-4.

In Listing 9-4 we are passing a <ds:X509Data> element to the Vali-
date service with the expectation of a status result and an indication of
the key binding. When we use the term key binding we are referring to
arbitrary data that the public key is bound to. In most cases the arbitrary
data will be a name, but other useful data items such as a key identifier
or key usage constraints are also possible.

In Listing 9-4 we are asking the Validate service to give us the name
and public key from the queried certificate as well as make an assertion
regarding the binding between the name in the certificate and the public
key. The request for the assertion is provided by the <Query> element,
which contains a prototype or model of the purported assertion. In Fig-
ure 9-4 the purported assertion is Valid as denoted by the <xkms:
Status> element.

343Chapter 9 XML Key Management

Listing 9-4

A sample
<Validate>
message

<?xml version="1.0" encoding="UTF-8"?>
<xkms:Validate xmlns:xkms="http://www.xkms.org/schema/xkms-2001-01-20">

<xkms:Query>
<xkms:TransactionID>
f9c6afa0-e6b3-11d5-81b0-a75f99b3a363

</xkms:TransactionID>
<xkms:Status>Valid</xkms:Status>
<ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
<ds:X509Data>
<ds:X509Certificate>
MIICcjCCAdugAwIBAgIQxo8RBl7oeoBUJR713
41R/DANBgkqhkiG9w0BAQUFADBsMQswCQYDVQ
...

</ds:X509Certificate>
</ds:X509Data>
</ds:KeyInfo>

</xkms:Query>

<xkms:Respond>
<xkms:string>KeyName</xkms:string>
<xkms:string>KeyValue</xkms:string>

</xkms:Respond>
</xkms:Validate>

This particular situation shows how the Validate service is a super-set
of the Locate service. The reason is because in addition to returning an
assertion, we are also effectively locating the public key. This location
functionality is useful in a situation where the client application has no
X.509 processing capabilities. One possible response message would look
something like Listing 9-5.

Listing 9-5 shows a sample <xkms:ValidateResult> element. The
<xkms:ValidateResult> element contains a <xkms:Result> child ele-
ment that conveys a result regarding the status of the request. This can be
confusing because the <xkms:KeyBinding> element contains an element
called <xkms:Status> that appears to be similar. The <xkms:Result>
element refers to the success or failure of the actual transaction and not
the semantics of what is asked about. The possible values of
<xmks:Result> include Success, NoMatch, Incomplete, and
Failure. The Success value implies that all of the request information
was available; the NoMatch value implies that the transaction was exe-
cuted, but there was nothing to return. The Incomplete value implies
that some of the information requested was unavailable and the Failure
value implies that the operation failed completely.

XML Security344

Listing 9-5

A sample
<Validate-
Result> message

<?xml version="1.0" encoding="UTF-8"?>
<xkms:ValidateResult
xmlns:xkms="http://www.xkms.org/schema/xkms-2001-01-20">

<xkms:Result> Success </xkms:Result>
<xkms:Answer>
<xkms:KeyBinding>
<xkms:Status>Valid</xkms:Status>
<ds:KeyInfo>
<ds:KeyValue>
<ds:RSAKeyValue>
<ds:Modulus>
tvvf9MtHPH+VVkG7nWENPK5N2Q+qm9PN
+1luxVQg3QR+6WOXLZdAA21Hlm2qokqI
MzuoF/0EY+k0vHZuwZmQOw==

</ds:Modulus>
<ds:Exponent>EQ==</ds:Exponent>

</ds:RSAKeyValue>
</ds:KeyValue>
<ds:KeyName>John Doe</ds:KeyName>

</ds:KeyInfo>
<xkms:ValidityInterval>
<xkms:NotBefore>2001-11-20T12:00:00</xkms:NotBefore>
<xkms:NotAfter>2001-12-20T12:00:00</xmks:NotAfter>

</xkms:ValidityInterval>
</xkms:KeyBinding>

</xkms:Answer>
</xkms:ValidateResult>

The <xkms:Result> element contrasts the <xkms:Status> element;
the <xkms:Status> element gives us information about the contained
assertion and key binding. The <xkms:Status> element has three possi-
ble values: Valid, Invalid, and Indeterminate. In Listing 9-5 the sta-
tus of the <xkms:ValidateRequest> message is Valid, indicating that
that the binding of the name and public key is trusted. Following the
<Status> element is a <ds:KeyInfo> element containing the actual
public-key value and corresponding name. The <xkms:Validate-
Request> message shown in Listing 9-5 does two things; it asserts trust
as well as locates the public key corresponding to the certificate in the
<xkms:Validate> request message.

X-KRSS
The X-KISS protocol is useful for locating public keys and determining
how public keys are bound to names or other information. The only
remaining problem lies in the registration of this information. If an
X-KISS Tier 1 or Tier 2 service provides keys and binding information,
there must be some way of informing the service that these keys or bind-
ing assertions exist in the first place. This is one of the tasks solved by the
XML Key Registration Service protocol (X-KRSS). X-KRSS has three
basic functions: Key Registration, Key Revocation, and Key Recovery.

Key Registration

Key Registration refers to the process generating a public/private key pair
and registering the public key against some sort of key binding assertion.
In most cases the public key is bound to a user name, although XKMS
eventually promises to allow advanced assertions such as authorization
information.

Key pair generation can be performed by the X-KRSS service or by the
client. If the service performs key generation, the service must return the
private key to the user in some sort of safe form. In the case of X-KRSS,
this will be an encrypted RSA private key. If the client performs key-pair
generation, the client must provide proof of possession of the private key.
Proof of possession is used to prevent a certain form of identity theft. For
example, suppose that Sally obtains the public key belonging to John (this

345Chapter 9 XML Key Management

could come from an X.509 certificate or any public directory where public
keys are accessible). Because a public key is public, there is nothing stop-
ping Sally from attempting to register her identity against John’s public
key. If, however, Sally were required to provide proof that she owns John’s
private key, she would be unable to because only John knows his pri-
vate key.

Proof of possession is often shown with an arbitrary signature. That is,
the client making the registration request can show the X-KRSS service
that they own the correct private key by signing an arbitrary piece of data
(not chosen by the signer). The X-KRSS service will verify this signature
using the public key in the registration request.

In addition to proof of possession, the registration service also needs to
have some measure of client authentication for the client making the reg-
istration request. For example, Sally can generate a new key pair and reg-
ister her public key against the name John Doe. In this case she has proof
of possession because she owns a matching private key, but the public key
binding is incorrect; her public key is not really bound to the name
John Doe.

In order to prevent this sort of mischief, an out-of-band, shared secret
is used by the X-KRSS registration service. This means that before a
client registration request is made, the client must contact the service for
a shared secret used to sign a future registration request. This authenti-
cates the person making the request and prevents identity spoofing and
false registration requests. Figure 9-6 shows the high-level overview of a
client making a registration request as well as generating its own key
pair. Once the registration request is sent, the service stores the name and
key binding in some sort of repository (this could be any sort of PKI infra-
structure). The service returns with an affirmative result informing the
client that the registration request was successful.

In Figure 9-6 the client provides an authenticated request (via an
HMAC) along with a name, public key, and some sort of proof of posses-
sion. The picture changes a bit when the service provides key pair gener-
ation. Service-provided key pair generation is useful for clients that have
minimal processing capabilities. In general, RSA key pair generation is
CPU intensive and it may be faster to have the service perform key pair
generation. In addition, service-side key pair generation also allows for
key recovery, because the service stores an additional copy of the private
key that can be queried at a later date. Figure 9-7 shows a picture of
service-side key pair generation.

XML Security346

Figure 9-7 contrasts Figure 9-6 in that the client is only sending two
pieces of information:

� A name that the public key will be bound to

� Proof of authenticity (with the use of an HMAC)

Upon receipt and successful processing of the request, the service
returns an affirmative result: an RSA public key and an encrypted RSA
private key. Again, the registration request is stored in some sort of cer-
tificate repository that corresponds to some sort of traditional PKI. Fig-
ures 9-6 and 9-7 both show how X-KRSS is capable of shielding the client
from the underlying PKI by providing a service interface.

