
Exim
The Mail Transfer Agent

,Title.10724 Page 1 Tuesday, October 9, 2001 9:25 AM

,Title.10724 Page 2 Tuesday, October 9, 2001 9:25 AM

Exim
The Mail Transfer Agent

Philip Hazel

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

,Title.10724 Page 3 Tuesday, October 9, 2001 9:25 AM

Exim: The Mail Transfer Agent
by Philip Hazel

Copyright © 2001 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Andy Oram

Production Editor: Mary Brady

Cover Designer: Ellie Volckhausen

Printing History:

June 2001: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O’Reilly & Associates, Inc. Many of the designations used by manufacturers
and sellers to distinguish their products are claimed as trademarks. Where those designations
appear in this book, and O’Reilly & Associates, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps. The association between the image of
an aye-aye and Exim is a trademark of O’Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Library of Congress Cataloging-in-Publication Data

Hazel, Philip
Exim: the mail transfer agent/by Philip Hazel p.cm.
ISBN 0-596-00098-7
1. Exim (Computer program) 2. Email--Computer programs I. Title

TK5105.73 .H39 2001
004.692--dc21 2001036079

[DS]

,Copyright.10561 Page 1 Tuesday, October 9, 2001 9:25 AM

Ta ble of Contents

Preface .. xiii

1. Introduction .. 1

2. How Inter net Mail Works ... 5
Dif ferent Types of MTA .. 10

Inter net Message Standards ... 11

RFC 822 Message Format ... 11

The Message ‘‘On the Wir e’’ .. 13

Summary of the SMTP Protocol ... 15

Forgery .. 18

Authentication and Encryption .. 18

Routing a Message .. 18

Checking Incoming Mail .. 19

Overview of the DNS ... 21

DNS Records Used for Mail Routing ... 24

Related DNS Records ... 25

Common DNS Errors .. 27

Role of the Postmaster ... 29

3. Exim Over view .. 30
Exim Philosophy ... 30

Exim’s Queue ... 31

Receiving and Delivering Messages .. 31

Exim Processes ... 32

v

9 October 2001 09:13

vi Table of Contents

Coordination Between Processes .. 32

How Exim Is Configured ... 33

How Exim Delivers Messages .. 35

Local and Remote Addresses ... 37

Pr ocessing an Address ... 38

A Simple Example .. 40

Complications While Directing and Routing ... 46

Complications During Delivery ... 48

Complications After Delivery ... 49

Use of Transports by Directors and Routers ... 49

4. Exim Operations Over view ... 52
How Exim Identifies Messages .. 52

Watching Exim at Work .. 53

The Runtime Configuration File .. 54

The Default Qualification Domain .. 61

Handling Frozen Bounce Messages .. 62

Reducing Activity at High Load ... 62

Limiting Message Sizes ... 65

Parallel Remote Delivery .. 65

Contr olling the Number of Delivery Processes .. 66

Large Message Queues ... 66

Large Installations ... 67

5. Extending the Deliver y Configuration ... 71
Multiple Local Domains ... 71

Virtual Domains .. 74

Mailing Lists .. 78

Using an External Local Delivery Agent ... 85

Multiple User Addresses ... 87

Mixed Local/Remote Domains ... 88

Delivering to UUCP .. 90

Ignoring the Local Part in Local Deliveries ... 91

Handling Local Parts in a Case-Sensitive Manner ... 93

Scanning Messages for Viruses .. 94

Modifying Message Bodies .. 99

9 October 2001 09:13

Ta ble of Contents vii

6. Options Common to Director s and Routers 101
Conditional Running of Routers and Directors ... 102

Changing a Driver’s Successful Outcome ... 107

Adding Data for Use by Transports ... 108

Debugging Directors and Routers ... 113

Summary of Director/Router Generic Options ... 114

7. The Director s .. 118
Conditional Running of Directors .. 119

Optimizing Single-Level Aliasing ... 120

Adding Data for Use by Transports ... 121

The aliasfile and forwardfile Directors .. 121

The aliasfile Director .. 133

The forwardfile Director .. 138

The localuser Director .. 146

The smartuser Director .. 147

8. The Routers ... 150
Timeouts While Routing .. 150

Domains That Route to the Local Host ... 151

The lookuphost Router .. 154

The domainlist Router .. 158

The ipliteral Router .. 169

The queryprogram Router ... 169

9. The Transpor ts ... 173
Options Common to All Transports .. 174

The smtp Transport .. 184

Envir onment for Local Transports ... 194

Options Common to the appendfile and pipe Transports 196

The appendfile Transport .. 203

The pipe Transport .. 222

The lmtp Transport .. 231

The autoreply Transport .. 232

10. Message Filter ing .. 238
Examples of Filter Commands ... 239

Filtering Compared with an External Delivery Agent 241

Setting Up a User Filter .. 242

Setting Up a System Filter .. 242

Testing Filter Files .. 244

9 October 2001 09:13

viii Table of Contents

For mat of Filter Files .. 246

Significant Actions .. 248

Filter Commands .. 249

The add Command .. 249

Delivery Commands ... 250

Mail Commands .. 253

Logging Commands ... 256

The testprint Command ... 256

The finish Command .. 257

Obeying Filter Commands Conditionally .. 257

Additional Features for System Filters ... 262

11. Shared Data and Exim Processes ... 265
Message Files .. 266

Locking Message Files .. 268

Hints Files ... 269

Log Files .. 271

User and Group IDs for Exim Processes .. 271

Pr ocess Relationships ... 272

The Daemon Process ... 273

Reception Processes ... 277

Queue Runner Processes ... 279

Delivery Processes ... 281

Summary of Message Handling Process Types .. 283

Other Types of Process .. 283

12. Deliver y Er ror s and Retrying .. 284
Retrying After Errors ... 284

Remote Delivery Errors .. 285

Local Delivery Errors .. 288

Routing and Directing Errors ... 289

Retry Rules .. 289

Computing Retry Times ... 292

Using Retry Times .. 293

Retry Rule Examples .. 294

Timeout of Retry Data .. 295

Long-Ter m Failur es .. 295

Ultimate Address Timeout ... 297

Inter mittently Connected Hosts ... 297

9 October 2001 09:13

Ta ble of Contents ix

13. Message Reception and Polic y Controls ... 302
Message Sources ... 303

Message Size Control ... 303

Messages from Local Processes ... 304

Unqualified Addresses from Remote Hosts .. 307

Checking a Remote Host ... 308

Checking Remote Sender Addresses ... 314

Checking Recipient Addresses ... 322

Checking Header Line Syntax ... 326

Relay Control .. 326

Customizing Prohibition Messages .. 332

Incoming Message Processing ... 333

14. Rewr iting Addresses .. 339
Automatic Rewriting ... 339

Configur ed Rewriting ... 340

Rewriting Rules ... 343

Rewriting Patterns .. 345

Rewriting Flags ... 347

A Further Rewriting Example .. 351

Testing Rewriting Rules .. 354

15. Authentication, Encryption, and Other SMTP Processing 355
SMTP Authentication .. 355

Encrypted SMTP Connections ... 367

SMTP over TCP/IP .. 372

Local SMTP ... 376

Batched SMTP .. 377

16. File and Database Lookups .. 378
Single-Key Lookup Types .. 379

Query-Style Lookup Types .. 382

Quoting Lookup Data .. 382

NIS+ .. 383

LDAP ... 384

MySQL and PostgreSQL ... 386

DNS Lookups .. 388

Implicit Keys in Query-Style Lookups .. 388

Temporary Errors in Lookups .. 389

Default Values in Single-Key Lookups .. 389

9 October 2001 09:13

x Table of Contents

Partial Matching in Single-Key Lookups ... 390

Lookup Caching ... 391

17. String Expansion .. 392
Variable Substitution ... 394

Header Insertion ... 394

Operations on Substrings ... 395

Character Translation ... 398

Text Substitution ... 399

Conditional Expansion ... 399

Lookups in Expansion Strings ... 406

Extracting Fields from Substrings .. 410

IP Address Masking .. 412

Quoting ... 413

Reexpansion ... 416

Running Embedded Perl .. 417

Testing String Expansions .. 418

18. Domain, Host, and Address Lists ... 420
Negative Items in Lists ... 421

List Items in Files .. 422

Lookup Items in Lists ... 423

Domain Lists ... 423

Host Lists ... 426

Addr ess Lists ... 432

19. Miscellany .. 435
Security Issues .. 435

Privileged Users .. 442

RFC Conformance .. 444

Timestamps ... 449

Checking Spool Space ... 450

Contr ol of DNS Lookups .. 451

Bounce Message Handling .. 451

Miscellaneous Controls .. 456

20. Command-Line Interface to Exim ... 458
Input Mode Control .. 459

Additional Message Data ... 462

Immediate Delivery Control .. 464

Err or Routing .. 465

9 October 2001 09:13

Ta ble of Contents xi

Queue Runner Processes ... 466

Configuration Overrides ... 469

Watching Exim’s Queue ... 470

Message Control ... 471

Testing Options .. 473

Options for Debugging .. 478

Terminating the Options .. 479

Embedded Perl Options ... 479

Compatibility with Sendmail .. 479

Calling Exim by Differ ent Names .. 480

21. Administering Exim .. 482
Log Files .. 483

Log Destination Control ... 483

For mat of Main Log Entries ... 488

Cycling Log Files .. 493

Extracting Information from Log Files .. 494

Watching What Exim is Doing ... 500

The Exim Monitor .. 503

Maintaining Alias and Other Datafiles .. 511

Hints Database Maintenance ... 512

Mailbox Maintenance ... 514

22. Building and Installing Exim .. 516
Pr er equisites ... 517

Fetching and Unpacking the Source ... 517

Configuration for Building ... 518

The Building Process ... 526

Installing Exim .. 526

Testing Before Tur ning On .. 527

Turning Exim On ... 529

Installing Documentation in Info Format .. 530

Upgrading to a New Release ... 530

9 October 2001 09:13

xii Table of Contents

A. Summary of Str ing Expansion ... 533

B. Regular Expressions .. 548

Index .. 571

9 October 2001 09:13

Preface

Back in 1995, the central computing services at Cambridge University were run-
ning a variety of mail transfer agents, including Sendmail, Smail 3, and PP. Some
years before, I had converted the systems whose mail I managed from Sendmail to
Smail to make it easier to handle the special requir ements of the early 1990s in UK
academic networking during the transition from a private X.25-based network to
the Internet. By 1995, the transition was complete, and it was time to move on.

Up to that time, the Internet had been a pretty friendly place, and there was little
need to take many precautions against hostile acts. Most sites ran open mail relays,
for example. It was clear, however, that this situation was changing and that new
requir ements wer e arising. I had done some modifications to the code of Smail,
but by then it was eight-year-old code, written in prestandard C, and originally
designed for use in a very differ ent envir onment that involved a lot of support for
UUCP. I ther efor e decided to see if I could build a new MTA from scratch, taking
the basic philosophy of Smail and extending it, but leaving out the UUCP support,
which was not needed in our environment. Because I wasn’t exactly sure what the
outcome would be, I called it EXperimental Internet Mailer (Exim).

One of my colleagues in Computer Science got wind of what I was doing, begged
for an evaluation copy, and promptly put it into service, even before I was run-
ning it on my hosts. He started telling others about it, so I began putting releases
on an FTP site and answering email about it. The early releases were never
‘‘announced’’; they just spread by word of mouth. After some time, a UK ISP vol-
unteer ed to run a web site and mailing list, and it has continued to grow from
ther e. Ther e has been a continuous stream of comments and suggestions, and
ther e ar e far more facilities in current releases than I ever planned at the start.

Although I make a point of maintaining a comprehensive refer ence manual, one
thing that has been lacking is introductory and tutorial material. I kept hoping that

xiii

9 October 2001 09:06

xiv Preface

somebody else would write something, but in the end I was asked to write this
book. I hope it will make life easier for those who find the refer ence manual diffi-
cult to work with.

Organization of the Book
After a short overview chapter, this book continues with a general introduction to
Inter net email, because this is a subject that does not seem to be well covered
elsewher e. The rest of the book is devoted to explaining how Exim works, and
how you can use its configuration to control what it does. Here is a detailed
br eakdown of the chapters:

Chapter 1, Introduction
This chapter is a short ‘‘executive’’ summary.

Chapter 2, How Internet Mail Works
This chapter is a general introduction to the way email is handled on Internet
systems.

Chapter 3, Exim Overview
This chapter contains a general overview of the way Exim works, and intro-
duces you to the way it is configured, in particular in regard to the way mes-
sages are deliver ed.

Chapter 4, Exim Operations Overview
This chapter continues with more overview material, mostly about topics other
than the delivery of messages.

Chapter 5, Extending the Delivery Configuration
In this chapter, we retur n to the subject of message delivery, and show how
the configuration can be extended to support additional functionality.

Chapter 6, Options Common to Directors and Routers
This is the first of a sequence of chapters that cover Exim’s directors, routers,
and transports and their options in detail.

Chapter 7, The Directors
This chapter covers the directors, which are the components of Exim that
deter mine how local addresses are handled.

Chapter 8, The Routers
This chapter describes the routers, which are the components of Exim that
deter mine how remote addresses are handled.

Chapter 9, The Transports
This chapter discusses the transports, which are the components of Exim that
actually transport messages.

9 October 2001 09:06

Chapter 10, Message Filtering
This chapter describes the filtering language that is used both by users’ filter
files and the system filter.

Chapter 11, Shared Data and Exim Processes
This chapter describes the various differ ent kinds of Exim processes, and the
data that they share.

Chapter 12, Delivery Errors and Retrying
This chapter is concerned with temporary delivery errors, and how Exim han-
dles them.

Chapter 13, Message Reception and Policy Controls
Up to this point, the bulk of the book is concerned with delivering messages.
This chapter describes the facilities that are available for controlling incoming
messages.

Chapter 14, Rewriting Addresses
This chapter covers the facilities for rewriting addresses in messages as they
pass through Exim.

Chapter 15, Authentication, Encryption, and Other SMTP Processing
This chapter covers a number of topics that are concer ned with the transmis-
sion and reception of messages using SMTP.

Chapter 16, File and Database Lookups
This is the first of three chapters that go into detail about the three main facili-
ties that provide flexibility in Exim’s configuration. They are all introduced in
earlier chapters, but full details begin here.

Chapter 17, String Expansion
This chapter gives all the details about Exim’s string expansion mechanism.

Chapter 18, Domain, Host, and Address Lists
This chapter provides all the details about the three kinds of lists that can
appear in Exim configurations.

Chapter 19, Miscellany
This chapter collects a number of items that do not fit naturally into the other
chapters, but are too small to warrant individual chapters of their own.

Chapter 20, Command-Line Interface to Exim
This chapter gives details of the options and arguments that are used to con-
tr ol what a call to Exim actually does.

Chapter 21, Administering Exim
This chapter discusses a number of topics concerned with administration, and
describes the utility programs that are available to help with this, including the
Exim monitor, which is an application for displaying information about Exim’s
activities in an X window.

Preface xv

9 October 2001 09:06

xvi Preface

Chapter 22, Building and Installing Exim
This chapter describes how to build and install Exim from the source
distribution.

Appendix A, Summary of String Expansion
This appendix is a summary of string expansion items.

Appendix B, Regular Expressions
This appendix is a full refer ence description of the regular expressions that are
supported by Exim.

Conventions Used in This Book
The following is a list of the typographical conventions used in this book:

Italic
Used for file and directory names, program and command names, host and
domain names, email addresses, mail headers, and new terms.

Bold
Used for names of Exim directors, transports, and routers.

Constant Width

Used in examples to show the contents of files or the output from commands,
and in the text to mark Exim options or other strings that appear literally in
configuration files.

Constant Italic

Used to indicate variable options, keywords, or text that the user is to replace
with an actual value.

Constant Bold

Used in examples to show commands or other text that should be typed liter-
ally by the user.

Comments and Questions
We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mis-
takes!). Please let us know about any errors you find, as well as your suggestions
for future editions, by writing to:

O’Reilly & Associates, Inc.
101 Morris Street
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

9 October 2001 09:06

We have a web page for this book, where we list errata, examples, or any addi-
tional information. You can access this page at:

http://www.or eilly.com/catalog/exim

To comment or ask technical questions about this book, send email to:

bookquestions@or eilly.com

For more infor mation about our books, conferences, software, Resource Centers,
and the O’Reilly Network, see our web site at:

http://www.or eilly.com

Acknowledgments
I could not have produced Exim without the support and assistance of many peo-
ple and organizations. There are too many to acknowledge individually, even if I
had been organized enough to keep a full list, which, to my regr et, I have not
done. I hope that I have not made any major omissions in what follows.

For Exim itself, I must first acknowledge my colleagues in Computing Service at
the University of Cambridge. The management allowed me to write Exim, and
once it appeared, Computing Service has supported its use around the university
and elsewhere.

Piete Brooks was brave enough to put the first version into service to handle mail
for the Cambridge computer scientists. Piete also implemented the scheme for
compiling on multiple operating systems. Piete suggested that an integral filter
would be a good thing. Alan Barratt provided the initial code for relay checking.
Nigel Metheringham persuaded his employers at that time, Planet Online Ltd., to
pr ovide support for an Exim web site and mailing list. Although he no longer
works for them, he still manages the site and the mailing lists, and Planet (now
called Energis Squared) still provides hardware and network resources. Nigel also
pr ovided code for interfacing to the Berkeley DB library, for supporting cdb files,
and for delivering to mailboxes in maildir format. Yann Golanski provided the
code for the numerical hash function. Steve Clarke did experiments to determine
the most efficient way of finding the load average in Linux. Philip Blundell imple-
mented the first support for IPv6 while he was a student at Cambridge. Jason Gun-
thorpe provided additional IPv6 code for Linux. Stuart Lynne provided the first
code for LDAP support; subsequent modifications came from Michael Haardt,
Brian Candler, and Barry Pederson. Steve Haslam provided some preliminary code
for supporting TLS/SSL. Malcolm Beattie wrote the interface for calling an embed-
ded Perl interpreter. Paul Kelly wrote the original code for calling MySQL, and Petr
??ENTITY-Ccar onech did the same for PostgreSQL. Jeff Goldberg pointed out that I
was using the word ‘‘fail’’ in two differ ent senses in the Exim documentation, and

Preface xvii

9 October 2001 09:06

xviii Preface

suggested ‘‘decline’’ for one of them. John Horne reads every edition of the refer-
ence manual, and picks up my typos and other mistakes. Over the five years since
the first Exim release, many other people have sent suggestions for improvements
or new features, and fixes for minor problems.

Finally, I must acknowledge my debt to Smail 3, written by Ron Karr, on which I
based the first versions of Exim. Though Exim has now changed to become almost
unr ecognizable, its parentage is still visible.

While writing this book, I have continued to enjoy the support of my colleagues
and the Exim community. My wife Judith was not only generally supportive, but
also read an early draft as a professional copyeditor, and found many places
wher e I was unclear or inconsistent. Ken Bailey made some useful comments
about some of the early chapters. John Horne read an early draft and made sug-
gestions that helped me to put the material into a more accessible order, and then
read the book again in a late draft, thereby providing further useful feedback.

My editor at O’Reilly is Andy Oram, whose comments and guidance have had a
gr eat ef fect on the form and shape of the finished book. Andy has prevented me
fr om becoming too obfuscated, and he also stopped me when I was writing too
much British English.

9 October 2001 09:06

1
Introduction

Exim is a mail transfer agent (MTA) that can be run as an alternative to Sendmail
on Unix systems.* Exim is open-source software that is distributed under the GNU
General Public License (GPL), and it runs on all the most popular flavors of Unix
and many more besides. A number of Unix distributions now include Exim as their
default MTA.

I wrote Exim for use on medium-sized servers with permanent Internet connec-
tions in a university environment, but it is now used in a wide variety of differ ent
situations, from single-user machines on dial-up connections to clusters of servers
supporting millions of customers at some large ISP sites. The code is small
(between 500 KB and 1.2 MB on most hardware, depending on the compiler and
which optional modules are included), and its perfor mance scales well.

The job of a mail transfer agent is to receive messages from differ ent sources and
to deliver them to their destinations, potentially in a number of differ ent ways.
Exim can accept messages from remote hosts using SMTP† over TCP/IP, and as
well as from local processes. It handles local deliveries to mailbox files or to pipes
attached to commands, as well as remote SMTP deliveries to other hosts. Exim
consists of support for the new IPv6 protocol in its TCP/IP functions, as well as for
the current IPv4 protocol. It does not directly support UUCP, though it can be
inter faced to other software that does, pr ovided that UUCP ‘‘bang path’’ address-
ing is not requir ed, because Exim supports only Internet-style, domain-based
addr essing.

* The terms mail transfer agent and mail transport agent are basically synonymous, and are used inter-
changeably.

† If you are not familiar with SMTP or some of the other acronyms used here, don’t be put off. The
next chapter contains a description of how Internet mail works.

1

9 October 2001 09:06

2 Chapter 1: Introduction

Exim’s configuration is flexible and can be set up to deal with a wide variety of
requir ements, including virtual domains and the expansion of mailing lists. Once
you have grasped the general principles of how Exim works, you will find that the
runtime configuration is straightforward and simple to set up. The configuration
consists of a single file that is divided into a number of sections, and entries in
each section that are keyword/value pairs. Regular expressions, compatible with
Perl 5, are available for use in a number of options.

The configuration file can refer ence data from other files, in linear and indexed
for mats, and from NIS, NIS+, LDAP, MySQL, and PostgreSQL databases. It can also
make use of online lists such as the Realtime Blackhole List (RBL).* By this means,
you can make much of Exim’s operation table-driven if desired. For example, it is
possible to do local delivery on a machine on which the users do not have
accounts. The ultimate flexibility can be obtained (at a price) by running a Perl
interpr eter while processing certain option strings.

You can use a number of differ ent facilities for checking and controlling incoming
messages. For example, the maximum size of messages can be specified, SMTP
calls from specific hosts and networks (optionally from specific identifiers) can be
locked out, as can incoming SMTP messages from specific senders You can iden-
tify blocked hosts explicitly, or via RBL lists, and you can control which hosts are
per mitted to use the Exim host as a relay for onward transmission of mail. The
SMTP AUTH mechanism can be used to authenticate client hosts for this purpose.

End users are not normally concerned with which MTA is delivering into their
mailboxes, but when Exim is in use, its filtering facility, which extends the power
of the traditional .forwar d file, can be made available to them. A filter file can test
various characteristics of a message, including the contents of the headers and the
start of the body, and then direct delivery to specified addresses, files, or pipes
according to what it finds. The filtering feature can also be used by the system
administrator to inspect each message before delivery.

Like many MTAs, Exim has adopted the Sendmail command interface so that it can
be a straight replacement for /usr/sbin/sendmail or /usr/lib/sendmail. All the rele-
vant Sendmail options are implemented. There are also some additional options
that are compatible with Smail 3, and some further options that are specific to
Exim.

* See http://mail-abuse.or g/rbl/.

9 October 2001 09:06

Messages on the queue can be controlled by the use of certain privileged com-
mand-line options. There is also an optional monitor program called eximon,
which displays current information in an X window, and contains interfaces to the
command-line options.

Exim is not designed for storing mail for dial-up hosts. When the volumes of such
mail are large, it is better to get the messages ‘‘delivered’’ into files (that is, off
Exim’s queue) and subsequently passed on to the dial-up hosts by other means.

Ther e ar e some things that Exim does not do: it does not support any form of
delivery status notification,* and it has no built-in facilities for modifying the bod-
ies of messages. In particular, it never translates message bodies from one form of
encoding to another.

The aim of this book is to explain how Exim works, and to give background and
tutorial information on the core facilities that the majority of administrators will
need to know about. Some options that are requir ed only in very special circum-
stances are not covered. In any case, a book can never keep up with developing
softwar e; if you want to know exactly what is available in any given release, you
should consult the refer ence manual and other documentation that is included in
the distribution for that release.

Exim is still being developed in the light of experience, changing requir ements,
and feedback from users. This book was originally written to correspond to
Release 3.16, but while it was being revised, additional facilities, such as support
for LMTP and SSL/TLS, were added to Exim for the 3.20 release. Some refer ences
to these important new features have therefor e been included in the book, which
now covers all the major features of the 3.2x releases. No further functional
enhancements to Exim 3 are planned, though in due course a new major release
(Exim 4) is expected.

The Exim refer ence manual and a FAQ are online at the Exim web site, at
http://www.exim.or g and its mirrors. Here you will also find the latest release of
Exim, as a source distribution. In addition to the plain text version that is included
in the distribution, the manual can be downloaded in HTML (for faster browser
access), in PostScript or PDF (for printing), and in Texinfo format for the info
command.

* See RFC 1891.

Introduction 3

9 October 2001 09:06

4 Chapter 1: Introduction

Some versions of GNU/Linux are now being distributed with binary versions of
Exim included. For this reason, I’ve left the material on building Exim from source
until the end of the book, and concentrated on the runtime aspects first. If you are
working with a binary distribution, make sure you have a copy of the text version
of the refer ence manual that comes with the source distribution. It provides full
coverage of every configuration option, and can easily be searched.

The next chapter is a general discussion of the way email on the Internet works;
Exim is hardly mentioned. This material has been included for the benefit of the
many people who find themselves having to run a mail server without this essen-
tial background knowledge. You can skip to Chapter 3, Exim Overview if you
alr eady know about RFC 822 message format, SMTP, mail routing, and DNS usage.

9 October 2001 09:06

2
How Inter net Mail Works

The programs that users use to send and receive mail (often just called ‘‘mailers’’)
ar e for mally called mail user agents (MUAs). They are concer ned with providing a
convenient mail interface for users. They display incoming mail that is in users’
mailboxes, assist the user in constructing messages for sending, and provide facili-
ties for managing folders of saved messages. They are the ‘‘front end’’ of the mail
system. Many differ ent user agents can be installed, and can be simultaneously
operational on a single computer, ther eby pr oviding a choice of differ ent user
inter faces. However, when an MUA sends a message, it does not take on the work
of actually delivering it to the recipients. Instead, it sends it to a mail transfer
agent (MTA), which may be running on the same host or on some local server.

Mail transfer agents do the job of transferring messages from one host to another,
and, after they reach their destination hosts, of delivering them into user mailboxes
or to processes that are managing user mailboxes. This job is complicated, and it
would not be sensible for every MUA to contain all the necessary apparatus. The
flow of data from a message’s sender to its recipient is as shown in Figure 2-1.
However, when an application program or script needs to send a mail message as
part of some automatic activity, it normally calls the MTA dir ectly without involv-
ing an MUA.

Only one MTA can be fully operational on a host at once, because only one pro-
gram can be designated to receive incoming messages from other hosts. It has to
be a privileged program in order to listen for incoming TCP/IP connections on the
SMTP port and to be able to write to users’ mailboxes. The choice of which MTA
to run is made by the system administrator, wher eas the choice of which MUA to
run is made by the end user.

An MTA must be capable of handling many messages simultaneously. If it cannot
deliver a message, it must send an error report back to the sender. An MTA must

5

9 October 2001 09:07

6 Chapter 2: How Inter net Mail Works

Sender Recipient

MUA
(e.g., Pine)

MTA
(e.g., Sendmail)

MTA
(e.g., Exim)

Mailbox

MUA
(e.g., MS Outlook)

Figur e 2-1. Message data flow

be able to cope with messages that cannot be immediately delivered, storing such
messages on its local disk, and retrying periodically until it succeeds in delivering
them or some configurable timeout expires. The most common causes of such
delays are network connectivity problems and hosts that are down.

Fr om an MTA’s point of view, there are two sources of incoming messages: local
pr ocesses and other hosts. There are thr ee types of destinations: local files, local
pr ocesses via pipes, and other hosts, as indicated in Figure 2-2.

The division of labor between MUAs and MTAs also means that an MUA need not
be running on the same host as its MTA; Figure 2-3 illustrates the relationship
between MUAs and MTAs in two common configurations.

In the top part of the figure, the MUA, MTA, and the disk storage are all part of a
single system, indicated by the dashed line. The users access the system by log-
ging on and authenticating themselves by a password or some other means. The
MUA is started by a user command as a process on the system, and when it passes

9 October 2001 09:07

Remote Hosts

Local
Processes

Remote Hosts

Local Files

Local
Processes

MTA

Figur e 2-2. The job of an MTA

a message to the MTA for delivery, it is communicating with another process on
the same system. Consequently, both the MUA and the MTA know the authenti-
cated identity of the message’s sender, and the MTA can ensure that this identity is
included in the outgoing message. As specified in RFC 822,* if the contents of the
Fr om: header line do not match the actual sender, the MTA should normally add a
Sender: line containing the authenticated identity.†

Messages are held by the MTA in its spool area while awaiting delivery. The word
‘‘spool’’ is often used with two differ ent meanings. In this book, we use it to mean
the disk storage that an MTA uses for messages that it has in transit. You will
sometimes see ‘‘spool’’ used for the disk area in which users’ mailboxes are kept,
but this is not the sense in which it is used here.

Messages that are destined for other hosts are transmitted over the Internet to
other MTAs using the Simple Mail Transfer Protocol (SMTP). When the originating
host and the final host are both directly connected to the Internet, the message
can be delivered directly to the final host, but sometimes it has to travel via an
inter mediate MTA. Large organizations often arrange for all their incoming mail to
be routed via a central mail hub, which then delivers it to other hosts within the
organization’s local network. These may be behind a firewall and therefor e inac-
cessible to the Internet at large. When a message reaches its destination host, the

* RFCs are the documents that lay down the standards by which the Internet operates. You can find
them online at http://www.ietf.or g (and numerous other places). We say a little bit about those that
relate to mail later in this chapter.

† Exim does this by default, but can be configured not to.

Introduction 7

9 October 2001 09:07

8 Chapter 2: How Inter net Mail Works

MUA MTA spool

Mailbox

folders folders

MUA MTA spool

Mailbox

folders folders

MTA spool

Figur e 2-3. MUAs and MTAs

MTA delivers it into the mailbox of the recipient, who can then access it with the
MUA of his choice.

Another case where an inter mediate MTA is involved is when the final destination
or its network connection is down. Using the Domain Name Service (DNS)* or
some private method, a backup host may be designated for a domain. Incoming
mail accumulates on this host until the main one starts working again, at which
point the backlog is transferred. The advantage of this is that the accumulated mail
can be stored close to the final destination, and can eventually be transferred
quickly and in a controlled manner. In contrast, when a busy host without a
backup restarts, it is liable to receive a very large number of simultaneous

* See RFCs 1034 and 1035.

9 October 2001 09:07

incoming SMTP calls from all over the Internet, which may cause perfor mance
pr oblems.

The bottom part of Figure 2-3 illustrates another popular configuration, in which
the MUA is not running on the same system as the MTA. Instead it runs on a user’s
workstation. Receiving and sending messages in this configuration are entir ely sep-
arate operations. When a user reads mail, the MUA uses either the POP (RFC 1939)
or IMAP (RFC 2060) protocol to access the mailbox and remote folders on the
server system. In order to do so, the user has to be authenticated in some way;
commonly a username and password are used to gain access to the mailbox and
remote mail folders. However, neither the POP nor IMAP protocols contain any
facilities for sending messages. MUAs of this type have therefor e traditionally used
the SMTP protocol to pass messages to an MTA in a server system. Thus a protocol
that was originally designed for passing messages between MTAs is subverted for
the purpose of submitting new messages to an MTA, which is really a differ ent
kind of operation. This usage leads to a number of problems:

• The MTA cannot distinguish between a new message submission from an
MUA and a message being passed on from another MTA. It may be able to
make a guess, based on the IP address of local hosts it knows not to be run-
ning MTAs, but this is not always easy to arrange. This means that it cannot
tr eat submissions specially, as it does when messages originate on the local
host.

• The sender of the message is not authenticated; the MTA may be able to verify
that the domain of the sender exists, but often it cannot check the local part of
the address. MUAs of this type requir e the user to specify a username when
starting; a typo made while doing this may go undetected, leading to incorrect
sender addresses in outgoing messages.

• The MUA is not constrained to sending outgoing mail to the same server it is
using for reading mail. It may sometimes be desirable to use differ ent servers,
but because of the existence of this flexibility, it is possible to direct MUA soft-
war e to send mail to any host on the Internet. This makes it easy for
unscrupulous persons to attempt to dump unsolicited mail on arbitrary servers
for relaying. The fact that this has happened on numerous occasions has led
to the tightening up of relaying servers, and the creation of databases such as
the MAPS Dialup User List.*

* See http://mail-abuse.or g/dul/.

Introduction 9

9 October 2001 09:07

10 Chapter 2: How Inter net Mail Works

Ther e ar e some moves afoot to remedy this situation by defining a new submis-
sion protocol.* This is basically the same as SMTP, but it uses a differ ent port num-
ber. However, at the time of writing, this technology is not yet in common use.

Different Types of MTA
The framework for mail delivery described earlier in this chapter is very general,
and in practice there are many differ ent kinds of MTA configuration that operate
within it. At the simplest level, there are single hosts running in small offices or
homes, each handling a few mailboxes in one domain, receiving incoming exter-
nal messages from one ISP’s mail server only, and sending all outgoing messages
to the ISP for onward delivery. Many such hosts are not permanently connected to
the Internet, but instead dial up from time to time to exchange mail with the
server. In such an environment, the MTA does not have to be capable of doing full
mail routing or complicated queue management.

Hosts that are per manently connected need not send everything via the same
server, but can make use of the DNS to route outgoing messages more dir ectly
toward their final destinations. A single outgoing message may have several recipi-
ents, thus requiring copies to be sent to more than one remote server. This means
that the MTA has to cope with messages where some of the addresses cannot be
immediately delivered, and it must implement suitable retrying mechanisms for use
with multiple servers. For incoming mail, the domain can be configured so that
mail comes direct from anywhere on the Internet, without having to pass through
an intermediate server.

An organization may not want to have all its local mailboxes on the same host.
Even a small organization with just one domain may have users running their own
desktop systems who want their mail delivered to them. The host running the
‘‘corporate’’ MTA has now become a hub, receiving mail from the world, and dis-
tributing it by user within its local network. It is common in such configurations
for all outgoing mail from the network to pass through the hub. For security rea-
sons, it is also common to configure the network router so that direct SMTP con-
nections between the world and the workstations are not permitted.

Single organizations may support more than one domain, but the MTAs that sup-
port very large numbers of domains are usually those run by ISPs, and there are
two common ways in which these are handled:

* See RFC 2476.

9 October 2001 09:07

• For personal clients, the ISP normally provides a mailbox for each account,
fr om which the mail is collected by some means when the client connects. As
far as the MTA is concer ned, it is doing a local delivery into a mailbox on the
ISP’s server.

• For corporate clients, ISPs are mor e likely to transfer mail to the clients’ MTAs
based purely on the domains in the addresses, with the ISP’s MTA acting as a
standard intermediate MTA between unrelated systems.

Inter net Message Standards
Electr onic mail messages on the Internet are for matted according to RFC 822,
which defines the format of a message as it is transferred between hosts, but not
the protocol that is used for the exchange. The Simple Mail Transfer Protocol
(SMTP) is used to transfer messages between hosts. This is defined in RFC 821,
with additional material in RFC 1123 and several other RFCs that describe exten-
sions. The SMTP address syntax is more restrictive than that of RFC 822, and
requir es that components of domain names consist only of letters, digits, and
hyphens. Since any message may need to be transported using SMTP if its destina-
tion is not on the originating host, the format of all addresses is normally restricted
to what RFC 821 permits.

All these RFCs are now very old, and revised versions are nearing completion at
the time of writing (February, 2001). The revisions consolidate the material from
the earlier RFCs, and incorporate current Internet practice.*

RFC 822 Message For mat
A message consists of lines of text, and when it is in transit between hosts, each
line is terminated by the character carriage retur n (ASCII code 13) immediately
followed by linefeed (ASCII code 10), a sequence that is commonly written as
CRLF. Within a host, messages are nor mally stor ed for convenience in RFC 822 for-
mat. Many applications use the local operating system’s convention for line termi-
nation when doing this, but some use CRLF. The normal Unix convention is to
ter minate lines with a single linefeed character, without a preceding carriage
retur n.

* The new RFCs were released with the numbers 2821 and 2822 as this book went to press.

RFC 822 Message For mat 11

9 October 2001 09:07

12 Chapter 2: How Inter net Mail Works

A message consists of a header and a body. The header contains a number of lines
that are structur ed in specific ways as defined by RFC 822. The following examples
ar e the header lines that are commonly shown to someone who is composing a
message, and will be familiar to any email user:

From: Philip Hazel <ph10@exim.example>
To: My Readers <all@exim.book.example>,

My Loyal Fans <fans@exim.example>
Cc: My Personal Assistant <cwbaft@exim.example>
Subject: How electronic mail works

An individual header line can be continued over several actual lines by starting the
continuations with whitespace. The entire header section is terminated by a blank
line. The body of the message then follows. In its simplest form, the body is
unstructur ed text, but later RFCs (MIME, RFC 1521) define additional header lines
that allow the body to be split up into several differ ent parts. Each part can be in a
dif ferent encoding, and there are standard ways of translating binary data into
printable characters so that it can be transmitted using SMTP. This is the mecha-
nism that is used for message ‘‘attachments.’’

RFC 822 permits many variations for addresses that appear in message header
lines. For example:

To: caesar@rome.example.com
To: Julius Caesar <caesar@rome.example.com>
To: caesar@rome.example.com (Julius Caesar)

Text in parentheses anywhere in the line is a comment. This applies to all header
lines whose structure is constrained by the RFC, not just those header lines that
contain addresses. For example, in the following:

Date: Fri, 7 Jan 2000 14:20:24 -0500 (EST)

the time zone abbreviation is a comment as far as RFC 822 formatting is con-
cer ned. Along with the generally available parenthetical comments, headers that
contain addresses may contain a sequence of words before an actual address in
angle brackets; these are nor mally used for descriptive text such as the recipient’s
full name. When a header line contains more than one address, a comma must be
used to terminate all but the last of them.*

The terms local part and domain ar e used to refer to the parts of a mail address
that precede and follow the @ sign, respectively. In the address cae-
sar@r ome.example.com, the local part is caesar and the domain is rome.exam-
ple.com. The local part is often a username, but because it can also be an

* Some MUAs allow lists of recipients to be given using spaces as separators, but when such a list is
used to construct a To:, Cc:, or Bcc: header line, commas must be inserted.

9 October 2001 09:07

abstraction such as the name of a mailing list or an address in some other mail
domain in a message that is being sent to a gateway, the more general term is
used here, as it is in the Exim refer ence documentation.

The Message ‘‘On the Wire’’
A message that is transmitted between MTAs has several things added to it over
and above what the composing user sees. In addition to the header section and
the body, another piece of data called the envelope is transmitted immediately
befor e the RFC 822 data, using the SMTP commands MAIL and RCPT. The envelope
contains the sender address and one or more recipient addresses. These addresses
ar e of the form <user@domain> without the additional textual information, such as
the user’s full name, that may appear in message header lines.

The deliveries done by the receiving MTA (either to local mailboxes or by passing
the message on to other hosts) are based on the recipients listed in the envelope,
not on the To: or Cc: header lines in the message. If any delivery fails, it is to the
envelope sender address that the failure report is sent, not the address in the
Fr om: or Reply-to: header line.

The need for a separate envelope becomes obvious when considering a message
with multiple recipients, whose mailboxes may be on several differ ent hosts. The
RFC 822 header lines normally list all the recipients, but in order to be delivered,
the message has to be cloned into separate copies, one for each receiving host,
and in each copy the envelope contains just those recipients whose mailboxes are
on that host.

As well as an envelope, additional header lines are added by both the MUA and
MTA befor e a message is transmitted to another host. Here is an example of a
message ‘‘in transit,’’ where the envelope lists only two of the three recipients.
This example shows just the SMTP commands and data that the client sends, with-
out the responses from the server:*

MAIL FROM:<ph10@exim.example>
RCPT TO:<fans@exim.example>
RCPT TO:<cwbaft@exim.example>
DATA
Received: from ph10 by draco.exim.example with local (Exim 3.22 #1)

id 14Tli0-000501-00;
Fri, 16 Feb 2001 14:18:05 +0000

From: Philip Hazel <ph10@exim.example>
To: My Readers <all@exim.book.example>,

My Loyal Fans <fans@exim.example>
Cc: My Personal Assistant <cwbaft@exim.example>

* Mor e details of the SMTP protocol are given in the next section of this chapter.

The Message ‘‘On the Wire’’ 13

9 October 2001 09:07

14 Chapter 2: How Inter net Mail Works

Subject: How electronic mail works
Date: Fri, 16 Feb 2001 14:18:05 +0000
Message-ID: <Pine.SOL.3.96.990117111343.19032A-100000@
draco.exim.example>

MIME-Version: 1.0
Content-Type: TEXT/PLAIN; charset=US-ASCII

Hello,
If you want to know about Internet mail, look at chapter 2.

.

The first three lines are the envelope; the message itself follows the DATA com-
mand, and is terminated by a line containing just a dot. Notice that lines have
been added at both the start and the end of the header section.

Befor e passing a message to an MTA, an MUA normally adds Date: (r equir ed by
RFC 822) and Message-id:. The MUA may also add header lines such as MIME-
Version: and Content-T ype: if the body of the message is structured according to
the MIME definitions. Each MTA thr ough which a message passes adds a Received:
header line at the front, as requir ed by RFC 821. The routing history of a message
can therefor e be obtained by reading these header lines in reverse order.

Because there may be quite a number of ‘‘behind-the-scenes’’ header lines by the
time a message is delivered, most MUAs normally show only a subset when dis-
playing a message to a user (typically the lines containing addresses, the subject,
and the date). However, ther e is usually some way to configure the MUA to show
all the header lines.

A recipient address that appears in the envelope need not appear in any header
line in the message itself. This is usually the case after a message has passed
thr ough a mailing list expander, and is also the means by which ‘‘blind carbon
copies’’ are implemented. When a user sends a message, either the MUA or the
first MTA creates the envelope, taking the recipients from the To:, Cc:, and Bcc:
data, and removing any Bcc: header line, unless there are no other recipients, in
which case an empty Bcc: header line is retained.* An alternative permitted imple-
mentation is to retain the Bcc: header line only in those copies of the message that
ar e transmitted to Bcc: recipients.

When a message is delivered into a user’s mailbox, some MTAs, including Exim
(as normally configured), add an Envelope-to: header line giving the envelope
recipient address that was received with the message. This can be helpful if the
final envelope recipient does not appear in the header lines. For example, con-
sider a message sent from a mailing list to an address such as postmas-
ter@xyz.example, which is handled by an alias. Messages from mailing lists do not

* RFC 822 does not permit empty To: or Cc: header lines; if there are no relevant addresses, these lines
must be omitted. Only Bcc: may appear with no addresses.

9 October 2001 09:07

nor mally contain the recipient in any of the header lines. Instead, there is likely to
be a line such as:

To: some-list@listdomain.example

The address postmaster@xyz.example appears only in the envelope. Suppose that
aliasing causes this message to be delivered into the mailbox of the user called
pat, who is the local postmaster. Without the addition of Envelope-to:, ther e is
nothing in the message itself that indicates why it ended up in Pat’s mailbox.

The envelope sender is also known as the retur n path, because of its use for
retur ning delivery failure reports. In most personal messages, it is identical to the
addr ess in the Fr om: header, but it need not be. There are two common cases
wher e it differs:

• When a message is sent to a mailing list, the original envelope sender that was
received with the message is normally replaced with the address of the list
manager before the message is sent out to the subscribers. This means that
any delivery failures are reported to the list manager, who can take appropri-
ate action, rather than to the original sender, who cannot.

• Delivery failure reports (often called ‘‘bounce messages’’) that are generated
by MTAs are sent out with empty envelope sender addresses. These often
appear in listings as <>. This convention is used to identify such messages as
bounces, so that if they in turn fail to get delivered, no subsequent failure
report is generated. The reason for this is to avoid the possibility of mail
bounce loops occurring.

When a message is delivered into a user’s mailbox, Exim (as normally configured)
adds a Retur n-path: header, in which it records the envelope sender.

Summar y of the SMTP Protocol
SMTP is a simple command-reply protocol. The client host sends a command to
the server, and then waits for a reply before proceeding to the next command.*

Replies always start with a three-digit decimal number; for example:

250 Message accepted

The text is usually information intended for human interpretation, though there are
some exceptions, where the number encodes the type of response. The first digit
is the most important, and is always one of those shown in Table 2-1.

* Ther e is an optional optimization called ‘‘pipelining,’’ which allows batches of commands to be sent,
and batches of replies to be received, but this is purely to improve perfor mance. The overall behav-
ior remains the same, and we describe only the simple case here.

Summar y of the SMTP Protocol 15

9 October 2001 09:07

16 Chapter 2: How Inter net Mail Works

Table 2-1. SMTP Response Codes

Code Meaning

2xx The command was successful

3xx Additional data is requir ed for the command

4xx The command suffer ed a temporary error

5xx The command suffer ed a per manent err or

The second and third digits give additional information about the response, but an
MTA need not pay any attention to them. Exim, for example, operates entirely on
the first digit of SMTP response codes. Replies may consist of several lines of text.
For all but the last of them, the code is followed by a hyphen; in the last line it is
followed by whitespace. For example:

550-Host is not on relay list
550 Relaying prohibited by administrator

When a client connects to a server’s SMTP port (port 25), it must wait for an initial
success response before proceeding. Some servers include the identity of the soft-
war e they are running (and maybe other information) in the response, but none of
this is actually requir ed. Others send a minimal response such as:

220 ESMTP Ready

The client initializes the session by sending an EHLO (extended hello) command,
which gives its own name.* For example:

EHLO client.example.com

Unfortunately, there are many MTAs in use that are misconfigur ed, either acciden-
tally or deliberately, such that they do not give their correct name in the EHLO com-
mand. This means that the data obtained from this command is not of much use.
The server’s response to EHLO gives the server’s name in the first line, optionally
followed by other information text, and lists the extended SMTP features that the
server supports in subsequent lines. For example, the following:

250-server.example.com Hello client.example.com
250 SIZE 10485760

indicates that the server supports the SIZE option, with a maximum message size
of 10,485,760 characters.

Once an EHLO command has been accepted, the client may attempt to send any
number of messages to the host. Each message is begun by a MAIL command,

* The original SMTP protocol used HELO (sic) as the initializing command, and servers are still obliged
to recognize this. The differ ence is that the response to EHLO includes a list of the optional SMTP
extensions that the server supports.

9 October 2001 09:07

which contains the envelope sender address. If the SIZE option is supported by
the server, the size of the message may also be given. For example:

MAIL FROM:<caesar@rome.example> SIZE=12345

After this has been accepted, each recipient address is transmitted in a separate
RCPT command such as:

RCPT TO:<brutus@rome.example>

The client waits for a reponse to each one before sending the next. The server
may accept some recipients and reject others, either permanently or temporarily.
After a permanent error, the client should not attempt to resend the message to
that address. The most common reasons for permanent rejection are as follows:

• The address contains a domain that is local to the server, but the local part is
not recognized.

• The address contains a domain that is not local to the server, and the client is
not authorized to relay through the server to that domain.

Temporary errors are caused by problems that are expected to be resolved in due
course, such as the inability to check an incoming address because a database is
down, or a lack of disk space. After a temporary error, a client is expected to try
the address again in a new SMTP connection, after a suitable delay. This is nor-
mally at least 10 or 15 minutes after the first failure; if the temporary error condi-
tion persists, the time between retries is usually increased.

Pr ovided that at least one recipient has been accepted, the client sends:

DATA

and the server responds with a 354 code, requesting further data; namely, the mes-
sage itself. The client transmits the message without waiting for any further
responses, and ends it with a line containing just a single dot character. If the mes-
sage contains any lines that begin with a dot, an extra dot is inserted to guard
against prematur e ter mination. The server strips a leading dot from any lines that
contain more text. If the server retur ns a success response after the data has been
sent, it assumes responsibility for subsequent handling of the message, and the
client may discard its copy of it. Once it has sent all its messages, a client ends the
SMTP session by sending a QUIT command.

Because SMTP transmits the envelope separately from the message itself, servers
can reject envelope addresses individually, before much data has been sent. How-
ever, if a server is unhappy with the contents of a message* it cannot send a rejec-
tion until the entire message has been received. Unfortunately, some client

* For example, if the message is too big, or if the server is configured to check the syntax of addresses
in header lines and comes across one containing invalid syntax.

Summar y of the SMTP Protocol 17

9 October 2001 09:07

18 Chapter 2: How Inter net Mail Works

softwar e (in violation of RFC 821) treats any error response to DATA or following
the data itself as a temporary error, and continues to try to deliver the message at
successive intervals.

Forger y
It is trivial to forge unencrypted mail. In general, MTAs are ‘‘strangers’’ to each
other, so ther e is no way a receiving MTA can authenticate the contents of the
envelope or the message itself. All it can do is log the IP address of the sending
host, and include it in the Received: line that it adds to the message.

Unsolicited junk mail (spam) usually contains some forged header lines. You need
to be aware of this if you ever have to investigate the origin of such mail. If a mes-
sage contains a header line such as:

Received: from foobar.com.example ([10.9.8.7])
by podunk.edu.example (8.9.1/8.9.1) with SMTP id DAA00447;
Tue, 6 Mar 2001 03:21:43 -0500 (EST)

it does not mean that the FooBar company or the University of Podunk are neces-
sarily involved at all; the header may simply have been inserted by the spam per-
petrator to mislead. The only Received: headers you can count on are those at the
top of the message that were added by MTAs running on hosts whose administra-
tors you trust. Once you pass these Received: headers, those below them, even if
they appear to relate to a reputable organization such as an ISP, may be forged.

Authentication and Encryption
The original SMTP protocol had no facilities for authenticating clients, nor for
encrypting messages as they were transmitted between hosts. As the Internet
expanded, it became clear that these features were needed, and the protocol has
been extended to allow for them. However, the vast majority of Internet mail is
still transmitted between unauthenticated hosts, over unencrypted connections. For
this reason, we won’t go into any details in this introductory chapter, but there is
some discussion in Chapter 15, Authentication, Encryption, and Other SMTP Pro-
cessing, regarding the way Exim handles these features.

Routing a Message
The most fundamental part of any MTA is the apparatus for deciding where to
send a message. There may be many recipients, both local and remote. This
means that a number of differ ent copies may need to be made and sent to differ-
ent destinations. Some domains may be known to the local host and processed
specially; the remainder normally causes copies of the message to be sent to
remote hosts, which may either be the final destinations or intermediate hosts.

9 October 2001 09:07

Ther e ar e two distinct types of address: those for which the local part is used
when deciding how to deliver the message, and those for which only the domain
is relevant. Typically, when a domain refers to a remote host, the local part of the
addr ess plays no part in the routing process, but if the domain is the name of the
local host, the local part is all-important. The steps that an MTA has to perfor m in
order to handle a message are as follows, though they are not necessarily done in
this order:

• First, it has to decide what deliveries to do for each recipient address. In order
to do this, it must:

– Process addresses that contain domains for which this host is the ultimate
destination. These are often called ‘‘local addresses.’’ Processing may
involve expanding aliases into lists of replacement addresses, handling
users’ .forwar d files, dealing with mailing lists, and checking that the
remaining local parts refer to existing local user mailboxes.

– Process the nonlocal addresses for which there is local routing knowledge
(for example, domains for which the host is a mail hub or firewall) to
deter mine which of its clients’ hosts these addresses should be sent to.

– For the remaining addresses, those for which there is no local knowledge,
look up destination hosts in the DNS. The details of how this is done are
given in the section, “DNS Records Used for Mail Routing,” later in this
chapter. Successful routing produces a list of one or more remote hosts for
each address.

• After sorting out what deliveries need to be done, the MTA must carry out the
local deliveries; that is, deliveries to pipes or files on the local host.

• Then, for each remote delivery, it must try to send to each host in turn, until
one succeeds or gives a hard failure. If several addresses are routed to the
same set of hosts, the RFCs recommend sending a single copy with multiple
recipients in the envelope.

• If all hosts give temporary failures, the MTA must try the corresponding
addr esses again later. Ther e is a timeout, normally a few days, to stop a client
fr om retrying forever.

Checking Incoming Mail
Some MTAs check the validity of local addresses during the SMTP transaction. If an
incoming message has an incorrect local part, the RCPT command that transfers that
part of the envelope is rejected by giving an error reponse. This means that the
sending MTA retains control of the message for that recipient, and is the one that
generates the bounce message that goes back to the sender. The benefit of doing

Checking Incoming Mail 19

9 October 2001 09:07

20 Chapter 2: How Inter net Mail Works

this checking is that it stops such undeliverable messages from ever getting into
the local host. However, receiving a bounce message from an MTA that is not at
the site they were mailing to confuses some users, and makes them think that
something is broken. ‘‘How can the local mailer daemon know that this is an
invalid address at the remote site?’’ they ask.

The alternative approach that is adopted by some MTAs is to accept messages
without checking the recipient addresses, and do the checking later. This has the
benefit of minimizing the duration of the SMTP transaction, and for invalid
addr esses, the bounce messages are what the users intuitively expect, and they
can be made to contain helpful information about finding correct mail addresses.
The disadvantage is that undeliverable messages whose envelope senders are also
invalid give rise to undeliverable bounce messages that have to be sorted out by
the postmaster. Sadly, many spam messages are sent out with invalid envelope
senders, leading to more and more administrators configuring their MTAs to imple-
ment the former behavior.

Exim can be configured to behave in either of these two ways, and the behavior
can be made conditional on the domain of the sender address. For example, all
addr esses fr om within a local environment can be accepted, and unknown ones
passed to a program that sends back a helpful message, while unknown addresses
fr om the outside can be rejected in the SMTP protocol.

Not all MTAs check the validity of envelope sender addresses. These can be
invalid for a number of reasons, such as:

• Misconfigur ed MUAs or MTAs. For an MUA running on a workstation, the user
has to supply the sender address, while an MTA’s configuration contains a
default domain that it adds to local usernames to create sender addresses. In
either case, a typo can render the address invalid. Errors can also arise in gate-
ways that are converting messages from some other protocol regime. Neverth-
less, such messages sometimes have a valid address in the Fr om: header line.

• Use of domains not register ed in the DNS.

• Misconfigur ed DNS name servers; for example, a typo in a zone file.

• Forgery.

In general, the checking of sender addresses is normally confined to verifying that
the domain is register ed in the DNS. It is not normally practicable to verify the
local parts of remote addresses.*

* Exim 3.20 does contain a facility for making a ‘‘callback’’ to verify that an incoming sender address is
acceptable as a recipient to a host that handles its domain, but this is a costly approach that is not
suitable for use on busy systems.

9 October 2001 09:07

The enormous increase in the amount of unsolicited mail being transmitted over
the Internet has caused MTA implementors to add facilities for blocking certain
types of message as a matter of policy. Typical features include the following:

• Checking local lists of known miscreant hosts and sender addresses.

• Checking one or more of the public ‘‘blacklists,’’ such as the Realtime Black-
hole List (http://mail-abuse.or g), and either refusing messages from blacklisted
hosts, or annotating them by adding an informational header line.

• Blocking third-party relaying through the local host. That is, preventing arbi-
trary hosts from sending mail to the local host for onward transmission to
some other destination. MTAs that do not block such mail are called ‘‘open
relays’’ and are a favorite target of spammers.

• Refusing messages with malformed header lines.

• Recognizing junk mail by scanning the content, and either discarding it or
annotating it to inform the recipient, who then has the choice of discarding it
by means of a filter file.

• Checking for certain types of attachments in order to block viruses.

Over view of the DNS
The DNS is a worldwide, distributed database that holds various kinds of data
indexed by keys that are called domain names. Her e is a very brief summary of
the facilities that are relevant to mail handling.* The data is held in units called
recor ds, each containing a number of items, of which the following are relevant to
applications that use the DNS:†

<domain name> <record type> <type-specific data>

For example, for the record:

www.web.example. A 10.8.6.4

the domain name is www.web.example, the record type is ‘‘A’’ (for ‘‘address’’), and
the data is 10.8.6.4. Address records like this are used for finding the IP addresses
of hosts from their names, and are probably the most common type of DNS
record.

* For a full discussion, see DNS and BIND by Paul Albitz and Cricket Liu (O’Reilly). The primary DNS
RFCs are 1034 and 1035.

† The other fields are concer ned with the internal management of the DNS itself.

Over view of the DNS 21

9 October 2001 09:07

22 Chapter 2: How Inter net Mail Works

In the world of the DNS, a complete, fully qualified domain name is
always shown with a terminating dot, as in the previous example.
Incomplete domain names, without the trailing dot, are relative to
some superior domain. Unfortunately, there is confusion because
some applications that interact with the DNS do not show or requir e
the trailing dot. In particular, domains in email addresses must not
include it, because that is contrary to RFC 821/822 syntax.

The present Internet addressing scheme, which uses 32-bit addresses and is
known as IPv4, is going to be replaced by a new scheme called IPv6, which uses
128-bit addresses. Support for IPv6 is gradually beginning to appear in operating
systems and application software. Two differ ent DNS record types are curr ently
used for recording IPv6 addresses, which are nor mally written in hexadecimal,
using colon separators. The AAAA record, which is a direct analogue to the A
record, was defined first. For example:

ipv6.example. AAAA 5f03:1200:836f:0a00:000a:0800:200a:c031

However, it has been realized that a more flexible scheme, in which prefix por-
tions of IPv6 addresses can be held separately, is preferable, because it makes
aggr egation and renumbering easier. For this reason, another record type, A6, has
been defined and is expected in due course to supersede the AAAA type. The pre-
vious example could be converted into a single A6 record such as this:

ipv6.example. A6 0 5f03:1200:836f:0a00:000a:0800:200a:c031

The zero value indicates that no additional prefix is requir ed. Alter natively, the
addr ess could have its prefix recorded in a separate record, like this:

ipv6.example. A6 64 ::000a:0800:200a:c031 pref.example.
pref.example. A6 0 5f03:1200:836f:0a00::

The value of 64 indicates that an additional 64 bits of prefix are requir ed, and
domain name pr ef.example identifies another A6 record where this prefix can be
found. Several levels of prefix are per mitted.*

If a host has more than one IP interface, each appears in a separate address record
with the same domain name. The case of letters in DNS domain names is not sig-
nificant, and the individual components of a name may contain a wide range of
characters. For example, a record in the DNS could have the domain name
abc_xyz#2.example.com. However, the characters that are used for hostnames are
restricted by RFC 952 to letters, digits, and hyphens, and domains that are used in
email addresses in the SMTP protocol are similarly restricted. It is not possible to

* See RFC 2874 for further details of how A6 records work.

9 October 2001 09:07

send mail to an address such as user@abc_xyz#2.example.com using SMTP,
because of the characters in the domain that are illegal according to RFC 821. For
this reason, all MX domain names (which are described shortly) and hostnames
use only the restricted character set. This constraint is often misunderstood to be
an internal DNS restriction, which it is not.*

The servers that implement the DNS are called name servers, and are distributed
thr oughout the Internet. The hierarchical name space is broken up into zones,
each of which is managed by its own human administrator, and stored on its own
master server. Division into zones that are stor ed on independent servers is what
makes the management of such a large set of data practicable.†

The breakpoints between zones are always between components of a domain
name, but not necessarily at every boundary. For example, there is a uk zone, and
ac.uk and cam.ac.uk zones, but there is no separate csx.cam.ac.uk zone, although
ther e ar e domain names ending with those components. The data for those names
is held within the cam.ac.uk zone. This does not prevent there being other differ-
ent zones below cam.ac.uk. This example is illustrated in Figure 2-4, using dashed
lines to repr esent the zones.

Ther e is usually one master name server for a zone, and several slaves that copy
their data from the master. A single name server may be a master for some zones
and a slave for others. Any name server (master or slave) that has its own com-
plete copy of a zone file is said to be authoritative for that zone. You will some-
times see this word used in output from commands such as host, which
interr ogate the DNS. Data that a name server has obtained from some other name
server without transferring the entire zone is nonauthoritative.

It is preferable for the slaves to be at least on differ ent LANs to the master, and
best if some of them are at entir ely dif ferent locations in order to maximize the
availability of the zone for queries. ISPs commonly provide name server slaving
facilities for their customers. A name server for a zone that has subzones knows
the location of the servers for those zones. At the base of the hierarchy are the
root name servers at ‘‘well-known’’ locations on the Internet.

Caching is extensively used in DNS software to impr ove per formance. Each record
contains a time-to-live field, and name servers are entitled to remember and reuse
the data for that length of time. A typical time-to-live is around one day. Data is
looked up by passing the domain name and type to a nearby name server; if there
has been a recent request for the same data, it will be in the server’s cache and the
request can be answered immediately. Otherwise, if the server happens to have

* See also RFC 2181.

† Befor e the DNS, the list of Internet hosts was kept in a single file that had to be copied in its entirety
to all of them.

Over view of the DNS 23

9 October 2001 09:07

24 Chapter 2: How Inter net Mail Works

com uk edu

root

ac.uk

cam.ac.uk

csx.cam.ac.uk ucs.cam.ac.uk

eng.cam.ac.uk

Figur e 2-4. DNS domains and zones

cached the identity of the name servers for the requir ed zone, it can query them
dir ectly, but if it has no relevant information, it starts by querying one of the root
name servers and works its way down the zone hierarchy. For example: if a query
for www.cam.ac.uk is received by a root name server, it responds with the list of
name servers for the uk zone. Querying one of them produces a list of name
servers for the ac.uk zone, and so on, until a name server that contains the actual
data is reached.

DNS Records Used for Mail Routing
The domain in a mail address need not correspond to a hostname. For example,
an organization might use the domain plc.example.com for all its email, but handle
it with hosts called mail-1.plc.example.com and mail-2.plc.example.com. This kind
of flexibility is obtained by making use of mail exchange (MX) records in the DNS.
An MX record maps a mail domain to a host that is register ed as handling mail for
that domain, with a prefer ence value. There may be any number of MX records for
a domain, and when a name server is queried, it retur ns all of them. For example:

hermes.example.com. MX 5 green.csi.example.com.
hermes.example.com. MX 7 sw3.example.com.
hermes.example.com. MX 7 sw4.example.com.

shows three hosts that handle mail for her mes.example.com. The prefer ence val-
ues can be thought of as distances from the target; the smaller the value, the more

9 October 2001 09:07

pr eferable the corresponding host, so in this example, gr een.csi.example.com is
the most preferr ed. An MTA that is deliverying mail for her mes.example.com first
tries to deliver to gr een.csi.example.com; if that fails, it tries the less preferr ed
hosts in order of their prefer ence values. It is only the numerical order of the pref-
er ences that is used; the absolute values do not matter. When there are MX
records with identical prefer ence values (as in the previous example), they are
order ed randomly before they are used.

Befor e an MTA can make use of the list of hosts it has obtained from MX records,
it first has to find the IP addresses for the hosts. It does this by looking up the cor-
responding address records (A records for IPv4, and AAAA or A6 records for IPv6).
For the previous example, there might be the following address records:

green.csi.example.com. A 192.168.8.57
sw3.example.com. A 192.168.8.38
sw4.example.com. A 192.168.8.44

In practice, if a name server already has an address record for any host in an MX
list that it is retur ning, it sends the address record along with the MX records. In
many cases, this saves an additional DNS query.

In the early days of the DNS there wer e no MX records, and mail domains corre-
sponded to hostnames. For backward compatibility to that time, if there are no MX
records for a domain, an MTA is entitled to look for an address record and treat it
as if it were obtained from an MX record with a prefer ence value of zero (most
pr eferr ed). However, if it cannot determine whether or not there are any MX
records (because, for example, the relevant name servers are unr eachable), it must
not do this.

MX records were originally invented for use by gateways to other mail systems,
but nowadays they are heavily used to implement ‘‘corporate’’ mail domains that
do not necessarily correspond to any specific host.

Related DNS Records
Two other kinds of DNS records are useful in connection with mail. PTR
(‘‘pointer’’) records map IP addresses to names via special zones called in-
addr.arpa for IPv4 addresses, and ip6.int or ip6.arpa for IPv6 addresses.* PTR
records allow the reverse of a normal host lookup: given an IP address, PTR
records allow you to find out the corresponding hostname. The name of a PTR
record consists of the IP address followed by one of the special domains. How-
ever, for the in-addr.arpa and ip6.int domains, the components of the address are

* The top-level domain name arpa is rooted in history, and refers to the original wide-area network
called the Arpanet.

Related DNS Records 25

9 October 2001 09:07

26 Chapter 2: How Inter net Mail Works

reversed to allow for DNS delegation of parts of an IP network. For the address
192.168.8.57, the PTR record would be as follows:

57.8.168.192.in-addr.arpa. PTR green.csi.example.com.

This registers that the name of the host that has the IP address 192.168.8.57 is
gr een.csi.example.com. For IPv6 addresses in the ip6.int domain, the components
that are reversed are the hexadecimal digits. For the address:

5f03:1200:836f:0a00:000a:0800:200a:c031

the name of the PTR record is:

1.3.0.c.a.0.0.2.0.0.8.0.a.0.0.0.0.0.a.0.f.6.3.8.0.0.2.1.3.0.f.5.ip6.int.

Not only is this rather clumsy to notate, it also has the disadvantage that DNS zone
br eaks ar e not possible at arbitrary points in the 128-bit address. For this reason, at
the time A6 records were intr oduced for name-to-address lookups, an alternative
for mat for IPv6 PTR records was defined for use with the domain ip6.arpa. In this
for m, part of the domain name is a binary number with an implied component
br eak between each binary digit. For convenience, in textual versions of the
record, the number is given in conventional notation without having to be
reversed. In this new formulation, the name of the PTR record in the previous IPv6
addr ess is:

\[x5f031200836f0a00000a0800200ac031].ip6.arpa.

wher e the backslash and brackets indicate an encoding of a binary value.

PTR records do not have to match the corresponding address record. In the exam-
ple in the previous section, the address record:

sw4.example.com. A 192.168.8.44

is shown. If you use the address 192.168.8.44 to look up the hostname via a PTR
record, you might find the name sw4.example.com, or you might find something
completely differ ent; for example:

44.8.168.192.in-addr.arpa. PTR lilac.csi.example.com.

This record gives the name lilac.csi.example.com for the address 192.168.8.44,
despite the fact that the address was given for the name sw4.example.com. This
kind of arrangement is often found where the name of some kind of service is
widely published, with an address record to point to a host that is currently pro-
viding the service. The host itself, however, has a differ ent primary name, which is
what the PTR record contains.

For example, the name we’ve been using, sw4.example.com, might be the name of
a mail switching service that currently is provided by the host lilac.csi.exam-
ple.com. Moving the service to another host just requir es the DNS to be updated;
no host has to change its name. If more than one host is providing the service,

9 October 2001 09:07

several address records may exist for the same domain. Modern name servers
retur n these in a differ ent order each time they are queried, which provides a form
of load-sharing.

Ther e is no enforced connection between address records and PTR records, and
for any given host, one may exist without the other. The main use of these records
in connection with mail is for finding the name of the remote host that is sending
a message, because all that is initially known about the host at the far end of an
incoming TCP/IP call is its IP address. The hostname may be requir ed for checking
against policy rules controlling what types of message remote hosts may send.

CNAME (‘‘canonical name’’) records provide another kind of aliasing facility. For
example:

pelican.example.com. CNAME redshank.csx.example.com.

states that the canonical name (real or main name) for the host that can be
accessed as pelican.example.com is actually redshank.csx.example.com. CNAME
records should not normally be used in connection with mail routing. MX records
pr ovide suf ficient redir ection capabilities, and excessive aliasing just slows things
down.

Common DNS Errors
These are a number of common mistakes that are made by DNS administrators
(who are usually known as ‘‘hostmasters’’), shown in the following list. All except
the first prevent mail from being delivered:

• MX records point to aliases instead of canonical names. That is, the domains
on the righthand side of MX records are the names of CNAME records instead
of A, A6, or AAAA records. This should not prevent mail from working, but it
is inefficient, and not strictly correct.

• MX records point to nonexistent hosts; that is, to names that have no corre-
sponding A, A6, or AAAA record.

• MX records contain IP addresses on the righthand side instead of hostnames.
This error is unfortunately becoming more widespr ead, abetted by the fact that
some MTAs, in violation of RFC 1034, support the usage. Exim does not do so
by default, but does have an option to enable this unrecommended, nonstan-
dard behavior.

• MX records do not contain prefer ence values.

Some broken name servers give a server error when asked for a nonexistent MX
record. This prevents mail from being delivered because an MTA is per mitted to
search for an address record only if it is sure ther e ar e no MX records. In the case
of a server error, the MTA does not know this. Similar server errors have been

Common DNS Errors 27

9 October 2001 09:07

28 Chapter 2: How Inter net Mail Works

seen in cases where a prefer ence value has been omitted from an MX record.
Mor e robust name servers check records when loading their zones, and generate
an error if any contain bad data such as this.

Occasionally, the DNS appears to be giving differ ent answers to identical queries.
In the context of mail, this causes some messages to be rejected with ‘‘unknown
domain’’ errors, whereas other messages to the same domain are deliver ed nor-
mally. The most common cause of this kind of behavior is that the name servers
for the zone are out of step. If you suspect this, you can check by directing a DNS
query to a specific name server. The first step is to find the relevant name servers
by looking for the zone’s NS records. To find the name servers for the zone
ioe.example.com, for example, you can use the command:

$ nslookup -type=ns ioe.example.com

which might give these lines as the relevant parts of its answer:*

ioe.example.com nameserver = mentor.ioe.example.com
ioe.example.com nameserver = ns0.example.net

Once you know the name servers, you can query each one in turn for the domain
in question; if the nslookup command is given a second argument, it is the name
of a specific name server to which the query is to be sent. This sequence of com-
mands and responses (where the commands are shown in boldface) indicates that
ther e is a problem because the differ ent name servers are giving conflicting
answers:

$ nslookup saturn.example.com mentor.ioe.example.com
Server: mentor.ioe.example.com
Address: 192.168.34.22

Name: saturn.example.com
Addresses: 192.168.5.4
$ nslookup saturn.example.com ns0.example.net
Server: ns0.example.net
Address: 192.168.255.249

*** ns0.example.net can’t find saturn.example.com: Nonexistent host/domain

The problem may, however, be temporary. When a master name server is
updated, it can take some hours before the data reaches the slaves, during which
time this behavior may be seen. However, if the discrepancy persists for any
length of time, it is indicative of some kind of DNS error.

* nslookup is one of the applications that omits the trailing dots when it displays domain names.

9 October 2001 09:07

Role of the Postmaster
Postmaster is the name given to the person who is in charge of administering an
MTA. He or she should be familiar with the software and its configuration, and
should regularly monitor its behavior. If ther e ar e local users of the system, they
should be able to contact the postmaster about any mail problems. If the MTA
sends or receives mail to or from the Internet at large, people on other hosts must
also be able to contact the postmaster.

The traditional way that this is done is by maintaining an alias address postmas-
ter@your.domain, which redir ects to the person who is currently perfor ming the
postmaster role. Indeed, the RFCs state that postmaster must always be supported
as a case-insensitive local name.

Role of the Postmaster 29

9 October 2001 09:07

3
Exim Over view

In the previous chapter, the job of an MTA is described in general terms. In this
chapter, we explain how Exim is organized to do this job, and the overall way in
which it operates. Then in the next chapter, we cover the basics of Exim adminis-
tration before launching into more details about the configuration.

Exim Philosophy
Exim is designed for use on a network where most messages can be delivered at
the first attempt. This is true for most of the time over a large part of the Internet.
Measur ements taken in the author’s environment (a British university) indicate that
well over 90 percent of messages are deliver ed almost immediately under normal
conditions. This means that there is no need for an elaborate centralized queuing
mechanism through which all messages pass. When a message arrives, an immedi-
ate delivery attempt is likely to be successful; only for a small number of messages
is it necessary to implement a holding and retrying mechanism.

Ther efor e, although it is possible to configure Exim otherwise, the normal action is
to try an immediate delivery as soon as a message has been received. In many
cases this is successful, and nothing more is needed to process the message. Nev-
ertheless, some precautions must be taken to avoid system overload in times of
str ess. For example, if the system load rises above some threshold, or if there are a
large number of simultaneous incoming SMTP connections, immediate delivery
may be temporarily disabled. In these events, incoming messages wait on Exim’s
queue and are deliver ed later.

All operations are per formed by a single Exim binary, which operates in differ ent
ways, depending on the arguments with which it is called. Although receiving and
delivering messages are treated as entirely separate operations, the code for

30

9 October 2001 09:07

deter mining how to deliver to a specific address is needed in both cases, because
during message reception, addresses are verified by checking whether it would be
possible to deliver to them. For example, Exim verifies a remote sender address by
looking up the domain in the DNS in exactly the same way as when setting up a
delivery to that address.

Exim’s Queue
The word queue is used for the set of messages that Exim has under its control at
any one time, because this word is common in the context of mail transfer. How-
ever, Exim’s queue is normally treated as a collection of messages with no implied
ordering, more like a ‘‘pool’’ than a ‘‘queue.’’ Furthermor e, Exim does not maintain
separate queues for differ ent domains or differ ent remote hosts.

Ther e is just a single collection of messages awaiting delivery, each of which may
have several recipients. You can list the messages on the queue by running the
command:

exim -bp

assuming that your path is set up to contain the directory where the Exim binary is
located. Messages that are not delivered immediately on arrival are picked up later
by queue runner pr ocesses that scan the entire queue and start a delivery process
for each message in turn. A queue runner process waits for each delivery process
to complete before starting the next one.

Receiving and Deliver ing Messages
Message reception and message delivery are two entirely separate operations in
Exim, and their only connection is that Exim normally tries to deliver a message as
soon as it has received it. Receiving a message consists of writing it to local spool
files (‘‘putting it on the queue’’) and checking that the files have been successfully
written before acknowledging reception to the sending host or local process.
Ther e is only one copy of each message, however many recipients it has, and the
collection of spool files is the queue; there are no additional files or in-memory
lists of messages.

A delivery operation gets all its data from the spool files. Each attempt at deliver-
ing a message processes every undelivered recipient address afresh. Exim does not
nor mally retain previous alias, forwarding, or mailing list expansions from one
delivery attempt to another.*

* Ther e is, however, one exception to this: if the one_time option is set for a mailing list, the list’s
addr esses ar e added to the original list of recipients at the first delivery attempt, and no re-expansion
occurs at subsequent attempts.

Receiving and Deliver ing Messages 31

9 October 2001 09:07

32 Chapter 3: Exim Over view

Exim Processes
Parallelism is obtained by the use of multiple processes, but one important aspect
of Exim’s design is that there is no central process that has overall responsibility
for coordinating Exim’s actions, and therefor e ther e is no concept of starting or
stopping Exim as a whole. Exim processes can be started at any time by other pro-
cesses; for example, user agents are always able to start Exim processes in order to
send messages. Such processes perfor m a single task and then exit. Most processes
ar e ther efor e short-lived, but Exim does make use of long-running daemon pro-
cesses for two purposes:

1. To listen on the SMTP port for incoming TCP/IP connections. On receiving
such a connection, the listener forks a new process to deal with it. An upper
limit to the number of simultaneously active reception processes can be set.
When the limit is reached, additional SMTP connections are refused.

2. To start up queue runner processes at fixed intervals. These scan the pool of
waiting messages (by default in an arbitrary order) and initiate fresh delivery
attempts. A message may be on the queue because a previous delivery
attempt failed, or because no delivery attempt was initiated when the message
was received. Each delivery attempt processes a single message and runs in its
own process, and the queue runner waits for it to complete before moving on
to the next message. A limit may be set for the number of simultaneously
active queue runner processes run by a daemon.

A single daemon process can be used to perfor m both these functions, and this is
the most common configuration. However, it is possible to run Exim without using
a daemon at all; inetd can be used to accept incoming SMTP calls and start up an
Exim process for each one, and queue runner processes can be started by cr on or
some other means. However, in these cases Exim has no control over how many
such processes are run, so if you are worried about system overload, you must
contr ol the number of processes yourself.*

Coordination Between Processes
Pr ocesses for receiving and delivering messages are for the most part entirely inde-
pendent. The small amount of coordination that is needed is achieved by sharing
files. Minimizing synchronization and serialization requir ements between processes
helps Exim to scale well. Apart from the messages themselves, the shared data

* xinetd (www.xinetd.or g) is a replacement for inetd that includes additional control facilities.

9 October 2001 09:07

consists of a number of files containing ‘‘hints’’ about mail delivery. For example,
if a remote host cannot be contacted, the time of the failure and the suggested
next time to try that host are recorded. Any delivery process that has a message for
that host will read the hint and refrain from trying the delivery if the retry time has
not been reached. This does not affect delivery of the same message to other hosts
when there is mor e than one recipient address.

Because the coordinating data is treated as a collection of hints, it is not a major
disaster if any or all of it is lost; there may be a period of less optimal mail deliv-
ery, but that is all. Consequently, the code that maintains the hints can be quite
simple because it does not have to be made robust against unusual circumstances.

How Exim Is Configured
Configuration information, supplied by the administrator, is used at two differ ent
times: one configuration file is used when building the Exim binary, and another is
read whenever the binary is run. Most options can be specified in only one of
these files; that is, they either control how the binary is built, or they modify its
behavior at runtime, but there are a few build-time options that set defaults for
runtime behavior. The sources of Exim’s configuration information are shown in
Figur e 3-1.

Build-time
configuration

Building
scripts

Exim
binary

Exim
processes

created by
administrator

contained in distribution

Auxiliary
data

Runtime
configuration

Figur e 3-1. Exim configuration

How Exim Is Configured 33

9 October 2001 09:07

34 Chapter 3: Exim Over view

The build-time options are of thr ee kinds:

• Those that specify the inclusion of optional code; for example, to support spe-
cific database lookups such as LDAP, or to support IPv6.

• Those that specify fixed values that cannot be changed at runtime; for exam-
ple, the mode of message files in Exim’s spool directory.

• Those that specify default values for certain runtime options; for example, the
location of Exim’s log files.

The process of building Exim from source is described in detail in Chapter 22,
Building and Installing Exim. Her e, we consider the runtime configuration. This is
contr olled by a single text file, often called something like /etc/exim.conf. You can
find out the actual name by running the following command:

exim -bP configure_file

On a system where Exim is fully installed as a replacement for Sendmail, one or
both of the paths /usr/lib/sendmail or /usr/sbin/sendmail is a symbolic link to the
Exim binary. Therefor e, any MUA, program, or script that attempts to send a mes-
sage by calling Sendmail actually calls Exim.*

Whenever Exim is executed, it starts by reading its runtime configuration file. A
large number of settings can be present, but for any one installation only a few are
nor mally used. The data from the file is held in main memory while an Exim pro-
cess is running. For this reason, if you change the file, you have to tell the Exim
daemon to reload it. This is done by sending the daemon a SIGHUP signal. All other
Exim processes are short-lived, so as new ones start up after the change, they pick
up the new configuration.

For very simple installations, it may be possible to include all the configuration
data within the runtime configuration file. A minimal usable configuration of this
type is shown in the next chapter, in the section “A Minimal Usable Configuration
File.” Normally, however, the runtime configuration refers to auxiliary data, which
can be in ordinary files, or in databases such as NIS or LDAP. Common examples
ar e the system alias file (usually called /etc/aliases) and users’ .forwar d files. Files
or databases can also be used for lists of hosts, domains, or addresses that are to
be handled in some special way and that are too long to conveniently include
within the configuration file itself. Data from such sources is read afresh every
time it is needed, so updates take immediate effect and there is no need to send a
SIGHUP signal to the daemon.

* BSD-based systems tend to use /usr/sbin/sendmail, wher eas Solaris uses /usr/lib/sendmail. Dif ferent
MUAs have differ ent defaults, so some administrators set both paths to cater for both kinds.

9 October 2001 09:07

The simplest item that is found in the runtime configuration file is an option set to
a fixed string. For example, the following line:

qualify_domain = example.com

specifies that addresses containing only a local part and no domain are to be
tur ned into complete addresses (‘‘qualified’’) by appending @example.com.* Each
such setting appears on a line by itself. For many option settings, fixed data suf-
fices, but Exim also provides ways for you to supply data that is re-evaluated and
modified every time it is used. Examples and explanations of this feature are intr o-
duced later in this chapter.

How Exim Deliver s Messages
Exim’s configuration determines how it processes addresses; this processing
involves finding information about the destinations of a message and how to trans-
port it to those destinations. In this and the following sections, we discuss how the
configuration that you set up controls what happens.

Ther e ar e many differ ent ways an address can be processed. For example, looking
up a domain in the DNS involves a completely differ ent way of processing from
looking up a local part in an alias file, and delivering a message using SMTP over
TCP/IP has very little in common with appending it to a mailbox file. There are
separate blocks of code in Exim for doing the differ ent kinds of processing, and
each is separately and independently configurable. The word driver is used as the
general term for one of these code blocks. In many cases, when you specify that a
particular driver is to be used, you need only give one or two parameters for it.
However, most drivers have a number of other options whose defaults can be
changed to vary their behavior.

Ther e ar e four differ ent kinds of drivers. Three of them are concer ned with han-
dling addresses and delivering messages, and are called dir ectors, routers, and
transports. The fourth kind of driver handles SMTP authentication and is described
in Chapter 15, Authentication, Encryption, and Other SMTP Processing.

Transports are the components of Exim that actually deliver messages by writing
them to files, or to pipes, or over SMTP connections. Directors and routers are
very similar in that their job is to process addresses and decide what deliveries are
to take place. The differ ence between them is in the kinds of address that they

* Unqualified addresses are accepted only from local processes, or from certain designated remote
hosts.

How Exim Deliver s Messages 35

9 October 2001 09:07

36 Chapter 3: Exim Over view

handle; directors handle local addresses and routers handle remote addresses. As
Exim has evolved, the original differ ences in concept between directors and
routers have diminished, and it may come about that they are merged in some
futur e release. For the moment, however, a distinction remains.

Befor e going into more detail, we take a brief look at the way drivers are used as
a message makes its way through the system. Exim has to decide whether each
addr ess is to be delivered on the local host or to a remote one, then it has to
choose the right form of transport for each address (appending to a user’s mail-
box, for instance, or connecting to another host via SMTP), and finally it has to
invoke those transports. For example, in a typical configuration, a message
addr essed to bug_r eports@exim.example, wher e exim.example is a local domain,
might be handled like this:

1. The first driver in the configuration is a director that handles system aliases;
this tells Exim to check the /etc/aliases file. Here it finds that the local part
bug_r eports is indeed an alias, and that it resolves to two other addresses: the
local address brutus@exim.example, and the remote address julia@helper-
sys.or g.example. Further drivers must be invoked to handle each of these new
recipients.

2. Later in the configuration is a director that recognizes local users like brutus,
and it arranges for Exim to run a transport called appendfile, which adds a
copy of the message to Brutus’ mailbox. The actual delivery does not take
place until after Exim has worked out how to handle all the addresses.

3. For the other recipient, Exim runs a router that looks up the domain helper-
sys.or g.example in the DNS, and finds the IP address of the remote host to
which the message should be sent. It then arranges for Exim to run the smtp
transport in order to do the delivery.

This example has introduced several of the most commonly used drivers. Later in
this chapter, we work through a similar example in much more detail. The individ-
ual drivers are described in their own sections in later chapters; here is an alpha-
betical list of them:

aliasfile
A dir ector that expands aliases into one or more dif ferent addresses.

appendfile
A transport that writes messages to local files.

autor eply
A transport that generates automatic replies to messages.

9 October 2001 09:07

domainlist
A router that routes remote domains using locally supplied information.

forwar dfile
A dir ector that handles users’ .forwar d files and Exim filter files.

ipliteral
A router that handles ‘‘IP literal’’ addresses such as user@[192.168.5.6]. These
ar e relics of the early Internet that are no longer in common use.

lmtp
A transport that delivers messages to external processes using the LMTP
pr otocol.*

localuser
A dir ector that recognizes local usernames.

lookuphost
A router that looks up remote domains in the DNS.

pipe
A transport that passes messages to external processes via pipes.

querypr ogram
A router that runs an external program in order to route a domain.

smartuser
A dir ector that accepts any address; it is used as a ‘‘catchall.’’

smtp
A transport that writes messages to other hosts over TCP/IP connections, using
either SMTP or LMTP.

The configuration may refer to the same driver code more than once, but with dif-
fer ent options, in order to create multiple instances of the same driver type. Each
driver instance is given an identifying name in the configuration file, for use in
logging and for refer ence fr om other drivers.

Local and Remote Addresses
Ther e ar e two distinct types of mail address: those for which the local part is used
when deciding how to deliver the message, and those for which only the domain
is relevant. Typically, when a domain refers to a remote host, the local part of the
addr ess plays no part in the routing process, but if the domain is the name of the
local host, the local part is usually used in determining where to deliver the mes-
sage. This is not a hard and fast rule (a small company might accept mail for any

* LMTP (RFC 2033) is a variation of SMTP that is designed for passing messages between local
pr ocesses.

Local and Remote Addresses 37

9 October 2001 09:07

38 Chapter 3: Exim Over view

local part in a single mailbox), but it forms the basis of the distinction between
dir ectors and routers.

The first thing Exim does when processing an address is to determine whether it
should be handled by the directors or by the routers. An Exim configuration nor-
mally contains definitions of a number of directors and at least one router, though
ther e may be any number of either. If the domain is listed in the configuration as a
local domain, the address is processed by the directors and is called a local
addr ess. Otherwise it is processed by the routers and is called a remote address.

Exim decides whether a domain is local by checking the local_domains option,
which contains a colon-separated list of patterns. If it is not set, the name of the
local host is used as the only local domain. Otherwise, it may contain various
types of patterns, of which the most common are shown in this example:

local_domains = tiber.rivers.example:\
*.cities.example:\
dbm;/usr/exim/domains

The first item in the list is a single domain name, tiber.rivers.example, while the
second is a simple pattern, matching all domains that end in .cities.example.* The
third item is a refer ence to an external file, /usr/exim/domains, which is a DBM-
keyed file. This type of item is useful when a host is handling a very large number
of local domains. We discuss DBM files and this kind of lookup item in more
detail later.

Notice the use of backslashes for continuing the option value over several lines.
This is a general feature of Exim’s configuration file; any line can be continued in
this way. Whitespace at the start of continuation lines is ignored.†

Processing an Address
After it has decided whether an address is local or remote, Exim offers it to each
configur ed dir ector or router (as appropriate) in turn, in the order in which they
ar e defined, until one of them is able to deal with it. The order in which directors
and routers are defined in the configuration file is therefor e important. The pro-
cess of directing a local address is illustrated in Figure 3-2; a similar process hap-
pens using the routers for a remote address.

A dir ector that successfully handles an address may add that address to a queue
for a particular transport. Alternatively, it may generate one or more ‘‘child’’

* Mor e complicated patterns can be given in the form of regular expressions.

† In versions of Exim prior to 3.14, this continuation mechanism is available only in macro definitions,
rewriting rules, and option settings where the value is given enclosed in double quotes. Thus, the
earlier example would have to be quoted if used in an earlier version.

9 October 2001 09:07

First director handled it?

Local address

YES

NO

done

Second director handled it? YES

NO

done

Last director handled it? YES

NO

done

Address failed.
Cannot deliver.

Figur e 3-2. Directing a local address

addr esses that are added to the message’s address list and processed in their own
right, with the original address no longer playing any part. This is what happens
when a local part matches an entry in an alias list, or when a user’s .forwar d file is
activated.

A successful router, on the other hand, can only add the address to a queue for a
transport, or modify the domain and pass it on to the next router. It cannot gener-
ate ‘‘child’’ addresses. When a director or a router cannot handle an address, it is
said to decline. If every director or router declines, the address cannot be handled
at all, and delivery fails.

The way addresses are handled by directors and routers is illustrated in Figure 3-3.
(The line labeled ‘‘local after all’’ is a special case that is discussed in the section
“Remote Address Becoming Local,” later in this chapter.) All the addresses in a
message, and any that are generated from them (for example, by aliasing), are
pr ocessed by the directors and routers before any deliveries take place from the
transport queues. Any router or director can queue an address for any transport;
dir ectors ar e not restricted to local transports, nor routers to remote ones.

Processing an Address 39

9 October 2001 09:07

40 Chapter 3: Exim Over view

Matches
local_domains?

Address

YESNO

routers directorslocal after all

Transport
queues

Remote
delivery
(SMTP)

Local
delivery

(pipe, file)

New Address

Figur e 3-3. Routing and directing

A Simple Example
To help clarify the mechanisms described earlier, an example of a simple message
delivery is presented here. The scenario is a host called simple.example, wher e the
hostname is the only local mail domain. The host is using a simple Exim configu-
ration file that supports aliases, user-forward files, delivery to local users’ mail-
boxes, and remote SMTP delivery. The relevant portions of the configuration are
quoted here. Suppose a user of this host has sent a message addressed to one
local and one remote recipient:

postmaster@simple.example
friend@another.example

At the start of delivery, Exim’s list of addresses to process is initialized with the
two original recipients, and its first job is to work through this list, deciding what
to do for each address. For postmaster@simple.example, the domain is local, so it is
passed to the first defined director, whose configuration is as follows:

system_aliases:
driver = aliasfile
file = /etc/aliases
search_type = lsearch

The first line, terminated by a colon, is the name for this particular director
instance, chosen by the system administrator. Each driver of a particular type
(dir ector, router, or transport) must have a distinct name. However, names of
driver instances can be the same as the names of the drivers themselves; you can
have the following:

9 October 2001 09:07

aliasfile:
driver = aliasfile
file = /etc/aliases
search_type = lsearch

if you want to, but some people find this usage confusing. The second configura-
tion line specifies which kind of director this is (or, to put it another way, it
chooses which block of director code to run), and the remaining two lines are
options for the director.

The aliasfile dir ector handles an address by looking up the local part in an alias
list, and the options control how the lookup is done. In this case, the list is in the
file /etc/aliases, and a linear search (‘‘lsearch’’) is requir ed. This expects each line
of the file to contain an alias name, optionally terminated by a colon, followed by
the list of replacement addresses for the alias, which may be continued onto sub-
sequent lines by starting them with whitespace. A comma is used to separate
addr esses in the list. For example:

root: postmaster@simple.example,
herb@simple.example

postmaster: simon@simple.example

Notice that the first line specifies that root is an alias for postmaster, which itself is
an alias. This is a common practice, and works exactly as you might expect.* The
aliasfile dir ector reads through this file and finds the entry for postmaster, so it
adds a new address, simon@simple.example, to the list of addresses to process,
and retur ns a code that indicates success, meaning that postmaster@simple.example
has been completely processed. The list of pending addresses now contains the
following:

simon@simple.example
friend@another.example

Exim proceeds to tackle simon@simple.example,† which is another local address,
so again it is offer ed to the system_aliases dir ector. This time, however, ther e is no
match in /etc/aliases, so the director cannot handle the address. It retur ns a code
indicating ‘‘decline,’’ which causes Exim to offer the address to the next director,
whose configuration is as follows:

userforward:
driver = forwardfile
file = .forward

The job of a forwardfile dir ector is to check for the existence of files containing
lists of forwarding addresses. This instance is configured to look for .forwar d files
in users’ home directories. First of all, it has to check that the local part of the

* See the section “Directing Loops,” later in this chapter, for a discussion of how it might go wrong.

† In practice, it might not actually happen in this order.

A Simple Example 41

9 October 2001 09:07

42 Chapter 3: Exim Over view

addr ess corr esponds to a user login name.* If there is no matching user, the direc-
tor declines, but if simon is in fact a user of the host, the director goes on to check
the existence of the given file.

If the file is defined using a relative pathname, as shown earlier, it is sought in the
user’s home directory. Because home directories are often NFS-mounted, Exim first
checks that the directory is available before trying to open the file so that the
absence of the directory is not mistakenly interpreted as the absence of the file.†

If simon has a .forwar d file, its contents are a list of forwarding addresses and
other types of items, as described in the section “Items in Alias and Forward Lists,”
in Chapter 7, The Directors. The addresses are added to the list of addresses to
pr ocess, the userforward dir ector retur ns a code indicating success, and the new
addr esses ar e eventually processed independently.

If simon does not have a .forwar d file, the director declines, and
simon@simple.example is offer ed to the third director in the configuration:

localuser:
driver = localuser
transport = local_delivery

The job of localuser is to check whether the local part of the address corresponds
to a user login name. In this configuration, this check has already been done by
the previous director. This is quite a common occurrence, so Exim keeps a cache
of the most recently looked-up name to avoid wasteful repetition. If simon wer e
not a local user, the director would decline, and as there are no mor e dir ectors in
the configuration, the address would fail. It would be placed on a list of failed
addr esses and used to generate a bounce message at the end of the delivery
attempt.

When the local user does exist, the director succeeds, and it places the address on
a queue for the local_deliver y transport, attaching to it the uid, gid, and home
dir ectory that it looked up. That is all that happens at this stage; no actual delivery
takes place until later. The processing of postmaster@simple.example is illustrated
in Figure 3-4, where the ovals repr esent sources of information, and the rectangles
repr esent drivers.

Ther e is still one address to process: friend@another.example. Its domain is not a
local one, so it is processed by routers rather than by directors. Exim offers it to
the first router:

* It does this by calling the system function getpwnam() rather than looking at /etc/passwd dir ectly, so
that users defined by other means (such as NIS) are recognized.

† In an automounted environment, the directory check causes an automount to occur.

9 October 2001 09:07

system_aliases userforward

localuser

appendfile
queue

postmaster@simple.example

simon@simple.example

/etc/aliases

home directory

password data

Figur e 3-4. Directing example

lookuphost:
driver = lookuphost
transport = remote_smtp

This is in fact the only router in this simple configuration, so if it declines, the
addr ess fails. The job of lookuphost is to obtain a list of remote hosts for the
domain of an address, and in its normal configuration (as shown earlier), it does
this by looking up the domain in the DNS using MX and address records, as
described in the section “DNS Records Used for Mail Routing,” in Chapter 2, How
Inter net Mail Works. When it is successful, it ends up with an ordered list of hosts
and their IP addresses. It puts the mail address on a queue for the remote_smtp
transport, attaching the host list. In our example, if the MX and address records
wer e the following:

another.example. MX 6 mail-2.another.example.
another.example. MX 4 mail-1.another.example.
mail-1.another.example. A 192.168.34.67
mail-2.another.example. A 192.168.88.32

then the list of hosts to be passed with the address to remote_smtp would be:

mail-1.another.example 192.168.34.67
mail-2.another.example 192.168.88.32

Any hosts that have the same MX prefer ence value are sorted into a random order.
The processing of friend@another.example is illustrated in Figure 3-5.

Ther e ar e now no more unpr ocessed addr esses, so the directing and routing phase
of the delivery process is complete, and Exim moves on to do the actual deliveries
by running the transports that have been set up. Local transports are run first; in
our example, there is one local delivery setup for the address simon@simple.exam-
ple, using the local_deliver y transport. This was specified by a localuser dir ector

A Simple Example 43

9 October 2001 09:07

44 Chapter 3: Exim Over view

lookuphost

remote_smtp
transport queue

friend@another.example

DNS

Figur e 3-5. Routing example

that handled the address. The transport is configured thus:

local_delivery;
driver = appendfile
file = /var/mail/$local_part
delivery_date_add
envelope_to_add
return_path_add

This uses the appendfile driver, which adds a copy of the message to the end of a
mailbox file in conventional Unix format when configured in this way.*

The name of the file is given by the file option. Its value, with an embedded dol-
lar character, is dif ferent from the option settings that we have met so far, which
have all been fixed values. Much of the flexibility of Exim’s configuration comes
fr om the use of option settings where the specified strings are changed each time
they are used. This process is called string expansion, and we’ll see it in many
examples throughout this book. A complete description of all the expansion fea-
tur es is given in Chapter 17, String Expansion.

The simplest change that can be made to a string is the insertion of a variable
value, and this is what is happening in the earlier example. Exim replaces teh sub-
string $local_part by the local part of the address that is being delivered, so the
file that is actually used is /var/mail/simon. The remaining three options request
the addition of three generally useful header lines as the message is written:

Delivery-Date:
A header that records the date and time of delivery, for example:

Delivery-Date: Fri, 31 Dec 1999 23:59:59 +0000

* Other configurations (see the section “The appendfile Transport,” in Chapter 9, The Transports) sup-
port differ ent for mats.

9 October 2001 09:07

Envelope-T o:
A header that records the original recipient address (the ‘‘envelope to’’
addr ess) that caused the delivery; in this example it would be:

Envelope-To: postmaster@simple.example

Pr eserving this address is useful in case it does not appear in the To: or Cc:
headers.

Retur n-Path:
A header that records the sender from the message’s envelope, for example:

Return-Path: <user@simple.example>

For bounce messages that have no sender, it looks like this:

Return-Path: <>

Local deliveries are always run sequentially in separate processes that change their
user identity to some specific value. In this case, the user ID (uid) and group ID
(gid) of the local user were passed to the transport by the localuser dir ector, so
these are used. The delivery subprocess is therefor e running ‘‘as the user’’ when it
accesses the mailbox.*

When the subprocess has finished, there are no mor e local deliveries, so Exim
pr oceeds to the remote ones. Before it does so, it gives up its root privilege per-
manently, and runs as the Exim user if a uid and gid for Exim have been defined
in the configuration (either at build time or at runtime). This is the recommended
way to run Exim.

Ther e is one remote delivery, for friend@another.example, which was set up by
the lookuphost router to use the remote_smtp transport:

remote_smtp:
driver = smtp

Ther e ar e no option settings here beyond the one that selects the type of trans-
port, because the list of hosts was obtained by the lookuphost router and passed
to the transport along with the address. The parameters of the outgoing SMTP call
(for example, the timeouts) can be changed by other options, but in this case we
accept all the defaults. The smtp transport tries to make an SMTP connection to
each host in turn. If all goes well, a connection is made to one of them, and the
message is transferred.

Ther e ar e now no more deliveries to be done, and all the recipients have been
successfully handled, so at this point Exim can delete the message files on its

* The use of differ ent uids and gids in Exim is discussed in the section “Security Issues,” in Chapter 19,
Miscellany.

A Simple Example 45

9 October 2001 09:07

46 Chapter 3: Exim Over view

spool and log the fact that this message has been delivered. The delivery process
then exits.

The fragments of configuration file used in this example have been shown in the
order in which they are used during delivery. The actual configuration file defines
the transports first, followed by the directors, and finally the routers. The trans-
ports come first, so that when Exim is reading the file, they are defined before the
dir ector and router configurations that refer to them. In the following chapter, we
show a complete configuration file.

Complications While Directing
and Routing
Things do not always go as smoothly as described in the simple example. These
ar e some of the more common complications that can be encountered when
dir ecting or routing an address.

Duplicate Addresses
Duplicate addresses are a complication that Exim may have to handle, either
because the sender of the message specified the same address more than once, or
because aliasing or forwarding duplicated an existing recipient address. For any
given address, only a single delivery takes place, except when the duplicates are
pipe commands. If one user is forwarding to another, and a message is sent to
both of them, only a single copy is delivered. If, on the other hand, two differ ent
users set up their .forwar d files to pipe to /usr/bin/vacation (for example), a mes-
sage that is sent to both of them runs the vacation program twice, once as each
user.

Missing Data
Sometimes, a director or router is unable to determine whether it can handle an
addr ess. For example, if the administrator has misspelled the name of an alias file,
or if it has been accidentally deleted, an aliasfile dir ector cannot operate. Timeouts
can occur when a router queries the DNS, and both routers and directors can refer
to databases that may at times be offline. In these situations, the director or router
retur ns a code indicating ‘‘defer’’ to the main part of Exim, and the address is nei-
ther delivered nor bounced, but left on the spool for another delivery attempt at a

9 October 2001 09:07

later time. The control of retry times is described in Chapter 12, Delivery Errors
and Retrying. If the error condition is felt to be sufficiently serious, the message is
‘‘fr ozen,’’ which means that queue runner processes will not try to deliver it. As
fr ozen messages are highlighted in queue listings, this also serves to bring it to the
administrator’s attention.

Directing Loops
When an aliasfile or forwardfile dir ector handles an address, the new addresses
that it generates are each processed afresh, just like the original recipient
addr esses.* This means that one alias can refer to another, as in the example we
showed earlier:

root: postmaster@simple.example
postmaster: simon@simple.example

However, it opens up the possibility of directing loops. To prevent this, Exim auto-
matically skips a director if the address it is handling has a ‘‘parent’’ address that
was processed by that director. Consider the following broken alias file:

chicken: egg@simple.example
egg: chicken@simple.example

This director turns a message addressed to chicken@simple.example into
egg@simple.example, and then turns it back into chicken@simple.example the next
time through. However, on the third pass, Exim notices that the address was previ-
ously processed by the director, so it is skipped and the next director is called.
The chances are that the resulting delivery or bounce are not what was intended,
but at least the loop is broken.

Remote Address Becoming Local
It sometimes turns out that when a router is processing an address, it discovers
that the domain is a local domain after all. This can happen if the domain was
originally given in an abbreviated form (for example, as in the address bru-
tus@r ome), because DNS lookups are commonly configured to expand single-
component names into the full form, within the local encompassing domain. If
routing changes the domain name, and the result is a local domain, the address is
automatically passed from the router to the directors.

* This is the normal practice; there are occasions when it is not wanted, and there is an option,
new_director, that can be used to disable it.

Complications While Directing and Routing 47

9 October 2001 09:07

48 Chapter 3: Exim Over view

Remote Address Routing to the Local Host
After Exim has routed a remote address, it checks to see whether the first host on
the list of hosts to which the message could be sent is the local host. Usually, this
indicates some kind of configuration error, and by default Exim treats it as such.
However, ther e ar e types of configuration where it is legitimate, and for these
cases the self option can be used to pass such addresses from the router to the
dir ectors.*

Complications During Deliver y
A successful routing process for a remote address discovers a list of hosts to which
it can be sent, but it cannot check the local part of the address. The most common
per manent err or during a remote delivery is ‘‘unknown user,’’ which is given in
response to an SMTP RCPT command. Responsibility for the message remains with
the sending host, which must retur n a bounce message to the sender.

Not all receiving hosts behave like this; some accept any local part (in their local
domain) during the SMTP dialog, and do the check later. By this time, responsibil-
ity for the message has been passed, so it is the receiving host that has to generate
the bounce. When Exim is a receiving host, it can be configured to act in either
manner, depending on the setting of receiver_verify and related options (see the
section “Verifying Recipient Addresses,” in Chapter 13, Message Reception and Pol-
icy Controls).

Ther e ar e other reasons a remote host might permanently refuse a message, and in
addition, there are many common temporary errors, such as the inability to contact
a host. These cause a message to remain on the spool for later delivery.

In contrast to routing, directors for local addresses normally check local parts, so
any ‘‘unknown user’’ errors happen at directing time. The only problems a local
transport is likely to encounter are err ors in the actual copying of the message.
The most common is a full mailbox; Exim respects system quotas and can be con-
figur ed to impose its own quotas (see the section “Mailbox Quotas,” in Chapter 9).
A quota failure leaves the message on the spool for later delivery.

The runtime configuration contains a set of retry rules (see Chapter 12) that spec-
ify how often, and for how long, Exim is to go on trying to deliver messages that
ar e suf fering temporary failures. The rules can specify differ ent behaviors for dif-
fer ent kinds of error.

* See, for example, the section “Mixed Local/Remote Domains,” in Chapter 5, Extending the Delivery
Configuration.

9 October 2001 09:07

Complications After Deliver y
When all delivery attempts for a message are complete, a delivery process has two
final tasks. If any deliveries suffer ed temporary errors, or if any deliveries suc-
ceeded after previous temporary errors, the delivery process has to update the
retry hints database. This work is saved up for the end of delivery so that the pro-
cess opens the hints database for updating only once at most, and for as short a
time as possible. If the updating should fail, the new hint information is lost, but
pr evious hint information remains. In practice, except in exceptional circumstances
such as a power loss, hint information is rarely lost.

Finally, unsuccessful delivery may cause a message to be sent to the sender. If any
addr esses failed, a single bounce message is generated that contains information
about all of them. If any addresses were deferr ed, and have been delayed for
mor e than a certain time (see the section “Delay War ning Messages,” in Chapter
19), a warning message may be sent.

Exim sends such messages by calling itself in a subprocess. Failure to create a
bounce message causes Exim to write to its panic log and immediately exit. This
has the effect of leaving the message on the spool so that there will be another
delivery attempt, and presumably another attempt at sending the bounce message
when the delivery fails again. Failure to create a warning message, on the other
hand, is not treated as serious. Another attempt to send it is made when the origi-
nal message is processed again.

Use of Transpor ts by Director s
and Routers
In the simple example we have been considering, the localuser dir ector and the
lookuphost router include the transport option, referring to the local_deliver y and
remote_smtp transports, respectively, whereas the other directors do not have any
transport settings. A transport is requir ed for any router or director that actually
sets up a message delivery to determine how the delivery should be done. When a
dir ector is just changing the delivery address by aliasing or forwarding, a transport
is not requir ed because no delivery is being set up at that stage.

Depending on their configurations, some directors and routers requir e a transport
setting, and some requir e ther e is not a transport setting. Exim detects an incorrect
configuration when the configuration file is read. In other cases, the director or
router may behave differ ently, depending on whether or not a transport is sup-
plied. These variations are explained in the detailed descriptions of the directors
and routers (see Chapter 7 and Chapter 8, The Routers).

Use of Transpor ts by Director s and Routers 49

9 October 2001 09:07

50 Chapter 3: Exim Over view

Two dir ectors, aliasfile and forwardfile, have additional options for special-purpose
transports. These directors can deliver a message to a specific file, or to a pipe
associated with a given command. For example, a line in an alias file of the form:

majordomo: |/usr/mail/majordomo ...

specifies that a message addressed to the local part major domo is to be passed via
a pipe to a process running the command:

/usr/mail/majordomo ...

The other entries in the alias file may just be changing delivery addresses, and
ther efor e may not requir e a transport. However, this line is setting up a delivery,
and so a transport is requir ed. We can add to the system_aliases dir ector configura-
tion the following line, which in our example runs the aliasfile dir ector:

address_pipe_transport = alias_pipe

This tells Exim which transport to run when a pipe is specified in the alias file.
The transport itself is very simple:

alias_pipe:
transport = pipe
ignore_status
return_output

A pipe transport runs a given command in a new process, and passes the message
to it using a pipe for its standard input. In this example, the command is provided
by the alias file, so the transport does not need to define it.* Setting ignore_status

tells Exim to ignore the status retur ned by the command; without this, any value
other than zero is treated as an error, causing the delivery to fail and a bounce
message to be retur ned to the sender.

Setting return_output changes what happens if the command produces output on
its standard output or standard error streams. By default, such output is discarded,
but if return_output is set, the production of such output is treated as an error,
and the output itself is retur ned to the sender in the bounce message.

Ther e is one piece of information that the pipe transport needs that we have not
yet given, and that is the uid and gid under which it should run the command.
When a pipe is triggered by an entry in a user’s .forwar d file, the user’s identity is
assumed by default, but when an alias file is used, as it is here, there is no default.

* If the pipe transport is run directly from a director or router, the command to be run is defined using
its command option.

9 October 2001 09:07

The user (and, optionally, group) option can appear in either the director or the
transport’s configuration, so the transport could become:*

alias_pipe:
transport = pipe
ignore_status
return_output
user = majordom

In addition to delivery to pipes, alias files and forward files may also specify spe-
cific files into which messages are to be deliver ed. For example, if user caesar has
a .forwar d containing:

caesar@another.domain.example, /home/caesar/mail-archive

it requests delivery to another mail address, and also into the named file, which is
a delivery that needs a transport. To support this feature, the userforward dir ector
could contain:

address_file_transport = address_file

This tells Exim which transport to run when a filename is specified instead of an
addr ess in a forward file. The transport itself is even more simple than the pipe
transport:

address_file:
driver = appendfile

The filename comes from the forward file, and all other options are defaulted.

An alias or forward file may contain both of these kinds of entries, thus requiring
both address_pipe_transport and address_file_transport to be given on a single
dir ector. These options are used for these very specific purposes only, and should
not be confused with the generic transport option that applies to all directors and
routers.

* This assumes that all the pipes specified in the alias file are to be run under the same uid. If there
ar e several instances that requir e dif ferent user identities, an expansion string can be used to select
the correct uid, but that is too advanced for the discussion here.

Use of Transpor ts by Director s and Routers 51

9 October 2001 09:07

4
Exim Operations Over view

The previous chapter used some fragments of a simple Exim configuration file to
show how it goes about delivering a message. Later chapters go into more detail
about the various options that can be used to set up configurations that can han-
dle many differ ent circumstances. However, if you have just installed Exim, or if
you have inherited responsibility for an Exim system from somebody else, you
most likely want to know a little bit about the basic operational aspects. This
chapter is an introductory overview; the features that are described reappear later
in more detailed discussions, and Chapter 21, Administering Exim, covers Exim
administration in more detail.

How Exim Identifies Messages
Each message that Exim handles is given a unique message ID when it is received.
The ID is 16 characters long, and consists of three parts, separated by hyphens.
For example:

11uNWX-0004fP-00

Each part is actually a number, encoded in base 62. The first is the time that the
message started to be received, and the second is the ID of the process (the pid)
that received the message. The third part is used to distinguish between messages
that are received by the same process in the same second. It is almost always 00.

The uniqueness of Exim’s message IDs relies on the fact that Unix process IDs are
used cyclically, so in practice there is no chance of the same process ID being
reused within one second. For most installations, uniqueness is requir ed only

52

9 October 2001 09:07

within a single host, and the scheme just described suffices. However, in some
cluster configurations, it is useful to ensure that message IDs are unique within the
cluster. For example, suppose two hosts are providing identical gateway or hub-
bing services for some domain, and one of the processors has a catastrophic fail-
ur e. If its disk can be attached to the other processor, and the message IDs are
unique across both systems, spooled message files can simply be moved into the
survivor’s spool directory.

Uniqueness across several hosts can be ensured by assigning each host a number
in the range 0–255, and specifying it in each Exim configuration. For example:

localhost_number = 4

When this option is set, the third part of the message ID is no longer a simple
sequence number. Instead, it is computed as:

sequence number * 256 + host number

For example, in the following message ID:

11vHQS-0006ZD-4C

the number 4C is 260 in decimal, which is 256 * 1 + 4, so this message ID was
generated on host number 4 for the second message received by some process
within one second. In the most common case, when the sequence number is zero,
the final part of the message ID is just the host number.*

Watching Exim at Work
As a new administrator of an MTA, the first questions you should ask are:

• How do I find out what messages are on the queue?

• How do I find out what the MTA has been doing?

Exim can output a list of its queue in a number of ways, which are detailed in the
section “Watching Exim’s Queue,” in Chapter 20, Command-Line Interface to Exim.
The most basic is the -bp command-line option. This option is compatible with
Sendmail, though the output is specific to Exim:†

$ exim -bp
25m 2.9K 0t5C6f-0000c8-00 <caesar@rome.example>

brutus@rome.example

* In this type of configuration, the maximum sequence number is 14. If more than 14 messages are
received by one process within one second, a delay of one second is imposed before reading the
next message, in order to allow the clock to tick.

† In examples of commands that are run from the shell, the input is shown in boldface type.

Watching Exim at Work 53

9 October 2001 09:07

54 Chapter 4: Exim Operations Over view

This shows that there’s just one message, from caesar@r ome.example to bru-
tus@r ome.example, which is 2.9 KB in size, and has been on the queue for 25
minutes. Exim also outputs the same information if it is called under the name
mailq, which is a fairly common convention.*

Exim logs every action it takes in its main log file. A log line is written whenever a
message arrives and whenever a delivery succeeds or fails. The name of the log
file depends on the configuration, with two common choices being
/var/spool/exim/log/mainlog or /var/log/exim_mainlog.† If you have access to an X
Window server, you can run the eximon utility, which displays a ‘‘tail’’ of the main
log in a window (see the section “The Exim Monitor,” in Chapter 21). The entries
that Exim writes to the log are described in detail in the section “Log Files,” in
Chapter 21.

Exim uses two additional log files that are in the same directory as the main log.
One is called rejectlog ; it records details of messages that have been rejected for
reasons of policy. The other is called paniclog; this is used when Exim encounters
some disaster that it can’t handle. The paniclog should normally be empty; it is a
good idea to set up some automatic monitoring to let you know if something has
been written to it, because that usually indicates there has been an incident that
warrants investigation.

The Runtime Configuration File
Exim’s runtime configuration is held in a single text file that you can modify with
your favorite text editor. If you make a change, newly started Exim processes will
immediately pick up the new file, but the daemon process will not. You have to
tell the daemon to rer ead its configuration, and this is done in the traditional Unix
way, by sending it a HUP signal. The process number of the daemon is stored in
Exim’s spool directory, so that you can do this by running (as root or exim) the
following command:

kill -HUP ‘cat /var/spool/exim/exim-daemon.pid‘

On receiving a HUP signal, the daemon closes itself down, and then restarts in a
new process, thereby picking up the new configuration.

* Many operating systems are set up with the mailq command as a symbolic link to sendmail; if this in
tur n has been linked to exim, the mailq command will ‘‘just work.’’

† It is possible to configure Exim to use syslog instead, but this has several disadvantages.

9 October 2001 09:07

Layout of the Configuration File
The runtime configuration file is divided into seven differ ent sections, as shown in
Figur e 4-1. It consists of the following sections:

Main section
General option settings and input controls

Transport section
The configuration for the transports

Dir ector section
The configuration for the directors

Router section
The configuration for the routers

Retry section
The retry rules for specifying how often Exim is to retry temporarily failing
addr esses (see Chapter 12, Delivery Errors and Retrying)

Rewriting section
The global address rewriting rules (see Chapter 14, Rewriting Addresses)

Authenticator section
The configuration for the SMTP authenticators (see the section “SMTP Authen-
tication,” in Chapter 15, Authentication, Encryption, and Other SMTP Process-
ing)

Main configuration

Transport configuration

Director configuration

Router configuration

Retry configuration

Rewrite configuration

Authenticator configuration

Figur e 4-1. Runtime configuration file

The Runtime Configuration File 55

9 October 2001 09:07

56 Chapter 4: Exim Operations Over view

The arrows in the figure indicate that the drivers defined in the directors and
routers sections refer back to the transports that are defined in the transports sec-
tion. We saw an example of this in the previous chapter, wher e the lookuphost
router referr ed to the remote_smtp transport:

lookuphost:
driver = lookuphost
transport = remote_smtp

In the actual file, the separators between the sections are lines containing just the
word end. Sections that are not needed may be empty, and if they occur at the end
of the file, they can be completely omitted. This means that a completely empty
file is, in fact, a valid configuration file, but it would not be much use because no
way to deliver messages is defined.

The retry and rewriting configuration sections each contain lines in a format that is
unique to the section, and we discuss these in later chapters. The remaining sec-
tions contain option settings in the form name=value, one per line. Except when
we are discussing a specific driver, unqualified refer ences to options always refer
to one of the options in the main configuration section.

A Minimal Usable Configuration File
The simplest complete configuration that is capable of delivering both local and
remote mail is as follows:

Main configuration: all defaults taken

end

Transports: SMTP and local mailboxes

remote_smtp:
driver = smtp

local_delivery:
driver = appendfile
file = /var/mail/$local_part

end

Directors: local user mailbox only

localuser:
driver = localuser
transport = local_delivery

end

9 October 2001 09:07

Routers: standard DNS routing

lookuphost:
driver = lookuphost
transport = remote_smtp

Lines beginning with # characters are comments, which are ignor ed by Exim. This
example is cut down from the default configuration, and is even simpler in its han-
dling of local domains than the case we considered in the previous chapter; it
does not support aliasing or forwarding. Because there are no retry rules in this
configuration, messages that suffer temporary delivery failures will be retur ned to
their senders without any retries, so this would not be a very good example to use
for real.

Notice that, although there are no settings in the main part of the configuration (so
that default values are used for all the options), the end line is still requir ed to
mark the end of the section.

Option Setting Syntax
We’ve already seen a number of examples of option settings. Each one is on a line
by itself, and they can always be in the form name=value. For those that are on/of f
switches (Boolean options), other forms are also permitted. The name on its own
tur ns the option on, whereas the name preceded by no_ or not_ tur ns it off. These
settings are all equivalent:

sender_verify
sender_verify = true
sender_verify = yes

So are these:

no_sender_verify
not_sender_verify
sender_verify = false
sender_verify = no

You do not have to use quote marks for option values that are text strings, but if
you do, any backslashes in the strings are interpr eted specially.* For example, the
sequence \n in a quoted string is converted into a linefeed character. This feature
is not needed very often.

Some options specify a time interval; for example, the timeout period for an SMTP
connection. A time interval is specified as a number followed by one of the letters

* Exim recognizes only double-quote characters for this purpose.

The Runtime Configuration File 57

9 October 2001 09:07

58 Chapter 4: Exim Operations Over view

w (week), d (day), h (hour), m (minute), or s (second). You can combine several of
these to make up one value. For example, the following:

connect_timeout = 4m30s

specifies a time interval of 4 minutes and 30 seconds.

Macros in the Configuration File
For more complicated configuration files, it may be helpful to make use of the
simple macro facility. If a line in the main part of the configuration (that is, before
the first end line) begins with an uppercase letter, it is taken as a macro definition,
of the form:

name = rest of line

The name must consist of letters, digits, and underscores, and need not all be in
uppercase, though that is recommended. The rest of the logical line is the replace-
ment text, and has leading and trailing whitespace removed. Quotes are not
removed.

Once a macro is defined, all subsequent lines in the file are scanned for the macro
name; if there are several macros, the line is scanned for each in turn, in the order
in which they are defined. The replacement text is not rescanned for the current
macr o, though it will be for subsequently defined macros. For this reason, a macro
name may not contain the name of a previously defined macro as a substring. You
could, for example, define the following:

ABCD_XYZ = something
ABCD = something

but putting those definitions in the opposite order would provoke a configuration
err or.

As an example of macro usage, suppose you have lots of local domains, but they
fall into three differ ent categories. You could set up the following:

LOCAL1 = domain1:domain2
LOCAL2 = domain3:domain4
LOCAL3 = dbm;/list/of/other/domains

local_domains = LOCAL1:LOCAL2:LOCAL3

and use the domains option on appropriate directors to handle each set of domains
dif ferently. This avoids having to list each domain in more than one place.* The
values of macros can be overridden by the -D command-line option (see the sec-
tion “Configuration Overrides,” in Chapter 20).

* However, ther e may be a difficulty if you are using negated items in the list. This is explained in the
section “Negative Items in Lists,” in Chapter 18, Domain, Host, and Address Lists.

9 October 2001 09:07

Hiding Configuration Data
The command-line option -bP requests Exim to output the value of one or more
configuration options. This can be used by any caller of Exim, but some configura-
tions may contain data that should not be generally accessible. For example, a
configuration that refer ences a MySQL database or an LDAP server may contain
passwords for controlling such access. If any option setting is preceded by the
word hide, only an admin user is permitted to see its value. For example, if the
configuration contains:

hide mysql_servers = localhost/usertable/admin/secret

an unprivileged user gets this response:

$ exim -bP mysql_servers
mysql_servers = <value not displayable>

This feature was added to Exim at Release 3.20.

Str ing Expansions
We have already met a simple string expansion in the following setting:

file = /var/mail/$local_part

for an appendfile transport. Expansions are a power ful featur e in configuration
files. We explain some more of their abilities in examples in subsequent chapters.
If you want to know about everything they can do, skip ahead to Chapter 17,
String Expansion, which has the full story. Meanwhile, remember that whenever
you see a $ character in a configuration setting, it means that the string will change
in some way whenever it is expanded for use.

Incorr ect syntax in a string expansion is a serious error, and usually causes Exim to
give up what it is trying to do; for example, an attempt to deliver a message is
deferr ed if Exim cannot expand a relevant string. However, ther e ar e some expan-
sion constructions that deliberately provoke a special kind of error, called a for ced
expansion failure; in a number of such cases, these failures just cause Exim to
abandon the activity that uses the string, but otherwise to carry on. For example, a
forced expansion failure during an attempt to rewrite an address just abandons the
rewriting. Whenever a forced expansion failure has a special effect like this, we’ll
mention it.

File and Database Lookups
The ability to use data from databases and files in a variety of formats is another
power ful featur e of Exim’s configuration. Earlier, we showed this director for han-
dling traditional alias files:

The Runtime Configuration File 59

9 October 2001 09:07

60 Chapter 4: Exim Operations Over view

aliasfile:
driver = aliasfile
file = /etc/aliases
search_type = lsearch

This looks up data in /etc/aliases by means of a linear search, but it could equally
use an indexed file format such as DBM:

aliasfile:
driver = aliasfile
file = /etc/aliases.db
search_type = dbm

or, the aliasing data could be held in a database:

aliasfile:
driver = aliasfile
query = select addresses from aliases where name=’$local_part’
search_type = mysql

Each differ ent lookup type is implemented in a differ ent module. Which ones are
included in the Exim binary is configured when Exim is built. As far as the main
part of Exim is concerned, there is a fixed internal interface (API) to these
lookups, and it is unaware of the details of the actual lookup mechanism. How-
ever, it does distinguish between the two differ ent kinds of lookup:

Single-key
Use a single key string to extract data from a file. The key and the file have to
be specified.

Query-style
Access a database using a query written in the query language of the database
package.

As well as being configured in options for drivers such as aliasfile, lookups can be
used in expansion strings to replace part of the string with data that comes from a
file or database. They can also be used as a mechanism for managing lists of
domains, hosts, or addresses. We encounter examples of these uses throughout the
book. Full details of all the lookup types and how they operate are given in Chap-
ter 16, File and Database Lookups.

Domain, Host, and Address Lists
The list mechanism is the third facility that, together with string expansion and
lookups, is the main building block of Exim configurations. Earlier, we showed the
example:

local_domains = tiber.rivers.example:\
*.cities.example:\
dbm;/usr/exim/domains

9 October 2001 09:07

in which the value of local_domains is a colon-separated list containing several
types of patterns for matching a domain name. Similar list facilities are used for
recognizing specific hosts and email addresses for particular purposes. The full
description of lists is in Chapter 18, but we come across plenty of examples before
then.

If a colon is actually needed in an item in a string list, it can be entered as two
colons. Leading and trailing whitespace on each item in a string list is ignored.
This makes it possible to include items that start with a colon, and in particular,
certain forms of IPv6 address. For example:

local_interfaces = 127.0.0.1 : ::::1

defines the IPv4 address 127.0.0.1 followed by the IPv6 address ::1. Because the
requir ement to double colons is particularly unfortunate in the case of IPv6
addr esses, a means of changing the separator was introduced with Exim Version
3.15.* If a list starts with a left-angle bracket followed by any punctuation charac-
ter, that character becomes the list separator. The previous example could be
rewritten as:

local_interfaces = <; 127.0.0.1 ; ::1

wher e the separator is changed to a semicolon.

The Default Qualification Domain
In a locally submitted message, if an unqualified address (that is, a local part with-
out a domain) is found in the envelope or any of the header lines that contain
addr esses, it is qualified using the domain defined by qualify_domain (for senders)
or qualify_recipient (for recipients) at the time the message is received. User
agents normally use fully qualified addresses, but there are exceptions.

The default value for both these options is the name of the local host. If only
qualify_domain is set, its value is used as a default for qualify_recipient. It is
common in some installations to use these options to set a generic domain. For
example, the Acme Widget Corporation might have two hosts handling its mail,
mail1.awc.example.com and mail2.awc.example.com, but would probably requir e
messages created on these hosts to use just awc.example.com as the default
domain, rather than the individual hostnames. This can be done by setting the fol-
lowing:

qualify_domain = awc.example.com

in the Exim configurations on both hosts.

* This applies to all lists, with the exception of log_file_path andtls_verify_ciphers.

The Default Qualification Domain 61

9 October 2001 09:07

62 Chapter 4: Exim Operations Over view

Handling Frozen Bounce Messages
When a message on Exim’s queue is marked as fr ozen, queue runner processes
skip over it and do not attempt to deliver it. One reason why a message might be
fr ozen is mentioned in the section “Missing Data,” in Chapter 3, Exim Overview;
namely, there may be a problem with Exim’s configuration. However, by far the
most common reason that a message becomes frozen is that it is a bounce mes-
sage that cannot be delivered. Such messages are often the result of incoming junk
mail that is addressed to an unknown local user, but which contains an invalid
sender address that causes the resulting bounce message to fail.*

In order to avoid mail loops, Exim does not let a failing bounce message give rise
to another bounce message. Instead, Exim freezes the message to bring it to the
postmaster’s attention. On busy systems, frozen messages of this type may be
quite common.

Some administrators do not have the human resources to inspect each frozen mes-
sage in order to determine what the problem is, and their policy may be to discard
such failures. Exim can be configured to do this by setting ignore_errmsg_errors,
which has the effect of discarding failing addresses in bounce messages (the action
is logged). A slightly less harsh option is to set ignore_errmsg_errors_after,
which allows such failures to be kept for a given time before being discarded. For
example, the following:

ignore_errmsg_errors_after = 12h

keeps such messages for 12 hours. After the first failure, the message is frozen as
in the default case, but after it has been on the queue for the specified time, it is
automatically unfrozen at the next queue run; if delivery fails again, the message is
discarded.

Reducing Activity at High Load
In the main section of the configuration file, there are several options that allow
you to limit or reduce Exim’s activities when a lot of mail arrives at once, or when
the system load is too high. ‘‘System load’’ in this sense is the average number of

* It is possible to do some checking on the sender and recipients before a message is accepted, as
described in the section “Verifying Recipient Addresses,” in Chapter 13, Message Reception and Policy
Contr ols. This can dramatically cut down the number of frozen messages, but there may still be
undeliverable messages that get through.

9 October 2001 09:07

pr ocesses in the operating system’s run queue over the last minute, a figure that
can be obtained by running the uptime command to obtain output like this:

4:15pm up 1 day(s), 22:23, 75 users, load average: 0.09, 0.15, 0.22

The first of the ‘‘load average’’ figures is the one-minute average. On an unloaded
system, it is a small number, usually well under 10. When it gets too high, every-
thing slows down; reducing the load created by mail reception and delivery can
alleviate the impact of this.

Delaying or Suspending Deliver y
When the Load Is High
By default, Exim starts a delivery process for each new message, and uses its
queue for messages that cannot be delivered immediately. You can use various
configuration options to modify Exim’s behavior when system load is sufficiently
high.

If the system load is higher than the value of queue_only_load, automatic delivery
of incoming messages does not occur; instead, they wait on Exim’s queue until the
next queue runner process finds them. The effect of this is to serialize their deliv-
ery because a queue runner delivers just one message at a time. This reduces the
number of simultaneously running Exim processes without significantly affecting
mail delivery, as long as queue runners are started fairly frequently. For example,
a setting of:

queue_only_load = 8

is a useful insurance against an overload caused by the simultaneous arrival of a
large number of messages. If, on the other hand, deliver_load_max is set to:

deliver_load_max = 10

no deliveries at all are done if the load is higher that this setting, and if this is
detected during a queue run, the remainder of the run is abandoned. A differ ent
thr eshold can be specified for queue runs by setting deliver_queue_load_max, for
example:

deliver_queue_load_max = 14

If combined with the previous setting, this would allow deliveries only from queue
runs when the load was between 10 and 14.

These three options are not fully independent. If queue_only_load (described ear-
lier) is set, forcing all deliveries to take place in queue runs above a given load
level, you can set either deliver_load_max or deliver_queue_load_max to a higher

Reducing Activity at High Load 63

9 October 2001 09:07

64 Chapter 4: Exim Operations Over view

value in order to suspend all deliveries when the load is above that value. For
example:

queue_only_load = 8
deliver_queue_load_max = 11

Setting both deliver_load_max and deliver_queue_load_max is useful only when
queue_only_load is not set.

Deliveries that are forced with the -M or -qf command-line options override these
load checks.

Suspending Incoming Mail When the Load Is High
Ther e is no option for stopping incoming messages from local processes when the
load is high, but mail from other hosts can be stopped or restricted to certain
hosts. If smtp_load_reserve is set, and the system load exceeds its value, incoming
SMTP calls over TCP/IP are accepted only from those hosts that match an entry in
smtp_reserve_hosts. If this is unset, all calls from remote hosts are rejected with a
temporary error code. For example, with the following:

smtp_load_reserve = 5
smtp_reserve_hosts = 192.168.24.0/24

only hosts in the 192.168.24.0/24 network can send mail to the local host when its
load is greater than 5. The host list in smtp_reserve_hosts is also used by the
smtp_accept_reserve option, which is described later.

If you are running user agents that submit messages by making TCP/IP calls to the
local interface, you should probably add 127.0.0.1 (or ::1 in an IPv6 system) to
smtp_reserve_hosts, to allow these submissions to proceed even at high load.

Controlling the Number of
Incoming SMTP Connections
It’s a good idea to set a limit on the number of simultaneous incoming SMTP calls,
because each one uses the resources requir ed for a separate process. Exim has the
smtp_accept_max option for this purpose. The default setting is 20, which is reason-
able for small to medium-sized systems, but if you are running a large system,
incr easing this to 100 or 200 is reasonable.

You can reserve some of these incoming SMTP slots for specific hosts. If you set
smtp_accept_reserve to a value less than smtp_accept_max, that number of slots is
reserved for the hosts listed in smtp_reserve_hosts. This feature is typically used to
reserve slots for hosts on the local LAN so that they can never be all taken up by
exter nal connections. For example, if you set:

9 October 2001 09:07

smtp_accept_max = 200
smtp_accept_reserve = 40
smtp_reserve_hosts = 192.168.24.0/24

then once 160 connections are active, new connections are accepted only from
hosts in the 192.168.24.0/24 network.

You can also set smtp_accept_queue; if the number of simultaneous incoming
SMTP calls exceeds its value, automatic delivery of incoming SMTP messages is
suspended; they are placed on the queue and left there for the next queue runner.
The default for this option is unset, so that all messages are deliver ed immediately.

If new SMTP connections arrive while the daemon is busy setting up a process to
handle a previous connection, they are held in a queue by the operating system,
waiting for the daemon to request the next connection. The size of this queue is
set by the smtp_connect_backlog option, which has a default value of 5. On large
systems, this should be increased, say to 50 or more.

Checking for Free Disk Space
You can arrange for Exim to refuse incoming messages temporarily if the amount
of free space in the disk partition that holds its spool directory falls below a given
thr eshold. For example:

check_spool_space = 50M

specifies that no mail can be received unless there is at least 50 MB of free space
in which to store it.* The check is not a complete guarantee because of the possi-
bility of several messages arriving simultaneously.

Limiting Message Sizes
It is a good idea to set a limit on the size of message your host will process. There
is no default in Exim, but you can set, for example:

message_size_limit = 20 M

to apply a limit of 20 MB per message.

Parallel Remote Deliver y
If a message has a number of recipients on differ ent remote hosts, Exim does
these deliveries one at a time, unless you set remote_max_parallel to a value
gr eater than one. On systems that are handling mostly personal mail, where mes-
sages typically have at most two or three recipients, this is not an important issue.

* Digits in a numerical option setting can always be followed by K or M, which cause multiplication
by 1024 and 1024×1024, respectively.

Parallel Remote Deliver y 65

9 October 2001 09:07

66 Chapter 4: Exim Operations Over view

However, on systems that are handling mailing lists, where a single address may
end up being delivered to hundreds or even thousands of addresses, parallel
delivery can make a noticeable improvement to perfor mance. Setting, for example:

remote_max_parallel = 10

allows Exim to create up to 10 simultaneous processes to do remote deliveries for
a message that has multiple recipients. Note that this option applies to the parallel
delivery of individual messages; it is not an overall limit on Exim delivery
pr ocesses.

Controlling the Number
of Deliver y Processes
In a conventional configuration, where Exim attempts to deliver each message as
soon as it receives it, there is no contr ol over the number of delivery processes
that may be running simultaneously. On a host where processing mail is just one
activity among many, this is not usually a problem. However, on a heavily loaded
host that is entirely devoted to delivering mail, it may be desirable to have such
contr ol. It can be achieved by suppressing immediate delivery (which means that
all deliveries take place in queue runs) and limiting the number of queue runner
pr ocesses, for example, by placing these settings in the cofiguration file:

queue_only
queue_run_max = 15

Setting queue_only disables immediate delivery, and queue_run_max specifies the
maximum number of simultaneously active queue runners. The maximum number
of simultaneous delivery processes is then:

queue_run_max x remote_max_parallel

With this kind of configuration, you should arrange to start queue runner
pr ocesses fr equently (up to the maximum number) so as to minimize any delivery
delay. This can be done by starting a daemon with an option such as -q1m, which
starts a new queue runner every minute.*

Large Message Queues
Back in Chapter 3, we explained that Exim is designed for an environment in
which most messages can be delivered almost instantaneously. Consequently, the
queue of messages awaiting delivery is expected to be short. In some situations,

* See the section “The Daemon Process,” in Chapter 11, Shar ed Data and Exim Processes, for more
details of the daemon process.

9 October 2001 09:07

nevertheless, large queues of messages occur, resulting in a large number of files
in a single directory (usually called /var/spool/exim/input). This can affect perfor-
mance significantly. To reduce this degradation, you can set:

split_spool_directory

When this is done, the input directory is split into 62 subdirectories, with names
consisting of a single letter or digit, and incoming messages are distributed
between them according to the sixth character of the message ID, which changes
every second. This requir es Exim to do a bit more work when it is scanning
thr ough the queue, but the directory access perfor mance is much improved when
ther e ar e many messages on the queue.

Large Installations
One of the advantages of Exim’s decentralized design is that it scales fairly well,
and can handle substantial numbers of mailboxes and messages on a single host.
However, when the numbers start to get really large, a conventional configuration
may not be able to cope. In this section, a number of general observations are
made that are relevant to large installations.

Linear Password Files
Above a thousand or so users, the use of a linear password file is extremely ineffi-
cient, and can slow down local mail delivery substantially. Some operating systems
(for example, FreeBSD) automatically make use of an indexed password file, or
can be configured to do so, which is one easy way round this problem if you hap-
pen to be using such a system. The alternative is to make use of NIS or some
other database for the password information, provided that it operates quickly.

Even if you don’t have any login accounts on your mail server, you still need some
kind of list of local users, and it is important to make the searching of this list as
ef ficient as possible.

It is not only mail delivery that provokes password file lookups. If you are running
a POP daemon, a password check happens every time a POP client connects; in
envir onments wher e users remain connected and leave their POP MUAs running,
these checks happen every few minutes for each user, whenever the POP client
checks for the arrival of new mail.* IMAP is much less expensive than POP in this
regard, because it establishes a session that remains active, so there is a password
check only at the start.

* Users have been known to configure their MUAs to check as often as every 20 or 30 seconds; such
usage will eat up your machine and should be strongly discouraged.

Large Installations 67

9 October 2001 09:07

68 Chapter 4: Exim Operations Over view

Mailbox Director ies
You will get very bad perfor mance if you have too many mailboxes in a single
dir ectory. What constitutes too many depends on your operating system; the
default Linux filing system starts to degrade at about one thousand files in a single
dir ectory, wher eas for Solaris the number is around ten thousand. This applies
whether you are using individual files as multimessage mailboxes, or delivering
messages as separate files in a directory.

The solution to this is to use multiple directory levels. For example, instead of stor-
ing jimbo’s mailbox in /var/mail/jimbo, you could use /var/mail/j/jimbo. Splitting
on the initial character(s) of the local part is easy to implement, but it is not as
good as using some kind of hashing function. Exim’s string expansion facilities can
be used to implement either a substring-based or hash-based split. Of course, you
will have to ensure that all the programs that read the mailboxes use the same
algorithm.

For a very large number of mailboxes, a two-level split is recommended, using
Exim’s numeric hash function, as in this example:

/var/mail/${nhash_8_512:$local_part}/$local_part

The hashing expansion generates two numbers separated by a slash, in this case
using the local part as the data and ensuring that the numbers are in the ranges
0–7 and 0–511. This example places jimbo’s mailbox in /var/mail/6/71/jimbo. The
initial split could be between differ ent disks or file servers, and the second one
could be between directories on the same disk.

Simultaneous Message Deliver ies
If two messages for the same mailbox arrive simultaneously, they cannot both be
deliver ed at once if the mailbox is just a single file. One delivery process has to
wait for the other, thus tying up resources. The default way that Exim does this (in
the appendfile transport) is by sleeping for a bit, and then starting the process of
locking the mailbox from scratch. This is the safest approach, and the only way to
operate when lock files are in use.

Attempts to lock a mailbox continue for a limited time. If a process cannot gain
access to a mailbox within that time, it defers delivery with the error message:

failed to lock mailbox

and Exim will try the delivery again later. If you see a lot of these messages in the
main log file, it is an indication that there is a problem with contention for the
mailbox.

If you are in an envir onment in which only fcntl() locks are used, and no sepa-
rate lock files, you can configure the appendfile transport to use blocking calls,

9 October 2001 09:07

instead of sleeping and retrying. This gives better perfor mance because a waiting
pr ocess is released as soon as the lock is available instead of waiting out its sleep
time. In this environment, this single change can make a big perfor mance
dif ference.

If the mailbox files are NFS-mounted, and more than one host can
access them, you must not disable the use of lock files. If you do,
you are likely to end up with mangled mailboxes.

The whole problem of locking can be bypassed if you use mailboxes in which
each message is stored in a separate file.* One example of this type of message
storage, called maildir for mat, is now quite popular, and has support in a number
of MUAs and other programs that handle mailboxes. Because each message is
entir ely independent, no locking is requir ed, several messages can be delivered
simultaneously, and old messages can even be deleted while new ones are arriv-
ing. See the section “Maildir Format,” in Chapter 9, The Transports, for a descrip-
tion of how to configure Exim to use maildir format.

Minimizing Name Server Delays
A busy general mail server makes a large number of calls to the DNS. For this rea-
son, you should arrange for it to run its own name server, or make sure that there
is a name server running on a nearby host with a high-speed connection, typically
on the mail server’s LAN. Ensure that the name server has plenty of memory so
that it can build up a large cache of DNS data.

Stor ing Messages for Dial-up Hosts
You should not plan to store large numbers of messages for intermittently con-
nected clients in Exim’s spool. As explained in the section “Intermittently Con-
nected Hosts,” in Chapter 12, it is much better to have them delivered into local
files, for onward transmission by some other means.

Hardware Configuration
If you keep increasing the workload of an Exim installation, disk I/O capacity is
what runs out first. Each message that is handled requir es the creation and dele-
tion of at least four files. Large installations should therefor e use disks with as high

* Ther e is still some locking, of course, between processes that are updating the mailbox directory, but
it is handled internally in the file system and is no longer Exim’s responsibility.

Large Installations 69

9 October 2001 09:07

70 Chapter 4: Exim Operations Over view

a per formance as possible. Also, it does not make sense to keep on increasing the
per formance of the processor if the disks cannot keep up.

Better overall perfor mance can be obtained by splitting up the work between a
number of differ ent hosts, each with its own set of disks. For example, separate
hosts can be used for incoming and outgoing mail. A general form of scalable con-
figuration that is used by some very large installations is shown in Figure 4-2.

Internet

inserver2 inserver1 outserver1 outserver2

Long-term
outserver

Fileserver(s)
Mailboxes

Dial-in queue

Dial-in
deliverer

Clients’ SMTP
boxes

POP/IMAP
server

Clients’ POP/IMAP
boxes

Figur e 4-2. Large system configuration

This configuration has separate servers for incoming and outgoing messages, and
can be expanded ‘‘sideways’’ by the addition of more servers (indicated by the
dashed lines) as necessary. Incoming mail is delivered to one or more file servers,
which hold local mailboxes in a split directory structure, as described earlier, and
also messages that are waiting for dial-up hosts. The mailboxes are accesssed from
POP and IMAP servers, and the dial-up hosts use yet another server to access their
stor ed mail.

The outgoing servers send messages that they cannot deliver in a short time to a
long-ter m outgoing server, so as not to impact their perfor mance with very long
message queues. This can be implemented using fallback_hosts on appropriate
drivers on the main servers, or using the $message_age variable to move messages
after some fixed time.

9 October 2001 09:07

5
Extending the Deliver y

Configuration

In Chapter 3, Exim Overview, we describe the basics of how Exim delivers mes-
sages and works through a simple, straightforward example. The chapters that fol-
low this one cover all the differ ent drivers and their options, but before we
descend into such detail, we’ll look at some further examples of fairly common
delivery requir ements and discuss ways of configuring Exim to support them. In
many cases, the suggested solution is not necessarily the only possible approach;
ther e ar e often several ways of achieving the same result. The main intent of this
chapter is to show you some more of the many ways in which the driver options
can be used.

Multiple Local Domains
Any number of domains can be designated as local by listing them in
local_domains. For example:

local_domains = simple.example : *.simple.example

If there are many local domains, it is cumbersome to include the list in the config-
uration file, and it is better to refer to a file instead. A setting such as:

local_domains = /etc/local.domains

could be used with a file containing lines such as:

simple.example
ˆ[ˆ.]*\d{4}\.simple\.example$

The second line is a regular expression that matches domains ending in
.simple.example whose first component ends with four digits. The file can contain
any type of item that may appear in a domain list, except for another filename. It
is read each time it is needed, and so can be updated independently of Exim’s
configuration file. However, it is still scanned linearly, just like an in-memory list,

71

9 October 2001 09:07

72 Chapter 5: Extending the Deliver y Configuration

and this can be slow when the number of items in the list is large. If the list con-
tains only fixed names (that is, no wildcarded items of any kind), it can be con-
verted into an indexed file that can be searched more quickly, by a setting such
as:

local_domains = dbm;/etc/local.domains.db

This form of list entry specifies a lookup type (that is, a way of looking something
up) as well as additional data requir ed by the lookup, separated by a semicolon.
In this example, the lookup type is dbm and the additional data is a filename.

Ther e ar e several differ ent softwar e libraries that support indexed datafiles; DBM is
a generic term that refers to this kind of file access method.* Most modern operat-
ing systems have a suitable library installed as standard. As a user of Exim, all you
really need to know is that an indexed file gives quicker access to specific data,
just as an index in a book allows you to find something more quickly than reading
thr ough. The details of how the index is implemented inside the DBM library are
not important.

Although DBM libraries support the addition and removal of individual entries in a
DBM file, the usual approach for applications that are just using the file as a fast
way of accessing fixed data is to rebuild the file from scratch whenever the data
changes. A utility program called exim_dbmbuild is supplied to do this job.

In order to determine whether a domain is local or not, Exim uses the domain
name as the key for an indexed lookup. If data with a matching key is found in
the file, the domain is local. The data that was looked up is not itself used in this
case; Exim is interested only in whether or not the key exists in the file.

You do not have to put every local domain into a single lookup, because a lookup
is just one item in the list that is searched. For example, you could have some
domains inline, and some in one or more lookups:

local_domains = maindomain.example : dbm;/etc/otherdomains.db

Exim processes lists from left to right, so it makes sense to put the most commonly
expected domains first.

DBM is only one of several lookup types supported by Exim; whenever a lookup
is permitted, any of the available types may be used. For example, a list of local
domains could be held in a MySQL database, and checked by a setting such as:

local_domains = mysql;select * from domainlist where domain=’$key’

* DBM probably once stood for ‘‘database management,’’ but nobody ever spells it out in full any
mor e.

9 October 2001 09:07

When processing a list of this sort, the variable $key contains the name of the
domain that is being checked, so that it can be included in database queries such
as this.

However, in the case of local_domains, using a database such as MySQL is not
recommended, because local_domains is central to Exim’s handling of addresses,
so you want any lookups that are involved to be as fast as possible. The availabil-
ity of the data for local_domains is also important. If you use (for example) an
LDAP lookup as the only entry in local_domains, all mail delivery ceases if the
LDAP server becomes unavailable. For these reasons, if the number of local
domains is too large for an inline list, it is best to use an indexed file on a local
disk.

Differentiating Between Multiple Domains
If you define a set of local domains using local_domains, and make no other
changes to the configuration, Exim treats all of them as synonymous, with the
same local part at any one of them being handled in the same way. In order to
distinguish between differ ent domains, the directors have to be made to act differ-
ently for differ ent domains. The usual way this is done is to set the domains option
on one or more dir ectors. This option provides a list of domains for which the
dir ector is to operate. Here is a simple example with two local domains, each with
its own alias file:

local_domains = a.local.domain : b.local.domain

a.aliases:
driver = aliasfile
domains = a.local.domain
file = /etc/a.aliases
search_type = lsearch

b.aliases:
driver = aliasfile
domains = b.local.domain
file = /etc/b.aliases
search_type = lsearch

Addr esses of the form user@a.local.domain ar e pr ocessed by the first director, but
not the second, whereas user@b.local.domain is processed by the second and not
the first. If there are a number of domains whose alias filenames follow a regular
patter n, ther e is no need to have a separate director for each one, because the file
name can be varied depending on the domain, and a single director can be used:

aliases:
driver = aliasfile
file = /etc/$domain.aliases
search_type = lsearch

Multiple Local Domains 73

9 October 2001 09:07

74 Chapter 5: Extending the Deliver y Configuration

In this example, all domains are processed, but because the filename contains the
expansion variable $domain, a dif ferent file is used for each domain. Using the
string expansion features of Exim, much more complicated transformations of the
domain name are possible, including, for example, looking up a domain’s alias
filename from a file or database.

Virtual Domains
The term virtual domain is used to refer to a domain in which all the valid local
parts are aliases for other addresses. There are no real mailboxes associated with a
virtual domain. Because each address that is generated by an aliasing operation is
independently processed, the result of handling an address in a virtual domain can
be the address of a local mailbox, or a remote address that causes the message to
be sent to another host.

The aliasing scheme just described can be used to handle virtual domains with a
separate alias file for each domain. This makes it easy to have a separate main-
tainer for each file. However, it is important to consider what happens when a
local part does not match any item in an alias file. Exim would normally offer the
addr ess to the next director. However, for a virtual domain, no further directors
should be run, and instead the address should fail.

One way of doing this is for all subsequent directors to have a setting of domains
that excludes the virtual domains, but a shortcut is provided by the no_more

option, which specifies that no more dir ectors ar e to be run after the current one.
Her e is an extract from a configuration file that handles a mixture of real and vir-
tual domains:

local_domains = real.domain.example : cdb;/etc/virtuals

...

virtuals:
driver = aliasfile
domains = cdb;/etc/virtuals
file = /etc/$domain.aliases
search_type = lsearch
no_more

system_aliases:
driver = aliasfile
file = /etc/aliases
search_type = lsearch

...

The list of virtual domains in this example is kept in an indexed file in cdb for mat.
This is a format that is optimized for files that are never updated after they have

9 October 2001 09:07

been created, and it perfor ms better than conventional DBM, which allows for
both reading and writing.*

The virtual domains are handled by the first director only; the real domain is han-
dled by the remaining directors (of which only the first is shown here). The
lookup in the /etc/virtuals file happens twice in principle (once to establish that
the domain is local, and again to check before running the first director), but Exim
caches the results of the last lookup on a per-file basis, so the file is read only
once in practice.

For more complicated requir ements (for example, when some virtual domains are
synonymous, and therefor e use the same alias file), multiple directors can be used,
or the name of the alias file for each domain can be looked up by a setting such
as:

file = ${lookup{$domain}cdb{/etc/virtuals}{$value}}

This is an example of the use of a file lookup from within an expansion string. A
description of the syntactic niceties is left until later, but you can see that it is trig-
ger ed by the word lookup, and various substrings are provided, some within curly
brackets (braces).

The key for the lookup is the content of $domain, the lookup type is cdb, and the
indexed file is /etc/virtuals. We know the lookup is going to succeed, because it is
the same lookup that was used by domains to control the running of the director.†

After perfor ming the lookup, the final substring is expanded, with the data that
was looked up contained in $value, so the result of the expansion in this case is
just that string.

The data that is used to create the cdb file for this example could contain lines
such as this, where the first two domains use the same alias file:

virt10.example: /etc/virt1.aliases
virt11.example: /etc/virt1.aliases
virt20.example: /etc/virt2.aliases

Another approach to virtual domains that is sometimes used when the alias lists
ar e not too large and are managed by a single person is to keep a single list for all
of them that contains entries such as this:

jan@virt1.example: J.Smith@dom1.example
jim@virt1.example: J.Smith@dom2.example
jan@virt2.example: J.Jones@dom1.example
jim@virt2.example: J.Joyce@dom3.example

* See the section “Single-Key Lookup Types,” in Chapter 16, File and Database Lookups, for more
details.

† In fact, because there is lookup caching, the lookup isn’t repeated; the cached result is reused.

Virtual Domains 75

9 October 2001 09:07

76 Chapter 5: Extending the Deliver y Configuration

Note that this differs from a ‘‘traditional’’ alias file in that the aliases are listed with
domains attached, instead of just being local parts. The aliasfile dir ector can use
data like this, but only if you set the include_domain option. Without it, only the
local part of the address is used when looking up aliases. The director might look
like this:

virtuals:
driver = aliasfile
domains = cdb;/etc/virtuals
file = /etc/virtual.aliases
search_type = cdb
include_domain
no_more

Ther e is scope for confusion if local parts without domains are used in alias files.
Consider the following:

jac@virt2.example: J.Hawkins

What domain should be added to J.Hawkins to make it a fully qualified address?
Does it refer to a user on the local host, or should it retain the incoming domain
virt2.example? Unless you tell it otherwise, Exim assumes that unqualified local
parts are local, and it uses the value of qualify_recipient (a main configuration
option) to create a complete address. If you want the other behavior, you must set
qualify_preserve_domain on the aliasfile driver.

Defaults in Vir tual Domains
When you configure a virtual domain, you may want to trap unknown local parts
and forward them to a designated address such as the postmaster. Adding an aster-
isk to the search type causes Exim to look for a single asterisk entry if it cannot
find the original address, so a configuration such as:

virtuals:
driver = aliasfile
domains = cdb;/etc/virtuals
file = /etc/$domain.aliases
search_type = lsearch*
no_more

would allow a separate default to be specified for each domain in its alias file. For
example, in the file /etc/virt3.example.aliases, you could have:

*: postmaster@virt3.example
postmaster: pat@dom5.example
jill: jkr@dom4.example

When Exim looks up a local part other than postmaster or jill in this file, it fails.
Because of the asterisk in the search type, it then does a second lookup for the
key string *, which finds the default entry that directs all other local parts to the
postmaster.

9 October 2001 09:07

Putting the default entry first in a file that is linearly searched is a
good idea, because it is then found quickly. This may look like a
wildcard that would match any keystring, including postmaster and
jill, but this is not the case. The asterisk is just being used as a spe-
cial key that means ‘‘default.’’

If lookup defaulting is used when domains are included as part of lookup keys
(that is, when include_domain is set), it provides a single default for all the
domains. You can give each domain its own default by adding *@ (instead of just
*) to the search type. For example:

virtuals:
driver = aliasfile
domains = cdb;/etc/virtuals
file = /etc/virtual.aliases
search_type = lsearch*@
include_domain
no_more

Then you can include data such as:

*@virt4.example: virt4-admin@dom6.example

in the combined virtual domain file. If an initial lookup fails, the local part is
replaced with an asterisk for the second attempt, and only if that also fails is the
plain asterisk tried as a key.

Postmaster s in Vir tual Domains
If each virtual domain has its own postmaster, these can be included in the alias
data and there is no problem. Sometimes, however, ther e is a requir ement for a
single address to receive postmaster mail for a number of domains, and there is an
easier approach than maintaining the same entry in all the alias files. If this applies
to all local domains, a smar tuser dir ector, placed as the first director, can be used:

postmaster:
driver = smartuser
local_parts = postmaster
new_address = postmaster@your.domain.example

The effect of setting local_parts is analagous to setting domains because it causes
the director to be run only for those local parts that it matches. In this case, it runs
only when the local part is postmaster, but as there is no domains setting, it runs
for the postmaster address in any local domain.

The smar tuser dir ector itself applies no tests to the local part or domain. If it runs,
it always succeeds. In this configuration, it is doing an aliasing operation, replacing

Virtual Domains 77

9 October 2001 09:07

78 Chapter 5: Extending the Deliver y Configuration

any incoming address with the same fixed address. The new address is repr o-
cessed in its own right; if your.domain.example is a local domain, it is processed
again by this director, but on the third occasion, the antilooping rule takes effect,
and the director is skipped. The unnecessary second pass through the director can
be avoided in one of two ways:

• You can arrange to skip this director when the domain is already correct, by
adding:

domains = !your.domain.example

to its configuration. An exclamation mark at the start of an item in the list
negates the item, so this setting specifies that the director is to be run only
when the domain is not your.domain.example.

• Alter natively, you can arrange to process the new address by starting at a spe-
cific director, instead of at the first one. This is done by setting new_director

to the name of the director at which to start:

postmaster:
driver = smartuser
local_parts = postmaster
new_address = postmaster@your.domain.example
new_director = system_aliases

This goes straight to the system_aliases dir ector.

If some of the virtual domains do have their own postmasters, but you want to
pick up postmaster mail for the others, you can extend the domains setting to
exclude the unwanted domains (or include the wanted ones, if that is easier).
Another possibility, if defaults are not being used, is to place the smar tuser dir ec-
tor after those that handle the virtual domains.

Mailing Lists
Exim can be used on its own to run simple mailing lists that are maintained by
hand, but for large or complicated requir ements, the use of additional specialized
mailing list software (such as Majordomo or SmartList) is strongly recommended.*

Lists of just a few addresses can be managed as aliases, but when larger lists are
involved, it is usually more convenient to keep each list in a separate file. Also,
this allows each list to be managed by its own manager, who need not have
access to other Exim configuration files.

* For Majordomo, see http://www.gr eatcircle.com/major domo, and for SmartList see
http://www.pr ocmail.org (sic).

9 October 2001 09:07

The forwardfile dir ector can be used to ‘‘explode’’ such mailing lists, and the
domains option can be used if it is requir ed to run these lists in a separate domain
fr om nor mal mail. For example, if your domain is simple.example, you might want
to use lists.simple.example for addresses that refer to mailing lists to keep them
entir ely separate from normal mail. This director does just that:

lists:
driver = forwardfile
domains = lists.simple.example
no_more
file = /usr/lists/$local_part
no_check_local_user
forbid_pipe
forbid_file
errors_to = $local_part-request@$domain

The domain must, of course, be set up as local, and appropriate MX records must
be created in the DNS if it is to be accessible from other hosts. If you use list
names that are distinct from any of your local usernames, you can have them in
your normal domain, and the domains and no_more settings are not needed.

The no_check_local_user option stops forwardfile fr om checking that the local
part is the login ID of a local user, which it does by default (because it is most
commonly used for users’ .forwar d files). No check is made on the ownership of
the file containing the list, because neither owners nor owngroups is set. The
forbid_pipe and forbid_file options prevent a local part from being expanded
into a filename or a pipe delivery, which is not normally appropriate for a mailing
list.

The errors_to option specifies that any delivery errors caused by addresses taken
fr om a mailing list are to be sent to the given address rather than the original
sender of the message. In other words, it changes the envelope sender of the mes-
sage as it passes through. However, befor e acting on errors_to, Exim verifies the
err or addr ess. If verification fails, the envelope sender is not changed. In the ear-
lier example, verification succeeds if the -r equest file that corresponds to the mail-
ing list exists.

Using this scheme, you can create a list by creating the main file containing the
members, and the -r equest file containing the managers. For example, as soon as a
file called /usr/lists/exim-users is created, mail to exim-users@lists.simple.example is
accepted, and sent to all the addresses in that file. As soon as /usr/lists/exim-users-
request is created, verification of the address exim-users-r equest@lists.simple.exam-
ple succeeds, allowing the envelope sender address of messages to exim-
users@lists.simple.example to be changed when they are forwarded.

Mailing Lists 79

9 October 2001 09:07

80 Chapter 5: Extending the Deliver y Configuration

An alternative to handling both the list address and the errors address with the
same director is to set up an earlier director to handle the errors address. An
example of this is shown in the section “Closed Mailing Lists,” later in this chapter.

Syntax Errors in Mailing Lists
If an entry in a forward file contains a syntax error, Exim normally defers all deliv-
eries for the original address. This may not be appropriate when the list is being
maintained automatically from address texts supplied by users, because a single
bad address shuts down the entire list.

If skip_syntax_errors is set on the forwardfile dir ector, the director just skips
entries that fail to parse, noting the incident in the log. Valid addresses are recog-
nized and used. If in addition syntax_errors_to is set to a verifiable address, mes-
sages about skipped addresses are sent to it. It is usually approriate to set this to
the same value as errors_to.

NFS-Mounted Mailing Lists
It is not advisable to have list files that are NFS-mounted, because the absence of
the mount cannot be distinguished from a nonexistent file. Thus, Exim would
behave as if a list did not exist when the NFS server was down. One way around
this problem is to use an aliasfile dir ector with the alias file containing a list of lists
that are kept on local disk. This makes the existence or nonexistence of a list clear.

Each alias expansion can then be an ‘‘include’’ item to read the list itself from a
separate, NFS-mounted file. If no_freeze_missing_include is set for the aliasfile
dir ector, an unavailable file causes delivery to be deferred without freezing. For
example, the director could be:

lists:
driver = aliasfile
file = /usr/list.of.lists
search_type = lsearch
no_freeze_missing_include
forbid_pipe
forbid_file
errors_to = $local_part-request@$domain

with the alias file containing lines such as:

exim-users: :include:/usr/lists/exim-users

This is a bit more complicated to maintain, because in addition to creating the
files, the aliases have to be updated in order to set up a new list.

9 October 2001 09:07

Reexpansion of Mailing Lists
In order to avoid duplicate deliveries, Exim remembers every individual address to
which a message has been delivered, but it normally stores only the original recip-
ient addresses with a message. If all the deliveries to a mailing list cannot be done
at the first attempt, the mailing list is reexpanded when the delivery is next tried.
This means that alterations to the list are taken into account at each delivery
attempt, and as a consequence, addresses that have been added to the list since
the message arrived will receive a copy of the message, even though it predates
their subscription.

If this behavior is felt to be undesirable, the one_time option can be set on the for-
wardfile dir ector. When this is done, any addresses generated by the director that
fail to deliver at the first attempt are added to the message as ‘‘top level’’
addr esses, and the address that generated them is marked ‘‘delivered.’’ As a result,
expansion of the mailing list does not happen again at subsequent delivery
attempts. The disadvantage of this is that if any of the failing addresses are incor-
rect, changing them in the file has no effect on pre-existing messages.

Closed Mailing Lists
The examples so far have assumed open mailing lists, to which anybody may send
mail. It is also possible to set up closed lists, where mail is accepted from specified
senders only. This is done by making use of the senders option that restricts the
running of a director or router to messages that have specific senders.

The following example uses the same file for each list, both as a list of recipients
and as a list of permitted senders, but differ ent or multiple sender lists could, of
course, be used. For instance, a list for announcements could restrict senders to
those people who are per mitted to make the announcements.

First, it is necessary to set up a separate director to handle the -request addr ess, to
which anybody may send mail:

lists_request:
driver = forwardfile
domains = lists.simple.example
suffix = -request
file = /usr/lists/$local_part-request
no_check_local_user
no_more

Her e we see a new option, suffix, which we have not met before. It has the
ef fect of testing the local part for the given suffix, and bypassing the director if it
does not match. This director, ther efor e, is run only for local parts that end with
-request.

Mailing Lists 81

9 October 2001 09:07

82 Chapter 5: Extending the Deliver y Configuration

The director runs with $local_part stripped of the suffix, which is placed in
$local_part_suf fix (though that variable is not used in this example). There is an
analagous option called prefix, which operates by testing the other end of the
local part. You would use this if your mailing lists used the form owner-xxx for list
management instead of xxx-r equest.

The next director handles the closed list itself:

lists:
driver = forwardfile
domains = lists.simple.example
require_files = /usr/lists/$local_part
senders = lsearch;/usr/lists/$local_part
file = /usr/lists/$local_part
no_check_local_user
forbid_pipe
forbid_file
one_time
skip_syntax_errors
errors_to = $local_part-request@lists.simple.example
no_more

The require_files option tests for the existence of one or more files, before run-
ning the director. It is needed here to ensur e that the file exists before trying to
search it using the senders option, because an attempt to search a nonexistent file
causes an error. If the file does not exist (that is, if the mailing list is unknown),
the director declines, but because no_more is set, no further directors are tried.
Ther efor e, Exim fails the address.

If the file exists and contains the address of the sender, the director is run and the
message is delivered to the list. However, if the file does not contain the sender,
the director is not run, and no further directors are run because of no_more. Note
that senders behaves differ ently fr om domains in the way it interacts with no_more,
as explained in the section “Interaction of Conditions,” in Chapter 6, Options Com-
mon to Directors and Routers.

Exter nal Mailing List Software
The use of specialized mailing list software such as Majordomo is recommended if
you are running mailing lists in a big way. Messages addressed to a mailing list are
handed off to an exter nal pr ogram, which ultimately resubmits them to Exim for
delivery to the subscribers. This can be done either by providing a recipient list
with each resubmitted message, or by using Exim’s aliasing or forwarding mecha-
nisms to pick up lists of addresses from files. This approach helps you to deal with
the following issues:

9 October 2001 09:07

• Although Exim is capable of delivering a single message to thousands of recip-
ients, having one large forwarding list is not the best way of handling a mail-
ing list with thousands of subscribers. Remember that Exim routes or directs
every address in a message before it does any deliveries. It does this serially,
so if there are very many recipients, a long time may elapse after the arrival of
a message before any deliveries are actually done. To avoid this, mailing list
softwar e should normally be configured to send multiple copies of messages,
with a maximum of around one hundred recipients in each copy. This intro-
duces some parallelism into the routing process. It is an advantage if the
addr esses can be sorted, to keep all those in the same domain together.*

• An exter nal pr ogram makes it easier to check and possibily modify the con-
tents of messages posted to your lists. For example, some lists prohibit the use
of attachments; others requir e modification of header lines or the addition of
standard texts to messages.

• The common practice of sending an email message for automatic subscription
and unsubscription from lists can be supported only by using an external mail-
ing list agent.

Dif ferent mailing list software packages provide differ ent facilities. For example,
automatic subscription might be supported without the ability to generate multiple
copies of the message when there are large numbers of recipients. You should
investigate several packages to see which one best fits your needs.

When external mailing list software is in use, Exim has to recognize certain local
parts and pipe the messages to appropriate programs. Occasionally, there is also a
requir ement to recognize messages that have come back from the mailing list soft-
war e, and process their addresses in some special way. Exim is usually configured
to run as a specific mailing list user when delivering incoming messages through a
pipe. For example, if you are using Majordomo and keeping all the mailing list
infor mation in a single alias file, you could use this director:

majordomo_aliases:
driver = aliasfile
file = /usr/local/majordomo/lists/majordomo.aliases
search_type = lsearch
user = majordom
group = majordom

This ensures that any pipes that are run as a result of that particular alias file do so
as the user major dom.

* Many general mailing lists contain lots of subscribers from big ISP domains such as aol.com. Unless
you are using VERP (see the section “Changing the Return Path,” in Chapter 9, The Transports), mak-
ing sure the addresses are sorted minimizes the number of copies sent to such domains.

Mailing Lists 83

9 October 2001 09:07

84 Chapter 5: Extending the Deliver y Configuration

When an ordinary user submits a message to Exim from a process running on the
same host, an envelope sender address is created from the user’s login name and
the domain in qualify_domain (which defaults to the hostname). There is a com-
mand-line option -f that can override this, but Exim ignores it unless the caller is
trusted. Trusted users are discussed more fully in the section “Privileged Users,” in
Chapter 19, Miscellany, but the basic idea is that such users are allowed to forge
sender addresses and other message data. If you are using Majordomo, for exam-
ple, you should have the following:

trusted_users = majordom

in your Exim configuration, so that the -f option is honored for messages coming
fr om Majordomo, thus allowing it to specify an appropriate envelope sender for
each mailing list.

Using aliases as the means of directing messages to list management software is
not the only possibility. Another approach is to use specialized directors and trans-
ports. For example, the following transport could be used to pipe messages to
SmartList:

list_transport:
driver = pipe
command = /usr/slist/.bin/flist $local_part$local_part_suffix
current_directory = /usr/slist
home_directory = /usr/slist
user = slist
group = slist

The transport is activated from a director like this:

list_director:
driver = smartuser
suffix = -request
suffix_optional
local_parts = !.bin:!.etc
require_files = /usr/slist/$local_part/rc.init
transport = list_transport

The require_files option ensures that the director runs only when the local part
is the name of an existing list. That is, the existence of a file whose name contains
the list name is used as the trigger for passing the message to SmartList. Note the
use of the local_parts option to avoid treating /usr/slist/.bin and /usr/slist/.etc as
mailing lists.

9 October 2001 09:07

Using an External Local Deliver y Agent
An alternative to using the appendfile transport for writing to local mailboxes is to
use an external program for this purpose. This could be for all local deliveries, or
only for certain local parts. The pipe transport can be used to pass messages to a
separate local delivery agent such as pr ocmail.* We use pr ocmail as an example of
a local delivery agent in what follows, but a similar approach could be used for
any local delivery agent.

Individual users can arrange for their mail to be delivered using pr ocmail by call-
ing it from their .forwar d files, provided that the Exim configuration permits the
use of pipes from .forwar d files. In some installations, however, ther e may be a
requir ement always to use pr ocmail for local deliveries, or to allow users to
choose to use it without letting them run pipe commands from their .forwar d files.
One way to handle these cases is to set up a separate transport just for the use of
pr ocmail.

When doing this, care must be taken to ensure that the pipe is run under an
appr opriate uid and gid. In some configurations, one wants this to be a uid that is
trusted by the delivery agent to supply the correct sender of the message. It may
be necessary to recompile or reconfigur e the delivery agent so that it trusts an
appr opriate user. The following is an example of a transport that delivers using
pr ocmail:

procmail_pipe:
driver = pipe
command = /usr/local/bin/procmail -d $local_part
return_path_add
delivery_date_add
envelope_to_add
check_string = "From "
escape_string = ">From "
user = $local_part
group = mail

This runs pr ocmail with the user’s uid, but with the group set to mail.

* See http://www.pr ocmail.org. Many, but not all, of the things pr ocmail can do can also be done
using an Exim filter. See Chapter 10, Message Filtering, for a discussion of the differ ences.

Using an External Local Deliver y Agent 85

9 October 2001 09:07

86 Chapter 5: Extending the Deliver y Configuration

The command specified for the transport does not begin with the
following:

IFS=" "

as shown in some pr ocmail documentation. This setting arose on
systems where the MTA runs pipe commands via a shell; it ensures
that the separator character between the arguments of a shell com-
mand is a space. Exim does not by default use a shell to run pipe
commands, so if this shell construct is present, it is not recognized.
Instead of using a shell, Exim itself splits up the command into sepa-
rate arguments before it does string expansion. This means that any
shell metacharacters that occur in substituted values (for example, in
$local_part) cannot affect the parsing of the command. Exim then
runs the command directly. This approach not only avoids problems
with shell metacharacters, but also saves the overhead of starting
another process.

The transport shown earlier could be used by a director, which checks that the
user has a .pr ocmailrc file:

procmail:
driver = localuser
transport = procmail_pipe
require_files = .procmailrc

If there is no .pr ocmailrc file in the user’s home directory, this director declines to
handle the address. The following director could be a conventional localuser
dir ector that directs to an appendfile transport in the usual way. Thus, all a user
needs to do to change from Exim’s normal delivery to delivery via pr ocmail is to
cr eate .pr ocmailrc. No .forwar d file is requir ed.

The next example shows a transport for a system where local deliveries are han-
dled by the Cyrus IMAP server:

local_delivery_cyrus:
driver = pipe
command = /usr/cyrus/bin/deliver \

-m ${substr_1:${local_part_suffix}} \
-- ${local_part}

user = cyrus
group = mail
return_output
log_output
prefix =
suffix =

9 October 2001 09:07

Note the unsetting of prefix and suffix, and the use of return_output to cause
any text written by Cyrus to be retur ned to the sender. This transport could be
activated by a director such as this:

local_user_cyrus:
driver = localuser
transport = local_delivery_cyrus

Multiple User Addresses
A single user normally has a single email address and a single mailbox. For exam-
ple, the user caesar on the host simple.example has the following address:

caesar@simple.example

and mail to that address is commonly delivered into /var/mail/caesar. Users with
high volumes of incoming mail often like to use some method of automatically
sorting it into categories to make it more convenient to handle. One way of doing
this is to make use of Exim’s filtering capability or to run an external local delivery
agent such as pr ocmail. These methods rely on analyzing the header lines or mes-
sage content.

Another approach is to allow the use of prefixes or suffixes on usernames in the
local parts of incoming mail. For example, additional addresses such as the follow-
ing:

caesar-rome@simple.example
casear-gaul@simple.example

ar e recognized as belonging to the user caesar. The user can then make use of
forwarding or filtering files to inspect the suffix. Fixed suffixes could be specified,
but usually the wildcard facility is used so that users can choose their own suf-
fixes. For example, the director shown in the following:

userforward:
driver = forwardfile
file = .forward
suffix = -*
suffix_optional
filter

runs a user’s .forwar d file (usually this would be an Exim filter file) for all local
parts that start with a valid username, optionally followed by a hyphen and then
arbitrary text. Within a filter file, the user can distinguish differ ent cases by testing
the variable $local_part_suffix. For example:

if $local_part_suffix contains -special then
save /home/$local_part/Mail/special

endif

Multiple User Addresses 87

9 October 2001 09:07

88 Chapter 5: Extending the Deliver y Configuration

If the filter file does not exist or does not deal with such addresses, they are
of fered to subsequent directors, and assuming no subsequent use of the suffix

option is made, those with suffixes presumably fail. Thus, users have control over
which suffixes are valid.

An alternative way of differ entiating between suffixes in local parts is to arrange
for a suffix to trigger the use of a differ ent .forwar d file. This has the advantage
that the user does not need to learn about Exim filter files. For example:

userforward:
driver = forwardfile
file = .forward${local_part_suffix}
suffix = -*
suffix_optional
filter

If there is no suf fix, .forwar d is used; if the suffix is -special, for example,
.forwar d-special is used. Once again, if the appropriate file does not exist, or does
not deal with the address, it is offer ed to subsequent directors. The user controls
which suffixes are valid by creating appropriate files, which may forward messages
to other addresses or direct them to specific files or pipe commands using tradi-
tional .forwar d featur es or Exim filter commands.

Mixed Local/Remote Domains
Consider a corporate mail gateway that delivers some local parts in one particular
domain into local mailboxes, and sends others on to personal workstations. The
domain is local in the Exim sense, but the deliveries to workstations are remote
deliveries. To implement this, a mapping from local parts to workstation names is
requir ed; for example, the following:

ceo: bigcheese.plc.co.example
alice: castor.plc.co.example
bob: pollux.plc.co.example

means that mail for the local part ceo is to be sent on to the host
bigcheese.plc.co.example, and so on. The first director might be as follows:

workstation:
driver = smartuser
local_parts = lsearch;/etc/wsusers
transport = local_smtp

9 October 2001 09:07

Local parts that are not present in the file cause the director to be skipped, and
they can then be processed by subsequent directors as conventional local users,
wher eas any local part that is found in the file is sent to the local_smtp transport,
which could be configured thus:

local_smtp:
driver = smtp
hosts = $local_part_data

Earlier examples of the smtp transport have not used the hosts option, because
they have been refer enced fr om routers that supply a list of hosts for delivery. In
this case, however, the transport is refer enced fr om a dir ector, which cannot pass a
host list, so the list must appear on the transport itself. The variable
$local_part_data contains the data from the lookup in the local_parts dir ector
option. So, in this case, if the local part is ceo, $local_part_data contains
bigcheese.plc.example, the host to which the message is to be sent.

Another approach to the same situation is not to define the domain as a local
domain, thereby causing its addresses to be offer ed first to the routers. The first
router picks off the local parts that are to be deliver ed to workstations:

workstation_people:
driver = domainlist
domains = plc.co.example
local_parts = lsearch;/etc/wsusers
route_list = * $local_part_data byname
transport = remote_smtp

We haven’t come across the domainlist router before. It is the main router used for
manually routing certain domains; that is, for implementing rules of the form
‘‘send mail for this domain to that host.’’ Normally all such routers are placed early
in the list, followed by a final lookuphost router to deal with those domains that
ar e not special in any way.

In this example, we’ve restricted this router to the plc.co.example domain and to
those local parts that are found in the /etc/wsusers file. The routing rule is specified
by the route_list option, which has three parts:

• The asterisk means ‘‘for all domains,’’ but because of the setting of domains,
we know the domain is actually plc.co.example. Another way of configuring
this router would be to omit the domains setting, and replace the asterisk by
plc.co.example. This would be slightly less efficient because it would not do
the domain check until Exim was actually running the router.

• The second part of the rule is the name of the host to which the message
should be sent. The value of $local_part_data is the result of the lookup that
was done to match the local part, which in this case is exactly the workstation
name we need.

Mixed Local/Remote Domains 89

9 October 2001 09:07

90 Chapter 5: Extending the Deliver y Configuration

• The word byname at the end specifies how the IP address of the host is to be
looked up, in this case by calling the system function gethostbyname(). Most
operating systems allow this to be configured to search /etc/hosts and possibly
other data sources, including the DNS.*

Because the router is defining the host to which the message is to be sent, the
standard remote_smtp transport can be used.

So far, we’ve dealt with the local parts that get sent on to workstations. What
about those that are to be deliver ed locally? They will bypass the first domainlist
router because they will not be found in /etc/wsusers. What we want to happen is
for them to get passed to the directors. This can be done by setting up a second
special router:

local_people:
driver = domainlist
domains = plc.co.example
route_list = * localhost byname
self = local

This routes the domain plc.co.example to the local host. The default action on dis-
covering that an apparently remote domain routes to the local host is to freeze the
message, because actually sending it in the normal way would probably create a
tight loop. However, for special cases like this, the self option can be used to tell
Exim to do something differ ent. In this case, the setting of self specifies that any-
thing routed to the local host by this router is to be treated as a local domain. Any
addr ess in the plc.co.example domain that reaches this router is therefor e passed
to the directors. This is a useful trick that can often be used to advantage for
domains that need to be partly routed and partly directed.

Deliver ing to UUCP
Exim contains no special UUCP features, and in particular, it does not support
UUCP’s ‘‘bang path’’ method of addressing. However, if you stick to using Internet
domain addresses, mail can easily be routed to UUCP. First of all, you need to set
up a mapping from domain names to UUCP hostnames. This could be a file con-
taining data such as:

darksite.plc.example: darksite
bluesite.plc.example: indigo

* The file /etc/nsswitch.conf is often used to specify how a system lookups up hostnames.

9 October 2001 09:07

Then you need a router that uses this data:

uucphost:
transport = uucp
driver = domainlist
route_file = /usr/local/uucpdomains
search_type = lsearch

This router searches the file /usr/local/uucpdomains. If it finds the domain, it
places the data it found in the $host variable, and routes the address to the uucp
transport:

uucp:
driver = pipe
user = nobody
command = /usr/local/bin/uux -r - $host!rmail $local_part
return_fail_output = true

Because this is a local transport, the entries in the routing file must contain just a
single hostname (as they do in this example). Using this configuration, a message
addr essed to the following:

postmaster@darksite.plc.example

would end up being piped to the command:

/usr/local/bin/uux -r - darksite!rmail postmaster

which is run as the user nobody.

Ignor ing the Local Par t
in Local Deliver ies
Local deliveries are not requir ed to make use of the local part of an address. One
common example is a small company that has only one person reading incoming
email. Rather than set up fixed local parts such as sales, info, enquiries, and so on,
they want all mail delivered into a single mailbox, whatever the local part. One
way of doing this would be to set up a default alias, as described in the section
“Defaults in Virtual Domains,” earlier in this chapter, but it does not even have to
be this complicated. Assuming the chosen recipient is postmaster, all you need is
the following director:

catchall:
driver = smartuser
new_address = postmaster

It should be placed last in the list of directors, so that it picks up all unknown
local parts and redir ects them to postmaster.

Ignor ing the Local Par t in Local Deliver ies 91

9 October 2001 09:07

92 Chapter 5: Extending the Deliver y Configuration

Some ISPs allocate a domain name to each small account, and then deliver all
messages addressed to that domain into a single mailbox, ignoring local parts. For
Exim running on such an ISP’s mail server, ther e ar e two issues to consider:

• How to find the mailbox from the domain name

• How to enable the owner of the mailbox to distinguish between differ ent
recipients

Suppose that the ISP allocates the domain name diego.isp.example to a customer
whose username is diego and whose mailbox is /var/mail/diego on the ISP’s mail
host to which the lowest-numbered MX record points. The Exim configuration on
the mail host could set the following:

local_domains = *.isp.example

to recognize all such domains as local; a single smar tuser dir ector can pick up
these addresses and direct them to a special transport:

onebox_customers:
driver = smartuser
domains = *.isp.example
transport = onebox

The transport extracts the mailbox name from the domain and delivers to the rele-
vant file:

onebox:
driver = appendfile
file = /var/mail/${if match{$domain}{ˆ([ˆ.]+)}{$1}}
user = ${if match{$domain}{ˆ([ˆ.]+)}{$1}}
envelope_to_add
return_path_add

The value the file option introduces a new kind of expansion item, starting with
$if{. In general, if tests a condition, and expands a substring only if the condition
is met.* In this example, the condition is that the contents of $domain match a reg-
ular expression. The regular expression ˆ([ˆ.]+) matches a string that begins with
a sequence of non-dot characters, and saves that sequence in $1. Since the domain
has already been checked, we know that in this case the regular expression will
always match. For our example, the string expansion:

${if match{$domain}{ˆ([ˆ.]+)}{$1}}

causes the regular expression to be applied to the string created by substituting
the domain name, that is, to diego.isp.example. It matches and saves the substring
diego in the variable $1. This is then substituted in the final set of braces, giving
diego as the result of the whole if expansion item.

* See Chapter 17, String Expansion, for a full explanation.

9 October 2001 09:07

The same expansion is used to specify the user that is used to run the delivery.
Setting envelope_to_add and return_path_add has the effect of preserving the
envelope addresses in header lines, so it is possible for the owner of the mailbox
to distinguish between messages to differ ent local parts, even if the recipient
addr esses do not appear in the To: header lines.

Handling Local Par ts in a
Case-Sensitive Manner
RFC 822 states that the case of letters in the local parts of addresses must be
assumed to be significant. (In contrast, the case of letters in domain names is
never significant.) Exim preserves the case of local parts in remote addresses, in
accordance with the RFC. However, on most Unix systems, usernames are in
lowercase, and local parts in email addresses are expected to be handled without
regard to case, so that messages addressed to:

icarus@knossos.example
Icarus@knossos.example
ICARUS@knossos.example
iCaRuS@knossos.example

ar e all delivered to the local user icarus. By default, therefor e, whenever it is pro-
cessing an address in one of its local domains, Exim forces the local part into
lowercase. This behavior can be disabled by setting:

locally_caseless = false

If you do this, the four addresses in the previous example would be treated as
having differ ent local parts on the host where knossos.example is a local domain.
However, sites that use mixed-case usernames do not usually have accounts that
dif fer only in the case of their letters. They generally still want to have case-insen-
sitive treatment of local parts in email. That is, they still want to recognize local
parts without regard to the case of their letters, but deliver them to case-sensitive
mailboxes. Unsetting locally_caseless is therefor e not sufficient; you also have to
arrange to convert local parts to the correct casing. One way of doing this is to set
up the first director as a smar tuser dir ector to do the conversion by a file lookup
such as:

adjust_casing:
driver = smartuser
new_address = ${lookup{${lc:$local_part}}cdb\

{/etc/usercased.cdb}{$value}fail}\
@$domain

Handling Local Par ts in a Case-Sensitive Manner 93

9 October 2001 09:07

94 Chapter 5: Extending the Deliver y Configuration

This director generates a new address by using the lc expansion item to force the
local part into lowercase, and then looking up the lowercased version in (in this
example) a cdb file, whose data might contain entries such as:

icarus: Icarus
j.caesar: J.Caesar

Thus, all four addresses previously listed would be turned into
Icarus@knossos.example. The new address has the correct casing, and can there-
for e be successfully looked up in the password file by other directors.

For maximum efficiency, a director such as this should also contain a setting of the
new_director option. Without it, the new address is processed afresh, and if it is
dif ferent from the original address, it passes through the adjust_casing dir ector for
a second time, though this just regenerates the same new address. The next time
ar ound, the director is skipped because it has already processed that address. Set-
ting new_director to the next director, as shown in the following example:

new_director = system_aliases

avoids the wasted second pass through adjust_casing.

Scanning Messages for Vir uses
Ther e ar e a number of programs that will scan an email message to determine
whether it contains any viruses as attachments. Some of these run on Unix sys-
tems, but others are available only for other operating systems. The general tech-
nique for using such a program from Exim is the same in both cases: incoming
messages are deliver ed to the scanner, which has a secure means of passing those
that are ‘‘clean’’ back to Exim for final delivery. This process causes an additional
Received: header to be added to the message, but that is not usually a problem.

Messages can be diverted to the scanner program directly from a director or router,
or a system filter can be used in some cases. We have not discussed Exim’s filter-
ing facilities yet (details are in Chapter 10), but in brief, a system filter allows a
message to be inspected before it is deliver ed, and various actions can be taken,
depending on what the filter finds. In the context of virus scanning, this can save
some resources by doing some initial testing before calling an external scanner.
However, as discussed here, using a system filter introduces some complications
that can be avoided if a filter is not used.

9 October 2001 09:07

As an example of how a filter might be used, consider checking for attachments.
MIME messages that have attachments must contain a header line such as:

Content-Type: multipart/mixed;
boundary="------------9D6D28528332819A908698F9"

A ‘‘boundary’’ has to be defined for there to be any attachments. You could test for
this in a system filter by this command:

if $h_Content-Type: contains "boundary" then ...

and pass the message to an external scanner only if the condition was met.

Attachments are not the only way that viruses can be transmitted. In
practice, you would need some additional tests, such as checking for
the absence of uuencoded material, before skipping the full virus
check.

Virus Checking on the Local Host
If your virus scanner runs on the local host, Exim can deliver a message to it via a
pipe, and it can be retur ned by running a new Exim reception process and pass-
ing the message back through another pipe. It is important to preserve the original
sender address. This can be done by making use of the -f command-line option,
or by transferring the message in batch SMTP format. In both cases, the process
that retur ns the message to Exim must be running as a trusted user, because only
trusted users are per mitted to specify sender addresses.

The normal way of identifying messages that have come back from the scanner is
to make use of the -oMr command-line option. This defines the protocol by which
the message is received. Normally, it is set to values such as smtp or local, but
trusted callers can set it to an arbitrary string. The value is recorded in the log and
is available in the $received_protocol variable, but it is not otherwise used by
Exim.

In order to make this work, therefor e, you need to decide which uid is to be used
to run the scanner, and to set it up as an Exim trusted user. It is a good idea to
reserve a special uid just for this purpose. Suppose you have set up a user called
vir check. Adding the following:

trusted_users = vircheck

makes it trusted. This means that any process running under the uid of vir check
can supply arbitrary sender addresses and protocol values for messages it submits.

Scanning Messages for Vir uses 95

9 October 2001 09:07

96 Chapter 5: Extending the Deliver y Configuration

Next, you need to set up a transport to pipe the message to the scanner. The fol-
lowing example uses batch SMTP (BSMTP):

pipe_to_scanner:
driver = pipe
command = /path/to/scanner/command
user = vircheck
bsmtp = all
prefix =

Setting bsmtp to all means that only a single copy of the message is sent, however
many recipients there are. The setting of prefix to an empty string is important;
the default is to insert a UUCP-like From line, which is not correct for BSMTP for-
mat.

Using BSMTP makes it easy for the scanner to retur n the message with the sender
and recipients unchanged. If the special protocol value is scanned-ok, for instance,
the scanner can run a command of the form:

exim -oMr scanned-ok -bS

and copy the message it received to its standard input, without modification. For
example, the following Perl script is a dummy scanner that does not actually do
any checking, but simply resubmits the message:

#!/usr/bin/perl
open(OUT, "|exim -oMr scanned-ok -bS")
|| die "Failed to set up Exim process\n";

print OUT while (<STDIN>);
close(OUT);

You now have to arrange for new messages to be passed to the scanner. For
addr esses in local domains, you can do this by inserting a new director at the start
of the list of directors:

send_to_scanner:
driver = smartuser
transport = pipe_to_scanner
condition = ${if eq {$received_protocol}{scanned-ok}{no}{yes}}

The condition option checks the value of $received_protocol and skips the direc-
tor if its value is scanned-ok. Without this check, messages would loop forever
between Exim and the scanner. For messages not received from the scanner, all
local addresses are dir ected to the pipe_to_scanner transport, which batches them
into a single delivery to the scanner program because of the setting of bsmtp.

If you also want messages addressed to remote domains to be scanned, you need
to create a new router as well:

send_to_scanner:
driver = domainlist
transport = pipe_to_scanner

9 October 2001 09:07

condition = ${if eq {$received_protocol}{scanned-ok}{no}{yes}}
route_list = *

This should be placed first in the routers configuration, and could be confined to
certain domains by replacing the asterisk in route_list with a suitable pattern.

An alternative way of arranging for messages to be passed to a scanner program is
to make use of a system filter, which will apply whether the recipients are local or
remote. However, in several ways this is more complicated. The filter would
contain a command such as this:*

if $received_protocol is not scanned-ok then
pipe "/the/scanner/command $sender_address ’$recipients’"

endif

When a system filter sets up a delivery in this way, it is considered to have han-
dled the delivery arrangements for the message, so normal delivery to the regular
recipient addresses is bypassed, and the only delivery that is done is to the scan-
ner. In this example, the sender address is passed to the command as the first
argument, and the list of recipients (which are separated by a comma and a space)
is the second argument, created by expanding $recipients.† To retur n a clean
message for delivery, the scanner should call Exim with the equivalent of this
command line:

exim -oi -oMr scanned-ok -f ’$sender_address’ ’$recipients’

and write the message to the standard input. Although no additional director or
router is requir ed, you still have to define a transport. It should not have a command

setting, because the command is specified by the filter. So all that is needed is:

pipe_to_scanner:
driver = pipe
user = vircheck
prefix =

but in addition you must set:

message_filter_pipe_transport = pipe_to_scanner

to tell Exim which transport to run when it encounters a pipe command in a sys-
tem filter. Batch SMTP cannot be used in this case, because this is a special kind of
one-of f delivery for the whole message, independent of the normal recipients.

Ther e is one other complication that arises when a system filter is used like this to
cr eate an extra delivery. The message’s recipients are added to the message in an

* See Chapter 10 for a discussion of filter commands.

† The $recipients variable is available only in system filters. For privacy reasons, it is not available in
user filters.

Scanning Messages for Vir uses 97

9 October 2001 09:07

98 Chapter 5: Extending the Deliver y Configuration

X-Envelope-T o: header line. It is not normally appropriate to leave this line in the
message when it is resubmitted, so it must be recognized and removed. It could
be used as another way of obtaining the list of recipients in the scanner.

Virus Checking on an External Host
If your virus checker runs on an external host, all that is needed is a configuration
that sends messages to the checking host, unless they arrived from there. Suppose
the checker is running on IP address 192.168.13.13; a transport to deliver messages
ther e is:

smtp_to_scanner:
driver = smtp
hosts = 192.168.13.13

The director to send unchecked messages to the scanner is now:

send_to_scanner:
driver = smartuser
transport = smtp_to_scanner
condition = ${if eq {$sender_host_address}{192.168.13.13}{no}{yes}}

and the equivalent router for remote addresses is:

send_to_scanner:
driver = domainlist
transport = smtp_to_scanner
condition = ${if eq {$sender_host_address}{192.168.13.13}{no}{yes}}
route_list = *

If you have more than one host running a virus checker, you can specify the trans-
port as:

smtp_to_scanner:
driver = smtp
hosts = 192.168.13.13 : 192.168.14.14 : ...
hosts_randomize

The hosts_randomize option makes Exim put the hosts in a random order before
trying them, each time the transport is run. The condition in the director or router
is now more complicated:

send_to_scanner:
driver = smartuser
transport = smtp_to_scanner
condition = ${if or {\

{eq {$sender_host_address}{192.168.13.13}}\
{eq {$sender_host_address}{192.168.14.14}}\
...
}{no}{yes}}

9 October 2001 09:07

It is not straightforward to use a system filter directly when an external checker is
in use because of the complication of preserving the message’s recipients. A sys-
tem filter could, however, add a header line that is used by directors and routers
to determine whether to send a message to the checker or not.