Key Registration Message Syntax
The key registration message is defined by the <Register> element.
There are two important child elements for the <Register>
element. These include the <Prototype> element and the <AuthInfo>
element. The <Prototype> element is an example of the requested asser-
tion. That is, it is a model for the assertion eventually registered with the
X-KRSS service. The choice of wording here can be confusing. The term
prototype refers to an example instance or basis from which to model the
actual assertion. Another idea that fits here is purported assertion. The
<Register> message contains a purported assertion that will eventually
become real when finally registered.

347Chapter 9 XML Key Management

X-KRSS
Service

Client Key
Pair

Generation

Certificate
Repository

Registration Result: Success

(HMAC [Name, PublicKey] , Proof Of Possession)
Figure 9-6

Client-side key
pair generation
and registration
request

The <AuthInfo> element contains data items that relate to the
authenticity of the requester. In the case of client-generated key pairs,
this includes two signatures, one that determines proof of possession of
the private key and one that authenticates the identity of the user. An
example of a <Register> message is shown in Listing 9-6.

The <xkms:Register> message begins with the <xkms:Prototype>
element, which contains a <ds:KeyInfo> element. The first child in the
<xkms:Prototype> element is a purported assertion about the con-
tained prototype. This is shown with the <xkms:Status> element con-
taining the value Valid, which asserts that this particular key binding is
purported to be valid and should be registered as such. Following the
<xkms:Status> element is the <ds:KeyInfo> element that specifies
the purported key binding between the <ds:KeyName> and the <ds:
KeyValue> elements. An interesting element is the <xkms:Pass-
Phrase> element, which is the last child element of the <xkms:
Prototype> element. The <xkms:PassPhrase> element contains a
user-chosen pass phrase (that is encrypted and encoded) that enables key
recovery in the event that the client’s key is compromised.

The next element is the <xkms:AuthInfo> element, which contains
two signature values. The reader should notice that the signatures used
are complete XML Signatures that specify the <xkms:Prototype> ele-
ment as the source data via the Id attribute. The first signature in the
<xkms:AuthUserInfo> element is the proof of possession information.
The client must sign something to prove to the service that it owns the

XML Security348

X-KRSS Service
(Service Side Key

Generation)

Client
Registration

Certificate
Repository

Registration Result: Success
Enc (RSA Private Key)
RSA Public Key

HMAC (Name)
Figure 9-7

Service-side key
pair generation
and registration
request

349Chapter 9 XML Key Management

Listing 9-6

An example
<Register>
message (client
generated key
pair)

<xkms:Register xmlns:xkms="http://www.xkms.org/schema/xkms-2001-01-
20">
<xkms:Prototype Id="bindingInfo">
<xkms:Status>Valid</xkms:Status>
<ds:KeyInfo>
<ds:KeyValue>
<ds:RSAKeyValue>
<ds:Modulus>
tvvf9MtHPH+VVkG7nWENPK5N2Q+qm9PN+1luxVQg
3QR+6WOXLZdAA21Hlm2qokqIMzuoF/0EY+k0vHZu
wZmQOw==

</ds:Modulus>
<ds:Exponent>EQ==</ds:Exponent>
</ds:RSAKeyValue>

</ds:KeyValue>
<ds:KeyName>John Doe</ds:KeyName>

</ds:KeyInfo>
<xkms:PassPhrase>vtyhHnJzxBHJi</xkms:PassPhrase>

</xkms:Prototype>

<xkms:AuthInfo>
<xkms:AuthUserInfo>
<xkms:ProofOfPossession>
<ds:Signature>
<ds:SignedInfo>
<ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
<ds:Reference URI="#bindingInfo">
...

</ds:SignedInfo>
</ds:Signature>

</xkms:ProofOfPossession>
<xkms:KeyBindingAuth>
<ds:Signature>
<ds:SignedInfo>
<ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#hmac-sha1"/>
<ds:Reference URI="#bindingInfo">
...

</ds:SignedInfo>
</ds:Signature>

</xkms:KeyBindingAuth>
</xkms:AuthUserInfo>

</xkms:AuthInfo>
<xkms:Respond>
<string>KeyName</string>
<string>KeyValue</string>

</xkms:Respond>
</xkms:Register>

proper private key. The data is signed with an RSA signature that
requires a private key as input to the signature operation. This particular
<ds:Signature> element contrasts the signature in the <xkms:Key-
BindingAuth> element in that it uses an RSA operation where as the
second signature in the <xkms:Register> element uses an HMAC to
produce the signature value.

This point is especially important. The first signature specifies only
proof of possession of the private key while the second signature is gener-
ated with a pre-shared secret value and provides authentication to the
X-KRSS service. That is, it is used so the X-KRSS service can be confident
that the <xkms:Register> request came from the purported client. The
final part of the <xkms:Register> message is a list of data items that
the service should return. The idea here is that the service should repeat
back to the client the actual binding that was registered. In this case the
data items returned include a public key and a name value.

The X-KRSS response message takes the supplied key binding proto-
type and produces the final key binding and presents it back to the client.
The response is sent using the <RegisterResult> element. The syntax
of a sample X-KRSS response message is shown in Listing 9-7.

In Listing 9-7, the <xkms:RegisterResult> element contains a
<xkms:KeyBinding> element that represents the information actually
bound. In this case it is a <ds:KeyValue> element and a <ds:KeyName>
indicating that the name John Doe is bound to the returned RSA public key.

XML Security350

Listing 9-7

An example
<Register-
Result> message
(client generated
key pair)

<xkms:RegisterResult
xmlns:xkms="http://www.xkms.org/schema/xkms-2001-01-20">
<xkms:Result>Success</xkms:Result>
<xkms:Answer>
<xkms:KeyBinding>

<xkms:Status> Valid </xkms:Status>
<ds:KeyInfo>
<ds:KeyValue>
<ds:RSAKeyValue>
<ds:Modulus>
tvvf9MtHPH+VVkG7nWENPK5N2Q+qm9PN+1luxVQg
3QR+6WOXLZdAA21Hlm2qokqIMzuoF/0EY+k0vHZu
wZmQOw==

</ds:Modulus>
<ds:Exponent>EQ==</ds:Exponent>
</ds:RSAKeyValue>

</ds:KeyValue>
<ds:KeyName>John Doe</ds:KeyName>

</ds:KeyInfo>
</xkms:KeyBinding>

</xkms:Answer>
</xkms:RegisterResult>

The <xkms:RegisterResult> element also contains two types of sta-
tus values. The <xkms:Result> element conveys information about the
request itself (but not information about the semantics of the request)
while the <xkms:Status> element contains the value Valid, which
means that the binding in the returned assertion is valid. The
<xkms:Status> element is the same element seen in the X-KISS Tier 2
response message and has similar meaning for the X-KRSS service.

Key Revocation

Some X-KRSS servers may enable clients to revoke key binding assertions
that have been registered at an earlier time. If a key binding assertion is
revoked, it is no longer considered a valid assertion and should no longer
be trusted. The key revocation process is similar to the key registration
process. The main idea is that the prototype for the assertion changes.
This means that instead of asserting that a given key binding is Valid (as
is done in an X-KRSS request message), the prototype changes to a pur-
ported value of Invalid. This change is done by altering the value inside
the <xkms:Status> element from Valid to Invalid. The rest of the
message remains similar; the only notable difference is that only one sig-
nature is required to provide evidence for proof of possession (the client
must still own the private key if it is to be revoked). The additional pres-
ence of the HMAC signature is not required because the X-KRSS service
has positive identification of the client from the initial registration
request. One could argue that the act of key revocation is really just the
registration of a negative assertion. An example key revocation message
is shown in Listing 9-8.

Listing 9-8 differs from the registration request shown in Listing 9-6 in
that it omits one of the signatures as well as the <xkms:PassPhrase>
element, which is not needed for key recovery. The corresponding
<RequestResult> message is identical to Listing 9-5 except for the fact
that the <xkms:Status> element contains the value Invalid instead of
Valid, which indicates that the key binding can no longer be trusted.

Security Considerations
The XKMS protocol as presented here still has a transport security prob-
lem. This has to do with the integrity, confidentiality, and authenticity of

351Chapter 9 XML Key Management

the request and response messages for either X-KISS or X-KRSS. The
best way to understand this issue is to think of how XKMS messages are
actually transported at the application layer. XKMS messages and ele-
ments are not designed with an implicit transport mechanism. This
means that one can’t simply send XKMS request or response messages in
the clear because there is no way to prevent against tampering. For
example, if a client opens a socket connection to an X-KISS service and
send a <Locate> or <Validate> message, any potential eavesdropper
can alter the message and interrupt the request. Further, there is no
authentication of the response from the server. The client has no way to
trust the service.