Modifying Message Bodies
Ther e have been a lot of questions on the Exim mailing list about modifying the
bodies of messages as they pass through the MTA. There are thr ee specific things
that people want to do:

• Lawyers want to add standard disclaimers.

• Marketr oids want to add advertisements.

• The paranoid want to remove attachments.

Ther e ar e legal and ethical issues that arise in this connection that will not be dis-
cussed here, but there are also serious technical problems. Since the advent of
MIME (RFC 2025), message bodies are no longer (in general) just strings of text
characters. Just adding extra characters on the end of a message is likely to break
the syntax of the message, causing it to become unreadable by standard MUAs.*

Further more, if the message is digitally signed, making any change to the body
invalidates the signature. Digital signatures are becoming more widely used now
that they are legally binding in some countries.

Finally, it is not the job of an MTA to modify the bodies of messages. If such modi-
fication is to be undertaken, the program that does it needs a lot of specialist
knowledge about the format of messages, which is inappropriate to include in an
MTA.

If, despite all these considerations, you find yourself wanting to do this kind of
thing using Exim, you need to make use of a transport filter, as described in Chap-
ter 9. A transport filter lets you pass outgoing messages through a program or
script of your choice. It is the job of this script to make any changes to the mes-
sage that you requir e. By this means, you have full control over what changes are
made, and Exim does not need to know anything about message bodies. How-
ever, using a transport filter requir es additional resources, and may slow down
mail delivery.

You can use Exim’s directors and routers to arrange for those messages that you
want to modify to be delivered via a transport filter. For example, suppose you
want to do this for messages from addresses in your domain that are being

* One such client (now obsolete) crashes on encountering a message that has been tampered with in
this way.

Modifying Message Bodies 99

9 October 2001 09:07

100 Chapter 5: Extending the Deliver y Configuration

deliver ed to a remote host. You would place the following router before the stan-
dard lookuphost router:

filter_remote:
driver = lookuphost
transport = remote_smtp_filter
condition = ${if eq {$sender_address_domain}{your.domain}{yes}{no}}

We’ve previously encountered the options domains, local_parts, senders, and
require_files, which apply conditions to the running of routers and directors.
These exist independently because those are commonly requir ed tests. To cope
with less common requir ements, the condition option exists. Its value is a string
that is expanded. If the result is 0, no, or false, the driver is bypassed. For any
other values, the driver is run (assuming other conditions are met, of course). This
facility allows customized conditions to be applied, using any of the features avail-
able in string expansions.

This particular expansion tests contents of the variable $sender_address_domain,
which contains the domain of the sender of the message. The router is run only if
the value is your.domain. The actual routing is using the DNS as normal, but if it
succeeds, a special transport called remote_smtp_filter is used. When the sender’s
domain is not your.domain, addr esses fall through to the normal router and are
routed to the standard remote_smtp transport.

Another way to do this would be to use a single router, with an expanded string
for the transport setting:

lookuphost:
driver = lookuphost
transport = ${if eq {$sender_address_domain}{your.domain}\

{remote_smtp_filter}{remote_smtp}}

The new transport is defined thus:

remote_smtp_filter:
driver = smtp
transport_filter = /your/filter/command

The entire message is passed to your filter command on its standard input. It must
write the modified version to the standard output, taking care not to break the RFC
822 syntax. As this is a remote transport, the command is run as the Exim user.

9 October 2001 09:07

6
Options Common to Director s

and Routers

Pr evious chapters introduced a number of general options that can be set for any
dir ector or router to show how some common configuration requir ements could
be met. This chapter recaps those options, and also includes the remaining options
that are common to all directors and routers. These are usually called generic
options. In addition, each director and router has some options that are specific to
its operation; these are described in the following chapters in the sections on the
individual drivers.

One generic option that is always set is driver. This determines which particular
dir ector or router is to be used. When a driver decides to accept an address and
queue it for a transport, the value of the generic transport option is expanded,
and must yield the name of an available transport. If it does not, delivery is
deferr ed.

The remaining generic options can be divided into four types:

• Those that set conditions for the running of the driver

• Those that change what happens when a driver is successful; that is, when it
accepts an address

• Those that add data to an address accepted by the driver, for use when that
addr ess is delivered

• Those that provide debugging information

The options for any driver may be given in any order in the configuration file,
except that those specific to the individual driver must follow the setting of driver.
For this reason, driver is normally given first.

101

9 October 2001 09:08

102 Chapter 6: Options Common to Director s and Routers

Conditional Running of Routers
and Director s
In simple configurations, an address is offer ed to all the defined directors or
routers (as appropriate) in turn, until one is found that can handle it, or until all
have been tried. As shown in several examples in the previous chapter, one way
of extending a simple configuration to deal with more complicated situations is to
apply conditions to some directors (or routers) so that they are not run for every
addr ess, but only when the conditions are met.

Restr icting Dr iver s to Specific Domains
The domains option is used to specify that a particular driver is to run only when
the address contains certain domains, as in the virtual domains example from the
pr evious chapter:

virtuals:
driver = aliasfile
domains = cdb;/etc/virtuals
file = /etc/$domain.aliases
search_type = lsearch
no_more

Stopping an Address from Being Passed On
The virtual domains example also shows the use of no_more—an option that pre-
vents subsequent drivers from running when one declines. This makes it easier to
restrict one or more drivers to a given set of domains.

Restr icting Dr iver s to Specific Local Par ts
Just as the domains option restricts a driver to specific domains, the local_parts

option restricts a driver to specific local parts. An example of this is when directing
postmaster mail for a group of local domains to the same address:

postmaster:
driver = smartuser
local_parts = postmaster
new_address = postmaster@your.domain.example

Restr icting Dr iver s to Specific Senders
The senders option restricts a driver to messages with certain senders only. Earlier,
we saw an example of how it could be used to implement a closed mailing list.

9 October 2001 09:08

Restr icting Dr iver s by Other Conditions
The domains, local_parts, and senders options exist because these are common
conditions that are often requir ed. For those less common, there is an option
called condition whose value is an arbitrary string. This is run through the string
expander, and if the result is a forced failure, an empty string, or one of the strings
0, no, or false, the driver is not run. There are some examples of this in the dis-
cussion of virus scanning in the previous chapter. Because of the flexibility of the
string expansion mechanism, a wide range of conditions can be tested.

Suppose you are prepar ed to deliver small messages directly over the Internet, but
want to send large ones to some other host (which might, for example, send them
out overnight). The standard lookuphost router could be modified like this:

lookuphost:
driver = lookuphost
transport = remote_smtp
condition = ${if < {$message_size}{500K}{yes}{no}}

The expansion string is using a numeric comparison (specified by a ‘‘less than’’
sign) on the variable $message_size, which contains the size of the message. If the
message is less than 500 KB in size, the string expands to yes; otherwise it
expands to no. Thus, this router handles messages that are smaller than 500 KB
only. You would, of course, also need a subsequent router to deal with the large
messages. A domainlist router could be used for this.

Restr icting a Driver to Ver ification Only
Exim draws a distinction between processing an address in order to deliver a mes-
sage to it, and verifying an address to check that it is valid. Verification is mostly
used to check the validity of addresses during incoming SMTP calls, at the point
when the message’s envelope is received. It consists of running the address
though the directors or routers, as if it were being processed for delivery. An
addr ess verifies successfully if one of the directors or routers accepts it. Verification
is discussed in detail in Chapter 13, Message Reception and Policy Controls.

Sometimes, particularly in the case of the directors, you want drivers to behave
dif ferently when verifying an address, as opposed to processing it for delivery. For
example, while verifying that a local part refers to a user mailbox, there is no
point wasting time checking the user’s .forwar d file. Setting the following:

no_verify

Conditional Running of Routers and Director s 103

9 October 2001 09:08

104 Chapter 6: Options Common to Director s and Routers

on a director or router causes it to be skipped during verification. In fact, this is
just a shorthand for:

no_verify_sender
no_verify_recipient

which suppress the driver during verification of senders and recipients indepen-
dently.

As an example of where this could be useful, suppose you are using a smar tuser
dir ector to pass all unrecognized local parts to a script that tries to generate helpful
err or messages, or to a differ ent host that might be able to handle these addresses.
This means that no local part that is passed to the directors will ever cause a fail-
ur e during message delivery. However, if verification of senders at SMTP time is
configur ed, you do not want arbitrary local parts in your domain to be accepted as
valid incoming senders. The solution is to set no_verify_sender on the smar tuser
dir ector, so that it is not run when verifying senders.

Ther e may be occasional circumstances where it is helpful to run a director or
router only during verification and not during delivery. This can be configured by
setting:

verify_only

in its configuration. If you really want to, by making use of verify_only and
no_verify, you can partition the routers or directors into a set that is used only for
delivery, and another set that is used only for verification.

Restr icting Dr iver s by File Existence
The final common conditional option for directors and routers is require_files. It
causes the existence (or nonexistence) of certain files to determine whether a
driver is run, and there are several examples of its use in the previous chapter.
Her e is the director that was shown as an example of how to call SmartList:

list_director:
driver = smartuser
suffix = -request
suffix_optional
local_parts = !.bin:!.etc
require_files = /usr/slist/$local_part/rc.init
transport = list_transport

The string value of require_files is expanded and then interpreted as a colon-
separated list of absolute pathnames. If any string in the list is empty, it is ignored.
Otherwise, except as described here, each string must be a fully qualified file path,
optionally preceded by an exclamation mark (indicating negation).

9 October 2001 09:08

A failur e to expand the string, or the presence of a path within it that is not abso-
lute, causes Exim to write a message to its panic log and exit immediately. This
includes forced failure, because the whole string is expanded once, before being
interpr eted as a list. If you want a particular variant of the expansion to specify
that no files are to be checked, you should cause it to yield an empty string rather
than forcing failure.

If the option is used on a localuser dir ector, or on a forwardfile dir ector that has
either of the check_local_user or file_directory options set, the expansion vari-
able $home may appear in the list, referring to the home directory of the user
whose name is that of the local part of the address.

The driver is skipped if any requir ed path does not exist, or if any path preceded
by ! does exist. If Exim cannot determine whether or not a file exists, delivery of
the message is deferred. This can happen when NFS-mounted filesystems are
unavailable.

Sometimes an attempt to check a file’s existence yields the error ‘‘Permission
denied.’’ This means that the user is not permitted to read one of the directories
on the file’s path. The default action is to consider this a configuration error, and
delivery is deferred because neither the existence nor the nonexistence of the file
can be determined. However, in some circumstances it may be desirable to treat
this condition as if the file did not exist. If the filename (or the exclamation mark
that precedes the filename for nonexistence) is preceded by a plus sign, this error
is treated as if the file did not exist. For example:

require_files = +/some/file

These file checks are nor mally run under the Exim uid. However, when processing
an address for delivery, it is possible to arrange for this test to be run under a spe-
cific uid and gid. This may sometimes be a better way of avoiding the ‘‘Permission
denied’’ problem. If an item in a require_files list does not contain any slash
characters, it is taken to be the user (and an optional group, separated by a
comma) to be used for testing subsequent files in the list. If no group is specified,
but the user is specified symbolically, the gid associated with the uid is used; oth-
erwise the gid is not changed. For example:

require_files = mail:/some/file
require_files = $local_part:$home/.procmailrc

The second example works because the require_files string is expanded before
it is used. However, it would need to be on a director such as localuser that sets
the $home variable appropriately.

Conditional Running of Routers and Director s 105

9 October 2001 09:08

106 Chapter 6: Options Common to Director s and Routers

When processing an address for verification (as opposed to deliv-
ery), you cannot cause the uid and gid to be changed in this way.
This is because Exim has normally given up its privilege when
accepting incoming SMTP mail. Often, it is possible to set no_verify
on drivers that make use of the facility. Otherwise, some other
appr oach to the problem must be found.

Interaction of Conditions
This section describes how the various conditional options described in the previ-
ous sections interact with each other.

If the domain and local part of an address are not in agreement with domains and
local_parts, if the condition option fails, or if verify_only is set and verification
is not happening, the director or router is skipped and the next one is tried.

Otherwise, if no_more is set, no subsequent drivers are ever called automatically.*

The current driver is itself called except in these three circumstances:

• Verification is happening and its verify_sender or verify_recipient option
(as appropriate) is turned off.

• The existence or nonexistence of files listed in the require_files option is not
as expected.

• The sender of the message is not in agreement with senders.

The options domains, local_parts, require_files, senders, and condition ar e
expanded and tested in that order. When any test fails, no further expansions are
done. The order of testing can make a differ ence if some of them contain expan-
sion items that refer to values relevant to the others. For example, suppose some
dir ector has these settings:

domains = dom1.example : dom2.example
local_parts = cdb;/etc/$domain

When local_parts is tested, $domain can only be dom1.example or
dom2.example, and as long as the corresponding files exist, the test of the local
part can be done. If local_parts wer e tested first, the domain would not be con-
strained, and might cause a lookup error as a result of a nonexistent file.

Because the senders and condition tests are done after checking for file existence,
they can contain refer ences to files whose existence is tested (for example, by
looking up something in them).

* They can, however, be called when a router explicitly passes an address to the following driver, for
example, by means of the self option or the host_find_failed option of the domainlist router.

9 October 2001 09:08

Chang ing a Driver’s Successful Outcome
When a router or director successfully handles an address, that address is normally
consider ed to be finished with, and it is not passed to any more routers or direc-
tors. Suppose, however, that you want to save copies of messages addressed to
certain recipients.* Using a router or director to set up deliveries of the requir ed
copies is a convenient way to handle this requir ement, but of course the messages
must go on to be delivered normally as well. The unseen option is provided for
just this purpose. It is the complement of no_more; unseen causes directing or rout-
ing to continue when it would otherwise cease. Thus, the director below sends a
copy of every message addressed to ceo@plc.example to secr etary@plc.example,
without disturbing the normal delivery:

copy_ceo:
driver = smartuser
local_parts = ceo
domains = plc.example
new_address = secretary@plc.example
unseen

For this to work, plc.example must be defined as a local domain, and this director
must precede the director that sets up the normal delivery. The domains setting is
necessary only if the directors are handling differ ent local domains in differ ent
ways.

Sometimes, when verifying addresses, you may want to force a specific address to
fail. If a driver has fail_verify set and succeeds in handling an address that is
being verified, verification fails instead of succeeding. Actually, fail_verify is just
a shorthand for:

fail_verify_sender
fail_verify_recipient

which control this forced failure mechanism independently for sender and recipi-
ent addresses. These options make it possible to fail verification for a set of local
parts that is defined by what a specific director matches. They apply only during
verification, and are ignor ed when processing an address for delivery. Here is an
example of a real case where this is used.

When an account is cancelled on one of the central systems at the University of
Cambridge, it is not immediately removed from the password data; instead the
password is reset and the home directory is set to /home/CANCELLED. This makes
it easy to reinstate an account. Only after some time has passed is it completely
removed. Mail for these cancelled accounts must not be accepted, and therefor e

* If you want to save copies of all messages independently of the recipients, it is best to use a mes-
sage filter (see Chapter 10, Message Filtering) because it can arrange for a single copy, however
many recipients the message has.

Chang ing a Driver’s Successful Outcome 107

9 October 2001 09:08

108 Chapter 6: Options Common to Director s and Routers

verification of their addresses must fail, so that incoming SMTP mail for them is
rejected. Action is needed to achieve this, because the usernames are still in the
password data.

A featur e of the localuser dir ector that we haven’t yet met helps to solve this prob-
lem. It is called match_directory, and it causes the director to decline unless the
home directory read from the password data matches the option’s value. The sim-
plest thing to do would be to add:

match_directory = /home/$local_part

to the normal localuser dir ectory, so that accounts that do not have a normal home
dir ectory ar e not recognized. This achieves two things:

• Incoming SMTP messages for cancelled users are rejected because the recipi-
ent address fails to verify.

• If a message addressed to a cancelled user is received from a local process
(wher e recipient verification does not happen), it is bounced because direct-
ing the address fails.

The problem with this is that the error given in bounce messages is ‘‘unknown
local part,’’ which often causes the senders to pester the postmaster with questions
as to what has happened to the account ‘‘that worked yesterday.’’ Therefor e, we
use a differ ent strategy. The following additional director is inserted before those
that handle local users:

cancelled_users:
driver = localuser
match_directory = /home/CANCELLED
transport = cancelled_user_pipe
fail_verify

This director checks for a local user whose home directory is /home/CANCELLED ;
other local parts are passed on to the next director. When delivering, the message
is passed to a pipe transport in order to generate a bounce message that explains
what has happened (see the section “The pipe Transport,” in Chapter 9, The
Transports, for details of pipe transports). Setting fail_verify ensur es that when
addr esses ar e being verified, any that are matched cause a verification error.

Adding Data for Use by Transpor ts
When a director or router accepts an address, it can attach data to it for use when
the address is finally transported. Some items are relevant only when the driver
passes the address directly to the transport; others accumulate as the address
passes through several drivers (for example, multiple instances of aliasing or
forwarding).

9 October 2001 09:08

Adding or Removing Header Lines
The header section of a message can be modified by adding or removing individ-
ual header lines at the time it is transported. Such modifications naturally apply
only to the copy of the message that the transport writes out. This is not a very
common requir ement, but some installations find it useful.

Header line additions and removals can be specified on directors and routers (as
well as on transports) by setting headers_add and headers_remove, respectively.
Note, however, that addresses with differ ent headers_add or headers_remove set-
tings cannot be transported as multiple envelope recipients on a single copy of the
message. This may reduce perfor mance.

Each of these options sets a string that is expanded at directing or routing time,
and retained for use at transport time. If the expansion is forced to fail, the option
has no effect. For headers_remove, the expanded string must consist of a colon-
separated list of header names, not including their terminating colons. For
example:

headers_remove = return-receipt-to:acknowledge-to

For headers_add, the expanded string must be in the form of one or more RFC 822
header lines, separated by newlines (coded as \n inside a quoted string). For
example:

headers_add = "X-added-header: added by $primary_hostname\n\
X-another: added at time $tod_full"

Exim does not check the syntax of these added header lines, except that a newline
is supplied at the end if one is not present. If an address passes through several
dir ectors or routers as a result of aliasing or forwarding operations, any
headers_add or headers_remove specifications are all retained for use by the trans-
port. This makes it possible to add header lines that record aliasing and
forwarding operations on the address. For example, you could add the following:

headers_add = X-Delivered-To: $local_part@$domain

to the configuration for every aliasing and forwarding director. A message
addr essed to postmaster@example.com that was aliased to p.master@example.com
and then forwarded to pat@example.com would end up with these added headers:

X-Delivered-To: postmaster@example.com
X-Delivered-To: p.master@example.com

This provides a complete record of the way the address was handled.

Because the addition of header lines does not actually happen until the message is
transported, such lines are not accessible to subsequent directors or routers that
may handle an address after it passed through a driver with headers_add set.

Adding Data for Use by Transpor ts 109

9 October 2001 09:08

110 Chapter 6: Options Common to Director s and Routers

At transport time, removal applies only to the original header lines that arrived
with the message, plus any that were added by a system filter. It is not possible to
remove header lines that are added by a director or router. For each address, all
the original header lines listed in headers_remove ar e removed, and those specified
by headers_add ar e added in the order in which they were attached to the address.
Then any additional header lines specified by the transport are added.

If you are making use of the unseen option to take copies of mes-
sages, header lines that are added by drivers that have unseen set
ar e not present in the other deliveries of the message.

Chang ing the Return Path
When an address undergoes aliasing or forwarding, it is sometimes desirable to
change the address to which subsequent bounce messages will be sent. This is
variously known as the retur n path, err or addr ess, or envelope sender.

The most common case is when a mailing list is being ‘‘exploded.’’ Bounce mes-
sages should retur n to the manager of the list, not the poster of the message. The
generic option errors_to can be used on any director or router to change the
envelope sender for deliveries of any addresses it handles or generates. If the
addr ess subsequently passes through other directors or routers that have their own
errors_to settings, these override any earlier settings. The value of the option is
expanded, and checked for validity by verifying it. It is not used if verification
fails. The director that we used for mailing lists in the previous chapter is the fol-
lowing:

lists:
driver = forwardfile
domains = lists.simple.example
no_more
file = /etc/lists/$local_part
no_check_local_user
forbid_pipe
forbid_file
errors_to = $local_part-request@lists.simple.example

It shows a very typical use of errors_to.

Controlling the Environment for Local Deliver ies
If a director or router queues an address for a local transport, the user and group

options can be used to specify the uid and gid under which to run the local deliv-
ery process. One common case where the user option is needed is when an alias

9 October 2001 09:08

file sets up a delivery to a pipe or a file. For example, if /etc/aliases contains this
line:

majordomo: |/usr/mail/majordomo ...

then either the aliasfile dir ector or the transport to which it sends such deliveries
must define the uid and gid under which the pipe command is to be run. The
dir ector’s configuration could contain, for example:

user = majordom

The user and group options are strings that are expanded at the time the director
or router is run, and must yield either a digit string or a name that can be looked
up from the system’s password data.* By this means, differ ent values can be speci-
fied for differ ent circumstances.

Suppose you are running another program via a pipe from an alias file, in addition
to Majordomo. Perhaps it is an automated way of obtaining some kind of help, so
that your aliases are:

majordomo: |/usr/mail/majordomo ...
autohelp: |/usr/etc/autohelp ...

Each pipe must run under its own uid, so a fixed value such as the one shown
her e is no longer possible. An expanded string can be used to select the correct
user like this:

user = ${if eq {$local_part}{majordomo}{majordom}{autohelp}}

This expansion string checks the local part for the value majordomo and expands to
majordom if it matches; otherwise it expands to autohelp.

If user is given without group, the group associated with the user is used as a
default. For most directors and routers, the default for these options is unset, but
for the forwardfile dir ector with check_local_user set, and for the localuser dir ec-
tor, the default is taken from the password data.

The uid and gid set by a director or router can be overridden by options on the
transport. Another way to handle this example is to put the setting of user on the
transport instead of the aliasfile dir ector. If you do this, however, you would prob-
ably want to set up a dedicated transport for all the pipe commands generated by
this director, so that other pipe commands (for example, from users’ .forwar d files)
do not use a transport with this user setting. You can use address_pipe_transport

on the aliasfile dir ector to specify which transport is used for the pipe commands
generated within that director.

* Exim uses the operating system’s functions for looking up users and groups. These may consult
/etc/passwd and /etc/gr oup, but in larger systems the password data is usually kept elsewhere, such
as in NIS or NIS+ databases.

Adding Data for Use by Transpor ts 111

9 October 2001 09:08

112 Chapter 6: Options Common to Director s and Routers

A user may be a member of many groups, but (at least on some operating sys-
tems) it is quite an expensive operation to find them and set them all up when
changing a process’s uid, so Exim does not do this by default. If you want this to
be done, then in addition to setting user you need to set initgroups, which is a
Boolean option that takes no data. For example:

user = majordom
initgroups

Specifying fallback_hosts
The final option that sets up data to be passed to a transport is fallback_hosts.
This option provides a ‘‘use a smart host only if delivery fails’’ facility. It applies
only to remote transports, and its value must be a colon-separated list of host-
names or IP addresses. It is not string expanded. If the transport is unable to
deliver to any of the normal hosts, and the errors are not permanent rejections, the
addr esses ar e put on a separate transport queue with their host lists replaced by
the fallback hosts.

For example, you might want to set up a host to attempt remote deliveries accord-
ing to the normal MX routing, and to send any messages that cannot immediately
be delivered to a smart host. You would use a standard lookuphost router to do
the MX processing:

lookuphost:
driver = lookuphost
transport = remote_smtp

The associated transport makes use of fallback_hosts:

remote_smtp:
driver = smtp
fallback_hosts = smart.host.example

When a message is being delivered, Exim first tries the hosts that are found by the
router from the MX records. If all of them give temporary errors, the address,
instead of being deferred, is put onto a queue of addresses that are awaiting fall-
back processing.

Once normal delivery attempts are complete, the fallback queue is processed by
rerunning the same transports with the new host lists. It is done this way (instead
of trying the fallback hosts as soon as the ordinary hosts fail) so that if several fail-
ing addresses have the same fallback_hosts (and max_rcpt per mits it), a single
copy of the message, with multiple recipients, is sent.

Ther e is one situation in which fallback hosts are not used. For any address that is
routed using MX records, if the current host is in the MX list (that is, it is an MX

9 October 2001 09:08

backup for the address), fallback hosts are not used for that address for the follow-
ing reason. Suppose a host is using a configuration such as the one previously
shown, and is a secondary MX for some domain. When the primary MX host for
that domain is down, mail for the domain arrives at the secondary host. It cannot
deliver it to the primary MX host (because it is down), but it must not send it to its
fallback host, because that host is likely to send it straight back, causing a mail
loop.

Debugg ing Director s and Routers
Ther e is an option called debug_print whose sole purpose is to help debug Exim
configurations. When Exim is run with debugging turned on,* the value of
debug_print is expanded and added to the debugging output that is written to the
standard error stream (stderr). This happens before checking require_files and
condition, but after the other conditional checks. This facility can be used to
check that the values of certain variables are what you think they should be.

For example, if a condition option appears not to be working, debug_print can be
used to output the values it refer ences. In the section “Scanning Messages for
Viruses,” in the previous chapter, we use this router for sending messages to a
virus scanner program:

send_to_scanner:
driver = domainlist
transport = pipe_to_scanner
condition = ${if eq {$received_protocol}{scanned-ok}{no}{yes}}
route_list = *

This router should be skipped if $received_protocol has the value scanned-ok.
Suppose that this configuration was not working, and you were trying to find out
why. One obvious approach is to check the value of $received_protocol at the
time the router is run. You can do this by adding the following:

debug_print = received_protocol=$received_protocol

to the router, running a delivery with debugging turned on, and examining the
standard error output.

* See -d and -v in the section “Options for Debugging,” in Chapter 20, Command-Line Interface to
Exim.

Debugg ing Director s and Routers 113

9 October 2001 09:08

114 Chapter 6: Options Common to Director s and Routers

Summar y of Director/Router
Gener ic Options
The generic options that are applicable to both directors and routers are summa-
rized in this section:

condition (string, default = unset)
This option specifies a test that has to succeed for the driver to be called. The
string is expanded. If the result is a forced failure, an empty string, or one of
the strings 0, no, or false (checked without regard to the case of the letters),
the driver is not run.

debug_print (string, default = unset)
If this option is set and debugging is enabled, the string is expanded and
included in the debugging output.

domains (domains list, default = unset)
This option restricts a director or router to specific mail domains. The string is
expanded and interpreted as a colon-separated list. Because of the expansion,
any items containing backslash or dollar characters must be escaped with a
backslash. The driver is skipped unless the current domain matches an item in
the list. If the match is achieved by means of a file lookup, the data that the
lookup retur ned for the domain is placed in the $domain_data variable for use
in string expansions of the driver’s private options, and in the options of any
transport that the driver sets up.

driver (string, default = unset)
This option must always be set. It specifies which of the available directors or
routers is to be used.

errors_to (string, default = unset)
Delivery errors for any addresses handled or generated by the director or
router are sent to the address that results from expanding this string, provided
that it verifies as a valid address.

fail_verify (Boolean, default = false)
Setting this option has the effect of setting both fail_verify_sender and
fail_verify_recipient to the specified value.

fail_verify_recipient (Boolean, default = false)
If this option is true when the driver successfully verifies a recipient address,
verification fails instead of succeeding. This option has no effect if the
verify_recipient option is false.

9 October 2001 09:08

fail_verify_sender (Boolean, default = false)
If this option is true when the driver successfully verifies a sender address,
verification fails instead of succeeding. This option has no effect if the
verify_sender option is false.

fallback_hosts (string list, default = unset)
If a driver queues an address for a remote transport, this host list is associated
with the address and used instead of the transport’s fallback host list. String
expansion is not applied to this option. The argument must be a colon-sepa-
rated list of hostnames or IP addresses.

group (string, default = see description)
If a driver queues an address for a local transport, and the transport does not
specify a group, the group given here is used when running the delivery pro-
cess. For most directors and routers the default is unset, but for the forwardfile
dir ector with check_local_user set, and for the localuser dir ector, the default is
taken from the password data.

headers_add (string, default = unset)
This option specifies a string of text that is expanded at directing or routing
time, and associated with any addresses that are processed by the driver. If the
expanded string is empty, or if the expansion is forced to fail, the option has
no effect. Other expansion failures are treated as configuration errors.

headers_remove (string, default = unset)
The string is expanded at directing or routing time and is then associated with
any addresses that are processed by the driver. If the expansion is forced to
fail, the option has no effect. Other expansion failures are treated as configura-
tion errors. After expansion, the string must consist of a colon-separated list of
header names.

initgroups (Boolean, default = false)
If the driver queues an address for a local transport, and this option is true,
and the uid supplied by the router or director is not overridden by the trans-
port, the initgroups() function is called when running the transport to
ensur e that any additional groups associated with the uid are added to the
secondary groups list.

local_parts (string list, default = unset)
This option restricts a director or router to specific local parts. The string is
expanded and interpreted as a colon-separated list. Because of the expansion,
any items containing backslash or dollar characters must be escaped with a
backslash. The driver is run only if the local part of the address matches the
list. If the match is achieved by a lookup, the data that the lookup retur ned for

Summar y of Director/Router Generic Options 115

9 October 2001 09:08

116 Chapter 6: Options Common to Director s and Routers

the local part is placed in the variable $local_part_data for use in expansions
of the driver’s private options, and in the options of any transport that the
driver sets up.

more (Boolean, default = true)
If this option is false and the driver runs but declines to handle an address, no
further drivers are tried, and directing or routing fails. If the only reason a
driver does not run is because no_verify is set (which can happen when an
addr ess is being verified, and all other conditions are met), a false value for
more again prevents any further drivers from running. However, in all cases, if
a router explicitly passes an address to the following router by means of the
setting:

self = pass

or otherwise, the setting of more is ignored.

require_files (string list, default = unset)
This option checks for the existence or nonexistence of specified files or direc-
tories. Its value is expanded and interpreted as a colon-separated list of
strings. If the option is used on a localuser dir ector, or on a forwardfile dir ec-
tor that has either of the check_local_user or file_directory options set, the
expansion variable $home may appear in the list, referring to the home direc-
tory of the user whose name is that of the local part of the address. If any
string is empty, it is ignored. Otherwise, each string must be a fully qualified
file path, optionally preceded by ! (indicating negation). The driver is skipped
if any paths not preceded by ! do not exist, or if any paths preceded by ! do
exist.

senders (addr ess list, default = unset)
This option restricts a director or router to messages that have specific sender
addr esses. The string is expanded and interpreted as a colon-separated list of
senders, in the same format as used for general options such as
sender_reject.

transport (string, default = unset)
Some directors and routers requir e a transport to be supplied, except when
verify_only is set, where it is not relevant. Others requir e that a transport not
be supplied, and for some it is optional. The string must be the name of a
configur ed transport after expansion. This allows transports to be dynamically
selected.

unseen (Boolean, default = false)
Setting this option has a similar effect to the unseen command qualifier in filter
files. It causes a copy of the incoming address to be passed on to subsequent
drivers, even when the current one succeeds in handling it.

9 October 2001 09:08

user (string, default = see description)
If the driver queues an address for a local transport, and the transport does
not specify a user, the user given here is used when running the delivery pro-
cess. For most directors and routers, the default for user is unset, but for the
forwardfile dir ector with check_local_user set, and for the localuser dir ector,
the default is taken from the password data.

verify (Boolean, default = true)
Setting this option has the effect of setting both verify_sender and
verify_recipient to the specified value.

verify_only (Boolean, default = false)
If this option is set, the driver is used only when verifying an address or test-
ing with the -bv option, not when actually doing a delivery, testing with the
-bt option, or running the SMTP EXPN command. The driver can be further
restricted to verifying only senders or recipients by means of verify_sender
and verify_recipient.

verify_recipient (Boolean, default = true)
If this option is false, this driver is skipped when verifying recipient addresses.

verify_sender (Boolean, default = true)
If this option is false, this driver is skipped when verifying sender addresses.

Summar y of Director/Router Generic Options 117

9 October 2001 09:08

7
The Director s

We’ve met all four of Exim’s directors in earlier chapters. Here is a list to remind
you of them:

aliasfile
A dir ector that expands aliases into one or more dif ferent addresses.

forwardfile
A dir ector that handles users’ .forwar d files and Exim filter files.

localuser
A dir ector that recognizes local usernames.

smar tuser
A dir ector that accepts any address; it is used as a ‘‘catch-all.’’

In this chapter, ther e ar e separate sections for each director, but first we describe
some additional generic options that apply only to directors (and not to routers).
These can be divided into three of the same categories that were used in the pre-
vious chapter:

• Those that set conditions for the running of the director.

• Those that change what happens after a succesful run.

• Those that add data to an address that is accepted by the driver, for use when
that address is delivered.

118

9 October 2001 09:08

Conditional Running of Director s
In addition to the options described in the section “Conditional Running of Routers
and Directors,” in Chapter 6, Options Common to Directors and Routers, ther e ar e
some other conditional options that apply only to directors (not to routers).

Local Par t Prefixes and Suffixes
Ther e ar e a number of common situations in which it is helpful to be able to rec-
ognize a prefix or a suffix on a local part, and to handle the affix and the remain-
der of the local part independently. The prefix and suffix options provide this
facility, and are intr oduced in the section “Closed Mailing Lists,” in Chapter 5,
Extending the Delivery Configuration. They can be set to colon-separated lists of
strings. If either is set, the director is skipped unless the local part starts with, or
ends with (respectively), one of the given strings.

Another example of the use of a prefix is to provide a way of bypassing users’
.forwar d files. For example, you can do this with the following director:

real_users:
driver = localuser
prefix = real-
transport = local_delivery

If a local part begins with real-, this director is run, and if the rest of the local part
is a login name, the address is accepted and directed to the local_deliver y trans-
port. Local parts that do not start with the prefix are not handled by this director,
and are ther efor e passed on.

Pr ocessing of prefix and suffix happens after checking the local_parts condi-
tion. Therefor e, the local part that is checked against local_parts is the full local
part, including any prefix or suffix. If you want to select a director based on a par-
tial local part, you can use a regular expression, or make use of the conditions

option to do more complicated processing. For example, if you want to run a
dir ector for local parts that start with owner-, but only if the rest of the local part is
listed in some file, you could use:

condition = \
${if match {$local_part}{ˆowner-(.*)\$}\
{${lookup{$1}lsearch{/some/file}{yes}{no}}}\
{no}}

The condition uses a regular expression to check that the local part starts with
owner-, and to extract the remainder into $1. This is then used as the key for a file
lookup.

Conditional Running of Director s 119

9 October 2001 09:08

120 Chapter 7: The Director s

The use of a prefix or suffix can be made optional by setting prefix_optional or
suffix_optional as appropriate. In these cases, the director is run whether or not
the affix matches, but if there is an affix, it is removed while running the director.

A limited form of wildcard is available for prefixes and suffixes. If a prefix begins
with an asterisk, it matches the longest possible sequence of arbitrary characters at
the start of the local part. Similarly, if a suffix ends with an asterisk, it matches the
longest possible sequence at the end. There is an example of how this might be
used in the section “Multiple User Addresses,” in Chapter 5, using the option:

suffix = -*

If you use this kind of wildcard, you need to choose a character that never
appears in nonaffixed local parts as a separator, such as the hyphen in the previ-
ous example.

If both prefix and suffix ar e set for a director, both conditions must be met if
they are not optional. Care must be taken if wildcards are used in both a prefix
and a suffix on the same director. Dif ferent separator characters must be used to
avoid ambiguity.

Control of EXPN
Ther e is one other generic option that applies a condition to the running of a
dir ector. It is called expn and concerns the use of the SMTP EXPN command. This
command is not used for mail delivery, but instead requests the expansion of an
addr ess, to show the result of aliasing or forwarding. EXPN has fallen out of favor
recently, and many sites consider it to be a privacy exposure. For this reason,
Exim permits it only from hosts that match an item in the smtp_expn_hosts main
configuration option.

If the option is turned off for any director by including no_expn in the configura-
tion file, the director is skipped when expanding an address as a result of process-
ing an EXPN command. If you permit EXPN at all, you might, for example, want to
tur n the option off on a dir ector for users’ .forwar d files, while leaving it on for
the system alias file. This option is specific to directors because EXPN applies only
to local addresses.

Optimizing Single-Level Aliasing
When an aliasfile, forwardfile, or smar tuser dir ector generates a ‘‘child’’ address, it
is normally processed from scratch, just like the original addresses in a message,
and it may itself give rise to further aliasing or forwarding. However, sometimes an
administrator knows that it is pointless to repr ocess such addresses with the same

9 October 2001 09:08

dir ector again. For example, if an alias file translates real names into login IDs
ther e is no point searching the alias file a second time, especially if it is large.

The new_director option can be set to the name of any director instance. It causes
any local addresses generated by the current director to be processed by starting at
the named director instead of at the first director. The named director can be any
configur ed dir ector. For example, with an alias file containing the following:

J.Caesar: jules
M.Anthony: mark

the perfor mance of the standard configuration could be improved by adding:

new_director = userforward

to the system_aliases dir ector. The local part J.Caesar would be turned into jules
by this director, but then processing of jules would start at the director called user-
forward, instead of at the first defined director. In the standard configuration, this
dir ector immediately follows system_aliases, so an unnecessary alias lookup is
avoided. The new_director option has no effect if the director in which it is set
does not generate new addresses, or if such addresses are not in local domains.

Adding Data for Use by Transpor ts
Whenever a local transport is run, a current directory is set, and there may be a
home directory value in $home. In most cases, you don’t have to worry about
these, but occasionally it is necessary to change the default settings. The options
current_directory and home_directory can be set on any local transport or on any
dir ector. A setting on the transport overrides a setting on a director.

The director options associate values with any address that a director sends to a
local transport, either as an original address or because it generates a delivery to a
file or a pipe. During the delivery process (that is, at transport time), the option
strings are expanded and set as the current directory or home directory, respec-
tively, unless overridden by settings on the transport. Because the expansions do
not take place until the transport is run, the value of home_directory is not avail-
able in $home while the director is running.

The localuser dir ector and the forwardfile dir ector with check_local_user use the
user’s home directory as the ultimate default for both these directories.

The aliasfile and forwardfile Director s
The aliasfile and forwardfile dir ectors have many things in common. They each use
the local part to find a list of new addresses or processing instructions. Later, in the
sections on each director, we discuss how they obtain the data that they use. In

The aliasfile and forwardfile Director s 121

9 October 2001 09:08

122 Chapter 7: The Director s

this section, we consider first the types of item that may appear in the list. Then
we describe the options that are common to both aliasfile and forwardfile. These
ar e the ones that are concer ned with handling the items in the list. In addition,
each director has its own options controlling the way the list is obtained.

Items in Alias and Forward Lists
The items in an alias or forwarding list are separated by newlines or commas.*

Empty items are ignor ed. If an item is entirely enclosed in double quotes, these
ar e removed. Otherwise, double quotes are retained because some forms of mail
addr ess requir e their use (but never to enclose the entire addr ess). In the follow-
ing description, ‘‘item’’ refers to what remains after any surrounding double quotes
have been removed.

Duplicate addresses

Exim removes duplicate addresses from the list of addresses to which it is deliver-
ing, so as to deliver just one copy to each unique address. This also applies to any
items in aliasing or forwarding lists. For example, if a message is addressed to
both postmaster and hostmaster, and these both happen to be aliased to the same
person, a single copy of the message is delivered. This optimization does not
apply to deliveries directed at pipes, provided the immediate parent addresses are
dif ferent. Thus, if two differ ent recipients of the same message happen to have set
their .forwar d files to pipe to the same command,† two distinct deliveries are
made. Within an alias file, a scheme such as:

localpart1: |/some/command
localpart2: |/some/command

does result in two differ ent pipe deliveries, because the immediate parents of the
pipes are distinct. However, an indir ect aliasing scheme of the type:

pipe: |/some/command
localpart1: pipe
localpart2: pipe

does a single delivery only because the intermediate local parts, which are the
immediate parents of the pipe commands, are identical.

* Newlines cannot be present in alias lists obtained from linearly searched files, because they are
removed by the continuation-line processing, but they can be present in lists obtained by other
lookup methods.

† /usr/bin/vacation is a common example.

9 October 2001 09:08

Inc luding the incoming address in a list

It is safe for a local part to generate itself, because Exim has a general mechanism
for avoiding loops. A director or router is automatically skipped if any ancestor of
the current address is identical to it and was processed by that director. Thus, a
user with login name spqr who wants to preserve a copy of mail and also forward
it somewhere else, can set up a .forwar d file such as:

spqr, spqr@st.elsewhere.example

without provoking a loop, because when spqr is processed for the second time,
the forwardfile dir ector is skipped. A backslash before a local part with no domain
is permitted; for example:

\spqr, spqr@st.elsewhere.example

This is for compatibility with other MTAs, but is not necessary in order to prevent
a loop.* The presence or absence of a backslash can, however, make a differ ence
when there is mor e than one local domain. If qualify_preserve_domain is set for
the director, a local part without a domain is qualified with the domain of the
incoming address whether or not it is preceded by a backslash, but if qual-

ify_preserve_domain is not set, a local part without a leading backslash is qualified
with Exim’s qualify_recipient value, independently of the incoming domain.

A bad interaction between aliases and forwarding

Car e must be taken if there are alias names for local users who might have .for-
war d files. For example, if the system alias file contains:

Sam.Reman: spqr

then:

Sam.Reman, spqr@reme.elsewhere.example

in spqr’s.forwar d file fails on an incoming message addressed to Sam.Reman; the
incoming local part is turned into spqr by aliasing, and then the .forwar d file turns
it back into Sam.Reman. When this ‘‘grandchild’’ address is processed, the aliasfile
dir ector is skipped in order to break the loop, because it has previously directed
Sam.Reman. This causes Sam.Reman to be passed on to subsequent directors,
which probably cannot handle it. The .forwar d file should really contain:

spqr, spqr@reme.elsewhere.example

but because this is such a common user error, the check_ancestor option exists to
pr ovide a way around it. How this works is described in the section “Options
Common to aliasfile and forwardfile,” later in this chapter.

* A backslash at the start of an item that is a qualified address (that is, with a domain) is not special;
ther e ar e valid RFC 822 addresses that start with a backslash.

The aliasfile and forwardfile Director s 123

9 October 2001 09:08

124 Chapter 7: The Director s

Nonaddress alias and forward items

The following types of nonaddress items may appear in a list generated by either
aliasing or forwarding:

• An item is interpreted as a pathname if it begins with / and does not parse as
a valid RFC 822 address that includes a domain. For example:

/home/world/minbari

is treated as a filename, but the following:

/s=molari/o=babylon/@x400gateway.example

is treated as an address. If a generated path is /dev/null, delivery to it is
bypassed at a high level, and the log entry shows **bypassed** instead of a
transport name. This avoids the need to specify a user and group, which are
necessary for a genuine delivery to a file. When the file name is not /dev/null,
either the director or the transport must specify a user and group under which
to run the delivery.

• An item is treated as a pipe command if it begins with | and does not parse as
a valid RFC 822 address that includes a domain. Either single or double quotes
can be used for enclosing the individual arguments of the pipe command; no
interpr etation of escapes is done for single quotes. If the command contains a
comma character, it is necessary to put the whole item in double quotes, as
shown in:

"|/some/command ready,steady,go"

since items are ter minated by commas. Do not, however, quote just the com-
mand. An item such as:

|"/some/command ready,steady,go"

is interpreted as a pipe with a rather strange command name, and no
arguments.

• If an item takes the form:

:include:path name

a list of further items is taken from the given file and included at that point.
The items in the file are separated by commas or newlines. If this is the first
item in an alias list in a linearly searched file, a colon must be used to termi-
nate the alias name, as otherwise the first colon is taken as the alias termina-
tor, and the item is not recognized. This example is incorrect:

eximlist :include:/etc/eximlist

9 October 2001 09:08

It must be written like this:

eximlist: :include:/etc/eximlist

Items read from an included file are not subject to string expansion, even
when the expand option is set on an aliasfile dir ector. The use of :include:
can be disabled by setting forbid_include on the director.

Nonaddress alias-only items

Ther e ar e some additional special item types that can appear in lists generated by
aliasing, but not by forwarding:

• Sometimes you want to throw away mail to a particular local part. An alias
entry with no addresses causes Exim to generate an error, so that cannot be
used. However, a special item that may appear in an alias file is:

:blackhole:

which does what its name implies. No delivery is done for it, and no error
message is generated. This used to be more efficient than directing a message
to /dev/null because it happens at directing time, and also there was no need
to specify a user and group to run the transport process for delivery to a file.
However, in all but very old versions of Exim, /dev/null is now recognized
specially, and handled in essentially the same way.

• An attempt to deliver to a particular local part can be deferred or forced to fail
by aliasing the local part to:

:defer:

or

:fail:

respectively. During message delivery, an alias containing :fail: causes an
immediate failure of the incoming address, whereas :defer: causes the mes-
sage to remain on the queue so that a subsequent delivery attempt can hap-
pen at a later time. If an address is deferred for too long, it will ultimately fail,
because normal retry rules apply.

When a list contains one of these items, any prior items in the list are ignor ed.
Text that follows :defer: or :fail: is placed in the error message that is asso-
ciated with the failure. A comma does not terminate the error text, but a new-
line does.* For example, an alias file might contain these lines:

* Newlines are not normally present in alias expansions. In lsearch lookups, they are removed as part
of the continuation process, but they may exist in other kinds of lookup and in included files.

The aliasfile and forwardfile Director s 125

9 October 2001 09:08

126 Chapter 7: The Director s

x.employee: :fail: Gone away, no forwarding address
j.caesar: :defer: Mailbox is being moved today

In the case of an address that is being verified for the SMTP RCPT or VRFY com-
mands, the text is included in the SMTP error response, which uses a 451 code
for a deferral and 550 for a failure. If :fail: is encountered while a message is
being delivered, the text is included in the bounce message that Exim gener-
ates; the text for :defer: appears in the log line for the deferral, but is not oth-
erwise used.

• Sometimes it is useful to use a search type with a default for aliases, as in this
example director we used for virtual domains:

virtuals:
driver = aliasfile
domains = cdb;/etc/virtuals
file = /etc/$domain.aliases
search_type = lsearch*
no_more

However, ther e may be a need for exceptions to the default. These can be
handled by aliasing them to:

:unknown:

For example:

*: postmaster@virt3.example
postmaster: pat@dom5.example
jill: jkr@dom4.example
jack: :unknown:

This differs from :fail: in that it causes aliasfile to decline, so the address is
of fered to the next director, wher eas :fail: forces directing to fail immedi-
ately without running any more dir ectors.

All four of these special items can be disabled by setting forbid_special in the
aliasfile configuration.

Options Common to aliasfile and forwardfile
A number of options that are common to both aliasfile and forwardfile ar e
described in this section.

Checks on file attributes

You can request Exim to carry out checks on the ownership and mode of files
used for aliasing or forwarding. In the standard configuration, each user’s .forwar d
file must be owned by that user, but there is no default set up for alias files.

9 October 2001 09:08

Lists of permitted owners and groups can be given in the owners and owngroups

options, and modemask specifies mode bits that must not be set. For example:

modemask = 007
owners = mail : root
owngroups = mail : root

specifies that the file must be owned by mail or root, and that none of the ‘‘other’’
access bits must be set. The default value for modemask is 022, which requir es that
the file not be writable by anyone other than the owner.

If the file’s ownership or group ownership is incorrect, delivery is deferred, and
the message is frozen. If the mode bits are incorr ect, a forwardfile dir ector just
defers delivery, but an aliasfile dir ector fr eezes the message.

When an aliasfile dir ector uses a query-style database lookup (which does not
name a specific file), these options are ignor ed.

Ancestor checking

In the section “Items in Alias and Forward Lists,” earlier in this chapter, the rule
Exim uses to prevent looping in the directors was discussed, and it was pointed
out that a system alias file containing:

Sam.Reman: spqr

combined with a .forwar d file for spqr containing:

Sam.Reman, spqr@reme.elsewhere.example

did not work, because the alias Sam.Reman could be turned into the username
spqr only once. This is such a common mistake that an option to get round it
exists.

When check_ancestor is set, if a generated address is the same as any ancestor of
the current address, it is not used, but instead the current address is passed on to
subsequent directors. For the earlier problem example, if check_ancestor is set on
the forwardfile dir ector, it stops it turning spqr back into Sam.Reman. Instead, spqr
is passed on to the next director.

The default configuration sets check_ancestor on the director that handles user’s
.forwar d files so that it is more likely to ‘‘do what the user meant.’’

Tr anspor ts for pipes and files

When an aliasing or forwarding director generates deliveries directly to pipes or
files, it is necessary to define the transports that are to be used by setting

The aliasfile and forwardfile Director s 127

9 October 2001 09:08

128 Chapter 7: The Director s

pipe_transport and file_transport, respectively. For example, the default Exim
configuration handles system aliases by means of this director:

system_aliases:
driver = aliasfile
file = /etc/aliases
search_type = lsearch
file_transport = address_file
pipe_transport = address_pipe

The presence of the final two options means that aliases such as:

fileit: /some/file
pipeit: |/some/command

ar e handled by the address_file and address_pipe transports, respectively.* The first
of these is normally an appendfile transport that adds new messages onto the end
of a mailbox file.

Disabling pipes and files

Ther e ar e two options that lock out the use of pipes and files by an aliasing or for-
warding director: forbid_pipe disallows pipe commands, and forbid_file disal-
lows directing to a filename. If a disallowed item is encountered, delivery of the
addr ess fails. These options are often used on forwardfile, to restrict what users are
per mitted to put in their .forwar d files, and in fact there are some more options
beginning with forbid_ that are specific to that director (see the section “Disabling
Certain Features,” later in this chapter).

Unqualified addresses

If an item that is generated by aliasing or forwarding consists of a local part only,
and is not preceded by a backslash, the domain that is added is the default quali-
fying domain for the configuration (that is, the value of the global option qual-

ify_domain). However, if qualify_preserve_domain is set, the domain of the
incoming address is used instead. The option makes a differ ence only in cases
wher e mor e than one local domain is in use.

Rewr iting generated addresses

Generated addresses are nor mally rewritten according to the configured rewriting
rules (see Chapter 14, Rewriting Addresses), but if you don’t want this to happen,
you can set no_rewrite in the director’s configuration.

* Either the director or the transports also need to set a user under which the delivery is to run.

9 October 2001 09:08

One-time aliasing and forwarding

When Exim has to retain a message for later delivery because it could not com-
plete all the deliveries at the first attempt, it does not normally save the results of
any aliasing or forwarding that was done. The next time it tries to deliver, each
original recipient address is repr ocessed afr esh. This has the advantage that errors
in alias lists and forward files can be corrected, but it has one disadvantage in the
case of mailing lists that change frequently.

If one message is taking a very long time to be delivered to one subscriber, and
new addresses are added to the list in the meantime, the new subscribers receive a
copy of the old message, even though it dates from before their subscription. This
can be avoided by setting the one_time option on the director that expands the
mailing list. This changes Exim’s behavior so that, after a temporary delivery fail-
ur e, it adds the undelivered ‘‘child’’ addresses to the top-level list of recipients, and
marks the original address as delivered. Thus, subsequent changes to the mailing
list no longer affect this message.

The original top-level address is remember ed with each of the generated
addr esses, and is output in log messages. However, inter mediate par ent addr esses
ar e not recorded. This makes a differ ence to the log only if log_all_parents is set.
It is expected that one_time will typically be used for mailing lists, where ther e is
nor mally just one level of expansion.

Setting one_time is possible only when there are no pipe or file deliveries in the
alias or forwarding list, because it is not possible to turn these into top-level
addr esses. For this reason, Exim insists that forbid_pipe and forbid_file be set
when one_time is set.

Missing include files

If an external file is included in a list, for example, by an alias such as:

eximlist: :include:/etc/eximlist

Exim freezes delivery of the message if it cannot open the file, on the grounds that
this is a serious configuration error. However, in some circumstances (for example,
an NFS-mounted file), a file may sometimes be temporarily absent, and freezing is
not appropriate. If no_freeze_missing_include is set, Exim just defers delivery,
without freezing, if it cannot open an include file.

Syntax errors in alias or forward lists

If Exim discovers a syntax error in an alias or forward list, it defers delivery of the
original address. This is the safest action to take. However, in some circumstances
this may not be appropriate. For example, if a mailing list is being maintained by

The aliasfile and forwardfile Director s 129

9 October 2001 09:08

130 Chapter 7: The Director s

some automatic subscription process, you don’t want one subscriber’s typo to hold
up deliveries to the rest of the list.

If skip_syntax_errors is set, a malformed item is skipped, and an entry is written
to the main log. If syntax_errors_to is also set, a mail message is sent to the
addr ess it contains, giving details of the failing address(es). Often it will be appro-
priate to set syntax_errors_to to the same address as errors_to (the address for
delivery failures). If syntax_errors_text is set, its contents are expanded and
placed at the head of the error message.

Telling users about broken .forward files

Users often introduce syntax errors into their .forwar d files. They also often test
them from their own accounts, usually several times when they observe the mes-
sages are not getting through. Using skip_syntax_errors, it is possible to deliver
err or messages into such users’ mailboxes, thus reducing the postmaster load.
First, you must arrange a way of delivering that bypasses user .forwar d files. A
dir ector that does this is explained in the section “Conditional Running of Direc-
tors,” earlier in this chapter:

real_users:
driver = localuser
prefix = real-
transport = local_delivery

The setting of prefix means that this director is skipped unless the local part is
pr efixed with real-. If it is defined before the forwardfile dir ector, it picks off such
local parts and sets up a local delivery, thereby bypassing any forwarding that
might exist.

With this in place, skip_syntax_errors_to can be used on the forwardfile dir ector
to send a message to the user’s inbox. Because we want to include newlines in the
text string, it is given inside double quotes. When the value of an Exim option is
quoted like this, a backslash inside the quotes is interpreted as an escape charac-
ter: which provides a means of coding nonprinting characters. In particular, \n
becomes a newline character.

userforward:
driver = forwardfile
file = .forward
skip_syntax_errors
syntax_errors_to = real-$local_part@$domain
syntax_errors_text = "\
This is an automatically generated message. \
An error has been found\n\
in your .forward file. Details of the error \
are reported below. While\n\
this error persists, messages addressed to \
you will be delivered into\n\

9 October 2001 09:08

your normal mailbox and you will receive a \
copy of this message for\n\
each one."

If a syntax error is encountered, the failing address is skipped, and the warning
message is sent to the user’s mailbox, using the real- pr efix to bypass forwarding.
A final cosmetic touch to this scheme is to rewrite the address in the warning mes-
sage’s headers so as to remove the real- pr efix, using a rewriting rule such as this:

ˆreal-([ˆ@]+)@ $1@$domain h

Exim’s address rewriting facilities are described in Chapter 14; the simple rule
shown here rewrites addresses in header lines (leaving envelopes untouched) by
removing real- fr om the start of the local part.

Summar y of Options Common to aliasfile
and forwardfile
The options that are applicable to both aliasfile and forwardfile ar e summarized in
this section:

check_ancestor (Boolean, default = false)
This option is concerned with handling generated addresses that are the same
as some address in the list of aliasing or forwarding ancestors of the current
addr ess. When it is set, if a generated address is the same as any ancestor, it is
not used, but instead a copy of the current address is passed on to subsequent
dir ectors. It is not commonly set on aliasfile.

directory_transport (string, default = unset)
A dir ector sets up a delivery to a directory when a pathname ending with a
slash is specified as a new ‘‘address.’’ The transport used is specified by this
option, which, after expansion, must be the name of a configured transport.

file_transport (string, default = unset)
A dir ector sets up a delivery to a file when a pathname not ending in a slash
is specified as a new ‘‘address.’’ The transport used is specified by this option,
which, after expansion, must be the name of a configured transport.

forbid_file (Boolean, default = false)
If this option is true, the director may not generate an item that specifies deliv-
ery to a local file or directory. If it attempts to do so, a delivery failure occurs.

forbid_include (Boolean, default = false)
If this option is true, the use of the special :include: item is not permitted,
and if one is encountered, the message is frozen.

The aliasfile and forwardfile Director s 131

9 October 2001 09:08

132 Chapter 7: The Director s

forbid_pipe (Boolean, default = false)
If this option is true, the director may not generate an item that specifies deliv-
ery to a pipe. If it attempts to do so, a delivery failure occurs.

freeze_missing_include (Boolean, default = true)
If a file named by the :include: mechanism fails to open, delivery is frozen if
this option is true. Otherwise, delivery is just deferred. Unsetting this option
can be useful if included files are NFS-mounted and may not always be
available.

modemask (octal-integer, default = 022)
This specifies mode bits that must not be set for an alias or forward file. If
they are set, delivery is deferred.

one_time (Boolean, default = false)
If one_time is set, and any addresses generated by the director fail to deliver at
the first attempt, the failing addresses are added to the message as ‘‘top level’’
addr esses, and the parent address that generated them is marked ‘‘delivered.’’
Thus, forwarding or aliasing does not happen again at the next delivery
attempt. To ensur e that the director generates only addresses (as opposed to
pipe or file deliveries), forbid_file and forbid_pipe must also be set.

owners (string list, default = unset)
This specifies a list of permitted owners for an alias or forward file. In the case
of a forwardfile dir ector that is configured to check for a local user, that user is
automatically added to the list. If owners is unset and there is no local user
involved, no check on the ownership is done. Otherwise, if the file is not
owned by a user in the list, delivery is deferred and the message is frozen.

owngroups (string list, default = unset)
This specifies a list of permitted groups for an alias or forward file. In the case
of a forwardfile dir ector configur ed to check for a local user, that user’s default
gr oup is automatically added to the list. If owngroups is unset and there is no
local user involved, no check on the file’s group is done. If the file’s group is
not in the list, delivery is deferred and the message is frozen.

pipe_transport (string, default = unset)
A dir ector sets up a delivery to a pipe when a string starting with a vertical bar
character is specified as a new ‘‘address.’’ The transport used is specified by
this option, which, after expansion, must be the name of a configured
transport.

qualify_preserve_domain (Boolean, default = false)
If this is set and an unqualified address (one without a domain) is generated,
it is qualified with the domain of the incoming address instead of the value of
qualify_recipient.

9 October 2001 09:08

rewrite (Boolean, default = true)
If this option is set false, addresses generated by the director are not subject to
addr ess rewriting. Otherwise, they are treated like new addresses, and the
rewriting rules (see Chapter 14) are applied to them.

skip_syntax_errors (Boolean, default = false)
If skip_syntax_errors is set, a malformed address that causes a parsing error
is skipped, and an entry is written to the main log. This may be useful for
mailing lists that are automatically managed.

syntax_errors_text (string, default = unset)
See syntax_errors_to.

syntax_errors_to (string, default = unset)
This option applies only when skip_syntax_errors is set. If any addresses are
skipped because of syntax errors, a mail message is sent to the address speci-
fied by syntax_errors_to, giving details of the failing addresses. If syn-

tax_errors_text is set, its contents are expanded and placed at the head of
the error message.

The aliasfile Director
The aliasfile dir ector expands local parts by consulting a file or database of aliases.
An incoming local part is looked up, and the result is a list of one or more
replacement addresses, filenames, pipe commands or certain special items, as
described in the section “Items in Alias and Forward Lists,” earlier in this chapter.
The lookup is perfor med using Exim’s standard lookup mechanisms, as described
in Chapter 16, File and Database Lookups. This means that several differ ent file
for mats, or databases such as NIS, LDAP, or MySQL, can be used to store alias lists.
Further more, the standard lookup defaulting mechanism can be used if a default is
requir ed.

Exim is not limited to a single alias file; you can have as many aliasfile dir ectors as
you like, with each searching a differ ent set of data. However, ther e is nothing
special about such a sequence of directors; as soon as any one of them accepts an
addr ess, pr ocessing that address ceases.

Unless Exim’s locally_caseless option has been set false, local parts are forced to
lowercase in addresses that are dir ected. Thus, the keys in alias files should nor-
mally be in lowercase. For linearly searched files, this isn’t in fact necessary,
because the searching is done in a case-independent manner, but it is relevant for
other forms of alias lookup.

The aliasfile Director 133

9 October 2001 09:08

134 Chapter 7: The Director s

Specifying the Lookup
Most of the options specific to aliasfile contr ol the kind of lookup that it does. The
lookup type must be specified in search_type. If it is a single-key type (lsearch,
dbm, cdb, or nis), file must be set to the name of the file to be searched. For
example:

search_type = cdb
file = /etc/aliases.cdb

If aliasfile cannot open the file because it does not exist, delivery is normally
deferr ed, but if the optional option is set, the address is passed on to the next
dir ector instead. By default, the key that is looked up is just the local part (for
example, postmaster), but if include_domain is set, the full address is used. This
makes it possible to hold aliases for several domains in a single file such as this:

postmaster@domain1: jill@domain1
postmaster@domain2: jack@domain2

It is not possible to mix the two types in the same file and access it with a single
dir ector, but there is no reason why two differ ent dir ectors, one with
include_domain and one without, should not search the same file. For example:

alias1:
driver = aliasfile
file = /mixed/file
search_type = cdb
include_domain

alias2:
driver = aliasfile
file = /mixed/file
search_type = cdb

The first director searches for the full address; if it is not found, the second direc-
tor searches for just the local part. Exim’s caching mechanisms keep the file open
fr om one director to the next, so this might even be slightly more efficient than
using two differ ent files.

If a query-style (database) lookup type is used, either a single query must be given
in the query option, or a colon-separated list of queries must be given in the
queries option. For example:

system_aliases:
driver = aliasfile
query = [name=${quote_nisplus:$local_part}],aliases.org_dir:address
search_type = nisplus

9 October 2001 09:08

contains a single query. If you wanted all unknown aliases to default to postmas-
ter, you could replace this with:

system_aliases:
driver = aliasfile
queries = \
[name=${quote_nisplus:$local_part}],aliases.org_dir::address : \
[name=postmaster],aliases.org_dir::address

search_type = nisplus

First, it would look up the local part, and if that was not found, it would try look-
ing up postmaster. Notice that the colon in each of the queries has to be doubled
to avoid its being taken as a list separator. If a query cannot be completed for
some reason (for example, a database is offline), the director causes delivery to be
deferr ed.

Expanding a List of Aliases
The list of items obtained from the file or database lookup is interpreted as
described in the section “Items in Alias and Forward Lists,” earlier in this chapter.
However, if expand is set, the data is passed through the string expansion mecha-
nism before it is interpr eted. For example, consider this entry in an alias file:

somelist: :include:/etc/lists/$domain

Suppose Exim is processing the local address somelist@simple.example. The alias-
file dir ector finds the alias, and reads this aliasing data:

:include:/etc/lists/$domain

In the default state (expand not set), this is interpreted as a request to include the
contents of the file whose name is /etc/lists/$domain. However, if expand is set, the
string is expanded before it is interpr eted, so the file that is included is
/etc/lists/simple.example.

Specifying a Transpor t for aliasfile
This section describes a differ ent mode of operation that applies to aliasfile when
it is configured with a setting of the transport option.

The transport option must not be specified for aliasfile when it is
fulfilling the traditional aliasing function of replacing the original
addr ess with one or more new addresses that are each going to be
pr ocessed independently.

When a transport is specified, the director behaves quite differ ently, and doesn’t
really ‘‘alias’’ at all. Its lookup facilities are used as a means of validating the

The aliasfile Director 135

9 October 2001 09:08

136 Chapter 7: The Director s

incoming address, but if it is successful, the message is directed to the given
transport, while retaining the original address. The data that is retur ned fr om the
lookup is not used. For example, a file containing a list of cancelled users can be
used to direct messages addressed to them to a particular transport by a director
like this:

cancelled_users:
driver = aliasfile
transport = cancelled
file = /etc/cancelled_users
search_type = lsearch

The file could contain lines such as this:

x.employee: gone away, no forwarding address
j.retired: gone fishing

The cancelled transport could run a script, or it could be an autoreply transport
that sends a message back to the sender.

Another common use of aliasfile with a transport setting is for handling local deliv-
eries without refer ence to /etc/passwd or other password data. This makes it possi-
ble to deliver to user mailboxes on a host where the users do not have login
accounts. Local parts are validated by using aliasfile to look them up in a file or
database, which can also be used to hold information for use during delivery (for
example, the uid to use, or the location of the mailbox).

The use of a transport setting with aliasfile originated in the early days of Exim
when the smar tuser dir ector was not as flexible as it is now. These days, smar tuser
can be used to provide the same features, and because the use of a transport with
aliasfile is confusing, the facility may be abolished in some future release.

Take care not to confuse the generic transport option, which has the special
behavior just mentioned, with file_transport and pipe_transport (as described in
the section “Transports for pipes and files,” earlier in this chapter), which provide
entir ely dif ferent facilities.

Summar y of aliasfile Options
The options that are specific to aliasfile ar e summarized in this section; of course,
aliasfile also accepts those options that are common to both aliasfile and forward-
file, as described earlier in the section “Options Common to aliasfile and forward-
file.”

expand (Boolean, default = false)
If this option is set true, the text obtained by looking up the local part is
passed through the string expansion mechanism before being interpreted as a
list of alias items.

9 October 2001 09:08

Addr esses that are subsequently added by means of the ‘‘include’’ mechanism
ar e not expanded.

file (string, default = unset)
This option specifies the name of the alias file, and it must be set if
search_type specifies a single-key lookup; if it does not, an error occurs. The
string is expanded before use; if expansion fails, Exim panics. The resulting
string must be an absolute path for lookups that read regular files.

forbid_special (Boolean, default = false)
If this option is true, the special items :defer:, :fail:, :blackhole:, and
:unknown: ar e not permitted to appear in the alias data, and if one is encoun-
ter ed, delivery is deferred.

include_domain (Boolean, default = false)
Setting this option true causes the key that is looked up to be local-
part@domain instead of just local-part. By this means, a single file can be
used to hold aliases for many local domains. This option has no effect if the
search type specifies a query-style lookup.

optional (Boolean, default = false)
For a single-key lookup, if the file cannot be opened because it does not exist
(the ENOENT err or) and this option is set, the director declines to handle the
addr ess. Otherwise any failure to open the file causes an entry to be written to
the log and delivery to be deferred.

For a query-style lookup, setting optional changes the behavior when a
lookup cannot be completed (for example, when a database is offline). With-
out optional, the delivery is deferred; with optional, the director declines,
and so the address is offer ed to the next director.

queries (string, default = unset)
This option is an alternative to query; the two options are mutually exclusive.
The differ ence is that queries contains a colon-separated list of queries, which
ar e tried in order until one succeeds or defers, or all fail. Any colon characters
actually requir ed in an individual query must be doubled so that they aren’t
tr eated as query separators.

query (string, default = unset)
This option specifies a database query, and either this option or queries must
be set if search_type specifies a query-style lookup; if neither is set, an error
occurs. The query is expanded before use, and would normally contain a ref-
er ence to the local part. For example:

search_type = nisplus
query = [alias=${lookup_nisplus:$local_part}],\

mail_aliases.org_dir:expansion

The aliasfile Director 137

9 October 2001 09:08

138 Chapter 7: The Director s

could be used for a NIS+ lookup. Sometimes a lookup cannot be completed
(for example, a NIS+ database might be inaccessible), and in this case, the
dir ector causes delivery to be deferred.

search_type (string, default = unset)
This option must be set to the name of a supported search type (lsearch, dbm,
and so on), specifying the type of data lookup. Single-key search types can be
pr eceded by partial- and/or followed by an asterisk. The former is not likely
to be useful very often, but the latter provides a default facility. Note, how-
ever, that if two addresses in the same message provoke the use of the
default, only one copy is delivered, but any added Envelope-to: header con-
tains all the original addresses. Exceptions to the default can be set up by
aliasing them to :unknown:.

The forwardfile Director
The forwardfile dir ector expands the local part of an address by reading a list of
new addresses, filenames, pipe commands, or certain other special items from a
given file. There are two common cases: processing a user’s .forwar d file (from
which the director gets its name), and expanding a mailing list.

Fr om Release 3.20, the data that forwardfile uses may alternatively be supplied as
an expanded string in the configuration. This makes it possible to hold filtering
instructions in databases such as LDAP or MySQL.

Contents of forwardfile Lists
The data that forwardfile pr ocesses can be a simple list of items, separated by
commas or newlines. However, it is also possible to request that Exim process the
data as an Exim filter, which means that it is interpreted in a more complex way.
In particular, in a filter, conditions can be imposed on which deliveries are per-
for med. If the filter option is set on the director, and the first line of the data
starts with:

Exim filter

it is interpreted as a filter rather than a simple list of addresses. The use of filters is
described in Chapter 10, Message Filtering. Whether a file is interpreted as a filter
or a plain list does not affect the other actions of forwardfile; these are just two
dif ferent ways of setting up a list of delivery items.

If a forward file exists but is empty, or contains only blank lines and comment
lines starting with #, Exim behaves as if it did not exist, and the director declines
to handle the address. Note that this is not the case when the file contains syntacti-
cally valid items that happen to yield empty addresses (for example, items contain-
ing only RFC 822 address comments).

9 October 2001 09:08

Specifying a .forward File
If the file option is set, it specifies that the data to be processed is the entire con-
tents of the file. If the filename is not an absolute path, it is taken relative to the
dir ectory that is defined by the file_directory option. This on its own is not very
useful, because you might as well use:

file = /usr/forwards/$local_part.forward

instead of:

file_directory = /usr/forwards
file = $local_part.forward

However, if the directory and filename are given separately, the existence of the
dir ectory is tested before trying to open the file, and if the directory appears not to
exist, delivery is deferred. This distinguishes between the cases of a nonexistent
file (where the director should decline to handle the address) and an unmounted
NFS directory (where delivery should be deferred).

Specifying an Inline Forwarding List
If the file option is not set, the data to be processed must be specified by the
data option.* This string is expanded; the result is treated as a forwarding list. The
expansion makes it possible to obtain the list from an indexed file or database, by
using a lookup expansion item. For simple lists of addresses, much the same effect
can be obtained by using a smar tuser dir ector, but forwardfile must be used if the
list consists of filtering instructions, because forwardfile is the only director that
can handle them.

Checking Local Users
Because its most common use is in handling users’ .forwar d files, forwardfile
checks to see whether the local part is the login name of a local user, and if it is
not, passes it on to the next director. This behavior can be disabled by setting
no_check_local_user; this is normally requir ed when using forwardfile to process
mailing lists. When a local user has been found, the home directory is used as the
default value for the file_directory option, and the username and group are
implicitly included in owners and owngroups. Thus, the very simple configuration:

userforward:
driver = forwardfile
file = .forward

checks for a local user, finds the user’s home directory, checks that the directory
exists, and then looks for .forwar d inside it. Checks on the owner, group owner,

* Available only from Release 3.20 onward.

The forwardfile Director 139

9 October 2001 09:08

140 Chapter 7: The Director s

and mode of the file are carried out as described in the section “Options Common
to aliasfile and forwardfile,” earlier in this chapter, using the local user’s uid and
gid. However, for forwardfile, the group ownership is checked only if check_group
is set.

A further check can be imposed by setting the match_directory option, which
applies only when forwardfile has checked the local part for a local login name.
The value of match_directory is expanded and matched against the name of the
user’s home directory. If there is no match, the address is passed on to the next
dir ector. This provides a way of skipping .forwar d file processing for logins that
do not have accessible home directories. This is important, because otherwise fail-
ur e to find the home directory causes delivery to be deferred.

For example, if the names of the home directories of all the regular users on a sys-
tem begin with /home/ or /gr oup/, but there are other logins with mailboxes but
without accessible home directories, the following:

match_directory = ˆ/(home|group)/

could be used to skip forward file processing for the special logins. This example
uses a simple regular expression to check that the home directory begins with
/home/ or /group/. The matching process is the same as used for domain list items,
and as well as a regular expression (as in this example), a string beginning with an
asterisk, such as:

match_directory = */special

or even a lookup such as:

match_directory = lsearch;/list/of/homes

can be used.

Special Error Handling
If a forward file exists, but cannot be opened for reading, delivery is deferred, but
this can be changed for two specific opening errors. If ignore_eacces* is set, a
‘‘per mission denied’’ error is treated as if the file did not exist, so the address is
passed to the next director. If ignore_enotdir is set, a ‘‘not a directory’’ error
(something on the path is not a directory) is treated likewise. The first of these
cases can arise when personal forward files are being read from NFS file systems
that are mounted without root access.

* The spelling of this option derives from the EACCES err or code.

9 October 2001 09:08

Disabling Certain Features
Ther e ar e some extra forbid_ options, in addition to those that are common to
both forwardfile and aliasfile, that disable the use of certain features in filter files.
Filters have been mentioned briefly, but the full details are deferr ed until Chapter
10, so these options probably won’t make much sense at a first reading. Just
remember that there are ways of locking out certain filtering features, and come
back to this section when you need it:

forbid_filter_existstest

Disables the use of the exists condition in string expansions in filters.

forbid_filter_lookup

Disables the use of lookup items in string expansions in filters.

forbid_filter_logwrite

Disables the use of the logwrite command in filters.

forbid_filter_perl

Disables the use of embedded Perl in string expansions in filters.

forbid_filter_reply

Disables the use of the reply command in filters.

The first three options lock out direct access to other files from a filter file. This
could be appropriate when the filter is run on a system to which its owner has no
login access.

Embedded Perl is available only if Exim has been built to support it, and it is likely
to be of use only to the system administrator; for added security it is probably a
good idea to disable it in users’ filter files.

The reply command allows the creation of automatic replies to incoming messages
fr om within filter files. Even when it is enabled, it cannot be used unless
reply_transport has been set to define the autoreply transport that is used to cre-
ate the replies. For example, in the default Exim configuration, such a transport is
defined as:

address_reply:
driver = autoreply

and the forwardfile dir ector for users’ .forwar d files contains:

reply_transport = address_reply

to allow the reply command to make use of it.

The forwardfile Director 141

9 October 2001 09:08

142 Chapter 7: The Director s

Enabling Certain System Actions
Another option that relates to filter files is allow_system_actions. This enables the
filter commands fail and fr eeze, which are nor mally per mitted only in system filter
files. It is not normally sensible to give end users access to these commands in
their personal filter files. However, some installations run centrally managed filter
files on behalf of individual users, and in these cases, the ability to freeze a mes-
sage or fail an address can be useful.

The $home Var iable
The $home expansion variable can be used in a number of local options for for-
wardfile. Its value depends on the value of the check_local_user and file_direc-

tory options, but it is independent of the order in which the options appear in the
configuration file:

• If check_local_useris set and file_directory is unset, $home is set to the
user’s home directory when expanding the file option.

• If check_local_user is unset and file_directory is set, $home is set to the
expanded value of file_directory when expanding the file option. If $home
appears in file_directory itself, its substitution value is the empty string.

• If both check_local_user and file_directory ar e set, $home contains the
user’s home directory when expanding file_directory, but subsequently
$home contains the value of file_directory when expanding the file option.
Consider these settings:

check_local_user
file_directory = $home/mail
file = $home/.forward

If spqr’s home directory is /home/spqr, file_directory would be set to
/home/spqr/mail, wher eas file would be set to /home/spqr/mail/.forwar d
when processing spqr’s mail.

• If neither check_local_user not file_directory ar e set, $home is empty.

If the generic require_files option, or any other expanded option, contains
$home, it takes the same value as it does when expanding the file option. This
value is also used for $home if encountered in a filter file, and as the default value
to pass with the address when a pipe or file delivery is generated.

9 October 2001 09:08

Cur rent and Home Director ies
The values of the current_directory and home_directory generic options are not
used during the running of forwardfile; they specify directories for use at transport
time in the event that forwardfile dir ects an address to a file, pipe command, or
autor eply.

If home_directory is not set, the directory specified by file_directory is used
instead. If file_directory is also unset, the home directory obtained from
check_local_user is used.

This rule can lead to a problem in installations where users’ .forwar d files are not
kept in their home directories. In such installations, both check_local_user and
file_directory may be set. For example:

check_local_user
file_directory = /etc/forwardfiles
file = $local_part.forward

With this configuration, the default value for home_directory is /etc/forwar dfiles, as
just described. However, what may be desired is the user’s actual home directory.
It is no good specifying:

home_directory = $home

because when home_directory is expanded, the value of $homeis the same as
when file is expanded, and in this case, that is the contents of file_directory, as
described in the previous section. A special string value is therefor e pr ovided for
use in this case. If home_directory is set thus:

home_directory = check_local_user

it is converted into the user’s home directory path. The same magic string can be
used for current_directory.

Summar y of forwardfile Options
The options that are specific to forwardfile ar e summarized in this section; of
course, forwardfile also accepts those options that are common to both aliasfile
and forwardfile, as described in the section “Options Common to aliasfile and for-
wardfile,” earlier in this chapter.

allow_system_actions (Boolean, default = false)
Setting this option permits the use of freeze and fail in filter files. This
should not be set on the director for users’ .forwar d files, but can be useful if
you want to run a systemwide filter for each address (as opposed to the sys-
tem filter, which runs just once per message).

The forwardfile Director 143

9 October 2001 09:08

144 Chapter 7: The Director s

check_group (Boolean, default = false)
The group owner of the file is checked only when this option is set. If
check_local_user is set, the user’s default group is permitted; otherwise the
gr oup must be one of those listed in the owngroups option.

check_local_user (Boolean, default = true)
If this option is true, the local part of the address that is passed to this director
is checked to ensure that it is the login of a local user. The director declines to
handle the address if no local user is found. In addition, when this option is
true, the string specified for the file option is taken as relative to the user’s
home directory if it is not an absolute path, and the file_directory option is
not set.

When check_local_user is set, the local user is always one of the permitted
owners of the .forwar d file. In addition, the uid and gid obtained from the
password data are used as defaults for the generic user and group options.

data (string, default = unset)
This option must be set if file is not set. Its value is expanded and used as a
list of forwarding items or filtering instructions.

file (string, default = unset)
This option must be set if data is not set. The string is expanded before use. If
expansion fails, Exim defers the address and freezes the message. The
expanded string is interpreted as a single filename, and must start with a slash
character unless check_local_user is true or a file_directory option is set. A
nonabsolute path is interpreted relative to the file_directory setting if it
exists; otherwise it is interpreted relative to the user’s home directory.

file_directory (string, default = unset)
The string is expanded before use. The option sets a directory path that is
used if the file option does not specify an absolute path. Also, if forwardfile
sets up a delivery to a file or a pipe command and the home_directory option
is not set, the directory specified by file_directory is passed to the transport
as the home directory. If file_directory is also unset, the home directory
obtained from check_local_user is the home address during delivery.

filter (Boolean, default = false)
If this option is set, and the .forwar d file starts with the text:

Exim filter

it is interpreted as a set of filtering commands instead of a list of forwarding
addr esses. Details of the syntax and semantics of filter files are described in
Chapter 10.

9 October 2001 09:08

forbid_filter_existstest (Boolean, default = false)
If this option is true, string expansions in filter files are not allowed to make
use of the exists condition.

forbid_filter_logwrite (Boolean, default = false)
If this option is true, use of the logging facility in filter files is not permitted.
This is in any case available only if the filter is being run under some unprivi-
leged uid, which is normally the case for ordinary users’ .forwar d files.

forbid_filter_lookup (Boolean, default = false)
If this option is true, string expansions in filter files are not allowed to make
use of lookup items.

forbid_filter_perl (Boolean, default = false)
This option is available only if Exim is built with embedded Perl support. If it
is true, string expansions in filter files are not allowed to make use of the
embedded Perl support.

forbid_filter_reply (Boolean, default = false)
If this option is true, this director may not generate an automatic reply mes-
sage. If it attempts to do so, a delivery failure occurs. Automatic replies can be
generated only from filter files, not from traditional .forwar d files.

ignore_eacces (Boolean, default = false)
If this option is set and an attempt to open the .forwar d file yields the EACCES

err or (per mission denied), forwardfile behaves as if the file did not exist, and
passes the address on to the next director.

ignore_enotdir (Boolean, default = false)
If this option is set and an attempt to open the .forwar d file yields the ENOTDIR

err or (something on the path is not a directory), forwardfile behaves as if the
file did not exist, and passes the address on to the next director.

match_directory (string, default = unset)
If this option is set with check_local_user, the user’s home directory must
match the given string. If it does not, the director declines to handle the
addr ess. The string is expanded before use. If the expansion fails, Exim pan-
ics, unless the failure was forced, in which case the director just declines.

If the expanded string starts with an asterisk, the remainder must match the
end of the home directory name; if it starts with a circumflex, a regular expres-
sion match is perfor med. In fact, the matching process is the same as used for
domain list items and may include file lookups.

The forwardfile Director 145

9 October 2001 09:08

146 Chapter 7: The Director s

reply_transport (string, default = unset)
A forwardfile dir ector sets up a delivery to an autoreply transport when a mail
or vacation command is used in a filter file. The transport used is specified by
this option, which, after expansion, must be the name of a configured
transport.

The localuser Director
The localuser dir ector checks whether the local part of the address that is being
dir ected is the login of a local user. If it is, and if other conditions set by generic
options such as domains ar e met, localuser accepts the address and sets up a
transport for it.

Tr anspor ts for localuser
The transport option must always be specified for localuser, unless the ver-

ify_only option is set, in which case the director is used only for checking
addr esses. The transport does not have to be a local transport; any transport can
be used. For example, suppose that all local users have accounts on a central mail
system, but have their mail delivered by SMTP to their individual workstations. On
the central server, a localuser dir ector such as this:

checklocals:
driver = localuser
transport = workstations

could be used with a remote transport such as this:

workstations:
driver = smtp
hosts = ${lookup{$local_part}cdb{/etc/workstations}{$value}fail}

wher e the file /etc/workstations contains a mapping from username to workstation
name.

When the transport is in fact a local one (the most common case), the user’s uid
and gid are set up by default to be used for the delivery process. If the
home_directory option is unset, the user’s home directory is passed to a local
transport for use during delivery.

Checking the Home Director y
Ther e is only one option that is specific to the localuser dir ector, called
match_directory. If it is set, the user’s home directory must match the pattern in

9 October 2001 09:08

the option. If it does not, the director declines to handle the address, and it is
of fered to the following director. This provides a way of partitioning the local
users by home directory. We saw an example of how this can be used in the sec-
tion “Changing a Driver’s Successful Outcome,” in Chapter 6.

The string is expanded before use. If the expansion fails, Exim defers the address
and freezes the message, unless the failure was forced, in which case the director
just declines to handle the address. If the expanded string starts with an asterisk,
the remainder must match the end of the home directory name; if it starts with a
circumflex, a regular expression match is perfor med. In fact, the matching process
is the same as used for domain list items, and may include file lookups.

The smar tuser Director
The smar tuser dir ector makes no checks of its own on the address that is passed
to it; it handles anything. One common use is to place an unconditional instance
of smar tuser as the last director to pick up all addresses that the other directors are
unable to handle. However, smartuser is, of course, subject to the generic director
options, so specific instances can be used for all addresses in certain domains, all
local parts with certain prefixes or suffixes, specific local parts, or any other
generic condition. There is an example of this in the section “Conditional Running
of Routers and Directors,” in Chapter 6.

The smar tuser dir ector operates in two differ ent ways. It can either generate one
or more new addresses, in a similar manner to aliasfile and forwardfile, or it can
dir ect the incoming address to a specific transport.

Using smartuser to Generate New Addresses
If the generic transport option is not specified, smar tuser’s new_address option
must be set. This supplies a list of replacement addresses that are then handled by
other drivers. The value of new_address is treated as if it were a line from an alias
file, and so must consist of a comma-separated list of items. The special values
:blackhole:, :defer:, and :fail: (but not :include:) may be used, and items may
refer to files or pipes.

Unqualified addresses are qualified using the value of qualify_recipient, unless
qualify_preserve_domain is set, in which case they take the domain of the incom-
ing address. If any new address is a duplicate of any other address in the message,
it is discarded.

This form of smar tuser can be used for a number of special-purpose actions. Sup-
pose you want to defer delivery to a specific local part for some reason (such as

The smar tuser Director 147

9 October 2001 09:08

148 Chapter 7: The Director s

moving the mailbox). This director, placed at the top of the directors’ configura-
tion, does the job for the local part notyet:

defer:
driver = smartuser
local_parts = notyet
new_address = :defer:

Another example came up on the Exim mailing list in which somebody wanted to
delay deliveries for a specific local part by an hour. Adding the following:

condition = ${if < {$message_age}{3600}{yes}{no}}

to the earlier example achieves this effect. Deferring delivery in this way is subject
to the normal retrying rules, so if it goes on long enough, the address is bounced.

Using smartuser to Direct to a Transpor t
If the generic transport option is specified, smar tuser dir ects the message to that
transport. For example:

unknown:
driver = smartuser
transport = unknown

dir ects the address to the unknown transport unconditionally. It is possible to
change the address at the same time by setting new_address. For example:

unknown:
driver = smartuser
new_address = $local_part@plc.com.example
transport = unknown

rewrites the envelope address by forcing a specific domain while retaining the old
local part, and then directs the new address to the unknown transport. The origi-
nal address is available to the transport via the expansion variables $origi-
nal_local_part and $original_domain.

If the expansion of new_address is forced to fail, the director declines to handle the
addr ess, and consequently it is offer ed to the following director. Otherwise, unless
no_panic_expansion_fail is set, an expansion failure is treated as a serious config-
uration error, and causes Exim to write a message to its panic log and exit immedi-
ately. New addresses are rewritten by Exim’s normal rewriting rules (see Chapter
14) unless the no_rewrite option is set.

Exim normally checks for duplicates in the recipients of a message, and delivers
only a single copy. However, when smar tuser is used in this way, with both
transport and new_address set, the new address is not checked for duplication.

9 October 2001 09:08

If you want to have multiple deliveries for messages whose original recipients are
aliased to the same final address, the only way to do it is by configuring smar tuser
appr opriately. For example:

hostpost:
driver = smartuser
local_parts = hostmaster : postmaster
transport = local_delivery
new_address = dogsbody@example.com
user = dogsbody

delivers mail for both hostmaster and postmaster into dogsbody’s mailbox, and if a
message is addressed to both of them, two copies are written.

Summar y of smartuser Options
The options that are specific to smar tuser ar e summarized in this section:

new_address (string, default = unset)
When transport is set, this option specifies a single new address to replace
the current one in the message’s envelope when it is transported. The address
must be qualified (that is, contain an @ character).

When transport is not set, this option is treated like a line from an alias file.
Any unqualified addresses it contains are qualified using the value of qual-
ify_recipient, unless qualify_preserve_domain is set.

In both cases, new addresses are rewritten by Exim’s normal rewriting rules
unless the rewrite option is turned off.

panic_expansion_fail (Boolean, default = true)
If expansion of the new_address option fails (other than a forced failure), Exim
panics if this option is set. Otherwise, the director declines, and the original
addr ess is offer ed to the next director.

qualify_preserve_domain (Boolean, default = false)
If this is set and an unqualified address (one without a domain) is found in a
new_address list when smar tuser is configured without a transport, the address
is qualified with the domain of the incoming address instead of the value of
qualify_recipient.

rewrite (Boolean, default = true)
If this option is set false, addresses specified by new_address ar e not subject to
rewriting.

The smar tuser Director 149

9 October 2001 09:08

8
The Router s

Routers handle addresses whose domains are not local, and typically (though not
necessarily) set up deliveries to remote hosts. The differ ent routers use differ ent
methods to obtain a list of relevant hosts for the domain of the address they are
handling. The hosts’ IP addresses must also be looked up. Some examples of the
lookuphost and domainlist routers appear in previous chapters, but there are also
other routers. In this chapter, we discuss each of the following in detail:

domainlist
A router that routes remote domains using locally supplied information.

ipliteral
A router that handles ‘‘IP literal’’ addresses such as user@[192.168.5.6]. These
ar e relics of the early Internet that are no longer in common use.

lookuphost
A router that looks up remote domains in the DNS.

quer yprogram
A router that runs an external program in order to route a domain.

First, however, we cover some additional generic options that apply only to
routers (and not to directors).

Timeouts While Routing
If a router times out while trying to look up an MX record or an IP address for a
host, it normally causes delivery of the address to be deferred. However, if
pass_on_timeout is set, the address is instead passed on to the next router, overrid-
ing no_more. This may be helpful for systems that are inter mittently connected to

150

9 October 2001 09:08

the Internet, or those that want to pass to a smart host any messages that cannot
be delivered immediately, as in this example:

lookuphost:
driver = lookuphost
transport = remote_smtp
pass_on_timeout
no_more

timedout:
driver = domainlist
transport = remote_smtp
route_list = * smart.host.example byname

The first router looks up the domain in the DNS; if it is not found, the router
declines, but because of no_more, no further routers are tried and the address fails.
However, if the DNS lookup times out, the address is passed to the next router,
which sends it to a smart host. We explain the details of how this domainlist router
works later in this chapter.

A timeout is just one example of a temporary error that can occur while doing
DNS lookups. All such errors are treated in the same way as a timeout, and this
option applies to all of them.

Domains That Route to the Local Host
When a router is configured to set up a remote delivery, it generates a list of one
or more hosts to which the message can be sent. The list contains the hosts in an
order of prefer ence (commonly obtained from MX records). If the local host
appears other than at the start of the list, it is dropped from the list, along with any
less preferr ed hosts, in order to avoid looping. If, on the other hand, the local host
is the first host on the list, special action needs to be taken.*

This situation can arise as a result of a mistake in Exim’s configuration (for exam-
ple, the domain should be listed as local so that it is processed by the directors
and not by the routers), or it may be an error in the DNS (for example, the lowest
number ed MX record should not point to this host).

In a simple configuration, sending the message would cause a tight mail loop.
Exim’s default action is therefor e to defer delivery and freeze the message to bring
it to the administrator’s attention. However, in mor e complicated situations, a dif-
fer ent action may be requir ed. What Exim does when a domain routes to the local
host is controlled by the value of the self option. This can be set to one of a

* The test for the local host involves checking the IP address(es) of the supposedly remote host
against the interfaces on the local host. If local_interfacesis set, only the interfaces it lists are
tested.

Domains That Route to the Local Host 151

9 October 2001 09:08

152 Chapter 8: The Routers

number of descriptive words, the default being freeze. The option is relevant only
when the router is configured to set up hosts for delivery; some routers can be
configur ed in a mode that just rewrites the domain for further processing, and in
these cases the self option is not relevant and is ignored.

Tr eating Domains Routed to self as Local
If self is set to local, the address is passed to the directors, as if its domain were
a local domain. This can be used to treat any domain whose lowest MX record
points to the host as a local domain, without having to list them all explicitly in
local_domains. You would use a router such as this:

lookuphost:
driver = lookuphost
transport = remote_smtp
self = local

This is a standard lookuphost router that looks up the domain in the DNS and
routes to the remote_smtp transport in normal circumstances. However, if it ends
up routing to the local host, the address is marked as local and passed to the
dir ectors. During subsequent directing and delivery the variable $self_hostname is
set to the name of the host that was first in the list of hosts generated by the router
(that is, the name that resolved to the local host).

Passing Domains Routed to self to the Next Router
If self is set to pass, the router declines, passing the address to the following
router, and setting $self_hostname to the name of the host that was first in the list
of hosts generated by the router; that is, the name that resolved to the local host.
This setting of self overrides a setting of no_more on the router, so a combination
of the following:

self = pass
no_more

ensur es that only those addresses that routed to the local host are passed on.
Without no_more, an addr ess that was declined because the domain did not exist
would also be offer ed to the next router. A corporate mail gateway machine might
have this as its first router:

lookuphost:
driver = lookuphost
transport = remote_smtp
self = pass
no_more

Domains that resolve to remote hosts are routed to the remote_smtp transport in
the normal way. Domains that are unr ecognized ar e bounced, because no_more

pr events them being offer ed to any subsequent routers, but domains that resolve

9 October 2001 09:08

to the local host are passed on because of the setting of self. Subsequent routers
can then assume they are dealing with the set of domains whose DNS entries
point to the local host.

Rerouting Domains Routed to self
If self is set to reroute: followed by a domain name, the domain is changed to
the given domain, and the address is passed back to be repr ocessed by the direc-
tors or routers, as appropriate. For example:

self = reroute: newdom.example.com

changes the domain to newdom.example.com and repr ocesses the address from
scratch. No rewriting of header lines takes place, but there is an alter native for m
that does cause header rewriting:

self = reroute: rewrite: newdom.example.com

In this case, any addresses in the header lines that contain the old domain are
rewritten with the new one.

Failing Domains Routed to Self
If the self option is set to fail, the router declines, but the address is not passed
to any following routers. Consequently, delivery fails and an error report is
generated.*

Tr anspor ting Domains Routed to self
If the self option is set to send, the routing anomaly is ignored and the address is
passed to the transport in the usual way. This setting should be used with extreme
caution because of the danger of looping. For remote deliveries, it makes sense
only in cases where the program that is listening on the TCP/IP port of the local
host is not this version of Exim. That is, it must be some other MTA, or Exim with
a dif ferent configuration file that handles the domain in another way.

Defer r ing Domains Routed to self
Finally, if the self option is set to defer, delivery of the address is deferred but
the message is not frozen, so delivery will be retried at intervals. If this goes on
long enough, the address will time out and be bounced.

* In earlier versions of Exim, fail_soft and fail_hard wer e used instead of pass and fail. The older
settings are still recognized.