XML Security352

Listing 9-8

A revocation
request

<xkms:Register xmlns:xkms="http://www.xkms.org/schema/xkms-2001-01-20">
<xkms:Prototype Id="bindingInfo">
<xkms:Status>Invalid</xkms:Status>
<ds:KeyInfo>
<ds:KeyValue>
<ds:RSAKeyValue>
<ds:Modulus>
tvvf9MtHPH+VVkG7nWENPK5N2Q+qm9PN+1luxVQg
3QR+6WOXLZdAA21Hlm2qokqIMzuoF/0EY+k0vHZu
wZmQOw==

</ds:Modulus>
<ds:Exponent>EQ==</ds:Exponent>
</ds:RSAKeyValue>

</ds:KeyValue>
<ds:KeyName>John Doe</ds:KeyName>

</ds:KeyInfo>
</xkms:Prototype>
<xkms:AuthInfo>
<xkms:AuthUserInfo>
<xkms:ProofOfPossession>
<ds:Signature>
<ds:SignedInfo>
<ds:SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig�rsa-sha1"/>
<ds:Reference URI="�bindingInfo">
...

</ds:SignedInfo>
</ds:Signature>

</xkms:ProofOfPossession>
</xkms:AuthUserInfo>

</xkms:AuthInfo>
<xkms:Respond>
<string>KeyName</string>
<string>KeyValue</string>

</xkms:Respond>
</xkms:Register>

There are two ways in which this transport security problem can be
solved:

� Use the security services of the bound transport protocol.

� Use a transport protocol without security features enabled.

If the second option is chosen, one must use socket-level security or
packet-level security to protect XKMS messages. Socket level security is
achieved with something called TLS, which stands for “Transport Layer
Security” and packet-levels security is typically achieved with a protocol
called IPSEC, which loosely stands for Internet Protocol Security.

When we talk about the bound transport protocol, we are usually talk-
ing about another XML-based wrapper around XKMS messages that
enables the encapsulation of the request and response paradigm. The
SOAP protocol is currently used to provide this wrapper, although the
XKMS draft also defines a content type for XKMS messages that permits
XKMS over HTTP. In short, the security services can be delegated to the
bound transport protocol, TLS, or the packet level. (For more information
on TLS, see the references section at the end of this book.)

Although the transport security problem can be solved, care must be
taken not to complicate the solution, especially when attempting to pro-
vide support for multiple trust services. For example, a client that wishes
to use a single trust service must have some way of trusting the trust ser-
vice. This is a fundamental problem of the delegated trust mechanism
built into XKMS.

One can claim that an XKMS client is “PKI-free” and only uses a trust
service to register and validate key binding assertions without any PKI
knowledge, but a client must have some way of validating the authentic-
ity of the service itself. XKMS clients are designed to be simple and
because of this there is no second check of the information returned from
an XKMS service; this implies that some minimal verification ability
must be present on the client. One can argue that as the number of dis-
tinct trust services grows, the complexity of a client application that
wishes to boast compatibility with all of them must also grow. If this
growth continues unchecked, the client will become increasingly complex
and defeat one of the purposes of XKMS—simple client design.

353Chapter 9 XML Key Management

Chapter Summary
Chapter 9 is a conceptual discussion of XKMS, the XML Key Management
Specification. The goals of this chapter include introducing XKMS and
understanding how it fits in with XML Encryption and the XML Signa-
ture. XKMS is divided into two sub-technologies, X-KISS and X-KRSS.
The first subtechnology, X-KISS, delegates the processing of key informa-
tion while the second sub-technology, X-KRSS, delegates the registration
of key information. The concept of delegation takes center stage for XKMS
because the traditional PKI requires a rather heavyweight client. XKMS
pushes complexity away from a client to a service and builds a simple
interface around this service. This paradigm shift allows for a lightweight
client to easily handle complicated authentication and authorization
semantics.

XML Security354

Appendix

Additional Resources
This final section represents a cornucopia of topics that didn’t make their
way into the main body of the text, but are important to mention. The top-
ics are varied and include information about another canonicalization
algorithm called exclusive canonicalization, an algorithm list for XML
encryption, as well as material related to RSA’s BSAFE Cert-J product,
discussed in Chapter 8. In addition, the reader will find a list of references
to books and web sites organized by chapter.

Exclusive Canonicalization

The XML Signature Recommendation uses Canonical XML 1.0 as the
default canonicalization algorithm for ensuring that semantically mean-
ingless syntax alterations don’t unnecessarily break an XML Signature
(refer to Chapter 4 and Chapter 5). It was discovered, however, that
Canonical XML can cause trouble when XML documents are reenveloped,
causing signatures to break when they shouldn’t.

This problem occurs because of the way Canonical XML deals with
namespaces. In particular, the Canonical XML 1.0 algorithm “attracts”
ancestor namespaces during the execution of the algorithm and makes it
difficult for portable signatures to work properly. For example, consider
two example XML documents, D1 and D2, as follows:

Document D1
<?xml version="1.0" encoding="UTF-8"?>
<foodns:Food xmlns:foodns="http://food.com">
<foodns:FrenchFries> Curly Fries </foodns:FrenchFries>

</foodns:Food>

355

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

Document D2
<?xml version="1.0" encoding="UTF-8"?>
<Drinks>
<Beer>
<Good_Beer> Samuel Adams </Good_Beer>
<Good_Beer> Guinness </Good_Beer>
<Bad_Beer> Budweiser </Bad_Beer>
<Bad_Beer> Fosters </Bad_Beer>

</Beer>
</Drinks>

Suppose we create an enveloped XML Signature over document D2 using
an XPath expression to pinpoint only the <Beer> element (ancestor-or-
self::Beer). We can call this signature S1 as follows:

Enveloped Signature S1
<?xml version="1.0" encoding="UTF-8"?>
<Drinks>
<Beer>
<Good_Beer> Samuel Adams </Good_Beer>
<Good_Beer> Guinness </Good_Beer>
<Bad_Beer> Budweiser </Bad_Beer>
<Bad_Beer> Fosters </Bad_Beer>

</Beer>
<Signature>
<SignedInfo>
...
<Reference URI="">
<Transforms>
<Transform
Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">
<XPath>
ancestor-or-self::Beer

</XPath>
</Transform>

</Transforms>
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>DikaiaUpotHeKeIcJyTwm84DU=</DigestValue>

</Reference>
</SignedInfo>
...

</Signature>
</Drinks>

Carrying the example further, let’s envelope S1 inside D1. That is, we
are “wrapping” document D1 around S1 (which contains document D2 by
virtue of the type of signature). This new aggregate document will be
called D3 and is shown as follows:

Document D3
<?xml version="1.0" encoding="UTF-8"?>
<foodns:Food xmlns:foodns="http://food.com">
<foodns:FrenchFries> Curly Fries </foodns:FrenchFries>

Appendix Additional Resources356

<Drinks>
<Beer>
<Good_Beer> Samuel Adams </Good_Beer>
<Good_Beer> Guinness </Good_Beer>
<Bad_Beer> Budweiser </Bad_Beer>
<Bad_Beer> Fosters </Bad_Beer>

</Beer>
<Signature>
<SignedInfo>
...
<Reference URI="">
<Transforms>
<Transform
Algorithm="http://www.w3.org/TR/1999/REC-xpath-19991116">
<XPath>
ancestor-or-self::Beer

</XPath>
</Transform>

</Transforms>
<DigestMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>
<DigestValue>DikaiaUpotHeKeIcJyTwm84DU=</DigestValue>

</Reference>
</SignedInfo>

...
</Signature>
</Drinks>

</foodns:Food>

Finally, suppose we want to verify the signature inside document D3,
which is calculated over the original document D2. During the reference
validation process, the XPath expression will be used to obtain the proper
node set. This node set is then digested and compared against the original
node set in document D2. The node set produced, however, is not what
might be expected. If we try to extract the <Beer> element using an
XPath expression over document D3, the node set produced is as follows:

<Beer xmlns:foodns='http://food.com">
<Good_Beer> Samuel Adams </Good_Beer>
<Good_Beer> Guinness </Good_Beer>
<Bad_Beer> Budweiser </Bad_Beer>
<Bad_Beer> Fosters </Bad_Beer>

</Beer>

The reader should notice the apparently superfluous namespace decla-
ration in the previous example (xmlns:foodns="http://food.com").
We should expect to see the exact same node set represented by document
D2. The reader should check document D2 and notice the difference. This
situation may seem errant, but it is not. Canonical XML attracts ancestor
namespace information and in doing so adds the namespace value

357Appendix Additional Resources

xmlns:foodns="http://food.com", which will break the signature
upon verification because the original <Beer> element in D3 did not know
about this additional context. The problem comes from the way Canonical
XML works; it is not a problem with the XML Signature format or stan-
dard, but an anomalous case that occurs because of the mechanics of
canonicalization. The solution to this problem is an algorithm called exclu-
sive canonicalization, which is an alternate canonicalization algorithm
that repels ancestor context instead of attracting it. We won’t cover the
details of how this algorithm works here, but the reader is urged to visit
the references section for more information.

XML Encryption: A List of Supported Algorithms

The following is a list of algorithms supported by the XML Encryption
draft along with their URI identifiers. This list comes directly from the
XML Encryption Working Draft.

Block Encryption

� Triple-DES (Required):
http://www.w3.org/2001/04/xmlenc#tripledes-cbc

� AES-128 (Required):
http://www.w3.org/2001/04/xmlenc#aes128-cbc

� AES-256 (Required):
http://www.w3.org/2001/04/xmlenc#aes256-cbc

� AES-192 (Optional):
http://www.w3.org/2001/04/xmlenc#aes192-cbc

Key Transport

� RSA Encryption with PKCS#1 Padding (Required):
http://www.w3.org/2001/04/xmlenc#rsa-1_5

� RSA Encryption with OAEP Padding (Required):
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

Key Agreement

� Diffie-Hellman Key Agreement:
http://www.w3.org/2001/04/xmlenc#dh

Appendix Additional Resources358

Symmetric Key Wrap

� Triple-DES Symmetric Key Wrap (Required):
http://www.w3.org/2001/04/xmlenc#kw-tripledes

� AES-128 Symmetric Key Wrap (Required):
http://www.w3.org/2001/04/xmlenc#kw-aes128

� AES-256 Symmetric Key Wrap (Required):
http://www.w3.org/2001/04/xmlenc#kw-aes256

� AES-192 Symmetric Key Wrap (Required):
http://www.w3.org/2001/04/xmlenc#kw-aes192

Message Digest

� SHA1 (Required): http://www.w3.org/2000/09/xmldsig#sha1

� SHA-256 (Recommended):
http://www.w3.org/2001/04/xmlenc#sha256

� SHA-512 (Optional):
http://www.w3.org/2001/04/xmlenc#sha512

� RIPEMD-160 (Optional):
http://www.w3.org/2001/04/xmlenc#ripemd160

Message Authentication

� XML Digital Signature: http://www.w3.org/TR/2001/
PR-xmldsig-core-20010820/

Canonicalization

� Canonical XML with Comments (Optional): http://www.w3.org/
TR/2001/REC-xml-c14n-20010315#WithComments

� Canonical XML Without Comments (Optional):
http://www.w3.org/TR/2001/REC-xml-c14n-20010315

� Exclusive XML Canonicalization (Optional):
http://www.w3.org/TR/2001/WD-xml-exc-c14n-20011120

Encoding

� Base 64 Encoding (Required):
http://www.w3.org/2000/09/xmldsig#base64

359Appendix Additional Resources

References

This section lists all the source material used by the author for this book.
Some of the references are on the Web and others are textbooks. The books
listed here are especially good at conveying conceptual information, while
the web links usually refer to XML or cryptography standards.

Chapter 2: Security Primer

The applied security-related references used for this chapter are listed
here.

Cryptography Books

Burnett, Steve and Stephen Paine. RSA Security’s Official Guide to Cryp-
tography. Berkeley, California: Osborne/McGraw-Hill, 2001.

Schneier, Bruce. Applied Cryptography: Protocols, Algorithms, and Source
Code in C, Second Edition. New York: John Wiley and Sons, 1996.

Stinson, Douglas R. Cryptography: Theory and Practice. Boca Raton, FL:
CRC Press, 1995.

PKCS Standards

RSA Laboratories, Public Key Cryptography Standards (PKCS). RSA
Security Inc. 16 December 2001. www.rsasecurity.com/rsalabs/
pkcs.

ASN.1

Larmouth, John. ASN.1 Complete, San Francisco: Morgan Kaufmann
Publishers, 1999.

PKI

Housley, R., SPYRUS, W. Ford, VeriSign, W. Polk, NIST, and D. Solo, Citi-
corp. Internet X.509 Public Key Infrastructure Certificate and CRL Profile
(RFC2459). January 1999.

Chapter 3: XML Primer

The XML resources used for this chapter are listed here.

Appendix Additional Resources360

XML Books

Hunter, David, et. al. Beginning XML. Birmingham UK: Wrox Press Ltd,
2000.

Ray, Erik T. Learning XML. Sebastopol, CA: O’Reilly and Associates, 2001.

XML and DTD

Bray, T., E. Maler, J. Paoli, and C. M. Sperberg-McQueen. “Extensible
Markup Language (XML) 1.0 (Second Edition).” W3C Recommendation.
October 2000. http://www.w3.org/TR/2000/REC-xml-20001006.

Namespaces in XML

Bray, T., D. Hollander, and A. Layman. “Namespaces in XML.” W3C Rec-
ommendation. January 1999. http://www.w3.org/TR/1999/REC-
xml-names-19990114/.

XML Schema

Beech, D., M. Maloney, N. Mendelsohn, and H. Thompson. “XML Schema
Part 1: Structures.” W3C Recommendation. May 2001. http://www.w3
.org/TR/2001/REC-xmlschema-1-20010502/.

Biron, P. and A. Malhotra. “XML Schema Part 2: Datatypes W3C Recom-
mendation.” May 2001. http://www.w3.org/TR/2001/REC-
xmlschema-2-20010502/.

DOM

Apparao, V., S. Byrne, M. Champion, S. Isaacs, I. Jacobs, A. Le Hors, G.
Nicol, J. Robie, R. Sutor, C. Wilson, and L. Wood. “Document Object Model
(DOM) Level 1 Specification.” W3C Recommendation. October 1998.
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/

SAX
For information on SAX, see www.saxproject.org.

Xerces

Information about the Xerces XML parser can be found at xml.apache
.org.

361Appendix Additional Resources

URI

Berners-Lee, T., R. Fielding, and L. Masinter. “RFC 2396: Uniform
Resource Identifiers (URI): Generic Syntax. Standards Track.” August
1998. www.ietf.org/rfc/rfc2396.txt

Chapter 4 and Chapter 5: XML Digital Signatures
Parts I and II

Note:
An interoperability matrix of known XML Signature implementations is
hosted at www.w3.org/Signature/2001/04/05-xmldsig-interop
.html.

Canonical XML 1.0

Boyer, J., March 2001. Canonical XML. Recommendation. http://www
.w3.org/TR/2001/REC-xml-c14n-20010315. www.ietf.org/rfc/
rfc3076.txt.

Exclusive Canonicalization

Boyer, J., D. Eastlake, and J. Reagle. “Exclusive XML Canonicalization.”
W3C Working Draft. October 2001. http://www.w3.org/TR/2001/
WD-xml-exc-c14n-20011120.

XML Signature Proposed Recommendation

Eastlake, D., J. Reagle, and D. Solo. “XML-Signature Syntax and Process-
ing.” Proposed Recommendation. http://www.w3.org/TR/2001/
PR-xmldsig-core-20010820/.

Chapter 6: XML Signatures Frequently Asked Questions

XML Signatures Scenarios FAQ. WG Proposal. 18 February 2000.
http://www.w3.org/Signature/Drafts/PROP-xmldsig-faq-
20000218/Overview.html.

XSLT

Tidwell, Doug. XSLT. O’Reilly and Associates, 2001.

Appendix Additional Resources362

Chapter 7: XML Encryption

Imamura, T., and H. Maruyama. “Decryption Transform for XML Signa-
ture.” Working Draft. http://www.w3.org/TR/2001/WD-xmlenc-
decrypt-20010626.