Domains That Route to the Local Host 153

9 October 2001 09:08

154 Chapter 8: The Routers

The lookuphost Router
The lookuphost router uses a standard system interface to look up the hosts that
handle mail for a given domain. Normally, it uses the DNS resolver to find the
infor mation fr om the DNS, but it can be configured to use the operating system’s
host lookup function (which might consult /etc/hosts or NIS as well as the DNS)
instead. A transport must always be set for this router, unless verify_only is set.
We have previously shown the most basic configuration of lookuphost as:

lookuphost:
driver = lookuphost
transport = remote_smtp

This uses the DNS according to the standard mail routing rules: it first looks for
MX records for the domain; if found, they provide a list of hosts. If there are no
MX records, it looks up address records for a host that has the domain’s name.

If the router cannot find out whether the domain does or does not have any MX
records (because of a timeout or other DNS failure), it cannot proceed, and deliv-
ery is deferred. It is not allowed to carry on looking for address records in this cir-
cumstance.

Controlling DNS lookups
Ther e ar e two options that control the way DNS lookups are done. The resolver
option RES_DEFNAMES is set by default. This causes the resolver to qualify domains
that consist of just a single component (that is, contain no dots) with a default
domain, which is normally the name of the local host minus its leading compo-
nent. So, for example, on a host called dictionary.book.example, the effect of look-
ing up the domain thesaurus would be to look for thesaurus.book.example. This is
usually a useful behavior for groups of hosts in the same superior domain, which
is why it happens by default. However, it can be disabled if necessary by setting
no_qualify_single.

The resolver option RES_DNSRCH is not set by default, but can be requested by set-
ting search_parents. In this case, if the initial lookup fails, the resolver searches
the default domain and its parent domains. Continuing the previous example, the
ef fect of looking up animal.far m with this option is first to look it up as given,
and if that fails, to look up animal.far m.book.example. The option is turned off by

9 October 2001 09:08

default because it causes problems in domains that have wildcard MX records.*

Suppose the following record:

*.example. MX 6 mail.example.

exists and there is a host called a.book.example that has no MX records of its own.
What happens when a user on some other host in the book.example domain mails
to someone@a.book ? On failing to find an MX record for a.book, if search_parents
is set, the resolver goes on to try a.book.book.example, which matches the wild-
card MX record but is likely to be totally inappropriate.

Conditions for MX Records
Two other lookuphost options affect what is done after MX records have been
looked up in the DNS. If check_secondary_mx is set, the router declines unless the
local host is found in the list of hosts obtained from an MX lookup.† This identifies
domains for which the local host is an MX backup, and can therefor e be used to
pr ocess these domains in some special way. It differs from the generic self

option, which applies only when the lowest number ed MX record points to the
local host.

One of the problems of the proliferation of personal computers on the Internet is
that very many of them do not run MTAs, yet if their DNS-register ed domain
names appear in email addresses, sending MTAs are obliged to try to deliver to
them using their DNS address records. A sending MTA nor mally tries for several
days before giving up. This can easily happen if an MUA on a workstation is
incorr ectly configur ed so that it sends out mail containing its own domain name in
retur n addr esses, instead of using the domain that refers to its email server.

The RFCs still mandate the use of address records when MX records do not exist,
and there are still hosts on the Internet that rely on this behavior. In general, there-
for e, you cannot do anything about this problem. However, if you know that there
ar e MX records for all your own email domains, you can avoid the problem within
your own local network, by setting, for example:

mx_domains = *.your.domain

on the lookuphost router. For any domain that matches mx_domains, Exim looks
only for MX records. It does not go on to look for address records when there are
no MX records. This means that domains without MX records are immediately
bounced instead of being retried.

* Wildcard MXs are useful mostly for domains at non-IP-connected sites. Because their effects are
often not what is really wanted, they are rar ely encounter ed.

† The local host, and any with greater or equal MX prefer ence values, are then removed from the list,
in accordance with the usual MX processing rules.

The lookuphost Router 155

9 October 2001 09:08

156 Chapter 8: The Routers

Using the System’s Host lookup Instead of the DNS
If you set the gethostbyname option for a lookuphost router, it does not call the
DNS resolver, and the settings of qualify_single, search_parents, check_sec-

ondary_mx, and mx_domains ar e ignor ed. Instead of doing a DNS lookup, the sys-
tem’s host lookup function is called to find an IP address for the host whose name
is the same as the domain in the email address.* Thus, there is no domain indirec-
tion as is the case when MX records are used; the email domain and the hostname
ar e one and the same. For example:

namedhosts:
driver = lookuphost
domains = *.mydom.example
transport = remote_smtp
gethostbyname

This could be useful for hosts on a LAN that is not connected to the Internet,
though the domainlist router provides another way of doing the same thing. The
action taken depends on how host name lookup is configured on your operating
system.† Commonly, it searches /etc/hosts first, and may then go on to do a NIS
and/or a DNS lookup if necessary. If the DNS is used, however, no MX processing
is perfor med; only address records are looked up. Some of these lookup methods
support hostname abbreviation; for example, a line in /etc/hosts could be:

192.168.131.111 yellow.csi.example.com yellow

wher e yellow is an abbreviation for the full name yellow.csi.example.com.

Explicit lookup Widening
When either kind of host lookup fails, lookuphost can be configured to try adding
specific strings onto the end of the domain name, using the widen_domains option.
This provides a more contr olled extension mechanism than search_parents does
for DNS lookups, because instead of searching every enclosing domain, just those
extensions that you specify are used. Furthermor e, in the case of DNS lookups, it
operates only after both an MX and an address record lookup have failed, thereby
avoiding the problem with the wildcard MX records that were previously men-
tioned. For example, suppose we have the following:

widen_domains = cam.ac.example : ac.example

on a host called users.mail.cam.ac.example, and a user on that host sends mail to
the domain semr eh.cam. First, lookuphost looks for MX and address records for

* The IPv4 function is gethostbyname(), which gives its name to this option. In IPv6 systems,
getipnodebyname() (or, on some systems, gethostbyname2()) is used.

† The file /etc/nsswitch.conf is used on several Unix variants, including Linux and Solaris, to configure
what gethostbyname() does.

9 October 2001 09:08

semr eh.cam, and because search_parents is not set, the resolver does no widen-
ing of its own. As there is no top-level domain called cam, the lookup fails, so
lookuphost goes on to try semr eh.cam.cam.ac.example and then sem-
reh.cam.ac.example as a result of the setting of widen_domains, but no other
widening is done.

Header Rewr iting
When an abbreviated name is expanded to its full form, either as part of lookup
pr ocessing, or as a result of the widen_domains option, all occurrences of the
abbr eviated name in the header lines of the message are rewritten with the full
name.* This can be suppressed by setting no_rewrite_headers, but this option
should be turned off only when it is known that no message is ever going to be
sent outside an environment where the abbreviation makes sense.

Summar y of lookuphost Options
The options that are specific to lookuphost ar e summarized in this section:

check_secondary_mx (Boolean, default = false)
If this option is set, the router declines unless the local host is found in the list
of hosts obtained by MX lookup. This can be used to process domains for
which the local host is a secondary mail exchanger differ ently fr om other
domains.

gethostbyname (Boolean, default = false)
If this is true, the gethostbyname() function is used to look up the domain
name as a hostname, and the options relating to the DNS are ignor ed. Other-
wise, the name is looked up in the DNS, and MX processing is perfor med.

mx_domains (domain list, default = unset)
This option applies to domains that are looked up directly in the DNS. A
domain that matches mx_domains is requir ed to have an MX record in order to
be recognized.

qualify_single (Boolean, default = true)
If domains are being looked up in the DNS, the resolver option that causes it
to qualify single-component names with the default domain (RES_DEFNAMES) is
set.

* When an MX record is looked up in the DNS and matches a wildcard record, name servers normally
retur n a record containing the name that has been looked up, making it impossible to detect
whether a wildcard is present or not. However, some name servers have recently been seen to
retur n the wildcard entry itself. If the name retur ned by a DNS lookup begins with an asterisk, Exim
does not use it for header rewriting.

The lookuphost Router 157

9 October 2001 09:08

158 Chapter 8: The Routers

rewrite_headers (Boolean, default = true)
An abbreviated name may be expanded to its full form when it is looked up,
or as a result of the widen_domains option. If this option is true, all occurrences
of the abbreviated name in the headers of the message are rewritten with the
full name.

search_parents (Boolean, default = false)
If domains are being looked up in the DNS, the resolver option that causes it
to search parent domains (RES_DNSRCH) is set if this option is true. This is dif-
fer ent fr om the qualify_single option in that it applies to domains containing
dots.

widen_domains (string list, default = unset)
If a lookup fails and this option is set, each of its strings in turn is added onto
the end of the domain and the lookup is tried again. This option applies to
lookups using gethostbyname() as well as to DNS lookups. Note that when
the DNS is being used for lookups, the qualify_single and search_parents

options cause some widening to be undertaken inside the DNS resolver.

The domainlist Router
Sometimes, you know exactly how you want to route a particular domain. For
instance, a client host on a dial-up connection normally sends all outgoing mail to
a single host (often called a smart host) for onward transmission. A less trivial
example is the case of a gateway that is handling all incoming mail to a local net-
work. In this case, you will know that certain domains should be routed to spe-
cific hosts on your network. The MX records for these domains will point to the
gateway, so another means of routing onwards from the gateway is requir ed.

The domainlist router exists in order to handle this kind of manual routing. It is so
called because it is configured with a list of domains that it is to handle, together
with information as to what to do with them. This is the router that is most com-
monly used for defining explicit routing requir ements (that is, for manually routing
certain remote domains).

When domainlist matches a domain, one of the following actions can be specified:

• The address is queued for a remote transport, along with a list of hosts taken
fr om the configuration. This is probably the most common way of configuring
domainlist. It is Exim’s way of specifying the routing instruction ‘‘Send mail for
this domain to one of these hosts.’’ The remote transport tries to deliver the
message to each host in turn, until one accepts it. If hosts_randomize is set,
the list of hosts in the configuration is sorted randomly each time it used; oth-
erwise, the order is preserved. The hosts’ IP addresses are obtained either by
calling the system host lookup function, or by doing a DNS lookup, with or

9 October 2001 09:08

without MX processing.* If the first host in the list turns out to be the local
host, the generic self option controls what happens.

• The address is passed on to the next router with a new domain name. This
can be thought of as ‘‘route mail for this domain as if it were that domain.’’
This action does not change the domain name in the message or its envelope,
but it causes the message to be routed by the subsequent routers according to
the new name.

• The address is queued for a local transport, with a hostname optionally passed
as data. This can be used to store messages for remote hosts in local files, and
is often used as a way of storing mail for dial-up clients.

We will give some examples of all three types as we describe how the routing
rules are set up. There are in fact two ways of doing this: the rules can be given
inline in the configuration file, or they can be stored in a file and looked up on a
per-domain basis.

Inline Routing Rules
Inline rules are given by the route_list option. Each rule has up to three parts,
separated by whitespace:

1. A patter n that matches the domains to be handled by the rule.

2. A host list. This is an expanded item, which means that it might contain inter-
nal whitespace. If this is the case, you must enclose the host list in quotes.

3. An option that specifies how the IP addresses for the hosts are looked up.

The domain pattern is the only mandatory item in the rule. (You don’t, for exam-
ple, need a host list if the router is sending addresses to a local transport.) The
patter n is in the same format as one item in a domain list such as local_domains.
For example, it may be wildcarded, a regular expression, or a file or database
lookup.†

If the pattern at the start of a rule is a lookup item, the data that was looked up is
available in the variable $value during the expansion of the host list. For example:

route_list = dbm;/etc/rdomains $value:backup.example byname

matches domains by a DBM lookup; the data from the lookup is used in the host
list, with an additional backup hostname.

* If MX processing is specified, the list is strictly a domain list rather than a host list.

† See the section “Domain Lists,” in Chapter 18, Domain, Host, and Address Lists, for a full description
of the available formats.

The domainlist Router 159

9 October 2001 09:08

160 Chapter 8: The Routers

If the pattern at the start of a rule in route_list is a regular expression, the
numeric variables $1, $2, and so on hold any captured substrings during the
expansion of the host list. A setting such as:

route_list = ˆ(ab\d\d)\.example $1.mail.example byname

routes mail for the domain ab01.example (for example) to the host
ab01.mail.example.

The simplest use of domainlist is found on client hosts that send all nonlocal
addr esses to a single smart host for onward delivery. Such a configuration has just
a single router:

smarthost:
driver = domainlist
transport = remote_smtp
route_list = * smarthost.example.com bydns_a

A single asterisk as a domain pattern matches all domains, so this router causes all
messages containing remote addresses to be sent to the host smarthost.exam-
ple.com.

The IP address for the host is (in this example) obtained from its DNS address
record as a result of the option bydns_a. The available options for specifying the
addr ess lookup are as follows:

byname

Find an address using the system’s host lookup function instead of doing a
DNS lookup directly. This option is also used if an explicit IP address is given
instead of a hostname.

bydns_a

Do a DNS lookup for address records. That is, do not look for MX records.

bydns

Do full DNS processing on the name, looking for MX records or address
records (thus treating the name as a new mail domain name rather than strictly
as a hostname).

bydns_mx

Do a DNS lookup, but insists on the existence of an MX record (so again, this
is treating the name as a mail domain, not a hostname).

If a host is found not to exist, delivery is deferred and the message is frozen, on
the grounds that this is most probably a configuration error. However, a dif ferent

9 October 2001 09:08

action can be requested by setting the host_find_failed option. The values it can
take are as follows:*

freeze

Delivery is deferred, and the message is frozen. This is the default action.

defer

Delivery is deferred, but the message is not frozen.

pass

The router declines, and so the address is offer ed to the next router. This set-
ting overrides no_more.

fail

The router declines, but no more routers are tried, so the address fails.

So far we have been discussing a single inline routing rule, but route_list can
contain any number of such rules. Exim scans them in order until it finds one that
matches the domain of the address it is handling. If none of them match, the
router declines. When there is mor e than one rule, they are separated by semi-
colons, because a colon is used as the separator in the host lists. Here is an exam-
ple that uses a setting of route_list containing several rules:

private_routes:
driver = domainlist
transport = remote_smtp
route_list = domain1.example host1.example byname; \

*.domain2.example host2.example:host3.example bydns_a; \
domain3.example 192.168.45.56 byname

This router operates as follows:

• The domain domain1.example is routed to the host host1.example, whose IP
addr ess is looked up using the system host lookup function.

• The domains that match *.domain2.example ar e routed to the two hosts
host2.example and host3.example, whose IP addresses are obtained from the
DNS address records.

• The domain domain3.example is routed to the host whose IP address is
192.168.45.56. The use of byname is requir ed; if you don’t specify a lookup

option, Exim thinks you are trying to pass a new domain name to the next
router instead of sorting out the IP addresses here.

• All other domains are passed on to the next router.

A domainlist router is, of course, also subject to any setting of the generic domains

option.

* In earlier versions of Exim, fail_soft and fail_hard wer e used instead of pass and fail. The older
settings are still recognized.

The domainlist Router 161

9 October 2001 09:08

162 Chapter 8: The Routers

Looked-up Routing Rules
Sometimes is it more convenient to keep routing information in a file or database
rather than include it inline in the configuration file. If you want to do this, you
need to set search_type to specify the kind of lookup (for example, lsearch or
ldap). You can, if you like, set route_list as well as specifying a lookup. In this
case, route_list is searched first, and the lokup is perfor med only if none of its
rules match the domain. If the lookup fails to find any routing data, the router
declines.

If search_type is one of the single-key lookup types, route_file must be set to the
name of the lookup file. For example:

private_routes:
driver = domainlist
transport = remote_smtp
search_type = cdb
route_file = /etc/routes.cdb

This specifies that the routing data is to be obtained by looking up up the domain
in /etc/r outes.cdb using a cdb lookup. Partial single-key lookups (see the section
“Partial Matching in Single-Key Lookups,” in Chapter 16, File and Database
Lookups) may be used to cause a set of domains all to use the same routing data.

For a query-style lookup type, a single query can be given in route_query, or a
colon-separated list of queries can be given in route_queries. For example:

private_routes:
driver = domainlist
transport = remote_smtp
search_type = pgsql
route_query = select routedata from routelist where domain=’$domain’;

The routing data retur ned fr om a successful lookup must be a string containing a
host list and options, separated by whitespace. These are used in exactly the same
way as described earlier for inline routing rules. The final example in the previous
section, if reorganized to use a file lookup, would be configured like this:

private_routes:
driver = domainlist
transport = remote_smtp
search_type = partial-lsearch*
route_file = /etc/routes

with the file containing:

domain1.example: host1.example byname
*.domain2.example: host2.example:host3.example bydns_a
domain3.example: 192.168.45.56 byname

9 October 2001 09:08

When the rule is found by a partial single-key lookup in route_file, $1 contains
the wild portion of the domain name during the expansion of the host list.

As neither the host list nor the options are compulsory in all circumstances, the
data retur ned fr om a lookup can legitimately be an empty string in some cases.

If the domain does not match anything in route_list, and looking it up using
route_file, route_query or route_queries also fails, the router declines to handle
the address, so it is offer ed to the next router (unless no_more is set).

Preprocessing the Host List
If a host list is present in the rule, it is expanded before use, and the result of the
expansion must be a colon-separated list of names. Literal IP addresses may also
appear, but only when the option is set to byname. Some string expansion items
may contain whitespace, and if this is the case, the host list must be enclosed in
single or double quotes to avoid prematur e ter mination. For example:

myroutes:
driver = domainlist
transport = remote_smtp
route_list = *.mydoms.example \
"${lookup {$domain} lsearch {/etc/routes}{$value}fail}" byname

The string expansion in this configuration uses the domain name as a key for a
lookup, in order to obtain a host list from the /etc/r outes file. If the lookup fails,
the expansion is forced to fail, causing the router to decline. Unless no_more is set,
the address is offer ed to the next router. If expansion fails for some other reason,
the message is frozen, because this is considered to be a configuration error.

During the expansion of the host list, $0 is always set to the entire domain that is
being routed. This may differ from $domain, which contains the original domain
of the address. If the address has been processed by a previous domainlist router
that passed on a differ ent routing domain, $0 contains this new routing domain,
wher eas $domain contains the original domain.

Routing to a Local Transpor t
Routers are not constrained to using remote transports. They can also arrange for
addr esses to be passed to local transports. An instance of domainlist that is config-
ur ed in this way is often used for handling messages for dial-up hosts. Rather than
leaving them on Exim’s queue, where they will be uselessly retried, they are deliv-
er ed into files from which they can be retrieved when the client host connects.

If there is no host list in a routing rule (and therefor e necessarily no options
either), a local transport (that is, not an SMTP transport) must be specified for the
router via the generic transport option. The address is routed to the transport, and

The domainlist Router 163

9 October 2001 09:08

164 Chapter 8: The Routers

the route list entry can be as simple as a single domain name in a configuration
such as this:

route_append:
driver = domainlist
transport = batchsmtp_appendfile
route_list = gated.domain.example

This router causes the batchsmtp_appendfile transport to be run for addresses in
the domain gated.domain.example. Nor mally, instead of just a single domain,
some kind of pattern would be used to match a set of domains, and a user needs
to be specified for running the transport. A complete configuration might contain a
transport such as this:

dialup_transport:
driver = appendfile
bsmtp = domain
file = /var/dialups/$domain
user = exim

and a router such as this:

route_dialup:
driver = domainlist
transport = dialup_transport
route_list = *.dialup.example.com

The setting of bsmtp in the transport requests that the message’s envelope be pre-
served in batch SMTP (BSMTP) format. We cover how this works and what it can
be used for in the section “Batched Delivery and BSMTP,” in Chapter 9, The Trans-
ports.

When a local transport is used like this, a single hostname may optionally be pre-
sent in each routing rule. It is passed to the transport in the variable $host, and
could, for example, be used in constructing the filename. The following router
matches two sets of domains; for each set, a differ ent value appears in $host.

route_list = *.dialup1.example.com host1; \
*.dialup2.example.com host2

You can use domainlist for routing mail directly to UUCP software. Here is an
example of one way this can be done, taken from a real configuration. A pipe
transport is used to run the UUCP software dir ectly (see the section “The pipe
Transport,” in Chapter 9):

uucp:
driver = pipe
user = nobody
command = /usr/local/bin/uux -r - $host!rmail $local_part
return_fail_output = true

9 October 2001 09:08

This transport substitutes the values of $host and $local_part in the command:

/usr/local/bin/uux -r - $host!rmail $local_part

and then runs it as the user nobody. The message is piped to the command on its
standard input. If the command fails, any output it produces is retur ned to the
sender of the message. The corresponding router is:

uucphost:
transport = uucp
driver = domainlist
route_file = /usr/local/exim/uucphosts
search_type = lsearch

The file /usr/local/exim/uucphosts contains entries such as this:

darksite.ethereal.example: darksite

When the router processes the address someone@darksite.ether eal.example, it
passes the address to the uucp transport, setting $host to the string darksite.

Using domainlist on a Mail Hub
A mail hub is a host that receives mail for a number of domains (usually, but not
necessarily, via MX records in the DNS), and delivers it using its own private rout-
ing mechanism. Often the final destinations are behind a firewall, with the mail
hub being the one machine that can connect to machines both inside and outside
the firewall. The domainlist router on the hub can be set to handle incoming mail
like this:

through_firewall:
driver = domainlist
transport = remote_smtp
route_file = /internal/host/routes
search_type = lsearch

If there are only a small number of domains, the routing could be specified inline,
using the route_list option, but for a larger number, a lookup is easier to man-
age. If a routing file itself becomes large (more than, say, 20 to 30 entries), it is a
good idea to turn it into one of the indexed formats (DBM or cdb) to improve per-
for mance. For this example, the file containing the internal routing might contain
lines such as this:

abc.ref.example: m1.ref.example:m2.ref.example byname

The DNS would be set up with an MX record for abc.r ef.example pointing to the
mail hub, which would forward mail for this domain to one of the two specified
hosts and look up their addresses using gethostbyname(). They would be tried in
order, because hosts_randomize is not set.

The domainlist Router 165

9 October 2001 09:08

166 Chapter 8: The Routers

If the domain names are, in fact, the names of the machines to which the mail is
to be sent by the mail hub, the configuration can be simplified. For example:

hub_route:
driver = domainlist
transport = remote_smtp
route_list = *.rhodes.example $domain byname

This configuration routes domains that end in .r hodes.example by calling geth-
ostbyname() on the domain.* A similar approach can be taken if the hostname
can be obtained from the domain name by any of the transformations that are
available in Exim’s string expansion mechanism.

Varying the Transpor t
In addition to specifying how names are to be looked up, the options part of a
rule may also contain a transport name. This is then used for domains that match
the rule, overriding any setting of the generic transport option. For example, this
router uses differ ent local transports for each of its rules:

route_append:
driver = domainlist
route_list = \
*.gated.domain1 $domain batch_appendfile; \
*.gated.domain2 ${lookup{$domain}dbm{/etc/domain2/hosts}\

{$value}fail} batch_pipe

The first rule sends the address that it matches to the batch_appendfile transport,
passing the domain in the $host variable, which does not achieve much (since it is
also in $domain); the second rule does a file lookup to find a value to pass in
$host to the batch_pipe transport, specifying that the router should decline to han-
dle the address if the lookup fails.

Using domainlist to Change the Routing Domain
The examples used so far have all routed to a specific remote transport. This is the
most common use for domainlist. It provides a way of implementing local rules for
routing certain domains to specified hosts. However, domainlist can be used with-
out a transport.

If no transport is specified, the domainlist router does not set up a delivery for the
domains it matches. Instead it replaces the domain name that is being routed by a
new domain taken from the host list, and passes that domain to the following
router. It is a configuration error to omit a transport without specifying a new
domain name.

* This particular routing could equally well have been done using a lookuphost router with the geth-
ostbyname option. There is often more than one way to do something in Exim.

9 October 2001 09:08

Other domainlist Options
The remaining options for domainlist fall into in two groups. The options mode-

mask, owners, and owngroups contr ol the mode and ownership of the file specified
in route_file, when it is a real file. These options act in exactly the same way as
they do for the aliasfile and forwardfile dir ectors (see the section “Options Com-
mon to aliasfile and forwardfile,” in Chapter 7, The Directors). The no_qual-

ify_single and search_parents options apply to any DNS lookups that are done,
and act in the same way as they do in the lookuphost router (see the section “The
lookuphost Router,” earlier in this chapter).

Summar y of domainlist Options
The options that are specific to domainlist ar e summarized in this section:

host_find_failed (string, default = freeze)
This option controls what happens when a host that domainlist tries to look
up (because an address has been specifically routed to it) does not exist. The
option can be set to one of the following:

freeze
defer
pass
fail

The default assumes that this state is a serious configuration error. The differ-
ence between pass and fail is that the former causes the address to be
passed to the next router, overriding no_more, while the latter does not, caus-
ing the address to fail completely. This option applies only to a definite ‘‘does
not exist’’ state; if a host lookup suffers a temporary error, delivery is deferred
unless the generic pass_on_timeout option is set.

hosts_randomize (Boolean, default = false)
If hosts_randomize is false, the order in which hosts are listed is preserved as
an order of prefer ence for delivering the message; if it is true, the list is shuf-
fled into a random order each time it is used.

modemask (octal integer, default = 022)
This specifies mode bits that must not be set for the route file. If they are set,
delivery is deferred and the message is frozen.

owners (string list, default = unset)
This specifies a list of permitted owners for the route file. If it is unset, no
check on the ownership is done. If the file is not owned by a user in the list,
delivery is deferred and the message is frozen.

The domainlist Router 167

9 October 2001 09:08

168 Chapter 8: The Routers

owngroups (string list, default = unset)
This specifies a list of permitted group owners for the route file. If it is unset,
no check on the file’s group is done. If the file’s group is not in the list, deliv-
ery is deferred and the message is frozen.

qualify_single (Boolean, default = true)
For any domain that is looked up in the DNS, the resolver option that causes
it to qualify single-component names with the default domain (RES_DEFNAMES)
is set if qualify_single is true.

route_file (string, default = unset)
If this option is set, search_type must be set to one of the single-key lookup
types, and route_query must not be set. The domain being routed is used as
the key for the lookup, and the resulting data must be a routing rule. The file-
name is expanded before use.

route_list (string list, default = unset)
This string is a list of routing rules. Note that, unlike most string lists, the items
ar e separated by semicolons by default. This is so that they may contain
colon-separated host lists.

route_queries (string, default = unset)
This option is an alternative to route_query; the two options are mutually
exclusive. The differ ence is that route_queries contains a colon-separated list
of queries, which are tried in order until one succeeds or defers, or all fail.
Any colon characters actually requir ed in an individual query must be dou-
bled, in order that they not be treated as query separators.

route_query (string, default = unset)
If this option is set, search_type must be set to a query-style lookup type, and
route_file must not be set. The query is expanded before use, and during the
expansion, the variable $domain contains the domain being routed. The data
retur ned fr om the lookup must be a routing rule.

search_parents (Boolean, default = false)
For any domain that is looked up in the DNS, the resolver option that causes
it to search parent domains (RES_DNSRCH) is set if search_parents is true. This
is differ ent fr om the qualify_single option in that it applies to domains con-
taining dots.

search_type (string, default = unset)
This option is mandatory when route_file, route_query, or route_queries is
specified. It must be set to one of the supported search types (for example,
lsearch). Partial single-key lookups can be used.

9 October 2001 09:08

The ipliteral Router
In the early days of the Internet, before the general availability of the DNS, domain
names were not always available. For this reason, RFCs 821 and 822 allow for the
use of an IP domain literal instead of a domain name in an email address. For
example:

A.User@[192.168.3.4]

The intention is that such an address causes the message to be delivered to the
host with that IP address. These days, allowing end users to direct messages to
individual machines is not something many administrators are prepar ed to permit,
and the increasing use of firewalls often makes it impossible. However, since the
facility is still current in the RFCs, Exim supports it, though the options that set it
up are commented out in the default configuration file.

The ipliteral router has no specific options of its own. It simply checks whether
the domain part of an address has the format of a domain literal, and if so, routes
the address to a transport specified by the generic transport option, passing the IP
addr ess to which the message should be sent. If a domain literal turns out to refer
to the local host, the generic self option determines what happens.

The quer yprog ram Router
The quer yprogram router routes an address by running an external command and
acting on its output. The command’s job is to make decisions about the routing of
the address. It is not a command to perfor m message delivery; that function is
available via the pipe transport.

Running an external command is an expensive way to route, and is intended
mainly for use in lightly loaded systems or for perfor ming experiments. However,
if it is possible to restrict this router to a few lightly used addresses by means of
the domains, local_parts, or condition generic options, it could sensibly be used
in special cases, even on busy systems.

The quer yprog ram Command
The command that is to be run is specified in the command option. This string is
expanded; after expansion it must start with the absolute pathname of the com-
mand. An expansion failure causes delivery to be deferred and the message to be
fr ozen. The command is run in a subprocess directly from Exim, without using an
intervening shell. If you want a shell, you have to specify it explicitly; because this
interposes yet another process, it increases the expense and is not recommended.

The quer yprog ram Router 169

9 October 2001 09:08

170 Chapter 8: The Routers

Running the queryprog ram Command
The command is run in a separate process under a uid and gid that are specified
by command_user and command_group. If the latter is not set, the gid associated with
the user is used, as in this example:

pgm_router:
driver = queryprogram
transport = remote_smtp
command = /usr/exim/pgmrouter $local_part $domain
command_user = mail

If neither command_user nor command_group ar e set, the command is run as the user
defined by the nobody_user and nobody_group options; if they are not set, the com-
mand is run as the user nobody, if such a user exists. If no user can be found
under which to run the process, delivery is deferred and the message is frozen.
The directory that is made current while running the command is specified by
current_directory. It defaults to the root directory.

The Result of the queryprog ram Command
The quer yprogram router has a timeout option, which defaults to 1h (1 hour). If
the command does not complete in this time, its process group is killed, delivery
is deferred, and the message is frozen. A zero time specifies no time limit, but this
is not recommended. The message is also frozen if the command terminates in
err or (that is, if its retur n code is not zero.

No input is provided for the command, so any data it requir es must be passed in
as arguments. The standard output of the command is read when the command
ter minates successfully. It should consist of a single line of output, containing up
to five fields separated by whitespace.

The first field is one of the following words:

OK

Routing did not succeed; offer the address to the next router unless no_more is
set.*

FORCEFAIL

Routing failed; do not pass the address to any more routers. This means that
the address fails.

* In earlier versions of Exim, FAIL was used instead of DECLINE. It is still recognized, for backwards
compatibility.

9 October 2001 09:08

DEFER

Routing could not be completed at this time; try again later.

ERROR

Some disastrous error occurred; freeze the message.

When the first word is not OK, the remainder of the line is an error message
explaining what went wrong. For example:

DECLINE cannot route to unseen.discworld.example

When the first word is OK, the line must be formatted as follows:

OK transport-name new-domain option arbitrary-text

The second field is the name of a transport instance, or a plus character, which
means that the transport specified for the router using the generic transport

option is to be used.

If the new-domain field is present, it contains a new domain name that replaces the
curr ent one. When, in addition, a transport is specified (either in the second field
or by the transport option) and the option field is present, it specifies the method
of looking up the new domain name. This can be one of the words byname, bydns,
bydns_a, or bydns_mx. These operate in exactly the same way as in the domainlist
router, described earlier in this chapter. For example, the following:

OK remote_smtp gate.star.example bydns_a

causes the message to be sent using the remote_smtp transport to the host
gate.star.example, whose IP address is looked up using DNS address records. If
the host turns out to be the local host, what happens is controlled by the generic
self option.

The final (fifth) field, if present, is made available to the transport via the variable
$r oute_option. If you want to set the fifth field without specifying a hostname or a
lookup method, you must use plus characters as placeholders for the missing
fields. For example, a line such as:

OK special + + /computed/filename

sends the message to the special transport, which can use $route_option in its
configuration to access the text /computed/filename.

If no transport is specified in the response line (that is, a plus character is given)
and the generic transport option is also unset, the fourth and fifth fields are
ignor ed and the (possibly changed) domain is passed to the next router. This pro-
vides a way of dynamically changing the domain that is being routed. That is, it
allows the routing program to implement the rule ‘‘route this domain as if it were
that domain.’’

The quer yprog ram Router 171

9 October 2001 09:08

172 Chapter 8: The Routers

Summar y of queryprog ram Options
The options specific to quer yprogram ar e summarized in this section:

command (string, default = unset)
This option must be set, and must, after expansion, start with a slash character.
It specifies the command that is to be run. Failure to expand causes delivery
to be deferred and the message to be frozen.

command_group (string, default = unset)
This option specifies a gid to be set when running the command. If it begins
with a digit, it is interpreted as the numerical value of the gid. Otherwise it is
looked up in the password data.

command_user (string, default = unset)
This option specifies the uid, which is set when running the command. If it
begins with a digit, it is interpreted as the numerical value of the uid. Other-
wise, the corresponding uid is looked up in the password data, and if com-
mand_group is not set, a value for the gid is taken from the same entry.

current_directory (string, default = unset)
This option specifies an absolute path, which is made the current directory
befor e running the command. If it is not set, the root directory is used.

timeout (time, default = 1h)
If the command does not complete within the timeout period, its process
gr oup is killed and the message is frozen. A value of zero time specifies no
timeout.

9 October 2001 09:08

9
The Transpor ts

Transports are the modules within Exim that carry out the actual deliveries. Some
examples of transports have appeared in earlier chapters; in this chapter, we talk
about the options that apply to all of them, and then consider each particular
transport in turn. The available transports are as follows:

appendfile
A transport that writes messages to local files.

autoreply
A transport that generates automatic replies to messages.

lmtp
A transport that delivers messages to external processes using the LMTP
pr otocol.

pipe
A transport that passes messages to external processes via pipes.

smtp
A transport that writes messages to other hosts over TCP/IP connections, using
either SMTP or LMTP.

autoreply
Really a pseudotransport, because it does not actually deliver the message
anywher e; instead it generates a new outgoing message (an automatic reply).
It is included among the transports because its method of operation and con-
figuration are the same, and it can include a copy of the original message in
the reply.

173

9 October 2001 09:09

174 Chapter 9: The Transpor ts

Options Common to All Transpor ts
Ther e ar e several generic options that can be set for any transport, though some of
them are used almost exclusively on local transports. The only requir ed option is
driver, which defines which transport is being configured. For the smtp transport,
this is often the only option you need to provide. In Exim’s default configuration
file, it is configured as follows:

remote_smtp:
driver = smtp

In this case, the host to which the message is to be transported is expected to be
supplied by a router (for example, as a result of a DNS lookup in lookuphost), and
all the other transport options are defaulted.

Debugg ing Tr anspor ts
The debug_print option operates just like the router and director option of the
same name. Its sole purpose is to help debug Exim configurations. When Exim is
run with debugging turned on,* the string value of debug_print is expanded and
added to the debugging output when the transport is run. This facility can be used
to check that the values of certain variables are what you think they should be.
For example, with the following:

remote_smtp:
driver = smtp
debug_print = self_hostname = $self_hostname

the value of the variable $self_hostname would be added to the debugging output
at the time the transport was run.

Tr anspor ting Only Par t of a Message
Nor mally, the job of a transport is to copy an entire message. For special pur-
poses, however, it is possible to transport only the header lines or only the body.
Setting headers_only or body_only, respectively, achieves this, but only one of
them may be set at once. For example, if copies of messages are being taken for
some kind of header analysis, headers_only reduces the amount of data that is
written.

* See -d and -v in the section “Options for Debugging,” in Chapter 20, Command-Line Interface to
Exim.

9 October 2001 09:09

Controlling Message Size
A transport can be configured to reject messages above a certain size by setting
message_size_limit to a value greater than zero. The default is to apply no limit.
Deliveries of messages that are above the limit fail and the address is bounced. If
ther e is any chance that the bounce message (which contains a copy of the origi-
nal message) could be routed to the same transport, you should ensure that the
configuration option return_size_limit is less than the transport’s mes-

sage_size_limit, as otherwise the bounce message will also fail.

Note that there is a main configuration option for limiting the size of all messages
pr ocessed by Exim, whose name is also message_size_limit. To have any effect, a
local setting on a transport must naturally be less than the global limit.

Adding and Removing Header Lines
During the delivery process, a transport can be configured to add or remove
header lines. Three specific headers are commonly requir ed to be added when a
message is delivered into a local mailbox, and separate options are provided to
request them. They are added at the very start of the message, before the
Received: header lines, and are as follows:

delivery_date_add

Requests the addition of a header line of the form:

Delivery-date: Tue, 29 Feb 2000 16:14:32 +0000

which records the date and time that the message was delivered.

envelope_to_add

Requests the addition of a header line of the form:

Envelope-to: alex@troy.example

which records the original envelope recipient address that caused the delivery
to occur. This may be an address that does not appear in the To: or Cc: header
lines. In cases where a single delivery is being done for several recipient
addr esses, ther e may be more than one address listed.

return_path_add

Requests the addition of a header line of the form:

Return-path: <phil@thesa.example>

which records the sender address from the message’s envelope. For a bounce
message, the added header is:

Return-path: <>

Options Common to All Transpor ts 175

9 October 2001 09:09

176 Chapter 9: The Transpor ts

RFC 822 states that the Retur n-path: header ‘‘is added by the final transport system
that delivers the message to its recipient.’’ It should not, therefor e, be present in
incoming messages. The other two added headers are not standardized (though
they are used by some other MTAs) and also should not be present in incoming
messages. Exim therefor e removes all three of these headers from messages it
receives, to allow messages that have already been delivered to be easily resent.*

Other header lines can be added to the message by means of the headers_add

option. If this is set, its contents are added at the end of the header section at the
time the message is transported. Header lines added by a transport follow any that
ar e added to an address by directors or routers. Multiple lines can be added by
coding \n inside quotes. For example:

headers_add = "\
X-added: this is a header added at $tod_log\n\
X-added: this is another"

Exim does not check the syntax of these added header lines; you should ensure
that they conform to RFC 822. A newline is supplied at the end if one is not
pr esent.

Original header lines (those that were received with the message) can be removed
by setting headers_remove to a list of their names for example:

headers_remove = return-receipt-to : acknowledge-to

The header names are given without their terminating colons (the colon in the
example is a list separator character). These header lines are removed before the
addition of any new ones specified by headers_add, so an individual header line
can be removed and replaced by something differ ent. However, it is not possible
to refer to the old contents when defining the new line.

Both headers_add and headers_remove ar e expanded before use. If the result is the
empty string or the expansion is forced to fail, no action is taken. Other kinds of
failur e (for example, an expansion syntax error) cause delivery to be deferred.

Header line additions and removals can also be specified on director and router
configurations (see the section “Adding or Removing Header Lines,” in Chapter 6,
Options Common to Directors and Routers), in which case they are associated with
the addresses that those drivers handle. If one director or router is associated with
just one transport, it doesn’t matter whether you specify header line changes on
the transport or on the router or director. However, in configurations where sev-
eral routers or directors are using the same transport, where you specify header
line changes obviously makes a differ ence.

* This behavior can be prevented by setting the configuration options no_return_path_remove,
no_delivery_date_remove, and no_envelope_to_remove, respectively, but you should not normally
do this.

9 October 2001 09:09

At transport time, the removal list from the address is merged with the removal list
fr om the transport before the relevant header lines are removed. Then the addi-
tions from the address and from the transport are done. It is, therefor e, not possi-
ble to use the transport’s option to remove header lines added by a router or
dir ector.

Rewr iting Addresses in Header Lines
Some installations make a distinction between private email addresses that are
used within a single host or within a local network, and public addresses that are
used on the Internet. When a message passes from their private network to the
outside world, they want internal addresses to be translated into external ones.

We haven’t yet talked about Exim’s address rewriting facilities. They are described
in Chapter 14, Rewriting Addresses. Their main focus is on rewriting addresses at
the time of a message’s arrival, which means that it affects every copy of a mes-
sage that is delivered. This is no good for solving the problem of internal and
exter nal addr esses, because a single message may have both internal and external
recipients. Some copies may need to be rewritten, whereas others may not.

To overcome this difficulty, a new generic transport option called headers_rewrite

was added to Exim for Release 3.20. It allows addresses in header lines to be
rewritten at transport time (that is, as the message is being copied to its destina-
tion). This means that the rewriting affects only those copies of the message that
pass through the transport where the option is set. Copies that are deliver ed by
other transports are unaf fected.

Ther e’s a full discussion of this in Chapter 14, so we won’t say any more about it
her e.

Chang ing the Return Path
‘‘Retur n path’’ is another name for the sender address carried in the message’s
envelope. If the return_path option is set for a transport, its contents are
expanded, and the result replaces the existing retur n path. The expansion can
refer to the existing value using the $retur n_path variable. If the expansion is
forced to fail, no replacement occurs; if it fails for another reason, Exim writes a
message to its panic log and exits immediately.

The main use of this option is for implementing variable envelope retur n paths
(VERP) for messages from mailing lists.* The problem with mailing list deliveries
that bounce is that it is often difficult to discover which original recipient address
pr ovoked the bounce.

* See ftp://koobera.math.uic.edu/www/pr oto/verp.txt.

Options Common to All Transpor ts 177

9 October 2001 09:09

178 Chapter 9: The Transpor ts

Suppose somebody subscribed to a mailing list using the address
J.Smith99@alma.mater.example, which is forwarded to jan@plc.co.example. All
goes well until she changes jobs, her email account at plc.co.example is cancelled,
and she forgets to update the forwarding because there is not much traffic on the
list. When next a message is posted, the manager of the list receives a bounce
message about a failure to deliver to jan@plc.co.example, an addr ess that does not
appear on the list. Finding out which original address caused the bounce may be
possible by analysis of the Received: header lines that were added to the message;
these sometimes contain the recipient address in copies of the message that have
only one recipient, for example:

Received: from [192.168.247.11] (helo=mail.list.example ident=exim)
by draco.alma.mater.example with esmtp (Exim 3.22 #3)
id 124h5o-0005wn-00
for J.Smith99@alma.mater.example; Wed, 20 Jun 2001 10:46:44 +0100

However, if the message has more than one recipient, their addresses must not be
placed in a Received: header because this would constitute a confidentiality
exposur e.* In any event, diagnosing the problem address is time-consuming, and
not something that can easily be automated.

The VERP solution to this problem is to encode the subscriber’s address in the
envelope sender of the message, so that it is immediately available from any
bounce messages. For example, suppose messages to the mailing list were previ-
ously sent out with the envelope sender set to:

somelist-request@list.example

After configuring VERP, the copy of the message that is sent to
J.Smith99@alma.mater.example has (for example) this envelope sender:

somelist-request=J.Smith99%alma.mater.example@list.example

If a bounce message is sent back to that address, the address of the subscriber that
pr ovoked it can easily be extracted in an automated way.

The downside of VERP is that a separate copy of every message must be sent to
each list subscriber, so that it can have a customized sender address. For large lists
that may have hundreds of subscribers in the same domain, this can use substan-
tially more bandwidth and take a lot longer in real time. There are two ways to
alleviate this problem:

• Use VERP only for an occasional test message, say once a week. This need not
be a special message; a normal post to the list could trigger it. Ignore bounces
fr om non-VERP messages.

* Usually, subscribers to a mailing list are not shown the addresses of other subscribers.

9 October 2001 09:09

• Maintain a list of domains that have many subscribers, and send single copies
to those domains. In other words, forgo the benefit of VERP for those
domains.

VERP can be supported in Exim by using the return_path transport option to
rewrite the envelope sender at transport time. For example, the following could be
used:

return_path = \
${if match {$return_path}{ˆ(.+?)-request@list.example\$}\
{$1-request=$local_part%$domain@list.example}fail}

This has the effect of rewriting the retur n path (envelope sender) if the local part
of the original retur n path ends in -request and the domain is list.example. The
rewriting inserts the local part and domain of the recipient into the retur n path, in
the format used in the previous example.

For this to work, you must arrange for outgoing messages that have -request in
their retur n paths to be passed to the transport with just a single recipient, because
$local_part and $domain are not set for messages that have multiple recipients.
Local transports operate on one recipient at a time by default, but for an smtp
transport you need to set the following:

max_rcpt = 1

in the transport’s options. If your host doesn’t handle much other traffic, you can
just set this on the normal remote_smtp transport, but if you want to have the
benefit of multiple recipients in other cases, you need to set up two smtp trans-
ports, like this:

normal_smtp:
driver = smtp

verp_smtp:
driver = smtp
max_rcpt = 1
return_path = \
{${local_part:$return_path}=$local_part%$domain@list.example}fail}

and then route mailing list messages to the second of them, using a router such as
this:

verp_router:
driver = lookuphost
transport = verp_smtp
condition = \
${if match {$return_path}{ˆ(.+?)-request@list.example\$}{yes}{no}}

The setting of return_path on the transport can be simpler, because the strict
check is done by the router, so that it sends only addresses that have the -request

suf fix to the transport.

Options Common to All Transpor ts 179

9 October 2001 09:09

180 Chapter 9: The Transpor ts

Of course, if you do start sending out messages with this kind of retur n path, you
must also configure Exim to accept the bounce messages that come back to those
addr esses. Typically this is done by setting a prefix or suffix option in a suitable
dir ector (see the section “Conditional Running of Directors,” in Chapter 7, The
Dir ectors).

The overhead incurred in using VERP depends on the size of the message, the
number of recipient addresses that resolve to the same remote host, and the speed
of the connection over which the message is being sent. If a lot of addresses
resolve to the same host and the connection is slow, sending a separate copy of
the message for each address may take substantially longer than sending a single
copy with many recipients (for which VERP cannot be used).

Tr anspor t Filter s
If you want to make more extensive changes than can be achieved with the
options just described, or if you want to modify the body of messages as they are
transported, you can make use of a transport filter. This is a ‘‘filter’’ in the Unix
sense of the word; it is unrelated to Exim’s message filtering facilities that happen
at directing time.

The transport_filter option specifies a command that is run at transport time.
Instead of copying the message to its destination, Exim uses a pipe to pass it to
the command on its standard input. It then reads the standard output of the com-
mand and writes that to the destination. This is an expensive thing to do, and is
made more so because Exim’s delivery process cannot both read from and write to
the filtering process, as doing this could lead to a deadlock. It therefor e has to cre-
ate a third process to do the writing, as shown in Figure 9-1.

One possible application of transport filters is to encrypt the bodies of messages as
they pass through certain transports. A transport such as:

encrypt_smtp:
driver = smtp
transport_filter = /usr/mail/encrypt/body $sender_address

could be selected by the routers for certain destination addresses, and the value of
$sender_addr ess could be used to control how the encryption was done.

The entire message including the header lines, is passed to the filter before any
transport-specific processing (such as turning \n into \r\n and escaping lines start-
ing with a dot for SMTP) is done. The filter can perfor m any transformations it
likes, but, of course, it should take care not to break RFC 822 syntax. A problem
might arise if the filter increases the size of a message that is being sent down an

9 October 2001 09:09

Message writer process (Exim)

Transport filter process

Final delivery process (Exim)

Destination

Figur e 9-1. Transport filtering

SMTP channel. If the receiving SMTP server has indicated support for the SIZE

parameter, Exim will have sent the size of the message at the start of the SMTP
session. If what is actually sent is substantially more, the server might reject the
message. You can work round this by setting the size_addition option on the
smtp transport, either to allow for additions to the message or to disable the use of
SIZE altogether.

The value of transport_filter is the command string for the program that is run
in the process started by Exim. This program is run directly, not under a shell. The
string is parsed by Exim in the same way as a command string for the pipe trans-
port: Exim breaks it up into arguments and expands each argument separately.
This means that the expansion cannot accidentally change the number of argu-
ments. The special argument $pipe_addresses is replaced by a number of argu-
ments, one for each address that applies to this delivery.*

The variables $host (containing the name of the remote host) and $host_address
(containing the IP address of the remote host) are available when the transport is a
remote one. For example:

transport_filter = /some/directory/transport-filter.pl \
$host $host_address $sender_address $pipe_addresses

The filter process is run under the same uid and gid as the normal delivery. For
remote deliveries, this is the Exim uid and gid.

* $pipe_addr esses is not an ideal name for this feature her e, but as it was already implemented for the
pipe transport, it seemed sensible not to change it.

Options Common to All Transpor ts 181

9 October 2001 09:09

182 Chapter 9: The Transpor ts

Shadow Transpor ts
A shadow transport is one that is run in addition to the main transport for an
addr ess. Shadow transports can be used for a number of differ ent purposes,
including keeping more detailed log information than Exim normally provides,
and implementing automatic acknowledgment policies based on message headers.

A local transport may set shadow_transport to the name of another transport,
which must be a local transport that is defined earlier in the configuration file.
Shadow remote transports are not supported.

When a shadow transport is defined, and a delivery to the main transport suc-
ceeds, the message is also passed to the shadow transport. However, this happens
only if shadow_condition is unset, or its expansion does not result in a forced
expansion failure, the empty string, or one of the strings 0, no, or false. This
allows you to restrict shadowing to messages that match certain conditions.

If a shadow transport fails to deliver the message, the failure is logged, but it does
not affect the subsequent processing of the message. Since the main delivery suc-
ceeded, the address is finished with. There is no retrying mechanism for shadow
transports.

Only a single level of shadowing is provided; the shadow_transport option is
ignor ed on any transport when it is running as a shadow. Options concerned with
output from pipes are also ignored. The log line for the successful delivery has an
item added on the end, in the following form:

ST=<shadow transport name>

If the shadow transport did not succeed, the error message is put in parentheses
afterwards.

Summar y of Generic Transpor t Options
The options that are common to all the transports are summarized in this section:

body_only (Boolean, default = false)
If this option is set, the message’s headers are not transported. The option is
mutually exclusive with headers_only. If it is used with the appendfile or pipe
transports, the settings of prefix and suffix should be checked, since this
option does not automatically suppress them.

debug_print (string, default = unset)
If this option is set and debugging is enabled, the string is expanded and
included in the debugging output when the transport is run.

9 October 2001 09:09

delivery_date_add (Boolean, default = false)
If this option is true, a Delivery-date: header line is added to the message. This
gives the actual time the delivery was made.

driver (string, default = unset)
This specifies which of the available transport drivers is to be used. Ther e is
no default, and this option must be set for every transport.

envelope_to_add (Boolean, default = false)
If this option is true, an Envelope-to: header line is added to the message. This
gives the original address in the incoming envelope that caused this delivery
to happen. More than one address may be present if batch or bsmtp is set on
transports that support them, or if more than one original address was aliased
or forwarded to the same final address.

headers_add (string, default = unset)
This option specifies a string of text that is expanded and added to the header
portion of a message as it is transported. If the result of the expansion is an
empty string, or if the expansion is forced to fail, no action is taken. Other
expansion failures are treated as errors and cause the delivery to be deferred.

headers_only (Boolean, default = false)
If this option is set, the message’s body is not transported. It is mutually exclu-
sive with body_only.

headers_remove (string, default = unset)
This option is expanded; the result must consist of a colon-separated list of
header names (without their terminating colons). Original header lines match-
ing those names are omitted from any message that is transmitted by the trans-
port. However, headers with these names may still be added.

message_size_limit (integer, default = 0)
This option controls the size of messages passing through the transport. If its
value is greater than zero and the size of a message exceeds the limit, the
delivery fails.

return_path (string, default = unset)
If this option is set, the string is expanded at transport time and replaces the
existing retur n path (envelope sender) value. The expansion can refer to the
existing value via $retur n_path. If the expansion is forced to fail, no replace-
ment occurs; if it fails for another reason, Exim writes to its panic log and exits
immediately.

Options Common to All Transpor ts 183

9 October 2001 09:09

184 Chapter 9: The Transpor ts

return_path_add (Boolean, default = false)
If this option is true, a Retur n-path: header line is added to the message. This
is normally used only on transports that are doing final delivery into a mail-
box. If the mailbox is a single file in Berkeley format, the retur n path is nor-
mally available in the separator line, but commonly this is not displayed by
MUAs, and so the user does not have easy access to it. Other mailbox formats
may not record the retur n path at all.

shadow_condition (string, default = unset)
See shadow_transport.

shadow_transport (string, default = unset)
A local transport may set the shadow_transport option to the name of another
pr eviously defined local transport. Whenever a delivery to the main transport
succeeds, and either shadow_condition is unset, or its expansion does not
result in a forced expansion failure or the empty string or one of the strings 0
or no or false, the message is also passed to the shadow transport.

transport_filter (string, default = unset)
This option sets up a filtering process (in the Unix shell sense) for messages at
transport time. When the message is about to be written out, the command
specified by transport_filter is started up in a separate process, and the
entir e message, including the headers, is passed to it on its standard input.
The filter’s standard output is read and written to the message’s destination.

The smtp Transpor t
The smtp transport is the only remote transport, so it is used for all deliveries to
remote hosts. However, mor e than one instance can be configured with differ ent
option settings if necessary. Its most common configuration is very simple, usually
this:

remote_smtp:
driver = smtp

In this example, all the options that control the parameters of the SMTP connec-
tion take their default values. The list of remote hosts must be set up by the router
that handled the address, and passed with the address(es) to be delivered.

However, the use of an smtp transport is not restricted to routers. It can be used
fr om dir ectors, but these do not set up host lists. To allow for this, the transport
itself has options for specifying hosts. In addition, the characteristics of the SMTP
connection can be modified in various ways. As a result, there are quite a lot of
options for this transport.

9 October 2001 09:09

Control of Multiple Addresses
The SMTP protocol allows any number of recipient addresses to be passed in a
message’s envelope, by means of multiple RCPT commands.* Exim normally does
this when a message has more than one address that is routed to the same host,
subject to the following options:

• max_rcpt specifies the maximum number of RCPT commands in one message
transfer. The default value is 100. When a message has more than max_rcpt

recipients going to the same host, an appropriate number of separate copies
of the message are sent. If max_rcpt is set to 1, a separate copy of the message
is sent for each recipient. This is necessary if you want to implement VERP
(see the section “Options Common to All Transports,” earlier in this chapter).

• When max_rcpt is greater than 1, the domains in the addresses need not be
the same, provided that they all resolve to the same list of hosts. For example,
a set of virtual domains that are all under one management usually all share
the same MX hosts. However, if you want to make use of $domain in a trans-
port option, you have to arrange that only one domain is ever involved,
because otherwise $domain is not set. You can do this by setting
no_multi_domain. If you do this, a separate copy of the message is sent for
each differ ent domain.

The default action of using multiple addresses in a single transfer is the one rec-
ommended by RFC 821. For personal messages (which rarely have more than a
couple of recipients) that are traversing well-connected parts of today’s Internet, it
pr obably doesn’t make much differ ence; however, for mailing lists with thousands
of subscribers, there can be a substantial cost if each is sent a separate copy, espe-
cially if many of the addresses are in the same domain.

Control of Outgoing Calls
Because Exim operates in a distributed manner, if several messages for the same
host arrive at around the same time, more than one simultaneous connection to
the remote host can occur. This is usually not a problem except when there is a
slow link between the hosts. In that situation, it may be helpful to restrict Exim to
one connection at a time to certain hosts. This can be done by setting serial-

ize_hosts to match the relevant remote hosts, for example:

serialize_hosts = 192.168.4.5 : my.slow.neighbor.example

Exim implements serialization by means of a hints database in which a record is
written whenever a process connects to one of the restricted hosts, and deleted

* In practice, more than about one hundred recipients should be avoided, as this can lead to problems
with some MTAs.

The smtp Transpor t 185

9 October 2001 09:09

186 Chapter 9: The Transpor ts

when the connection is ended. Obviously there is scope for records to be left
lying around if there is a system or program crash, which would prevent Exim
fr om contacting one of these hosts ever again. To guard against this, Exim ignores
any records that are mor e than six hours old.

If the smtp transport finds that the host it is about to connect to has an existing
connection, it skips that host and moves on to the next one as if a connection to
the host had failed, except that it does not compute any retry information.

If you set up any serialization, you should also arrange to delete the relevant hints
databases whenever your system reboots. The names of the files all start with seri-
alize-transport-name, and they are kept in the spool/db dir ectory. Ther e may be
one or two files per serialized transport, depending on the type of DBM library in
use.

When a message has been successfully delivered over a TCP/IP connection, Exim
looks in its hints database to see if there are any other messages awaiting a con-
nection to the same host. If there are, a new delivery process is started for one of
them, and the current TCP/IP connection is passed on to it. The new process may
in turn create yet another process. Each time this happens, a sequence counter is
incr emented, and if it ever reaches the value of the batch_max option, no further
messages are sent on the same TCP/IP connection. However, if batch_max is set to
zer o, no limit is applied. You should not normally need to change this option.

Control of the TCP/IP Connection
When an outgoing SMTP call is made from a host with a number of differ ent
TCP/IP interfaces (real or virtual),* the system’s IP functions choose which inter-
face to use for the sending IP address, unless told otherwise by a setting of the
interface option. You may want to use this option if, for example, you are using a
lot of IP addresses for web hosting only, and do not want them used for mail. The
interface option is set to a string that must be an IP address. For example, on a
host that has IP addresses 192.168.123.123 and 192.168.9.9, you could set the
following:

interface = 192.168.123.123

in which case all outgoing calls made by the transport would be sent using that
particular interface. In a system with IPv6 support, the type of interface specified
must be of the same kind as the address to which the call is being made. If not, it
is ignored.

* Such hosts are often called multihomed hosts.

9 October 2001 09:09

The port option specifies the remote TCP/IP port to which Exim connects in order
to send the message. For example:

port = 2525

If the value begins with a digit, it is taken as a port number; otherwise, it is looked
up in /etc/services. The default setting is smtp. This option is mainly used for test-
ing, but is occasionally useful in other circumstances.

By default, Exim sets the socket option SO_KEEPALIVE on outgoing socket connec-
tions. This causes the kernel to periodically send some out-of-band (OOB) data on
idle connections. The no_keepalive option is provided to disable this, should it
ever be necessary. (As far as I know, nobody has ever needed to.)

Ther e ar e various timeouts associated with SMTP exchanges; normally these work
well and you should not need to change them. However, they can be changed by
means of the following options (for the last three, the defaults in parentheses are
the values recommended in RFC 821):

connect_timeout

Specifies how long to wait for the system’s connect() function to establish a
connection to a remote host. A setting of zero allows the system default time-
out (typically several minutes) to act. However, because there have been prob-
lems with system default timeouts not working in some operating systems,
Exim has a default of 5 minutes. Needless to say, this option has no effect
unless its value is less than the system timeout.

command_timeout(5 minutes)
Specifies how long to wait for a response to an SMTP command, and also
how long to wait for the initial SMTP response after a TCP/IP connection has
been established.

data_timeout(5 minutes)
Specifies how long to allow for the transmission of one block of message
data.* The overall transmission timeout for a message therefor e depends on
the size of the message.

final_timeout (10 minutes)
Specifies how long to wait for a response after the entire message has been
sent.

* Exim transmits messages in 8 KB blocks by default.

The smtp Transpor t 187

9 October 2001 09:09

188 Chapter 9: The Transpor ts

Use of the SIZE Option in SMTP
If a remote SMTP server indicates that it supports the SIZE option of the MAIL com-
mand, Exim passes over the message size at the start of an SMTP transaction. If the
message is too large for the receiving host, it can reject the MAIL command, which
saves the client from transmitting a large message, only to have it rejected at the
end.

The value of the size_addition option (default 1024) is added to the size of the
message to obtain the argument for SIZE. This is to allow for headers and other
text that may be added during delivery by configuration options or in a transport
filter. It may be necessary to increase this value if a lot of text is added to mes-
sages. Alternatively, if the value of size_addition is negative, it disables the use of
the SIZE option altogether.

Use of the AUTH Command in SMTP
When Exim has been built to include support for at least one of the SMTP authen-
tication mechanisms, the authenticate_hosts option is available in the smtp trans-
port. It is a host list, providing a list of servers to which Exim will attempt to
authenticate as a client when it connects, as long as the servers announce authen-
tication support. Details of SMTP authentication are given in Chapter 15, Authenti-
cation, Encryption, and Other SMTP Processing.

Use of the LMTP Protocol
LMTP (RFC 2033) is a protocol for passing messages between an MTA and a ‘‘black
box’’ way of storing mail such as the Cyrus IMAP message store. Later in this chap-
ter, in the section “The lmtp Transport,” we discuss the background to LMTP and
describe how it can be used to pass messages to local processes. However, LMTP
is similar to SMTP, and in some cases there is a requir ement to pass messages to a
message store over a TCP/IP connection using LMTP instead of SMTP. You can
configur e Exim to do this by setting up an smtp transport with the following
option:

protocol = lmtp

If you do this, the default value for port changes to lmtp, but everything else in
the transport operates exactly as before. Of course, you must set up a special
transport when you do this; LMTP is not used for the normal transmission of mes-
sages between MTAs.

9 October 2001 09:09

Specifying Hosts
Ther e ar e two options for smtp that can specify lists of hosts: hosts and fall-

back_hosts.

Specifying a primar y host list

The most common situation in which hosts is set is when a director (as opposed
to a router) is used to cause certain local parts to be delivered remotely. Directors
cannot set up host lists, so in this case the list must be defined by the transport.
An example of this usage is given in the section “Mixed Local/Remote Domains,”
in Chapter 5, Extending the Delivery Configuration, wher e we consider a corporate
mail gateway that delivers some local parts in its local domain into local mail-
boxes, and sends others on to personal workstations. The hosts setting on the
transport specified the workstation.

Over r iding a router’s host list

When an smtp transport is invoked from a router, hosts that are set up by the
router normally override hosts set in the transport. That is, the setting of hosts in
the transport is ignored. Sometimes, however, you may want a router to check for
a valid destination, but have the message sent to a differ ent host. If hosts_over-
ride is set with a host list, it is the router’s hosts that are ignor ed.*

As an example of where this is useful, consider a host permanently connected to
the Internet on a slow connection, which sends all outgoing mail to a smart host
so that queuing happens on the far side of the slow line. It is useful to be able to
check that a remote domain exists before wasting bandwidth sending a message to
the smart host. This can be done by using a router such as:

lookuphost:
driver = lookuphost
transport = smarthost

with this transport:

smarthost:
driver = smtp
hosts = the.smart.host
hosts_override

The router uses the DNS to route addresses in the normal way, so any domains
that do not exist fail to be routed and cause their addresses to fail. However, the

* If hosts_override is set without a host list, it has no effect.

The smtp Transpor t 189

9 October 2001 09:09

190 Chapter 9: The Transpor ts

host list that is set up by the router is ignored by the transport because
hosts_override is set, causing all addresses with routeable domains to be deliv-
er ed to the smart host.

Randomizing a host list

When a hosts setting in an smtp transport specifies more than one host, they are
tried in the order they are listed, unless hosts_randomize is set. In this case, the
order of the list is randomized each time the transport is run. There is no facility
for using the hosts in a ‘‘round-r obin’’ fashion.

Specifying a fallback host list

The fallback_hosts option provides a ‘‘use a smart host only if delivery fails’’
facility. In the section “Adding Data for Use by Transports,” in Chapter 6, we dis-
cuss an identically named option for routers and directors. The option on the smtp
transport has the same effect, but is overridden if fallback hosts are supplied by
the router or director. Neither the hosts_override nor the hosts_randomize options
apply to fallback_hosts. Once normal deliveries are complete, the fallback queue
is delivered by rerunning the same transports with the new host lists. If several
failing addresses have the same fallback hosts (and max_rcpt per mits it), a single
copy of the message is sent to multiple recipients.

Looking up IP addresses

Four options in the smtp router control the lookup of IP addresses for hostnames
(either from hosts or fallback_hosts). They operate in exactly the same way as
the identically named options in the lookuphost router (see the section “The
lookuphost Router in Chapter 8, The Routers, wher e mor e detail is given). They
ar e as follows:

gethostbyname

Requests name lookup by gethostbyname() instead of by calling the DNS
resolver.

no_dns_qualify_single

Turns off the RES_DEFNAMES option of the DNS resolver, which causes it not to
qualify domains that consist of just a single component.

dns_search_parents

Turns on the RES_DNSRCH option of the DNS resolver, causing it to look in par-
ent domains for unknown names.

9 October 2001 09:09

mx_domains

Pr ovides a list of domain names for which an MX record is requir ed; an
addr ess record is not sufficient.

Handling the local host

Ther e is one final option concerned with hosts specified in the smtp transport.
When a host specified in hosts or fallback_hosts tur ns out to be the local host,
Exim freezes the message by default. However, if allow_localhost is set, it goes
on to do the delivery anyway. This should be used only in special cases when the
configuration ensures that no looping will result (for example, a differ ently config-
ur ed Exim is listening on the port to which the message is sent).

Control of Retrying
A lot of Exim’s retrying logic is host-based rather than address- or message-based.
That requir es it to remember information about failing hosts, and the obvious
place to implement the logic for this is in the smtp transport, where such failures
ar e detected. There are, as a result, two options concerned with retrying:
retry_include_ip_address and delay_after_cutoff.

Retries are nor mally based on both the hostname and IP address, so that each IP
addr ess of a multihomed host is treated independently. However, in some environ-
ments, client hosts are assigned a differ ent IP address each time they connect to
the Internet. In this situation, the use of the IP address as part of the retry key on a
server host leads to undesirable behavior. Setting no_retry_include_ip_address

causes Exim to use only the hostname. This should normally be done on a sepa-
rate instance of the smtp transport, set up specially to handle these nonstandard
client hosts.

In order to understand delay_after_cutoff, you need to know how Exim handles
temporary errors and retrying. This is explained in the section “Long-Ter m Fail-
ur es,” in Chapter 12, Delivery Errors and Retrying, wher e a description of this
option can be found.

Summar y of smtp Options
The options that are specific to the smtp transport are summarized in this section:

allow_localhost (Boolean, default = false)
When a host specified in hosts or fallback_hosts tur ns out to be the local
host, Exim freezes the message by default. However, if allow_localhost is set,
it goes on to do the delivery anyway.

The smtp Transpor t 191

9 October 2001 09:09

192 Chapter 9: The Transpor ts

authenticate_hosts (host list, default = unset)
This option is available only when Exim is built to contain support for at least
one of the SMTP authentication mechanisms. It provides a list of servers to
which Exim will attempt to authenticate as a client when it connects, as long
as the servers announce authentication support.

batch_max (integer, default = 500)
This controls the maximum number of separate message deliveries that can
take place over a single TCP/IP connection. If the value is zero, there is no
limit.

command_timeout (time, default = 5m)
This sets a timeout for receiving a response to an SMTP command that has
been sent out. It is also used when waiting for the initial banner line from the
remote host. Its value must not be zero.

connect_timeout (time, default = 5m)
This sets a timeout for the connect() function, which sets up a TCP/IP call to
a remote host. A setting of zero allows the system timeout (typically several
minutes) to operate. To have any effect, the value of this option must be less
than the system timeout.

data_timeout (time, default = 5m)
This sets a timeout for the transmission of each block in the data portion of
the message. As a result, the overall timeout for a message depends on the
size of the message. Its value must not be zero.

delay_after_cutoff (Boolean, default = true)
This option controls what happens when all remote IP addresses for a given
domain have been inaccessible for so long that they have passed their retry
cutof f times. See the section “Long-Ter m Failur es,” in Chapter 12 for details.

dns_qualify_single (Boolean, default = true)
If the hosts or fallback_hosts option is being used and names are being
looked up in the DNS, the option to cause the resolver to qualify single-com-
ponent names with the local domain is set if this option is true.

dns_search_parents (Boolean, default = false)
If the hosts or fallback_hosts option is being used and names are being
looked up in the DNS, the resolver option to enable the searching of parent
domains is set if this option is true.

fallback_hosts (string list, default = unset)
The value must be a colon-separated list of host names or IP addresses. String
expansion is not applied. Fallback hosts can also be specified on routers and
dir ectors; these associate such hosts with the addresses they process. Fallback
hosts specified on the transport are used only if the address does not have its
own associated fallback host list.

9 October 2001 09:09

final_timeout (time, default = 10m)
This is the timeout that applies while waiting for the response after an entire
message has been transported. Its value must not be zero.

gethostbyname (Boolean, default = false)
If this option is true when the hosts and/or fallback_hosts options are being
used, names are looked up using gethostbyname() instead of using the DNS
with MX processing.

hosts (string list, default = unset)
This option specifies a list of hosts that are used if the address being pro-
cessed does not have any hosts associated with it, or if the hosts_override

option is set.

hosts_override (Boolean, default = false)
If this option is set and the hosts option is also set, any hosts that are attached
to the address are ignor ed, and instead the hosts specified by the hosts option
ar e used.

hosts_randomize (Boolean, default = false)
If hosts_randomize is false, the order in which hosts are listed is preserved as
an order of prefer ence for delivering the message; if it is true, the list specified
by hosts is shuffled into a random order each time it is used. Randomizing is
not perfor med for fallback hosts.

interface (string, default = unset)
This option specifies which local interface to bind to when making an outgo-
ing SMTP call. If interface is not set, the system’s IP functions choose which
inter face to use if the host has more than one. In an IPv6 system, the type of
inter face specified must be of the same kind as the address to which the call is
being made. If not, it is ignored.

keepalive (Boolean, default = true)
This option controls the setting of SO_KEEPALIVE on outgoing socket connec-
tions. It causes the kernel to periodically send some out-of-band (OOB) data
on idle connections. The option is provided for symmetry with the main con-
figuration option smtp_accept_keepalive, which has the same effect on incom-
ing SMTP connections.

max_rcpt (integer, default = 100)
This option limits the number of RCPT commands that are sent in a single
SMTP message transaction. Each set of addresses is treated independently, and
so can cause parallel connections to the same host if remote_max_parallel per-
mits this.

The smtp Transpor t 193

9 October 2001 09:09

194 Chapter 9: The Transpor ts

multi_domain (Boolean, default = true)
When this option is set, the smtp transport can handle a number of addresses
containing a mixture of dif ferent domains provided they all resolve to the
same list of hosts. Tur ning the option off restricts the transport to handling
only one domain at a time.

mx_domains (domain list, default = unset)
If the hosts or fallback_hosts options are being used and names are being
looked up in the DNS, any domain name that matches this list is requir ed to
have an MX record; an address record is not sufficient.

port (string, default = smtp)
This option specifies the TCP/IP port that is used to send the message. If it
begins with a digit, it is taken as a port number; otherwise, it is looked up
using getservbyname().

protocol (string, default = smtp)
If this option is set to lmtp instead of smtp, the default value for the port

option changes to lmtp, and the transport uses the LMTP protocol instead of
SMTP.

retry_include_ip_address (Boolean, default = true)
Setting this option false causes Exim to use only the hostname instead of both
the name and the IP address when constructing retry records. Details of how
this works are given in the section “Retrying After Errors,” in Chapter 12.

serialize_hosts (host list, default = unset)
This option lists the hosts to which only one TCP/IP connection at a time
should be made.

size_addition (integer, default = 1024)
The value of size_addition is added to the value Exim sends in the SMTP
SIZE option to allow for headers and other text that may be added during
delivery by configuration options or in a transport filter. It may be necessary to
incr ease this if a lot of text is added to messages. If the value of size_addition
is negative, the use of the SIZE option is disabled.

Environment for Local Transpor ts
Local transports handle deliveries to files and pipes. (The autoreply transport can
be thought of as similar to a pipe.) Whenever a local transport is run, Exim forks a
subpr ocess for it. Before running the transport code, it sets a specific uid and gid.*

* This assumes a conventional Exim installation, where Exim is privileged by virtue of being a setuid
binary. See the section “Running an Unprivileged Exim,” in Chapter 19, Miscellany, for a discussion
of unconventional configurations where this is not true.

9 October 2001 09:09

This ensures that local deliveries are done ‘‘as the user,’’ so that access to files and
pr ograms is controlled by the normal operating system protection mechanism.

Exim also sets a current file directory; for some transports, a home directory setting
is also relevant. The pipe transport is the only one that sets up environment vari-
ables; see the section “The pipe Transport,” later in this chapter for details.

The values used for the uid, gid, and the directories may come from several differ-
ent places. In many cases, the director that handles the address associates settings
with that address. However, values may also be given in the transport’s own con-
figuration, and these override anything that comes with the address. The sections
below contain a summary of the possible sources of the values and how they
interact with each other.

Uids and Gids
All local transports have the options group and user. If group is set, it overrides
any group that may be set in the address, even if user is not set. This makes it
possible, for example, to run local mail delivery under the uid of the recipient, but
in a special group, use a transport such as this:

group_delivery:
driver = appendfile
file = /var/spool/mail/$local_part
group = mail

You might want to do this if all the mailbox files are precr eated and set up so that
gr oup mail can write to them. See the section “Mailbox location,” later in this
chapter for further discussion of this.

This example assumes that the director has set a value for the user (which will be
the case if it is the standard localuser dir ector), but it overrides any group setting
that the director may have made. Likewise, if user is set for a transport, its value
overrides what is already set in the address. If user is nonnumeric and group is not
set, the gid associated with the user is used. If user is numeric, group must be set.

Every Unix process runs under a specific uid and gid, but in addition, a number of
other groups can be associated with it. These are held in the supplementary group
access list, and give the process privileges that are associated with those groups.
For example, users who are members of the groups staf f, network, and admin
have all these groups set up in their login processes. Setting up the supplementary
gr oups list uses resources, and is typically not needed for email delivery, so Exim
does not do it by default.

For delivery via a pipe, however, you may sometimes want Exim to set up the
supplementary groups list. The pipe transport has an initgroups option that lets
you request this, but only when user is also specified on the transport. When the

Environment for Local Transpor ts 195

9 October 2001 09:09

196 Chapter 9: The Transpor ts

user is associated with the address by a director or router, the value of the init-

groups option is taken from the director or router configuration.

Cur rent and Home Director ies
The pipe transport has a home_directory option. If this is set, it overrides any
home directory set by the director for the address. The value of the home direc-
tory is set in the environment variable HOME while running the pipe. It need not be
set, in which case HOME is not defined.

The appendfile transport does not have a home_directory option. If the variable
$home appears in one of its options, the value set by the director is used. This
also applies to the inhome or belowhome settings of the create_file option.

The appendfile and pipe transports have a current_directory option. If this is set,
it overrides any current directory set by the director for the address. If neither the
dir ector nor the transport sets a current directory, Exim uses the value of the home
dir ectory, if set. Otherwise it sets the current directory to the root directory before
running a local transport. All directors have current_directory and home_direc-

tory options, which are associated with any addresses they explicitly direct to a
local transport.

Routers have no means of setting up home and current directory strings; conse-
quently, any local transport that they use must specify them for itself if they are
requir ed.

Expansion Var iables Derived from the Address
Nor mally, a local delivery handles a single address, and it sets variables such as
$domain and $local_part during the delivery. However, local transports can be
configur ed to handle more than one address at once (for example, while writing a
batch SMTP for onward transmission by some other means). In this case, the vari-
ables associated with the local part are never set, $domain is set only if all the
addr esses have the same domain, and $original_domain is never set.

Options Common to the appendfile
and pipe Transpor ts
The appendfile transport, which writes messages to files, and the pipe transport,
which writes messages to pipes that are connected to other processes, have a
number of options in common. To save repetition, they are collected together in
this section.

9 October 2001 09:09

Controlling the Deliver y Environment
The three options current_directory, group, and user can be used to control the
envir onment in which the local delivery process for these transports runs. Details
of these options are given in the section “Environment for Local Transports,” ear-
lier in this chapter.

Controlling the For mat of the Message
As the message is written to a file or down a pipe, certain modifications can be
made by the transport. Generic options for adding or removing header lines are
cover ed in the section “Options Common to All Transports,” earlier in this chapter.
Her e we describe some options that apply only to local deliveries.

Separating messages in a single file

When a mailbox consists of a single file that contains concatenated messages,
ther e has to be some way of determining where one message ends and another
begins. Several schemes have been used for this, the most common of which is
the Berkeley mailbox format, in which a message begins with a line starting with
the word From, followed by a space and other data, and ends with an empty line.

This format seems to have been adopted in the distant past because messages
received by UUCP use such a line to contain the envelope sender address.* Ther e
is, however, no standard for it as a message separator, and several variants have
been seen in practice. It is a most unfortunate choice of separator line, because
lines within the bodies of messages that start with the word From ar e not at all
uncommon. This means that such lines have to be escaped in some way (as
described shortly), lest they be taken as the start of a new message.

Exim supports message separation by providing two options called prefix and
suffix. Their contents are expanded and written at the start and end of every mes-
sage, respectively. The default values for the appendfile transport are:

prefix = "From ${if def:return_path{$return_path}{MAILER-DAEMON}} \
$tod_bsdinbox\n"

suffix = "\n"

These define Berkeley format message separation. The prefix setting places the
envelope sender (retur n path) in the separator line, unless the message is a
bounce message (where ther e is no retur n path). For bounce messages, MAILER-
DAEMON is used, because some programs that read mailboxes do not work if noth-
ing is inserted. The line ends with the date and time in a particular format requir ed

* See RFC 976, UUCP Mail Interchange Format Standard.

Options Common to the appendfile and pipe Transpor ts 197

9 October 2001 09:09

198 Chapter 9: The Transpor ts

by this form of separator, which is made available in the variable $tod_bsdinbox.
The suffix setting ensures that there is a blank line after every message.*

The same defaults are used in the pipe transport (though message separation is
not an issue in this case), because some implementations of the commonly used
/usr/ucb/vacation command expect to see a From line at the start of messages that
ar e piped to them. However, in many applications of the pipe transport, the From

line is not expected and should be disabled. An example of this is given in the
section “Using an External Local Delivery Agent,” in Chapter 5.

The Berkeley format is not the only one that uses textual separators between mes-
sages. In MMDF format, the beginnings and ends of messages are marked by lines
containing exactly four nonprinting characters whose numeric code value is 1. The
appendfile transport can be configured to support this by setting the following:

prefix = "\1\1\1\1\n"
suffix = "\1\1\1\1\n"

If you want to use such a format, you must be sure all your MUAs can interpret it.

Escaping lines in the message

The mechanism provided for handling lines in the message that happen to look
like message separators is a pair of options called check_string and
escape_string. The default settings in the appendfile transport are:

check_string = "From "
escape_string = ">From "

But for the pipe transport, both of these options are unset by default. As the trans-
port writes the message, the start of each line is tested for matching check_string;
if it does, the initial matching characters are replaced by the contents of
escape_string. The value of check_string is a literal string, not a regular expres-
sion. The default therefor e inserts a single angle-bracket character before any line
starting with From followed by a space. For example, if a message contains the
line:

From the furthest reaches of the Galaxy, ...

appendfile actually writes:

>From the furthest reaches of the Galaxy, ...

* The message itself ends with a newline, because the SMTP protocol is defined in terms of lines. For
messages submitted locally, Exim adds a final newline if there isn’t one.

9 October 2001 09:09

If you are using MMDF mailbox separators, change the default settings to:*

check_string = "\1\1\1\1\n"
escape_string = "\1\1\1\1 \n"

When batch SMTP delivery is configured (see the section “A BSMTP batching
example,” later in this chapter), the contents of check_string and escape_string

ar e forced to values that implement the SMTP escaping protocol for lines begin-
ning with a dot. Any settings made in the configuration file are ignor ed.

Control of line terminator s

Ther e is one more option that affects the contents of a message. It is use_crlf, and
when it is set, lines are ter minated by CRLF instead of just a linefeed. Some exter-
nal local delivery programs requir e this. It may also be useful in the case of
batched SMTP, because the byte sequence written to the file is then an exact
image of what would be sent down a real SMTP connection, as long as you
remember to unset prefix and suffix. Note that if you do use this option with
prefix or suffix, you need to ensure that any occurrence of \n in those strings is
changed to \r\n because they are written verbatim, without any interpretation.

Batched Deliver y and BSMTP
When appendfile and pipe ar e used in their traditional way, each delivery is for a
single recipient only. If, for example, a message is to be delivered into several
local mailboxes, appendfile is run once for each mailbox, and the same is true for
deliveries to pipes. However, ther e ar e special circumstances in which it is helpful
to transport a single copy of a message for several differ ent recipients. The most
common case is for messages that have not reached their final destination, but are
going to be transported further by some means outside Exim. For example:

• Messages for dial-up hosts are commonly stored in files, often in a per-host
dir ectory, and transmitted to the hosts when they connect. See the section
“Incoming Mail for an Intermittently Connected Host,” in Chapter 12 for more
discussion of this topic.

• Messages for other transport mechanisms such as UUCP can be passed using
pipes to programs that support such mechanisms.

If the batch option is set to a string other than none (the default), the addresses
that are routed or directed to the transport can be combined into deliveries with
multiple addresses. However, ther e ar e some other conditions that must be met for
this to happen.

* If a message contains binary data, changing it in this way may damage the data, but that is probably
better than a broken mailbox file.

Options Common to the appendfile and pipe Transpor ts 199

9 October 2001 09:09

200 Chapter 9: The Transpor ts

• If the configuration of the transport refers to $local_part,then no batching is
possible.

• If batch is set to domain, or if the configuration of the transport refers to
$domain, only addresses that have the same domain can be batched.

• If batch is set to all and the configuration does not refer to $domain, all
addr esses can be batched, even if they have differ ent domains.

• The maximum number of addresses in one batch is set by batch_max, which
defaults to 100.

• The batched addresses must all have the same retur n paths, requir ements for
header removal and addition, and $route_option and $host settings (for routed
addr esses), and they must specify the same uid and gid for delivery. In other
words, batching several addresses into a single delivery can take place only
when the copy of the message is identical and the delivery environment is the
same for all those addresses.

The $local_partvariable is never set when more than one address is being trans-
ported, and $domainis set only if all addresses have the same domain. If the
generic envelope_to_add option is set, all the addresses are included in the Enve-
lope-to: header line that is added to the message.

A non-BSMTP batching example

Suppose you wanted to collect all messages for certain remote domains in files,
instead of sending them out over TCP/IP. First, set up a router that picks off the
domains and routes them to a special transport:

filed_domains:
driver = domainlist
transport = filed_domains
route_list = first.filed.example first ;\

second.filed.example second

Now set up the transport, which in this example uses the hostname taken from the
second field in the routing rule to generate the filename:

filed_domains:
driver = appendfile
file = /var/savedmail/$host
envelope_to_add
return_path_add
user = mail

Ther e has to be a setting of user either on the router or the transport, to specify
the uid under which the delivery process runs. Setting envelope_to_add and
return_path_add ensur es that the relevant parts of the message’s envelope are pre-
served with the message.

9 October 2001 09:09

A BSMTP batching example

An alternative way of preserving message envelopes is to use bsmtp instead of
batch. This causes messages to be written as if they were being transmitted over
an SMTP connection, and is normally referr ed to as batch SMTP or BSMTP. Each
message starts with a MAIL command for the envelope sender, followed by a RCPT

command for each recipient, and then DATA and the message itself, terminated by a
dot. For example, a file written this way could contain:

MAIL FROM:<tom@abcd.example>
RCPT TO:<jerry@pqrs.example>
RCPT TO:<bugs@albuquerque.example>
DATA
<message content>
.

The bsmtp option can be set to the same strings as batch, with one addition: if it is
set to one, it has the same effect as setting batch_max to 1 (that is, a separate deliv-
ery is done for each recipient).

Some programs that read BSMTP files expect that each message is preceded by a
HELO command. Exim inserts such a command if bsmtp_helo is set, but not
otherwise.

The settings of the prefix or suffix options are not affected by batch or bsmtp,
and if they are set, their contents are included in the output. Normally this is not
wanted for BSMTP, so a typical transport might look like this:

filed_domains:
driver = appendfile
file = /var/savedmail/$host
bsmtp = all
bsmtp_helo
prefix =
suffix =
user = mail

On the other hand, the settings of check_string and escape_string ar e af fected by
bsmtp (but not batch). They are forced to the following values:

check_string = .
escape_string = ..

in order to implement the standard SMTP-escaping mechanism.

Use of multiple files for batched messages

The appendfile examples given in this section assume that multiple messages to
the same address are being written to a single file. This does not have to be the

Options Common to the appendfile and pipe Transpor ts 201

9 October 2001 09:09

202 Chapter 9: The Transpor ts

case; appendfile can operate by writing each message as a separate file (see the
section “Delivering Each Message into a Separate File,” later in this chapter). The
batching options are independent of this choice.

Control of Retrying
When a local delivery suffers a temporary failure, both the local part and the
domain are nor mally used to form a key that is used to determine when next to
try the address. This handles common cases such as exceeding a mailbox quota,
wher e the failure applies to the specific local part. However, when local delivery is
being used to collect messages for onward transmission by some other means, a
temporary failure may not depend on the local part at all, so a temporary failure
for any local part should cause other deliveries for the same domain to be delayed
according to the retry rules. Setting no_retry_use_local_part causes Exim to use
only the domain when handling retries for the transport on which it is set.

Summar y of Options Common to appendfile
and pipe
The options that are common to the smtp and pipe transports are summarized in
this section:

batch (string, default = none)
If this option is set to the string domain, all addresses with the same domain
that are dir ected or routed to the transport are handled in a single delivery. If
it is set to all, then multiple domains can be batched.

batch_max (integer, default = 100)
This limits the number of addresses that can be handled in a batch and applies
to both the batch and the bsmtp options.

bsmtp (string, default = none)
This option is used to set up an appendfile or pipe transport for delivering
messages in batch SMTP format. It is usually necessary to suppress the default
settings of the prefix and suffix options when using batch SMTP. The value
of bsmtp must be one of the strings none, one, domain, or all. The first of these
tur ns the feature off.

bsmtp_helo (Boolean, default = false)
When this option is set, a HELO line is added to the output at the start of each
message written in batch SMTP format.

check_string (string, default = see description)
As the transport writes the message, the start of each line is tested for match-
ing check_string, and if it does, the initial matching characters are replaced by
the contents of escape_string. The value of check_string is a literal string, not

9 October 2001 09:09

a regular expression. For the appendfile transport, the default is From followed
by a space, whereas the default is unset for the pipe transport.

current_directory (string, default = unset)
If this option is set, it specifies the directory to make current when running the
delivery process. The string is expanded at the time the transport is run.

escape_string (string, default = >From)
See check_string.

prefix (string, default = see description)
The string specified here is expanded and output at the start of every message.
The default setting is:

prefix = "From ${if def:return_path{$return_path}\
{MAILER-DAEMON}} ${tod_bsdinbox}\n"

retry_use_local_part (Boolean, default = true)
Setting this option to false causes Exim to use only the domain when handling
retries for this transport.

suffix (string, default = \n)
The string specified here is expanded and output at the end of every message.

use_crlf (Boolean, default = false)
This option causes lines to be terminated with the two-character CRLF
sequence (carriage retur n, linefeed) instead of just a linefeed character.

The appendfile Transpor t
Writing messages to files is the most complex operation of Exim’s local transports;
consequently, appendfile has a large number of options. This transport can oper-
ate in two entirely differ ent modes:

• In ‘‘file’’ mode, the message is appended to the end of a file, which may pre-
exist and contain other messages. Two major message formats are supported,
with minor variations controllable by the prefix and suffix options.

• In ‘‘dir ectory’’ mode, the message is written to an entirely new file within a
specific directory. Three differ ent file formats are supported.

When writing to a single file containing multiple messages, the file has to be
locked so that neither MUAs nor other Exim processes can tamper with it while
the delivery is taking place. This means that only one message can be delivered to
this mailbox at any one time, and while it is being delivered, messages that are
alr eady in the mailbox cannot be removed. If, on the other hand, each message is
written to a new file, no locking is requir ed, multiple simultaneous deliveries can
take place, and old messages can be deleted at any time.

The appendfile Transpor t 203

9 October 2001 09:09

204 Chapter 9: The Transpor ts

Setting Up a Multimessage File for Appending
When appendfile is called as a result of a filename item in a user’s .forwar d file or
as the result of a save command in a filter file, the director passes the name of the
file to the transport, along with the address that is being delivered. In other cases,
when no filename is already associated with the address, the file option specifies
the name of the file to which the message is to be appended. An example that has
been used several times for delivery to conventional mailboxes is:

file = /var/mail/$local_part

wher e the name of the file depends on the local part that is being delivered. This
is a very simple example, but if necessary, the full power of string expansions can
be used to compute the filename.

Mailbox location

On hosts where the users have login access, some installations choose to locate
users’ mailboxes in their home directories. This has three benefits:

• Ther e ar e no file permission complications, because users have full access to
their own home directories.

• If ther e ar e a large number of users, you avoid the problem of a lot of files in
one directory.

• The size of users’ mailboxes can be constrained by the system file quota
mechanism.

If you want to configure Exim this way, you can use a setting of the file option
like this:

file = /home/$local_part/inbox

The disadvantages of this approach are as follows:

• You may have to modify, or at least recompile user agents so that they know
wher e to find users’ mailboxes.

• If the home directories are automounted, there will be additional mounts and
dismounts, because the home directory has to be mounted each time a new
message arrives. On the other hand, if you allow users to have .forwar d files
in their home directories, these mounts will occur anyway.

The alternative, and probably more common approach, is to locate all the mail-
boxes in a single directory, separate from the home directories. The directory is
usually called /var/mail or /var/spool/mail, and most user agents expect to find
mailboxes in one of these directories by default. This scheme works well enough
for a moderate number of mailboxes, but when the number gets large you nor-
mally have to find some way of splitting up the directory to avoid perfor mance

9 October 2001 09:09

loss. See the section “Large Installations,” in Chapter 4, Exim Operations Overview,
for a discussion of this point.

With all the mailboxes in a single directory, there has to be a way for an Exim
delivery process, running as the recipient user, to create a new mailbox if it does
not exist, and to be able to write to an existing mailbox.* Allowing all users full
access to the directory is not the answer, because that would let one user delete
another user’s mailbox. Unix contains a file permission facility that is intended for
just this situation. For historical reasons, it is known as the sticky bit. When a
dir ectory has this permission set, along with the normal write permission, any user
may create a new file in the directory, but files can be deleted only by their own-
ers. The letter t is used to indicate this permission, so a mailbox directory that is
set up this way looks like the following:

drwxrwxrwt 3 root mail 512 Jul 9 13:48 /var/mail/

Exim’s local delivery processes, which run using the uid and gid of the receiving
user, can now create new mailboxes if necessary. Each mailbox will be owned by
the local user, and by default, will be accessible only to that user, who can modify
it and also delete it.

Ther e ar e some disadvantages to using ‘‘sticky’’ directories:

• Users may try to use the directory as extra space to store files that are not
mailboxes.

• When a user’s mailbox does not exist, a differ ent user may maliciously create
it, hoping to be able to access the first user’s mail. This does not work,
because Exim checks the ownership of existing files, but it does prevent the
first user from receiving mail.

Installations that find these possibilities unacceptable often adopt a differ ent
appr oach. Instead of using a ‘‘sticky’’ directory, they make use of the group access
instead. The directory’s permissions are set in the following manner:

drwxrwx--- 3 root mail 512 Jul 9 13:48 /var/mail/

The appendfile transport is configured to run under the group mail instead of the
user’s group, like this:

local_delivery:
driver = appendfile
file = /var/mail/$local_part
group = mail
mode = 660

* Exim may also need to create and remove lock files. See the section “Locking a File for Appending,”
later in this chapter.

The appendfile Transpor t 205

9 October 2001 09:09

206 Chapter 9: The Transpor ts

It still runs with the user’s uid, however. With this configuration, Exim can create
new mailboxes because of the group write permission. Each mailbox is owned by
the relevant user, but its group is set to mail. Exim can update an existing mailbox
because the mode setting allows group mail to write to the file. The user’s MUA
can access the file as the owner. Nevertheless, there is still a disadvantage: the user
cannot delete the file. Some MUAs do try to delete the file when all the messages
it contains have been deleted or moved, which may give rise to error messages.

Symbolic links for mailbox files

By default, appendfile will not deliver a message if the pathname for the file is that
of a symbolic link. Setting allow_symlink relaxes that constraint, but there are
security issues involved in the use of symbolic links. Be sure you know what you
ar e doing if you allow them. The ownership of the link is checked, and the real
file is subjected to the checks described in the section “The owner of an existing
file,” and in the section “The mode of the file.” The check on the top-level link
ownership prevents one user from creating a link for another’s mailbox in a
‘‘sticky’’ directory, though allowing symbolic links in this case is definitely not a
good idea. If there is a chain of symbolic links, the intermediate ones are not
checked.

Deliver ing to named pipes (FIFOs)

As with symbolic links, appendfile will not deliver to a FIFO (named pipe) by
default, but can be configured to do so by setting allow_fifo. If no process is
reading the named pipe at delivery time, the delivery is deferred.

Creating a nonexistent file

The default action is to try to create the file and any superior directories if they do
not exist. Several options give control over this process:

• If file_must_exist is set, an error occurs if the file does not exist, the delivery
is deferred, and the message is frozen.

• Otherwise, the value of create_file is inspected for constraints on where the
file may be created. The option can be set to one of the following values:

– anywhere means there is no constraint.

– inhome means that the file may be created only if it is in the home direc-
tory.

– belowhome means that the file may be created in the home directory or any
dir ectory below the home directory.

In the second and third cases, a home directory must have been set up for the
addr ess by the director that handled it; this is the normal case when user

9 October 2001 09:09

forwarding or filtering is involved. The create_file option is not useful when
an explicit filename is given for normal mailbox deliveries; it is intended for
the case when filenames have been generated by user forwarding or filtering.
In addition to this constraint, the file permissions must also permit the file to
be created, of course. Remember that a local delivery always runs under some
unprivileged uid and gid.

• The create_directory option controls whether superior directories may be
cr eated. It is true by default, but creation of directories occurs only when cre-
ation of the file is also permitted.

The owner of an existing file

If a file already exists, checks are made on its ownership and permissions. The
owner must be the uid under which the delivery process is running, unless
no_check_owner is set. The uid is either set by the user option on the transport, or
passed over with the address by the director or router. For the common cases of
delivery into user mailboxes and deliveries to files specified in .forwar d files, the
user is normally the local user that corresponds to the local part of the address. If
check_group is set, the group ownership of the file is also checked. This is not the
default, because the default file mode is 0600 (owner read/write only), for which
the group is not relevant.

The mode of the file

If the delivery is the result of a save command in a filter file that specifies a partic-
ular mode for the file, a new file is created with that mode, and an existing file is
changed to have that mode. Otherwise, if the file is created, its mode is set to the
value specified by the mode option, which defaults to 0600. If the file already exists
and has wider permissions (more bits set) than those specified by mode, they are
reduced to the value of mode. If it has narrower permissions, an error occurs and
the message is frozen unless no_mode_fail_narrower is specified, in which case the
delivery is attempted with the existing mode.