“XML Encryption Syntax and Processing.” WG Working Draft 18. October
2001. http://www.w3.org/TR/2001/WD-xmlenc-core-20011018/.

Chapter 8: XML Signatures with RSA BSAFE Cert-J

For information on RSA Security BSAFE toolkits, please visit
www.rsasecurity.com. The sample code and code listings for Chapter 8
can be downloaded at www.rsasecurity.com/go/xmlsecurity/.

Chapter 9: XKMS and the Proliferation of Web Services

XML Key Management Specification (XKMS). W3C Note 30. March 2001.
http://www.w3.org/TR/2001/NOTE-xkms-20010330/.

Dierks, T., Certicom, and C. Allen. “The TLS Protocol Version 1.0 (RFC
2246).” January 1999.

Template Signing FAQs for RSA BSAFE Cert-J

What Is Template Signing?

The term template signing refers to building the template of a <ds:Sig-
nature> element inside an input document before signing occurs. The
idea here is that the <ds:Signature> has the necessary cryptographic
values filled in upon signature generation.

Why Is Template Signing Necessary?

Template signing is necessary in cases where the <ds:Signature> ele-
ment needs to be placed in a specific location in the XML input document
tree. In most cases, this will happen with a detached or enveloped XML
Signature. In the case of a same-document-detached XML Signature, tem-
plate signing is often the only way to create the desired structure.

363Appendix Additional Resources

How Does Template Signing Work in Cert-J?

If you want to create an XML document with a very specific structure and
want the <ds:Signature> element to appear at a specific location in the
tree, the following steps can be followed (for a DOM-based implemen-
tation):

1. Create a new DOM Parser object and load the input document that
will eventually have the <ds:Signature> element added.

2. Search through the nodes of your input document until you find the
position where you want the <ds:Signature> element to be added.

3. Once you have your target node, you must build an entire
<ds:Signature> element using your DOM Parser, but leave the
<ds:SignatureValue> and <ds:DigestValue> elements empty.
That is, actually create a new subtree structure and append this
structure to the desired target node. More than one <ds:Reference>
element is permitted; be sure to add as many as are required.

4. Once your structure has been altered to include a <ds:Signature>
element, the parent Document object will also be altered. At this
point, you can create a new XMLSignature object and use the
setDocument() function with the updated Document object and the
boolean value “true,” which tells Cert-J to use the existing template
<ds:Signature> instead of creating a new one.

Is Template Signing Present in All Versions of Cert-J?

Template signing is available for Cert-J 2.01 and later. Cert-J 2.01
requires a patch for template signing to work. This patch adds a new API
function, XMLSignature.setDocument(), which takes as its input a
Document object and a boolean value (this should be set to “true” to indi-
cate that a template signing operation is happening).

Is Any Sample Code Available?

Sample code has been created to help customers perform this important
task. Please contact your RSA support representative for access to the
patch and sample code.

Appendix Additional Resources364

A

accessor functions, Signature element, 283
AddKeyInfoClass() function, 301
AES (Advanced Encryption Standard), 8

identifying in CBC mode, 236
Rijndael cipher, 14

AgreementMethod element, 261–262
algorithms

AES, 14
DH, 30–31
key agreement, 29
RSA, 16–19

asymmetric encryption, 19
digital envelopes, 28
factoring, 20
intractability, 21–22
key generation, 22, 25
key transport, 28
modular exponentiation, 25
padding schemes, 26–27
private keys, 20
public keys, 20

anchor elements, XML Signature
processing, 164–165

APIs, structured documents, 84
applications, XML Encryption processing

rules, 266
applied cryptography, 61
applied security, 1
arbitrary octet streams, XML Signature

example, 194–196
arbitrary structured documents, 86
arbitrary textual data, 60
ASN.1 (Abstract Syntax Notation 1), 44

BER, 42

DER, 47
transfer syntaxes, 41

Assertion element, 314
associations, XMLSignature class, 284
asymmetric ciphers, 16–17
asymmetric encryption, 19
asynchronous key agreement, 261
attribute nodes, XPath data model, 98
attributes, 62

declarations, 82
elements, 63
value normalization, 179
xmlns, 72

authentication, HMAC, 37–38
authorization, path validation, 54

B

Base-64 encoding
BER, 43
XML Signature processing, 181–183,

211–213
BER (Basic Encoding Rules)

ASN.1, 42
Base-64 encoding, 43

binary format security standards, 61
binding public keys to identities, 46
Bleichenbacher attack, 27
block ciphers, 7

AES, 8
CBC mode, 12
padding, 10
Rijndael, 14
Triple-DES, 8

blocking calls, DOM, 91

Index

Copyright 2002 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.

bootstrapping process, Xerces, 90–91
BSAFE Cert-J. See Cert-J.

C

Canonical XML, 172, 175, 223
canonicalization, XML Signatures, 209–210

processing, 153–154
transforms, 174–178

CarriedKeyName element, 248,
256–258, 261

CAs (Certificate Authorities), trusted, 47
CBC mode

AES, 236
block ciphers, 12
Triple–DES algorithm, 236

CDATA sections (character data), 75
central repositories

asynchronous key agreement, 261
public values, 262

Cert-J, 279
Assertion element, 314
class diagrams, 280
classes, 280
customized KeyInfo types, 301–304
DSAKeyValue type, 300
KeyInfo class, 290–292
KeyInfo element, 290
KeyValue subclass, 292
Manifest class, 307
Manifest element, 322
multiple transforms, 289–290
Object element, 312–313
Reference class, 285
RetrievalMethod type, 299–301
RSAKeyValue type, 300
Signature element, accessor

functions, 283
SignatureProperties element, 313–316

Transformer class, 285, 288
XMLEnvelopingBinary code sample, 324
XMLSignature class

class associations, 284
constructor, 281
diamond notation, 284
signature type, 282

XPathTester code sample, 329
ZIPDecompressionTransformer class

code sample, 326
certificate chains, digital signatures, 47
certificates

issuer names, 48
subject names, 48
X.509, parsing, 338

certification paths, 49–50
chaining services, X-KISS, 342
character data sections, 75
child elements, 80
child nodes, printing, 92
CipherData element, 231, 238–239, 269
CipherReference element, 238–239,

255, 268
ciphers

asymmetric, 16–17
block, 7–14
Rijndael, 14
symmetric, 7, 15–16

CipherValue element, 231, 238, 255, 268
class associations, XMLSignature class, 284
class diagrams, Cert-J, 280
classes

Cert-J, 280
XMLSignature, 281–282

collections of nodes, XPath, 94
combining all types of signatures, XML

Signature example, 221
comment nodes, XPath data model, 104
comments, 74
complex types, XML Schema, 83

Index366

conceptual structure model, XPath, 94
constraints, well-formed documents, 64
constructors, XMLDSignature class, 281
content-models, XML documents, 80
context of components, XML

Signatures, 118
conversion changes, 179
core generation, XML Signature processing,

152–154
core validation, XML Signature processing,

155–157
CreateKeys() function, 317
CRLs (Certificate Revocation Lists), 48
Crypto-J, JSAFE_PublicKey class, 292
cryptographic standards, 40
cryptography, 61
custom transforms, XML Signature

processing, 171
customized KeyInfo types, 301–304

D

data integrity, digital signatures, 32
data sources, 69
data types, X509Data, 296–297
data-modeling question, 63
DataReference element, 254
datatypes, 62
date and time values, path validation, 50
decompression transforms, 326
decryption, 6
decryption transforms, XML Signatures,

272–273
decryptors, XML Encryption processing

rules, 266, 269–271
default namespace

declarations, XML Signature
processing, 180

XML documents, 72

definitions, XML Signatures, 109–112
DER (Distinguished Encoding Rules), 47
dereferencing elements, XML Signature

processing, 172
dereferencing URIs, XML Signature

processing, 158, 173
DestinationAccountNumber element, 264
detached signatures, 120, 166, 195
DH algorithm, 30–31
diamond notation, XMLSignature class, 284
Digest method, Reference class, 285
DigestMethod element, 148–150, 237
DigestValue element, 148–150
digital envelopes, 28, 249, 272
digital signatures

binding public keys to identities, 46
certificate chains, 47
data integrity, 32
raw, 39
repudiation, 32