Format of Appended Messages
The default way of appending a message to a file is to write the contents of the
prefix option, followed by the message, followed by the contents of suffix (see
the section “Controlling the Format of the Message,” earlier in this chapter). These
default values support traditional Berkeley Unix mailboxes:

prefix = "From ${if def:return_path{$return_path}{MAILER-DAEMON}} \
$tod_bsdinbox\n"

suffix = "\n"

The appendfile Transpor t 207

9 October 2001 09:09

208 Chapter 9: The Transpor ts

Other formats that rely on textual separators can be used by changing prefix and
suffix, as was shown in the MMDF example in the section “Separating messages
in a single file,” earlier in this chapter.

MBX for mat mailboxes

Another format that is supported by appendfile is MBX, which is requested by set-
ting mbx_format.* This single-file mailbox format is supported by Pine 4 and its
associated IMAP and POP daemons, and is implemented by the c-client library that
they all use.

Ther e is additional information about the lengths of messages at the beginning of
an MBX mailbox. This makes it faster to access individual messages. Simultaneous
shar ed access to MBX mailboxes by differ ent users is also possible. However, a
special form of file locking is requir ed, and mbx_format should not be used if any
pr ogram that does not use this form of locking is going to access the mailbox.
MBX locking cannot be used if the mailbox file is NFS-mounted, because this type
of locking works only when the mailbox is accessed from a single host. See the
section “Locking options for MBX mailboxes,” later in this chapter, for more dis-
cussion of MBX locking.

In order to maintain a mailbox in MBX format, Exim has to write the message to a
temporary file before appending it so that it can obtain its exact length, including
any header lines that are added during the delivery process. This makes this form
of delivery slightly more expensive.

The prefix, suffix, and check_string options are not automatically changed by
the use of mbx_format; they should normally be set empty because MBX format
does not rely on the use of message separators. Thus, a typical appendfile trans-
port for MBX delivery might look like this:

local_delivery:
driver = appendfile
file = /home/$local_part/inbox
delivery_date_add
envelope_to_add
return_path_add
mbx_format
prefix =
suffix =
check_string =

* The code for this is not built into Exim by default, and has to be requested in the build-time configu-
ration.

9 October 2001 09:09

Checking an existing file’s for mat

When Exim is adding a message to an existing mailbox file, the file is assumed to
be in the correct format because normally only a single format is used on any one
host. Sometimes, however, particularly during a transition from one format to
another, files in differ ent for mats may coexist. In these situations, appendfile can
be made to check the format of a file before writing to it, and if necessary, it can
pass control to a differ ent transport. For example, suppose that both Berkeley and
MBX mailboxes exist on the system. The following could be added to the
local_delivery transport defined earlier:

file_format = "*mbx*\r\n : local_delivery :\
From : local_bsd_delivery"

The items in a file_format list are taken in pairs. The first of each pair is a text
string that is compared against the characters at the start of the file. If they match,
the second string in the pair is the name of the transport that is to be used. In this
example, if the file begins with *mbx*\r\n, the local_deliver y transport is requir ed.
As this is the current transport, delivery proceeds. If, however, the file begins with
From, contr ol is passed to a transport called local_bsd_deliver y, which might be
defined thus:

local_bsd_delivery:
driver = appendfile
file = /home/$local_part/inbox
delivery_date_add
envelope_to_add
return_path_add

If the file does not exist or is empty, the format used by the first mentioned trans-
port is use, so in this example new files are created in MBX format. If the start of a
file does not match any string, or if the transport named for a given string is not
defined, delivery is deferred.

Locking a File for Appending
In most Exim configurations, the parameters for controlling file locking can be left
at their default values. Unless you want to understand the nitty-gritty of locking or
have a special locking requir ement, you can skip this section.

Mailbox files are modified by both MTAs and MUAs. MTAs add messages to files,
but MUAs can both add and remove messages, though deletion is their most com-
mon action. When an MTA is updating a file by appending a message, it must
ensur e that it has exclusive control of the file, so that no other process can attempt
to update it at the same time. Because of Exim’s distributed nature, it is possible
for several deliveries to the same file to be running simultaneously so Exim has to
coordinate its own processes, as well as lock out any MUAs that may be operating
on the file.

The appendfile Transpor t 209

9 October 2001 09:09

210 Chapter 9: The Transpor ts

Locking in Unix is a purely voluntary action on the part of a process. Its success
relies on cooperative behavior among all the processes that access a shared file.
Two dif ferent conventions have arisen for locking mailbox files, and because it
cannot assume that the MUAs on a system all use the same one, Exim normally
obtains both kinds of lock before updating a file.

Locking using a lock file

The first method of locking is to use a lock file. Unix contains a primitive operation
that creates a file if it doesn’t exist, or retur ns an error if it does exist. A process
that needs exclusive access to a file called /a/b/c, for example, attempts to create a
file called /a/b/c.lock by this method.* If it succeeds, it has ownership of the lock;
if it fails because the file already exists, some other process has the lock, and the
first process must wait for a while and then try again. Once a process has finished
updating the original file, it deletes the lock file. For this scheme to work, the
following conditions must be met:

• All processes must use the same name for the lock file.

• The users running the processes must be able to create a new file (the lock
file) in the directory that contains the original file.

Ther e ar e two main problems with lock files:

• If a process crashes while it holds a lock, the lock file is not deleted. For this
reason, most implementations use some kind of timeout and force the deletion
of lock files that are too old.

• A pr ocess that is waiting for a lock has to wait for a fixed time before retrying;
it cannot put itself onto some kind of queue and be automatically woken up
when the lock becomes available.

Despite these problems, lock files are important because they are the only reliable
way of locking that works over NFS when more than one host is accessing the
same NFS file system. This is because the use of a lock file enables a process to
obtain a lock before opening the shared file itself.

Using a locking function

The other method of locking operates only on an open file. For historical reasons,
ther e ar e several differ ent Unix calls for doing this; Exim uses the fcntl()

* In practice, to cater for use over NFS, it is not quite as simple as just attempting to create the file, but
the principle is the same.

9 October 2001 09:09

function.* This method of locking does not suffer from the problems of lock files
because:

• No second filename is needed.

• The ability to create a new file is not needed.

• If a process crashes, the files it has open are automatically closed and their
locks released.

• A call to lock a file can be queued, so that the lock is obtained as soon as it
becomes available.

Why use lock files?

Why isn’t everybody using fcntl() locks exclusively, since they seem to be much
better than lock files? One reason is history: lock files came first, and some older
pr ograms may still not be using anything else. A much more important reason is
the widespread use of NFS. When more than one host is accessing the same NFS
file system, fcntl() locks do not work. The reason is that the size of a file is
saved in the NFS client host when the file is opened, so if two clients open a file
simultaneously, they both receive the same size; however, if one then obtains an
fcntl() lock and updates the file while the other waits, the second one will have
an incorrect size when it eventually gets the lock. To update NFS files safely from
dif ferent hosts, it is necessary to obtain a lock before opening the file, and lock
files provide the only way of doing this.

Locking options for non-MBX mailboxes

The appendfile transport supports both kinds of lock for traditional mailbox for-
mats, as well as a third variety for MBX mailboxes, which we will cover shortly.
The default settings are to use both lock files and fcntl() locking to cater for all
possible situations, but options are provided for selecting one or the other kind of
lock and for changing some of the locking parameters. The mode of any created
lock file is set by lockfile_mode.

If use_lockfile is set false, lock files are not used, and if use_fcntl_lock is set
false, locking by fcntl() is disabled. Only one kind of locking can be turned off
at once, but in most cases you should not do either of these things. You should
only contemplate turning one of them off if you are absolutely sure that the
remaining locking is sufficient for all programs that access the mailbox.

When lockfiles are in use, failure to create a lockfile through lack of permission is
not treated as an error if require_lockfile is set false. When this is the case, the

* This interworks with the lockf() function, but not with the older flock().

The appendfile Transpor t 211

9 October 2001 09:09

212 Chapter 9: The Transpor ts

delivery relies on fcntl() locking, so again you should disable this option only if
you are sur e that it will not cause problems.

Various timeouts are used when attempting to lock a mailbox, and their values can
be changed if necessary. If an existing lock file is older than lockfile_timeout,
Exim assumes it has been left behind by accident, and attempts to remove it.

By default, nonblocking calls to fcntl() ar e used. If a call fails, Exim sleeps for
lock_interval, and then tries again, up to lock_retries times. Nonblocking calls
ar e used so that the file is not kept open during the wait for the lock; the reason
for this is to make it as safe as possible for NFS deliveries in the case when pro-
cesses might be accessing an NFS mailbox without using a lock file.* On a busy
system, however, per formance is not as good as using a blocking lock with a time-
out. If lock_fcntl_timeout is set to a nonzero time, blocking locks with that time-
out are used. There may still be some retrying: the maximum number of retries is
computed as:

(lock_retries * lock_interval) / lock_fcntl_timeout

rounded up to the next whole number. In other words, the total time during
which appendfile is trying to get a lock is roughly the same with blocking or non-
blocking locks, unless lock_fcntl_timeout is set very high.

Locking options for MBX mailboxes

When appendfile is configured for MBX mailboxes (by setting mbx_format), the
default locking rules are dif ferent. If none of the locking options are mentioned in
the configuration, use_mbx_lock is assumed, and the other locking options default
to false. It is possible to use the other kinds of locking with mbx_format, but
use_fcntl_lock and use_mbx_lock ar e mutually exclusive. MBX locking follows the
locking rules of the c-client library, which are explained here.

Exim takes out a shared fcntl() lock on the mailbox file, and an exclusive lock
on the file whose name is /tmp/.device-number.inode-number, wher e the device
and inode numbers are those of the mailbox file. The shared lock on the mailbox
stops any other MBX client from getting an exclusive lock on it and expunging it
(r emoving messages). The exclusive lock on the /tmp file prevents any other MBX
client from updating the mailbox in any way. When writing is finished, if an exclu-
sive lock on the mailbox itself can be obtained, indicating there are no curr ent
shar ers, the /tmp file is unlinked (deleted). Otherwise it is left, because one of the
other sharers might be waiting to lock it. The fcntl() calls for getting these locks
ar e nonblocking by default, but can be made to block by setting lock_fcntl_time-

out.

* This should not be done, but accidents do happen, and an inexperienced administrator might end
up with such a configuration.

9 October 2001 09:09

MBX locking interoperates correctly with the c-client library, providing for shared
access to the mailbox. It should not be used if any program that does not use this
for m of locking is going to access the mailbox, nor should it be used if the mail-
box file is NFS-mounted, because it works only when the mailbox is accessed
fr om a single host.

If you set use_fcntl_lock with an MBX-format mailbox, you cannot use an MUA
that uses the standard version of the c-client library, because as long as it has a
mailbox open (this means for the whole of a Pine or IMAP session, for example),
Exim is unable to append messages to it.

Deliver ing Each Message into a Separate File
So far, we have been considering cases where a mailbox consists of a single file
and new messages are deliver ed by appending. This is by far the most common
type of configuration, but there is an alter native, which is to deliver each message
into a separate new file. The mailbox then consists of an entire dir ectory, with
each message in its own file. There are advantages and disadvantages to this
appr oach. The advantages are as follows:

• No locking of any kind is requir ed when delivering. A consequence of this is
that more than one message can be delivered into the mailbox simultaneously,
which is beneficial on very busy systems.

• Deleting messages is easy and quick, since it does not requir e any rewriting,
and it is not necessary to hold up new deliveries while it happens.

• Incomplete deliveries (which can arise as a result of a system failure, for
example) can be handled better.

• The problems concerning message separators that arise in single-file mail-
boxes are all bypassed.

The disadvantages are as follows:

• If a mailbox contains a large number of messages, the number of files in the
dir ectory may impact perfor mance.*

• Most common MUAs support only the single-file type of mailbox.

As a consequence of the last point, systems that use this kind of delivery for local
mailboxes are usually ones where access to the mailboxes is carefully controlled,
for example, by providing only POP or IMAP access.† However, delivery into sepa-
rate files is also commonly used in an entirely separate situation: namely, when

* Dif ferent operating systems, and indeed differ ent filesystems, have differ ent thr esholds beyond
which perfor mance degrades.

† The POP and IMAP daemons that are used must, of course, be able to handle multifile mailboxes.

The appendfile Transpor t 213

9 October 2001 09:09

214 Chapter 9: The Transpor ts

messages are being stored temporarily for a dial-up host. This topic is pursued fur-
ther in the section “Intermittently Connected Hosts,” in Chapter 12.

The appendfile transport can be configured to deliver each message into a sepa-
rate file by replacing the file option with the directory option. The setting of
create_directory deter mines whether the directory may be created if it does not
exist, and if it is created, directory_mode specifies its mode. The data that is writ-
ten is identical to the single-file mailbox case; in particular, prefix and suffix data
is written if configured, and check_string is respected. Normally these features are
not requir ed when each message is in its own file, so they should usually be
tur ned of f.

Thr ee dif ferent separate-file formats are available, but only the most commonly
used one is discussed here, because the others are not widely used.

Maildir For mat
A separate-file delivery mode for local mailboxes that is gaining general accep-
tance (not just with Exim) is called maildir. This is more complicated than just
delivering into individual files, and it operates as follows:

• Within the designated directory, three subdirectories called tmp, new, and cur
ar e cr eated.

• A message is delivered by writing it to a new file in tmp, and then renaming it
into the new dir ectory. The filename usually includes the hostname, the time,
and the process ID, but the only requir ement is that it be unique.

• Once a mail-reading program has seen a new message in new, it nor mally
moves it to cur. This reduces the number of files it has to inspect when it
starts up.

Files in the tmp dir ectory that are older than, say, 36 hours should be deleted; they
repr esent delivery attempts that failed to complete.

Exim delivers in maildir format if maildir_format is set. This is a typical
configuration:

maildir_delivery:
driver = appendfile
directory = /home/$local_part/maildir
delivery_date_add
envelope_to_add
return_path_add
maildir_format
prefix =
suffix =
check_string =

9 October 2001 09:09

The presence of directory rather than file specifies one file per message, and
maildir_format specifies that the maildir rules should be followed. Note the
explicit cancelling of prefix, suffix, and check_string. Messages delivered by this
transport end up in files with names such as:

/home/caesar/maildir/new/955429480.9324.host.example

An additional string can be added to the name by setting maildir_tag. The con-
tents of this option are expanded and added to the filename when the file is
moved into the new dir ectory. The tag may contain any printing characters except
a forward slash; if it starts with an alphanumeric character, a leading colon is
inserted. By this time, the file has been written to the tmp dir ectory (using just the
basic name) and so its exact size is known. This value is made available in the
$message_size variable. An example of how this can be used is described in the
next section.

The filename used in maildir delivery should always be unique; however, in the
unlikely case that such a file already exists, or if it fails to create the file, Exim
waits for two seconds, and tries again with a new filename. The number of retries
is controlled by the maildir_retries option (default 10). If this is exceeded, deliv-
ery is deferred.

Mailbox Quotas
If a system disk quota is exceeded while appendfile is writing to a file, the delivery
is aborted and tried again later. A quota error is detectable by the retry rules (see
Chapter 12), so the configuration file can specify special handling of these errors if
necessary. After a quota error, appendfile does its best to clean up a partial deliv-
ery; any temporary files are deleted. If it is appending to a mailbox file, it resets
the length and the time of last access to what they were befor e.

In some configurations, it may not be possible to make use of system quotas. To
allow the sizes of mailboxes to be controlled in these cases, appendfile has its own
quota mechanism.* The quota option imposes a limit on the size of the file to
which Exim is appending, or to the total space used in the directory tree if the
directory option is set. In the latter case, computation of the space used is expen-
sive, because all the files in the directory (and any subdirectories) have to be indi-
vidually inspected and their sizes summed up.† Also, there is no interlock against
two simultaneous deliveries. It is preferable to use the quota mechanism in the
operating system if you can.

* Of course, if system quotas are also in force, you cannot specify a quota that exceeds a system
quota.

† This is done using the system’s stat() function.

The appendfile Transpor t 215

9 October 2001 09:09

216 Chapter 9: The Transpor ts

The cost of adding up the sizes of individual files can be lessened on systems
wher e maildir delivery is in use and the users have no direct access to the files.
Setting the following:

maildir_tag = ,S=$message_size

causes the size of each message to be added to its name, leading to message files
with names such as:

/home/caesar/maildir/new/955429480.9324.host.example,S=3265

When Exim needs to find the size of a file, it first checks quota_size_regex. If this
is set to a regular expression that matches the filename and it captures one string
(by means of a parenthesized subexpression), that string is interpreted as a repr e-
sentation of the file’s size. For example:

quota_size_regex = S=(\d+)$

could be used with the maildir_tag setting that was previously mentioned. This
appr oach is not safe if the users have any kind of access that permits them to
rename the files, but in environments where this is not the case, it saves having to
run stat() for each file, which is of considerable benefit. The value of
quota_size_regex is not expanded.

The value of the quota option itself is expanded, and the result must be a numeri-
cal value (decimal point allowed), optionally followed by one of the letters K or
M. Thus, this sets a fixed quota of 10 MB for all users:

quota = 10M

The expansion happens while Exim is running as root or the Exim user, befor e it
changes uid and gid in order to run the delivery, so files or databases that are
inaccessible to the end user can be used to hold quota values that are looked up
in the expansion. For example:

quota = pgsql;select quota from users \
where id=’${quote_pgsql:$local_part}’

When delivery fails because this quota is exceeded, the handling of the error is
exactly as for system quota failures, and so it can be subject to special retry rules.
The value specified is not accurate to the last byte, because the check is done
befor e actually delivering the message. During delivery, separator lines and addi-
tional header lines may be added, thereby increasing the message’s size by a small
amount.

When messages are being delivered into individual files, the total number of files
in the directory can also be controlled by setting the value of quota_filecount

gr eater than zero. This can be used only if quota is also set.

9 October 2001 09:09

Inc lusive and Exclusive Quotas
As described so far, Exim’s quota system operates in a similar way to system disk
quotas: it prevents the mailbox from ever exceeding a certain size. This means that
when a mailbox is nearly full, it may be possible to deliver small messages into it,
but not large ones. Some administrators do not like this way of working; they
would rather have a hard cutoff of all mail delivery when a quota is reached. In
Exim 3.20, a new option was added to allow for this. It is called quota_is_inclu-

sive, and by default it is set to true, which retains the default behavior. If you
change the default by setting:

quota_is_inclusive = false

the check for exceeding the quota does not include the current message. Thus,
deliveries continue until the quota has been exceeded; thereafter, no futher mes-
sages are deliver ed.

Quota War nings
Users are often unaware of how large their mailboxes are getting, particularly
when attachments have been sent to them. In the case of a single file, allowing a
mailbox to exceed a few megabytes often causes the user’s MUA to run slowly
when initializing or when removing messages. This effect is often incorrectly
reported as a slow-running system. The appendfile transport can be configured to
send a warning message when the size of a mailbox crosses a given threshold. It
does this only once, because repeating such a warning for mailboxes that are
above the threshold would only exacerbate the problem.

The quota_warn_threshold option is expanded in the same way as quota. If the
resulting value is greater than zero, and a successful delivery of the current mes-
sage causes the size of the file or total space in the directory tree to cross the
given threshold, a warning message is sent. It is not necessary to set quota in
order to use this option,* but if it is set, the threshold may be specified as a per-
centage of the quota by following the value with a percent sign. For example:

quota = 10M
quota_warn_threshold = 75%

The warning message itself is specified by the quota_warn_message option, which
must start with a To: header line containing the recipient(s). A Subject: line should
also normally be supplied. The default is:

quota_warn_message = "\
To: $local_part@$domain\n\
Subject: Your mailbox\n\n\

* It can therefor e be used with system quotas.

The appendfile Transpor t 217

9 October 2001 09:09

218 Chapter 9: The Transpor ts

This message is automatically created \
by mail delivery software.\n\n\
The size of your mailbox has exceeded \
a warning threshold that is\n\
set by the system administrator.\n"

Note the use of quotes to ensure that the escape sequence \n is recognized and
tur ned into a newline character.

Notifying comsat
comsat is a server process that listens for reports of incoming mail and notifies
logged-on users who have requested to be told when mail arrives by writing ‘‘You
have mail’’ messages to their terminals. If notify_comsat is set, appendfile infor ms
comsat when a successful delivery has been made. It is set in the default
configuration file.

Summar y of appendfile Options
The options that are specific to the appendfile transport are summarized in this
section. Other options that can be set for appendfile ar e described earlier in the
section “Summary of Generic Transport Options,” the section “Environment for
Local Transports,” and the section “Options Common to the appendfile and pipe
Transports.”

allow_fifo (Boolean, default = false)
If you want to deliver messages to FIFOs (named pipes), you must set this
option to true, because appendfile will not deliver to a FIFO (named pipe) by
default. If no process is reading the named pipe at delivery time, the delivery
is deferred.

allow_symlink (Boolean, default = false)
If you want to deliver messages to files using symbolic links, you must set this
option true, because appendfile will not deliver to such files by default.

check_group (Boolean, default = false)
The group owner of the file is checked to see that it is the same as the group
under which the delivery process is running when this option is set. The
default setting is unset because the default file mode is 0600, which means
that the group is irrelevant.

check_owner (Boolean, default = true)
If this option is turned off, the ownership of an existing mailbox file is not
checked.

9 October 2001 09:09

create_directory (Boolean, default = true)
When this option is true, Exim creates any missing parent directories for the
file that it is about to write. A created directory’s mode is given by the direc-

tory_mode option.

create_file (string, default = anywhere)
This option constrains the location of files that are created by the transport. It
must be set to one of the value anywhere, inhome, or belowhome.

directory (string, default = unset)
This option is mutually exclusive with the file option. When it is set, the
string is expanded, and the message is delivered into a new file or files in or
below the given directory, instead of being appended to a single mailbox file.

directory_mode (octal integer, default = 0700)
If appendfile cr eates any directories as a result of the create_directory option,
the mode is specified by this option.

file (string, default = unset)
This option is mutually exclusive with the directory option. It need not be set
when appendfile is being used to deliver to files whose names are obtained
fr om forwarding, filtering, or aliasing address expansions, since in those cases
the filename is associated with the address. Otherwise, either the file option
or the directory option must be set.

file_format (string, default = unset)
This option requests the transport to check the format of an existing file
befor e adding to it. The check consists of matching a specific string at the start
of the file.

file_must_exist (Boolean, default = false)
If this option is true, the file specified by the file option must exist, and an
err or occurs if it does not. Otherwise, it is created if it does not exist.

lock_fcntl_timeout (time, default = 0s)
If this option is set to a nonzero time, blocking calls to fcntl() with that
timeout are used to lock mailbox files. Otherwise nonblocking calls with
sleeps and retries are used.

lock_interval (time, default = 3s)
This specifies the time to wait between attempts to lock the file.

lock_retries (integer, default = 10)
This specifies the maximum number of attempts to lock the file. A value of
zer o is treated as 1.

The appendfile Transpor t 219

9 October 2001 09:09

220 Chapter 9: The Transpor ts

lockfile_mode (octal integer, default = 0600)
This specifies the mode of the created lock file, when a lock file is being used.

lockfile_timeout (time, default = 30m)
When a lock file is being used, if a lock file already exists and is older than
this value, it is assumed to have been left behind by accident, and Exim
attempts to remove it.

maildir_format (Boolean, default = false)
If this option is set with the directory option, delivery is into a new file in the
maildir format that is used by some other mail software.

maildir_retries (integer, default = 10)
This option specifies the number of times to retry when writing a file in
maildir format.

maildir_tag (string, default = unset)
This option applies only to deliveries in maildir format. It is expanded and
added onto the names of newly delivered message files.

mbx_format (Boolean, default = false)
If mbx_format is set with the file option, the message is appended to the mail-
box file in MBX format instead of traditional Berkeley Unix format. If none of
the locking options are mentioned in the configuration, use_mbx_lock is
assumed and the other locking options default to false.

mode (octal integer, default = 0600)
If a mailbox file is created, it is given this mode. If it already exists and has
wider permissions, they are reduced to this mode. If it has narrower permis-
sions, an error occurs unless mode_fail_narrower is false. However, if the
delivery is the result of a save command in a filter file specifying a particular
mode, the mode of the output file is always forced to take that value, and this
option is ignored.

mode_fail_narrower (Boolean, default = true)
This option applies when an existing mailbox file has a narrower mode than
that specified by the mode option. If mode_fail_narrower is true, the delivery is
fr ozen (‘‘mailbox has the wrong mode’’); otherwise Exim continues with the
delivery attempt, using the existing mode of the file.

notify_comsat (Boolean, default = false)
If this option is true, the comsat daemon is notified after every successful
delivery to a user mailbox. This is the daemon that notifies logged-on users
about incoming mail.

9 October 2001 09:09

quota (string, default = unset)
This option imposes a limit on the size of the file to which Exim is appending,
or to the total space used in the directory tree if the directory option is set.
After expansion, the string must be numeric, optionally followed by K or M.

quota_filecount (integer, default = 0)
This option applies when the directory option is set. It limits the total number
of files in the directory (like the inode limit in system quotas). It can only be
used if quota is also set. A value of zero specifies no limit.

quota_is_inclusive (Boolean, default = true)
This option controls whether the current message is included when checking
whether a mailbox has exceeded its quota. If the value is false, the check does
not include the current message. In this case, deliveries continue until the
quota has been exceeded; thereafter, no futher messages are deliver ed.

quota_size_regex (string, default = unset)
This option is used when Exim is computing the amount of space used in a
dir ectory by adding up the sizes of all the message files therein. It is not
expanded, but is interpreted as a regular expression that is applied to every
file name. If it matches and captures one string, that string is interpreted as a
textual repr esentation of the file’s size.

quota_warn_threshold (string, default = 0)
This option is expanded in the same way as quota. If the resulting value is
gr eater than zero, and delivery of the message causes the size of the file or
total space in the directory tree to cross the given threshold, a warning mes-
sage is sent. The content and recipients of the message are defined by
quota_warn_message. If quota is also set, the threshold may be specified as a
percentage of it by following the value with a percent sign.

quota_warn_message (string, default = see description)
This string is expanded and inserted at the start of warning messages that are
generated as a result of the quota_warn_threshold setting. It should start with a
To: header line, which defines the recipient of the message.

require_lockfile (Boolean, default = true)
When a lock file is being used and require_lockfile is true, a lock file must
be created before delivery can proceed. If the option is not true, failure to cre-
ate a lock file is not treated as an error.

use_fcntl_lock (Boolean, default = true)
This option controls the use of the fcntl() function to lock a file for exclu-
sive use when a message is being appended.

The appendfile Transpor t 221

9 October 2001 09:09

222 Chapter 9: The Transpor ts

use_lockfile (Boolean, default = true)
If this option is turned off, Exim does not attempt to create a lock file when
appending to a file.

use_mbx_lock (boolean, default = see description)
Setting the option specifies that special MBX locking rules be used. It is set by
default if mbx_format is set and none of the locking options are mentioned in
the configuration. The locking rules are the same as are used by the c-client
library that underlies Pine4 and the IMAP4 and POP daemons that come with
it. The rules allow for shared access to the mailbox. However, this kind of
locking does not work when the mailbox is NFS-mounted.

The pipe Transpor t
The pipe transport delivers a message by creating a pipe and a new process that
runs a given program. The message is written to the pipe by the transport, and
read from the other end of the pipe by the external program. There are many
common uses for this mechanism. For example:

• An individual user can set up a pipe delivery from a .forwar d file in order to
pr ocess incoming messages automatically, perhaps to sort them into differ ent
folders or to generate automatic replies.*

• Messages addressed to mailing lists can be piped to a list handling program
such as Majordomo or Listman.

• Messages addressed to domains reached by other transport mechanisms (such
as UUCP) can be piped to programs that implement such transports.

• Local deliveries can be done by passing messages to an external local delivery
agent (such as pr ocmail), instead of using appendfile.

Defining the Command to Run
When a pipe is set up by aliasing or forwarding, or from a filter file, the command
to run is defined by that mechanism. For example, an alias file could contain the
line:

majordomo: |/usr/local/mail/majordomo

which causes messages addressed to the local part major domo to be passed to a
pr ocess running the command: /usr/local/mail/major domo. As another example, a
user’s filter file could contain the command:

* Some of this functionality is also available in Exim filter files.

9 October 2001 09:09

pipe /usr/bin/vacation

which passes the message to /usr/bin/vacation. A suitable transport for use in
these cases is the one in the default configuration:

address_pipe:
transport = pipe
ignore_status
return_output

wher e no command is specified, because it comes with the address that is being
deliver ed (the other options are explained later in this chapter).

If the command name is not an absolute path, Exim looks for it in the directories
listed by the colon-separated path option, whose default setting is:

path = /usr/bin

Thus, the previous filter example could actually be given as:

pipe vacation

If a router or director passes a message to a pipe transport directly, without involv-
ing aliasing or forwarding, the command is specified by the command option on the
transport itself. For example, if you want your host to do all local deliveries using
pr ocmail, you can set up a transport like this:

procmail_pipe:
driver = pipe
command = /opt/local/bin/procmail -d $local_part
return_path_add
delivery_date_add
envelope_to_add
check_string = "From "
escape_string = ">From "
user = $local_part
group = mail

The localuser dir ector could be modified to use this transport like this:

procmail:
driver = localuser
transport = procmail_pipe

In this example, the pipe is run as the local user, but with the group set to mail.
An alternative is to run the pipe as a specific user such as mail or exim; however,
in this case you must arrange for pr ocmail to trust that user to supply a correct
sender address. If you do not specify either a group or a user option, the pipe
command is run as the local user. The home directory is the user’s home directory
by default.

The pipe Transpor t 223

9 October 2001 09:09

224 Chapter 9: The Transpor ts

The Uid and Gid for the Command
The process that pipe sets up for its command runs under the same uid and gid as
the pipe transport itself. As is the case for any local delivery, this user and group
can be specified by the user and group options, either on the transport or on the
dir ector that calls it, or it can be taken from a local user’s password file entry by
the localuser or forwardfile dir ectors.

Running the Command
Exim does not by default run the command for a pipe transport under a shell. This
has two benefits:

• The additional cost of a shell process is avoided.

• Characters inserted into the command from the incoming message cannot be
misinterpr eted as shell metacharacters.

In the documentation for programs that expect to be run from an MTA via a pipe
(for example, pr ocmail), you often find a recommendation to place:

IFS=" "

at the start of the command. This assumes that the command will be run under a
shell, and it is ensuring that the IFS variable (which defines the argument separa-
tor) is set to a space. When using the pipe transport in its default mode (that is,
without using a shell, not only is this setting not requir ed, but it will cause the
command to fail because no shell is used.

Parsing the command line

String expansion is applied to the command line except when it comes from a tra-
ditional .forwar d file (commands from a filter file are expanded). However, befor e
the expansion is done, the command line is broken down into a command name
and a list of arguments. Unquoted arguments are delimited by whitespace; in dou-
ble-quoted arguments, a backslash is interpreted as an escape character in the
usual way. This does not happen for single-quoted arguments.

The expansion is applied to the command name, and to each argument in turn
rather than to the whole line. Because the command name and arguments are
identified before string expansion, any expansion item that contains whitespace
must be quoted, so as to be contained within a single argument. A setting such as:

command = /some/path ${if eq{$local_part}{ab123}{xxx}{yyy}}

9 October 2001 09:09

will not work, because it is split into the three items:

/some/path
${if
eq{$local_part}{ab123}{xxx}{yyy}}

and the second and third are not valid expansion items. You have to write:

command = /some/path "${if eq{$local_part}{ab123}{xxx}{yyy}}"

to ensure that the expansion is all in one argument. The expansion is done in this
way, argument by argument, so that the number of arguments cannot be changed
as a result of expansion, and quotes or backslashes in inserted variables do not
interact with external quoting.

Special handling takes place when an argument consists precisely of the text
$pipe_addresses. This is not a general expansion variable; the only place this
string is recognized is when it appears as an argument for a pipe or transport filter
command. It causes each address that is being handled to be inserted in the argu-
ment list as a separate argument. This makes it easy for the command to process
the individual addresses, and avoids any problems with spaces or shell metachar-
acters. It is of use when a pipe transport is handling groups of addresses in a
batch (see the batch option in the section “Batched Delivery and BSMTP,” earlier
in this chapter).

Using a shell

If a shell is needed in order to run the command, it can of course be explicitly
specified. There are also circumstances where existing commands (for example, in
existing .forwar d files) expect to be run under a shell and cannot easily be modi-
fied. To allow for these cases, there is an option called use_shell, which changes
the way the pipe transport works. Instead of breaking up the command line as just
described, it expands it as a single string and passes the result to /bin/sh. This
mechanism is inherently less secure, and in addition uses an extra process.

The Command Environment
The message that is being delivered is supplied to the command on its standard
input stream, and the standard output and standard error streams are both con-
nected to a single pipe that is read by Exim. The handling of output is described
later in this section. The environment variables that are set up when the command
is invoked are shown in Table 9-1.

The pipe Transpor t 225

9 October 2001 09:09

226 Chapter 9: The Transpor ts

Table 9-1. Envir onment Variables for Pipe Commands

Environment Var iable Meaning

DOMAIN The local domain of the address

HOME The ‘‘home’’ directory

HOST The hostname when called from a router

LOCAL_PART See the description later in this section

LOGNAME See the description later in this section

MESSAGE_ID The message’s ID

PATH As specified by the path option

QUALIFY_DOMAIN The configured qualification domain

SENDER The sender of the message

SHELL /bin/sh

USER See the description later in this section

The environment option can be used to add additional variables to this environ-
ment; its value is a colon-separated list of name=value settings, for example:

environment = PREFIX=$local_part_prefix

When a pipe transport is called directly from a director, LOCAL_PART is set to the
local part of the address that the director handled. When it is called as a result of a
forward or alias operation, LOCAL_PART is set to the local part of the address that
was accepted by the aliasing or forwarding director. LOGNAME and USER ar e set to
the same value as LOCAL_PART for compatibility with other MTAs.

HOST is set only when a pipe transport is called from a router as a pseudoremote
transport (for example, for handling batched SMTP). It is set to the first hostname
specified by the router (if any).

If the transport’s home_directory option is set, its value is used for the HOME envi-
ronment variable. Otherwise, any value that was set by the director, as described
in the section “Adding Data for Use by Transports,” in Chapter 7, is used.

The file creation mask (umask) setting in the pipe process is taken from the value
of the umask option, which defaults to the value 022. This value means that any
files that the process creates do not have the group- or world-writable permission
bits set.

Timing the Command
A default timeout of one hour is imposed on the process that runs the command.
If the command fails to complete within this time, it is killed. This normally causes
the delivery to fail. The value of the timeout can be changed by the timeout

option. A zero time interval specifies no timeout, but this is not recommended. In

9 October 2001 09:09

order to ensure that any further processes created by the command are also killed,
Exim makes the initial process a process group leader, and kills the whole process
gr oup on a timeout. However, this action is undermined if any of the processes
starts a new process group.

Restr icting Which Commands Can Be Run
When users are per mitted to set up pipe commands from .forwar d or filter files,
you may want to restrict which commands they may specify. The allow_commands

and restrict_to_path options provide two differ ent ways of doing this. If neither
ar e set, there is no restriction on which commands may be executed; otherwise,
only commands that are per mitted by one or the other of these options are
allowed.

The allow_commands value is expanded, and then interpreted as a colon-separated
list of permitted command names. They need not be absolute paths; the path

option is used to resolve relative paths. If restrict_to_path is set, any command
name not listed in allow_commands must contain no slashes (that is, it must be a
simple command name); it is searched for only in the directories listed in the path

option. For example, if the following is presented:

allow_commands = /usr/ucb/vacation

and restrict_to_path is not set, the only permitted command is /usr/ucb/vaca-
tion. If, however, the configuration is:

allow_commands = /usr/ucb/vacation
path = /usr/local/bin
restrict_to_path

then in addition to /usr/ucb/vacation, any command from /usr/local/bin may be
specified.

Enforcing the restrictions specified by allow_commands and restrict_to_path can
be done only when the command is run directly from the pipe transport, without
an intervening shell. Consequently, these options may not be set if use_shell is
set.

Handling Command Errors
If ignore_status is true, the status (exit code) retur ned by the process that runs
the command is ignored, and Exim always behaves as if zero (success) had been
retur ned. If ignore_status is false (the default value), the status retur ned by the
pr ocess can indicate a temporary or a permanent failure.

Temporary failures are the values listed in the temp_errors option. This contains a
colon-separated list of numbers; the default contains the values of the errors

The pipe Transpor t 227

9 October 2001 09:09

228 Chapter 9: The Transpor ts

EX_TEMPFAIL and EX_CANTCREAT, which are commonly defined in /usr/include/
sysexits.h. After one of these errors, Exim defers delivery and tries again later.

Any other status value is treated as a permanent error, and the address is bounced.
Failur e to execute the command in a pipe transport is by default treated as a per-
manent failure. The most common causes of this are nonexistent commands and
commands that cannot be accessed because of their permission settings. However,
if freeze_exec_fail is set, failure to execute is treated specially, and causes the
message to be frozen, whatever the setting of ignore_status.

Handling Output from the Command
Anything that the command writes to its standard error or standard output streams
is ‘‘caught’’ by Exim. The maximum amount of output that the command may pro-
duce is limited by max_output (default 20 KB), as a guard against runaway pro-
grams. If the limit is exceeded, the process running the command is killed. This
nor mally causes a delivery failure. Because of buffering effects, the amount of out-
put may exceed the limit by a small amount before Exim notices.

You can control what happens to the output by setting a number of options. Three
options set conditions under which the first line of any output is written to Exim’s
main log:

log_defer_output log if delivery deferred
log_fail_output log if delivery failed
log_output log always

The output is converted to a single string of printing characters before being writ-
ten to the log, using escape character sequences as necessary, in order not to dis-
turb the layout of the log.

You can also arrange for the output to be retur ned to the sender of the message as
part of a delivery failure report. If you set return_output true, the production of
any output whatsoever is treated as contituting a delivery failure, independently of
the retur n code from the command. The return_fail_output option operates in
the same way, but applies only when the command process retur ns a nontempo-
rary error code (that is, the retur n code is nonzero and is not one of those listed in
temp_errors).

These options apply only when the message has a nonempty sender (that is, when
it is not itself a bounce message). If neither of them is set, the output is discarded
(after optional logging). However, even in this configuration, if the amount of out-
put exceeds max_output, the command is killed on the grounds that is it probably
misbehaving.

9 October 2001 09:09

Summar y of pipe Options
The options that are specific to the pipe transport are summarized in this section.
Other options that can be set for pipe ar e described in the section “Summary of
Generic Transport Options,” the section “Environment for Local Transports,” and
the section “Options Common to the appendfile and pipe Transports,” earlier in
this chapter.

allow_commands (string, default = unset)
The string is expanded, and then is interpreted as a colon-separated list of per-
mitted commands. If restrict_to_path is not set, the only commands permit-
ted are those in the allow_commands list. They need not be absolute paths; the
path option is used for relative paths.

command (string, default = unset)
This option need not be set when pipe is being used to deliver to pipes
obtained from address expansions (usually under the instance name
address_pipe). In other cases, the option must be set, to provide a command
to run. It need not yield an absolute path (see the path option).

environment (string, default = unset)
This option is used to add additional variables to the environment in which
the command runs. Its value is a string that is expanded, and then interpreted
as a colon-separated list of environment settings of the form name=value.

freeze_exec_fail (Boolean, default = false)
Failur e to execute the command in a pipe transport is by default treated like
any other failure while running the command. However, if freeze_exec_fail
is set, failure to execute is treated specially, and causes the message to be
fr ozen, whatever the setting of ignore_status.

ignore_status (Boolean, default = false)
If this option is true, the status retur ned by the process that is set up to run
the command is ignored, and Exim behaves as if zero had been retur ned.

log_defer_output (Boolean, default = false)
If this option is set and the status retur ned by the command is one of those
listed in temp_errors, and any output was produced, the first line of it is writ-
ten to the main log.

log_fail_output (Boolean, default = false)
If this option is set, and the command retur ns any output, as well as termi-
nates with a retur n code that is neither zero nor one of those listed in
temp_errors, the first line of output is written to the main log.

The pipe Transpor t 229

9 October 2001 09:09

230 Chapter 9: The Transpor ts

log_output (Boolean, default = false)
If this option is set and the command retur ns any output, the first line of out-
put is written to the main log, whatever the retur n code.

max_output (integer, default = 20K)
This specifies the maximum amount of output that the command may produce
on its standard output and standard error file combined. If the limit is
exceeded, the process running the command is killed.

path (string list, default = /usr/bin)
This option specifies the string that is set up in the PATH envir onment variable
of the subprocess. If the command option does not yield an absolute pathname,
the command is sought in the PATH dir ectories.

restrict_to_path (Boolean, default = false)
When this option is set, any command name not listed in allow_commands must
contain no slashes. The command is sought only in the directories listed in the
path option.

return_fail_output (Boolean, default = false)
If this option is true, and the command produces any output, as well as termi-
nates with a retur n code other than zero or one of those listed in temp_errors,
the output is retur ned in the delivery error message. However, if the message
has a null sender (that is, it is itself a delivery error message), output from the
command is discarded.

return_output (Boolean, default = false)
If this option is true, and the command produces any output, the delivery is
deemed to have failed whatever the retur n code from the command, and the
output is retur ned in the delivery error message. Otherwise, the output is just
discarded. However, if the message has a null sender (that is, it is a delivery
err or message), output from the command is always discarded, whatever the
setting of this option.

temp_errors (string, default = see description)
This option contains a colon-separated list of numbers. If ignore_status is
false and the command exits with a retur n code that matches one of the num-
bers, the failure is treated as temporary and the delivery is deferred. The
default setting contains the codes defined by EX_TEMPFAIL and EX_CANTCREAT in
sysexits.h. If Exim is compiled on a system that does not define these macros,
it assumes values of 75 and 73, respectively.

timeout (time, default = 1h)
If the command fails to complete within this time, it is killed. This normally
causes the delivery to fail. A zero time interval specifies no timeout.

9 October 2001 09:09

umask (octal integer, default = 022)
This specifies the umask setting for the process that runs the command.

use_shell (Boolean, default = false)
If this option is set, it causes the command to be passed to /bin/sh instead of
being run directly from the transport. This is less secure, but is needed in
some situations where the command is expected to be run under a shell and
cannot easily be modified. You cannot make use of the allow_commands and
restrict_to_path options, or the $pipe_addresses facility if you set use_shell
true. The command is expanded as a single string, and handed to /bin/sh as
data for its -c option.

The lmtp Transpor t
When an installation supports a very large number of accounts, keeping individual
mailboxes as separate files or directories is no longer feasible because of the prob-
lems of scale. One solution to this problem is to use an independent message
stor e, which is a software product for managing mailboxes. It provides interfaces
for adding, reading, and deleting messages, but how they are stor ed inter nally is
not defined, and the mailboxes cannot be accessed as regular files. One such
pr oduct is the Cyrus IMAP message store.*

When an MTA delivers a message to a message store of this type, it has to pass
over the envelope just as it does when delivering to a remote host, and the exist-
ing SMTP protocol seems like a good candidate for a means of doing this. How-
ever, for messages with multiple recipients, there are some technical problems in
using SMTP in this way, which led to the definition of a new protocol called
LMTP.† This is very similar to SMTP, and Exim’s smtp transport has an option for
using LMTP instead of SMTP over a TCP/IP connection (see the section “Use of the
LMTP Protocol,” earlier in this chapter).

LMTP is also intended for communication between two processes running on the
same host, and this is where the lmtp transport comes in.‡ It is in effect a cross
between the pipe and smtp transports. Like pipe, it runs a command in a new pro-
cess and sends the message to it using a pipe, but instead of just writing the mes-
sage down the pipe, it interacts with the command to operate the LMTP protocol.
Her e is an example of a typical lmtp transport:

* See http://asg.web.cmu.edu/cyrus.

† If you are inter ested in the detailed arguments, read RFC 2033, which defines LMTP.

‡ Because LMTP is not requir ed in the majority of installations, the code for the lmtp transport is not
included in Exim unless specially requested at build time.

The lmtp Transpor t 231

9 October 2001 09:09

232 Chapter 9: The Transpor ts

local_lmtp:
driver = lmtp
command = /some/local/lmtp/delivery/program
batch = all
batch_max = 20
user = exim

This delivers up to 20 addresses at time, in a mixture of domains if necessary, run-
ning as the user exim.

The lmtp transport has a small number of options, all of which operate in exactly
the same way as the pipe options of the same names, so rather than repeat the
discussion, we just list them in Table 9-2.

Table 9-2. Private Options for the lmtp Transport

Option Meaning

batch Allow multiple addresses to be batched

batch_max Limit the number of batched addresses

command Define the command to be run

group The group under which to run the command

timeout Maximum time to wait for a response

user The user under which to run the command

Since the whole point of LMTP is to be able to pass a single copy of a message
with more than one recipient, batch should normally be set to a value other than
the default. As for other local transports, if user or group is not set, values must be
set up by the director that passes addresses to this transport.

The autoreply Transpor t
The autoreply transport is not a true transport in that it does not cause the
message to be delivered in the usual sense. Instead, it generates another, new mail
message. However, the original message can be included in the generated
message.

This transport is commonly run as the result of mail filtering, where sending a
‘‘vacation’’ message is a common example. What the user wants to do is to send
an automatic response to incoming mail, saying that he or she is away and there-
for e will not be able to read the mail for a while. In the next chapter, we go into
mail filtering in depth, but here is an extract from a filter file that does this job:

if personal and not error_message then
mail
to $reply_address
subject "Re: $h_subject"

9 October 2001 09:09

text "I’m away this week, but I’ll get back to you asap."
endif

In an attempt to reduce the possibility of message cascades, messages created by
the autoreply transport always take the form of delivery error messages. That is,
the envelope sender field is empty. This should stop hosts that receive them from
generating new automatic responses in turn.

The autoreply transport is implemented as a local transport so that, when activated
fr om a user’s filter file, it runs under the uid and gid of the local user and with
appr opriate curr ent and home directories.

Ther e is a subtle differ ence between directing a message to a pipe transport that
generates some text to be retur ned to the sender, and directing it to an autoreply
transport. This differ ence is noticeable only if more than one address from the
same message is so handled. In the case of a pipe, the separate outputs from the
dif ferent addresses are gather ed up and retur ned to the sender in a single
message, whereas if autoreply is used, a separate message is generated for each
addr ess that is passed to it.

If any of the generic options for manipulating headers (for example, headers_add)
ar e set on an autoreply transport, they apply only to the copy of the original
message that is included in the generated message when return_message is set.
They do not apply to the generated message itself, and are ther efor e not really
useful.

If the autoreply transport receives retur n code 2 from Exim when it submits the
new message, indicating that there wer e no recipients, it does not treat this as an
err or. This means that autoreplies that are addr essed to $sender_address when this
is empty (because the incoming message is a delivery failure report) do not cause
pr oblems.

The Parameter s of the Message
Ther e ar e two possible sources of the data for constructing the new message: the
incoming address and the options of the transport. When a user’s filter file con-
tains a mail or vacation command, all the data from the command (recipients,
header lines, body) is attached to the address that is passed to the autoreply trans-
port. In this case, the transport’s options are ignor ed.

On the other hand, when the transport is activated directly by a director or router
(that is, not from a filter file), the data for the message is taken from the transport’s
options. In other words, the options in the transport’s configuration are used only
when it receives an address that does not contain any reply information of its
own. Thus, the message is specified entirely by the filter file or entirely by the
transport; it is never built from a mixture of data.

The autoreply Transpor t 233

9 October 2001 09:09

234 Chapter 9: The Transpor ts

When the data has not come from a filter command, the transport options that
specify the message are shown in the following list:

bcc, cc, to
Specifies recipients and the corresponding header lines.

from

Specifies the Fr om: header line; if this does not correspond to the user run-
ning the transport, a Sender: header is added by Exim.*

reply_to

Sets the Reply-T o: header line. Note that the option name contains an under-
scor e, not a hyphen.

subject

Sets the Subject: header line.

text

Sets a short text to appear at the start of the body.

file

Specifies a file whose contents form the body of the message. If
file_optional is set, no error is generated if the file does not exist or cannot
be read. If file_expand is set, the contents of the file are passed through the
string expander, line by line, as they are added to the message. This makes it
possible to vary the contents of the message according to the circumstances.

headers

Specifies additional header lines that are to be added to the message. Several
headers can be added by enclosing the text in quotes and using \n to separate
them.

return_message

Specifies that the original message is to be added to the end of the newly cre-
ated message. The amount that is retur ned is subject to the general
return_size_limit option.

For example, here is a transport that could be used to send back a message
explaining that a particular mailing list no longer exists:

auto_message:
driver = autoreply
to = $sender_address
subject = The mailing list $local_part is no more
text = "Your message to $local_part@$domain is being returned because\n\
the $local_part mailing list is no longer in use."

return_message

* See the local_from_check and local_from_prefix options in the section “Sender Address,” in Chap-
ter 13, Message Reception and Policy Controls, for ways to change this behavior.

9 October 2001 09:09

You could direct messages to this transport by a director such as this:

old_lists:
driver = smartuser
domains = mailing.list.domain
local_parts = /etc/dead/lists
transport = auto_message

This runs only for the one domain, for local parts that are listed in the file.

Once-Only Messages
The traditional ‘‘vacation’’ use of autoreply is to send a message only once, or no
mor e than once in a certain time interval, to each differ ent sender. This can be
configur ed by setting the once option to the name of a file, which is then used to
record the recipients of messages that are created, together with the times at which
the messages are sent. By default, only one message is ever sent to a given recipi-
ent. However, if once_repeat is set to a time greater than zero, another message
may be sent if that much time has elapsed since the previous message. For
example:

once_repeat = 10d

The settings of once and once_repeat ar e used only if the data for the message is
being taken from the transport’s own options. For calls of autoreply that originate
in message filters, the settings from the filter are used.

Keeping a Log of Messages Sent
The log option names a file in which a record of every message that is handled by
the transport is logged. The value of the option is expanded, and the file is created
if necessary, with a mode specified by mode.

The setting of log is used only if the data for the message is being taken from the
transport’s own options. For calls of autoreply that originate in message filters, the
settings from the filter are used.

Summar y of autoreply Options
The options that are specific to the autoreply transport are summarized in this sec-
tion. Other options that can be set for autoreply ar e described earlier in the section
“Summary of Generic Transport Options,” and the section “Environment for Local
Transports.”

bcc (string, default = unset)
Specifies the addresses that are to receive ‘‘blind carbon copies’’ of the
message when the message is specified by the transport. The string is
expanded.

The autoreply Transpor t 235

9 October 2001 09:09

236 Chapter 9: The Transpor ts

cc (string, default = unset)
Specifies recipients of the message and the contents of the Cc: header when
the message is specified by the transport. The string is expanded.

file (string, default = unset)
The contents of the file are sent as the body of the message when the
message is specified by the transport. The string is expanded. If both file and
text ar e set, the text string comes first.

file_expand (Boolean, default = false)
If this is set, the contents of the file named by the file option are subjected to
string expansion as they are added to the message.

file_optional (Boolean, default = false)
If this option is true, no error is generated if the file named by the file option
does not exist or cannot be read.

from (string, default = unset)
The contents of the Fr om: header when the message is specified by the trans-
port. The string is expanded.

headers (string, default = unset)
Specified additional RFC 822 headers that are to be added to the message
when the message is specified by the transport. The string is expanded.

log (string, default = unset)
This option names a file in which a record of every message sent is logged
when the message is specified by the transport. The string is expanded.

mode (octal integer, default = 0600)
If either the log file or the ‘‘once’’ file has to be created, this mode is used.

once (string, default = unset)
This option names a DBM database in which a record of each recipient is kept
when the message is specified by the transport. The string is expanded.

once_repeat (time, default = 0s)
This option specifies the time interval after which another message may be
sent to the same recipient, when the message is specified by the transport.

reply_to (string, default = unset)
This option specifies the contents of the Reply-T o: header when the message is
specified by the transport. The string is expanded.

return_message (Boolean, default = false)
If this is set, a copy of the original message is retur ned with the new message,
subject to the maximum size set in the return_size_limit general
configuration option.

9 October 2001 09:09

subject (string, default = unset)
The contents of the Subject: header when the message is specified by the
transport. The string is expanded.

text (string, default = unset)
This specifies a single string to be used as the body of the message when the
message is specified by the transport. The string is expanded. If both text and
file ar e set, the text comes first.

to (string, default = unset)
This option specifies recipients of the message and the contents of the To:
header when the message is specified by the transport. The string is
expanded.

The autoreply Transpor t 237

9 October 2001 09:09

10
Message Filter ing

The word filtering is used for the process of inspecting a message as it passes
thr ough Exim, and possibly changing the way it is handled. We discuss transport
filters in the section “Transport Filters,” in Chapter 9, The Transports. In this chap-
ter, we are concer ned with a differ ent kind of filtering, which happens while a
message is being processed to determine where it should be delivered. We have
alr eady mentioned user and system filters without much explanation; now is the
time to rectify that omission. These filters work as follows:

• Provided the configuration permits it, users may place filtering instructions in
their .forwar d files instead of just a list of forwarding destinations.* User filters
ar e obeyed when Exim is directing addresses, and they extend the concept of
forwarding by allowing conditions to be tested. A user filter is run as a conse-
quence of directing one address, whose constituent parts are available in
$local_part and $domain (and, if relevant, $local_part_prefix and/or
$local_part_suf fix).

• A single system filter can be set up by the administrator. This uses the same
filtering commands as a user filter (with a few additions), but is obeyed just
once per delivery attempt, before any directing or routing is done. Because
ther e may be many recipients for a message, address-r elated variables such as
$local_part and $domain are not set when a system filter is run, but a list of all
the recipients is available in the variable $recipients.

Befor e describing the syntax of filtering commands in detail, we work through a
few straightforward examples to give you a flavor of how filtering operates.

* The filename .forwar d is the one most commonly used, but it is not hardwired into Exim. The con-
figuration could specify a differ ent name.

238

9 October 2001 09:09

Examples of Filter Commands
These examples are written from the perspective of a user’s filter file. First, a sim-
ple forwarding:

Exim filter
deliver baggins@rivendell.middle-earth.example

The first line indicates that the file is a filter file rather than a traditional .forwar d
file. The only command in this file is an instruction to deliver the message to a
specific address. This particular file does nothing that a traditional .forwar d
couldn’t do, and is exactly equivalent to a file containing:

baggins@rivendell.middle-earth.example

The next example shows vacation handling using traditional means; that is, by
running /usr/ucb/vacation, assuming that .vacation.msg and other files have
been set up in the home directory:

Exim filter
unseen pipe "/usr/ucb/vacation $local_part"

The pipe command is an instruction to run the given program and pass the mes-
sage to it via a pipe. The arguments given to filter commands are always
expanded so that refer ences to variables such as $local_part can be included.

The word unseen, which precedes the command, tells Exim not to treat this com-
mand as significant. This means that after filtering, Exim goes on to deliver the
message in the normal way. That is, one copy of the message is sent to the pipe,
and another is added to the user’s mailbox. Without unseen, the pipe delivery
would be the only delivery that is done.

This example also doesn’t do anything that a traditional .forwar d couldn’t do. For
the user spqr, it is equivalent to:

\spqr, |/usr/ucb/vacation spqr

Vacation handling can, however, be done entirely inside an Exim filter, without
running another program. Assuming there is a file called .vacation.msg in the
home directory, this filter file suffices:

Exim filter
if personal then vacation endif

Her e we see something that a traditional .forwar d file cannot do. The if command
allows a filter to test certain conditions before taking action. In this example, it is
testing the personal condition. We explain what this means in detail later on, but
for now you just need to know that it is distinguishing between messages that are
personally addressed to the user, and those that are not (for example, messages

Examples of Filter Commands 239

9 October 2001 09:09

240 Chapter 10: Message Filter ing

fr om a mailing list). If the incoming message is a personal one, the filter command
vacation is run. This command generates an automatic response message to the
sender of the incoming message, in the same way that /usr/ucb/vacation does.

As well as sending the vacation message, we want Exim to continue processing
the message, and do the normal delivery. In this case, this happens automatically,
because the vacation command is not a significant action. There is no need to use
unseen, because it is the default.

Ther e ar e a range of conditions that you can test with the if command. The next
example examines the contents of the Subject: header line, and for certain sub-
jects, arranges to deliver the message to a specific file instead of the normal
mailbox:

Exim filter
if $header_subject: contains "empire" or

$header_subject: contains "foundation"
then

save $home/mail/f+e
endif

Saving to a file like this is a significant action, so no other deliveries are done for
messages that match the test. If the save command were preceded by unseen, it
would take a copy of the relevant messages, without affecting normal delivery.

The following example illustrates the use of a regular expression for a slightly
unusual purpose. It extracts the day of the week from the variable $tod_full, which
contains the date and time in the format:

Wed, 16 Oct 1995 09:51:40 +0100

The filter command looks for messages that are not marked ‘‘urgent,’’ and saves
them in files whose names contain the day of the week:

Exim filter
if $header_subject: does not contain "urgent" and

$tod_full matches "ˆ(...),"
then
save $home/mail/$1

endif

The regular expression always matches, and it uses parentheses to extract the day
name into the $1 variable. This can then be used in the command that follows.

Suppose you want to throw away all messages from a certain domain that is bom-
barding you with junk, but also want to accept messages from the postmaster. This
filter file achieves this:

Exim filter
if $reply_address contains "@spam.site.example" and

$reply_address does not contain "postmaster@"

9 October 2001 09:09

then
seen finish

endif

The finish command ends filtering. Putting the word seen in front of it makes it
into a significant action, which means that normal message delivery will not take
place. As no deliveries are set up by the filter when the condition matches, the
message is discarded.

This final example shows how a user can handle multiple personal mailboxes, as
described in the section “Conditional Running of Directors,” in Chapter 7, The
Dir ectors:

Exim filter
if $local_part_suffix is "-foo"
then
save $home/mail/foo

elif $local_part_suffix is "-bar"
then
save $home/mail/bar

endif

The remainder of this chapter covers the format of filter files and the individual fil-
tering commands in detail.

Filter ing Compared with an External
Deliver y Agent
It is important to realize that no deliveries are actually done while a system or user
filter file is being processed. The result of filtering is a list of destinations to which
a message should be delivered; the deliveries themselves take place later, along
with all other deliveries for the message. This means that it is not possible to test
for successful deliveries while filtering. It also means that duplicate addresses gen-
erated by filtering are dropped, as with any other duplicate addresses.

If a user needs to be able to test the result of a delivery in some automatic way, an
exter nal delivery agent such as pr ocmail must be used.* At first sight, pr ocmail
and Exim filters appear to provide much the same functionality, albeit with very
dif ferent syntax. However, ther e ar e some important differ ences:

• Forwarding from an Exim filter is ‘‘true forwarding’’ in the sense that the enve-
lope sender is not changed; the message is just redir ected to a new recipient.
An unprivileged external delivery agent cannot do this because any message it
resubmits has the local user’s address as its envelope sender.

* See the section “Using an External Local Delivery Agent,” in Chapter 5, Extending the Delivery Con-
figuration.

Filter ing Compared with an External Deliver y Agent 241

9 October 2001 09:09

242 Chapter 10: Message Filter ing

• Because an external delivery agent has to submit a new message in order to
achieve additional deliveries, duplicate addresses are not detected. For exam-
ple, if a message arrives addressed to both bob and alice, and bob forwards it
to alice fr om pr ocmail, two copies are deliver ed, wher eas if the forwarding
happens in an Exim filter, only one copy is delivered.

• As mentioned earlier, the results of a delivery (for example, the retur n code
fr om the command to which a message is piped) can be inspected by an
exter nal delivery agent, but not in an Exim filter.

The use of Exim filters and external delivery agents is not mutually exclusive. You
should use whichever of them best provides the features you need.

Setting Up a User Filter
If a user’s .forwar d file begins with the text:

Exim filter

in any capitalization and with any spacing, the file is interpreted as a filter file
instead of a conventional forwarding list, provided that the administrator has
enabled filtering by setting the filter option on the forwardfile dir ector. The
remaining contents of the filter file must conform to the filtering syntax, which is
described later in this chapter. As in the case of a conventional .forwar d file, if the
filter sets up any deliveries to pipes or files, the forwardfile dir ector must have set-
tings of address_pipe_transport or address_file_transport to specify how such
deliveries are to be done (see the section “Use of Transports by Directors and
Routers,” in Chapter 3, Exim Overview).

Setting Up a System Filter
A system filter is differ ent to a user filter in that it runs only once, however many
recipients a message might have. Because it runs right at the start of a delivery
pr ocess, befor e the recipient addresses are dir ected or routed, the options for set-
ting it up appear in the main section of the runtime configuration file.

A system filter is enabled by setting the option message_filter to the path of the
file that contains the filter instructions. For example:

message_filter = /etc/mail/exim.filter

If any commands in the filter specify deliveries to pipes or files, or the creation of
automatic reply messages, additional options must be set to specify which trans-
ports are to be used for these purposes. These options are as follows:

9 October 2001 09:09

message_filter_directory_transport delivery to directory
message_filter_file_transport delivery to file
message_filter_pipe_transport delivery to pipe
message_filter_reply_transport automatic reply

The save command in a filter specifies delivery to a given file or directory. If the
path name does not end with a slash character, it is assumed to be the name of a
file, and the transport specified by message_filter_file_transport is used; other-
wise, delivery into a new file within a given directory is assumed, and mes-

sage_filter_directory_transport is used.*

Two further options, message_filter_user and message_filter_group, specify the
uid and gid under which the system filter is run. This is achieved by temporarily
changing the effective uid and gid. If these options are not set, the uid and gid are
not changed when the system filter is run. If the filter generates any pipe or file
deliveries, or any automatic replies, the uid and gid under which the filter is run
ar e used when running the appropriate transports, unless the transport configura-
tions override them.

Summar y of System Filter Options
The options that are concer ned with setting up a system filter are summarized in
this section:

message_filter (string, default = unset)
This option specifies the system filter file, and enables system filtering.

message_filter_directory_transport (string, default = unset)
This sets the name of the transport driver that is to be used when the save
command in a system message filter specifies a path ending in /, implying
delivery of each message into a separate file in some directory.

message_filter_file_transport (string, default = unset)
This sets the name of the transport driver that is to be used when the save
command in a system message filter specifies a path not ending in /.

message_filter_group (string, default = unset)
This option sets the gid under which the system message filter is run. The
same gid is used for any pipe, file, or autoreply deliveries that are set up by
the filter, unless the transport overrides them.

* These options are just pointers to transports that would normally do the kind of delivery implied, but
ther e is no constraint on what they actually do.

Setting Up a System Filter 243

9 October 2001 09:09

244 Chapter 10: Message Filter ing

message_filter_pipe_transport (string, default = unset)
This sets the name of the transport driver that is to be used when a pipe com-
mand is used in a system message filter.

message_filter_reply_transport (string, default = unset)
This sets the name of the transport driver that is to be used when a mail com-
mand is used in a system message filter.

message_filter_user (string, default = unset)
This option sets the uid under which the system message filter is run. The
same uid is used for any pipe, file, or autoreply deliveries that are set up by
the filter, unless the transport overrides them.

Testing Filter Files
Filter files, especially the more complicated ones, should always be tested, as it is
easy to make mistakes. Exim provides a facility for preliminary testing of a filter
file before installing it. This tests the syntax of the file and its basic operation, and
can also be used with ordinary (nonfilter) .forwar d files.

Because a filter can do tests on the content of messages, a test message is
requir ed. Suppose you have a new user filter file called new-filter and a test mes-
sage in a file called test-message. The following command can be used to test the
filter:

exim -bf new-filter <test-message

The -bf option tells Exim that the following item on the command line is the
name of a filter file that is to be tested, and the test message is supplied on the
standard input. If there are no message-dependent tests in the filter, an empty file
can be used. A supplied message must start with header lines or the From message
separator line that is found in traditional multimessage folder files. A warning is
given if no header lines are read.

The result of running this command, provided no errors are detected in the filter
file, is a list of the actions that Exim would try to take if presented with the mes-
sage for real. For example, the output:

Deliver message to: gulliver@lilliput.example
Save message to: /home/lemuel/mail/archive

means that one copy of the message would be sent to gulliver@lilliput.example,
and another would be added to the file /home/lemuel/mail/ar chive, if all went
well.

The actions themselves are not attempted while testing a filter file in this way;
ther e is no check, for example, that any forwarding addresses are valid. If you
want to know why a particular action is being taken, add the -v option to the

9 October 2001 09:09

command. This causes Exim to output the results of any conditional tests and to
indent its output according to the depth of nesting of if commands in the filter file.
Further additional output from a filter test can be generated by the testprint com-
mand, which is described later.

When Exim is outputting a list of the actions it would take, if any text strings are
included in the output, nonprinting characters therein are converted to escape
sequences. In particular, if any text string contains a newline character, this is
shown as \n in the testing output.

When testing a filter, Exim makes up an envelope for the message. The recipient is
by default the user running the command, and so is the sender, but the command
can be run with the -f option to supply a differ ent sender. For example:

exim -bf new-filter \
-f islington@neverwhere.example <test-message

Alter natively, if the -f option is not used, but the first line of the supplied message
is a From separator from a message folder file (not the same thing as a Fr om:
header line), the sender is taken from there. If -f is present, the contents of any
From line are ignor ed.

The retur n path is the same as the envelope sender, unless the message contains a
Retur n-path: header, in which case it is taken from there. You need not worry
about any of this unless you want to test out features of a filter file that rely on the
sender address or the retur n path.

It is possible to change the envelope recipient by specifying further options. The
-bfd option changes the domain of the recipient address, while the -bfl option
changes the local part. An adviser could make use of these options to test some-
one else’s filter file, for example.

The -bfp and -bfs options specify the prefix or suffix for the local part. See the
section “Multiple User Addresses,” in Chapter 5 for an example of when these
might be relevant.

If the filter tests information about the source of the message (for example, the
name or the IP address of the host from which it was received), you may want to
set up specific values for it to test. This can be done by making use of several
command-line options, beginning with -oM. For example, -oMa sets the remote host
addr ess. See Chapter 20, Command-Line Interface to Exim, for details of these
options.

Testing Filter Files 245

9 October 2001 09:09

246 Chapter 10: Message Filter ing

Testing a System Filter File
A system filter can be tested in the same way as a user filter, but you should use
the command-line option -bF instead of -bf. This allows Exim to recognize those
commands and other features of a system filter that are not available in user filters.

Testing an Installed Filter File
Testing a filter file before installation cannot find every potential problem; for
example, it does not actually run commands to which messages are piped. Some
‘‘live’’ tests should therefor e also be done once a filter is installed.

If at all possible, users should test their filter files by sending messages from other
accounts. If a user sends a test message from the filtered account and delivery
fails, the error message is sent back to the same account, which may cause
another delivery failure. It will not cause an infinite sequence of such messages,
because delivery failure messages do not themselves generate further messages.
However, it does mean that the failure will not be retur ned to the sender, and also
that the postmaster will have to investigate the stuck message.

A sensible precaution against this occurrence is to include the line:

if error_message then finish endif

as the first filter command, at least while testing. This causes filtering to be aban-
doned for a delivery failure message, and since no destinations are generated by
the filter, the message goes on to be delivered to the original address. Unless there
is a good reason for not doing so, it is recommended that the previous line be pre-
sent at the start of all user filter files.

Format of Filter Files
Apart from leading whitespace, the first text in a filter file must be:

Exim filter

This is what distinguishes it from a conventional .forwar d file (assuming the con-
figuration has enabled filtering). If the file does not have this initial line, it is
tr eated as a conventional .forwar d file, both when delivering mail and when using
the -bf testing mechanism. The whitespace in the line is optional, and any capital-
ization may be used. Further text on the same line is treated as a comment. For
example, you could have:

Exim filter <<== do not edit or remove this line!

The remainder of the file is a sequence of filtering commands, which consist of
keywords and data values separated by whitespace or line breaks, except in the
case of conditions for the if command, where par entheses also act as separators.

9 October 2001 09:09

For example, in the command:

deliver gulliver@lilliput.example

the keyword is deliver and the data value is gulliver@lilliput.example. The
commands are in free for mat, and can be spread over more than one line; there
ar e no special terminators. If the character # follows a separator, everything from #

up to the next newline is ignored. This provides a way of including comments in a
filter file.

Ther e ar e two ways in which a data value can be input:

• If the text contains no whitespace, it can be typed verbatim. However, if it is
part of a condition, it must also be free of parentheses, because these are used
for grouping in conditions. The examples shown so far have all been of this
type.

• Otherwise, a data value must be enclosed in double quotation marks, for
example:

if $h_subject: contains "Free Gift" then
save /dev/null

endif

When quotes are used, backslash is treated as an ‘‘escape character’’ within the
string, thereby allowing special characters such as newline to be included. A data
item enclosed in double quotes can be continued onto the next line by ending the
first line with a backslash. Any leading whitespace at the start of the continuation
line is ignored.

In addition to the escape character processing that occurs when strings are
enclosed in quotes, most data values are also subject to string expansion. In an
expanded string, both the dollar and backslash characters are interpr eted specially.
This means that if you really want a dollar in a data item in a filter file, you have
to escape it. The command:

if $h_subject: contains \$\$\$\$ then seen finish endif

tests for the string $$$$. If quotes are used, an additional level of escaping is
necessary:

if $h_subject: contains "\\$\\$\\$\\$" then
seen finish

endif

If a backslash is requir ed in a quoted data string, as can happen if the string is to
be interpreted as a regular expression, \\\\ has to be entered.

Format of Filter Files 247

9 October 2001 09:09

248 Chapter 10: Message Filter ing

Significant Actions
When in the course of delivery a message is processed by a filter file, what hap-
pens next (that is, after the filter file has been processed), depends on whether the
filter has taken any significant action or not. For a user filter, if ther e is at least
one significant action, the filter is considered to have handled the entire delivery
arrangements for the current address, and no further processing of the address
takes place. In the case of a system filter, if any significant actions are taken, the
original recipient addresses are ignor ed.

If, on the other hand, no significant actions happen, Exim continues processing as
if there wer e no filter file. For a user filter, the address is offer ed to subsequent
dir ectors, and normally this eventually sets up delivery of a copy of the message
into a local mailbox. For a system filter, the original recipient addresses are
dir ected or routed, and delivery proceeds as normal.

The delivery commands deliver, save, and pipe ar e by default significant actions.
For example, if the command:

deliver hatter@wonderland.example

is obeyed in a user’s filter file, the address is not offer ed to subsequent directors.
However, if the command is preceded by the word unseen, for example:

unseen deliver hatter@wonderland.example

the delivery is not considered to be significant. In effect, a filter containing only an
‘‘unseen’’ delivery takes a copy of a message, without affecting the normal deliv-
ery. This can be used in a system filter for archiving messages automatically.

The other filter commands (those that do not specify a delivery of the message)
ar e not significant actions by default, but they can be made significant by putting
the word seen befor e them. For example, obeying a finish command terminates
the running of a filter; it is not by itself a significant action, so whether the filter as
a whole has taken any significant action depends on the earlier commands (if
any). However, if the command:

seen finish

is obeyed, the filter ends with a significant action, and no further delivery process-
ing takes place. A filter containing only this command is a black hole; it is most
commonly used after testing some characteristic of the message.

9 October 2001 09:09

Filter Commands
The filter commands described in subsequent sections are as follows:

add Incr ement a user variable
deliver Deliver to an email address
fail Fail delivery (system filter only)
finish End processing
fr eeze Fr eeze delivery (system filter only)
headers Add/r emove header lines (system filter only)
if Test condition
logfile Define log file
logwrite Write to log file
mail Send a reply message
pipe Pipe to a command
save Save to a file
testprint Print while testing
vacation Tailor ed for m of mail

The add Command
add number to user variable
example: add 2 to n3

The names of the user variables consist of the letter n followed by a single digit.
Ther e ar e ther efor e 10 user variables of this type, and their values can be obtained
by the normal expansion syntax (for example $n4) in other commands. At the start
of filtering, these variables all contain zero. At the end of a system filter, their val-
ues are copied into $sn0 to $sn9 so that they can be refer enced in users’ filter files.
Thus, a system filter can set up ‘‘scores’’ for a message, to which a user filter can
refer. Both arguments of the add command are expanded before use, making it
possible to add variables to each other. Subtraction can be obtained by adding
negative numbers. The following example is not realistic, but shows the kind of
thing that can be done:

if $h_subject: does not match "(?-i)[a-z]" then
add 1 to n1

endif
if $h_subject: contains "make money" then
add 1 to n2

endif
add $n2 to n1
if $n1 is above 3 then seen finish endif

The add Command 249

9 October 2001 09:09

250 Chapter 10: Message Filter ing

The first command tests the subject of the message for the presence of a lowercase
letter. If ther e ar e none (that is, if the subject is entirely in uppercase), the variable
$n1 is incremented. The second command increments $n2 if the subject contains a
specific string. Then the contents of $n2are added to $n1, and the sum is tested.

Notice that the variable names are given without a leading dollar for variables that
ar e being incremented. If you wrote:

add 1 to $n1

the string expansion that is applied to each argument would turn it into something
such as:

add 1 to 0

which is an invalid command that provokes a syntax error.

Deliver y Commands
The following filter commands set up message deliveries (that is, they arrange for
copies of the message to be transported somewhere). Such deliveries are signifi-
cant actions unless the command is preceded by unseen.

The deliver Command
deliver mail address
example: deliver "Dr Livingstone <David@darkest.africa.example>"

This provides a forwarding operation. The message is sent to the given address.
For a user filter, this is exactly the same as putting the address in a traditional .for-
war d file. To deliver a copy of the message to a user’s normal mailbox, the user’s
login name can be given. Once an address has been processed by the filtering
mechanism, an identical generated address will not be so processed again, so
doing this does not cause a loop.

An optional addition to a deliver command is:

errors_to mail address

In a system filter, the given address is not restricted, but in the case of a user filter,
it must be the address that is in the process of being directed. That is, the only
valid usage is:

errors_to $local_part@$domain

(or the equivalent using a literal string) in a user filter. This facility allows users to
change the envelope sender of a message to be their own address when forward-
ing it, so that any subsequent delivery failure reports are sent to the forwarding

9 October 2001 09:09

user, instead of to the original sender. This is useful only when the forwarding is
conditional, of course, so that bounce messages are not themselves being
forwarded.

Only a single address may be given to a deliver command, but multiple occur-
rences of the command may be used to cause the message to be delivered to
mor e than one address. However, duplicate addresses are discarded.

The save Command
save file name
example: save $home/mail/bookfolder

This causes a copy of the message to be appended to the given file (that is, the
file is used as a mail folder). More than one save command may appear; each one
causes a copy of the message to be written to its argument file, provided they are
dif ferent (duplicate save commands are ignor ed).

The ability to use the save command in a user filter is controlled by the system
administrator; it may be forbidden by setting forbid_file on the forwardfile
dir ector.

An optional mode value may be given after the filename, for example:

save /some/folder 0640

This makes it possible for users to override the systemwide mode setting for file
deliveries, which is normally 0600. If an existing file does not have the correct
mode, it is changed. The value for the mode is interpreted as an octal number,
even if it does not begin with a zero.

For a system filter, the filename must be an absolute path. For a user filter, if the
filename does not start with a slash character, the directory specified by the $home
variable is prepended. The user must of course have permission to write to the
file, and (in a conventional configuration) the writing of the file takes place in a
pr ocess that is running with the user’s uid and the user’s primary gid. Any sec-
ondary groups to which the user may belong are not normally taken into account,
though the system administrator can configure Exim to set them up.*

An alternative form of delivery may be enabled, in which each message is deliv-
er ed into a new file in a given directory. For a system filter, this requir es a setting
of message_filter_directory_transport, wher eas for a user filter it requir es a set-
ting of directory_transport on the forwardfile dir ector. If this is the case, the

* See the discussion of the initgroups option in the section “Controlling the Environment for Local
Deliveries,” in Chapter 6, Options Common to Directors and Routers.

Deliver y Commands 251

9 October 2001 09:09

252 Chapter 10: Message Filter ing

functionality can be requested by giving the directory name terminated by a slash
after the save command, for example:

save separated/messages/

Ther e ar e several differ ent possible formats for such deliveries; see the section
“The appendfile Transport,” in Chapter 9, for details. If this functionality is not
enabled, the use of a pathname ending in a slash causes an error.

The pipe Command
pipe command
example: pipe "$home/bin/countmail $sender_address"

This command causes a separate process to be run, and a copy of the message is
passed to it on its standard input. More than one pipe command may appear; each
one causes a copy of the message to be written to its argument pipe, provided
they are dif ferent (duplicate pipe commands are ignor ed).

The command supplied to pipe is split up by Exim into a command name and a
number of arguments, delimited by whitespace, except for arguments enclosed in
double quotes. In this case, backslash is interpreted as an escape, or if the argue-
ment is enclosed in single quotes, no escaping is recognized. Note that as the
whole command is normally supplied in double quotes, a second level of quoting
is requir ed for internal double quotes. For example:

pipe "$home/myscript \"size is $message_size\""

String expansion is perfor med on the separate components after the line has been
split up, and the command is then run directly by Exim; it is not run under a shell.
Ther efor e, substitution cannot change the number of arguments, nor can quotes,
backslashes, or other shell metacharacters in variables cause confusion. Documen-
tation for some programs that are nor mally run via this kind of pipe often suggest
that the command should start with:

IFS=" "

This is a shell command, and should not be present in Exim filter files, since it
does not normally run the command under a shell.

The preceding paragraph assumes a default configuration for the pipe transport
that is being used. If use_shell is set on the transport, things are dif ferent. A num-
ber of other options on the transport can affect the way the command is run,
including applying restrictions as to which commands may be run, and how any
output from the command is handled. See the section “The pipe Transport,” in
Chapter 9 for details.

9 October 2001 09:09

Ignor ing Deliver y Er ror s
As explained earlier in this chapter, filtering just sets up addresses for delivery; no
deliveries are actually done while a filter file is active. If any of the generated
addr esses subsequently suffers a delivery failure, an error message is generated in
the normal way. However, if the filter command that sets up a delivery is preceded
by the word noerror, locally detected errors for that delivery, and any deliveries
consequent on it (that is, from alias, forwarding, or filter files it invokes) are
ignor ed. For example, suppose a user wants to scan all incoming messages using
some program, as well as having them delivered into the normal mailbox. A com-
mand such as:

unseen noerror pipe $home/bin/mailscan

can be used; unseen ensur es that normal delivery is not affected, and noerror

ensur es that a failure of the pipe does not cause a bounce message to generate.

Mail Commands
Ther e ar e two commands that cause the creation of a new mail message, neither
of which are significant actions unless the command is preceded by the word
seen. Sending messages automatically is a powerful facility, but it should be used
with care, because of the danger of creating infinite sequences of messages. The
system administrator can forbid the use of these commands in users’ filter files, by
setting forbid_filter_reply on the forwardfile dir ector.

To help prevent runaway message sequences, these commands have no effect
when the incoming message is a bounce message, and messages sent by this
means are treated as if they were reporting delivery errors (that is, their envelope
senders are empty). Thus, they should never themselves cause a bounce message
to be retur ned. The basic mail-sending command is:

mail to address-list
cc address-list
bcc address-list
from address
reply_to address
subject text
text text
[expand] file filename
return message
log log file name
once note file name
once_repeat time interval

Mail Commands 253

9 October 2001 09:09

254 Chapter 10: Message Filter ing

For example:

mail text "Got your message about @$h@_subject:"

All of the keywords that can follow mail ar e optional; you need only specify those
whose defaults you want to change. As a convenience for use in one common
case, there is also a command called vacation. It behaves in the same way as
mail, except that the defaults for the file, log, once, and once_repeat keywords
ar e:

expand file .vacation.msg
log .vacation.log
once .vacation
once_repeat 7d

respectively. These are the same filenames and repeat period used by the tradi-
tional Unix vacation command. The defaults can be overridden by explicit set-
tings, for example:

vacation once_repeat 14d

The vacation command is normally used conditionally, subject to the personal

condition so as not to send automatic replies to nonpersonal messages from mail-
ing lists or elsewhere.

For both commands, the key/value argument pairs can appear in any order. At
least one of text or file must appear (except with vacation, wher e file can be
defaulted); if both are present, the text string appears first in the message. If
expand pr ecedes file, each line of the file is subject to string expansion as it is
included in the message.

If no to keyword appears, the message is sent to the address in the $reply_addr ess
variable, which is the contents of the Reply-T o: header line if it exists, or otherwise
the contents of the Fr om: header line. An In-Reply-T o: header is automatically
included in the created message, giving a refer ence to the message identification
of the incoming message.

Several lines of text can be supplied to text by including the escape sequence \n

in the string where newlines are requir ed, for example:

mail text
"This is an automatic response to your \
message.\nI am very busy, but will look \
at it eventually."

If the command is output during filter file testing, newlines in the text are shown
as \n.

Note that the keyword for creating a Reply-T o: header line is reply_to, because
Exim keywords may contain underscores, but not hyphens. If the from keyword is
pr esent and the given address does not match the user under which the filter is

9 October 2001 09:09

running, Exim adds a Sender: header line to the message.* If from is not specified,
a Fr om: header is constructed from the login name and the value of qual-

ify_domain.

If return_message is specified, the incoming message that caused the filter file to
be run is added to the end of the newly created message, subject to the maximum
size limitation for retur ned messages, which is controlled by the
return_size_limit option in Exim’s main configuration.

If a log file is specified, an entry is added to it for each message sent. The entry
contains several lines as in this example:

2000-05-01 14:04:06
To: John Doe <jd@somewhere.example>
Subject: Re: wish list for exim

If a once file is specified, it is used to hold a database for remembering who has
received a message, and no more than one message is ever sent to any particular
addr ess, unless once_repeat is set. This specifies a time interval after which
another copy of the message may be sent. For example:

once_repeat = 5d4h

causes a new message to be sent if five days and four hours have elapsed since
the last one was sent. There must be no whitespace in a time interval.

The filename specified for once is used as the basename for direct-access (DBM)
file operations. Exim creates and maintains the DBM file or files automatically.
Ther e ar e a number of differ ent DBM libraries in existence. Some operating sys-
tems provide one as a default, but even in this case a differ ent one may have been
used when building Exim. With some DBM libraries, specifying once results in two
files being created, with the suffixes .dir and .pag being added to the given name.
With some others a single file with the suffix .db is used, or the name is used
unchanged.

If once is used in a ‘‘vacation’’ scenario, the DBM file must be deleted by the user
when the vacation is over and the filter file has been changed so as not to send
any more messages.

Mor e than one mail or vacation command may be obeyed in a single filter run;
they are all honored, even when they are to the same recipient.

* See the local_from_check and local_from_prefix options in the section “Sender Address,” in Chap-
ter 13, Message Reception and Policy Controls, for ways to change this behavior.

Mail Commands 255

9 October 2001 09:09

256 Chapter 10: Message Filter ing

Logg ing Commands
A log can be kept of actions taken by a filter file. For user filters, the system
administrator may choose to disable this feature by setting forbid_log on the for-
wardfile dir ector. Logging takes place while the filter file is being interpreted. It
does not queue up for later as the delivery commands do. The reason for this is so
that a log file need be opened only once for several write operations.

Ther e ar e two commands, neither of which constitutes a significant action. The
first defines a file to which logging output is subsequently written:

logfile file name
example: logfile $home/filter.log

The filename may optionally be followed by a mode for the file, which is used if
the file has to be created. For example:

logfile $home/filter.log 0644

The number is interpreted as octal, even if it does not begin with a zero. The
default for the mode is 0600. It is suggested that the logfile command should nor-
mally appear as the first command in a filter file. Once logfile has been obeyed,
the logwrite command can be used to write to the log file:

logwrite "some text string"
example: logwrite "$tod_log $message_id processed"

It is possible to have more than one logfile command, to specify writing to differ-
ent log files in differ ent circumstances. Writing takes place at the end of the file,
and a newline character is added to the end of each string if there is not one
alr eady. Newlines can be put in the middle of the string by using the \n escape
sequence. Lines from simultaneous deliveries may get interleaved in the file, as
ther e is no interlocking, so you should plan your logging with this in mind. How-
ever, data should not get lost.

The testpr int Command
It is sometimes helpful to be able to print out the values of variables when testing
filter files. The command:

testprint "text"
example: testprint "home=$home reply_address=$reply_address"

does nothing when mail is being delivered. However, when the filtering code is
being tested by means of the -bf or -bF options, the value of the string is written
to the standard output.

9 October 2001 09:09

The finish Command
The command finish, which has no arguments, causes Exim to stop interpreting
the filter file. What happens next depends on whether any significant actions have
been taken. The finish command itself is not a significant action unless preceded
by the word seen. Reaching the end of a filter file has the same effect as obeying a
finish command.

Obeying Filter Commands Conditionally
Most of the power of filtering comes from the ability to test conditions and obey
dif ferent commands depending on the outcome. The if command is used to spec-
ify conditional execution, and its general form is:

if condition
then commands
elif condition
then commands
else commands
endif

Ther e may be any number of elif-then sections (including none) and the else sec-
tion is also optional. Any number of commands, including nested if commands,
may appear in any of the commands sections.

Conditions can be combined by using the words and and or, and parentheses can
be used to specify how several conditions are to combine. Without parentheses,
and is more str ongly binding than or. Her e is an example that uses parentheses:

if $h_subject: contains [EXIM] and
(
$return_path is exim-users-admin@exim.org or
$h_to:$h_cc: contains exim-users@exim.org
)

then
save $home/Mail/exim-list

endif

A condition can be preceded by not to negate it, and there are also some negative
for ms of condition that are mor e English-like. For example:

if not personal and $h_subject: does not contain [EXIM]
then save $home/Mail/other-lists

endif

The following descriptions show just the individual conditions, not the complete if
commands.

Obeying Filter Commands Conditionally 257

9 October 2001 09:09

258 Chapter 10: Message Filter ing

Str ing Testing Conditions
Ther e ar e a number of conditions that operate on text strings, using the words
begins, ends, is, contains, and matches. If the condition names are written in low-
ercase, the testing of letters is done without regard to case; if they are written in
uppercase (for example, CONTAINS), the case of letters is significant.

text1 begins text2
text1 does not begin text2
example: $header_from: begins "Friend@"

A begins test checks for the presence of the second string at the start of the first,
with both strings having been expanded.

text1 ends text2
text1 does not end text2
example: $header_from: ends "public.example.com"

An ends test checks for the presence of the second string at the end of the first,
with both strings having been expanded.

text1 is text2
text1 is not text2
example: $local_part_suffix is "-foo"

An is test does an exact match between the strings, having first expanded both of
them.

text1 contains text2
text1 does not contain text2
example: $header_subject: contains "evolution"

A contains test does a partial string match, having expanded both strings.

text1 matches text2
text2 does not match text2
example: $sender_address matches "(Bill|John)@"

For a matches test, after expansion of both strings, the second one is interpreted as
a regular expression, and matched against the first. Care must be taken if you need
a backslash in a regular expression, because backslashes are interpr eted as escape
characters both by the string expansion code and by Exim’s normal string reading
code when a string is given in quotes. For example, if you want to test the sender
addr ess for a domain ending in .com, the regular expression is:

\.com$

The backslash and dollar sign in that expression have to be escaped when used in
a filter command, because otherwise they would be interpreted by the expansion
code. Thus, what you actually write is:

if $sender_address matches \\.com\$

9 October 2001 09:09

However, if the expression is given in quotes (mandatory only if it contains
whitespace) you have to write:

if $sender_address matches "\\\\.com\\$"

with \\\\ for a backslash and \\$ for a dollar sign. Hence, if you actually requir e
the string \$ in a regular expression that is given in double quotes, you need to
write \\\\\\$.

If the regular expression contains parenthesized subexpressions that capture parts
of the matching string, numeric variable substitutions such as $1 can be used in
the subsequent actions after a successful match. If the match fails, the values of the
numeric variables remain unchanged. Previous values are not restor ed after endif;
in other words, only one set of values is ever available. If the condition contains
several subconditions connected by and or or, it is the strings extracted from the
last successful match that are available in subsequent actions. Numeric variables
fr om any one subcondition are also available for use in subsequent subconditions,
since string expansion of a condition occurs just before it is tested.

Numer ic Testing Conditions
The following conditions are available for perfor ming numerical tests:

number1 is above number2
number1 is not above number2
number1 is below number2
number1 is not below number2
example: $message_size is not above 10k

The number arguments must expand to strings of digits, optionally followed by one
of the letters K or M (uppercase or lowercase), which cause multiplication by 1024
and 1024×1024, respectively.

Testing for Per sonal Mail
A common requir ement in user filters is to distinguish between incoming personal
mail and mail from a mailing list. In particular, this test is normally requir ed befor e
sending ‘‘vacation messages,’’ so as to avoid sending them to mailing lists. The
condition:

personal

is a shorthand for:

$header_to: contains $local_part@$domain and
$header_from: does not contain $local_part@$domain and
$header_from: does not contain server@ and
$header_from: does not contain daemon@ and
$header_from: does not contain root@ and
$header_subject: does not contain "circular" and

Obeying Filter Commands Conditionally 259

9 October 2001 09:09

260 Chapter 10: Message Filter ing

$header_precedence: does not contain "bulk" and
$header_precedence: does not contain "list" and
$header_precedence: does not contain "junk"

This condition tests for the appearance of the current user in the To: header,
checks that the sender is not the current user or one of a number of common dae-
mons, and checks the content of the Subject: and Pr ecedence: headers. It is useful
only in user filter files, because a unique recipient (from which to set $local_part
and $domain) does not exist during the running of a system filter.

If prefixes or suffixes are in use for local parts (something that depends on the
configuration of Exim), the first two tests shown previously are also done with:

$local_part_prefix$local_part$local_part_suffix

instead of just $local_part. If the system is configured to rewrite local parts of mail
addr esses (for example, to rewrite dag46 as Dirk.Gently), the rewritten form of the
addr ess is also used in these tests.

This example shows the use of personal in a filter file that is sending out vacation
messages:

if personal then
mail
to $reply_address
subject "Re: $h_subject:"
file $home/vacation/message
once $home/vacation/once
once_repeat 10d

endif

It is quite common for people who have mail accounts on a number of differ ent
systems to forward all their mail to one host, and in this case a check for personal
mail should test all their mail addresses. To allow for this, the personal condition
keyword can be followed by:

alias address

any number of times, for example:

if personal
alias smith@else.where.example
alias jones@other.place.example

then ...

This causes messages containing the alias addresses to be treated as personal. The
aliases are used when checking both the To: and the Fr om: headers.

9 October 2001 09:09

Testing for Significant Actions
Whether or not any previously obeyed filter commands have resulted in a signifi-
cant action can be tested by the condition delivered, for example:

if not delivered then save mail/anomalous endif

Testing for Error Messages
The condition error_message is true if the incoming message is a mail delivery
err or message (bounce message), that is, if its envelope sender address is empty.
Putting the command:

if error_message then finish endif

at the head of a filter file is a useful insurance against things going wrong in such
a way that you cannot receive delivery error reports, and it is highly recom-
mended. Note that error_message is a condition, not an expansion variable, and
ther efor e is not preceded by $.

Testing Deliver y Status
Ther e ar e two conditions that are intended mainly for use in system filter files but
that are available in users’ filter files as well. The condition first_delivery is true
if this is the first attempt to deliver the message, and false otherwise.

The condition manually_thawed is true only if the message was frozen for some
reason, and was subsequently released by the system administrator. It is unlikely
to be of use in users’ filter files. An explicit forced delivery counts as a manual
thaw, but thawing as a result of the auto_thaw option does not.

Testing a List of Addresses
Ther e is a facility for looping through a list of addresses and applying a condition
to each of them. It is executed as a condition that shapes part of an if command,
and takes the form:

foranyaddress string (condition)

wher e string is interpreted as a list of RFC 822 addresses, as in a typical header
line or the value of $recipients in a system filter, and condition is any valid filter
condition or combination of conditions. The parentheses surrounding the condi-
tion are mandatory to delimit it from possible further subconditions of the enclos-
ing if command. Within the condition, the expansion variable $thisaddress is set to

Obeying Filter Commands Conditionally 261

9 October 2001 09:09

262 Chapter 10: Message Filter ing

the noncomment portion of each of the addresses in the string in turn. For exam-
ple, if the string was:

B.Simpson <bart@springfield.example>,lisa@springfield.example (his sister)

then $thisaddress would take on the values bart@springfield.example and
lisa@springfield.example in turn.

If there are no valid addresses in the list, the whole condition is false. If the inter-
nal condition is true for any one address, the overall condition is true and the loop
ends. If the internal condition is false for all addresses in the list, the overall condi-
tion is false. In other words, the overall condition succeeds if, and only if, at least
one address in the list satisfies the internal condition.

This example tests for the presence of an eight-digit local part in any address in a
To: header:

if foranyaddress $h_to: ($thisaddress matches ˆ\\d{8}@) then ...

When the overall condition is true, the value of $thisaddress in the commands that
follow then is the last value it took inside the loop. At the end of the if command,
the value of $thisaddress is reset to what it was before. It is best to avoid the use
of multiple occurrences of foranyaddress, nested or otherwise, in a single if com-
mand, if the value of $thisaddressis to be used afterwards, because it is not always
clear what the value will be. Nested if commands should be used instead.

Header lines can be joined together if a check is to be applied to more than one
of them. For example:

if foranyaddress $h_to:,$h_cc:

scans through the addresses in both the To: and the Cc: headers.

Additional Features for System Filter s
During the running of a system filter, the variable $recipients contains a list of all
the envelope recipients of the message, separated by commas and whitespace. In
addition, for any deliveries set up by deliver, save, or pipe commands in a system
filter, an extra header line is added to the message, with the name X-Envelope-T o:.
This contains up to 100 of the message’s original envelope recipients.