DocBook, 59
Document element, 65
document order, XPath data model, 96–97

attribute nodes, 98
comment nodes, 104
element nodes, 98
namespace nodes, 100
node sets, 104
processing instruction nodes, 102
root nodes, 97
text nodes, 101

document prologs, 75–77
document type declarations, 77
documents, XML. See XML documents.
DOM (Document Object Model), 84

blocking calls, 91
flattened view, 87
inheritance view, 87
interfaces, 85–86
language bindings, 87

367Index

DOM (continued)
linear views, 93
NodeLists, 93
nodes, 89
objects, 85
org.w3c.dom packages, 87
subtypes, 87–89
tree data structure, 85

DOM Level 1 Core, 85
DOMParser class, XML documents, 91
DSA signatures, 36–37
DSAKeyValue element, 126
DSAKeyValue type, 300
DTDs (document type definitions), 78–82

E

ecrypted decryption key, 247
element declarations, 80
element nodes, XPath data model, 98
elements, 62

AgreementMethod, 261–262
Assertion, 314
attributes, 64
CarriedKeyName, 248, 256–258, 261
CipherData, 231, 238, 269
CipherReference, 238–239, 255, 268
CipherValue, 231, 238, 255, 268
DataReference, 254
DestinationAccountNumber, 264
DigestMethod, 237
document, 65
EncryptedData, 230–231, 234, 242,

245–249, 254–255, 269
EncryptedKey, 234, 244–245, 248–250,

253–255, 268–269
EncryptedType, 230, 248, 266–269
EncryptionMethod, 235, 252
EncryptionProperties, 240–242

end tags, 62
KeyInfo, 125–129, 244, 290, 301–304
KeyName, 245, 304
KeyReference, 254
KeySize, 237
KeyValue, 126–128
Manifest, 136, 141–143, 322
OAEPparams, 237
Object, 134–138, 312–313
OriginatorKeyInfo, 262
parent, 65
Query, 339
Reference, 118, 140
ReferenceList, 253–255
Respond, 339
RetrievalMethod, 131–133, 258–259, 300
root, 65
RSAKeyValue, 126
SecureDoc, 254
SensitiveData, 265
SensitiveInformation, 264
shorthand, 63
Signature, 114, 122
SignatureMethod, 118
SignatureProperties, 135, 139–140,

313–316
SignatureValue, 116
SignedInfo, 115–116, 122–124, 143
SourceAccountNumber, 264
start tags, 62
TransactionID, 264
Transfer, 265
TransferAmount, 264
TransferTime, 264
Transforms, 239
Validate, 343
ValidateResponse, 343
X509Certificate, 129, 246, 297
X509CRL, 246
X509Data, 128–131, 246

Index368

X509IssuerSerial, 128, 246, 297
X509SKI, 129, 246, 297
X509SubjectName, 246, 297

encoded keys, KeyValue subclass, 292–294
encrypted keys, KeyInfo element, 245
EncryptedData element, 230–231, 234, 242,

245–249, 254–255, 264, 269
EncryptedKey element, 234, 244–245,

248–250, 253–255, 259, 268–269
EncryptedType element, 230, 248, 266–269
encrypting arbitrary octets, XML

Encryption, 229–231
encryption, 6

asymmetric ciphers, 16–17
block ciphers, 10
plaintext, 6
RSA, 23
symmetric, 7, 15–16
Triple-DES, 8–9

encryption algorithms, 230, 236
encryption keys, XML Encryption, 230
EncryptionMethod element, 235, 252
EncryptionProperties element, 240–242
encryptors, XML Encryption processing

rules, 266–268
end tags, 62, 66
enveloped signature transforms, 185–186
enveloped signatures, 120, 194
enveloping signatures, 120, 194
event processing, stream based, 94
examples of XML Signatures, 193

arbitrary octet streams, 194–196
Base-64 encoding scheme, 211–213
canonicalization, 209–210
combining all types of signatures, 221
detached signatures, 195
enveloped signatures, 194
enveloping signatures, 194
excluding portions of source

documents, 199

fragment identifiers, 199
Manifest element usage, 208
multiple signers of elements, 201
multiple signers via enveloping

signatures, 203
Reference elements with https URI

attribute scheme, 214–215
signing entire XML documents, 204–205
signing multiple references with signing

keys, 196–198
signing nondocument elements, 199
signing targeted elements, 199–201
white space and Canonical XML, 223
XPath expressions, 201
XPath expressions as selection

mechanisms, 206–207
XPath transforms, 204
XPointers, 200
XSLT transforms, 215–219

excluding portions of source documents, 199
explicit parameters, encryption

algorithms, 236
exponent datatypes, 62

F

factoring RSA algorithm, 20
Factory method, instantiating Transformer

class, 286
feedback modes, block ciphers, 12
fields, unlocking via master keys, 253
First tier, X-KISS, 337
flattened view, DOM, 87
for loops, printing child nodes, 92
fragment identifiers, 164–166, 199
functions

addKeyInfoClass(), 301
createKeys(), 317
generateKeyInfo(), 303, 306

369Index

functions (continued)
getDocument(), 91
getFirstChild(), 91
getNodeName(), 92
getSubjectPublicKey(), 295
getSubjectPublicKeyBER(), 295
hash, 33
item(), 92
MapKeyName(), 306
parse(), 91
parseKeyInfo(), 304–306
ParserHandler.read(), 319
ParserHandler.write(), 319
printNode(), 91, 93
setCanonicalizationMethod(), 283
setDocument(), 281
setReferences(), 285
setSignatureID(), 314
setSignatureMethod(), 283
setURI(), 316
setXMLObjects(), 313–314
SHA-1, 33
sign(), 319

G–H

general entities, 76–77
GenerateKeyInfo() function, 303, 306
generating keys, 23
GetDocument() function, 91
GetFirstChild() function, 91
GetNodeName() function, 92
GetSubjectPublicKey() function, 295
GetSubjectPublicKeyBER() function, 295
hash functions, 33
HMAC (hash-based method authentication

code), 32, 37–38

I–J

identifiers, 70, 264
identities, binding to public keys, 46
Implicit parameters, encryption

algorithms, 236
Import statements, XML documents, 90
Inheritance view, DOM, 87
input node-sets, Canonical XML, 177
interfaces, DOM, 85–86
intractability, 21–22
issuer names, certificates, 48
Item() function, 92
IV (initialization vector), cipher block

chaining, 13
JSAFE_PublicKey class, 292

K

key agreement, 29–31
key binding, Validate service, 343
key generation, 23–25
key location service, X-KISS, 337
Key Registration, X-KRSS, 345–348
Key Revocation, X-KRSS, 351
key transport, 28, 250
key transport algorithm, XML

Encryption, 272
KeyInfo class, 290–292
KeyInfo element, 244, 290

encrypted decryption key, 247
encrypted keys, 245
pointer information, 245
XML Signatures, 125–129

KeyName element, 245, 304, 337
KeyReference element, 254
KeySize element, 237

Index370

KeyValue element, 126–128
KeyValue subclass, 292–294

L

language bindings, DOM, 87
Level 1 Core, DOM, 85
line feed normalization, 179
linear views, DOM, 93
Locate messages, XKMS, 339
Locate service, X-KISS, 338
LocateResult messages, XKMS, 339

M

Manifest class, 307, 310
Manifest element

source references, 322
XML Signatures, 136, 141–143, 149, 208

MapKeyName() function, 306
Markup, 59

attributes, 62
character data sections, 75
comments, 74
declarations, 77
elements, 62
languages, 59–60
predefined character entities, 75
processing instructions, 74

master keys, unlocking fields or
records, 253

MathML, 59
meta-language, XML Security, 59
methods

setKeyInfos(), 292
setSignatureType(), 282

setTransform(), 289
sign(), 281

modular exponentiation, RSA algorithm, 25
modulus

datatypes, 62
key generation, 23

multiple signers of elements, 201
multiple signers via enveloping

signatures, 203
multiple transforms, 289–290

N

namespace nodes, XPath data model, 100
namespaces, 70–71

changes, 180
prefixes, 73
XKMS, 339
XML Signatures, 70

naming constraints, well-formed
documents, 67

NIST (National Institute of Standards and
Technology), Rijndael block cipher, 14

node sets
XML Signatures, 148, 165
XPath data model, 104

node types, 91
NodeLists, DOM, 93
nodes

DOM, 89
XPath data model, 95–96

attribute, 98
comment, 104
document order, 96
element, 98
namespace, 100
processing instruction, 102

371Index

nodes (continued)
root, 97
text, 101

non-XML data, XML Signature
processing, 324

nonce values, CipherData element, 239
normalization, XML Signature

processing, 179

O

OAEP (Optimal Asymmetric Encryption
Padding), 27, 237

OAEPparams element, 237
Object element, 134–138, 149, 312–313
objects, DOM, 85
octet streams, XML Signature

processing, 164
optional qualifiers, path validation, 51
org.w3c.dom packages, DOM, 87
OriginatorKeyInfo element, 262
output node-sets, Canonical XML, 177
overlapping tags, 66
overview of book, 4

P

#PCDATA keyword, 80
padding schemes

block ciphers, 10
RSA algorithm, 26–27
symmetric ciphers, 11
XML Encryption, 13

paradigm-shift, XML Security, 61
parameter entities, XML Signatures, 82
parameter generation, DH algorithm, 30
Parent element, 65
Parse() function, blocking calls, 91

parsed character data, 80
ParseKeyInfo() function, 304–306
parser changes, 179
ParserHandler.read() function, 319
ParserHandler.write() function, 319
parsing X.509 certificates, 338
path languages, XPath, 95
path validation, 46

authorization, 54
certification paths, 50
date and time values, 50
optional qualifiers, 51
policy identifiers, 50
state machine, 51–53
XKMS, 335

PKCS#12, 47
PKCS#7, 45
plaintext, 6
plaintext replacement, 229–234, 263
pointer information, KeyInfo element, 245
policy identifiers, path validation, 50
predefined character entities, 75
prefixes, namespaces, 73
presentation semantics, 58
primality testing, RSA algorithm, 25
printing child nodes, 92
PrintNode() function, 91–93
private keys, RSA algorithm, 20
private values, DH algorithm, 30
processing

instruction nodes, XPath data model, 102
instructions, 74
XML Encryption rules, 265–271

processing XML Signatures, 147
anchor elements, 164–165
Base64 decoding, 181–183
Base64 encoding, 183
canonicalization, 153–154
canonicalization transforms, 174–178

Index372

core generation, 152–154
core validation, 155–157
custom transforms, 171
default namespace declarations, 180
dereferencing elements, 172
dereferencing URIs, 158, 173
DigestMethod element, 148–150
DigestValue element, 148–150
enveloped signature transforms, 185–186
fragment identifiers, 164–166
Manifest element, 149
namespaces, 180
node sets, 148, 165
normalization, 179
Object element, 149
octet streams, 164
Reference element, 148–152
reference generation, 152–153, 158–159
reference validation, 155, 158, 161
same document references, 166, 169
sibling elements, 166
signature generation, 152–154
signature transforms, 164, 170–171
signature validation, 155–157, 161–162
transform security, 187–190
Transforms element, 150
URI attribute, 163
XPath filtering, 183–184
XPath transforms, 173

processor changes, 179
properties, well-formed, 64
pseudo-random number generation, 15
public keys

binding to identities, 46
RSA algorithm, 20

public values
asynchronous key agreement, 261
central repositories, 262

Q

qualified names, 73
Query element, 339

R

raw digital signatures, 39, 114–115
Recipient attribute, EncryptedKey

element, 259
records, unlocking via master keys, 253
recursive nesting, EncryptedType

element, 248
Reference class, 285
Reference element

with https URI attribute scheme,
214–215

XML Signatures, 118, 140, 148–152
reference generation, 152, 158–159
reference validation, 155, 158, 161
ReferenceList element, 253–255
references, URIs, 70
referencing in reverse, 254
repudiation, 32
request messages, XKMS, 338
Respond element, 339
response messages, XKMS, 339
RetrievalMethod element, 131–133,

258–259, 300
RetrivealMethod type, 299–301
reverse referencing, 254
Rijndael block cipher, 14
Root element, 65, 91
root nodes, XPath data model, 97
RSA algorithm, 17–19

asymmetric encryption, 16, 19
digital envelopes, 28
encryption, 23

373Index

RSA algorithm (continued)
factoring, 20
intractability, 21–22
key generation, 22–25
key transport, 28
modular exponentiation, 25
padding schemes, 26–27
private keys, 20
public keys, 20
raw signatures, 39
signatures, 34–35

RSA BSAFE Cert-J, 279
RSAKeyValue element, 126
RSAKeyValue type, 300

S

same document references, 166, 169
SAX (Simple API for XML Processing),

94, 179
SecureDoc element, 254
security, 5

block ciphers, 10
decryption, 6
encryption, 6–9, 275
transforms, 187–190
XKMS, 351–353

SensitiveData element, 265
SensitiveInformation element, 264
service chaining, X-KISS, 342
SetCanonicalizationMethod() function, 283
SetDocument() function, 281
SetKeyInfos() method, 292
SetReferences() function, 285
SetSignatureID() function, 314
SetSignatureMethod() function, 283
SetSignatureType() method, 282
SetTransform() method, 289

SetURI() function, 316
SetXMLObjects() function, 313–314
SHA-1, 33
shared secrets, asynchronous key

agreement, 261
shorthand, elements, 63
sibling elements, XML Signature

processing, 166
Sign() function, 319
Sign() method, 281
Signature element

accessor functions, 283
XML Signatures, 114, 122

SignatureMethod element, 118
SignatureProperties element, 135, 139,

313–316
SignatureProperty element, 140
signatures

DSA, 36–37
generation, 152–154
RSA, 34–35
transforms, 164, 170–171
validation, 155–157, 161–162

SignatureValue element, 116
SignedInfo element, 115–118, 122–124, 143
signing entire XML documents, 204–205
signing keys, XML Signature

processing, 317
signing multiple references with signing

keys, 196–198
signing nondocument elements, 199
signing targeted elements, 199–201
simple types, XML Schema, 83
source references

Manifest class, 310
Manifest element, 322

source URIs, XML Encryption, 230
SourceAccountNumber element, 264

Index374

standards for cryptography, 40
start tags, 62, 66
state machine, path validation, 51–53
stream ciphers, 7
stream event processing, SAX, 94
String identifiers, 70
structured data, 85
structured documents, 84–85
subject names, certificates, 48
SubjectKeyIdentifier, X.509, 246
SubjectKeyIdentifier extension, X.509

certificates, 298
subtypes, DOM, 87–89
symmetric ciphers, 7, 11
symmetric encryption, 15–16
symmetric key generation, 15
symmetric key wrap, 250
syntax, 59

XML Encryption, 228
XML Signatures, 121–122

system identifiers, 81
SYSTEM keyword, 81

T

tags, 59
target references, Manifest class, 310
text editors, creating XML documents, 68
text nodes

XML documents, 93
XPath data model, 101

Tier 1 service, X-KISS, 338
Tier 2 service, X-KISS, 341
TransactionID element, 264
Transfer element, 265
transfer syntaxes, ASN.1, 41
TransferAmount element, 264
TransferTime element, 264

Transformer class, 285, 288
transforms

canonicalization, 174
custom, 171
decompression, 326
enveloped signature, 185–186
multiple, 289–290
security, 187–190
signature, 170
XML Signature reference generation, 159
XPath, 173

Transforms element, 150, 239
transport security, XKMS, 351–353
tree data structure, DOM, 85
Triple-DES, 8–9

feedback modes, 12
identifying in CBC mode, 236
URI identifiers, 13

trust engines, XKMS, 334
Trust service, X-KISS, 341–342
trusted CAs, 47–49
Type attribute, EncryptedData element,

234, 264
types

XML Signatures, 120
XMLSignature class, 282

U

unlocking fields or records, master
keys, 253

URI attribute, XML Signature
processing, 163

URI identifiers, Triple-DES, 13
URI references, 70
URIs

namespaces, 70
XML documents, 69

UTF conversion changes, 179

375Index

V

Validate element, 343
Validate service, X-KISS, 340–343
ValidateResponse element, 343
validating paths, 46
validation

XKMS, 334
XML documents, 79
XML Signatures, 318

variable key size ciphers, 14
verification, XKMS, 334
verification keys

X.509 certificates, 295
XML Signature processing, 320

VerificationInfo object, 320

W

Well-formed property, 64
white space

Canonical XML, 223
XML documents, 93

X

X-KISS, 335–336
key location service, 337
KeyName element, 337
Locate service, 338
service chaining, 342
Tier 1, 336–340
Tier 2, 340–345
trust service, 341–342
Validate service, 340–343