Ther e ar e also some additional filtering commands. These are nor mally per mitted
only in system filters, and attempts to use them in a user filter, or when testing
using -bf, are faulted. However, ther e is an option for the forwardfile dir ector
called allow_system_actions, which allows the fail and fr eeze commands to be
used in a nonsystem filter. This is intended for use on systems where centrally
managed per-user filter files are run; it is not normally sensible to enable it when
users can modify their own filter files.

9 October 2001 09:09

The fail Command
fail text "text"
example: fail text "Administrative rejection"

This command prevents any deliveries of the message from taking place, except
for those that may have previously been set up in the filter. In this way it is similar
to seen finish, but in this case a bounce message is generated that contains the
text string (which can be omitted if not requir ed). No further commands in the fil-
ter file are obeyed, so if, for example, you want to use logwrite to keep a log of
forced failures, you must place that command before fail.

Take great care with the fail command when basing the decision to fail on the
contents of the message, because the normal delivery error bounce message
includes the contents of the original message, and will therefor e trigger the fail
command again (causing a mail loop) unless steps are taken to prevent this. Test-
ing the error_message condition is one way to prevent this. You could use, for
example:

if $message_body contains "this is spam"
and not error_message

then
fail text "spam is not wanted here"

endif

The alternative is clever checking of the body or header lines to detect error mes-
sages caused by the filter.

The freeze Command
freeze text "text"
example: freeze text "Administrative rejection"

This command also prevents any deliveries other than those previously set up in
the filter from taking place, but the message is not bounced. Instead, after any
deliveries that were set up by the filter have been attempted, the message remains
in the queue and is frozen. No further commands in the filter file are obeyed, so if,
for example, you want to use logwrite to keep a log of freezing actions, you must
place that command before fr eeze.

The fr eeze command is ignored if the message has been manually unfrozen and
not subsequently manually frozen. This means that automatic freezing in a system
filter can be used as a way of checking out suspicious messages. If a frozen mes-
sage is found on inspection to be valid after all, manually unfreezing it (using the
-Mt option, or via the Exim monitor) allows it to be delivered. A forced delivery
attempt (using -M or -qff, for example) also counts as manual unfreezing, but
reaching the auto_thaw time does not.

Additional Features for System Filter s 263

9 October 2001 09:09

264 Chapter 10: Message Filter ing

The header s add Command
headers add "text"
example: headers add "X-Filtered: checked on $primary_hostname"

The string is expanded and added to the end of the message’s header lines. It is
the responsibility of the filter maintainer to make sure it confor ms to RFC 822 syn-
tax. Leading whitespace is ignored, and if the string is otherwise empty, or if the
expansion is forced to fail, the command has no effect. A newline is added at the
end of the string if it lacks one. More than one header line may be added in one
command by including \n within the string.

These header lines that are added by a system filter are visible during the subse-
quent delivery process, and can be referr ed to in expansion strings. This is differ-
ent from header lines that are added by drivers, which apply only to individual
addr esses, and are not generally visible.

The header s remove Command
headers remove "text"
example: headers remove "Return-Receipt-To"

The string is expanded, and is then treated as a colon-separated list of header
names. Any header lines with those names are removed from the message. This
command applies only to the original header lines that are stor ed with the mes-
sage; others such as Envelope-T o: and Retur n-Path: that are added at delivery time
cannot be removed by this means.

The header lines that are removed by a system filter become invisible during the
subsequent delivery process, and cannot be referr ed to in expansion strings. This
is differ ent fr om headers that are specified for removal by drivers, which remain
visible and are removed only when the message is transported.

9 October 2001 09:09

11
Shared Data and Exim Processes

In the overview of Exim’s operation in Chapter 3, Exim Overview, the use of multi-
ple processes is mentioned. In this chapter, we are going to describe the differ ent
types of process that are used for handling messages. This is background informa-
tion about the way Exim works, which may be useful when you want to under-
stand exactly what it is doing. The four process types are as follows:

The daemon process
A daemon process listens for incoming SMTP connections, and starts a recep-
tion process for each one. The daemon may also periodically start queue run-
ner processes. There is only one daemon process.

Reception processes
A reception process accepts an incoming message and stores it on Exim’s
spool disk.

Queue runner processes
A queue runner process scans the list of waiting messages, and starts a deliv-
ery process for each one.

Delivery processes
A delivery process perfor ms one delivery attempt on a single message.

Most Exim processes are short-lived. They perfor m one task, such as receiving or
delivering one message, and then exit. The only exception is the daemon process,
which, as its name implies, runs continuously. Each Exim process that is receiving
or delivering a message operates, for the most part, independently of any other
Exim process. Nevertheless, Exim processes do interact with each other by refer-
ring to shared files. We describe these first, because their contents affect the way
the processes operate. The files fall into three categories, as shown in Figure 11-1.

265

9 October 2001 09:10

266 Chapter 11: Shared Data and Exim Processes

Hints data

Reception
processes Message files Delivery

processes

Log files

Figur e 11-1. Shared data

Log files
Record actions that Exim has taken.

Message files
Contain the messages that are in the process of being received or delivered.

Hints files
Contain information about delivery problems that were encounter ed earlier.

The message files and hints files are held in subdirectories inside Exim’s spool
dir ectory, whose name is configurable, though it is most commonly called
/var/spool/exim. You can find out the name of the spool directory by running the
command:

exim -bP spool_directory

In some configurations, the log files are her e as well, in another subdirectory, but
Exim can be configured to put them elsewhere. In configurations where the log
infor mation is being written only to syslog, ther e ar e no log files.

Message Files
Each message is held in two separate files, whose names consist of the message’s
unique identifier followed by -D and -H, respectively. For example, the message
12b2ie-0000GI-00 is held in the two files:

12b2ie-0000GI-00-D
12b2ie-0000GI-00-H

The first line of each file is the file’s own name. This self-identification is an insur-
ance against a disk crash that destroys the directory but not the files themselves.
The -D file contains the body of the message and may be very large. It is never
updated after the message has been received.

9 October 2001 09:10

The -H file contains the message’s envelope and header lines, together with other
infor mation about the message, such as the host it arrived from and those
addr esses to which it has already been delivered. The exact format is described in
the refer ence manual. This file is normally fairly small, and is updated during the
lifetime of a message that cannot be delivered to all its recipients at the first
attempt, in order to record which addresses have been dealt with. The existence of
an -H file is sufficient to indicate the presence of a message on the queue. No sep-
arate list of messages is maintained.

The input dir ectory within Exim’s spool directory is used to hold the message files,
which under normal circumstances are continually being created and deleted as
mail passes through the system. If a large amount of mail is being handled, there
will be contention between differ ent Exim processes for access to the input dir ec-
tory. Furthermor e, if the total number of messages on the queue at any time is
large, updating the directory may take a long time, and thus may lead to poor per-
for mance. The size of the directory that provokes a degradation in perfor mance
varies between differ ent operating systems. Solaris, for example, can handle bigger
dir ectories than Linux (using its default file system) before it starts to degrade. To
impr ove matters when the queue is large, the option:

split_spool_directory = true

can be set. When this is done, an extra directory level is used. Within the input
dir ectory, 62 subdirectories are created, with names consisting of a single letter or
digit, and the message files are distributed among them. The sixth character in the
message ID is used to determine the subdirectory in which a message is stored.
For example, the message 12b2ie-0000GI-00 is stored in input/e. The sixth charac-
ter is chosen because it is the least significant base-62 digit of the time of the mes-
sage’s arrival and changes every second. Splitting the input dir ectory like this
reduces the number of files in any one directory, and also reduces the amount of
contention between processes that are trying to create or delete files in the direc-
tory. One disadvantage is that more work is requir ed to scan the queue, either for
listing it or for perfor ming a queue run, but these operations are relatively infre-
quent.

During delivery, Exim creates two other files for each message. A third file in the
input dir ectory (or a subdirectory thereof) with suffix -J (for ‘‘journal’’) is used to
record each recipient address as soon as it is delivered. If the message has to be
retained for a subsequent delivery attempt at the end of a delivery run, then the

Message Files 267

9 October 2001 09:10

268 Chapter 11: Shared Data and Exim Processes

contents of the -J file are merged into the -H file, and the -J file is deleted. There
ar e two reasons for the use of journal files:

• If ther e is a crash of any sort between the time a delivery completes and the
time that this fact is recorded on disk, an unwanted second copy of the mes-
sage will be delivered later.* Appending a single line to the -J file is a quick
operation compared with updating the -H file, which involves writing a num-
ber of pieces of data to a new file and then renaming it. The use of a journal
ther efor e minimizes the possibility of duplicate deliveries.

• Another reason for using a journal is that when several remote deliveries of
the same message are taking place in parallel, and in multiple processes, they
can all add to the same -J file easily, without the need for explicit locking,
because the operating system ensures that only one update happens at once.

The final per-message file is the message log, which contains log entries that record
the progr ess of the message’s delivery. For example, for every successful or unsuc-
cessful delivery, a line is written to this file. The same information is also recorded
on Exim’s main log, but keeping copies in message log files makes it easy for an
administrator to check the progr ess, or lack of it, of individual messages. Message
logs are kept in a subdirectory called msglog in Exim’s spool directory, and their
names are the relevant message IDs. A message’s log file is deleted when process-
ing of the message is complete.† If the split_spool_directory option is set, the
msglog dir ectory is subdivided in the same way as the input dir ectory.

Locking Message Files
When an Exim process is working on a message, it locks the -D file to prevent any
other Exim process from trying to deliver the same message.‡ If another delivery
pr ocess is started for the message, for example, by a queue runner, it notices the
lock, and exits without doing anything, logging the message:

Spool file is locked

This is a normal occurrence and does not indicate an error, though if it continues
to occur for the same message over a long period of time, it might mean that there
is some problem with the delivery process. You can turn off these log entries by
setting the log level less than 5.

* Even if Exim and all the other software in the system were bug-fr ee, hardwar e failur es and power
losses can cause this effect.

† Ther e is an option called preserve_message_logs, which causes them to be moved to a spool direc-
tory called msglog.OLD instead for statistical or debugging uses. It is then the administrator’s respon-
sibility to ensure that they get deleted.

‡ The -H file cannot be used for locking a message, because it can be updated during a delivery pro-
cess, and the updating is carried out by writing a temporary file and renaming. This changes the
underlying identity (inode) of the file, which is what locking is based on.

9 October 2001 09:10

Hints Files
Exim collects data about previously encountered problems, in order to adapt its
behavior to changing circumstances. It remembers, for example, the hosts to
which it has been unable to connect, so as not to keep trying them too often. The
ter m ‘‘hints’’ is used to describe this data, because it is not critical for Exim’s opera-
tion. If, for example, information about a failing host is lost, Exim will try to
deliver to it at the next opportunity, instead of waiting for a previously calculated
retry time, but this just means that the system is doing more work than it would
otherwise have done. The pattern of delivery attempts is affected, but no messages
ar e damaged or lost.

Because of the noncritical nature of this data, Exim maintains it by simple system
I/O calls; there is no need for the sort of heavyweight transaction-based apparatus
that would be necessary if the data had to be managed in the safest possible man-
ner. This means that the overhead of maintaining the hints is minimal.

The hints data is kept in a number of files in a subdirectory of the spool directory
called db. These files are not read or written sequentially like conventional files,
because that would be very slow. Instead, the data they contain is held in indexed
DBM files. Exim uses four differ ent kinds of hints database, as follows:

• The retry database holds information about temporary failures, which can be
related to a particular host, mail address, or message (sometimes to a combi-
nation of host and message). The database records the type of error, the time
of the first failure, the time of the last delivery attempt, and the earliest time it
is reasonable to try again. A discussion of how this data is created and used is
given in Chapter 12, Delivery Errors and Retrying.

• Ther e is a database that contains lists of messages that are awaiting delivery to
specific hosts, after having failed at their first attempt. In normal circum-
stances, this is updated only when a message fails to be delivered, though it is
possible to force new messages to be added before their first delivery
attempt.* The data is keyed by hostname and IP address, and consists of a list
of message IDs. The name of the database is wait-, followed by the name of
the transport that attempted the delivery. A discussion of how this data is cre-
ated and used is also given in Chapter 12.

• The reject database is used to remember certain types of message rejection so
that if the same host tries to send you the same message again, alternative
means of rejection can be tried. This gets round the problem of some SMTP
clients that contravene the RFCs by retrying after certain kinds of permanent

* See the queue_smtp_domains and -odqs options.

Hints Files 269

9 October 2001 09:10

270 Chapter 11: Shared Data and Exim Processes

rejection. A discussion of the details can be found in the section “Temporary
Sender Verification Failures,” in Chapter 13, Message Reception and Policy Con-
tr ols.

• The final database is used in conjunction with the SMTP ETRN command. This
command allows a connected client host to request the server to attempt to
deliver mail for a specific domain using a special kind of queue runner pro-
cess. ETRN is mainly of use when the client is a dial-up host. The database is
used to ensure that a client host cannot cause more than one queue runner
pr ocess to run at once by issuing multiple ETRNs. Its name is serialize-etr n and
its use is discussed in the section “The ETRN Command,” in Chapter 15,
Authentication, Encryption, and Other SMTP Processing.

The exact names of the files in the db dir ectory depend on the DBM library that is
in use. Two filenames are used by some libraries, with the extensions .dir and
.pag, wher eas others use .db or no extension at all. Thus, the retry database, for
example, might be held in retry.dir and retry.pag, or retry.db, or just retry. You
will also see files whose names end in .lock in the db dir ectory. These are used by
Exim when updating the hints files to ensure that only one Exim process writes to
a database at once.*

Every delivery process consults the retry hints, and after any SMTP deliveries, the
wait- hints are checked. If the system is running normally, the majority of these
accesses are read-only, using shared locks that do not hold processes up. Only
when there is a temporary failure or a successful delivery after a previous failure,
is it necessary for a process to gain exclusive access in order to update the hints.
The hope is that this is a relatively rare occurr ence.

Hints files accumulate out-of-date information that needs to be cleared out from
time to time. For example, if a number of hosts are set up to accept mail for a cer-
tain domain, but all are unr eachable at some time, retry data for each host is cre-
ated. However, when the waiting message is subsequently delivered to one of
them, the information for the others remains. There is a utility called exim_tidydb
that clears away ‘‘dead wood’’ (data that has not been updated for a long time) in
hints files; it should be run at regular intervals (for instance, daily or weekly).
Ther e ar e also some other utilities for inspecting and modifying the contents of
hints files; these are described in the section “Hints Database Maintenance,” in
Chapter 21, Administering Exim.

* Conventional locking of the files themselves cannot be used because Exim accesses them indirectly
via a DBM library, and not all the DBM libraries provide integrated locking facilities. For simplicity,
ther efor e, an external lock is used.

9 October 2001 09:10

Log Files
Unless Exim has been configured to use only syslog, it writes logging data to three
files in its log directory, whose location is configurable at build time or at runtime.
The most common locations are the log subdir ectory within Exim’s spool directory
(which is the default), or a location such as /var/log/exim on systems that keep all
their logs in one place. The contents of Exim’s logs are described in the section
“Log Files,” in Chapter 21.

Exim processes all write to the same log files, but no Exim process ever reads any
log data. Interlocking between processes is achieved by opening log files for
appending, and ensuring that each log line is written in a single write operation.
The operating system then ensures that only one update happens at once, and
ther e is no need for the processes to do any locking of their own.

Log files are nor mally cycled on a regular (usually daily) basis by renaming. An
Exim utility called exicyclog (see the section “Cycling Log Files,” in Chapter 21) is
pr ovided for this purpose. Afterwards, a new file is created as soon as any Exim
pr ocess has something to be logged. Existing Exim processes that have already
opened the old file may keep it open, but will not write to it any more; as soon as
these processes have completed, the file becomes dormant. A common practice is
to compress the previous-but-one log file 24 hours after it was renamed; the exicy-
clog script does this automatically.

User and Group IDs for Exim Processes
Exim is normally installed as a ‘‘setuid root’’ program, with permissions set like
this:

-rwsr-xr-x 1 root mail 561952 Nov 30 09:53 exim

The s per mission means that whenever Exim starts up, it acquires root privilege,
without which, for example, it cannot write into every user’s mailbox. However, it
is desirable on general security principles that any Exim process should stop run-
ning as root as soon as it no longer needs the privilege. In order to do this, it
needs to have some other uid to use instead.

When Exim is built, a uid and gid can be defined for it to use when it no longer
needs any privilege. These are referr ed to in this book as ‘‘the Exim uid’’ and ‘‘the
Exim gid.’’ A general discussion of security can be found in the section “Security
Issues,” in Chapter 19, Miscellany.

User and Group IDs for Exim Processes 271

9 October 2001 09:10

272 Chapter 11: Shared Data and Exim Processes

Process Relationships
Although there is no central process that has overall control of what Exim is doing,
Exim processes do interact with each other in various ways. The connections are
illustrated in Figure 11-2. The upper part of the figure is concer ned with message
reception, and the lower part with delivery. The solid lines indicate data flows,
while dashed ones are used to show where one process creates another without
passing any message data. For example, the daemon process creates a new pro-
cess for each incoming SMTP call, and local reception processes can be created by
any other process such as a user’s MUA or a script that sends a message.

Daemon SMTP call User
process

Receiving
process

Receiving
process

Queue
runner

Delivery
process

Local delivery
process

Remote delivery
process

File or
pipe

SMTP

**

* *

Spool files

Hints data

Figur e 11-2. Process relationships

Delivery processes are started as a result of the arrival of a new message (the two
lines marked *), or by a queue runner process. Exim has command-line options
that can be used by privileged users or by some automatic mechanism external to
Exim itself to start delivery processes or queue runners. Immediate delivery can be
suppr essed by setting options in the configuration file, either unconditionally or
under specific circumstances (see the section “Reception Processes,” later in this
chapter).

9 October 2001 09:10

The forking of separate processes for remote deliveries, as indicated by the line
marked **, happens only if parallel remote delivery is configured and there is mor e
than one remote host to which copies of the message are to be sent. Otherwise,
remote delivery is done in the main delivery process, and if several remote hosts
ar e involved, they are contacted one at a time.

The Daemon Process
The daemon perfor ms two tasks: listening for incoming SMTP calls and periodi-
cally starting queue runner processes. It is possible to run two separate daemons
for these tasks, but there seems little advantage in doing so. This description
assumes the common style of usage, where the daemon is started by a command
such as:

exim -bd -q15m

The -bd option sets up a daemon that is listening for incoming SMTP, while -q15m

specifies that it should start a new queue runner process every 15 minutes. These
options are compatible with Sendmail, so the command:

/usr/sbin/sendmail -bd -q15m

that appears in the boot scripts in most operating systems will correctly start an
Exim daemon, provided that /usr/sbin/sendmail has been converted into a sym-
bolic link to the Exim binary.

When a daemon starts up, unless debugging is enabled, it disconnects itself from
any controlling terminal. After this, it writes its process ID into a file so that it can
easily be found. The location of this file is configured either at build time, or by
setting pid_file_path, but if no location is specified, the pid file is written in
Exim’s spool directory using the name exim-daemon.pid. This makes it easy to
find when you want to kill off the daemon, or send it a HUP signal after changing
Exim’s configuration file.

If you are running a host that uses differ ent IP addresses (on virtual interfaces) to
support a number of virtual web servers, you may not want to have incoming
SMTP connections on all the virtual interfaces. If you set local_interfaces to a list
of IP addresses, the daemon listens only on those interfaces. Otherwise, all inter-
faces are used.

The same port number is used in all cases. It defaults to the standard SMTP port
(port 25), but can be changed by the daemon_smtp_port option or by the use of
-oX on the command line that starts the daemon. Other ports can be useful for
special applications, or for testing.

The Daemon Process 273

9 October 2001 09:10

274 Chapter 11: Shared Data and Exim Processes

The following checks are per formed when the daemon receives an incoming
SMTP call:

• If the maximum permitted number of simultaneous incoming SMTP calls, as
set by the smtp_accept_max option, is exceeded, the call is rejected with the
err or response:

421 Too many concurrent SMTP connections; please try again later.

You should set smtp_accept_max to a value that is appropriate to the power of
your host and the speed of your network connection. The default value of 20
is on the small side.

• If smtp_accept_max_per_host is set, the list of current connections is scanned
to find out how many are from the incoming IP address. If the new connec-
tion would cause the limit to be exceeded, the call is rejected with the error:

421 Too many concurrent SMTP connections from one
IP address; please try again later.

Ther e is no default limit on the number of connections from a single host.

• If smtp_accept_queue is greater than zero, and the number of incoming SMTP
connections exceeds its value, no delivery processes are started for messages
that are received. Instead, they remain on the queue until picked up by a
queue runner process. This value is useful only if it is less than
smtp_accept_max. It can help to keep the system load down at times of high
SMTP input.

• If smtp_accept_reserve is greater than zero, Exim reserves that many incoming
SMTP connections, from the maximum set in smtp_accept_max, for those hosts
listed in smtp_reserve_hosts. For example, with the following:

smtp_accept_max = 100
smtp_accept_reserve = 15

once there are 85 incoming connections, new ones are accepted only from the
favor ed hosts. This can be useful on clusters of hosts that are interchanging
mail (for example, the hosts on a LAN and an Internet gateway), because it
pr events exter nal hosts from using all the gateway’s SMTP slots, and thereby
blocks mail that comes from internal hosts.

• The value of smtp_load_reserve is a system load average.* When the system’s
actual one-minute load average is above this value, connections are accepted

* See the Unix uptime command for details of system load averages.

9 October 2001 09:10

only from hosts that are defined by smtp_reserve_hosts (if any). Other hosts
ar e rejected with the error:

421 Too much load; please try again later.

If none of the checks fail, a new process is created to continue handling the
incoming call. The daemon is now ready to accept another SMTP call. Although it
does very little processing before forking, other incoming calls may arrive during
the time it is handling a call. The operating system maintains a queue of waiting
calls, the length of which is specified by smtp_connect_backlog. Once this number
of connections is waiting, subsequent connection attempts are supposed to be
refused at the TCP/IP level. However, on some operating systems, attempts to con-
nect have been seen to time out in such circumstances. The default value of 5 is a
conservative one, suitable for older and smaller systems. For large systems, it is
pr obably a good idea to increase this, possibly substantially (50 is a reasonable
number).

Apart from incoming TCP/IP calls, there are two other events that wake up a dae-
mon process. The first is its timer, in the case when it is configured to start queue
runner processes periodically. Whenever the timer expires, a new queue runner
pr ocess is created, unless queue_run_max is greater than zero and the number of
queue runner processes that are still running is greater than or equal to its value.

The other useful event is the arrival of a SIGHUP signal. You should send a
SIGHUP signal to the daemon whenever Exim’s configuration file has been
updated. The daemon reacts by closing down any sockets that it is listening on,
and reexecuting itself, thereby rer eading the configuration file. It is a good idea to
check that the daemon has restarted successfully, by checking the end of the main
log. A consequence of the way SIGHUP is handled is that the memory of the num-
ber of incoming SMTP calls and running queue runner processes is forgotten.

The daemon has to take notice of the completion of SMTP reception processes
and queue runner processes in order to maintain its counts of active processes, so
that it can refrain from starting new ones when the limits are reached. However,
ter mination of these processes does not wake up the daemon. Instead, the dae-
mon checks for completed processes whenever it wakes up for any other reason,
which on busy systems happens frequently. On systems where not much is hap-
pening, ‘‘zombie’’ (defunct) processes that are childr en of the daemon can some-
times be seen. This is perfectly normal; they get tidied away the next time the
daemon wakes up.

The Daemon Process 275

9 October 2001 09:10

276 Chapter 11: Shared Data and Exim Processes

Summar y of Options for the Daemon
Her e is a summary of the configuration options that are relevant to the daemon
pr ocess and the reception processes it creates:

local_interfaces (string, default = unset)
The string must be a colon-separated list of IP addresses. If local_interfaces
is unset, the daemon issues a generic listen() that accepts incoming SMTP
calls on any interface. Otherwise, it listens only on the interfaces identified
her e. An error occurs if it is unable to bind a listening socket to any listed
inter face. Some systems set up large numbers of virtual interfaces in order to
pr ovide many differ ent virtual web servers. In these cases, local_interfaces
can be used to restrict incoming SMTP traffic to specific interfaces only. The
contents of local_interfaces ar e also used as a list of the local host’s
addr esses when routing mail and checking for mail loops (see the section
“Domains That Route to the Local Host,” in Chapter 8, The Routers).

queue_run_max (integer, default = 5)
This controls the maximum number of queue-running processes that an Exim
daemon will run simultaneously. This does not mean that it starts them all at
once, but rather that if the maximum number are still running when the time
comes to start another one, it refrains from starting it. This can happen with
very large queues and/or very sluggish deliveries. Remember that Exim is not
a centralized system. This limit applies only to a single daemon process. If a
queue runner is started by another means (for example, by hand by the
administrator), it does not count towards this limit. Also, if the daemon is
restarted, it loses its memory of previously started queue runners.

smtp_accept_max (integer, default = 20)
This specifies the maximum number of simultaneous incoming SMTP calls that
Exim will accept. It applies only to the listening daemon; there is no contr ol
(in Exim) when incoming SMTP is being handled by inetd. If the value is set
to zero, then no limit is applied. However, it must be nonzero if
smtp_accept_max_per_host or smtp_accept_queue is set.

smtp_accept_max_per_host (integer, default = 0)
This option restricts the number of simultaneous IP connections from a single
host (strictly, from a single IP address) to the Exim daemon. Once the limit is
reached, additional connection attempts are rejected with error code 421. The
default value of zero imposes no limit. If this option is not zero,
smtp_accept_max must also be nonzero.

smtp_accept_queue (integer, default = 0)
If the number of simultaneous incoming SMTP calls handled via the listening
daemon exceeds this value, messages received are simply placed on the
queue, and no delivery processes are started automatically. A value of zero

9 October 2001 09:10

implies no limit, and clearly any nonzero value is useful only if it is less than
the smtp_accept_max value (unless that is zero). See also queue_only,
queue_only_load, queue_smtp_domains, and the various -od command-line
options.

smtp_accept_reserve (integer, default = 0)
When smtp_accept_max is set greater than zero, this option specifies a number
of SMTP connections that are reserved for connections from the hosts that are
specified in smtp_reserve_hosts.

smtp_connect_backlog (integer, default = 5)
This specifies a maximum number of waiting SMTP connections. Exim passes
this value to the TCP/IP system when it sets up its listener. Once this number
of connections are waiting for the daemon’s attention, subsequent connection
attempts are refused at the TCP/IP level.

smtp_load_reserve (fixed point, default = unset)
If the system load average ever gets higher than this, incoming SMTP calls are
accepted only from those hosts that match an entry in smtp_reserve_hosts.

smtp_reserve_hosts (host list, default = unset)
This option defines hosts for which SMTP connections are reserved; see
smtp_accept_reserve and smtp_load_reserve.

Reception Processes
Reception processes for handling incoming SMTP messages from remote hosts are
started by the daemon, or by inetd.* A TCP/IP connection from a local process is
tr eated in the same way as a connection from a remote host, even if it uses the
loopback address 127.0.0.1 (or ::1 on an IPv6 system).

The other way a local process can send a message is by starting an Exim reception
pr ocess itself (that is, by running /usr/sbin/sendmail or /usr/lib/sendmail in a new
pr ocess), and passing the message on its standard input. There are several differ-
ent ways in which this can be done; for details see the section “Messages from
Local Processes,” in Chapter 13.

Receiving a message consists of copying its contents to a pair of -D and -H files in
Exim’s spool area. Once these files have been successfully written, reception is
complete, and Exim retur ns a success response to the sender.

The existence of an -H file signifies the presence of a message on the queue.
Ther e is no separately maintained list of messages; the files ar e the queue. As

* Most Exim installations use a daemon, and that is generally assumed in this book. Nevertheless, if an
administrator wants to route all incoming TCP/IP connections through inetd for whatever reason,
Exim can handle this way of working. However, it is likely to be less efficient on a busy system.

Reception Processes 277

9 October 2001 09:10

278 Chapter 11: Shared Data and Exim Processes

soon as the -H file comes into existence (by renaming from a temporary name), it
is legitimate for another Exim process to start work delivering the message. A pro-
cess that receives a message creates a delivery process before it finishes, except in
the following circumstances:

• If queue_only is set, or the reception process was started with the -odq option,
incoming messages are placed on the queue without an automatic delivery
pr ocess being started. Deliveries then occur only via queue runner processes,
or manual intervention. On very busy systems, this may lead to better through-
put because the total number of delivery processes can be controlled.

• If queue_only_load is set to some positive value, and the system load is greater
than this value, incoming messages are queued without immediate delivery.
For example:

queue_only_load = 8

specifies that no immediate deliveries are to take place when the system load
is greater than 8.

• If queue_only_file names an existing file, no immediate delivery takes place.
This facility is intended for use on dial-up hosts, where a configuration such as
the following:

queue_only_file = /etc/not-dialed-up

can be used in conjunction with commands in the dial-up starting and stop-
ping scripts that remove and create the file. A colon-separated list of files may
be given, in which case the existence of any one of them is enough to pro-
voke queuing.

Ther e ar e two other options which may delay some of the deliveries until the next
queue run, while not delaying all of them. They are queue_remote_domains (or
-odqr) and queue_smtp_domains (or -odqs); a full description is included in the sec-
tion “Intermittently Connected Hosts,” in Chapter 12. You can also make these
kinds of queueing dependent on the existence of a specific file, by using one of
the words remote or smtp befor e the filename for the queue_only_file option. For
example:

queue_only_file = remote/etc/not-dialled-up

pr events immediate delivery of remote addresses when the file exists, while allow-
ing local deliveries to proceed.

9 October 2001 09:10

Queue Runner Processes
The job of a queue runner process is to start delivery processes for all the mes-
sages that are on Exim’s spool, waiting for each one to complete before starting
the next. In other words, a single queue runner process works its way through the
queue, attempting to deliver just one message at time. It does not distinguish
between messages that have suffer ed a failed delivery attempt and those that were
put on the queue without an immediate delivery process being started. However,
it does skip over frozen messages.

Notice that the queue runner does not itself do any of the work of delivering. That
is left to the delivery processes that it creates. All the queue runner does is arrange
for delivery processes to be started for all the waiting messages.

Queue runner processes should be started at regular intervals, and the most com-
mon way of doing this is to use an option such as -q15m (every 15 minutes) on
the command that starts the Exim daemon. Multiple queue runner processes may
be active simultaneously, and using a daemon it is possible to control the maxi-
mum number using the queue_run_max option. However, any suitable external
mechanism (such as cr on) can be used to start a single queue runner by means of
the command:

exim -q

In very busy environments it may be desirable to control the total number of Exim
delivery processes that run simultaneously. If you set queue_only, immediate deliv-
ery on reception is suppressed, so the only delivery processes are those that are
started by a queue runner. If you configure the daemon to start queue runners fre-
quently (say every minute by starting it with -q1m), but limit the maximum num-
ber that may be simultaneously active, for example, by setting:

queue_run_max = 10

ther e will only ever be 10 delivery processes running at once, though subpro-
cesses may be created for local deliveries. Also, if you have set
remote_max_parallel* gr eater than one, there may also be multiple subprocesses
for remote deliveries.

Special Kinds of Queue Run
Additional queue running options are available for special purposes; these are not
nor mally used in regular periodic queue runs, but are either specified for one-off
queue runs by the system administrator, or generated in response to some specific
event such as the connection of a dial-up host.

* See the section “Parallel Remote Delivery,” in Chapter 4, Exim Operations Overview.

Queue Runner Processes 279

9 October 2001 09:10

280 Chapter 11: Shared Data and Exim Processes

In a normal queue run, the delivery processes inspect the retry data for addresses
and hosts, and refrain from attempting deliveries for those addresses whose retry
times have not yet arrived. This can be overridden by starting a queue runner with
-qf, which forces a delivery attempt for all addresses. An even more power ful
option is -qf f, which, in addition to overriding retry times, causes frozen messages
not to be skipped. If l (the letter ‘‘L’’) is added to the end of any of the -q
options, only local addresses (those that match local_domains) are consider ed for
delivery. These variants of the -q option are summarized in Table 11-1.

Table 11-1. Queue Runner Options (-q)

Option Meaning

-q Single queue run, respect retry times

-qf Single queue run, override retry times

-qf f Single queue run, override retry times, include frozen messages

-ql, -qfl, -qf fl Same as previous, but deliver only local domains

It is possible to run only part of the queue, or to select only messages whose
senders or recipients match certain patterns. Details of the options to do this are
given in Chapter 20, Command-Line Interface to Exim.

Nor mal queue runners process the waiting messages in an arbitrary order that is
likely to be differ ent each time. This is beneficial when there is one particular mes-
sage that is provoking delivery failures for some address. For example, very large
messages sometimes cause timeouts or other problems when transmitted to remote
hosts, while smaller messages to the same hosts might get through. After a tempo-
rary error such as a timeout, Exim is not prepar ed to try the same host again for
some time, so any other messages for the same address are likely to be passed
over in the same queue run. By processing the messages ‘‘randomly,’’ there is a
chance that in some future queue run the trouble-fr ee messages will be handled
first, and so be delivered instead of being delayed behind the problem message.

You can specify that Exim should not do this randomizing, and instead should
pr ocess the messages in order of their IDs, which is in effect the order of their
arrival, by setting queue_run_in_order. However, ther e is rarely a good reason for
doing this, and it can degrade perfor mance on systems with a large queue where
split_spool_directory is set. The reason is that all the subdirectories of the input
dir ectory have to be scanned before any deliveries can start, in order to obtain the
complete list of messages and sort them by ID. When the order is not constrained,
the subdirectories can be tackled one at a time.

9 October 2001 09:10

Deliver y Processes
Delivery processes are the most complex of Exim’s processes. Each delivery pro-
cess handles one delivery attempt for one message only, though there may be
many recipients for the message and therefor e many delivery actions, some of
which may take place in subprocesses. Delivery processes may be started as a
result of a message’s arrival, by a queue runner process, or by an administrator
using the -M option. For example:

exim -M 11wO3z-00042J-00

starts a delivery process for the given message, overriding any retry times.

When a delivery process starts up, it normally checks first to see if the message it
is working on is frozen. If it is, it writes to the log:

Message is frozen

and exits without doing anything. However, a delivery process can be told to pro-
cess frozen messages regardless (this happens if it is running as a result of -M or
-qf f, for example), and there is also an auto_thaw option, which automatically
‘‘thaws’’ (unfreezes) messages after they have been frozen for a certain length of
time.

Befor e pr oceeding to the normal delivery actions, a delivery process runs the sys-
tem message filter if one is configured. Exim’s filtering features are described in
Chapter 10, Message Filtering. The system filter may add or remove header lines,
modify the list of recipients, or cause a message to be frozen or all its recipient
addr esses to be failed.

After any filtering, but before the process makes any deliveries, it determines what
must be done for every recipient address by running the directors or routers as
appr opriate. This allows for optimization when more than one address is routed to
the same host, and it also means that duplicate addresses generated by aliasing or
forwarding can be discarded. The way that an address is processed to determine
how the message should be delivered to it is described in Chapter 3; how Exim’s
configuration is used to control this process forms the subject matter of several
other chapters.

If a message is to be delivered to more than one remote host, Exim can be config-
ur ed to run several SMTP deliveries at once by setting remote_max_parallel to a
value greater than one, for example:

remote_max_parallel = 5

When this is done, and there are multiple remote deliveries to be made, a delivery
pr ocess forks several subprocesses at a time, up to the maximum specified. Other-
wise it does remote deliveries serially without forking. The value of

Deliver y Processes 281

9 October 2001 09:10

282 Chapter 11: Shared Data and Exim Processes

remote_max_parallel contr ols the maximum number of parallel deliveries created
by a single Exim delivery process only. Because Exim has no central queue man-
ager, ther e is no way of controlling the total number of simultaneous deliveries
running on the local host if immediate delivery of incoming messages is
configur ed.

Once all the delivery attempts are complete, if any of them failed outright, a
bounce message is created and sent to the envelope sender address. It contains
infor mation about all the addresses that failed in this delivery run, and is created
by calling Exim in a subprocess and writing to its standard input. If there is no
sender address (that is, if the message that is failing to be delivered is itself a
bounce message), no new bounce message can be sent. The failing message is left
on the queue and frozen so that no further delivery attempts are made and the
administrator’s attention is drawn to it.

The final actions of the delivery process depend on whether all the message’s
recipients have been completely handled (either delivered or bounced). If there
ar e no remaining addresses, all the spool files for the message are deleted, and
‘‘Completed’’ is written to the main log. Otherwise there are some addresses that
have suffer ed temporary errors, or which were skipped for some reason. A warn-
ing message about the delivery delay is sent to the message’s sender if appropriate
(see the section “Delay War ning Messages,” in Chapter 19), and the spool files are
updated to record those addresses that have been delivered or bounced.

Variations on Deliver y
A delivery process normally operates on all the recipient addresses in a message.
On a host that is not permanently connected to the Internet, this is inappropriate;
you want to deliver to the local addresses, but save the remote ones until the host
is online. There is a discussion in the section “Intermittently Connected Hosts,” in
Chapter 12, on the use of queue_remote_domains and queue_smtp_domains, which
ar e options that allow you to achieve this.

Sometimes it may be beneficial to specify the order in which remote deliveries
take place. This is done by setting remote_sort to a list of domains; deliveries to
those domains are then done in that order. Deliveries to domains that are not on
the list take place after those that are listed, in an unpredictable order. For exam-
ple, you could specify that deliveries to domains on your local network are done
first by a setting such as:

remote_sort = *.mydomain.example

If a message contains a recipient that requir es delivery to a slow remote host, this
will not delay the deliveries to recipients on nearby hosts now.

9 October 2001 09:10

Finally, there is an option called hold_domains, which specifies a list of domains
that Exim is not to deliver except when a delivery is forced by an administrator.
An address in these domains is deferred every time a delivery process encounters
it. This feature is intended as a temporary operational measure for delaying the
delivery of mail while some problem is being sorted out or some new configura-
tion is being tested.

Summar y of Message Handling Process
Types
When Exim is run by executing its single binary, the type of process is controlled
by the options with which it is called. The options for the four kinds of message
handling process are summarized in Table 11-2.

Table 11-2. Message Handling Process Types

Option Meaning

-bd Daemon process, listening for SMTP, forks SMTP reception processes

-bs SMTP reception process

fr om inetd

-bs Local SMTP reception process

-bS Local batch SMTP reception process

-M Forced delivery process for specific message

-q Single queue runner process, starts delivery processes

-q <time> Daemon process, starts queue runners

-t or none Local reception process

A local reception process can be created by any other process, but creating the
other kinds of process requir es the caller to have Exim administration privileges
(see the section “Privileged Users,” in Chapter 19).

Other Types of Process
In addition to message handling, some other kinds of process are used for admin-
istering Exim or for debugging the configuration. Special configuration options are
used for setting these up (for details, see Chapter 20). For example, the -bp option
causes Exim to list the messages on its queue.

Other Types of Process 283

9 October 2001 09:10

12
Deliver y Er ror s and Retrying

This chapter is all about temporary delivery errors, and how Exim deals with them.
In an ideal world, every message would either be delivered at the first attempt, or
be bounced, and temporary errors would not arise. In the real world, this does not
happen; hosts are down from time to time, or are not responding, and network
connections fail. An MTA has to be prepar ed to hold on to messages for some
time, while trying every now and again to deliver them. Some rules are needed for
deciding how often the retrying is to occur, and when to give up because the
retrying has been going on for too long.

A related topic is how to handle messages destined for hosts that are connected to
the Internet only intermittently (for example, by dial-up lines). In this case, incom-
ing messages have to be kept on some server host because they cannot be deliv-
er ed immediately. Exim was not designed for this, and is not ideal for it, but
because it is being used in such circumstances, the final section of this chapter dis-
cusses how it can best be configured.

Retr ying After Errors
Delivering a message costs resources, so it is a good idea not to retry unreason-
ably often. Trying to deliver a failing message every minute for several days, for
example, is not sensible. Even trying as often as every 15 minutes is wasteful over
a long period. Furthermor e, if one message has just suffer ed a temporary connec-
tion failure, immediately trying to deliver another message to the same host is also
a waste of resources.

A number of MTAs use message-based retrying; that is, they apply a retry schedule
to each message independently. This can cause hosts to be tried several times in
quick succession. Exim is not like this; for failures that are not related to a specific

284

9 October 2001 09:10

message, it uses host-based retrying, which means that if a host fails, all messages
that are routed to it are delayed until its next retry time arrives.

In fact, Exim normally bases these retry operations on the failing IP address, rather
than the hostname. If a host has more than one IP address, each is treated inde-
pendently as far as retrying is concerned. In the discussion that follows, we use
the word ‘‘host’’ when talking about remote delivery errors to make it easier to
read. It should be understood, however, that this refers to a single IP address, so
that a host with several network interfaces is, in effect, treated as several indepen-
dent hosts.

Infor mation about temporary delivery failures is kept in a hints database called
retry in the db subdir ectory of Exim’s spool directory. You can read the contents
of this if you want to, using the exim_dumpdb or exinext utilities, which are
described in Chapter 21, Administering Exim. The information includes details of
the error, the time of the first failure, the time of the most recent failure, and the
time before which it is not reasonable to try again.

Exim uses a set of configurable retry rules in the fifth section of the configuration
file for deciding when next to try a failing delivery. These rules allow you to spec-
ify fixed or increasing retry intervals, or a combination of the two. Details of the
rules are given later in this chapter, after the differ ent kinds of error are described.

Remote Deliver y Er ror s
Most, but not all, delays and retries are concer ned with deliveries to remote hosts.
Thr ee dif ferent kinds of error are recognized during a remote delivery: host errors,
message errors, and recipient errors.

Host Errors
A host error is not associated with a particular message, nor with a particular
recipient of a message. The host errors are as follows:

• Refusal of connection to a remote host.

• Timeout of a connection attempt.

• An err or code in response to setting up a connection.

• An err or code in response to HELO or EHLO.

• Loss of connection at any time, except after the final dot that ends a message.

• I/O errors at any time.

• Timeout during the SMTP session, other than in response to MAIL, RCPT or the
dot at the end of the data.

Remote Deliver y Er ror s 285

9 October 2001 09:10

286 Chapter 12: Deliver y Er ror s and Retrying

When a permanent SMTP error code (5xx) is given at the start of a connection or
in response to a HELO or EHLO command, all the addresses that are routed to the
host are failed, and retur ned to the sender in a bounce message.

The other kinds of host error are treated as temporary, and they cause all
addr esses routed to the host to be deferred. Retry data is created for the host, and
it is not tried again, for any message, until its retry time arrives. If the current set of
addr esses ar e not all delivered to some backup host by this delivery process, the
message is added to a list of those waiting for the failing host.* This is a hint that
Exim uses if it makes a subsequent successful delivery to the host. It checks to see
if there are any other messages waiting for the host, and if so, sends them down
the same SMTP connection.

Message Error s
A message error is associated with a particular message when sent to a particular
host, but not with a particular recipient of the message. The message errors are as
follows:

• An err or code in response to MAIL, DATA, or the dot that terminates the data.

• Timeout after sending MAIL.

• Timeout or loss of connection after the dot that terminates the data. A timeout
after the DATA command itself is treated as a host error, as is loss of connection
at any other time.

For a temporary message error, all addresses that are routed to the host are
deferr ed. Retry data is not created for the host, but instead, a retry record for the
combination of a host plus a message ID is created. The message is not added to
the list of those waiting for this host. This ensures that the failing message will not
be sent to this host again until the retry time arrives. However, other messages that
ar e routed to the host are not affected, so if it is some property of the message
that is causing the error, this does not stop the delivery of other mail.

If the remote host specifies support for the SIZE parameter in its response to EHLO,
Exim adds SIZE=nnn to the MAIL command, so an overlarge message causes a per-
manent message error, because it arrives as a response to MAIL. However, when
SIZE is not in use, some hosts respond to unacceptably large messages by just
dr opping the connection. This leads to a temporary message error if it is detected
after the whole message has been sent. Better behaved hosts give a permanent

* Strictly, the list is of messages routed through the current transport that are waiting for the specific
host, but in the great majority of configurations, there is usually only one smtp transport.

9 October 2001 09:10

err or retur n after the end of the message; this allows the message to be bounced
without retries.

Recipient Errors
A recipient error is associated with a particular recipient of a message. The recipi-
ent errors are as follows:

• An err or code in response to RCPT

• Timeout after RCPT

For temporary recipient errors, the failing address is deferred, and routing retry
data is created for it. This delays processing of the address in subsequent queue
runs, until its routing retry time arrives. The delay applies to all messages, but
because it operates only in queue runs, one attempt is made to deliver a new mes-
sage to the failing address before the delay starts to operate. This ensures that, if
the failure is really related to the message rather than the recipient (‘‘message too
big for this recipient’’ is a possible example), other messages have a chance of
being delivered. If a delivery to the address does succeed, the retry information is
clear ed, after which all stuck messages are tried again.

The message is not added to the list of those waiting for this host. Use of the host
for other recipient addresses is unaffected, and except in the case of a timeout,
other recipients are processed independently, and may be successfully delivered in
the current SMTP session. After a timeout, it is, of course, impossible to proceed
with the session, so all addresses are deferr ed. However, those other than the one
that failed do not suffer any subsequent retry delays. Therefor e, if one recipient is
causing trouble, the others have a chance of getting through when a subsequent
delivery attempt occurs before the failing recipient’s retry time.

Problems of Error Classification
Some hosts have been observed to give temporary error responses to every MAIL

command at certain times (‘‘insufficient space’’ has been seen). These are treated
as message errors. It would be nice if such circumstances could be recognized
instead as host errors, and retry data for the host itself created, but this is not pos-
sible within the current Exim design. What actually happens is that retry data for
every (host, message) combination is created.

The reason that timeouts after MAIL and RCPT ar e tr eated specially is that these can
sometimes arise as a result of the remote host’s verification procedur es taking a
very long time. Exim makes this assumption, and treats them as if a temporary
err or response had been received. A timeout after the final dot is treated specially
because it is known that some broken implementations fail to recognize the end

Remote Deliver y Er ror s 287

9 October 2001 09:10

288 Chapter 12: Deliver y Er ror s and Retrying

of the message if the last character of the last line is a binary zero. Thus, is it help-
ful to treat this case as a message error.

Timeouts at other times are treated as host errors, assuming a problem with the
host, or the connection to it. If a timeout after MAIL, RCPT, or the final dot is really
a connection problem, the assumption is that at the next try, the timeout is likely
to occur at some other point in the dialog, causing it to be treated as a host error.

Ther e is experimental evidence that some MTAs drop the connection after the ter-
minating dot if they do not like the contents of the message for some reason. This
is in contravention of the RFC, which indicates that a 5xx response should be
given. That is why Exim treats this case as a message error rather than a host error,
in order not to delay other messages to the same host.

Deliver y to Multiple Hosts
In all cases of temporary delivery error, if ther e ar e other hosts (or IP addresses)
available for the current set of addresses (for example, from multiple MX records),
they are tried in this run for any undelivered addresses, subject of course to their
own retry data. This means that newly created recipient error retry data does not
af fect the current delivery process; instead, it takes effect the next time a delivery
pr ocess for the message is run.

Local Deliver y Er ror s
Remote deliveries are not the only cases where a temporary error may be encoun-
ter ed; they can also arise during local deliveries. The two most common cases are
as follows:

• A delivery to a mailbox file fails because the user is over quota.

• A delivery to a command via a pipe fails, with the command yielding a retur n
code that is defined as ‘‘temporary’’ (see the section “The pipe Transport” in
Chapter 9, The Transports).

The mechanism for computing retry times is the same as for remote delivery
err ors, but they apply only to deliveries in queue runs. When a delivery is not part
of a queue run (typically an immediate delivery on receipt of a message), the
dir ectors ar e always run for local addresses, and local deliveries are always
attempted, even if retry times are set for them. This makes for better behavior if
one particular message is causing problems (for example, causing quota overflow,
or provoking an error in a filter file). If such a delivery suffers a temporary failure,
the retry data is updated as normal, and subsequent delivery attempts from queue
runs occur only when the retry time for the local address is reached.

9 October 2001 09:10

Routing and Directing Errors
Temporary errors are also possible during routing and directing. They are most
commonly caused by:

• A pr oblem with a DNS lookup: either a timeout or a ‘‘try again’’ DNS error. A
name server may be down for some reason, or it may be unreachable owing
to a network problem. Mistakes in zone files also sometimes cause name
servers to issue temporary errors.

• A pr oblem with a lookup in a local database. The database server may be
down, or, if it is on some other host, it may be unreachable.

• Mistakes in Exim’s configuration (for example, a syntax error in an expansion
string).

Retry processing applies to directing and routing as well as to delivering, but in
the case of directing, only for delivery processes started in queue runs (as
explained in the previous section). The retry rules do not distinguish between
these three actions, so it is not possible, for example, to specify differ ent behavior
for failures to route the domain snark.example and failures to deliver to the host
snark.example. However, although they share the same retry rule, the actual retry
times for routing, directing, and transporting a given domain are maintained inde-
pendently.

Retr y Rules
The rules for controlling how often Exim retries a temporarily failing address are
contained in the fifth part of the configuration file, following the specification of
the routers. Each retry rule occupies one line and consists of three parts: a pattern,
an error name, and a list of retry parameters. Figure 12-1 shows the single rule that
is provided in the default configuration file. Many installations operate with just
this default rule.

* F,2h,15m;

For all
domains

*

For all
errors

Try every 15 minutes
for 2 hours

G,16h,1h,1.5;

Then start with a 1 hour interval;
increase by 1.5 until 16 hours

F,4d,8h;

Try every 8 hours
up to 4 days

Figur e 12-1. Default retry rule

Retr y Rules 289

9 October 2001 09:10

290 Chapter 12: Deliver y Er ror s and Retrying

Retr y Rule Patter ns
The pattern that starts a retry rule may be a plain domain, a wildcarded domain
(that is, starting with an asterisk), a domain lookup (as in a domain list), a regular
expr ession, or a complete address (local_ part@domain). The last form must be
used only with local domains.

When Exim needs to calculate when next to try to deliver a particular address, it
searches the retry rules in order, and uses the first one it encounters that matches
certain criteria, depending on the particular error that was encountered. If no suit-
able rule is found, a temporary error is converted into a permanent error, and the
addr ess is bounced after the first delivery attempt. Therefor e, the final rule should
nor mally contain asterisks in the first two fields, as shown in Figure 12-1, so that it
will apply to all cases that are not covered by earlier rules.

For remote domains, when looking for a retry rule after a routing attempt has
failed (for example, after a DNS timeout), each line in the retry configuration is
tested only against the domain in the address. However, when looking for a retry
rule after a remote delivery attempt has failed (for example, a connection timeout),
each line in the retry configuration is first tested against the remote hostname, and
then against the domain name in the address. For example, if the MX records for
a.b.c.d ar e:

a.b.c.d. MX 5 x.y.z.
MX 6 p.q.r.
MX 7 m.n.o.

and the retry rules are:

p.q.r * F,24h,30m;
a.b.c.d * F,4d,45m;

then failures to deliver the address xyz@a.b.c.d to the host p.q.r use the first rule
to determine retry times, but for all the other hosts for the domain a.b.c.d, the sec-
ond rule is used. The second rule is also used if routing to a.b.c.d suf fers a tempo-
rary failure.

A single remote domain may have a number of hosts associated with it, and each
host may have more than one IP address. Retry algorithms are selected on the
basis of the domain name, but are applied to each IP address independently. If,
for example, a host has two IP addresses and one is broken, Exim will generate
retry times for that IP address, and will not try to use it until its next retry time
comes. Thus, the good IP address is likely to be tried first most of the time.

For local domains, after a directing or a local delivery failure, the complete address
(user@domain) is matched against retry rules that start with regular expressions or
patter ns containing local parts. However, if ther e is no local part in a pattern that

9 October 2001 09:10

is not a regular expression, the local part of the address is not used in the match-
ing. Thus, an entry such as:

lookingglass.example * F,24h,30m;

matches any address whose domain is lookingglass.example, whether it is a local
or a remote domain, whereas:

alice@lookingglass.example * F,24h,30m;

can be specified only if lookingglass.example is a local domain; it applies to tem-
porary failures that involve the local part alice, but not to addresses in that domain
that contain other local parts.

If local delivery is being used to collect messages for onward transmission by
some other means (for example, as batched SMTP), a temporary failure may not
be dependent on the local part at all. For example, the file in which all messages
for a particular domain are being collected may have reached a quota limit. Both
the appendfile and pipe transports have an option called retry_use_local_part,
which can be set to false in order to suppress the inclusion of local parts when
matching retry patterns. When this option is set, patterns containing local parts are
skipped, and regular expressions are matched against the domain only.

Retr y Rule Error Names
The second field in a retry rule is the name of a particular error, or an asterisk,
which matches any error. The errors that can be specified are listed in Table 12-1.

Table 12-1. Err or Field in Retry Rules

Er ror Meaning

quota Quota exceeded in local delivery

quota_time Quota exceeded in local delivery, and the mailbox

has not been read for time

refused_MX Connection refused from a host obtained from an MX record

refused_A Connection refused from a host not obtained from an MX record

refused Any connection refusal

timeout_connect Connection timed out

timeout_DNS DNS lookup timed out

timeout Any timeout

This field makes it possible to apply differ ent retry algorithms to differ ent kinds of
err ors; some examples are shown in the following section. The quota errors apply
both to system-enforced quotas and to Exim’s own quota mechanism in the
appendfile transport.

Retr y Rules 291

9 October 2001 09:10

292 Chapter 12: Deliver y Er ror s and Retrying

Retr y Rule Parameter Sets
The remainder of a retry rule is a sequence of retry parameter sets, separated by
semicolons and optional whitespace. For example:

F,3h,10m; G,16h,40m,1.5; F,4d,6h

Each set consists of:

letter,cutoff time,arguments;

For example, in:

F,8h,15m;

the letter is F, the cutoff time is 8 hours, and there is just one argument. The letter
identifies the algorithm for computing a new retry time; the cutoff time is the time
beyond which this algorithm no longer applies, and the arguments vary the algo-
rithm’s action. There are two available algorithms:

• The letter F specifies retrying at fixed intervals. There is a single argument,
which specifies the interval. In the previous example, 15m sets up retries every
15 minutes.

• The letter G specifies retrying at increasing intervals.* The first argument speci-
fies a starting value for the interval, and the second a multiplier. For example:

G,16h,40m,1.5;

specifies an initial interval of 40 minutes, which is increased each time by a
factor of 1.5. The actual intervals used are ther efor e 40 minutes, 60 minutes,
90 minutes, and so on.

A retry rule may contain any number of parameter sets of either type, in any order.
If none are provided, no retrying is done for addresses and errors that match the
rule, thereby immediately turning temporary errors into permanent errors.

Computing Retry Times
When Exim computes a retry time from a retry rule, the parameter sets are
scanned from left to right until one whose cutoff time has not yet passed is
reached. The cutoff time is measured from the time that the first failure for the
host or domain (combined with the local part if relevant) was detected, not from
the time the message was received.

This set of parameters is then used to compute a new retry time that is later than
the current time. In the case of fixed interval retries, this just means adding the

* G was chosen because it is next to F, and because the intervals form a geometric progr ession.

9 October 2001 09:10

interval to the current time. For geometrically increasing intervals, retry intervals
ar e computed from the rule’s parameters until one that is greater than the previous
interval is found. Consider the rule in the default configuration:

* * F,2h,15m; G,16h,1h,1.5; F,4d,8h;

For the first 2 hours after a failure is detected, the next retry time is computed as
15 minutes after the most recent failure. After that, there is an interval of 1 hour
befor e the next retry, and this is increased by a factor of 1.5 each time, until 16
hours have passed since the first failure. Thereafter, retries happen every 8 hours,
until 4 days have passed.

At this point, Exim has run out of retry algorithms for the address. In this state, if
any delivery suffers a temporary failure, it is converted into a permanent timeout
failur e, and the address is bounced. What happens if a new message for the same
addr ess arrives is described in the section “Long-Ter m Failur es,” later in this chap-
ter.

Because a geometric retry rule might ‘‘run away’’ and generate enormously long
retry intervals, there is a configuration option called retry_interval_max, which
limits the maximum interval between retries. Its default value is 24h, ensuring that
all temporarily failing addresses are tried at least once a day.

Using Retry Times
The retry times that are computed from the retry rules are hints rather than
pr omises. Exim does not make any attempt to run deliveries exactly at the com-
puted times. Instead, a queue runner process starts delivery processes for delayed
messages periodically, and these processes attempt new deliveries only for those
addr esses that have passed their next retry time. If a new message arrives for an
addr ess that earlier had a temporary failure, an immediate delivery is attempted if
the address is local, but for a remote address, it occurs only if the retry time for
that address has been reached. A continual stream of messages for a broken host
does not therefor e cause a continual sequence of delivery attempts.

If no new messages for a failing address arrive, the minimum time between retries
is the interval between queue runner processes. There is not much point in setting
retry times of 5 minutes if your queue runners happen only once an hour, unless
ther e ar e a significant number of incoming messages (which might be the case on
a system that is sending everything to a smart host, for example).

Using Retry Times 293

9 October 2001 09:10

294 Chapter 12: Deliver y Er ror s and Retrying

Retr y Rule Examples
Her e ar e some example retry rules suitable for use when wonderland.example is a
local domain:

alice@wonderland.example quota F,7d,3h
wonderland.example quota_5d
wonderland.example * F,1h,15m; G,2d,1h,2;
lookingglass.example * F,24h,30m;
* refused_A F,12h,20m;
* * F,2h,15m; G,16h,1h,1.5; F,5d,8h;

The first rule sets up special handling for mail to alice@wonderland.example when
ther e is an over-quota error. Retries continue every 3 hours for 7 days. The second
rule handles over-quota errors for other local parts at wonderland.example in the
case when the mailbox has not been read for 5 days. The absence of a local part
in the pattern has the same effect as supplying *@. As no retry algorithms are sup-
plied, messages that fail for quota reasons are bounced immediately if the mailbox
has not been read for at least 5 days. If the mailbox has been read within the last
5 days, this rule does not apply, and the next rule is used instead.

The third rule handles all other errors for wonderland.example; retries happen
every 15 minutes for an hour, then with geometrically increasing intervals until 2
days have passed since a delivery first failed.

The fourth rule controls retries for the domain lookingglass.example, whether it is
local or remote, and the remaining two rules handle all other domains, with spe-
cial action for connection refusal from hosts that were not obtained from an MX
record. The ‘‘connection refused’’ error means that a host is up and running, but is
not listening on the SMTP port. This state exists for a short while when a host is
restarting, but if it continues for some time, it is increasingly likely that the host is
a workstation whose name has crept into an email address in error, because it is
never going to accept SMTP connections. It therefor e makes sense to bounce such
addr esses mor e quickly than normal.

The final rule in a retry configuration should always have asterisks in the first two
fields so as to provide a general catchall for any addresses and errors that do not
have their own special handling, unless, of course, you want such addresses never
to be retried. This example tries every 15 minutes for 2 hours, then at intervals
starting at 1 hour and increasing by a factor of 1.5 up to 16 hours, then every 8
hours up to 5 days.

9 October 2001 09:10

Timeout of Retry Data
One problem with Exim’s use of a host-based rather than a message-based retrying
scheme arises when a host is tried only infrequently. A common example is an MX
secondary host for some domain. Suppose there is a period of network failure,
such that both the primary and the secondary host for a domain are unr eachable.
Retry data for both of them is computed. When the network comes back, mail is
deliver ed to the primary server, leaving the retry information for the secondary still
set. It could be weeks or months before the secondary is tried again. If it then
fails, Exim could be in danger of concluding that it had been down all that time.

To circumvent this problem, Exim timestamps the data that it writes to its retry
hints database. When it consults the data during a delivery, it ignores any that is
older than the value set in retry_data_expire (default 7 days). If, for example, a
host hasn’t been tried for 7 days, Exim will try it immediately when a message for
it arrives, and if that fails, it will calculate a retry time as if it were failing for the
first time.

If a host really is permanently dead, this behavior causes a burst of retries every
now and again, but only if messages routed to it are rar e. If there is a message at
least once every 7 days, the retry data never expires.

Long-Ter m Failures
Special processing happens when an address has been failing for so long that the
cutof f time for the last algorithm has been reached. This is independent of how
long any specific message has been failing; it is the length of continuous failure for
the address that counts. For routing, directing, or local deliveries, a subsequent
delivery failure causes Exim to time out the address, and it is bounced. For remote
deliveries, it is a bit more complicated, because a remote domain may route to
mor e than one host, each of which may have more than one IP address. The
addr ess is timed out only when the cutoff times for all the IP addresses have been
passed. For example, if the domain lookingglass.example is routed by MX records
to both tweedledum.example and tweedledee.example, and the retry rules are:

tweedledum.example * F,1d,30m;
tweedledee.example * F,5d,2h;

then the address alice@lookingglass.example does not time out until tweedle-
dum.example has been down for more than one day and tweedledee.example has
been down for more than five days.

Suppose there are a number of messages on the queue that are waiting to deliver
to the same address, and that eventually the address times out when one message
attempts a delivery. What should happen to the others? Should further deliveries

Long-Ter m Failures 295

9 October 2001 09:10

296 Chapter 12: Deliver y Er ror s and Retrying

be tried, or should the addresses be bounced without trying to deliver? What
should happen when new messages arrive for the timed out address?

One possibility is to try a delivery for each message, although this could result in a
lot of failed delivery attempts. Local deliveries do not use many resources, so Exim
always tries a local delivery, even when the address timed out earlier. If the deliv-
ery fails, the address is bounced.

Remote deliveries are handled differ ently in order to avoid making too many
potentially expensive delivery attempts. For every IP address that has passed its
cutof f time, Exim continues to compute retry times, based on the final retry algo-
rithm. Until the post-cutoff retry time for one of the IP addresses is reached, the
failing address is bounced without actually trying to deliver to a remote host. This
means that a new message can arrive and be bounced without any delivery
attempt taking place at all. In effect, Exim is saying, ‘‘This host has been dead for
five days and I tried it recently, so it is not worth trying again yet.’’ If a new mes-
sage arrives after the retry time for at least one of the IP addresses, one new deliv-
ery attempt is made to those IP addresses that are past their retry times, and if that
still fails, the address is bounced, and new retry times are computed.

The final interval in a retry rule is often quite long (in the default rule, it is 8
hours). If you feel that this is too long to wait between retries of a failed host, you
can add an additional parameter set specifically to shorten this time. Consider, for
example, the default rule with one additional parameter set:

* * F,2h,15m; G,16h,1h,1.5; F,4d,8h; F,4d1h,1h;

This rule carries on trying for 4 days and 1 hour, instead of 4 days. That in itself
doesn’t make much differ ence, of course, but when this rule times out, the final
retry interval is 1 hour instead of 8. This means that from then on Exim tries to
deliver to a host if at least an hour has elapsed since the last failure. If less than an
hour has passed, it will bounce an address without trying a delivery.

A similar kind of behavior can be specified in a differ ent way, by setting:

delay_after_cutoff = false

in an smtp transport. When delay_after_cutoff is false, if all the IP addresses to
which a domain routes are past their final cutoff time, Exim tries to deliver to
those IP addresses that have not been tried since the message arrived. If there are
none, or if they all fail, the address is bounced. In other words, it does not delay
when a new message arrives, but tries the expired IP addresses immediately,
unless they have been tried since the message arrived (presumably in delivering
some other message). If there is a continuous stream of messages for the failing
domains, unsetting delay_after_cutoff means that there will be many more
attempts to deliver to failing IP addresses than in the default case when

9 October 2001 09:10

delay_after_cutoff is true. However, if a clump of messages arrive more or less
simultaneously, some of them may be bounced without a delivery attempt.

Ultimate Address Timeout
The retry rules we have been describing work well in most normal circumstances,
but there is one case where messages can be left on the queue for extended peri-
ods, potentially leading to an ever-incr easing queue. This is the case where a host
is intermittently available, or when a message has some attribute that prevents its
delivery when others to the same address get through.

For example, if the destination’s connection to the Internet is of poor quality and
suf fers fr equent failur es, short messages might be deliverable, while longer ones
almost always fail. Whenever a message is successfully delivered, the ‘‘retry clock’’
for the host is restarted, and so it never times out. As a result, the failing messages
could remain on the queue for ever. To prevent this, Exim uses another rule,
called the ultimate address timeout, which has two parts:

• If a message has been on the queue for longer than the cutoff time of every
applicable retry rule for an address (if more than one host is involved, there
may be more than one retry rule), a delivery is attempted for that address to
all possible hosts, even if the normal retry time has not been reached.

• After any temporary delivery failure, if the message has been on the queue for
longer than the cutoff time of every applicable retry rule for the address, the
addr ess is timed out, even if there is an unexpir ed retry rule. New retry times
ar e not computed in this case.

Recall an earlier example where the domain lookingglass.example was routed by
MX records to two hosts, whose retry times were set by these rules:

tweedledum.example * F,1d,30m;
tweedledee.example * F,5d,2h;

Using this configuration, if Exim finds that a message addressed to the looking-
glass.example domain has been on its queue for more than five days, it forces a
delivery attempt for that address, regardless of the current retry times. If the deliv-
ery fails, it bounces the address, whatever the retry state of the two hosts.

Inter mittently Connected Hosts
Exim was designed for running in an environment where all hosts are per manently
connected to the Internet. However, hosts that use dial-up to connect to the Inter-
net only intermittently have become quite common, because this way of working
is cheaper. Ther e ar e also hosts with ISDN connections whose administrators want

Inter mittently Connected Hosts 297

9 October 2001 09:10

298 Chapter 12: Deliver y Er ror s and Retrying

to control when ISDN is used. For example, they do not want a connection to be
made every time a local user submits a message for a remote destination.

If Exim is run in such an environment, the retrying mechanisms are not really ade-
quate. Despite this, people are running Exim, both on intermittently connected
hosts and on the servers that support them. The following sections contains some
guidance on how to do this, but do bear in mind that it is stretching the purpose
for which Exim was designed.

Incoming Mail for an Intermittently Connected Host
Incoming mail for intermittently connected hosts accumulates on a server that is
per manently connected, and the client host collects the mail when it connects.
Ther e ar e two ways in which this can be done:

• Mail for each connecting host is delivered into files on the server. Sometimes a
single mailbox is used for each host, independent of the local parts in the
addr esses. In other configurations, each message is delivered into a separate
file. There are some examples of this in the section “Batched Delivery and
BSMTP,” in Chapter 9. The MTA on the server is not involved in storing the
mail, because as far as it is concerned, the messages have been delivered.
Ther efor e, no special attention to the retry rules is needed.

• Mail remains in the MTA’s queue and is delivered using SMTP when the client
connects. This requir es special configuration for Exim to avoid too much
pointless retrying.

If you are using Exim on the server, the first method is strongly recommended,
especially if there are likely to be more than a trivial number of messages waiting
for a client to connect. Exim’s simple queuing strategy is based on the premise
that most messages can be delivered quickly, and that therefor e queue sizes will
nor mally be small. Scanning large queues can slow things down a lot. Further-
mor e, if you use the second approach, you are mixing up two kinds of message in
the queue: those that are having delivery problems, and those that are waiting for
a client host to connect. This makes administration harder.

If you do use Exim’s queue as a place to hold messages for dial-up clients (and
despite the earlier remarks, this is not unreasonable if, say, there is just one client
that receives a handful of messages a day), there are some configuration options
that can improve its perfor mance. You should set a long retry period for the inter-
mittent hosts. For example:

cheshire.wonderland.example * F,5d,24h

This stops a lot of failed delivery attempts from occurring, but Exim remembers
which messages it has queued up for that host. Once the client comes online,

9 October 2001 09:10

delivery of one message can be forced (either by using the -M or -R options, or by
using the ETRN SMTP command), which causes all the queued up messages to be
deliver ed, often down a single SMTP connection. While the host remains con-
nected, any new messages are deliver ed immediately.

If the connecting hosts do not have fixed IP addresses (that is, if a host is issued
with a differ ent IP address each time it connects), Exim’s retry mechanisms on the
holding host become confused because the IP address is normally used as part of
the key string for holding retry information. This can be avoided by setting
no_retry_include_ip_address on the smtp transport. When this is done, the retry-
ing is based only on the hostname. This has disadvantages for permanently con-
nected hosts that have more than one IP address, so it is best to arrange a separate
transport for these intermittently connected hosts. For example, a configuration
could have two smtp transports, like this:

normal_smtp:
driver = smtp

special_smtp:
driver = smtp
no_retry_include_ip_address

and could either use two routers for handling the differ ent kinds of host, or a sin-
gle router with a transport setting that selects the appropriate transport, like this:

lookuphost:
driver = lookuphost
transport = ${if match{$domain}\

{\\.variable\\.example\$}\
{special_smtp}{normal_smtp}}

This does conventional DNS routing, but selects the special_smtp transport for
domains whose names end with .variable.example, and selects the nor mal_smtp
transport for all others.

Exim on an Intermittently Connected Host
On an intermittently connected client host, Exim needs to be configured so that
local deliveries take place immediately, but deliveries to remote domains are not
attempted until a queue run is explicitly started. None of the retrying mechanism is
relevant. The simplest configuration is to set queue_remote_domains, which pro-
vides a list of domains for which immediate delivery is not to be done. For exam-
ple, on a single host that is not part of a local network, the setting should be:

queue_remote_domains = *

Inter mittently Connected Hosts 299

9 October 2001 09:10

300 Chapter 12: Deliver y Er ror s and Retrying

so that all remote domains are queued. If there are several hosts on a local net-
work that exchange mail among themselves, queue_remote_domains can be set to
exclude their domains from queuing:

queue_remote_domains = ! *.local.hosts

When a connection to the Internet is made, if a queue run is started by obeying:

exim -qf

each message is likely to be sent in a separate SMTP session, because no routing
was previously done. (It is best to use -qf instead of just -q, in case there wer e any
earlier failed delivery attempts, because -qf overrides retry times.) Messages from
inter mittently connected hosts are often all sent to a single smart host, and it is
mor e ef ficient if they can all be sent in a single SMTP connection. This can be
arranged by running the queue with:

exim -qqf

instead. In this case, the queue is scanned twice. In the first pass, routing is done,
but no deliveries take place. It is as if every remote delivery suffer ed a temporary
failur e, and Exim updates its hints file that contains a list of which messages are
waiting for which host. The second pass is a normal queue run; since all the mes-
sages have been routed earlier, those destined for the same host are likely to be
sent as multiple deliveries in a single SMTP connection.

Another way of arranging for remote routing to be done in advance is to use
queue_smtp_domains instead of queue_remote_domains. You can do this only if it is
possible to route the remote addresses when the client is not connected to the
Inter net. For example, if you want to send everything to a single smart host,
whose IP address you know, you can use a router such as:

remotes:
driver = domainlist
route_list = * 192.168.4.5 byname

wher e the IP address of the smart host is given explicitly. Unless you put the smart
host in your /etc/hosts file, giving its name instead of its IP address would cause a
DNS lookup that would not work when the client was offline. The differ ence fr om
queue_remote_domains is that Exim does the routing when the message arrives, so
the queue run can be done with -qf instead of -qf f, which is faster (though
marginally so if there are only a few messages).

The daemon on an intermittently connected host

If you run an Exim daemon on an intermittently connected host, it should not be
configur ed to start up any queue runner processes. That is, it should be started
with just the -bd option. You may want to do this if you have user agents that use

9 October 2001 09:10

SMTP to transfer messages to the MTA via the loopback interface, or if you have
incoming mail from other hosts on a local network.

Incoming mail on an intermittently connected host

If incoming mail from the Internet is received using SMTP, the server is likely to
send many messages over a single connection. The default behavior of Exim is to
suspend automatic delivery of messages after a certain number have been received
in one connection to prevent too many local delivery processes being started by a
single remote host. This is not as relevant on a host that receives mail from just
one source, so the value of smtp_accept_queue_per_connection should be
incr eased or even set to zero (that is, disabled), so that all incoming messages
down a single connection are deliver ed immediately.

Inter mittently Connected Hosts 301

9 October 2001 09:10

13
Message Reception
and Polic y Controls

Once upon a time, when the Internet was young and innocent, MTAs accepted
any message that was sent to them and did their best to deliver it, including send-
ing it on to another host. This process is known as relaying. This cooperative
appr oach has been so much abused in recent times that it is now viewed as a bad
thing for an MTA to be unselective in the messages it is prepar ed to accept.

A host that accepts arbitrary messages for relaying is called an open relay ; such
hosts used to be common, but as levels of abuse have risen, they have almost all
been eliminated. In today’s Internet, hosts that relay mail must ensure that they do
so only in the specific cases they are expecting to handle, for example, only relay-
ing to certain domains or from certain hosts.

The general increase in unsolicited mail has also caused MTAs to tighten up on
their controls on all incoming messages, even when relaying is not involved. Much
junk mail arrives with bogus sender addresses or syntactically invalid header lines;
such mail can be kept out by checking before accepting messages. No such
checks can be perfect, because a clever forger can usually find a way round them,
but they do reduce the size of the problem.

Exim contains a number of differ ent contr ols that are specified as options in the
main section of the runtime configuration file. It is configured not to do any relay-
ing ‘‘out of the box,’’ but other checks must be configured by the administrator if
they are requir ed.

This chapter is concerned with the way in which Exim accepts incoming mes-
sages, including the checks that may be applied during the reception process. It
also covers changes that can be made to messages at the time of their reception,
other than address rewriting, which is covered in the following chapter.

302

9 October 2001 09:10

Message Sour ces
Messages received over TCP/IP are treated differ ently fr om those that are received
fr om local processes directly, and we point out some of these differ ences shortly.
A local process can, of course, make a TCP/IP connection to the local host, either
using the loopback interface or using the host’s external IP address. Messages
received over such connections are treated in the same way as those that are
received from remote hosts. In particular, note that the loopback address is not
tr eated as special. If you want, for example, to allow relaying for messages
received on the loopback interface, you have to configure this explicitly.

SMTP is the only way of transferring a message over a TCP/IP connection, but
when a message is passed from a local process without using TCP/IP, several for-
mats are supported, including the use of SMTP over a pipe connection. If SMTP is
used in this way, the message is still treated as originating from a local user pro-
cess. Only input over TCP/IP is considered ‘‘remote.’’

Unlike some other MTAs, Exim never changes the bodies of messages in any way.
In particular, it does not attempt to convert one form of encoding into another. It
is ‘‘8-bit clean,’’ which means that the only characters it treats specially are those
that it is requir ed to interpret, such as CR (carriage retur n) and LF (linefeed). All
other character values are treated as data.

Message Size Control
It is a good idea to set a limit to the size of message that Exim will handle. The
message_size_limit option controls this limit; a value of zero (the default) means
no limit. For example:

message_size_limit = 12M

sets a limit of 12 MB. Messages that are larger than the limit are not accepted.*

When Exim creates a bounce message, it appends the original message to the end
of the error message text. To avoid sending excessively large bounce messages,
ther e is a limit to the amount of original message that is copied. This is set by
return_size_limit, which defaults to 100 KB. The body of the original message is
truncated when the limit is reached,† and a comment pointing this out is added at
the top. The value of return_size_limit should always be somewhat smaller than
message_size_limit.

* Ther e is a transport option, also called message_size_limit, which limits the size of message a par-
ticular transport will handle. To have any effect, this must, of course, be less than the global limit.

† The limit is not exact to the last byte, owing to the use of buffering for transferring the message in
chunks.

Message Size Control 303

9 October 2001 09:10

304 Chapter 13: Message Reception and Polic y Controls

Messages from Local Processes
Messages received directly from local processes are not subject to any of the verifi-
cation and other checks that are used for messages arriving over TCP/IP.

An Exim reception process may be started by any locally running process. Most
commonly, this happens when a user instructs a user agent to send a message, but
other processes are also able to send messages if they wish. For example, if a
command that is automatically run by cr on pr oduces output, it is mailed to the
user. For historical reasons, processes that send messages in this way call the local
MTA using one of the paths /usr/sbin/sendmail or /usr/lib/sendmail. Whichever of
these paths is conventional in your operating system should be set up as a sym-
bolic link to Exim, which is compatible with the Sendmail interface for accepting
messages in this way.

Exim can be run directly from a shell, passing options and arguments on the com-
mand line, and the message on the standard input, but this is generally useful only
for testing because you have to supply the entire message, including all the header
lines. For sending ‘‘real’’ messages from a shell, it is better to use a user agent such
as the Unix mail command.

Addresses in Header Lines
In a locally submitted message, if an unqualified address is found in any of the
header lines that contain addresses, it is qualified using the domain defined by
qualify_domain (for senders) or qualify_recipient (for recipients) at the time the
message is received. For example, on a host called ahost.plc.example, you might
have configured:

qualify_domain = plc.example
qualify_recipient = ahost.plc.example

If an incoming message contained:

From: theboss
To: thedogsbody

Exim would convert these lines into:

From: theboss@plc.example
To: thedogsbody@ahost.plc.example

Specifying Recipient Addresses
Ther e ar e a number of differ ent ways of passing recipient envelope addresses to
Exim from a local process. In all cases, unqualified addresses are per mitted; they
ar e qualified using the domain defined by the qualify_recipient option. This

9 October 2001 09:10

defaults to the value of qualify_domain, which in turn defaults to the name of the
local host.

• If none of -bs, -bS, or -t ar e pr esent as options, the recipients are passed as the
command’s arguments. Each argument may be a comma-separated list of RFC
822 addresses. In other words, if Exim is called directly from a shell, either
commas or spaces can be used to separate the addresses. For example, one
could type:

exim user1@example.com,user2@another.example.com user3

followed by the message, complete with RFC 822 header lines. The message is
ter minated by an end-of-file indication, or, unless the -oi option is given, by a
line consisting of a single dot character.

• If the -t option is present on the command line, no arguments are nor mally
given. Exim constructs the list of envelope recipients by extracting all the
addr esses fr om any To:, Cc:, and Bcc: header lines within the message. Then
it removes any Bcc: header lines. This is the only case where Bcc: lines are
removed from messages; if they are present in messages received in any other
way, they are preserved.

If the command does have arguments, they are interpr eted as addresses not to
send to; in other words, any argument addresses that also appear in the
header lines are ignor ed. This action, removing any argument addresses from
the recipients list, accords with published Sendmail documentation, but it
appears that some versions of Sendmail add addr esses given on the command
line, instead of removing them. Exim can be made to behave in this fashion
by setting:

extract_addresses_remove_arguments = false

• If the -bs option is present on the command line, Exim expects to receive
SMTP commands on its standard input, and it writes responses to the standard
output.*

• If the -bS option is present on the command line, Exim expects to receive
SMTP commands on its standard input, but it does not write any responses.
This is so-called batch SMTP, wher e the SMTP commands are just being used
as a convenient way of encoding the envelope addresses.

For both kinds of SMTP, mor e than one message can be passed in one connection,
wher eas the other cases are limited to one message at a time. Further details about
SMTP handling are given in Chapter 15, Authentication, Encryption, and Other

* This option is also used when running Exim under inetd; Exim can tell the differ ence, because, in
this case, the standard input is a socket with an associated remote IP address. When started from
inetd, Exim treats the message as coming from a remote host.

Messages from Local Processes 305

9 October 2001 09:10

306 Chapter 13: Message Reception and Polic y Controls

SMTP Processing. The sources of recipient addresses and the command-line
options that affect them are summarized in Table 13-1.

Table 13-1. Recipient Address Sources

Option Meaning

none Command arguments are recipients

-t Recipients from headers (Bcc: removed)

-bs Recipients from local SMTP RCPT commands

-bS Recipients from batch SMTP RCPT commands

Local Sender Addresses
The source of the envelope sender address for messages submitted locally (that is,
not over TCP/IP) depends on whether the calling user is trusted or not. How
trusted users are defined is discussed in the section “Privileged Users,” in Chapter
19, Miscellany. A trusted user is permitted to supply a sender address, via the MAIL

command if the message is being received using SMTP, or otherwise in one of the
following ways:

• By including a line in one of the following forms at the start of the message,
pr eceding the RFC 822 header lines:

From address Fri Dec 31 23:59 GMT 1999
From address Fri, 31 Dec 99 23:59:59

The origin of the use of a line such as this is the transfer of mail using UUCP
(see RFC 976). It was then adopted as a message separator line in ‘‘Berkeley
for mat’’ mailbox files, so is frequently found in saved messages. Because sev-
eral differ ent for mats ar e encounter ed, Exim recognizes this line by matching
it against a regular expression, which is defined by the uucp_from_pattern

option. The default pattern matches the two formats that were previously
shown, leaving the value of the address in the $1 variable.

If uucp_from_pattern matches, then Exim expands the contents of
uucp_sender_address (whose default value is $1) to obtain a sender address
for the message. The expanded string is parsed as an RFC 822 address. For
example, if the message starts with:

From a.oakley@berlin.example Fri Jan 5 12:35 GMT 1996

and uucp_from_pattern is set to its default value, expanding the contents of
uucp_sender_address yields a.oakley@berlin.example. If ther e is no domain in
the result, the local part is qualified with qualify_domain unless it is the empty
string.

9 October 2001 09:10

• By supplying a sender address using the -f command-line option. For
example:

exim -f ’<f.butler@berlin.example>’

If -f is present, it overrides any From line that may be in the message.

If the caller of Exim is not trusted, a sender address supplied in any of these ways
is recognized, but ignored. Instead, Exim creates an envelope sender for the mes-
sage using the login ID of the process that called it, and the domain specified by
qualify_domain.

Unqualified Addresses from Remote
Hosts
The RFCs specify that all the addresses in a message that is received from another
host, both in the envelope and in the header lines, must be fully qualified; that is,
they must contain both a local part and a domain. There is only one exception:
the unqualified address postmaster is requir ed to be accepted. Other unqualified
addr esses, such as those in the following SMTP commands:

MAIL FROM:<caesar>
RCPT TO:<brutus>

cause error responses because of the lack of a domain. However, when SMTP is
being used as a submission protocol from local workstations, there is sometimes a
need to relax this restriction, so it is possible to permit certain hosts to send mes-
sages containing unqualified addresses by setting either or both of sender_unqual-
ified_hosts or receiver_unqualified_hosts to lists of such hosts. For example, a
gateway on the local network 192.168.45.0 might permit its local clients to send
unqualified addresses by setting:

sender_unqualified_hosts = 192.168.45.0/24
receiver_unqualified_hosts = 192.168.45.0/24

Unqualified addresses are not retained in the messages Exim receives. Each such
addr ess is qualified as soon as it is accepted, using the domain specified in qual-

ify_domain for sender addresses, and the domain specified in qualify_recipient

for recipients. The value of qualify_domain defaults to the name of the local host,
and the value of qualify_recipient defaults to the value of qualify_domain.

On a host called delta.plc.example, if neither of these options is set, the unquali-
fied address apollo becomes apollo@delta.plc.example, but if:

qualify_domain = plc.example

Unqualified Addresses from Remote Hosts 307

9 October 2001 09:10

308 Chapter 13: Message Reception and Polic y Controls

is set, it becomes apollo@plc.example in all cases. However, with the following:

qualify_domain = plc.example
qualify_recipient = delta.plc.example

the shorter domain is used only for sender addresses. By the time a message
comes to be delivered, its envelope contains only fully qualified addresses.

If there are any unqualified addresses in header lines, they too are qualified, pro-
vided the message came from a host that is permitted to send unqualified
addr esses. If not, unqualified addresses in header lines are left untouched; they are
neither qualified nor subjected to rewriting (see Chapter 14, Rewriting Addresses).

Checking a Remote Host
In this section, we cover a number of differ ent checks that can be applied to a
remote host when it connects to Exim in order to send a message. These checks
ar e independent of the addresses in the message it sends and therefor e apply in
all cases. Checks for relaying are described in the section “Relay Checking”.

Verifying a Host’s Name
On receiving a TCP/IP connection, the only identification for a remote host that
Exim has is its IP address. The host should give its name as the data in a HELO or
EHLO command, but there is no guarantee that this is the name by which it is regis-
ter ed. It is particularly common for workstations that are using SMTP to submit
mail to misbehave in this regard. The name supplied by HELO or EHLO is placed in
the variable $sender_helo_name.

The only way Exim can find a properly register ed name for the host is to look for
a name that is associated with the IP address. This might be found in a local hosts
table in /etc/hosts, but more commonly a DNS lookup is requir ed. This raises two
pr oblems: first, that DNS lookups can be expensive and take time, and second,
that substantial numbers of Internet hosts are only register ed ‘‘one way’’ in the
DNS. That is, you can look up their names to find an IP address, but not vice
versa.

For this reason, Exim does not try to find the register ed name of a connecting host
unless its configuration requir es this to be done. If you can arrange your configu-
ration to avoid these lookups, you will get a bit of extra efficiency. The default
configuration file is designed for use on small client hosts, and it contains the
setting:

host_lookup = *

9 October 2001 09:10

This forces Exim to look up a hostname for every incoming connection. If you are
running a busy server, it is probably a good idea to remove this setting, or modify
it to be less general. For example, you could set something such as:

host_lookup = 192.168.3.0/24

to constrain the lookup to hosts on your local network. Although host_lookup can
contain any item that is allowed in a host list, it normally contains only IP
addr esses. Ther e is not much point in including hostnames, because this implies
finding a hostname in order to check whether to find a hostname!

When a hostname is found by looking up the IP address, it is placed in the vari-
able $sender_host_name. If no lookup has been done, or if the lookup failed, this
variable is empty. Failure to find a hostname does not by itself cause a connection
to be rejected, but it might do so if a hostname is needed for checking one of the
options described in the following sections. In Exim’s log files, hostnames that
have not been verified but are just the data from HELO or EHLO commands are
shown in parentheses.

Some broken client hosts have been observed to specify the server’s name, or one
of its local domains, instead of their own name in HELO or EHLO commands. Sup-
pose the host server.plc.example is handling the domain plc.example. A client host
called br oken.example, which is broken in this way, may send one of these
commands:

ehlo server.plc.example
ehlo plc.example

when what it is supposed to send is:

ehlo broken.example

Using the supplied name in log lines (even in parentheses) is likely to cause con-
fusion, so when this happens, Exim always tries to look up the correct name for
the host, whatever the setting of hosts_lookup.

Verifying EHLO or HELO
The RFCs specifically state that mail should not be refused on the basis of the data
content of the HELO or EHLO commands. However, ther e ar e installations that do
want to be strict in this area, and Exim has the helo_verify option in order to sup-
port them. The value of this option is a list of hosts for which stricter checking is
requir ed.

When the sending host matches helo_verify, a HELO or EHLO command must pre-
cede any MAIL commands in an incoming SMTP connection. Otherwise, all MAIL
commands are rejected with a permanent error code. In addition, the argument

Checking a Remote Host 309

9 October 2001 09:10

310 Chapter 13: Message Reception and Polic y Controls

supplied by HELO or EHLO is verified. If it is in the form of a literal IP address in
squar e brackets, it must match the actual IP address of the sending host. If it is a
domain name, the sending host’s name is looked up from its IP address and com-
par ed against it. If the lookup or the comparison fails, the IP addresses associated
with the HELO or EHLO name are looked up and compared against the sending
host’s IP address. If none of them match, the HELO or EHLO command is rejected
with a permanent error code, and an entry is written in the main and reject logs.

Even when helo_verify is not used, Exim rejects HELO and EHLO commands that
contain syntax errors. One common mistake is the appearance of underscore char-
acters in domain names.* Because this error is so very widespread, Exim permits it
by default, but you can make it more strict by specifying:

helo_strict_syntax = true

This option applies only to the use of underscores. Occasionally, there is a need to
allow some hosts to send real junk in a HELO or EHLO command (including no data
at all); such hosts can be accommodated by setting helo_accept_junk_hosts. For
example:

helo_accept_junk_hosts = 192.168.5.224/27

removes the syntax check entirely for hosts on that network.

Using a DNS Blocking List
As a service to the Internet community, a number of organizations are maintaining
lists of hosts from which it might be desirable not to accept connections. These
lists are maintained in the DNS, to make them easily accessable to all, and the
hosts are indexed by IP address. The original list that started this trend is called
the Realtime Blackhole List (RBL), and the acronym RBL is used in what follows as
a generic term for DNS lists of this type.

The original RBL is a hand-maintained ‘‘blacklist’’ of hosts that, in the judgment of
the list maintainers, have been misbehaving. See http://mail-abuse.or g/rbl/ for fur-
ther details. Another list that is now managed by the same site is the Dial-up User
List (DUL).† This list contains IP addresses that are used by ISPs for their dial-up
customers. Many administrators configure their MTAs to refuse direct SMTP con-
nections from such hosts, arguing that dial-up users should send out mail via their

* Ther e is a common misapprehension that not allowing underscores is a DNS restriction. It is not; a
domain name in the DNS may contain a wide variety of characters (see RFC 2181). However, ther e is
a restriction in RFC 821, the specification of SMTP, which permits only letters, digits, dots, and
hyphens in domain names that are used in SMTP transactions.

† See http://mail-abuse.or g/dul/.

9 October 2001 09:10

ISP’s servers, where it can be better controlled. Several of the other lists use auto-
matic means for detecting open relays; some of their policies have proved
contr oversial.

Configur ing Exim to use an RBL

You can configure Exim to make use of any number of these lists. You can also
arrange for it to reject connections from hosts that are on such a list, or just log
war nings, and optionally, add header lines to messages from suspect hosts. Which
policy you choose depends on your circumstances and requir ements. End users
mor e often specify blocking, whereas some ISPs choose just to add header lines
that their customers can inspect.

The RBL processing is done only if an incoming call is received from a host that
matches rbl_hosts. This allows you to exclude, for example, connections from
hosts on your local network, thereby saving some resources. For example:

rbl_hosts = ! 192.168.56.224/28

specifies that RBL processing is to be done only for connections from hosts that
ar e not in the 192.168.56.224/28 network.

The default setting of rbl_hosts includes all hosts; however, no lookups are actu-
ally done unless rbl_domains is set. This lists the DNS domains in which the
incoming IP address is to be looked up. For example, if the setting is:

rbl_domains = blackholes.mail-abuse.org:dialups.mail-abuse.org

and an SMTP call is received from the IP address 192.168.8.1, DNS lookups for the
two domains

1.8.168.192.blackholes.mail-abuse.org
1.8.168.192.dialups.mail-abuse.org

ar e done. Each item in rbl_domains can be followed by /warn or /reject to spec-
ify what is to be done when a match is found. For example:

rbl_domains = blackholes.mail-abuse.org/warn : dialups.mail-abuse.org/reject

After matching an item with /warn, further items are consider ed, but after /reject,
Exim stops scanning rbl_domains. The action for domains without either of these
options is controlled by rbl_reject_recipients, which implies /reject when set
(the default). If a lookup times out or otherwise fails to give a decisive answer, the
mail is not blocked.

RBL war nings

The RBL warning action consists of writing a message to the main and reject logs,
and if rbl_warn_header is true (the default), adding an X-RBL-War ning: header to

Checking a Remote Host 311

9 October 2001 09:10

312 Chapter 13: Message Reception and Polic y Controls

the message. This can be detected later by system or user filters. If a host appears
in several RBL lists, more than one such header may be added to a message.

RBL rejection

Rejection is done by refusing all the recipients of the message (that is, by giving
per manent err or retur ns to all RCPT commands), unless the message’s sender is
listed in recipients_reject_except_senders, or the recipient itself is listed in
recipients_reject_except. It is fairly common to set:

recipients_reject_except = postmaster@your.domain

to allow your host to accept mail to the postmaster from blacklisted hosts. X-RBL-
Warning: headers are still added to messages that get accepted as a result of an
exception list.

When a message is being rejected, if a DNS TXT record associated with the host is
found in the RBL list, its contents are retur ned as part of the 550 rejection mes-
sage, unless prohibition_message is set (see the section “Customizing Prohibition
Messages,” later in this chapter). In this case, a locally specified message (possibly
including the TXT data) is used.

Using RBL data values

All the host listing schemes use DNS address records with domain names con-
structed by reversing the IP address. The original RBL scheme completes the
record with the value 127.0.0.1 on the righthand side, for example:

17.23.168.192.blackholes.mail-abuse.org. A 127.0.0.1

The existence of that record means that the IP address 192.168.23.17 is on the RBL
list; the value of the righthand side is not used for anything. However, some of the
lists are now using differ ent values to distinguish between differ ent kinds of entry.
The ORBS database,* for example, currently uses 127.0.0.2 for a confirmed open
relay, 127.0.0.3 for a manual entry, and 127.0.0.4 for a block that applies to a
whole network.

To allow Exim to make distinctions between these differ ent kinds of record, a
domain name in rbl_domains can be followed by an equals sign and a comma-
separated list of IP addresses. It then acts only if a DNS record contains one of the
given values. For example:

rbl_domains = relays.orbs.org=127.0.0.2/reject

applies only to ORBS entries whose righthand side is 127.0.0.2.

* See http://www.orbs.or g/.

9 October 2001 09:10

Remaining RBL options

Ther e ar e two further options that can be added to items in rbl_domains:

• If /accept appears, a host that matches the item is accepted, and no further
items in rbl_domains ar e consider ed. However, earlier entries may already
have added warning headers. This provides a ‘‘white list’’ facility that can be
used in conjunction with a local DNS domain to provide a list of hosts that are
accepted even if they appear in subsequent blacklists.

• If /skiprelay appears, the use of that entry is skipped if the calling host
matches host_accept_relay. In other words, if Exim has been explicitly config-
ur ed to accept relaying requests from the calling host, RBL lookups with
/skiprelay ar e omitted.

Explicit Host Blocking
Ther e ar e two options for blocking incoming mail from specific hosts: host_reject
and host_reject_recipients. They differ only in the way that the rejection is car-
ried out. For hosts that match host_reject, an SMTP error code is retur ned as
soon as a matching host connects, but for those that match host_reject_recipi-

ents, the rejection is done by rejecting every RCPT command, unless the address it
contains matches recipients_reject_except.

When host_reject is used, the message remains on the remote host, which may
try to deliver it to alternative MX hosts or may try to redeliver it again later. For
this reason, it is better to use host_reject_recipients. Unless the remote host is
seriously broken, a permanent rejection of every recipient causes the message to
be bounced and not retried. Also, using host_reject_recipients allows exceptions
to be made by setting recipients_reject_except.

The value for either of these options can contain any valid host list items. For
example:

host_reject_recipients = ! xx.yy.zz : *.yy.zz : ! *.zz

rejects mail from any host outside the zz domain as well as all hosts in the yy.zz
domain, except for xx.yy.zz. This follows from the way Exim processes host lists
fr om left to right. If the host is xx.yy.zz, it matches the first item, and because this
is a negative item, the host is not rejected. Any other host in the yy.zz domain
matches the second item, which is positive, so it is rejected, whereas any other
host in the zz domain matches the third item, so it not rejected. A host list that
ends with a negative item has an implied :* added to it, so all hosts that are not in
the zz domain are rejected.

The use of wildcards in host lists (such as the previous asterisk) causes a lookup
of the IP address, in order to obtain the host’s name so that the match can take

Checking a Remote Host 313

9 October 2001 09:10

314 Chapter 13: Message Reception and Polic y Controls

place. If a name cannot be found, rejection occurs.* For this reason, if you have
any IP addresses in the list, they should precede any names if possible, so they
can be checked without needing a lookup. Otherwise, a failing lookup for an ear-
lier item may prevent an IP address from being tested.

Checking Remote Sender Addresses
The sender address in a message’s envelope is the address to which bounce mes-
sages are sent. If a host accepts a message with a bad sender address, but subse-
quently cannot deliver the message, the result is an undeliverable bounce message
that the postmaster has to sort out. On very busy hosts, such problems are often
simply ignored by setting ignore_errmsg_errors, but it is also reasonable to do
some checking on a sender address before accepting a message.

The most common causes of bad sender addresses are as follows (not in order):

• Misconfigur ed mail software, frequently an MUA running on a single-user
workstation, especially when this is shared between several users, so that each
one has to set up their own address each time they use it.

• The use of domains that are not register ed in the DNS.

• Misconfigur ed name servers; hostmasters are only human, and typos in zone
files can arise.

• Broken gateways from other mail systems that fail to create a valid SMTP
envelope sender.

• Forgery, which is very common in spam mail.

Verifying SMTP Sender Addresses
Exim does no checking of sender addresses by default, other than ensuring that
they conform to the syntax requir ed by RFC 821. If you are running a large, very
busy host, you might choose to run it this way because it does not hold up the
SMTP dialog while the check is done. The consequence is that you are likely to
end up with significant numbers of undeliverable bounce messages, but on busy
hosts these are often discarded. On most Exim hosts, however, it is probably a
good idea to set the following:

sender_verify

This causes Exim to verify the sender address when it is received in the MAIL com-
mand. What exactly is meant by verification? The idea is to try to detect those
sender addresses that a bounce message could not be delivered to, so what Exim

* This can be disabled by including +allow_unknown or +warn_unknown in the host list; see the section
“Host Lists” in Chapter 18, Domain, Host, and Address Lists, for further discussion of host lists.

9 October 2001 09:10

does is to run the address through the directors or routers, as if it were being
asked to deliver a message to it.

For local addresses, this process checks the validity of the local part of the
addr ess, but for remote addresses only the domain can, in general, be verified in
this way. This means that successful verification by the routers and directors can-
not guarantee that an address is deliverable, but a failure to verify does guarantee
that it is not deliverable.

Verify callbacks

For sites that are prepar ed to expend more resources on sender verification, Exim
(fr om Release 3.20 onwards) can be configured to do some further checking after
it has verified a remote address by successfully routing it. This entails making an
SMTP call to one of the hosts to which the domain resolves, and testing the
addr ess as if it were the recipient of a bounce message. Exim sends:

HELO the local hostname
MAIL FROM:<>
RCPT TO:<the address to be tested>
QUIT

If the response to the RCPT command is a 2xx code, verification succeeds. If it is
5xx, verification fails. For anything else, and in cases when Exim cannot contact
any of the relevant hosts, verification fails with a temporary error code.

This process is called verification callback, and it occurs only if the sending host
matches sender_verify_hosts_callback (along with sender_verify_hosts), and if
in addition the sender’s domain matches sender_verify_callback_domains. Both of
these options are unset by default. There is also an option called sender_ver-

ify_callback_timeout, which sets a timeout for connecting and for each com-
mand. It defaults to 30 seconds.

Callback verification is expensive, and is therefor e not recommended for general
use, especially on busy hosts. However, on a small host that handles only a few
messages a day, using callback may be an acceptable overhead. It allows you to
reject senders with valid domains but invalid local parts, something that is com-
monly encountered in spam messages. For this you would set:

sender_verify_hosts_callback = *
sender_verify_callback_domains = *

Another instance where the cost of callback might be acceptable is a corporate
gateway that checks addresses in domains that are local to the corporation, but not
local in the Exim sense, using a configuration such as this:

sender_verify_hosts_callback = *
sender_verify_callback_domains = *.plc.example

Checking Remote Sender Addresses 315

9 October 2001 09:10

316 Chapter 13: Message Reception and Polic y Controls

The assumption is that any domain matching *.plc.example resolves to a host on
the local LAN, so that making an SMTP call to it is relatively cheap.

Configur ing router s and director s for ver ification

Without any special options, all directors and routers are used both for verification
and message delivery. However, checking an address exactly as if for delivery is
not always appropriate when verifying. For example, for a local address, there is
little point in checking whether a user has a .forwar d file or not. The routers and
dir ectors can detect whether the address they are handling is being verified or pro-
cessed for delivery, and there are a number of options that change their behavior.

If no_verify is set, the driver is skipped when verifying. The default configuration
sets no_verify on the director that handles .forwar d files. Verification of senders
and recipients can be separately controlled by setting:

no_verify_sender
no_verify_recipient

if necessary; no_verify is just a shorthand for setting both of these options. The
converse option is verify_only; when this is set, the driver is run only when veri-
fying, and not when delivering. The final option is fail_verify; if it is set and a
driver accepts an address when verifying, verification fails instead of succeeding.
An example of how this can be used is given in the section “Changing a Driver’s
Successful Outcome,” in Chapter 6, Options Common to Directors and Routers. By
setting a suitable combination of these options you could, if you wished, make
verification use an entirely differ ent set of drivers to delivery.

Exceptions to Sender Ver ification
Sender verification does not apply to batch SMTP input by default, but:

sender_verify_batch

can be set to cause it to happen if requir ed. For nonbatch SMTP, verification can
be constrained to a specific set of hosts by setting sender_verify_hosts. For
example, if a cluster of hosts passes messages between themselves, having verified
the senders on input, you can configure them not to waste effort on verification
for messages from each other by a setting such as:

sender_verify_hosts = ! *.cluster.example

Temporar y Sender Ver ification Failures
If a sender address cannot immediately be verified (for example, because of DNS
timeouts), Exim gives a temporary failure err or response (code 451) after the data
for the message has been received. The error is delayed until this time instead of

9 October 2001 09:10

being given in response to the MAIL command, so that the message’s header lines
can be logged. However, if sender_try_verify is set, the sender is accepted with a
war ning message after a temporary verification failure.

Exim remembers temporary sender verification errors in a hints database. Subse-
quent temporary errors for the same address from the same host within 24 hours
cause a 451 error after MAIL instead of after the data. This reduces the amount of
data in the reject log and the amount repeatedly transferred over the net.

If sender_verify_max_retry_rate is set greater than zero, and the rate of tempo-
rary rejection of a specific incoming sender address from a specific host in units of
rejections per hour exceeds it, the temporary error is converted into a permanent
verification error. This should help to stop hosts hammering too frequently with
temporarily failing sender addresses, which is something that certain broken hosts
have been observed to do.

The default value of the option is 12, which means that a sender address that has
a temporary verification error more than once every 5 minutes is soon perma-
nently rejected. Once permanent rejection has been triggered, subsequent tempo-
rary failures all cause permanent errors, until there has been an interval of at least
24 hours since the last failure. After 24 hours, the hint expires.

Permanent Sender Ver ification Failures
What happens if verification fails with a permanent error depends on the setting of
sender_verify_reject. If it is set (the default), then the message is rejected. Other-
wise, if:

no_sender_verify_reject

is set, a warning message is logged, and processing continues.

Because remote postmasters always want to see the message headers when there
is a problem, Exim does not give an error response immediately if a sender
addr ess fails to verify, but instead it reads the data for the message first, and then
gives a permanent error code (550) when all the data has been received. The
headers of rejected messages are written to the reject log, for use in tracking down
the problem or tracing mail abusers. Up to three envelope recipients are also
logged with the headers.

Unfortunately, there is some software in use that treats any SMTP error response
given after the data has been transmitted as a temporary failure. RFC 821 is quite
clear in stating that all codes starting with 5 are always ‘‘permanent negative com-
pletion’’ replies. However, it does not give any guidance as to what should be
done on receiving such replies, and some software persists in trying to resend
messages when they receive such a code at the end of the data.

Checking Remote Sender Addresses 317

9 October 2001 09:10

318 Chapter 13: Message Reception and Polic y Controls

To get around this, Exim keeps a database in which it remembers the bad sender
addr ess and hostname when it rejects a message. If the same host sends the same
bad sender address within 24 hours, Exim rejects the message at the MAIL com-
mand without reading any recipients or the data for the message. Once again, this
should prevent the remote host from trying to send the message again, but there
seem to be plenty of broken software out there that does keep on trying, some-
times for days on end, after receiving a negative response to a MAIL command.

In an attempt to shut such programs up, if the same host sends the same bad
sender for a third time within 24 hours, MAIL is accepted, but all subsequent RCPT
commands are rejected with a 550 error code. If the sending software does not
tr eat that as a hard error, it is very seriously broken indeed. There is still, however,
one problem that arises with this approach. On receiving Exim’s 550 error
response, which contains one of the messages:

550 unknown local part in sender
550 cannot route to sender

depending on whether the address was local or remote, at least one MTA insists
on adding its own interpretation of error 550 as:

550 Unknown user

and this catches people’s eye, causing them to ignore what Exim is trying to tell
them.

This three-stage rejection process developed as a result of experience with early
versions of Exim. It is now rather overcomplicated, and in a future release all
rejections may be done by the method that works best: rejecting RCPT commands.

Fixing Bad Envelope Senders
In some cases where the sender address cannot be verified, the message itself con-
tains a valid retur n addr ess in one of its header lines. This has been noticed in
messages that have arrived on the Internet through a gateway from some other
mail regime. Exim can be configured to check for this case, and patch things up
by replacing the broken envelope sender with a valid address from the header.

When sender_verify_fixup is set as well as sender_verify, Exim does not reject a
message if the sender is invalid, provided it can find a Sender:, Reply-T o:, or Fr om:
header containing a verifiable address. Instead, it replaces the envelope sender
with the valid address, and records the fact that it has done so by adding a header
of the form:

X-BadReturnPath: abc@bad.example rewritten
as xyz@good.example using From header

9 October 2001 09:10

If there are several occurrences of any of the relevant headers, they are all
checked. If any Resent- header lines exist, it is those that are checked rather than
the original ones.

The fixup happens for both permanent and temporary errors. This covers the case
when the bad addresses refer to some DNS zone whose name servers are unr each-
able. This approach is, of course, fixing the symptom and not the disease, and it is
not recommended for general use.

If sender_verify_fixup is set when sender_verify_reject is false, Exim does not
modify the message, but records in the log the fixup it would have made.

Testing Sender Ver ification
You can test how Exim would respond to a request to verify a particular sender
addr ess by using the -bvs option:

exim -bvs homer@greece.example

Ther e is a differ ence between -bvs and -bv only if your configuration distinguishes
between senders and recipients when verifying, for example, by the use of
sender_verify on some director or router.

If the configuration of your directors and routers includes any tests of values asso-
ciated with a sending host, for example, checking the contents of
$sender_host_address, you can supply values for the test using one of the com-
mand-line options whose names start with -oM (see the section “Remote Host
Infor mation” in Chapter 20, Command-Line Interface to Exim).

Checking Senders in Header Lines
Exim’s sender verification options can be used to block messages with bad enve-
lope senders. However, recall that bounce messages are identified as such by not
having an envelope sender. They are transmitted using the command:

MAIL FROM:<>

that is, the sender address is empty. Some sites have been known to block such
messages on the grounds that their senders cannot be verified; this is totally mis-
guided because it means that no legitimate bounce messages can ever be deliv-
er ed to such sites, which does their users something of a disservice.

Obviously, Exim’s envelope sender checking cannot apply to an empty sender
addr ess; it must always be accepted. However, because some people feel that
accepting a message without verifying some sender is not a good idea, an alterna-
tive check is provided.

Checking Remote Sender Addresses 319

9 October 2001 09:10

320 Chapter 13: Message Reception and Polic y Controls

If headers_sender_verify_errmsg is set for messages that have null senders (pur-
porting to be bounce messages), Exim does some checking of the header lines
instead. It looks for a verifiable address in the Sender:, Reply-T o:, and Fr om: lines.
If one cannot be found, the message is rejected, unless headers_checks_fail is
false, in which case it just makes a warning entry in the reject log.

If there are several occurrences of any of the relevant headers, they are all
checked. If any Resent-: headers exist, it is those headers that are checked rather
than the original ones.

Unfortunately, because it has to read the message before doing this check, the
rejection happens after the end of the data, and it is known that some client pro-
grams do not treat permanent errors correctly at this point; they keep the message
on their spools and try again later, but that is their problem, though it does waste
some of your resources.

The option headers_sender_verify is also available. It insists on there being a veri-
fiable address in either Sender:, Reply-T o:, or Fr om: on all incoming SMTP mes-
sages, not just those with null senders.

The sender_verify_hosts option applies to both of these header checking options
as well as to sender_verify. The checking is done only for hosts that match it.

Explicitly Rejecting Senders
Individual outbreaks of spam often use a specific envelope sender address. If you
ar e running a system with many mailboxes and you notice the arrival of such mes-
sages early enough, you can sometimes spare some of your users (usually those
whose names start further down the alphabet) by blocking messages from the
of fending sender, even though it may verify successfully. There may also be other
circumstances in which you want to block messages from certain senders.

Ther e ar e two options for doing this—sender_reject and sender_reject_recipi-

ents—each of which contains an address list, as described in the section “Address
Lists,” in Chapter 18. For example:

sender_reject = spamuser@some.domain.example:spam.domain.example
sender_reject = partial-dbm;/etc/mail/blocked/senders

Like the similar options for host rejection, they differ only in the way the rejection
is done. If a sender address matches sender_reject, the MAIL command is rejected
with a permanent error, but as previously mentioned, this does not always cause
the remote host to give up. It is normally better to use sender_reject_recipients,
which accepts the MAIL command, but rejects all subsequent RCPT commands
(except for any recipients listed in recipients_reject_except). The availability of
an exception list is another reason for using this option.

9 October 2001 09:10

Summar y of Sender Checking Options
The options that control sender checking are summarized in this section. This
checking applies only to messages that arrive over TCP/IP connections.

headers_checks_fail (Boolean, default = true)
If this option is true, failure of any of the header checks causes the message to
be rejected. If it is false, a warning message is written to the reject log.

headers_sender_verify (Boolean, default = false)
If this option is set with sender_verify, and the sending host matches
sender_verify_hosts, Exim insists on there being at least one verifiable
addr ess in the Sender:, Reply-T o:, or Fr om: headers (which are checked in that
order) on all incoming SMTP messages. If one cannot be found, the message
is rejected, unless headers_checks_fail is unset, in which case a warning entry
is written to the reject log.

headers_sender_verify_errmsg (Boolean, default = false)
This option acts like headers_sender_verify, except that it applies only to
messages whose envelope sender is empty; that is, bounce messages.

sender_reject (addr ess list, default = unset)
This option can be set in order to reject mail from certain envelope senders.
If the check fails, a 550 retur n code is given to MAIL.

sender_reject_recipients (addr ess list, default = unset)
This operates in exactly the same way as sender_reject except that the rejec-
tion is given in the form of a 550 error code to every RCPT command (unless
the recipient is in recipients_reject_except) instead of rejecting MAIL.

sender_try_verify (Boolean, default = false)
If this option is true, envelope sender addresses on incoming SMTP messages
ar e checked to ensure that they are valid, but if the verification cannot be
completed immediately, the message is accepted.

sender_verify (Boolean, default = false)
If this option is true, envelope sender addresses on incoming SMTP messages
ar e checked to ensure that they are valid, but if the verification cannot be
completed immediately, a temporary error code is given for the MAIL

command.

sender_verify_batch (Boolean, default = false)
Sender verification is applied to batch SMTP input only if this option is set.

sender_verify_fixup (Boolean, default = false)
If sender_verify and sender_verify_reject ar e true and this option is also
true, an invalid envelope sender or one that cannot immediately be verified is
replaced by a valid value from a header line. If sender_verify_reject is false,

Checking Remote Sender Addresses 321

9 October 2001 09:10

322 Chapter 13: Message Reception and Polic y Controls

the envelope sender is not changed, but Exim writes a log entry giving the
corr ection it would have made.

sender_verify_hosts (host list, default = *)
If sender_verify or sender_try_verify is true, this option specifies a list of
hosts to which sender verification applies. The check caused by head-

ers_sender_verify also happens only for matching hosts.

sender_verify_max_retry_rate (integer, default = 12)
If this option is greater than zero, and the rate of temporary rejection of a spe-
cific incoming sender address from a specific host in units of rejections per
hour exceeds it, the temporary error is converted into a permanent verification
err or.

sender_verify_reject (Boolean, default = true)
When this is set, a message is rejected if sender verification fails. If it is not set,
a war ning message is written to the main and reject logs, and the message is
accepted (unless some other error occurs).

Checking Recipient Addresses
Ther e ar e two approaches that can be taken when handling incoming recipient
addr esses in SMTP messages. Either the MTA can accept every address and check
its deliverability later, or some checking can be done before responding to the
RCPT command. Exim always checks for unwanted relaying when it receives an
RCPT command; this is described in the section “Relay Control,” later in this chap-
ter. Checking for deliverability can be configured to happen at SMTP time, or to be
left until the message is being delivered.

Leaving checks on (nonrelay) addresses until later has some advantages:

• If the checks take some time (for example, when a database lookup is used),
avoiding doing them during the SMTP dialog speeds up the SMTP transaction.

• When an address in a local domain turns out to be undeliverable, you may be
able to arrange for an informational message to be automatically sent back.
(For example, ‘‘We have three Charlie Browns at this site: please insert a mid-
dle initial.’’) This can help to reduce the postmaster’s workload.

However, ther e is one big disadvantage: if the address turns out not to be deliver-
able, and the sender address (despite having been verified) also turns out not to
be deliverable, the bounce message is stuck on your system, and is frozen for
human attention. On a busy system, large numbers of such stuck messages are a
real nuisance. This is a particular problem for universities and other institutions
that have a high turnover of people. A lot of mail arrives for cancelled accounts,
often from out-of-date mailing lists. Genuine mailing lists usually have a valid

9 October 2001 09:10

sender address to which a bounce can be sent, but an increasing amount of spam
mail is being sent using an invalid local part at a valid domain, so that sender veri-
fication checks do not catch it unless an expensive callback is used.

Verifying Recipient Addresses
By default, Exim does no checking of recipient addresses during an SMTP transac-
tion, other than ensuring that they conform to the syntax requir ed by RFC 821.
However, if:

receiver_verify

is set, it verifies addresses before responding to RCPT commands. This is done
exactly as for sender addresses, by running the directors and routers in verify
mode. If an address cannot be handled, the response to the RCPT command is sim-
ilar to this:

550 Unknown local part jill in <jill@xyz.example>

If verification cannot be completed (for example, a database is down), a tempo-
rary error code is given, unless the following:

receiver_try_verify

is set, in which case such an address is accepted, and the incident is logged.

Conditional Recipient Ver ification
Verification of recipient addresses can be made conditional in a number of ways.
First, it can be restricted to certain hosts, or certain hosts can be exempted by
setting receiver_verify_hosts. For example:

receiver_verify_hosts = ! *.cluster.example

suppr esses recipient verification from the set of hosts whose names end in
cluster.example.

Second, verification can be restricted to certain addresses by setting receiver_ver-

ify_addresses. This is normally used to exempt certain domains, or to constrain
verification to certain domains. For example, a host that is acting as a relay for a
restricted list of remote domains can assume those domains exist without verifying
each address,* so it makes sense to restrict verification to its own local domain by
a setting such as:

receiver_verify_addresses = localdomain.example

* An MX backup is a good example of such a host, provided it is not also supporting general outgoing
relaying.

Checking Recipient Addresses 323

9 October 2001 09:10

324 Chapter 13: Message Reception and Polic y Controls

Third, verification can be restricted to those messages whose senders match an
addr ess list, by setting receiver_verify_senders. For example, suppose you have
implemented a mechanism for issuing helpful bounce messages for unknown
addr esses. In order for this to work, these addresses must be accepted at RCPT time
(and failed later), but because of the problems of undeliverable bounces, you
want to restrict this feature to messages from other domains in your company. By
setting:

receiver_verify_senders = ! *.mycompany.example

you achieve exactly that. Recipients are verified at SMTP time only for messages
whose senders are in some other domain.

Testing Recipient Ver ification
You can test how Exim would respond to a request to verify a particular recipient
addr ess by using the -bv option:

exim -bv minos@crete.example

Ther e is a differ ence between -bvs and -bv only if your configuration distinguishes
between senders and recipients when verifying, for example, by the use of
receiver_verify on some director or router.

If the configuration of your directors and routers includes any tests of values asso-
ciated with a sending host (for example, checking the contents of
$sender_host_address), you can supply values for the test using one of the
command-line options whose names start with -oM (see the section “Remote Host
Infor mation” in Chapter 20).

Explicitly Rejecting Recipients
Ther e ar e no special options for rejecting specific recipients, as there are for
senders. A recipient is rejected if it fails to verify, so if there are certain recipients
you do not want to accept, you must configure the routers and directors so that
their verification fails. For example, suppose that you allow users on the local host
to mail to root, but you do not want to accept mail for root fr om outside. The
delivery directors must be set up to handle the local part root (for example, via an
alias), and therefor e verification will succeed unless you do something extra. A
first director such as this could be used:

no_verify_root:
driver = smartuser
local_parts = root
verify_only
verify_recipient
fail_verify

9 October 2001 09:10

Because verify_only and verify_recipient ar e set, this director is run only when
verifying recipients, and the setting of local_parts constrains it to just a single
local part. As it is a smar tuser dir ector, it always succeeds, but fail_verify con-
verts this success into a verification failure. This means that any attempt to mail to
root fr om outside is rejected, but because verification on reception does not apply
to locally generated messages, local users are still able to mail to root.

Summar y of Recipient Rejection Options
The options that control receiver checking are summarized in this section. This
checking applies only to messages that arrive over TCP/IP connections.

receiver_try_verify (Boolean, default = false)
If this option is true, envelope recipient addresses on incoming SMTP mes-
sages are checked to ensure that they are valid, but if the verification cannot
be completed immediately, the message is accepted.

receiver_verify (Boolean, default = false)
If this option is true, envelope recipient addresses on incoming SMTP mes-
sages are checked to ensure that they are valid, but if the verification cannot
be completed immediately, a temporary error code is given for the RCPT

command.

receiver_verify_addresses (addr ess list, default = unset)
If set, this option restricts receiver verification to those addresses it matches.
The option is inspected only if receiver_verify or receiver_try_verify is set.

receiver_verify_hosts (host list, default = *)
If receiver_verify or receiver_try_verify is true, this option specifies a list
of hosts to which recipient verification applies.

receiver_verify_senders (addr ess list, default = unset)
This option, if set, allows receiver verification to be conditional upon the
sender. It is inspected only if receiver_verify or receiver_try_verify is set. If
the null sender is requir ed in the list of addresses, it must not be the last item,
as a null last item in a list is ignored. It is best placed at the start of the list.
For example, to restrict receiver verification to messages with null senders and
senders in the .com and .or g domains, you could have:

receiver_verify
receiver_verify_senders = :*.com:*.org

If the null sender is the only entry requir ed, the list should consist of a single
colon.

Checking Recipient Addresses 325

9 October 2001 09:10

326 Chapter 13: Message Reception and Polic y Controls

Checking Header Line Syntax
Large numbers of messages with syntactically invalid header lines are now being
sent over the Internet. Certain well-known pieces of software seem prone to this,
pr oducing illegal lines such as:

To: user@domain <user@domain>
To: <mailto:user@domain>

It is also common in spam mail to see these examples:

To: @
To: <>

The option headers_check_syntax causes Exim to check the syntax of all headers
that can contain lists of addresses (that is, Sender:, Fr om:, Reply-T o:, To:, Cc:, and
Bcc:) on all incoming messages (both local and remote). This is a syntax check
only. No verification is done. If a syntactically invalid header line is found, the
message is rejected, unless the following:

no_headers_checks_fail

is set, in which case the message is accepted, but a warning is written to the reject
log. For SMTP messages, as for headers_sender_verify, the rejection happens after
the end of the data. For non-SMTP messages, a message is written to the standard
err or str eam, and Exim exits with a nonzero retur n code.

Relay Control
The default Exim configuration permits no relaying of messages. It assumes the
simplest kind of environment, where all mail that is accepted from other hosts is
addr essed to a single local domain that is the same as the host’s name. The host is
‘‘at the end of the line’’ for mail delivery. This does not mean that all incoming
mail from outside has to be locally delivered; there may be aliases or users’ .for-
war d files that cause messages to be delivered to other hosts. Such redir ection is
not classed as relaying.

Relaying occurs when a message that is received from another host is passed on to
a third host without any refer ence to a local domain in the recipient address. If a
message is sent from alpha.example to beta.example, with recipient address
homer@beta.example, no relaying is involved, even if the user homer on beta has
a .forwar d file that sends the message on to another host. This is because the orig-
inal recipient address is in a local domain.

9 October 2001 09:10

However, if the recipient is odysseus@gamma.example, then we have a case of
relaying by beta:

alpha -> beta -> gamma

A single message may have many recipients; some may requir e relaying whereas
others may not. Checking for relay permission must therefor e happen for each
recipient address independently.

Incoming and Outgoing Relaying
Fr om Exim’s point of view, there are two kinds of message relaying, as illustrated
in Figure 13-1.

Specific domains Specific hosts

Local host

Arbitrary remote hosts Arbitrary domains
Not wanted

Incoming Outgoing

Figur e 13-1. Message relaying

A host acting as a gateway or as an MX backup relays messages from arbitrary
hosts to a specific set of domains. This is called incoming relaying. However, a
host acting as a smart host for a number of clients relays messages from those
clients to the Internet at large. This is called outgoing relaying. What is not wanted
is the transmission of mail from arbitrary remote hosts through your system to
arbitrary domains.

The same host may fulfill both the incoming and outgoing relay functions, as
shown in the figure, but in principle these two kinds of relaying are entir ely inde-
pendent and are contr olled by separate options. Large installations often use differ-
ent hosts for handling incoming and outgoing relaying.

Relay Checking
Checks for unwanted relaying are made on the domains of recipient addresses in
messages received from other hosts. None of the relay checking applies when mail
is passed to Exim locally using the -bm, -bs, or -bS options, but it does apply when
-bs is used from inetd. The checks are done at the time of the RCPT command in

Relay Control 327

9 October 2001 09:10

328 Chapter 13: Message Reception and Polic y Controls

the SMTP dialog. The first check is whether the address causes relaying at all; if its
domain matches something in local_domains, it is handled on the local host as a
local address, relaying is not involved, and none of what follows is relevant.

Local parts containing % or @

Addr esses such as "x@y"@z, wher e z is a local domain, are sometimes used in an
attempt to bypass relay restrictions.* Exim treats such addresses as having a local
part x@y ; it does not strip off the local domain and treat x@y as an entirely new
addr ess. Assuming that x@y is not a valid local part, this means that the address is
rejected, either at SMTP time if receiver_verify is set, or later when Exim tries to
deliver to it.

Addr esses of the form "x%y"@z ar e tr eated in the same way, unless the ‘‘percent
hack’’ has been enabled by setting percent_hack_domains. When it is enabled, a
new address is constructed from the local part by changing the % to an @. This is
tr eated as an incoming address, and its domain is retested to ensure that it com-
plies with any relaying restrictions.

Incomplete domains

Exim does not attempt to fully qualify partial domains at RCPT time. If an incoming
message contains a domain that is not fully qualified, it is treated as a nonlocal,
nonr elay domain (unless partial domains are included in local_domains or
relay_domains, but this is not recommended). The use of domains that are not
fully qualified is nonstandard, but it is a commonly encountered usage when an
MTA is being used as a smart host by some remote MUA. In this situation, how-
ever, it would be usual to permit the MUA host to relay to any domain, so in prac-
tice there is not normally a problem.

Incoming Relaying
Incoming relaying is controlled by specifying the domains to which an arbitrary
host may send via the local host in relay_domains. For example, if alpha.example
is an MX backup host for beta.example and gamma.example, its configuration
would contain:

relay_domains = beta.example : gamma.example

As another example, if the FooBar Company has a firewall machine through which
all mail from external hosts must pass, and this machine’s configuration contains:

local_domains = foobar.example.com
relay_domains = *.foobar.example.com

* Pr esumably some MTA had this loophole at some time.

9 October 2001 09:10

then mail from external hosts is rejected, unless it is for the domain foo-
bar.example.com itself (which is handled as a local domain) or for another domain
that ends in .foobar.example.com (for which relaying is permitted).

During the SMTP dialog, when an incoming recipient address has a domain that is
not local, it is checked against relay_domains. If it matches, the address is
accepted; otherwise there is a check for permitted outgoing relaying, as described
in the next section.

Automatic relaying for MX backups

If a host is acting as an MX backup for a large number of domains that change fre-
quently, maintaining a list of them for Exim to consult, in addition to the related
MX records in the DNS, is a duplication of effort. There is a further option,
relay_domains_include_local_mx, which, if set, permits relaying for any domain
that has an MX record pointing to the local host, whether or not it appears in
relay_domains.

Turning on relay_domains_include_local_mx opens your server
to the possibility of abuse in that anyone with access to a DNS zone
can list your server in a secondary MX record as a backup for their
domain, without your permission. This is not a huge exposure
because first, it requir es the cooperation of a hostmaster to set up,
and second, as their mail is passing through your server, they run
the risk of your noticing and (for example) throwing it all away.
Nevertheless, the insecurity is there. A safer way of avoiding the
maintenance of two differ ent sets of data is to generate both the
DNS zone data and Exim’s relaying data from a single source.

Outgoing Relaying
If a recipient address is neither for a local domain nor an incoming relay domain,
it must be an outgoing relay, and it is accepted only if the sending host is permit-
ted to relay to arbitrary domains. The set of such hosts is defined by
host_accept_relay. For example, if the FooBar Company’s IP network is
192.168.213.0/24, and all hosts on that network send their outgoing mail via the
fir ewall machine, its configuration should contain:

host_accept_relay = 192.168.213.0/24

This allows the internal hosts, but no others, to use it as a relay to arbitrary
domains.

Exim does not make an automatic exception for the loopback IP address, so if you
want to permit relaying from processes on the local host that send mail to the

Relay Control 329

9 October 2001 09:10

330 Chapter 13: Message Reception and Polic y Controls

loopback address, you need to include 127.0.0.1 (or ::1 on an IPv6 host) in the
relay list. For example:

hosts_accept_relay = 127.0.0.1 : 192.168.213.0/24

Some user agents, notably MH and NMH, send mail by connecting to the loopback
addr ess on the local host.

Relaying from authenticated hosts

The option host_auth_accept_relay is similar to host_accept_relay, except that
any client host matching one of its items is permitted to relay only if it has suc-
cessfully authenticated. This is independent of whether or not it matches
auth_hosts. See Chapter 15 for details of SMTP authentication.

Relaying using encryption

When Exim is compiled to support SMTP encryption,* then you can set
tls_host_accept_relay. This works in the same way as host_accept_relay, except
that it insists that an encrypted SMTP session be used for any relaying.

Relaying from specific senders

In addition to the tests on the identity of the host itself, it is possible to restrict out-
going relaying to specific envelope sender addresses. If sender_address_relay is
set and the host matches sender_address_relay_hosts (which defaults to *), the
sender’s address from the MAIL command must match one of the patterns in
sender_address_relay befor e Exim allows outgoing relaying to an arbitrary
domain. For example, a company’s mail hub that is relaying mail from clients to
the Internet at large can restrict the senders to using the company’s own domain:

host_accept_relay = 192.168.121.0/24
sender_address_relay = *@plc.co.example

If the clients are running their own MTAs that can receive incoming mail, they may
fr om time to time generate bounce messages. If that is the case, you also need to
per mit empty senders when relaying by changing the sender_address_relay

setting to:

sender_address_relay = : *@plc.co.example

Permitting relaying by host or sender

Nor mally, both the host and the sender must be acceptable before an outgoing
relay is allowed to proceed. However, if relay_match_host_or_sender is set, an
addr ess is accepted for outgoing relaying if either the host or the sender is

* See the section “Encrypted SMTP Connections,” in Chapter 15.

9 October 2001 09:10

acceptable. Setting this option is discouraged because of the ease with which
sender addresses can be forged. It was formerly used to permit roaming clients to
relay through their ‘‘home base’’ from arbitrary IP addresses, but nowadays SMTP
authentication is a safer way of providing that facility.

Summar y of Relay Control Options
The options for relay control are summarized in this section. This checking applies
only to messages that arrive over TCP/IP connections.

host_accept_relay (host list, default = unset)
This option defines the set of hosts that are per mitted to relay via the local
host to any arbitrary domain.

host_auth_accept_relay (host list, default = unset)
This option defines a set of hosts that are per mitted to relay via the local host
to any arbitrary domain, provided the calling host has authenticated itself.

relay_domains (domain list, default = unset)
This option lists domains for which the local host is prepar ed to act as an
incoming relay. Mail for these domains is accepted from any host.

relay_domains_include_local_mx (Boolean, default = false)
This option permits any host to relay to any domain that has an MX record
pointing at the local host. It causes any domain with an MX record pointing at
the local host to be treated as if it were in relay_domains.

relay_match_host_or_sender (Boolean, default = false)
By default, if outgoing relaying controls are specified on both the remote host
and the sender address, a message is accepted only if both conditions are met.
If relay_match_host_or_sender is set, either condition is good enough. Setting
this option is discouraged.

sender_address_relay (addr ess list, default = unset)
This option specifies a set of address patterns, one of which the sender of a
message must match in order for the message to be accepted for relaying. If it
is not set, all sender addresses are per mitted.

sender_address_relay_hosts (host list, default = *)
The sender_address_relay check is applied only when the sending host
matches an item in this list.

Relay Control 331

9 October 2001 09:10

332 Chapter 13: Message Reception and Polic y Controls

Customizing Prohibition Messages
It is possible to add a site-specific message to the error response that is sent when
an incoming SMTP command fails for policy reasons; for example, if the sending
host is in a host reject list or if relaying is prohibited. This is done by setting the
option prohibition_message, which causes one or more additional response lines
with the same error code and a multiline marker to be output before the standard
response line. For example, setting:

prohibition_message = contact postmaster@my.site for details

causes the response to a RCPT command for a forbidden relay to be of the follow-
ing form:

550-contact postmaster@my.site for details
550 relaying to <minos@knossos.example> prohibited by administrator

The string is expanded, and so it can perfor m file lookups if necessary. If it ends
up as an empty string, no additional response is transmitted. To make it possible
to distinguish between the several differ ent types of administrative rejection, the
variable $prohibition_r eason is set to a characteristic text string in each case. The
possibilities are shown in Table 13-2.

Table 13-2. Pr ohibition Reasons

Value Meaning

host_accept_relay The host is not in an accept_relay list.

host_reject The host is in a reject list.

host_reject_recipients The host is in a reject_recipients list.

rbl_reject The host is rejected by an RBL domain.

receiver_verify Receiver verification failed.

sender_relay The sender is not in a sender relay list.

sender_reject The sender is in a reject list.

sender_reject_recipients The sender is in a reject_recipients list.

sender_verify Sender verification failed.

For example, if the configuration contains:

prohibition_message = \
${lookup{$prohibition_reason}lsearch{/etc/exim/reject.messages}{$value}}

and the file /etc/exim/r eject.messages contains (inter alia):

host_accept_relay: host not in relay list

9 October 2001 09:10

then a response to a relay attempt might be:

550-host not in relay list
550 relaying to <santa@northpole.example.com> prohibited by administrator

Because some administrators may want to put in quite long messages, and it isn’t
possible to get newlines into the text retur ned fr om an lsearch lookup, Exim
tr eats the vertical bar character as a line separator in this text. If you want the
looked-up text to be reexpanded, you can use the expand operator. For example,
the setting:

prohibition_message = \
${lookup{$prohibition_reason}lsearch\
{/etc/exim/reject.messages}{${expand:$value}}}

when used with a file entry of the form:

host_accept_relay: Host $sender_fullhost is not permitted to
relay |through $primary_hostname.

might produce the following:

550-Host that.host.name [192.168.3.4] is not permitted to relay
550-through this.host.name.
550 relaying to <penguins@southpole.example.com> prohibited by administrator

When the prohibition is due to an entry in a realtime blackhole list (RBL), the vari-
able $rbl_domain contains the RBL domain that caused the prohibition. Some RBL
domains use TXT records to provide a message to match each host block. If there
is such a record, its text is available in the $rbl_text variable.

Incoming Message Processing
Exim perfor ms various transformations on the original sender and recipient
addr esses of all messages that it handles, as well as on the messages’ header lines.
Some of these changes are optional and configurable, while others always take
place. All of this processing happens at the time a message is received, before it is
first written to the spool. Address rewriting is covered in Chapter 14; the other
changes are described here.

RFC 822 makes a provision for header lines starting with the string Resent- (for
example, Resent-Fr om:). It states that in general, these header lines should be
tr eated as containing a set of information that is independent of the set of original
fields, and that information for one set should not automatically be taken from the
other. If Exim finds any Resent- headers in the message, it applies the header
transfor mations, described later in this chapter, only to the Resent- header set,
thus leaving the others alone.

Incoming Message Processing 333

9 October 2001 09:10

334 Chapter 13: Message Reception and Polic y Controls

The UUCP ‘‘From’’ Line
Messages that have come from UUCP (and some other applications) often begin
with a line containing the envelope sender and a timestamp, following the word
From and a space.* In the section “Local Sender Addresses,” earlier in this chapter,
we discuss how this line could be used by a trusted user to supply an envelope
sender address for a locally generated message.

For incoming SMTP messages, a UUCP From line is not normally recognized. It is
syntactically invalid as a header line, so it is treated as the first line of the mes-
sage’s body. However, because there are broken programs that send out SMTP
messages with leading From lines, there are options to make Exim recognize them
in SMTP input. Their contents, however, are always ignored and removed from the
message.

For incoming SMTP over TCP/IP, ignore_fromline_hosts can be set to a list of
hosts for which a From line is ignored; for SMTP over the standard input and out-
put (the -bs option), ignore_fromline_local must be set. These options should be
used only as a last resort when broken sending software must be used and cannot
be fixed.

In all cases, only one From line is recognized. If there is mor e than one, the second
is treated as a data line that starts the body of the message.

The From: Header Line
If an incoming message does not contain a Fr om: header, Exim adds one contain-
ing the sender’s address. This is obtained from the message’s envelope in the case
of remote messages; for locally generated messages, the calling user’s login name
and full name are used to construct an address, using the format of this example:

From: Zaphod Beeblebrox <zaphod@end.univ.example>

The user’s full name is obtained from the -F command-line option, if set; other-
wise, it is obtained by looking up the calling user and extracting the ‘‘gecos’’ field
fr om the password entry. If the ‘‘gecos’’ field contains an ampersand character, this
is replaced by the login name with the first letter converted to uppercase, as is
conventional in a number of operating systems.

In some environments, the ‘‘gecos’’ field is used to hold more than just the user’s
name; it might also contain a departmental affiliation or an office or telephone
number. The gecos_pattern and gecos_name options make it possible to extract just
the username in such cases. When they are set, gecos_pattern is treated as a

* A similar line is also used as a separator in ‘‘Berkeley format’’ mailbox files. Do not confuse this
with the Fr om: header line.

9 October 2001 09:10

regular expression that is to be applied to the field, and if it matches, gecos_name is
expanded and used as the user’s name.* Numeric variables such as $1, $2, and so
on can be used in the expansion to pick up subfields that were matched by the
patter n. In HP-UX, where comma separators are conventionally found, the follow-
ing can be used:

gecos_pattern = ˆ([ˆ,]*)
gecos_name = $1

This extracts everything before the first comma as the user’s full name.

In all cases, the username is made to conform to RFC 822 by quoting all or parts
of it if necessary. If characters with values greater than 127 appear in a username,
Exim encodes it as described in RFC 2047, which defines a way of including non-
ASCII characters in header lines. However, if print_topbitchars is set, these char-
acters are treated as normal printing characters.

For compatibility with Sendmail, if an incoming non-SMTP message has a Fr om:
header containing just the unqualified login name of the calling user, this is
replaced by an address containing the user’s login name and full name, as just
described.

The Sender: Header Line
The Sender: header line is supposed to contain the address of the originator of a
message when this is differ ent to the contents of the Fr om: header line. On mul-
tiuser systems, it is helpful to record the true identity of the person who sent a
message. If one out of several thousand users sends a message containing:

From: god@heaven.com

and this causes offense, the local postmaster may be grateful for the Sender:
header when seeking the culprit. However, Sender: is of little relevance for mes-
sages that originate on single-user systems.

The default behavior of Exim is appropriate for multiuser systems, which is proba-
bly what the author of RFC 822 had in mind in the 1980s. Sender: header lines are
left untouched in messages that arrive over TCP/IP. For other messages, however,
unless they are sent by a trusted user using the -f or -bs command-line option, any
existing Sender: header lines are removed.

For nontrusted callers, a check is made to see if the address given in the Fr om:
header is the correct (local) sender of the message. If not, a Sender: header giving

* Befor e matching, any ampersand in the ‘‘gecos’’ field is replaced by the login name, as previously
described.

Incoming Message Processing 335

9 October 2001 09:10

336 Chapter 13: Message Reception and Polic y Controls

the true sender address is added to the message. This can, however, be disabled
by setting the following:

local_from_check = false

but the envelope sender is still forced to be the login ID at the qualify domain for
locally submitted messages.

The sender address that is expected in Fr om: is the login ID, qualified with the
contents of qualify_domain. Some installations may permit the use of prefixes or
suf fixes to local parts. For example, the addresses:

user@example.com
home-user@example.com
work-user@example.com

may all refer to the same user, who can make use of the prefix in a filter file to do
some automatic mail management. If you do not want the appearance of a prefix
in a Fr om: to trigger the addition of a Sender: header, you can set local_from_pre-
fix. For example:

local_from_prefix = *-

per mits any prefix that ends in a hyphen, so that a message containing:

From: anything-user@example.com

does not cause a Sender: header to be added if user@example.com matches the
actual sender address that is constructed from the login name and qualify domain.
The option local_from_suffix pr ovides the same facility for suffixes.

The Bcc:, Cc:, and To: Header Lines
If Exim is called with the -t option to take recipient addresses from the header
lines of a locally submitted message, it removes any Bcc: header line that may
exist (after extracting its addresses), unless the message has no To: or Cc: header
lines, in which case a Bcc: header line with no addresses is left in the message so
that it conforms to RFC 822. Bcc: header lines are removed from incoming mes-
sages only when the -t option is used.

If Exim is called to receive a message with the recipient addresses given on the
command line and there is no Bcc:, To:, or Cc: header line in the message, it nor-
mally adds a To: header line and lists the recipients. Some mailing-list software is
known to submit messages in this way, and in this case, the creation of a To:
header line is not what is wanted. If the always_bcc option is set, Exim adds an
empty Bcc: header line instead.

9 October 2001 09:10

The Retur n-path:, Envelope-to:, and Deliver y-date:
Header Lines
A Retur n-path: header line is defined in the RFCs as something the MTA may
insert when it does the final delivery of a message, in order to record the envelope
sender address.

An Envelope-to: header line is not part of the standard RFC 822 header set, but
Exim can be configured to add one to the final delivery of a message, in order to
record the envelope recipient address.

A Delivery-date: header line is not part of the standard RFC 822 header set, but
Exim can be configured to add one to the final delivery of a message, to record
the time it was delivered.

None of these three header lines should be present in messages in transit, and
Exim normally removes any that it finds. This action can be disabled by specifying
any or all of the following:

return_path_remove = false
envelope_to_remove = false
delivery_date_remove = false

The Date: Header Line
If a message has no Date: header line, Exim adds one, giving the current date and
time.

The Message-id: Header Line
If an incoming message does not contain a Message-id: header line, Exim con-
structs one and adds it to the message. The ID is constructed from Exim’s internal
message ID, preceded by the letter E to ensure that it starts with a letter, and fol-
lowed by @ and the primary hostname. Additional information can be included in
this header by setting the message_id_header_text option.

The Received: Header Line
A Received: header is added at the start of every message. The contents of this
header are defined by the received_header_text option, and Exim automatically
adds a semicolon and a timestamp to the configured string. The default setting of
this option is:

received_header_text = "Received: \
${if def:sender_rcvhost {from ${sender_rcvhost}\n\t}\
{${if def:sender_ident {from ${sender_ident} }}\
${if def:sender_helo_name {(helo=${sender_helo_name})\n\t}}}}\

Incoming Message Processing 337

9 October 2001 09:10

338 Chapter 13: Message Reception and Polic y Controls

by ${primary_hostname} \
${if def:received_protocol {with ${received_protocol}}} \
${if def:tls_cipher {($tls_cipher)\n\t}}\
(Exim ${version_number} #${compile_number})\n\t\
id ${message_id} \
${if def:received_for {\n\tfor $received_for}}"

The refer ence to $tls_cipher is omitted when Exim is not compiled to support TLS
encryption. Note that a string such as this must be enclosed in double quotes so
that the escape sequences, such as \n and \t, are interpr eted. The use of condi-
tional expansions ensures that this setting works for both locally generated mes-
sages and messages received from remote hosts, thereby giving header lines such
as the following:

Received: from scrooge.example ([192.168.12.25] ident=root)
by marley.example with smtp (Exim 3.22 #1)
id E0tS3Ga-0005C5-00
for cratchit@dickens.example; Mon, 25 Dec 2000 14:43:44 +0000

Received: from ebenezer by scrooge.example with local (Exim 3.22 #2)
id E0tS3GW-0005C2-00; Mon, 25 Dec 2000 14:43:41 +0000

Note the automatic addition of the date and time in the requir ed for mat.

9 October 2001 09:10

14
Rewr iting Addresses

Ther e ar e a number of circumstances in which addresses in messages are alter ed
as they are handled by Exim. This can apply both to the messages’ envelopes and
to their headers. The header lines that may be affected are Bcc:, Cc:, Fr om:, Reply-
To:, Sender:, and To:. Some of these changes happen automatically, whereas oth-
ers are explicitly configured by the administrator.

Automatic Rewr iting
One case of automatic rewriting is the addition of a domain to an unqualified
addr ess, as discussed in Chapter 13, Message Reception and Policy Controls. This
qualification is applied to addresses in header lines as well as to those in
envelopes. For example, if a message is sent on a host where qualify_domain is
set to cr ete.example by this command:

$ exim daedalus
To: daedalus
...

the unqualified local part daedalus is transformed into the fully qualified address
daedalus@cr ete.example, both in the envelope and in the To: header line. Mes-
sages that arrive from other hosts should not contain unqualified addresses; you
need to set sender_unqualified_hosts and/or receiver_unqualified_hosts if you
want to allow such messages to be accepted (as described in Chapter 13).

The other case in which automatic rewriting happens is when an incomplete
domain is given. The routing process may cause this to be expanded into the full

339

9 October 2001 09:11

340 Chapter 14: Rewr iting Addresses

domain name within the current encompassing domain. For example, a header
such as:

To: minos@knossos

might be rewritten as:

To: minos@knossos.crete.example

if encountered on a host within the cr ete.example domain. Strictly, an MTA should
not do any deliveries of a message until all its addresses have been routed, in case
any of the header lines have to be changed as a result of routing. Otherwise it
runs the risk of sending differ ent copies of the message to differ ent recipients.

However, doing this in practice could hold up many deliveries for unreasonable
amounts of time in messages when one address could not immediately be routed
(because of DNS timeouts, for example). Exim therefor e does not delay other
deliveries when routing of one or more addr esses is deferred. Since it is normally
addr esses for distant domains that cannot immediately be routed, and such
addr esses ar e not normally rewritten by this process, the risk of getting it wrong is
minimal.

Configured Rewr iting
Some people believe that configured rewriting is a Mortal Sin, because ‘‘MTAs
should not tamper with messages.’’ Others believe that life is not possible without
it. Exim provides the facility; you do not have to use it. In general, rewriting
addr esses fr om your own domains has some legitimacy. Rewriting other addresses
should be done only with great care and in special circumstances. The author of
Exim believes that rewriting should be used sparingly, and mainly for ‘‘regulariz-
ing’’ addresses in your own domains. Although rewriting recipient addresses can
be used as a routing tool, it is not intended for this purpose, and this use of rewrit-
ing is not recommended.

Ther e ar e two commonly encountered circumstances where addr ess rewriting is
used, as illustrated by these examples:

• The company whose domain is hitch.example has a number of machines that
exchange mail with each other behind a firewall, using the hostnames as mail
domains, but only a single gateway to the outer world. The gateway removes
the local hostnames from addresses in outgoing messages, so that, for exam-
ple, fp42@vogon.hitch.example becomes fp42@hitch.example. A rewriting rule
that implements this is:

@.hitch.example $1@hitch.example

9 October 2001 09:11

• A host rewrites the local parts of its own users to remove login names and
replace them by real-world names, so that, for example, fp42@hitch.example
becomes For d.Prefect@hitch.example. This can be done by a rewriting rule of
this form:

*@hitch.example ${lookup{$1}dbm{/etc/realnames}\
{$value}fail}@hitch.example frsF

We explain shortly how these rewriting rules operate. The two kinds of rewriting
ar e not mutually exclusive, and very often both are done by having both rules in
the configuration.

The order in which addresses are rewritten is undefined, except that envelope
sender addresses are always rewritten before any header lines are rewritten, so if a
rewrite of an address in a header line refers to $sender_address, it is the rewritten
value that is used. However, you cannot assume that, for example, the Fr om:
header is always rewritten before the To: header.

Configur ed addr ess rewriting can take place at several differ ent stages of a mes-
sage’s processing. Rewriting happens when a message is received, but it can also
happen when a new address is generated during directing or routing (for example,
by aliasing), and when a message is transported.

Two dif ferent kinds of address rewriting can be set up by an Exim administrator.
They are called general and per-transport rewriting. They operate in a similar way,
but at differ ent times. General rewriting applies to all copies of a message,
wher eas per-transport rewriting applies only to those copies of a message that
pass through a particular transport.

General Rewr iting
General rewriting is defined by a set of rules that are given in the sixth part of the
runtime configuration file. Each rule specifies the types of address on which it
operates, and Exim applies the rules to each address when it first encounters it.

• A message’s sender address, its original recipient addresses, and the addresses
in its header lines are rewritten as soon as the message is received, before the
start of any delivery processing. This happens only once. If the message was
received from a host that is permitted to send unqualified addresses, they are
qualified before rewriting. Other hosts are requir ed to send fully qualified
addr esses in the envelope for the message to be accepted, but there may still
be unqualified addresses in the header lines. Such addresses are left entirely
alone; they are neither qualified nor rewritten.

Configured Rewr iting 341

9 October 2001 09:11

342 Chapter 14: Rewr iting Addresses

• Recipient addresses that are generated during delivery (for example, by alias-
ing or forwarding), or by the new_address option of the smar tuser dir ector, are
rewritten at the time they are generated, unless no_rewrite is set on the rele-
vant director.

Addr esses in header lines that are generated during delivery (that is, those that are
added by routers, directors, transports, or a system filter), are not subject to gen-
eral rewriting.

Per-Tr anspor t Rewr iting
If the corporate gateway that was used as an earlier example is a host that does
nothing but relay mail to the outside world, general rewriting rules can be used
because rewriting is requir ed for all deliveries.

However, not every site has the luxury of a separate host just to do outgoing mail
relaying. If the same host is handling both onsite and offsite deliveries, there is a
pr oblem if the requir ement is to rewrite addresses only in those copies of mes-
sages that are going offsite. The problem arises because Exim keeps only one
copy of a message, however many recipients it has. If a message has both local
and remote recipients, the requir ement for rewriting only for remote delivery can-
not be met by general rewriting.

To solve this problem, per-transport rewriting was introduced in Exim Release
3.20.* It allows addresses in header lines to be rewritten at transport time (that is,
as the message is being copied to a destination). Unlike general rewriting, enve-
lope addresses cannot be rewritten by this means. You can rewrite the envelope
sender by using the return_path option on a transport, but you cannot rewrite
recipient addresses at transport time.

Per-transport rewriting is configured by setting the headers_rewrite option on a
transport to a colon-separated list of rewriting rules. Each rule is in exactly the
same form as one of the general rewriting rules that are applied when a message
is received (see the following section). For example:

headers_rewrite = a@b c@d f : \
x@y w@z

changes a@b into c@d in From: header lines, and x@y into w@z in all address-bear-
ing header lines. However, only the message’s original header lines, as well as any

* If you are running an earlier release, the only way you can solve this problem is to run two differ ent
versions of Exim: one that rewrites and one that does not. This is messy to set up and maintain.
Upgrading to a later Exim release is a better option.

9 October 2001 09:11

that were added by a system filter, are rewritten. Note that this is differ ent to gen-
eral rewriting, which does not apply to header lines added by a system filter. If a
router, dir ector, or transport adds header lines, these are not affected.

Rewr iting Rules
For both general and per-transport rewriting, the entire set of rules is applied to
one address at a time. In other words, Exim does not go through the rules once,
applying each one to every relevant address (which is one way it might have
worked). Instead, it completely rewrites each address before moving on to the
next one.

For each address, the rules are scanned in order of definition, with each one
potentially changing the address so that a replacement address from an earlier rule
can itself be rewritten as a result of the application of a later rule. However, ther e
ar e some cases where scanning stops after a particular rule has been applied.

Her e is a very simple rewriting rule that just turns one explicit address into
another:

ph10@workshop.exim.example P.Hazel@exim.example

As a general rewriting rule, this would occupy a line by itself and apply to all
instances of the address. As a per-transport rule, it would be the value of head-
ers_rewrite:

headers_rewrite = ph10@workshop.exim.example P.Hazel@exim.example

In this case, it would apply only to addresses in header lines. Further examples are
shown here as general rewriting rules, but they could equally be used as per-trans-
port rules.

In many cases, some kind of wildcard matching is employed in rewriting rules,
and lookups can be used to vary the replacement address. The following configu-
ration uses two rules to implement the most common forms of rewriting for the
domain exim.example:

@.exim.example $1@exim.example
*@exim.example ${lookup{$1}dbm{/etc/realnames}\

{$value}fail}@exim.example frsF

The first rule removes the first component of domain names that end in
.exim.example, and the second rule converts the local part by means of a file
lookup. Thus, addresses in the exim.example domain are rewritten in two stages.
The frsF that appears at the end of the second rule is a string of flag characters,
which are explained in the following section.

Rewr iting Rules 343

9 October 2001 09:11

344 Chapter 14: Rewr iting Addresses

Format of Rewr iting Rules
In general, each rewriting rule is of the form:

pattern replacement flags

The pattern is ter minated by whitespace, and it matches those addresses that are
to be rewritten by this rule. The flags are single characters, some of which indicate
the address location (header line, envelope field) to which the rule applies; other
flags control how the rewriting takes place. Both the pattern and the address loca-
tion flags must match for a rule to be ‘‘triggered.’’ The allowed formats for patterns
and flags are described later.

The replacement string is also terminated by whitespace, unless it is enclosed in
double quotes. If quotes are used, normal quoting conventions apply inside them.
A common configuration error is to forget to quote replacement strings that con-
tain whitespace.

Applying Rewr iting Rules
If the replacement string for a rule is a single asterisk, an address that matches is
not rewritten by that rule, and no subsequent rewriting rules are scanned for the
addr ess. For example:

hatta@lookingglass.example *

specifies that hatta@lookingglass.example is never to be rewritten. Otherwise, the
replacement string is expanded and must either yield a fully qualified address or
be terminated by a forced failure in a lookup or conditional expansion item. A
forced failure causes the rewriting rule not to modify the address; it is equivalent
to generating the following:

$local_part@$domain

as a replacement (but a bit more efficient). Any other kind of expansion failure
(for example, a syntax error) causes the entire rewriting operation to be aban-
doned, and an entry to be written to the panic log.

Within a replacement string, the numerical variables ($1, $2, and so on) are set up
according to the type of pattern that matched the address, and the variables
$local_part and $domain refer to the address that is being rewritten. Any letters in
these variables retain their original case; they are not lowercased.

Conditional Rewr iting
The behavior of forced expansion failures means that the conditional features of
string expansion can be used to implement conditional rewriting. For example, the

9 October 2001 09:11

following would apply a rewriting rule only to messages that originate outside the
local host:

@.hitch.example "${if !eq {$sender_host_address}{}\
{$1@hitch.example}fail}"

The value of $sender_host_address is the empty string for locally originated mes-
sages; this rule restricts rewriting to cases when it is not empty (that is, to cases
wher e the message came from a remote host). The forced failure causes the
rewriting rule to be abandoned for locally originated messages, but subsequent
rules are still applied to the address. Note that quotes have to be used for the rule
in this example because it contains whitespace characters.

Lookup-Dr iven Rewr iting
Rewriting that is entirely lookup-driven can be implemented by a rule of the form:

@ ${lookup ...

with a lookup key derived from $local_part and $domain. The pattern matches
every address, so the behavior is entirely controlled by the expansion of the
replacement string.

Rewr iting Patter ns
The source pattern in a rewriting rule can be in one of the forms in the following
list. It is not enclosed in quotes, and there is no special processing of any charac-
ters; it is not expanded. If it is a regular expression, backslash characters do not
need to be doubled.

• An addr ess containing a local part and a domain, either of which may start
with an asterisk, implying independent wildcard matching, for example:

*@orchestra-land.example

If the domain is specified as a single @ character, it matches the primary host-
name. After matching, the numerical variables refer to the character strings
matched by asterisks, with $0 referring to the entire addr ess, $1 referring to
the first asterisk, and $2 referring to the second asterisk, if present. For exam-
ple, if the pattern:

queen@.example

is matched against the address hearts-queen@wonderland.example, the three
variables would be set as follows:

$0 = hearts-queen@wonderland.example
$1 = hearts-
$2 = wonderland

Rewr iting Patter ns 345

9 October 2001 09:11

346 Chapter 14: Rewr iting Addresses

Note that if the local part does not start with an asterisk, but the domain does,
it is $1 that contains the wild part of the domain.

• A local part, possibly starting with an asterisk, and a lookup item (as in a
domain list), for example:

root@lsearch;/etc/special/domains

If there is an asterisk in the local part, the value of the wild part is placed in
the first numerical variable. If the lookup is a partial one, the wild part of the
domain is placed in the next numerical variable, and the fixed part of the
domain is placed in the succeeding variable. Thus, for example, if the address
foo@bar.baz.example is processed by a rewriting rule using the pattern:

*@partial-dbm;/some/dbm/file

and the key in the file that matches the domain is *.baz.example, the three
variables would be set as follows:

$1 = foo
$2 = bar
$3 = baz.example

If the address foo@baz.example is looked up, this matches the same wildcard
file entry, and in this case $2 is set to the empty string but $3 is still set to
baz.example. If a nonwild key is matched in a partial lookup, $2 is set to the
empty string and $3 is set to the whole domain again. For nonpartial lookups,
no numerical variables are set.

• A local part, possibly starting with an asterisk and a regular expression (as in a
domain list), for example:

*.queen@ˆ(wonderland|lookingglass)\.example$

If there is an asterisk in the local part, the value of the wild part is placed in
the first numerical variable. Any substrings captured by the regular expression
ar e placed in numerical variables starting at $1 if there is no asterisk in the
local part, or at $2 if there is.

• A lookup without a local part, for example:

partial-dbm;/rewrite/database

This works similarly for an address list configuration item; the domain is first
looked up, possibly partially, and if that fails, the whole address is looked up
(not partially). When a partial lookup succeeds, the numerical variable $1 con-
tains the wild part of the domain, and $2 contains the fixed part. The @@ for m
of address list lookup can also be used.

9 October 2001 09:11

• A single regular expression. This is matched against the entire addr ess, with
the domain part lowercased. After matching, the numerical variables refer to
the bracketed capturing subexpressions, with $0 referring to the entire
addr ess. For example, if the following pattern:

ˆ(red|white)\.king@(wonderland|lookingglass)\.example$

is matched against the address red.king@lookingglass.example, then the vari-
ables would be set as follows:

$0 = red.king@lookingglass.example
$1 = red
$2 = lookingglass

Note that, because the pattern part of a rewriting rule is terminated by white-
space, no literal whitespace may be present in the regular expression.

Rewr iting Flags
Ther e ar e several differ ent kinds of flag that may appear on rewriting rules:

• Flags that specify header lines and envelope fields to which the rule applies:
E, F, T, b, c, f, h, r, s, t

• Flags that control the rewriting process: Q, q, R, w

• A flag that specifies rewriting at SMTP time: S

For per-transport rewriting rules, which apply only to header lines, the flags E, F, S
and T ar e not permitted.

Flags Specifying What to Rewr ite
If none of the flag letters in Table 14-1, nor the S flag (see later in this chapter) are
pr esent, the rewriting rule applies to all header lines and (for general rewriting but
not for per-transport rewriting) to both the sender and recipient fields of the enve-
lope. Otherwise, the rewriting rule is used only when rewriting addresses from the
appr opriate sources.

Table 14-1. Flags to Select Addresses

Fla g Meaning

E Rewrite all envelope fields.

F Rewrite the envelope From field.

T Rewrite the envelope To field.

b Rewrite the Bcc: header.

c Rewrite the Cc: header.

Rewr iting Flags 347

9 October 2001 09:11

348 Chapter 14: Rewr iting Addresses

Table 14-1. Flags to Select Addresses (continued)

Fla g Meaning

f Rewrite the Fr om: header.

h Rewrite all headers.

r Rewrite the Reply-T o: header.

s Rewrite the Sender: header.

t Rewrite the To: header.

Thus, in this example, which was given earlier:

@.exim.example $1@exim.example
*@exim.example ${lookup{$1}dbm{/etc/realnames}\

{$value}fail}@exim.example frsF

the first rule applies to all addresses, but the second one is used only for the
Fr om:, Reply-to:, and Sender: header lines and the envelope sender (From) field.

Flags Controlling the Rewr iting Process
Ther e ar e four flags that control the way the rewriting process works. These take
ef fect only when a rule is invoked; that is, when the address is of the correct type
(matches the selection flags) and also matches the pattern:

• If the Q flag is set on a rule, the rewritten address is permitted to be an
unqualified local part. It is qualified with qualify_recipient. In the absence of
Q, the rewritten address must always include a domain. There is not much
point in writing a rule such as:

aaaa@domain.example bbbb Q

because you might just as well write the qualifying domain in the replacement
addr ess. However, the flag can be useful if the replacement involves a file
lookup that just produces local parts.

• If the q flag is set on a rule, no further rewriting rules are consider ed for the
curr ent addr ess, even if no rewriting actually takes place because of a forced
failur e in the expansion. The q flag does not apply if the address is of the
wr ong type (does not match the selection flags) or does not match the pattern.

• The R flag causes a successful rewriting rule to be reapplied to the new
addr ess, up to 10 times. It can be combined with the q flag to stop rewriting
once it fails to match (after at least one successful rewrite). The R flag is gen-
erally of use in gateway environments where dif ferent styles of addressing are
used. An example is given in connection with the S flag later.

9 October 2001 09:11

• When an address in a header line is rewritten, the rewriting normally applies
only to the working part of the address, with any comments and RFC 822
‘‘phrase’’ left unchanged. For example, the rule:

fp42@*.hitch.example prefect@hitch.example

would change the following:

From: Ford <fp42@restaurant.hitch.example>

into:

From: Ford <prefect@hitch.example>

Sometimes there is a need to replace the whole RFC 822 address item, and this
can be done by adding the flag letter w to a rule. If this is set on a rule that
causes an address in a header line to be rewritten, the whole address is
replaced, not just the working part. For example, the rule:

fp42@*.hitch.example "\"F.J. Prefect\" <prefect@hitch.example>" w

changes the following:

From: Ford <fp42@restaurant.hitch.example>

into:

From: "F.J. Prefect" <prefect@hitch.example>

The replacement must be a complete RFC 822 address, including the angle
brackets if necessary. When the w flag is set on a rule that causes an envelope
addr ess to be rewritten, all but the working part of the replacement address is
discarded because envelope addresses do not contain ‘‘phrase’’ or comment
items.

The SMTP-Time Rewr iting Flag
The rewrite flag S specifies a rule that applies to incoming envelope addresses at
SMTP time, as soon as each MAIL or RCPT command is received and before any
other processing; even before syntax checking. This form of rewrite rule allows for
the handling of addresses that are not compliant with RFC 821 (for example,
UUCP ‘‘bang paths’’ in SMTP input, or malformed addresses from broken SMTP
clients).

Because the input for a rewriting rule with the S flag is not requir ed to be a syn-
tactically valid address, the pattern must be a regular expression, and the variables
$local_part and $domain are not available during the expansion of the replace-
ment string. The pattern is matched against the entire text supplied by a MAIL or
RCPT command, including any enclosing angle brackets, and the result of rewriting
replaces the original address in the MAIL or RCPT command. For example, suppose

Rewr iting Flags 349

9 October 2001 09:11

350 Chapter 14: Rewr iting Addresses

one of your local SMTP clients is broken and sends malformed SMTP commands
such as this:

RCPT TO: internet:ceo@plc.example

Ther e ar e two things wrong with this address: the lack of surrounding angle brack-
ets and the presence of the unwanted string internet: at the beginning. Obviously
the best thing would be to get the client fixed, but sometimes this is not possible,
at least not quickly. Using the S rewriting flag you can arrange for Exim to patch
up such bad addresses:

ˆ\s*internet:(.*)$ <$1> S

The regular expression pattern matches addresses that start with internet: (with
optional leading whitespace), and arranges to capture the remainder by means of
the parentheses. The replacement string wraps the captured substring in the angle
brackets that are requir ed in SMTP commands, so the result is treated as if the
command was:

RCPT TO:<ceo@plc.example>

Another case where this kind of rewriting is useful is when interfacing to systems
that use UUCP bang-path addressing, in which addresses are of the form:

host1!host2!host3...!user

Exim supports only Internet domain-based addressing, and so does not recognize
bang paths. However, in some cases, rewriting can be used to convert bang-path
addr esses. If this is done at SMTP time using the S flag, the rewritten addresses are
subject to the normal verification and relay checking, which is what you want.*

The following rules convert bang paths into more conventional Internet addresses
at SMTP time:

ˆ(?=.*?!)(?!.*?@)(.*)$ $1@bang.path S
ˆ([ˆ!]+)!([ˆ%]+)([ˆ@]*)@bang\.path$ $2%$1$3@bang.path SR
ˆ(.*)%([ˆ@]*)@bang\.path$ $1@$2 S

The first rule recognizes strings that contain at least one exclamation mark but no
@ characters, and adds the pseudodomain bang.path, ther eby allowing the other
two rules to operate on them. Conventional Internet addresses that happen to con-
tain exclamation marks are not affected by this rewriting.

The second rule changes the local part of these special addresses by reversing the
order of the parts and replacing the exclamation marks with percent signs. For
example, a!b@bang.path becomes b%a@bang.path, and a!b!c!d@bang.path
becomes d%c%b%a@bang.path. The rule needs the R (r epeat) flag, because each

* Since a bang-path address is a syntactically valid local part, you could configure Exim to accept
unqualified addresses, and then later rewrite local parts containing exclamation marks. This is not,
however, a good idea, because it bypasses relay checking.

9 October 2001 09:11

time it runs, it handles only one exclamation mark. The final rule removes the
pseudodomain, and changes the final percent sign into an @.

Using these rules, a two-part bang path such as a!b is turned into b@a, and a
longer path such as a!b!c!d becomes d%c%b@a. This notation is sometimes called
the ‘‘percent hack,’’ and has been used in Internet addressing for explicit routing
of mail, though it is not a standard. Nowadays it is falling out of use.

A Fur ther Rewr iting Example
The ability to rewrite addresses may be used in lots of differ ent ways. The most
common use of rewriting is for removing local hostnames, and converting login
names to ‘‘real names’’ in messages that are leaving a local network for the wider
Inter net. Earlier we showed a simple way of implementing such rewriting:

@.exim.example $1@exim.example
*@exim.example ${lookup{$1}dbm{/etc/realnames}\

{$value}fail}@exim.example frsF

The first rule removes local hostnames, and the second rewrites local parts that it
recognizes in header and envelope sender fields, assuming that the local parts are
unique among the local hosts.

This example can be extended to provide additional functionality, such as reject-
ing messages whose local sender addresses cannot be recognized. We show the
complete configuration first, and then explain how it works. There are five rules:

ˆ(?>.*)(?<!\.exim\.example) *
root@*.exim.example "admin@exim.example (root@$1)" hFwq
@.exim.example \
${lookup{$local_part@$2}lsearch{/etc/realnames}{$value}\
{"$1@$2-is-not-known"}}@exim.example Fq

@.exim.example \
${lookup{$local_part@$2}lsearch{/etc/realnames}{$value@exim.example}\
{$sender_address}} fsrq

@.exim.example \
${lookup{$local_part@$2}lsearch{/etc/realnames}{$value}{unknown}}\
@exim.example

Because we are rewriting only those addresses that end in .exim.example, we can
save some resources by having an initial rule that recognizes other domains and
abandons any attempt to rewrite them:

ˆ(?>.*)(?<!\.exim\.example) *

The pattern is a regular expression that matches all addresses that do not end in
.exim.example, and the single asterisk as a replacement string means ‘‘do not
rewrite this address and do not scan any more rules.’’ This means that only
addr esses that end with .exim.example ar e passed to the remaining rules.

A Fur ther Rewr iting Example 351

9 October 2001 09:11

352 Chapter 14: Rewr iting Addresses

Some explanation of the regular expression is needed. There are several ways you
can write a pattern to implement ‘‘ends with,’’ but this is the most efficient. The
start of the expression:

ˆ(?>.*)

matches the entire string, ˆ matches the start of the string, and .* matches any
number of arbitrary characters, but because it is enclosed in (?>) par entheses, no
backtracking is permitted, so having reached the end of the string, the current
point stays there. However, the pattern itself is not finished. We still have:

(?<!\.exim\.example)

This is a negative backward assertion; it checks that the characters immediately
pr eceding the current position (that is, those at the end of the string) are
.exim.example. If it fails, the pattern match fails because no backtracking is permit-
ted to try this test at any other position. If this test succeeds, the pattern match
succeeds because the end of the pattern has been reached.

The more ‘‘obvious’’ regular expression is to check that a string ends with
.exim.example, namely:

\.exim\.example$

This is less efficient because it scans through the string character by character,
looking for a dot; whenever it finds one, it checks to see if it is followed by
exim.example and the end of the string. This is more work than a single check at
the end of the string.

The second rewriting rule in this example handles mail from root. Such mail may
be generated by cr on or other system jobs on local hosts. Although it is usually
addr essed to local users, there is always the possibility that such users have for-
warded their mail offsite. If there is mor e than one local host, rewriting root in the
same way as a user login name loses information about which local host’s root
actually sent the message. This rewriting rule is one way of preserving this
infor mation:

root@*.exim.example "admin@exim.example (root@$1)" hFwq

The pattern matches root at any of the local hosts, and the hF flags restrict this rule
to header lines and the envelope sender. The new address is a standard one but
retains the original hostname in a comment. The w flag ensures that the comment
is retained in any header lines that are rewritten, so that, for example:

From: Charlie Root <root@host1.exim.example>

is rewritten as:

From: admin@exim.example (root@host1)

9 October 2001 09:11

This does, of course, allow the local hostname to remain in the message. Sites that
ar e paranoid about hiding their local hostnames would not want to do this.* The q

flag on this rule causes rewriting to cease after the rule has been obeyed, so the
subsequent rules do not apply to root addr esses.

The third rule rewrites the envelope sender of the message by looking up the
addr ess, minus the terminating .exim.example, in a file containing lines such as
this:

jc@host1: J.Caesar
jc@host2: Jiminy.Cricket

which might be called /etc/r ealnames. In other words, it allows for nonunique
local parts among the local hosts. Provided this file is not too big, using a linear
search is acceptable.† The pattern does not need to test the domain, because we
know that the rule is applied only to domains ending in .exim.example, so the rule
is as follows:

@ ${lookup{$local_part@$2}lsearch{/etc/realnames}{$value}\
{"$1@$2-is-not-known"}}@exim.example Fq

The F flag ensures that this rule is applied only to envelope senders. If the address
cannot be found in the file, it is rewritten to a magic sequence. An unknown
sender address such as xxxx@host1.exim.example is turned into the following:

"xxxx@host1-is-not-known"@exim.example

by this rule. The idea here is that, provided incoming sender addresses are being
verified, this rewritten address will fail to verify, and so the message will not be
accepted by the gateway for onward transmission if its sender address is not in the
list of local addresses.

The fourth rule rewrites sender addresses within the message’s Fr om:, Sender:, and
Reply-T o: header lines. It is almost the same as the previous rule, except that fail-
ur e to look up the original address is not treated as such a serious error here; an
unknown address is replaced by the sender address from the envelope:

@ ${lookup{$local_part@$2}lsearch{/etc/realnames}{$value@exim.example}\
{$sender_address}} fsrq

Exim always rewrites the envelope sender address before it rewrites header lines,‡

so we know that the sender address has been validated.

The final rule has no flags, and so in theory applies to all addresses, but because
of the use of the q flag in previous rules, it is only ever applied to envelope

* They would probably also want to remove the Received: header lines that show local hostnames.

† Once it gets above a hundred lines or so, it should be converted into some kind of indexed lookup,
for example, a cdb or DBM file (see Chapter 16, File and Database Lookups).

‡ This is the only ordering of rewrites that is specified.

A Fur ther Rewr iting Example 353

9 October 2001 09:11

354 Chapter 14: Rewr iting Addresses

recipients and the addresses in recipient header lines To: and Cc: (and Bcc: if pre-
sent). It replaces unknown local parts in our domain with unknown:

@ ${lookup{$local_part@$2}lsearch{/etc/realnames}{$value}{unknown}}\
@exim.example

Testing Rewr iting Rules
Exim’s general rewriting configuration can be tested by the -brw command-line
option. This takes an address (which can be a full RFC 822 address) as its argu-
ment. The output is a list of how the address would be transformed by the general
rewriting rules for each of the differ ent places it might appear; that is, for each dif-
fer ent header line and for the envelope sender and recipient fields. For example:

exim -brw ph10@workshop.exim.example

might produce the output:

sender: Philip.Hazel@exim.example
from: Philip.Hazel@exim.example
to: ph10@workshop.exim.example
cc: ph10@workshop.exim.example
bcc: ph10@workshop.exim.example

reply-to: Philip.Hazel@exim.example
env-from: Philip.Hazel@exim.example
env-to: ph10@workshop.exim.example

which shows that general rewriting has been set up for that address when used in
any of the source fields, but not when it appears as a recipient address. If the S

flag is set for any rewriting rules, another line is added to the output, showing the
rewriting that would occur at SMTP time.

9 October 2001 09:11

15
Authentication, Encryption,
and Other SMTP Processing

We mention SMTP authentication and encryption in earlier chapters, and also men-
tion several aspects of the other processing that happens when Exim sends or
receives messages using SMTP. In this chapter, we describe how SMTP authentica-
tion and encryption works, and how you can configure Exim to make use of them.
After that we go into some detail about general SMTP processing, for those that
want to know more about the nitty-gritty.

SMTP Authentication
The original SMTP protocol, designed for a small, cooperative network consisting
mostly of fairly large, multiuser hosts, had no concept of authentication. All hosts
wer e equal, and any host could send mail to any other for onward delivery as best
it could. Today’s Internet is very differ ent. The concept of servers and clients has
arisen, and hosts that do mail relaying are servers that are configur ed to allow it to
happen only when the mail arrives from an approved client.

One way of controlling relaying is by checking the sending host (as discussed in
the section “Relay Control,” in Chapter 13, Message Reception and Policy Controls).
For example, you might permit relaying only from clients on your local network,
using a configuration such as:

host_accept_relay = 192.168.5.224/27

but that approach does not work in cases such as the following:

• An employee with a laptop is away from base, and wants to be able to con-
nect from arbitrary locations and send outgoing mail via the server back at
home. Even without a laptop, someone might want to do this from a cyber-
cafe, or other ‘‘foreign’’ client.

355

9 October 2001 09:11

356 Chapter 15: Authentication, Encryption, and Other SMTP Processing

• An employee has a dial-up ISP account at home that uses a differ ent IP
addr ess each time a new connection is made, so host_accept_relay cannot be
used.

• The local network is not a strong-enough restriction; only those persons who
ar e authorized may send mail via the server from a workstation.

SMTP authentication (RFC 2554) was invented as one way of solving these prob-
lems. It works like this:

• When a server that supports authentication is sent an EHLO command, it adver-
tises a number of authentication mechanisms. For example, the response to
EHLO might be:

250-server.test.example Hello client.test.example [10.0.0.1]
250-SIZE
250-PIPELINING
250-AUTH LOGIN CRAM-MD5
250 HELP

The second-to-last line advertises the LOGIN and CRAM-MD5 authentication
mechanisms.

• When a client wants to authenticate, it sends the SMTP command AUTH, fol-
lowed by the name of an authentication mechanism, for example:

AUTH LOGIN

The command may optionally contain additional data.

• The server replies with a challenge string associated with a response code
beginning with the digit 3, indicating ‘‘more data needed.’’ The challenge
string may be a simple prompt such as ‘‘Please enter a password.’’

• The client answers the challenge by sending a response string.

• The server may send another challenge, and the challenge-response sequence
can be repeated any number of times, including zero. If, for example, all the
authentication data is sent in the AUTH command, no more may be needed, so
ther e ar e no challenges. All the data is encoded in base-64 so that it can
include all 256 byte values. Note that this is not encryption. Anybody who
intercepts the transmission is able to decode it into its original form.

• Eventually, the server responds with a retur n code indicating success or failure
of the authentication attempt, or a temporary error code if authentication
could not be completed.

Once a client has authenticated, the server may permit it to do things that unau-
thenticated clients are not allowed to do. What these are is entir ely up to the man-
agement of the server.

9 October 2001 09:11

Authentication Mechanisms
Several differ ent authentication mechanisms have been published. Exim supports
thr ee of them: PLAIN, LOGIN, and CRAM-MD5, which are used by various popular
user agents that submit mail to a server using SMTP. However, since not every-
body is interested in SMTP authentication, the code is not included in the Exim
binary unless the build-time configuration explicitly requests it.

Befor e describing how Exim is configured to support SMTP authentication, we
need to explain how the three common authentication mechanisms work.

PLAIN Authentication
PLAIN authentication is described in RFC 2595. It requir es that three data strings
be sent with the AUTH command, separated by binary zero characters. The second
and third strings are a user/password pair that can be checked by the server. The
first string is not relevant to SMTP authentication, and is normally empty.* No addi-
tional challenge strings are sent. Here is an example of an authentication
exchange, where the lines sent by the client and the server are identified by C and
S, respectively:

C: AUTH PLAIN AHBoMTAAc2VjcmV0
S: 235 Authentication successful

The base-64 string AHBoMTAAc2VjcmV0 is an encoding of:

<nul>ph10<nul>secret

wher e <nul> repr esents a binary-zer o byte. The first data string is empty, the user-
name is ph10, and the password is secret.

PLAIN authentication is efficient in that it requir es only a single command and
response. The password must be held in clear on the client host, but can be kept
encrypted on the server, exactly as it is for login passwords. However, unless an
encrypted SMTP connection is used, the data travels over the network unen-
crypted, and is vulnerable to eavesdropping.

LOGIN Authentication
LOGIN authentication is not described in any RFC, but it is used by the user agent
Pine. Like PLAIN authentication, it is based on a user/password combination, but

* The mechanism is designed for use in protocols other than SMTP, wher e a specific user identity is
used for subsequent operations (for example, to run a login session); the first string can specify a
dif ferent user from the one whose password was checked.

SMTP Authentication 357

9 October 2001 09:11

358 Chapter 15: Authentication, Encryption, and Other SMTP Processing

each of these is prompted for separately, so an authentication exchange might
look like this:

C: AUTH LOGIN
S: 334 VXNlciBOYW1l
C: cGgxMA==
S: 334 UGFzc3dvcmQ=
C: c2VjcmV0
S: 235 Authentication successful

Unencoded, this is:

C: AUTH LOGIN
S: 334 User Name
C: ph10
S: 334 Password
C: secret
S: 235 Authentication successful

LOGIN authentication is less efficient than PLAIN, because three interactions are
requir ed. Like PLAIN authentication, the username and password are transmitted
in clear. Some people have argued that it is ‘‘safer’’ because the username and
password do not travel in the same packet, though this does not seem to be a very
str ong argument.

CRAM-MD5 Authentication
CRAM-MD5 authentication (RFC 2195) avoids transmitting unencrypted passwords
over the network. The server sends a single challenge string, and the client sends
back a username, followed by a space and the MD5 digest* of the challenge string
concatenated with a password. The server computes the MD5 digest of the same
string and compares this with what it has received. For example:

C: AUTH CRAM-MD5
S: 334 PDE4OTYuNjk3MTcwOTUyQHBvc3RvZmZpY2UucmVzdG9uLm1jaS5uZXQ+
C: dGltIGRkOTJiNGJiMzRhZmFhNzBmMjkwNWVkZDMxOTZhNTU3
S: 235 Authentication successful

Unencoded, this is:

C: AUTH CRAM-MD5
S: 334 <1896.697170952@postoffice.reston.example>
C: tim dd92b4bb34afaa70f2905edd3196a557
S: 235 Authentication successful

The string dd92b4bb34afaa70f2905edd3196a557 is the MD5 digest of:

<1896.697170952@postoffice.reston.example>secret

* An MD5 digest is a 16-byte cryptographic hash computed from an arbitrary text string in such a way
as to minimize the chances of two strings having the same digest. See RFC 1321.

9 October 2001 09:11

but that string cannot be recover ed fr om the digest by someone that intercepts it,
and the digest cannot be reused, because the challenge string is differ ent each
time.

CRAM-MD5 requir es only two interactions, and avoids transmitting the password
in clear, but the disadvantage is that the password must be held in clear on the
server as well as on the client.

Choice of Authentication Mechanism
If you are setting up an Exim client to use a remote server, and you do not know
which authentication mechanisms it supports, you can use Telnet to find out:

$ telnet some.server.example 25
220 some.server.example ESMTP Exim 3.22 #2 Mon, 14 May 2001 10:24:18 +0100
EHLO client.domain.example
250-some.server.example Hello client.domain.example [192.168.8.20]
250-SIZE 20971520
250-PIPELINING
250-AUTH PLAIN CRAM-MD5
250 HELP
quit

If you are setting up an Exim server, you often do not have have much choice
about which authentication mechanism to use; in practice, you are stuck with
whatever your client software supports. It is, however, worth thinking about the
issues.

The main differ ence between the mechanisms is whether passwords are transmit-
ted in clear or not. How serious an exposure this is depends on the passwords
you are using and the networks over which they travel. If the networks are private
and secure, or if all the data being transferred is encrypted, this is a less serious
concer n than if you are using unencrypted connections over the public Internet.

In any case, it is a good idea to use a differ ent set of passwords from the normal
login passwords, so that the consequences of disclosure of an SMTP password are
limited to potential abuse of mail submission. This is particularly relevant if you
requir e your users to use an encrypted connection for normal logins, but not for
SMTP authentication.

Using an alternate password set with CRAM-MD5 authentication means that you
do not have to keep normal passwords in clear on the server (just the SMTP pass-
words); this is probably the safest of the currently supported mechanisms when
encryption is not in use. Using encrypted connections, PLAIN or LOGIN are better,
because they do not requir e passwords to be stored in clear on the server.

If you are running a version of Exim that supports SMTP encryption, you can insist
that clients using the AUTH command for authentication must start TLS-encrypted

SMTP Authentication 359

9 October 2001 09:11

360 Chapter 15: Authentication, Encryption, and Other SMTP Processing

sessions first. The availability of the AUTH command is advertised to such hosts
only after an encrypted session has been started. To do this, you set
auth_over_tls_hosts to match the hosts to which this applies. For example:

auth_over_tls_hosts = *

means that all authentication must take place over secure sessions. As well as
doing this, you need to set up general encryption options. How to do this is
described in the section “Encrypted SMTP Connections,” later in this chapter:

Exim Authenticator s
When Exim is compiled to support SMTP authentication, the seventh part of the
runtime configuration file contains settings for a number of authenticators. These
use a similar syntax to the definitions of routers, directors, and transports. When
Exim is receiving SMTP mail, it is acting as a server; when it is sending out mes-
sages over SMTP, it is acting as a client. Configuration options are provided for use
in both these circumstances, and a single version of Exim can act both as a client
and as a server at differ ent times. Each authenticator can have both server and
client functions.

To make it clear which options apply to which function, the prefixes server_ and
client_ ar e used on option names that are specific to either the server or the
client function, respectively. Server and client functions are disabled if none of
their options are set. If an authenticator is to be used for both server and client
functions, a single definition, using both sets of options, is requir ed. For example:

cram:
driver = cram_md5
public_name = CRAM-MD5
server_secret = ${if eq{$1}{ph10}{secret}fail}
client_name = ph10
client_secret = secret2

The server_ option is used when Exim is acting as a server, and the client_

options are used when it is acting as a client. An explanation of this example fol-
lows later, with the description of the CRAM-MD5 authenticator.

Authentication on an Exim Server
When a message is received from an authenticated host, the value of
$r eceived_protocol is set to asmtp instead of esmtp or smtp, and
$sender_host_authenticated contains the name of the authenticator driver that suc-
cessfully authenticated the client. It is empty if there was no successful
authentication.

The SMTP AUTH command is accepted from any connected client host. If, however,
the client host matches an item in the auth_hosts option, it is requir ed to

9 October 2001 09:11

authenticate itself before any commands other than HELO, EHLO, HELP, AUTH, NOOP,
RSET, or QUIT ar e accepted.

A client that matches an item in host_auth_accept_relay is permitted to relay to
any domain, provided that it is authenticated, whether or not it matches
auth_hosts. In other words, an authenticated client is permitted to relay if it
matches either host_accept_relay or host_auth_accept_relay, wher eas an unau-
thenticated client host may relay only if it matches host_accept_relay.

Two common cases are envisaged:

• Certain IP addresses are requir ed to authenticate and are then permitted to
relay. This can be handled by setting auth_hosts and either host_accept_relay
or host_auth_accept_relay to match the set.

• Any host is permitted to relay, provided it is authenticated. This is handled by
setting:

host_auth_accept_relay = *

Many variations are possible. For example, in the second case, some hosts could
be requir ed to authenticate even for nonrelayed messages by making them match
auth_hosts.

Adver tising Authentication
If Exim is configured as an authenticating server, it nor mally advertises this in
response to an EHLO command, as described earlier. However, ther e ar e circum-
stances where this is not always wanted. Consider a configuration where some
hosts are per mitted to relay without authentication by including them in
host_accept_relay, wher eas others are requir ed to authenticate. What happens
when a client host that does not need to authenticate connects? Some client soft-
war e, on seeing the support for authentication, insists on attempting to authenti-
cate, and there is no way to configure it otherwise. To get round this problem, you
can set:

auth_always_advertise = false

on the server. In this state, authentication support is advertised only if the client
host is in auth_hosts or host_auth_accept_relay without being in
host_accept_relay.

Testing Server Authentication
Exim’s -bh option can be useful for testing server authentication configurations
(see the section “Testing Incoming Connections,” in Chapter 20, Command-Line

SMTP Authentication 361

9 October 2001 09:11

362 Chapter 15: Authentication, Encryption, and Other SMTP Processing

Inter face to Exim). The data for the AUTH command has to be sent encoded in base
64. If you have the mimencode command installed on your host, a quick way to
pr oduce such data is (for example):

echo -n ’\0name\0password’ | mimencode

The command echo -n works in most shells (that is, it outputs the following text
without a terminating newline). However, in some shells (for example, the Solaris
Bour ne shell), the -n option is not recognized. For these shells:

echo ’\0name\0password\c’ | mimencode

often has the desired effect. In the absence of the mimencode command, the fol-
lowing Perl script can be used:

use MIME::Base64;
printf ("%s", encode_base64(eval "\"$ARGV[0]\""));

This interprets its argument as a Perl string and then encodes it. The interpretation
as a Perl string allows binary zeros, which are requir ed for some kinds of
authentication, to be included in the data. For example, a command line to run
this script using the name encode might be:

encode ’\0user\0password’

Note, in both examples, the use of single quotes to prevent the shell interpreting
the backslashes.

Authenticated Senders
When a client host has authenticated itself, Exim pays attention to the AUTH param-
eter on incoming SMTP MAIL commands, for example:

MAIL FROM:<theboss@acme.com.example> AUTH joker@edu.example

The address given in the AUTH parameter is supposed to identify the authenticated
original submitter of the message, but this feature does not seem to be in
widespr ead use. The special value <> means ‘‘no authenticated sender available.’’
If the client host is not authenticated, Exim accepts the syntax of the AUTH parame-
ter, but ignores the data.

If accepted, the value is available during delivery in the $authenticated_sender
variable, and is passed on to other hosts to which Exim authenticates as a client.
Do not confuse this value with $authenticated_id, which is a string obtained from
the authentication process (see later in this chapter), and which is not usually a
complete email address.

9 October 2001 09:11

Authentication by an Exim Client
The smtp transport has an option called authenticate_hosts when Exim is built
with authentication support. When the smtp transport connects to a server that
announces support for authentication, and also matches an entry in authenti-

cate_hosts, Exim (as a client) tries to authenticate as follows:

• For each authenticator that is configured as a client, it searches the
authentication mechanisms announced by the server for one whose name
matches the public name of the authenticator.

• When it finds one that matches, it runs the authenticator’s client code. The
variables $host and $host_address ar e available for any string expansions that
the client might do. They are set to the server’s name and IP address. If any
expansion is forced to fail, the authentication attempt is abandoned. Otherwise
an expansion failure causes delivery to be deferred.

• If the result is a temporary error or a timeout, Exim abandons trying to send
the message to the host for the moment. It will try again later. If ther e ar e any
backup hosts available, they are tried in the usual way.

• If the response to authentication is a permanent error (5xx code), Exim carries
on searching the list of authenticators. If all authentication attempts give per-
manent errors, or if there are no attempts because no mechanisms match, it
tries to deliver the message unauthenticated.

When Exim has authenticated itself to a remote server, it adds the AUTH parameter
to the MAIL commands it sends if it has an authenticated sender for the message. If
a local process calls Exim to send a message, the sender address that is built from
the login name and qualify_domain is treated as authenticated.

Options Common to All Authenticator s
Configur ed authenticators have names, just like directors, routers, and transports.
In addition, there are thr ee options that are common to all authenticators:

driver (string, default = unset)
This option must always be set. It specifies which of the available authentica-
tors is to be used. The currently available values are plaintext (which sup-
ports both PLAIN and LOGIN authentication) and cram_md5.

public_name (string, default = unset)
This option specifies the name of the authentication mechanism that the driver
implements, and by which it is known to the outside world. These names
should contain only uppercase letters, digits, underscores, and hyphens (RFC
2222), but Exim in fact matches them caselessly. If public_name is not set, it
defaults to the driver instance’s name.

SMTP Authentication 363

9 October 2001 09:11

364 Chapter 15: Authentication, Encryption, and Other SMTP Processing

The public names of authenticators that are configur ed as servers are adver-
tised by Exim when it receives an EHLO command, in the order in which they
ar e defined. When an AUTH command is received, the list of authenticators is
scanned in definition order for one whose public name matches the mecha-
nism given in the AUTH command.

server_set_id (string, default = unset)
When an Exim server successfully authenticates a client, this string is
expanded using data from the authentication, and preserved for any incoming
messages in the variable $authenticated_id. It is also included in the log lines
for incoming messages. For example, a user/password authenticator configura-
tion might preserve the username that was used to authenticate, and refer to it
subsequently during delivery of the message.

Using the plaintext Authenticator in a Server
When running as a server, plaintext per forms the authentication test by collecting
one or more data strings from the client, and then expanding a string with the data
in $1, $2, and so on. The number of data strings requir ed is controlled by the set-
ting of server_prompts, which contains a colon-separated list of prompt strings.

However, the prompts are not necessarily sent as challenges because any strings
that are sent with the AUTH command are used first. Data supplied on the com-
mand line is treated as a list of NUL-separated strings. If there are mor e strings in
server_prompts than the number of strings supplied with the AUTH command, the
remaining prompts are used to obtain more data. Each response from the client
may be a list of NUL-separated strings. This general approach allows plaintext to
be configured to support either PLAIN or LOGIN authentication.

Once a sufficient number of data strings have been received, server_condition is
expanded. Failure of the expansion (forced or otherwise) causes a temporary error
code to be retur ned. If the result of a successful expansion is an empty string, 0,
no, or false, authentication fails. If the result of the expansion is 1, yes, or true,
authentication succeeds and the common server_set_id option is expanded and
saved in $authenticated_id. For any other result, a temporary error code is
retur ned with the expanded string as the error text.

The PLAIN authentication mechanism (RFC 2595) specifies that three strings be
sent with the AUTH command. The second and third of them are treated as a
user/password pair. Using a single fixed user and password as an example, this
could be configured as follows:

fixed_plain:
driver = plaintext
public_name = PLAIN

9 October 2001 09:11

server_condition = ${if and {{eq{$2}{ph10}}{eq{$3}{secret}}}{yes}{no}}
server_set_id = $2

This would be advertised in the response to EHLO as:

250-AUTH PLAIN

and a client host could authenticate itself by sending the command:

AUTH PLAIN AHBoMTAAc2VjcmV0

The argument string is encoded in base 64, as requir ed by the RFC. This example,
when decoded, is <nul>ph10<nul>secret, wher e <nul> repr esents a zer o byte. This
is split up into three strings, the first of which is empty. The condition checks that
the second two are ph10 and secret, respectively. Because no prompt strings are
set, if no data is given with the AUTH command, authentication fails.