X-KRSS (XML Key Registration
Service), 335
Key Registration, 345–348
Key Revocation, 351

X.509 certificates
parsing, 338
SubjectKeyIdentifier, 246, 298
verification keys, 295
X509Data type, 296–297

X509Certificate element, 129, 246, 297
X509CRL element, 246
X509Data element, 128–131, 246
X509Data type, 296–297
X509IssuerSerial element, 128, 246, 297
X509SKI element, 129, 246, 297
X509SubjectName element, 246, 297
Xerces

bootstrapping process, 90–91
XML Parser, 90–91

XKMS (XML Key Management
Specification), 5, 39, 162, 333
Locate messages, 339
LocateResult messages, 339
namespaces, 339
path validation, 335
request messages, 338
response messages, 339
transport security, 351–353
trust engines, 334
validation, 334
verification, 334

xkms identifier, 339
XML (eXtensible Markup Language)

declarations, 77
Xerces bootstrapping process, 90–91

XML documents, 64
child elements, 80
content models, 80
document prologs, 75–77
DOMParser class, 91
DTDs, 78–80
element declarations, 80
general entity declarations, 76
getDocument() function, 91

Index376

getFirstChild() function, 91
import statements, 90
namespaces, 70–73
node types, 91
printNode() function, 91
qualified names, 73
root elements, 91
subtypes, 89
text nodes, 93
URI references, 70
URIs, 69
validity, 79
well-formed property, 64
white space, 93
XPath data model, 94

XML Encryption, 227
encrypting arbitrary octets, 229–231
encryption algorithms, 230
encryption keys, 230
key agreement algorithms, 30
key transport algorithm, 272
padding scheme, 13
plaintext replacement, 229–234, 263
processing rules, 265

applications, 266
decryptors, 266, 269–271
encryptors, 266–268

security issues, 275
source URIs, 230
symmetric ciphers, 11
syntax, 228
Triple-DES, URI identifiers, 13

XML Encryption Draft, 59
XML parser changes, 179
XML processing, 84, 179
XML Schema, complex types, 83
XML security, 1, 5

block ciphers, 10
decryption, 6

encryption, 6–9
paradigm-shift, 61

XML Signature examples, 193
arbitrary octet streams, 194–196
Base-64 encoding scheme, 211–213
canonicalization, 209–210
combining all types of signatures, 221
detached signatures, 195
enveloped signatures, 194
enveloping signatures, 194
excluding portions of source

documents, 199
fragment identifiers, 199
Manifest element usage, 208
multiple signers of elements, 201
multiple signers via enveloping

signatures, 203
Reference elements with https URI

attribute scheme, 214–215
signing entire XML documents, 204–205
signing multiple references with signing

keys, 196–198
signing nondocument elements, 199
signing targeted elements, 199–201
white space and Canonical XML, 223
XPath expressions, 201
XPath expressions as selection

mechanisms, 206–207
XPath transforms, 204
XPointers, 200
XSLT transforms, 215–219

XML Signature processing, 147, 317
anchor elements, 164–165
Base64 decoding, 181–183
Base64 encoding, 183
canonicalization, 153–154
canonicalization transforms, 174–178
core generation, 152–154
core validation, 155–157
custom transforms, 171

377Index

XML Signature processing (continued)
decompression transforms, 326
default namespace declarations, 180
dereferencing elements, 172
dereferencing URIs, 158

as binary octets, 173
DigestMethod element, 148–150
DigestValue element, 148–150
enveloped signature transforms, 185–186
fragment identifiers, 164–166
Manifest element, 149
namespaces, 180
node sets, 148, 165
non-XML data, 324
normalization, 179
Object element, 149
octet streams, 164
ParserHandler.read() function, 319
ParserHandler.write() function, 319
Reference element, 148–152
reference generation, 152–153, 158–159
reference validation, 155, 158, 161
same document references, 166, 169
sibling elements, 166
sign() function, 319
signature generation, 152–154
signature transforms, 164, 170–171
signature validation, 155–157, 161–162
signing keys, 317
transform security, 187–190
Transforms element, 150
URI attribute, 163
valid XML, 318
verification keys, 320
VerificationInfo object, 320
XMLSignature.verify() method, 320

XPath filtering, 183–184
XPath transforms, 173

XML Signature Recommendation, 59, 280
classes in Cert-J, 280
RSA BSAFE Cert-J, 279

XML Signatures, 68, 107–108
algorithm identifier, 117–118
attribute declarations, 82
component context, 118
decryption transforms, 272–273
definitions, 109–112
detached signatures, 120
DSAKeyValue element, 126
DTDs, 81–82
enveloped signatures, 120
enveloping signatures, 120
KeyInfo element, 125–129
KeyValue element, 126–128
Manifest element, 136, 141–143
namespaces, 70
Object element, 134–138
parameter entities, 82
raw digital signatures, 114–115
Reference element, 118, 140
RetrievalMethod element, 131–133
RSAKeyValue element, 126
Signature element, 114, 122
SignatureMethod element, 118
SignatureProperties element, 135, 139
SignatureProperty element, 140
SignatureValue element, 116
SignedInfo element, 115–116,

122–124, 143
syntax, 121–122
types, 120
X509Certificate element, 129
X509Data element, 128–131

Index378

X509IssuerSerial element, 128
X509SKI element, 129

XML syntax
attributes, 62
character data sections, 75
comments, 74
elements, 62
predefined character entities, 75
processing instructions, 74

XMLEnvelopingBinary code sample, 324
xmlns attribute, 72
XMLSignature class, 281–284
XMLSignature.verify() method, 320
XOR operations (exclusive-OR), 7
XPath data model, 96–97

attribute nodes, 98
collections of nodes, 94
comment nodes, 104
conceptual structure model, 94
element nodes, 98
filtering, XML Signature

processing, 183–184

namespace nodes, 100
node sets, 104
nodes, 95–96
path language, 95
processing instruction nodes, 102
root nodes, 97
text nodes, 101
transforms, 173, 204

XPath expressions
as selection mechanisms, 206–207
XML Signature example, 201

XPathTester code sample, 329
XPATHTransformer, 288
XPointers, 200
XSLT transforms, 215–219

Z

ZIPDecompressionTransformer class code
sample, 326

379Index

	XML Security
	XML Security
	Dedication
	About the Author
	Contents at a Glance
	Contents
	Preface
	Acknowledgments
	About the Reviewer

	CHAPTER
	1
	Introduction

	CHAPTER
	2
	Security Primer
	Encryption
	Symmetric Ciphers (The Nature of the Crank)
	Symmetric Key Generation (The Nature of the Key)
	Symmetric Encryption
	Asymmetric Ciphers
	RSA Algorithm Details
	Key Agreement
	Diffie-Hellman Key Agreement Logistics
	Digital Signature Basics
	Prelude to Trust and Standardization
	Trust, Certificates, and Path Validation
	Chapter Summary

	CHAPTER
	3
	XML Primer
	What Is XML?
	Processing XML
	Chapter Summary

	CHAPTER
	4
	Introduction to XML Digital Signatures
	XML Signature Basics
	XML Signatures and Raw Digital Signatures
	XML Signature Types
	XML Signature Syntax and Examples
	Chapter Summary

	CHAPTER
	5
	Introduction to XML Digital Signatures Part 2
	XML Signature Processing
	Signature Transforms
	Chapter Summary

	CHAPTER
	6
	XML Signature Examples
	XML Signature Examples
	and Frequently Asked Questions
	Chapter Summary

	CHAPTER
	7
	Introduction to XML Encryption
	XML Encryption Basics and Syntax
	XML Encryption Processing Rules
	Chapter Summary

	CHAPTER
	8
	XML Signature Implementation: RSA BSAFE© Cert-J
	RSA BSAFE Cert-J: Class
	Diagrams and Code Examples
	RSA BSAFE Cert-J: Specialized Code Samples
	Chapter Summary

	CHAPTER
	9
	XML Key Management Specification and the Proliferation of Web Services
	XKMS Basics
	X-KISS: Tier 1
	X-KISS: Tier 2
	X-KRSS
	Key Registration Message Syntax
	Security Considerations
	Chapter Summary
	Appendix
	Additional Resources

	Index
	End of Book