A mor e sophisticated instance of this authenticator can make use of the username
in $2 to look up a password in a file or database, and maybe do an encrypted
comparison (see crypteq in chapter Chapter 17, String Expansion). For example, if
encrypted passwords are available in /etc/passwd:*

server_condition = ${if crypteq{$3}\
{${extract{1}{:}{${lookup{$2}lsearch{/etc/passwd}{$value}}}}\
}{yes}{no}}

Pr ocesses that handle incoming SMTP calls run under the Exim user, so any files
that are refer enced by the expansion of server_condition must be accessible to
that user.

For the LOGIN authentication mechanism, no data is sent with the AUTH command.
Instead, a username and password are supplied separately, in response to
pr ompts. The plaintext authenticator can be configured to support this as in this
example:

fixed_login:
driver = plaintext
public_name = LOGIN
server_prompts = "User Name : Password"
server_condition = \
${if and {{eq{$1}{ph10}}{eq{$2}{secret}}}{yes}{no}}

server_set_id = $1

This authenticator would in fact accept data as part of the AUTH command, but if
the client does not supply it (as is the case for LOGIN clients), the prompt strings
ar e used to obtain the two data items.

* Many operating systems no longer keep encrypted passwords directly in /etc/passwd as implied by
this example; also, it is more secur e not to use login passwords for SMTP authentication if you can
avoid it.

SMTP Authentication 365

9 October 2001 09:11

366 Chapter 15: Authentication, Encryption, and Other SMTP Processing

Using plaintext in a Client
The plaintext authenticator has just one client option, called client_send_string.
The string is a colon-separated list of authentication data strings. Each string is
independently expanded before being sent to the server. The first string is sent
with the AUTH command; subsequent strings are sent in response to prompts from
the server.

Because the PLAIN authentication mechanism requir es zer o bytes in the data sent
with the AUTH command, further processing is applied to each string before it is
sent. If there are any single circumflex characters in the string, they are converted
to zeros. Should an actual circumflex be requir ed as data, it must be doubled in
the string.

This is an example of a client configuration that implements PLAIN authentication
mechanism with a fixed name and password:

fixed_plain:
driver = plaintext
public_name = PLAIN
client_send = ˆph10ˆsecret

The lack of colons in client_send means that the entire text is sent with the AUTH

command, with the circumflex characters converted to zero bytes. A similar exam-
ple that uses the LOGIN mechanism is:

fixed_login:
driver = plaintext
public_name = LOGIN
client_send = : ph10 : secret

The initial colon ensures that no data is sent with the AUTH command itself. The
remaining strings are sent in response to prompts.

Using cram_md5 in a Server
This authenticator has one server option, which must be set to configure the
authenticator as a server. It is called server_secret. When the server receives the
client’s response, the ‘‘username’’ is placed in the expansion variable $1, and
server_secret is expanded to obtain the password for that user. The server then
computes the CRAM-MD5 digest that the client should have sent, and checks that
it received the correct string. If the expansion of server_secret is forced to fail,
authentication fails. If the expansion fails for some other reason, a temporary error
code is retur ned to the client.

For example, the following authenticator checks that the username given by the
client is ph10, and if so, uses secret as the password. For any other username,

9 October 2001 09:11

authentication fails. A more sophisticated version might look up the secret string in
a file, using the username as the key:

fixed_cram:
driver = cram_md5
public_name = CRAM-MD5
server_secret = ${if eq{$1}{ph10}{secret}fail}
server_set_id = $1

If authentication succeeds, the setting of server_set_id pr eserves the username in
$authenticated_id.

Using cram_md5 in a Client
When used as a client, the cram_md5 authenticator has two options, client_name
and client_secret, which must both be set. They are expanded and used as the
user name and secret strings, respectively, when computing the response to the
server’s challenge.

Forced failure of either expansion string is treated as an indication that this
authenticator is not prepar ed to handle this case. Exim moves on to the next con-
figur ed client authenticator. Any other expansion failure causes Exim to give up
trying to send the message to the current server.

A simple example configuration of a cram_md5 client authenticator, using fixed
strings, is as follows:

fixed_cram:
driver = cram_md5
public_name = CRAM-MD5
client_name = ph10
client_secret = secret

Most authenticating clients connect only to a single server to deliver their mail, in
which case this kind of simple configuration is sufficient. If several servers are
involved, the conditional features of expansion strings can be used to select the
corr ect data for each server by referring to $host or $host_address in the options.

Encr ypted SMTP Connections
RFC 2487 defines how SMTP connections can be set up so that the data that
passes between two hosts is encrypted in transit. Once a connection is established,
the client issues a STARTTLS command. If the server accepts this, they negotiate an
encryption mechanism to be used for all subsequent data transfers. Note that this
pr ovides security only when data is in transit between two hosts. It does not pro-
vide end-to-end encryption from the original sender to the final mailbox.

Encr ypted SMTP Connections 367

9 October 2001 09:11

368 Chapter 15: Authentication, Encryption, and Other SMTP Processing

Support for Transport Layer Security (TLS), otherwise known as Secure Sockets
Layer (SSL), is implemented in Exim by making use of the OpenSSL library.* Ther e
is no cryptographic code in the Exim distribution itself.

In order to use this feature you must install OpenSSL, and then build a version of
Exim that includes TLS support. You also need to understand the basic concepts of
encryption at a managerial level, and in particular, the way that public keys, pri-
vate keys, and certificates are used, including the concepts of certificate signing
and certificate authorities. If you don’t understand about certificates and keys,
please try to find a source of this background information, which is not specific to
Exim or even to mail processing. Some helpful introductory material can be found
in the FAQ section for the SSL addition to the Apache web server, at
http://www.modssl.or g/docs/2.7/ssl_faq.html#ToC24

Other parts of this documentation are also helpful, and contain links to further
files.

You can create a self-signed certificate using the req command provided with
OpenSSL, like this:

openssl req -x509 -newkey rsa:1024 -keyout file1 -out file2 \
-days 9999 -nodes

file1 and file2 can be the same file; the key and the certificate are delimited and so
can be identified independently. The -days option specifies a period for which the
certificate is valid; here we are specifying a long time. The -nodes option is impor-
tant: if you do not set it, the key is encryped with a pass phrase that you are
pr ompted for, and any use that is made of the key causes more prompting for the
pass phrase. This is not helpful if you are going to use this certificate and key in
an MTA, where prompting is not possible.

A self-signed certificate made in this way is sufficient for testing, and may be ade-
quate for all your requir ements if you are mainly interested in encrypting transfers
and not in secure identification.

Configur ing Exim to Use TLS as a Server
When Exim has been built with TLS support, it advertises the availability of the
STARTTLS command to client hosts that match tls_advertise_hosts, but not to any
others. The default value of this option is unset, which means that STARTTLS is not
advertised at all. This default is chosen because it is sensible for systems that want
to use TLS only as a client.

* See http://www.openssl.or g/.

9 October 2001 09:11

To support TLS on a server, you must set tls_advertise_hosts to match some
hosts, and you must also specify files that contain a certificate and a private key.
For example:

tls_advertise_hosts = *
tls_certificate = /etc/secure/exim/cert
tls_privatekey = /etc/secure/exim/privkey

The first file contains the server’s X509 certificate, and the second contains the pri-
vate key that goes with it. These files need to be readable by the Exim user. They
can be the same file if both the certificate and the key are contained within it.

With just these two options set, Exim will work as a server with clients such as
Netscape. It does not requir e the client to have a certificate (but see the next sec-
tion for how to insist on this). There is one other option that may be needed in
other situations. If tls_dhparam is set to a filename, the SSL library is initialized for
the use of Diffie-Hellman ciphers with the parameters contained in the file. This
incr eases the set of ciphers that the server supports.*

The strings supplied for the options that specify files are expanded every time a
client host connects. It is therefor e possible to use differ ent certificates and keys
for differ ent hosts, if you so wish, by making use of the client’s IP address in
$sender_host_addr ess to control the expansion. If a string expansion is forced to
fail, Exim behaves as if the option is not set.

Setting Conditions on TLS Connections
If you want to enforce conditions on incoming TLS connections, you must set
tls_verify_hosts to match the relevant clients. By default, this host list is unset.
You could, of course, use the following:

tls_verify_hosts = *

to make it apply to all TLS connections. When a client host is in this list, two fur-
ther options are relevant:

• tls_verify_ciphers contains a colon-separated list of permitted ciphers. The
list is passed to the OpenSSL library, so it must always be colon-separated;
Exim’s alternate separator feature does not apply. For example:

tls_verify_ciphers = DES-CBC3-SHA:IDEA-CBC-MD5

With this option set, all TLS sessions must use one of the listed ciphers.

• tls_verify_certificates contains the name of a file or a directory that con-
tains a collection of expected certificates. When tls_verify_certificates is

* See the command openssl dhparam for a way of generating this data.

Encr ypted SMTP Connections 369

9 October 2001 09:11

370 Chapter 15: Authentication, Encryption, and Other SMTP Processing

active, Exim requests a certificate from the client, and fails if one is not pro-
vided or does not match any certificate in the collection.

A single file can contain multiple certificates, concatenated end to end. If a
dir ectory is used, each certificate must be in a separate file with a name (or a
symbolic link) of the form <hash>.0, wher e <hash> is a hash value constructed
fr om the certificate. You can compute the relevant hash by running the com-
mand:

openssl x509 -hash -noout -in /cert/file

wher e /cert/file contains just one certificate.

Both these options are expanded before use, so again you can make them do dif-
fer ent things for differ ent hosts.

Forcing Clients to Use TLS
You can insist that certain client hosts use TLS, by setting tls_hosts to match
them. When a host is in tls_hosts, STARTTLS is always advertised to it, even if it is
not in tls_advertise_hosts. If such a host attempts to send a message without
starting a TLS session, the MAIL command is rejected with the error:

503 Use of TLS required

Allowing Relaying over TLS Sessions
You can permit client hosts to relay, provided they are in a TLS session, by setting
tls_host_accept_relay. Note that all the host relay checks are alter natives. Relay-
ing is permitted if any of the checks succeed, that is, if any of the following are
true:

• The host matches host_accept_relay.

• The host is authenticated and matches host_auth_accept_relay.

• The host is using a TLS session and matches tls_host_accept_relay.

Using tls_host_accept_relay pr obably makes sense only if you are checking the
client’s certificate, in order to provide some identification.

Variables That Are Set for a TLS Connection
The variable $tls_cipher is set to the name of the cipher that was negotiated for an
incoming TLS connection. It is included in the Received: header line of an incom-
ing message (by default; you can, of course, change this). It is also included in the
log line that records a message’s arrival, keyed by X=. If you don’t want this, set
tls_log_cipher false.

9 October 2001 09:11

When Exim has requested a certificate from a client, the value of the Distinguished
Name is made available in the variable $tls_peerdn during subsequent processing
of the message. Because it is often a long text string, it is not included in the log
line or the Received: header line by default. You can arrange for it to be logged or
keyed by DN= by setting tls_log_peerdn, and you can use received_header_text to
change the Received: header line.

Configur ing Exim to Use TLS as a Client
The tls_log_cipher and tls_log_peerdn options apply to outgoing SMTP deliver-
ies as well as to incoming messages, the latter option causing logging of the server
certificate’s Distinguished Name. The remaining client configuration for TLS is all
within the smtp transport.

It is not necessary to set any options to have TLS work in the smtp transport. If
TLS is advertised by a server, the smtp transport will automatically attempt to start
a TLS session. However, this can be prevented by setting hosts_avoid_tls (an
option of the transport) to a list of server hosts for which TLS should not be used.

If an attempt to start a TLS session fails for a temporary reason (for example, a 4xx

response to STARTTLS), delivery to this host is not attempted. If there are alter na-
tive hosts, they are tried; otherwise delivery is deferred. If, on the other hand, the
STARTTLS command is rejected with a 5xx err or code, the smtp transport attempts
to deliver the message in clear, unless the server matches hosts_require_tls, in
which case delivery is again deferred unless there are other hosts to try.

Ther e ar e a number of options for the smtp transport that match the global TLS
options for the server and have the same names:

• tls_certificate and tls_privatekey pr ovide the client with a certificate,
which is passed to the server if it requests it. (If the server is Exim, it will
request it only if tls_verify_certificates is set.)

• tls_verify_certificates and tls_verify_ciphers act exactly like their name-
sakes on the server; they do appropriate verification on the server’s certificate
and the negotiated cipher, respectively.

These options are all expanded before use with $host and $host_address contain-
ing the name and IP address of the server to which the client is connected. Forced
failur e of an expansion causes Exim to behave as if the relevant option were
unset.

Encr ypted SMTP Connections 371

9 October 2001 09:11

372 Chapter 15: Authentication, Encryption, and Other SMTP Processing

SMTP over TCP/IP
SMTP over TCP/IP is the only way of transferring messages between hosts that
Exim supports. The next few sections cover some of the detailed processing that
occurs. After that, we discuss some other uses of SMTP where a remote host is not
involved.

Outgoing SMTP over TCP/IP
Outgoing SMTP over TCP/IP is implemented by the smtp transport. If the server’s
response to EHLO indicates that the SIZE parameter is supported, Exim adds SIZE=n
to each subsequent MAIL command. The value of n is the message size plus the
value of the size_addition option (default 1024), to allow for additions to the
message such as per-transport header lines or changes made in a transport filter. If
size_addition is set negative, the use of SIZE is suppressed.

If Exim was built to support SMTP authentication, and the remote server advertises
support for the AUTH command and also matches auth_hosts, Exim scans the
authenticator configuration for any suitable client settings. If any are found, it tries
to authenticate before sending any messages, as described in the section “SMTP
Authentication,” earlier in this chapter. However, if no suitable authenticators are
found, or if authentication fails, Exim still continues processing and tries to deliver
the message regardless.

If a message contains a number of differ ent addr esses, all those with the same
characteristics (for example, the same envelope sender) that resolve to the same
set of hosts in the same order are sent in a single SMTP transaction, even if they
ar e for differ ent domains, unless there are mor e than the value of the max_rcpts

option in the smtp transport. In this case they are split into groups containing no
mor e than max_rcpts addr esses each. If remote_max_parallel is greater than one,
such groups may be sent in parallel sessions. The order of hosts with identical MX
values is not significant when checking whether addresses can be batched in this
way.

When the smtp transport suffers a temporary failure that is not message-related,
Exim updates its transport-specific database, which contains records indexed by
hostname that remember which messages are waiting for each particular host. It
also updates the retry database with new retry times. Exim’s retry hints are based
on hostname plus IP address, so if one address of a multihomed host is broken, it
is skipped most of the time. See Chapter 12, Delivery Errors and Retrying, for more
detail about error handling and retrying.

9 October 2001 09:11

When a message is successfully delivered over a TCP/IP SMTP connection, Exim
looks in the hints database for the transport to see if there are any queued mes-
sages waiting for the host to which it is connected. If it finds one, it creates a new
Exim process using the -MC option (which can only be used by a process running
as root or the Exim user) and passes the TCP/IP socket to it. The new process
does only those deliveries that are routed to the connected host, and may in turn
pass the socket on to a third process, and so on. When this is happening in a
queue run, the queue runner process does not proceed to the next message in the
queue until the whole sequence of deliveries is complete.

The batch_max option of the smtp transport can be used to limit the number of
messages sent down a single TCP/IP connection. The second and subsequent mes-
sages delivered down an existing connection are identified in the main log by the
addition of an asterisk after the closing square bracket of the IP address.

Incoming SMTP Messages over TCP/IP
Incoming SMTP messages over TCP/IP can be accepted in one of two ways: by
running a listening daemon or by using inetd. In the latter case, the entry in
/etc/inetd.conf should be like this:

smtp stream tcp nowait exim /usr/exim/bin/exim in.exim -bs

Exim distinguishes between this case and the case of a local user agent using the
-bs option by checking whether the standard input is a socket or not.

By default, Exim does not make a log entry when a remote host connects or dis-
connects (either via the daemon or inetd), unless the disconnection is unexpected.
It can be made to write such log entries by setting the log_smtp_connections

option.

The amount of disk space that is available is checked whenever SIZE is received
on a MAIL command, independently of whether message_size_limit or
check_spool_space is configured, unless smtp_check_spool_space is set false. A
temporary error is given if there is not enough space. The check is for the amount
specified in check_spool_space plus the value given with SIZE, that is, it checks
that the addition of the incoming message will not reduce the space below the
thr eshold.

When a message is successfully received, Exim includes the local message ID in its
response to the final dot that terminates the data, for example:

250 OK id=13M6GM-0005kt-00

If the remote host logs this text, it can help with tracing what has happened to a
message if a query is raised.

SMTP over TCP/IP 373

9 October 2001 09:11

374 Chapter 15: Authentication, Encryption, and Other SMTP Processing

Exim can be configured to verify addresses in incoming SMTP commands as they
ar e received. See Chapter 13 for details. It can also be configured to rewrite
addr esses at this time, before any syntax checking is done. See Chapter 14, Rewrit-
ing Addresses.

The VRFY and EXPN Commands
RFC 821 defines two SMTP commands that were intended to be helpful aids in
debugging delivery problems: VRFY verifies an email address, and EXPN lists the
expansion of an alias or mailing list. In former times, when the Internet was a
friendlier place where messages were often delivered directly to their destination
hosts, mail administrators made use of these commands regularly. Nowadays, with
so much more mail being delivered indirectly via mail hubs and gateways, their
potential usefulness has declined, and in addition, many administrators regard
them as security exposures.

Exim supports neither of these commands by default. VRFY is permitted only when
the configuration option smtp_verify is explicitly set. Otherwise, it responds in this
way:

252 VRFY not available

A success code (252) rather than an error code is used because some broken
clients issue a VRFY command before attempting to send a message. When VRFY is
accepted, exactly the same code as when Exim is called with the -bv option is run.

EXPN is permitted only if the calling host matches smtp_expn_hosts (add localhost

if you want calls to the loopback address to be able to use it). A single-level
expansion of the address is done. EXPN is treated as an address test (similar to the
-bt option) rather than a verification (the -bv option). If an unqualified local part is
given as the argument to EXPN, it is qualified with qualify_domain.

Rejections of VRFY and EXPN commands are logged on the main and reject logs,
and VRFY verification failures are logged on the main log for consistency with RCPT

failur es.

The ETRN Command
RFC 821 describes a command called TURN, which reverses the roles of the client
and server. The idea was that a client could connect, send its outgoing mail, and
then use TURN to become the server to receive incoming messages. However,
because no authentication was defined in RFC 821, this has serious security
pr oblems.

RFC 1985 describes an SMTP command called ETRN that is intended to overcome
the security problems of the original TURN command, while still permitting a client

9 October 2001 09:11

to connect and request that pending mail be delivered. This has found some favor
in communities where clients connect to servers by dial-up methods.

The ETRN command is concerned with ‘‘releasing’’ messages that are awaiting
delivery to certain hosts. They are not sent down the same connection that issued
the ETRN command, but are routed in the normal way over fresh TCP/IP connec-
tions, thus avoiding the security problems of TURN. Exim contains support for ETRN,
but it does not fit naturally into the way Exim is designed. Because Exim does not
organize its message queue by host, it is not straightforward to find ‘‘all messages
waiting for this host.’’ If you run a server that is a holding system for dial-up sys-
tems, and there is mor e than a trivial amount of mail to be kept, you should con-
sider delivering the pending mail into local files, using a differ ent dir ectory for
each host, say, as discussed in the section “Intermittently Connected Hosts,” in
Chapter 12. ETRN can still be used to start up a delivery program that reads mes-
sages from these files.

The ETRN command can be used in several formats in which its argument is
defined to be a host or a domain name. The only form that is supported entirely
within Exim is the one where the text starts with the # pr efix, in which case the
interpr etation of the remainder of the text is not defined and is specific to the
SMTP server. A valid ETRN command causes a run of Exim with the -R option, with
the remainder of the ETRN text as its argument. For example:

ETRN #brigadoon

runs the command:

exim -R brigadoon

which causes a delivery attempt on all messages with undelivered addresses con-
taining the text brigadoon. All addresses in the messages are consider ed for deliv-
ery, not just the ones that trigger the selection. Note that the supplied string is not
necessarily a host or domain name.

Exim recognizes ETRN only if the calling host matches smtp_etrn_hosts, an option
that is unset by default. Attempts to use ETRN fr om other hosts are logged on the
main and reject logs; when ETRN is accepted, it is logged on the main log.

When smtp_etrn_serialize is set (the default), it prevents the simultaneous execu-
tion of more than one queue run for the same argument string as a result of an
ETRN command. This stops a misbehaving client from starting more than one
queue runner at once. Exim implements the serialization by means of a hints
database in which a record is written whenever a process is started by ETRN, and
deleted when a -R queue run completes.

Obviously, there is scope for hints records to be left lying around if there is a sys-
tem or program crash. To guard against this, Exim ignores any records that are

SMTP over TCP/IP 375

9 October 2001 09:11

376 Chapter 15: Authentication, Encryption, and Other SMTP Processing

mor e than six hours old, but you should normally arrange to delete any files in the
spool/db dir ectory whose names begin with serialize- after a system reboot.

For more contr ol over what ETRN does, the smtp_etrn_command option can be used.
This specifies a command that is run whenever ETRN is received, whatever the
for m of its argument. For example:

smtp_etrn_command = /etc/etrn_command $domain $sender_host_address

The string is split up into arguments that are independently expanded. The vari-
able $domain is set to the argument of the ETRN command, but no syntax check-
ing is done on the contents of this argument. A new freestanding process is
cr eated to run the command. Exim does not wait for it to complete, so its status
code is not checked. As Exim is normally running under its own uid and gid when
receiving incoming SMTP, it is not possible for it to change them before running
the command.

Impor tant: If you use smtp_etrn_command to do something other
than run Exim with the -R option, you must disable
smtp_etrn_serialize, because otherwise hints are never deleted,
and further ETRN commands are ignor ed until the hints time out.

Local SMTP
Some user agents use SMTP to pass messages to their local MTA using the stan-
dard input and output, as opposed to passing the envelope on the command line
and writing the message to the standard input. This is supported by the -bs com-
mand-line option. This form of SMTP is handled in the same way as incoming
messages over TCP/IP, except that all host-specific processing is bypassed, and
any envelope sender given in a MAIL command is ignored unless the caller is
trusted.

Conversely, some software applications for managing message stores accept
incoming messages from an MTA using a variation of SMTP known as LMTP (RFC
2033). Exim supports this either via the lmtp transport for communicating with a
local process over a pipe, or by the protocol option of the smtp transport for
using LMTP over TCP/IP (see the section “The lmtp Transport” and the section
“The smtp Transport,” respectively, in Chapter 9, The Transports).

9 October 2001 09:11

Batched SMTP
Batched SMTP is a format for storing mail messages, in which the envelopes are
pr epended to the message in the form of SMTP commands. It is mostly used as an
inter mediate for mat between Exim and another form of transport such as UUCP, or
as a private delivery agent for dial-up clients. Delivering messages into files in
batched SMTP format is discussed in Chapter 9.

Messages from other sources that are in batch SMTP format can be passed to Exim
by means of the -bS command-line option, which causes Exim to accept one or
mor e messages by reading SMTP on the standard input, but generate no
responses. If the caller is trusted, the senders in the MAIL commands are believed;
otherwise, the sender is always the caller of Exim. Unqualified senders and
receivers are not rejected (there seems little point) but instead are automatically
qualified. If sender_verify is set, sender verification takes place only if
sender_verify_batch is set (it defaults unset). Receiver verification and administra-
tive rejection is not done, even if configured. HELO and EHLO act as RSET; VRFY,
EXPN, ETRN, HELP, and DEBUG act as NOOP; QUIT quits.

If any error is detected while reading a message, including a missing dot at the
end, Exim gives up immediately. It writes details of the error to the standard out-
put in a stylized way that the calling program should be able to make some use of
automatically, for example:

554 Unexpected end of file
Transaction started in line 10
Error detected in line 14

It writes a more verbose version for human consumption to the standard error file,
for example:

An error was detected while processing a file of BSMTP input.
The error message was:

501 ’>’ missing at end of address

The SMTP transaction started in line 10.
The error was detected in line 12.
The SMTP command at fault was:

rcpt to:<malformed@in.com.plete

1 previous message was successfully processed.
The rest of the batch was abandoned.

The retur n code from Exim is zero only if there wer e no errors. It is 1 if some
messages were accepted before an err or was detected, and 2 if no messages were
accepted.

Batched SMTP 377

9 October 2001 09:11

16
File and Database Lookups

We have introduced and given brief explanations of the way Exim can be config-
ur ed to look up data in files and databases in earlier chapters. Lookups give you a
lot of flexibility in the way you store the data that controls Exim’s behavior. They
also allow Exim to make use of common, companywide databases that can be
shar ed with other programs. Lookups can be used in several differ ent kinds of
configuration items, but they operate in the same way in each case. This chapter
covers the underlying lookup mechanisms in detail; there are many examples of
lookup usage throughout the book.

You can specify lookups in three differ ent types of configuration items:

• Any string that is to be expanded may contain explicit lookup requests, which
make it possible to replace portions of the string by data read from a file or
database. Details of the use of lookups in string expansions are given in Chap-
ter 17, String Expansion.

• The aliasfile dir ector and the domainlist router can be configured directly to
look up data in files.

• A number of configuration options contain lists of domains, hosts, or mail
addr esses that are to be checked against some item of data related to a mes-
sage. These lists can contain lookup items as a way of avoiding excessively
long linear lists in the configuration file. The item being checked is used as a
key for the lookup, and if the lookup succeeds, the item is taken as being in
the list. For long lists, an indexed lookup gives much improved perfor mance
over a linear scan. When Exim is using a lookup to check whether something

378

9 October 2001 09:11

is in a list, any data that is retur ned by the lookup is discarded; whether the
lookup succeeds or fails is all that counts.* Details of the use of lookups in
lists are given in Chapter 18, Domain, Host, and Address Lists.

Ther e ar e a number of differ ent types of lookups, and each is implemented by a
separate module of code that is included in Exim only if it is requested when the
binary is built. This makes it easy to add new kinds of lookups, while at the same
time not requiring every Exim binary to include all possible lookups. The default
build-time configuration includes only the lsearch and dbm lookups, so if you
want to use any other kind, you must ensure that Exim has been built to include
them.

Ther e ar e two differ ent ways in which the main part of Exim can call a lookup
module, but each individual module uses just one of them. This is known as the
style of the lookup.

• Modules that support the single-key style are given the name of a file in which
to look, and a key to search for. The lookup type determines how the file is
searched. If the key is found in the file, a single data string is retur ned. This
style handles plain files, indexed files, and NIS maps.

• Modules that support the query style accept a generalized query, which may
contain one or more items of data, and they may retur n one or more items of
data. This style is used to access databases such as those held by NIS+, LDAP,
MySQL, or PostgreSQL.

To per form a lookup, Exim hands over the necessary data to the relevant lookup
module, and receives in retur n a string of data that was looked up, or an indica-
tion that the lookup did not succeed. Each lookup, even when coded entirely
within Exim itself, is treated as a ‘‘black box’’ whose internals are not visible to the
rest of the program. This is illustrated in Figure 16-1.

Ther e ar e no restrictions on where the differ ent kinds of lookup can be used. Any
kind of lookup can be used wherever a lookup is permitted.

Single-Key Lookup Types
A single-key lookup provides a way of searching a set of data consisting of (key,
value) pairs, where the keys are fixed strings. Such data is often shown as a
sequence of lines with a key at the start of each line, separated from its data by a

* This is a simplification; there are in fact two special cases, the domains and local_parts options in
dir ectors and routers, where the data is preserved for later use.

Single-Key Lookup Types 379

9 October 2001 09:11

380 Chapter 16: File and Database Lookups

Exim

Single-key
lookup

Query-style
lookup

Data

Key, filename query

Isearch
dbm
cdb
NIS

NIS+
LDAP

MySQL
PostgreSQL
DNS lookup

Figur e 16-1. File and database lookups

colon, even if in operation the data is actually stored in some other way, such as
in a NIS map. For example:

root: postmaster@simple.example,
postmaster: simon@simple.example

A file that contains data in this format can in fact be searched directly by means of
the lsearch lookup type, which generalizes the format slightly. The file is searched
linearly from the start for a line beginning with the key, and terminated by a colon
or whitespace or the end of the line. Whitespace between the key and the colon is
per mitted (and ignored). The remainder of the line, with leading and trailing
whitespace removed, is the data. This can be continued onto subsequent lines by
starting them with any amount of whitespace, but only a single-space character is
retained in the data at such a junction. If the data begins with a colon, the key
must be terminated by a colon rather than whitespace, for example:

exuser: :fail: This person has gone away.

Empty lines and lines beginning with # are ignor ed, even if they occur in the mid-
dle of an item. This is the traditional format of alias files, and on most systems, an
example can be seen in /etc/aliases. The keys in lsearched files are literal strings
and are not interpreted in any way.

When such files are large, searching them linearly is inefficient, and it is better to
convert the data into one of the other single-key formats, in which an index is
used for faster lookup. It is not necessary to know the detailed format of such
files, as they are read and written only by the library functions that implement the
lookup method.

The most common such format is called DBM. Most modern versions of Unix have
a DBM library installed as standard, though this is not true of some older systems.
The two most common DBM libraries are ndbm (standard on Solaris and IRIX)

9 October 2001 09:11

and Berkeley DB Version 2 or 3 (standard on several free operating systems).*

Exim supports both of these, as well as the older Berkeley DB Version 1, gdbm,
and tdb. The choice of which DBM library to use is made when Exim is built.

Because DBM is so commonly used, Exim comes with a utility called exim_dbm-
build, which creates a DBM file† fr om a file in traditional alias format. For
example:

exim_dbmbuild /etc/aliases /etc/aliases.db

builds a DBM version of the system aliases file and calls it /etc/aliases.db. This can
then be used by changing the search type and filename in the director that han-
dles aliases, so that instead of a linear search, a keyed DBM lookup is now used:

system_aliases:
driver = aliasfile
file = /etc/aliases.db
search_type = dbm

One complication in the implementation of DBM lookups is whether the key
strings include a terminating binary zero byte or not. Both Exim itself and the
exim_dbmbuild utility include a terminating zero. However, if you use some other
means of creating DBM files (for example, the DBM functions in Perl), you may
end up with files that do not have this extra character in the keys. Such files can
be read by Exim using the dbmnz lookup type instead of dbm.

Using a DBM file is more efficient than a linear search if the file has more than a
few dozen entries in it. However, because DBM libraries provide both reading and
updating facilities, it is not as efficient as a read-only indexed file format, which
requir es less overhead. This is where the next lookup type comes in.

The cdb lookup type searches a Constant DataBase file. The cdb format is
designed for indexed files that are read frequently and never updated, except by
total re-cr eation. As such, it is particulary suitable for large files containing aliases
or other indexed data refer enced by an MTA. Information about cdb is found at
http://www.pobox.com/˜djb/cdb.html. The cdb distribution isn’t needed to build
Exim with cdb support, because the code for reading cdb files is included directly
in Exim itself. However, no means of building or testing cdb files is provided with
Exim because these are available within the cdb distribution. The usual way to
build a cdb file from a ‘‘flat’’ file is to run a command of the following form:

12tocdbm < /etc/aliases | \
cdbmake /etc/aliases.cdb /etc/aliases.tmp

* You can find information about Berkeley DB at http://www.sleepycat.com.

† Or files, because some DBM libraries use more than one file.

Single-Key Lookup Types 381

9 October 2001 09:11

382 Chapter 16: File and Database Lookups

This uses two utilities that are part of the cdb distribution. However, it works only
on input files that have spaces separating the keys and data (a colon is not treated
specially), and no continuation lines, so conventional alias files may need editing
first. The 12tocdbm command converts the flat file into a format that has the
lengths of the key and data at the start of each line, and the cdbmake command
uses this data to create a cdb file in the temporary file whose name is its second
argument. If this is successful, the temporary file is renamed to the first argument.

The final type of single-key lookup is nis. This does a NIS lookup using the file-
name as the name of a NIS map in which to look up the key.* Exim doesn’t recog-
nize aliases for NIS map names; the full name must always be used, as in this
dir ector:

system_aliases:
driver = aliasfile
file = mail.aliases
search_type = nis

Quer y-Style Lookup Types
Query-style lookups give access to collections of data where the search function
pr ocesses a generalized query, as opposed to the simple filename and key string
that the single-key lookups use. In addition, some query-style lookups can retur n
mor e than one value at once. You can pick out individual values from such data
using the extract featur e of string expansions.†

The query-style lookup interface allows Exim to read data from a number of gen-
eral database servers, brief descriptions of which are included here. Before using
any of these databases with Exim, you should first become familiar with the con-
cepts and mode of operation from the database’s own documentation.

Quoting Lookup Data
When data from an incoming message is included in a query-style lookup, special
characters in the data can cause syntax errors in the query. For example, a NIS+
query that contains:

[name=$local_part]

will be broken if the local part happens to contain a closing square bracket.

* The terminating zero is nor mally excluded from the key, but there is a variant called nis0 that does
include the terminating binary zero in the key.

† See the section “Extracting Fields from Substrings,” in Chapter 17.

9 October 2001 09:11

For NIS+, data can be enclosed in double quotes in the following manner:

[name="$local_part"]

but this then leaves the problem of a double quote in the data. The rule for NIS+
is that double quotes must be doubled. Other lookup types have differ ent rules,
and to cope with the differing requir ements, an expansion operator is provided for
each query-style lookup to quote according to the lookup’s rules. For example, the
safe way to write the NIS+ query is:

[name="${quote_nisplus:$local_part}"]

See Chapter 17 for full coverage of string expansions. A quote operator can be
used for all lookup types, but has no effect for single-key lookups, because no
quoting is ever needed in their key strings.

NIS+
Although NIS+ does not seem to have become as popular as NIS, it is nevertheless
used by some sites. Using NIS+ jargon, a query consists of an indexed name fol-
lowed by an optional colon and field name. If a field name is included, the result
of a successful query is the contents of the named field; if a field name is not
included, the result consists of a concatenation of field-name=field-value pairs,
separated by spaces. Empty values and values containing spaces are quoted. For
example, the following query:

[name=mg1456],passwd.org_dir

might retur n the string:

name=mg1456 passwd="" uid=999 gid=999 gcos="Martin Guerre"
home=/home/mg1456 shell=/bin/bash shadow=""

(split over two lines here to fit on the page), whereas:

[name=mg1456],passwd.org_dir:gcos

would just retur n the gcos field as

Martin Guerre

with no quotes. A NIS+ lookup fails if NIS+ retur ns mor e than one table entry for
the given indexed name. An example of a director that uses NIS+ to handle aliases
is:

system_aliases:
driver = aliasfile
query = [name="${quote_nisplus:$local_part}"],aliases.org_dir:address
search_type = nisplus

Instead of the file option that is used for single-key lookups, the query option is
used. The data that is being looked up (the local part) is given explicitly in the

NIS+ 383

9 October 2001 09:11

384 Chapter 16: File and Database Lookups

query, whereas for single-key lookups it is implicit. This query assumes there is a
NIS+ table called aliases.or g_dir containing at least two fields, name and addr ess.

LDAP
An increasingly popular protocol for accessing databases that hold information
about users is LDAP. Exim supports LDAP queries in the form of a URL, as defined
in RFC 2255. For example, in the configuration of an aliasfile dir ector, one might
have these settings:

system_aliases:
driver = aliasfile
search_type = ldap
query = ldap:///\

cn=${quote_ldap:$local_part},o=University%20of%20Cambridge,\
c=UK?mailbox?base?

This searches for a record whose cn field is the local part, and extracts its mailbox
field. This example does not specify which LDAP server to query, but a specific
LDAP server can be specified by starting the query with:

ldap://hostname:port/...

If the port (and preceding colon) are omitted, the standard LDAP port (389) is
used.

When no server is specified in a query, a list of default servers is taken from the
ldap_default_servers configuration option. This supplies a colon-separated list of
servers that are tried in turn until one successfully handles a query or there is a
serious error. Successful handling either retur ns the requested data or indicates
that it does not exist. Serious errors are syntactical, or finding multiple values
when only a single value is expected. Errors that cause the next server to be tried
ar e connection failures, bind failures, and timeouts. In other words, the servers in
the list are expected to contain identical data, with the later ones acting as back-
ups for the earlier ones.

For each server name in the list, a port number can be given. The standard way of
specifying a host and port is to use a colon separator (RFC 1738). Because
ldap_default_servers is a colon-separated list, such colons have to be doubled.
For example:

ldap_default_servers = \
ldap1.example.com::145 : ldap2.example.com

If ldap_default_servers is unset, a URL with no server name is passed to the
LDAP library with no server name, and the library’s default (normally the local
host) is used.

9 October 2001 09:11

The LDAP URL syntax provides no way of passing authentication and other control
infor mation to the server. To make this possible, the URL in an LDAP query may
be preceded by any number of name=value settings, separated by spaces. If a
value contains spaces, it must be enclosed in double quotes. The following names
ar e recognized:

user
Sets the Distinguished Name for authenticating the LDAP bind.

pass
Sets the password for authenticating the LDAP bind.

size
Sets the limit for the number of entries retur ned.

time
Sets the maximum waiting time for a query.

The values may be given in any order. Her e is the query option of the previous
example with added authentication data:

query = \
user="cn=admin,o=University of Cambridge,c=UK" \
pass = secret \
ldap:///\
cn=${quote_ldap:$local_part},o=University%20of%20Cambridge,\
c=UK?mailbox?base?

A problem with placing a password directly in a query such as this is that the val-
ues of Exim’s configuration settings can be obtained by using the -bP command-
line option, so any user of the system who can run Exim can see this information.
If you are using Exim 3.20 or later, you can prevent this by putting the word hide

in front of the option setting:

hide query = ...

When hide is present, only admin users can extract the value using -bP. Another
way of keeping the password secret is to place it in a separate file, accessible only
to the Exim user, and use a lookup in the expansion to obtain its value.

Data Returned by an LDAP Lookup
Although in many cases, such as the earlier example, an LDAP query is expected
to find a single entry and extract the value of just one of its attributes, an LDAP
lookup may in fact find multiple entries in the database, each with any number of
attributes. However, if a lookup finds an entry with no attributes, it behaves as if
the entry did not exist.

LDAP 385

9 October 2001 09:11

386 Chapter 16: File and Database Lookups

You can control what happens if more than one entry is found by varying the
lookup type. There are thr ee LDAP lookup types that behave differ ently in the
way they handle the results of a query:

ldap

ldap requir es the result to contain just one entry; if there are mor e, it gives an
err or. However, mor e than one attribute value may be taken from the entry.

ldapdn

ldapdn also requir es the result to contain just one entry, but it is the Distin-
guished Name that is retur ned rather than any attribute values.

ldapm

ldapm per mits the result to contain more than one entry; the attributes from all
of them are retur ned, with a newline inserted between the data from each
entry.

In the common case where you specify a single attribute in your LDAP query, the
result is not quoted, and if there are multiple values, they are separated by com-
mas. If you specify multiple attributes, they are retur ned as space-separated
strings, quoted if necessary, and preceded by the attribute name. For example:

ldap:///o=base?attr1,attr2?sub?(uid=fred)

might yield:

attr1="value one" attr2=value2

If you do not specify any attributes in the search, the same format is used for all
attributes in the entry. For example:

ldap:///o=base??sub?(uid=fred)

might yield:

objectClass=top attr1="value one" attr2=value2

The extract operator in string expansions can be used to pick out individual fields
fr om such data.

MySQL and Postg reSQL
MySQL and PostgreSQL are open source database packages whose queries are
expr essed in the SQL language. Handling aliases using MySQL could be config-
ur ed like this:

system_aliases:
driver = aliasfile
query = select mailbox from userdata \

where id=’${quote_mysql:$local_part}’
search_type = mysql

9 October 2001 09:11

For PostgreSQL, the configuration is identical, except that mysql is replaced by
pgsql wher ever it appears.

If the result of the query contains more than one field, the data for each field in
the row is retur ned, pr eceded by its name, so the result of the following:

select home,name from userdata where id=’ph10’

might be:

home=/home/ph10 name="Philip Hazel"

Values containing spaces and empty values are double-quoted, with embedded
quotes escaped by backslash.

If the result of the query contains just one field, the value is passed back verbatim
without a field name, for example:

Philip Hazel

If the result of the query yields more than one row, it is all concatenated, with a
newline between the data for each row.

Befor e it can use MySQL or PostgreSQL lookups, Exim has to be told where the
relevant servers are. There is no default server as for LDAP. It also needs to know
which username and password to use when connecting to a server, and which
database to search. This is done by setting the mysql_servers or pgsql_servers

option to a colon-separated list of data for each server. Each item contains a host-
name, database name, username, and password, separated by slashes. This
example lists two servers:

hide pgsql_servers = localhost/userdb/root/secret:\
otherhost/userdb/root/othersecret

Note the use of the hide pr efix to protect the value of the variable. When hide is
pr esent, only admin users can extract the value using -bP. For each query, the
servers are tried in order until a connection and a query succeeds. A host may be
specified as name:port, but because this is a colon-separated list, the colon has to
be doubled.

For MySQL, the database name may be empty, for example:

hide mysql_servers = localhost//root/secret

but if it is, the identity of the database must be specified in every query. For
example:

select mailbox from userdb.userdata where ...

is a query that selects from the table called userdata in the database called userdb.
This facility is not available in PostgreSQL.

MySQL and Postg reSQL 387

9 October 2001 09:11

388 Chapter 16: File and Database Lookups

DNS Lookups
Dir ect access to the DNS is available within Exim’s configuration through a query-
style lookup called dnsdb. A query consists of a DNS record type name and a DNS
domain name, separated by an equal sign. The result of a lookup is the righthand
side of any DNS records that are found, separated by newlines if there are mor e
than one of them, in the order they were retur ned by the DNS resolver. For
example, this string expands into the MX hosts for the domain a.b.example :

${lookup dnsdb{mx=a.b.example}{$value}}

The DNS types that are supported are A (IPv4 address), AAAA and A6 (IPv6
addr ess, available when Exim is compiled with IPv6 support), CNAME (canonical
name), MX (mail exchanger), NS (name server), PTR (pointer), and TXT (text).
When the type is MX, the data for each record consists of the prefer ence value
and the hostname, separated by a space. When the type is PTR, the address
should be given as normally written; it is converted to the necessary in-addr.arpa
(IPv4) or ip6.arpa (IPv6) format internally. For example:

${lookup dnsdb{ptr=192.168.4.5}{$value}}

If the type is omitted, it defaults to TXT for backwards compatibility with earlier
versions of Exim.

Implicit Keys in Quer y-Style Lookups
When a query-style lookup is used in a string expansion or a driver configuration
(such as the earlier examples), all the parameters of the lookup are specified
explicitly, and the data that is needed to construct them is available in Exim’s
expansion variables.

However, when a lookup appears in a host, domain, or address list, there is an
implicit key that does not necessarily correspond to the value of any variable. This
is not a problem for single-key lookups; the relevant filename is specified, and the
implicit key is used. For example, the list of local domains could be given as:

local_domains = dbm;/local/domain/list

which checks for a local domain by doing a DBM lookup on the file
/local/domain/list. If ther e is a record in the file whose key matches the domain
that is being checked, the domain is treated as local.

However, with query-style lookups, a complete query has to be specified. To do
this, some means of including the implicit key is requir ed because each query-
style lookup has its own query syntax. The special expansion variable $key is pro-
vided for this purpose when lists are being scanned. NIS+ could be used to look
up local domains by a setting such as:

9 October 2001 09:11

local_domains = nisplus;[domain=$key],domains.org_dir

Because of the need to incorporate the value of $key, query-style lookups that
appear in lists are expanded before they are used.

Temporar y Er ror s in Lookups
Lookup functions can retur n temporary error codes if the lookup cannot be com-
pleted. For example, an LDAP or NIS database might be unavailable. When this
occurs in a transport, director, or router, delivery of the message is deferred, as for
any other temporary error. In other circumstances, Exim generates a temporary
err or if possible. It is not advisable to use a lookup that might defer for critical
options such as local_domains.

Default Values in Single-Key Lookups
In this context, a ‘‘default value’’ is a value specified by the administrator to be
used instead of the result of a lookup if the lookup fails to find any data for the
given key. If an asterisk is added to a single-key lookup type name (for example,
lsearch*), and the initial lookup fails, the key that consists of the literal string * is
looked up in the file to provide a default value. For example, if an alias file
contains:

*: info
postmaster: pat
sales: sam

any local part other than postmaster or sales is aliased to info. Notice that putting
the default entry first does not mean that it applies to every lookup. The asterisk
used here is not a wildcard in the sense that it matches anything; it is just a conve-
nient string to use to mean ‘‘default.’’ In linearly searched files, putting it first
means that it is found quickly when it is needed.

However, this example would not actually be a useful alias file in a configuration
wher e aliasing is handled by the first director (as in the default configuration).
Addr esses generated by aliasing are reevaluated, so when pat and sam ar e
dir ected, the alias default is taken, and so all messages would end up in the info
mailbox. The simplest way to solve this problem is to put the aliasing director last
instead of first.

When alias files have keys that are complete mail addresses rather than just local
parts, defaults for individual domains may be needed. Consider this file:

ted@domain1.example: edward@domain3.example
ted@domain2.example: edwin@domain4.example
*@domain1.example: postmaster@domain2.example
*: postmaster@domain3.example

Default Values in Single-Key Lookups 389

9 October 2001 09:11

390 Chapter 16: File and Database Lookups

It provides a default for domain1.example and a general default for all other
domains. Such a file can be handled by adding *@ to a single-key lookup type
name (for example dbm*@). If the initial lookup fails and the key contains an @
character, a second lookup is done with everything before the last @ in the key
replaced by *. If the second lookup fails (or doesn’t take place because there is no
@ in the key), * is looked up as an ultimate default. If the original key is
jim@domain1.example, for instance, a single-key search type such as cdb*@ would
look up the following keys:

jim@domain1.example
*@domain1.example
*

The first one that succeeds provides the result of the lookup.

Partial Matching in Single-Key Lookups
Nor mally, a single-key lookup searches the file for an exact match with the given
key. However, in a number of situations where domains are being looked up, it is
useful to be able to do partial matching, where only the final components of the
search key match a key in the file. Suppose, for instance, you want to match all
domains that end in dates.example. First, you must create the special key:

*.dates.example

in the file. No normal search for a domain can ever match that item, because
domains cannot contain asterisks. However, if you add the string partial- to the
start of a single-key lookup type (for example, partial-dbm), Exim behaves in a
dif ferent way. First, it looks up the original key; if that fails, an asterisk component
is added at the start of the subject key, and it is looked up again. If that fails, Exim
starts removing dot-separated components from the start of the subject key, one-
by-one, and adding an asterisk component on the front of what remains. This
means that keys in the file that do not begin with an asterisk are matched only by
unmodified subject keys even when partial matching is in use.

A default minimum number of two nonasterisk components is requir ed. If the sub-
ject key is 2250.futur e.dates.example, Exim does the following lookups, in this
order:

2250.future.dates.example
*.2250.future.dates.example
*.future.dates.example
*.dates.example

As soon as one key in the sequence succeeds, the lookup finishes. The minimum
number of components can be adjusted by including a number before the hyphen
in the search type. For example, partial3-lsearch specifies a minimum of three
nonasterisk components in the modified keys. If partial0- is used, the original

9 October 2001 09:11

key is shortened right down to the null string, and the final lookup is for an aster-
isk on its own.

If the search type ends in * or *@ (see the section “Default Values in Single-Key
Lookups,” earlier in this chapter), the search for an ultimate default that this
implies happens after all partial lookups have failed. If partial0- is specified,
adding * to the search type has no effect, because the * key is already included in
the sequence of partial lookups.

The use of * in lookup partial matching differs from its use as a wildcard in
domain lists and the like, where it just means ‘‘any sequence of characters.’’ Partial
matching works only in terms of dot-separated components, and the asterisk in a
partial matching subject key must always be followed by a dot. For example, you
could not use the following:

*key.example

as a key in a file to match partial lookups of donkey.example and
monkey.example.

Lookup Caching
An Exim process caches the most recent lookup result on a per-file basis for sin-
gle-key lookup types, and keeps the relevant files open. In some types of configu-
ration, this can lead to many files being kept open for messages with many
recipients. To avoid hitting the operating system limit on the number of simultane-
ously open files, Exim closes the least recently used file when it needs to open
mor e files than its own internal limit, which can be changed via the
lookup_open_max option. For query-style lookups, a single data cache per lookup
type is kept.

Lookup Caching 391

9 October 2001 09:11

17
Str ing Expansion

The combination of expansions and lookups makes it possible to configure Exim
in many differ ent ways. If you want to explore these differ ent possibilities, you
need to understand what string expansions can do for you. We cover a number of
examples in earlier chapters; this chapter contains a full explanation of the mecha-
nism, and descriptions of all the differ ent expansion items. A refer ence summary
of string expansion, including a list of all the expansion variables, is given in
Appendix A, Summary of String Expansion.

When Exim is expanding a string, special processing is triggered by the appear-
ance of a dollar sign. The expander copies the string from left to right until it hits a
dollar, at which point it reads to the end of the expansion item, does whatever
pr ocessing is requir ed, and adds the resulting substring to its output before contin-
uing to read the rest of the original string. Most, but not all, expansion items
involve the use of curly brackets (braces) as delimiters. For example, when
expanding the following string:

Before-${substr_4_2:$local_part}-After

the expander copies the initial substring Before-, then processes the expansion
item ${substr_4_2:$local_part} to produce the next part of the result, and finally
adds the substring -After at the end.

To make it possible to include a dollar character in the output of an expansion,
backslash is treated as an escape character by the expander. A number of special
sequences, such as \n for newline, are recognized.* If any other character follows
a backslash, it is treated as a literal with no special meaning. Thus, a literal dollar
sign is entered as \$ and a literal backslash as \\. Dollars and backslashes are

* These are in fact exactly the same set as those that are recognized by the string-reading code.

392

9 October 2001 09:11

almost always associated with regular expressions when they appear in expanded
strings. For example, the regular expression:

ˆ\d{8}@example\.com$

matches an email address where the local part consists of precisely eight digits,
and the domain is example.com. Suppose that you wanted to place the mailboxes
for such users in a special directory. Whereas an ordinary user’s mailbox is:

/var/mail/$local_part

you want to arrange for this group of users’ mailboxes to be:

/var/mail/special/$local_part

You could use a value like this for the file option in an appendfile transport:

file = /var/mail/\
${if match {$local_part}{ˆ\d{8}@example\.com$}\
{special/}}$local_part

The details of how the if expansion item works are described later in the section
on conditionals, but the idea is to match the local part against the regular expres-
sion, and if it matches, to insert special/ into the filename.

However, the previous option setting does not work because when the string is
expanded, the dollar and backslashes that are part of the regular expression are
interpr eted by the expander before it attempts the regular expression match, and
an error occurs, because $} is not a valid expansion item. So we have to use:

file = /var/mail/\
${if match {$local_part}{ˆ\\d{8}@example\\.com\$}\
{special/}}$local_part

wher e an extra backslash has been inserted before every dollar and backslash in
the regular expression.*

In the following sections, we cover the various differ ent kinds of items that can
occur in expansion strings. Whitespace may be used between subitems that are
keywords, or between substrings enclosed in braces inside an outer set of braces
to improve readability, but any other whitespace is taken as part of the string.

* If you enclose the value in double quotes, you have to insert yet more backslashes because they are
also special inside double quotes. This is a good reason for avoiding quotes unless you really need
their backslash interpretation.

Introduction 393

9 October 2001 09:11

394 Chapter 17: String Expansion

Variable Substitution
We use the variable $local_part many times in configuration examples, and also
mention several other variables. In fact, a large number of variables exist, contain-
ing data that might be of use in configuration files, and also in system and user fil-
ters. A complete list is given in Appendix A.

In most cases, we have been able to refer ence $local_part by including:

$local_part

in the configuration settings we have used. This format is fine, provided that what
follows the variable name is not a letter, digit, or underscore. If it is, the alternative
syntax:

${local_part}

must be used, so that the end of the variable’s name can be distinguished. An
expansion syntax error occurs if the name is unknown to Exim. You can test
whether a variable contains any data by means of the def condition, which is
described later in this chapter.

Header Insertion
The contents of a specific message header line can be inserted into a string by an
item of the form:

$header_from:

The abbreviation $h can be used instead of $header, and header names are not
case-sensitive. This example inserts the contents of the Fr om: header line. It is sim-
ilar to the insertion of the value of a variable, but there are some important
dif ferences:

• The name must be terminated by a colon, and curly brackets must not be
used because they are per mitted in header names.* The colon is not included
in the expanded text. If the name is followed by whitespace, the colon may
be omitted; in this case the whitespace is included in the expanded text. How-
ever, it is best to get into the habit of including the colon, so that you don’t
leave it out when it is really needed.

• If the message does not contain a header with the given name, the expansion
item adds nothing to the string; it doesn’t fail. Thus, use of the correct spelling
of header names is vital. If you use $header_reply_to:, for example, it doesn’t

* Any printing characters except colon and whitespace are per mitted by RFC 822.

9 October 2001 09:11

insert the contents of the Reply-T o: header. You can test for the presence of a
particular header by means of the def condition, which is described later in
this chapter.

The contents of header lines are most frequently refer enced fr om filter files (see
Chapter 10, Message Filtering) in commands such as:

if "$h_subject:" contains "Make money fast" then ...

but there are also situations where it can be useful to refer to them in driver con-
figurations.

If there is mor e than one header line with the same name (common with Received:
headers), they are concatenated and inserted together, including their terminating
newlines. However, once the string that is being built by concatenation exceeds 64
KB in length, further headers of the same name are ignor ed.

Operations on Substrings
A number of expansion items perfor m some operation on a portion of the expan-
sion string, having first expanded it in its own right. They are all of the form:

${operator-name:substring}

In some cases, the operator name is followed by one or more argument values,
separated by underscores. The substring starts immediately after the colon, and
may have significant leading and/or trailing whitespace. In a real configuration, it
always contains at least one expansion item; there is little point in writing a literal
string to be operated on, because you could do the operation yourself and write
the result instead.

Extracting the Initial Par t of a Substring
Consider this common setting of the file option in an appendfile transport:

file = /var/mail/$local_part

On a system with very many mailboxes, it is desirable not to keep them all in the
same directory, but rather to split them among several directories. A simple
scheme for doing this would be:

file = /var/mail/${length_1:$local_part}/$local_part

which interposes another directory level. The name of the intermediate directory is
computed from the local part by means of the length expansion operator, which

Operations on Substrings 395

9 October 2001 09:11

396 Chapter 17: String Expansion

extracts an initial substring from its argument, having first expanded it. Suppose
the local part is caesar. On encountering the following:

${length_1:$local_part}

during the expansion process, Exim first expands the operator’s argument, con-
verting the item to:

${length_1:caesar}

The length_1 operator then extracts the first character of caesar, befor e carrying
on with the rest of the string, so that the final mailbox name becomes:

/var/mail/c/caesar

Assuming all local parts start with a letter, this distributes the user mailboxes
among 26 subdirectories. If this were not enough, more characters from the local
part could be used:

file = /var/mail/${length_2:$local_part}/$local_part

This in theory produces 676 (26×26) subdirectories. The problem with this
appr oach is the letters in usernames are not usually spread evenly over the alpha-
bet, and so some subdirectories are mor e heavily used than others. (See the sec-
tion “Hashing Operators,” later in this chapter, for a better way of handling this.)

Extracting an Arbitrar y Part of a Substr ing
In addition to length, Exim has a substr operator that can be used to extract arbi-
trary substrings. For example:

${substr_3_2:$local_part}

extracts two characters starting at offset 3 in the local part. The first character in
the string has offset zero. Suppose you want to include the name of the month in
a filename for some reason. The variable $tod_full contains the current date and
time in the form:

Fri, 07 Apr 2000 14:25:48 +0100

fr om which the month can be extracted by:

${substr_8_3:$tod_full}

If the starting offset of substr is greater than the string length, the result is an
empty string; if the length plus starting offset is greater than the string length, the
result is the righthand part of the string, starting from the offset.

The substr operator can take negative offset values to count from the righthand
end of its operand. The last character is offset -1, the second-to-last is offset -2,
and so on. For example:

9 October 2001 09:11

${substr_-5_2:1234567}

yields 34. If the absolute value of a negative offset is greater than the length of the
string, the substring starts at the beginning of the string, and the length is reduced
by the amount of overshoot. For example:

${substr_-5_2:12}

yields an empty string, but:

${substr_-3_2:12}

yields 1. If the second number is omitted from substr, the remainder of the string
is taken if the offset is positive. If it is negative, all characters in the string preced-
ing the offset point are taken. For example:

${substr_4:penguin} yields uin
${substr_-4:penguin} yields pen

That is, an offset of -n with no length yields all but the last n characters of the
substring.

Hashing Operator s
For historical reasons, Exim has two hashing functions, one of which produces a
string consisting of letters and digits, whereas the other produces one or two
strings that are numbers. A setting for the one-letter mailbox subdirectory dis-
cussed earlier gives a more even spread:

file = /var/mail/${hash_1:$local_part}/$local_part

The hash_1 operator applies a hashing algorithm that produces a hash string of
length 1, chosen from the set of upper- and lowercase letters and digits. The sub-
dir ectory name is now a single character, out of 62 possibilities. Longer hash
strings can be requested by giving differ ent numbers after hash, and the character
set from which they are chosen can be controlled by a second parameter.

However, the newer, numeric hashing function (nhash) gives a more even spread
of results and can handle larger numbers of possibilities. Using the numeric hash,
the setting:

file = /var/mail/${nhash_62:$local_part}/$local_part

achieves a similar effect to the earlier string hash, though now the names of the
subdir ectories ar e numerical strings in the range 0–61. For use on very large sys-
tems, nhash can be requested to produce two numbers computed from a single
hash of the string. For example:

file = /var/mail/${nhash_8_64:$local_part}

Operations on Substrings 397

9 October 2001 09:11

398 Chapter 17: String Expansion

When this is done, the two numbers are separated by a slash, so caesar’s mailbox
might now be:

/var/mail/7/49/caesar

Forcing the Case of Letters
Two other operators that are sometimes useful are uc and lc, which force their
arguments to upper- or lowercase, respectively. Local parts of addresses are, in
general, case-sensitive according to the RFCs. Exim by default forces them to low-
ercase if they are in a local domain, because usernames on Unix systems are nor-
mally in lowercase.* However, it must preserve the case of local parts in remote
addr esses.

As an example, suppose a user wants to use a filter to file incoming messages in
dif ferent mail folders for differ ent senders, in a case-independent manner. A filter
command such as this could be used:

save $home/mail/${lc:$sender_address}

The lc operator ensures that the entire sender address is in lowercase when it is
used in the filename.

Character Translation
The tr expansion item translates single characters in strings into differ ent charac-
ters, according to its arguments. The first argument is the string to be translated,
and this is followed by two translation strings, normally of the same length. For
example, the following is used to translate a comma-separated list into a colon-
separated list:

${tr {a,b,c}{,}{:}} yields a:b:c

The second and third strings can contain more than one character. They corre-
spond one-to-one, and each character in the second string that is found in the first
string is replaced by the corresponding character in the third string. If there are
duplicates in the second string, the last occurrence is used. If the third string is
shorter than the second, its last character is replicated. However, if it is empty, no
translation takes place.

* See the section “Handling Local Parts in a Case-Sensitive Manner,” in Chapter 5, Extending the Deliv-
ery Configuration, for how to handle systems with mixed-case logins.

9 October 2001 09:11

Te xt Substitution
A general string substitution facility is available. It is called sg because it operates
like sed and Perl’s s operator with the /g (global) option. It takes three arguments:
the subject string, a regular expression, and a replacement string. For example:

${sg {abcdefabcdef}{abc}{**}} yields **def**def

The pattern is matched against the subject string, and the matched portion is
replaced by the replacement string. A new match is then begun on the remainder
of the subject, and this continues until the end of the subject is reached. If there
ar e no matches, the yield is the unaltered subject string. Within the replacement
string, the numeric variables $1, $2, and so on can be used to refer to captured
substrings in the regular expression match. Because all three arguments are
expanded before use, any $ characters that are requir ed in the regular expression
or in the replacement string have to be escaped. For example:

${sg {abcdef}{ˆ(...)(...)\$}{\$2\$1}} yields defabc

Conditional Expansion
A great deal of the power of the expansion mechanism comes from its ability to
vary the results of expansion items depending on certain conditions. The basic
conditional expansion item takes the following form:

${if condition {string1}{string2}}

The condition is tested, and if it is true, string1 is expanded and used as the
replacement for the whole item; if not, string2 is used instead. A number of dif-
fer ent conditions are available.

Testing for a Specific String
To test the exact value of a string, the eq condition is used. Here is an easy way to
implement an exceptional mailbox location for just one user:

file = ${if eq{$local_part}{john}\
{/home/john/inbox}\
{/var/mail/$local_part}}

The condition that is tested is eq{$local_part}{john}; following the condition
name eq, two substrings are given in curly brackets. Each is separately expanded
and then they are compar ed for equality. If they are equal, the first of the follow-
ing substrings is used; otherwise the second is used. So in this example, if the
local part is john, the mailbox is /home/john/inbox, wher eas for all other local
parts it is the result of expanding /var/mail/$local_part.

Conditional Expansion 399

9 October 2001 09:11

400 Chapter 17: String Expansion

It is often useful to lay out conditions and other complicated expansion strings
over several lines like this, because it makes them easier to read. Because the sub-
strings are independently expanded, they may contain their own conditional
expansions, which can make for very unreadable text. For example, if you want
an exceptional mailbox location for two users, it could be done by setting:

file = ${if eq{$local_part}{john}\
{/home/john/inbox}\
{\
${if eq{$local_part}{jack}\
{/home/jack/inbox}\
{/var/mail/$local_part}}\

}}

Laid out like this it is fairly easy to understand, compared with:

file = ${if eq{$local_part}{john\
}{/home/john/inbox}{${if eq\
{$local_part}{jack}{/home/jack/inbox}{\
/var/mail/$local_part}}}}

Clearly, this approach to this particular requir ement is usable only for a few cases,
because it does not scale very well. For large numbers of exceptions, another tech-
nique should be used. For local parts that match a pattern, you could use a regular
expr ession. Otherwise a file lookup could be used.

Negated Conditions
A separate condition for testing inequality is not provided because there is a gen-
eral negation mechanism for conditions. Any condition preceded by an exclama-
tion mark is negated, like this:

${if ! eq{$local_part}{john}{...

Of course, in the case of eq, another way of achieving the same effect is to trans-
pose the order of the two strings that follow the condition.

Regular Expression Matching
If you want to test a string for something other than simple equality, you can use a
regular expression. The match condition, like eq, takes the next two brace-enclosed
substrings as its arguments. The second is interpreted as a regular expression and
is matched against the first. For example:

${if match {$local_part}{ˆx\\d\\d}{...

tests whether a local part begins with x followed by at least two digits. The back-
slashes that form part of the regular expression have been doubled because they
ar e tr eated as escape characters by the expander. If ther e ar e any dollar or brace
characters in a regular expression, they too must be escaped. If the regular

9 October 2001 09:11

expr ession contains capturing parentheses, the captured substrings are available in
the variables $1, $2, and so on during the expansion of the ‘‘success’’ string.* For
example:

${if match {$local_part}{ˆx(\\d\\d)}{$1}}

not only tests $local_part as before, but yields the value of the two digits as its
result via the expansion of $1. If there is no match, its yield is the empty string.
When tests of this kind are nested, the values of the numeric variables ($1, $2, and
so on) are remember ed at the start of processing an if item, and restor ed after-
wards.

Encr ypted Str ing Compar ison
Ther e is one more condition for testing a string, with a very specific purpose.
When an Exim server is authenticating an SMTP connection† it may need to com-
par e a cleartext password with one that has been encrypted (for example, a user
password from /etc/passwd or equivalent). This is done by encrypting the cleartext
and comparing the result with the encrypted value Exim already has. It might
seem that all that is needed is an operator to encrypt a string, but because of the
way Unix passwords are encrypted, that is not sufficient. An encrypted password
is stored with a two-character ‘‘salt’’ string, and the same value is needed in order
to encrypt the string to be tested in the same way. The stored string contains both
the salt and the result of the encryption.‡ To save having to quote it twice (once to
encrypt and once to compare), there is a single condition called crypteq that does
both jobs at once. Its first argument is the cleartext, and its second is the encrypted
text, like this:

${if crypteq {mysecret}{ksUCNd4Cs6lSI}{...

In this example, the cleartext mysecret is first encrypted by the crypt() function,
using the salt ks, and the result is then compared with UCNd4Cs6lSI. In most real
cases, of course, the encrypted value is not included directly in the string like this.
The second argument for crypteq is more likely to be a subexpansion that looks
up a value in a file or database.

For ms of encryption other than that used by the crypt() function are used in
some installations. LDAP has introduced a notation whereby an encrypted string is
pr eceded by a string in braces that states how it was encrypted. Fortunately, an
opening brace character is not valid as a ‘‘salt’’ character. If the encrypted string

* See Appendix B, Regular Expressions, for a refer ence description of regular expressions and cap-
tur ed substrings.

† For details of SMTP authentication, see Chapter 15, Authentication, Encryption, and Other SMTP Pro-
cessing.

‡ For details of password encryption, see the specification of the crypt() function.

Conditional Expansion 401

9 October 2001 09:11

402 Chapter 17: String Expansion

does not begin with a brace, encryption by crypt() is assumed by the crypteq

condition. Otherwise, the contents of the braces must either be crypt (which has
the same effect) or md5, for example:

{md5}CY9rzUYh03PK3k6DJie09g==

This indicates that the encrypted string is an MD5 hash of the cleartext. If you
include such a string directly into an expanded string, you will have to quote the
braces using backslashes, because they will otherwise be taken as part of the
expansion syntax. For example:

${if crypteq{test}{\{md5\}CY9rzUYh03PK3k6DJie09g==}{1}{0}}

The crypteq condition is automatically included in the Exim binary when it is built
with SMTP authentication support, but otherwise it has to be specially requested at
build time.

PAM Authentication
Another expansion condition concerned with authentication is pam, which provides
an interface to the PAM library that is available on some operating systems. PAM
stands for Pluggable Authentication Modules, and it provides a framework for sup-
porting differ ent methods of authentication. The caller of PAM supplies a service
name and an initial string that identifies a user. The authentication function then
requests zero or mor e data strings from the caller, and it uses these as input to its
authentication logic. In the most common case, a single data string is requested,
which is in effect a password.

The pam expansion condition has a single argument that consists of a colon-sepa-
rated list of strings. PAM is called with the service name exim and the first of the
strings as the username. The remaining strings are passed to PAM in response to
its data requests. The condition is true if PAM authenticates successfully. For
example:

${if pam{mylogin:mypassword}{yes}{no}}

yields yes if the user mylogin successfully authenticates with the single data string
mypassword, and no otherwise. The data for pam is rarely a fixed string like this;
usually it is made up of variables containing values from the SMTP AUTH com-
mand (see Chapter 15).

If passwords that are to be used with PAM contain colon characters, the example
just given will not work, because a colon in the password is interpreted as a

9 October 2001 09:11

delimiter in the list of strings to pass to PAM. This problem can be avoided by
doubling any colons that may be present. If the password is in $2 for example,
this could be used:

${if pam{mylogin:${sg{$2}{:}{::}}{yes}{no}}

In some operating environments, PAM authentication can be used only by a root
pr ocess. When Exim is receiving incoming mail from remote hosts, it runs as the
Exim user (provided one is defined), which sometimes causes problems with PAM
in these environments. There is as yet no easy resolution of this problem.

Numer ic Compar isons
Exim provides a number of conditions that test numeric values. These use familiar
symbols such as > and =. They are written in a prefix notation, with the condition
first, followed by two substrings that must (after their own subexpansion) take the
for m of optionally signed decimal integers. They are alter natively followed by one
of the letters K or M (in either upper- or lowercase), signifying multiplication by
1024 or 1024×1024, respectively. For example:

${if > {$message_size}{10M}{...

tests whether the size of the message (which is contained in the $message_size
variable) is greater than 10 MB. The available numeric conditions are:

= equal
== equal
> gr eater
>= gr eater or equal
< less
<= less or equal

The general negation facility provides for inequality testing.

Empty Var iables and Nonexistent Header Lines
The def condition tests whether a variable contains any value, or whether a partic-
ular header line exists in a message. In the first case, it is followed by a colon and
the variable name, and it is true only if the variable is not empty. For example:

${if def:sender_host_address {remote}{local}}

yields the string remote if $sender_host_address is not empty (indicating that the
message did not originate on the local host), and local otherwise. Note that the
variable name is given in the condition without a leading $ character. If the vari-
able does not exist, an error occurs.

Conditional Expansion 403

9 October 2001 09:11

404 Chapter 17: String Expansion

In its second guise, def is followed by a colon, the string header_ or h_, and the
name of a message header line terminated by another colon, for example:

${if def:header_reply-to:{$h_reply-to:}{$h_from:}}

The condition tests for the existence of the header line in the message being pro-
cessed, so in this case the yield of the expansion is the contents of Reply-T o: if it
exists; otherwise the yield is the contents of Fr om:. The expander does not check
whether there are actually any data characters in the header line or not.

File Existence
Ther e ar e times when you may want to check on the existence of a file or direc-
tory, and adopt differ ent strategies depending on whether it exists or not. The
exists condition has a single string as an argument. It calls the stat() function to
see if the string exists as a pathname in the filesystem, and is true if the function
succeeds. Suppose you are moving user mailboxes from one directory to another.
If a mailbox exists in the old directory, you want Exim to use it; otherwise you
want to use or create a mailbox in the new directory. A setting of the file option
like this could be used:

file = /var/\
${if exists{/var/oldmail/$local_part}{old}{new}}\
mail/$local_part

For the local part sue, this expands to /var/oldmail/sue if that file exists; otherwise
to /var/newmail/sue.

The State of a Message’s Deliver y
Ther e ar e two conditions that have no data associated with them: first_delivery
is true during the first delivery attempt on a message, but is false during any sub-
sequent delivery attempts; queue_running is true during delivery attempts that have
been started by a queue runner process, but is false otherwise. These allow you to
adopt differ ent dir ecting and routing strategies at differ ent times, if you want to. If
you want a director or router to be used only at the first delivery attempt, you can
set an option like this:

condition = ${if first_delivery {yes}{no}}

During the first delivery, the condition is true and the string expands to yes, which
the condition option interprets as an instruction to run the director or router. In
subsequent delivery attempts, the result is no, and so the director or router is
skipped.

9 October 2001 09:11

Combining Expansion Conditions
Several conditions can be combined into a single condition using the logical oper-
ators and and or. Each of these is followed by any number of conditions, each
enclosed in braces. The entire list is also enclosed in braces, to show where it
ends. This can make for some very unreadable text unless one is careful. The and

condition is true only if all of its subconditions are true, while the or condition is
true if any one subcondition is true. Here is a fanciful example that tests whether
today is a leap day, spread over several lines for readability:

${if and
{
{eq {${substr_5_2:$tod_log}}{02}}
{eq {${substr_8_2:$tod_log}}{29}}
}
{Today’s the day}{Not today}}

The $tod_log variable contains the current date and time in this format:

2000-02-29 14:42:00

so the first condition tests the two digits for the month, and the second one tests
the day number. The subconditions are tested from left to right, and only as many
as necessary to establish the overall condition are fully evaluated. Subconditions
may themselves use and and or if necessary.

Forcing Expansion Failure
We defined the conditional expansion item as a condition followed by two sub-
strings: a ‘‘true’’ string and a ‘‘false’’ string. If the second string is empty (that is, if
it would be coded as {}), it can be omitted. Sometimes, however, you don’t want
to use an empty string if the condition fails; you want to take more drastic action.
Instead of a second string, you can supply the word fail, not in braces. This
causes the entire expansion to fail, but in a way that the calling code can detect.
We say ‘‘the expansion is forced to fail.’’

The result of this kind of failure depends on what the expanded string is being
used for. In some cases it is no differ ent fr om a failur e caused by a syntax error,
but in a number of other cases it causes whatever is being done to be skipped.
For example, you can cause headers to be added to a message by setting the
headers_add option on a director, router, or transport, containing a string to be
added to the header section of a message. If you used something such as this:

headers_add = ${if eq {$sender_host_address}{}\
{X-Postmaster: <postmaster@example.com>}\
fail}

Conditional Expansion 405

9 October 2001 09:11

406 Chapter 17: String Expansion

Exim would add an X-Postmaster: header to any messages that had been received
locally (host address empty). When $sender_host_address is not empty, fail

causes the string expansion to fail, which in this particular circumstance causes the
addition of headers to be cancelled. Whenever fail in an expansion has a special
ef fect like this, it is documented along with the option to which it applies.

Lookups in Expansion Strings
Another powerful feature of expansion strings is the ability to call Exim’s lookup
functions while expanding a string. This means that a portion of the string can be
replaced by data obtained from a file or database, or the existence of a particular
key in a file or database can be used to influence the result of the expansion.

The lookup expansion item is a form of conditional expansion, containing two
substrings following the specification of the lookup. If the lookup succeeds, the
first substring is expanded and used; if the lookup does not find any data, the sec-
ond substring is used instead. Just as in the case of an if condition, the second
substring may be absent, or the word fail may be used, as described in the previ-
ous section.

Ther e ar e two differ ent for mats for the lookup item, depending on whether a sin-
gle-key or query-style lookup is being used. We will introduce them by extending
an example that was used earlier.

Single-Key Lookups in Expansion Strings
Recall that the following setting:

file = ${if eq{$local_part}{john}\
{/home/john/inbox}\
{/var/mail/$local_part}}

pr ovides an easy way of specifying an exceptional location for the mailbox of just
one user. With any more than a handful of exceptions, this technique does not
work well. Instead, it would be better to create an indexed file containing the
locations of all the special mailboxes. Laid out as a flat file, it might contain lines
such as this:

john: /home/john/inbox
jill: /home/jill/inbox
alex: /home/alex/mail/inbox

This file could be used directly in an appendfile transport:

file = ${lookup {$local_part} lsearch {/the/file} \
{$value}{/var/mail/$local_part}}

9 October 2001 09:11

This is an example of a lookup item for a single-key search type. The item is intro-
duced by ${lookup; this is followed by a substring in braces that defines the key to
be looked up, after it has been separately expanded. In this case, it is the local
part. Then there is a word that specifies the type of lookup, in this case lsearch,
followed by a substring containing data for the search. For a single-key search
type, the data is the name of the file to be searched.

The remainder of the item consists of two braced substrings. If the lookup suc-
ceeds, the first string is expanded and used; during its expansion, the variable
$value contains the data that was looked up. If the lookup fails, the second string
(if present) is expanded and used. In our example, if the local part is jill, the
lookup succeeds, and $value contains /home/jill/inbox during the expansion of
the first string. As this consists of $value only, the result of the entire lookup is
/home/jill/inbox. If a local part that is not in the file is looked up, no data is
found, and so the second string, /var/mail/$local_part, is expanded and used.

Partial Lookups in Expansion Strings
Partial lookups, described in the section “Partial Matching in Single-Key Lookups,”
in Chapter 16, File and Database Lookups, can be used for single-key lookup
types, and when a partial lookup succeeds, the variables $1 and $2 contain the
wild and nonwild parts of the key during the expansion of the replacement sub-
string. They retur n to their earlier values at the end of the lookup item. Consider a
file of domain names containing:

one.example
*.two.example

and a lookup item of the form:

${lookup {$domain} partial-lsearch \
{/the/file}{wild="$1" notwild="$2"}}

When $domain contains one.example, the result is:

wild="" notwild="one.example"

because no partial matching was done. However, if $domain contains
twenty.two.example, the result is:

wild="twenty" notwild="two.example"

Single-Key Lookup Failures
If Exim cannot attempt the lookup because of some problem (for example, if it
cannot open the file), the entire string expansion fails, in a similar way to a syntax

Lookups in Expansion Strings 407

9 October 2001 09:11

408 Chapter 17: String Expansion

err or. You can guard against the particular case of a nonexistent file by using the
exists test described earlier. For example:

file = ${if exists{/the/file}\
{\
${lookup {$local_part} lsearch {/the/file} \
{$value}\
{/var/mail/$local_part}}\
}\
{/var/mail/$local_part}}

Quer y-Style Lookups in Expansion Strings
A large linear file should be turned into an indexed structure of some kind (DBM
or cdb) to improve perfor mance, or the data could be stored in one of the
databases Exim supports. Here is the same configuration setting, but this time it’s
looking up the mailbox using MySQL:

file = ${lookup mysql \
{select mbox from users where \
id=’${quote_mysql:$local_part}’} \
{$value} \
{/var/mail/$local_part}}

This example assumes there is a table called users with fields called id and mbox.
When a query-style lookup is used in an expansion string, you do not specify a
separate key. Instead, the lookup type name follows ${lookup immediately and is
itself followed by a substring that forms the database query. The success and fail-
ur e substrings then follow as before.

Reducing the Number of Database Queries
On a busy system, a lookup such as the previous example, which requir es a
database call for every delivery, might result in poor perfor mance. An improve-
ment could be obtained by dumping the data from the database every night, and
building (for example) a cdb file that would give much better perfor mance. How-
ever, additions to the database would not then take immediate effect. The best of
both worlds could be achieved by checking the cdb file first, and doing a database
lookup only if that failed. For example:

file = \
${lookup {$local_part} cdb {/the/cdb/file} \
{$value}\
{\
${lookup mysql \
{select mbox from users where \
id=’${quote_mysql:$local_part}’} \

9 October 2001 09:11

{$value} \
{/var/mail/$local_part}}\
}\

}

Ther e ar e some further remarks on the topic of reducing the number of database
queries in the section “Extracting Named Fields from a Line of Data,” later in this
chapter.

Defaults for Lookups in Expansion Strings
When using single-key lookups in expansion strings, the lookup type name may
be followed by * or *@ to request default lookups, as described in the section
“Default Values in Single-Key Lookups,” in Chapter 16. Alternatively, the ‘‘false’’
substring can contain an explicit second lookup to be done if the first one fails,
and this works for both single-key and query-style lookups.

A Shor thand for One Common Case
Sometimes, you know a lookup will succeed because of some previous test. For
example, if a set of domains is defined by a lookup, you can assume that reusing
the same lookup to obtain data for one of those domains is not going to fail. In
the section “Virtual Domains,” in Chapter 5, we show this director for virtual
domains:

virtuals:
driver = aliasfile
domains = cdb;/etc/virtuals
file = /etc/$domain.aliases
search_type = lsearch
no_more

Suppose that instead of a fixed pattern for each domain’s alias file, you want to
look up each name individually, storing the data in /etc/virtuals. The director
becomes:

virtuals:
driver = aliasfile
domains = cdb;/etc/virtuals
file = ${lookup{$domain}cdb{/etc/virtuals}{$value}}
search_type = lsearch
no_more

Ther e is no need to specify a ‘‘false’’ substring for the expansion lookup, because
it will never be needed. For this common case, as long as you are using Exim
Release 3.20 or later, you can omit the ‘‘true’’ substring as well, and specify just
this:

file = ${lookup{$domain}cdb{/etc/virtuals}}

Lookups in Expansion Strings 409

9 October 2001 09:11

410 Chapter 17: String Expansion

When there are no substrings following a lookup specification, Exim assumes that
{$value} is wanted.

Extracting Fields from Substrings
Ther e ar e thr ee expansion items that extract data fields from substrings, having
first expanded them.

Splitting Up Addresses
local_part and domain ar e operators that extract the local part and the domain
fr om an address, respectively. For example, if the sender of a message were bru-
tus@r ome.example.com, then:

local part is ${local_part:$sender_address}
domain is ${domain:$sender_address}

would expand to:

local part is brutus
domain is rome.example.com

Extracting Named Fields from a Line of Data
Suppose you want to pick out individual field values from a data file containing
lines such as this:

trajan: uid=142 gid=241 home=/homes/trajan

An lsearch lookup on the key trajan retur ns the rest of the line of data; the
extract expansion item can be used to split it up. For example, to obtain the
value of the uid field:

${extract{uid}{${lookup{trajan}lsearch{/the/file}{$value}fail}}}

Ther e ar e two substrings that follow extract; the first is a name, and the second is
a string of name=value items from which it extracts the value that matches the
given name. In this example, the string is obtained by a lookup, which is the most
common case. The lookup of the key trajan yields:

uid=142 gid=241 home=/homes/trajan

so the extract item becomes:

${extract{uid}{uid=142 gid=241 home=/homes/trajan}}

9 October 2001 09:11

befor e the extraction operation is applied. If any of the values in the data contain
whitespace, they must be enclosed in double quotes, and within double quotes,
nor mal escape processing takes place.*

If the name is not found in the data string, the item is replaced by the empty
string. However, from Exim Release 3.20 onwards, the extract item can also be
used in a similar way to a lookup or conditional item. If two further argument
strings are given, the first is used when the extraction succeeds, with $value con-
taining the extracted substring, and the second substring is used when the extrac-
tion fails. Once again, ‘‘fail’’ can be specified instead of a second substring to force
expansion failure. For example:

${extract{uid}{uid=142 gid=241 home=/homes/trajan}{userid=$value}}

yields userid=142.

If you are using query-style lookups, you can often select individual fields within
the query language. However, if a number of fields are requir ed, it is better to read
them from the database together and use extract to separate them, because the
results of database lookups are cached. Consider the following two settings, which
might appear on a local transport’s configuration, to specify the uid and gid under
which it is to run:

user = ${lookup mysql \
{select uid from accounts where \
id=’${quote_mysql:$local_part}’}\
{$value}}

group = ${lookup mysql \
{select gid from accounts where \
id=’${quote_mysql:$local_part}’}\
{$value}}

Two separate database queries are requir ed, one for each option. If instead these
settings are used:

user = ${extract{uid}{\
${lookup mysql \
{select uid,gid from accounts where \
id=’${quote_mysql:$local_part}’}{$value}}\

}}
group = ${extract{gid}{\

${lookup mysql \
{select uid,gid from accounts where \
id=’${quote_mysql:$local_part}’}{$value}}\

}}

* \n is turned into newline, for example, and backslash must appear as \\.

Extracting Fields from Substrings 411

9 October 2001 09:11

412 Chapter 17: String Expansion

only a single database call actually occurs, because the two queries are identical,
so the cached value is used for the second one. Exim caches only the most recent
query, but this is sufficient to give substantial benefit.

Extracting Unnamed Fields from a Line of Data
Ther e is a second form of the extract expansion item that can be used on data
strings that are separated by particular characters. A good example is the password
file, /etc/passwd, wher e the fields are separated by colons. To extract a user’s real
name from this file, an expansion such as this can be used:

${extract{4}{:}\
{${lookup{hadrian}lsearch{/etc/passwd}{$value}fail}}}

If the line in /etc/passwd is:

hadrian:x:42:99:Hadrian IV::/bin/bash

the lookup yields:

x:42:99:Hadrian IV::/bin/bash

and the result of the extraction is the fourth colon-separated field in this data,
namely, Hadrian IV.

This form of extract is distinguished from the other by having a first argument
consisting entirely of digits. The second argument is a list of field separator charac-
ters, any one of which can be used in the data. In other words, the separators are
always a single character, not a string. Two successive separators mean that the
field between them is empty (the fifth field in the previous example). If the field
number in the expansion is zero, the entire string is retur ned; if it is greater than
the number of fields, the empty string is retur ned.

However, from Exim Release 3.20, as in the case of the other form of extract, you
can optionally supply two additional substrings that are used in a similar way to
the substrings in a lookup or conditional item. The first is used if the field is
found, with $value containing the extracted data, and the second substring is used
otherwise. Once again, ‘‘fail’’ can be specified instead of a second substring, to
force expansion failure.

IP Address Masking
An IP network is defined using an IP address and a mask. For example,
192.168.34.192/26 defines the network consisting of all IP addresses whose most
significant 26 bits are the same as those of 192.168.34.192. To check whether a
given host is in this network, it is necessary to mask the least significant bits of its
IP address (that is, convert them into zeros) before comparing it with the network
addr ess. Ther e ar e some built-in host tests that automatically take care of masking,

9 October 2001 09:11

but in order to let you write custom tests, a masking expansion operator exists.
When processing a message that came from the host 192.168.34.199, the string:

${mask:$sender_host_address/26}

would expand to the string 192.168.34.192/26. This could be compared against a
fixed value, or looked up in a file. This poses a small problem in the case of IPv6
addr esses, which are nor mally written using colons to separate the components,
because a colon is the key terminator in data files that are in lsearch for mat (that
is, in the same form as alias files). A normal IPv6 address could not therefor e be a
key in such a file. In order to make this possible, the mask operator outputs IPv6
addr esses using dots as separators instead of colons. For example, the string:

${mask:5f03:1200:836f:0a00:000a:0800:200a:c031/99}

expands to:

5f03.1200.836f.0a00.000a.0800.2000.0000/99

which could be used as an lsearch key. Letters in IPv6 addresses are always out-
put in lowercase by the mask operator.

Quoting
When data from a message is included in an expansion string by a variable or
header insertion, problems can occur if the inserted data contains unanticipated
characters. Local parts can contain all manner of special characters if they are cor-
rectly quoted using RFC 822’s rules. The following addresses are all valid:

O’Reilly@ora.com.example
double\"quote@weird.example
"two words"@weird.example
"abc@pqr"@some.domain.example
abc\@pqr@some.domain.example

When Exim receives an address, it strips out the RFC 822 quoting so as to obtain a
‘‘canonical’’ repr esentation of the local part. The last two examples have the same
canonical local parts. Suppose that $local_part was being used in a MySQL lookup
query containing the fragment:

... where id=’$local_part’ ...

then the first example would break it. Such problems can be avoided by using the
appr opriate quoting mechanism in the string expansion. Several are provided, for
use in differ ent circumstances.

Quoting 413

9 October 2001 09:11

414 Chapter 17: String Expansion

Quoting Addresses
The quote operator puts its argument into double quotes if it contains anything
other than letters, digits, underscores, dots, or hyphens. Any occurrences of dou-
ble quotes and backslashes are escaped with a backslash. This kind of quoting is
useful if a new mail address is being created from an old one for some reason. For
example, suppose you wanted to send unknown local parts in your local domain
to some other domain, retaining the same local part, but changing the domain.
You could do this using a smar tuser dir ector such as this as your final director:

send_elsewhere:
driver = smartuser
new_address = $local_part@dead-letter.example.com

As this is the last director, local parts that the other directors could not handle
would be passed to it. The example would work fine until somebody sent a mes-
sage with a local part containing an @ character, for example:

"malicious@example"@your.domain

wher eupon Exim would report a syntax error in the new address, because the
value of $local_part would be malicious@example after removing the RFC 822
quoting. To guard against this, the option is better defined as:

new_address = ${quote:$local_part}@dead-letter.example.com

which would cause the generated local part to be quoted if necessary.

Quoting Data for Regular Expressions
The rxquote operator inserts backslashes before any nonalphanumeric characters
in its argument. As its name suggests, it is used when inserting data that is to be
interpr eted literally into regular expressions. If you wanted to check whether the
curr ent delivery address was mentioned in the To: header of a message, you could
write an expansion conditional such as this:

${if match{$h_to:}{ˆ.*$local_part@$domain} {...

However, any regular expression metacharacters in the local part or the domain
would break the regular expression, and as a dot is such a character, the domain is
almost certain to cause trouble. The correct way to write this is:

${if match{$h_to:}{ˆ.*${rxquote:$local_part@$domain}} {...

9 October 2001 09:11

Quoting Data in Lookup Queries
Ther e ar e special quoting operators for each of the query-style lookup types:

NIS+
The effect of the quote_nisplus expansion operator is to double any quote
characters within the text.

LDAP
Two levels of quoting are requir ed in LDAP queries, the first for LDAP itself,
and the second because the LDAP query is repr esented as a URL. The
quote_ldap expansion operator implements the following rules:

• For LDAP quoting, the characters #,+"\<>;*() have to be preceded by a
backslash.*

• For URL quoting, all characters except alphanumerics and !$’()*+-._ ar e
replaced by %xx, wher e xx is the hexadecimal character code. Note that
backslash has to be quoted in a URL, so characters that are escaped for
LDAP end up preceded by %5C in the final encoding.

MySQL
The quote_mysql expansion operator converts newline, tab, carriage retur n,
and backspace to \n, \t, \r, and \b, respectively, and the characters ’"\ ar e
escaped with backslashes. Percent and underscore are special only in contexts
wher e they can be wildcards, and MySQL does not permit them to be quoted
elsewher e, so they are not affected by the quote_mysql operator.

Postgr eSQL
The quote_pgsql expansion operator converts newline, tab, carriage retur n,
and backspace to \n, \t, \r, and \b, respectively, and the characters ’"\ ar e
escaped with backslashes, as for mysql_quote. However, percent and under-
scor e ar e tr eated dif ferently. PostgreSQL allows them to be quoted in contexts
wher e they are not special. For example, an SQL fragment such as:

where id="ab\%cd"

has the same effect as:

where id="ab%cd"

which is not the case for MySQL. Percent and underscore are ther efor e
escaped by quote_pgsql.

* In fact, only some of these need be quoted in Distinguished Names, and others in LDAP filters, but it
does no harm to have a single quoting rule for all of them.

Quoting 415

9 October 2001 09:11

416 Chapter 17: String Expansion

Quoting Printing Data
The final quoting operator is called escape, and it is for use when inserted data is
requir ed to contain printing characters only. It converts any nonprinting characters
into escape sequences starting with a backslash.* For example, a newline character
is turned into \n, and a backspace into \010. Local parts that are quoted in email
addr esses may contain such characters, though usually it is only persons bent on
mischief that create them. Message header lines are another place where nonprint-
ing characters may occur. As an example of where escape might be used, consider
the creation of an automatic reply to an incoming message. The details of how to
do this can be found in the section “The autoreply Transport,” in Chapter 9, The
Transports, but you don’t need to know them to follow this example, which just
shows how the Subject: line of the reply might be specified:

subject = Re: message from $sender_address to $local_part

That should not cause any delivery trouble, whatever the contents of the local part
and sender address, but it could be very confusing if there wer e a lot of
backspaces, for example, in one of the variables. A safer way to write this is:

subject = Re: message from ${escape:$sender_address} \
to ${escape:$local_part}

Reexpansion
The expand operator first expands its argument substring like all the other opera-
tors, but then passes it through the expander for a second time. The most com-
mon use is when the first expansion does a lookup, because it allows the data that
is looked up to contain expansion variables. Suppose the file option for local
delivery is written like this:

file = ${lookup{$local_part}lsearch{/etc/mailboxes}\
{${expand:$value}}{/var/mail/$local_part}}

To find the name of the mailbox file, the local part is looked up in /etc/mailboxes.
If no data is found, the string /var/mail/$local_part is expanded and used. Oth-
erwise the value that was looked up is used, but it is first re-expanded. The file
/etc/mailboxes could contain lines such as this:

jim: /home/jim/inbox

* Whether characters with the most significant bit set (so-called ‘‘8-bit’’ characters) count as printing or
nonprinting is controlled by the print_topbitchars option.

9 October 2001 09:11

for which the additional expansion would have no effect, but it could also contain
lines like this:

jon: ${if eq{$h_precedence:}{bulk}{/dev/null}{/var/mail/jon}}

which discards messages with a Pr ecedence: header line whose value is bulk, by
causing them to be written to /dev/null.*

Running Embedded Perl
The facilities available for string expansion allow for quite sophisticated transfor-
mations on strings. Nevertheless, there is always somebody who wants to do
mor e. The ultimate sledgehammer is to run a Perl function as part of a string
expansion. In order to do this, Exim has to be built with support for embedded
Perl.† Access to Perl subroutines is via a configuration option called perl_startup,
which defines a set of Perl subroutines, and the expansion string operator ${perl
...}, which causes them to be run. If there is no perl_startup option in the
Exim configuration file, no Perl interpreter is started, and there is almost no over-
head for Exim (since none of the Perl library is paged in unless it is used).

If there is a perl_startup option, the associated value is taken to be Perl code,
which is executed in a newly created Perl interpreter. It is not expanded in the
Exim sense, so you do not need backslashes before any characters to escape spe-
cial meanings. The option should usually be something such as:

perl_startup = do ’/etc/exim.pl’

wher e /etc/exim.pl contains Perl code that defines the subroutines you want to
use. Exim can be configured either to start up a Perl interpreter as soon as it starts
to execute, or to wait until the first time the interpreter is needed. Starting the
interpr eter at the beginning ensures that it is done while Exim still has its setuid
privilege, which might be needed to gain access to initialization files, but imposes
an unnecessary overhead if Perl is not used in a particular run. By default, the
interpr eter is started only when it is needed, but this can be changed, as follows:

• Setting perl_at_start (a Boolean option) in the configuration requests a
startup when Exim starts.

• The command-line option -ps also requests a startup when Exim starts, over-
riding a false setting of perl_at_start.

* This is not a recommended way of achieving this effect; it is just an example to demonstrate the
expand operator.

† See Chapter 22, Building and Installing Exim.

Running Embedded Perl 417

9 October 2001 09:11

418 Chapter 17: String Expansion

• Ther e is also a command-line option -pd (for delay) that suppresses the initial
startup, even if perl_at_start is set.

When the configuration file includes a perl_startup option, string expansion items
can call the Perl subroutines defined by the perl_startup code like this:

${perl{func}{argument1}{argument2} ... }

An item such as this calls the subroutine func with the given arguments (having
first expanded the arguments). A minimum of zero and a maximum of eight argu-
ments may be passed. Passing more than this results in an expansion failure. The
retur n value of the subroutine is inserted into the expanded string, unless the
retur n value is undef. In this case, the expansion fails in the same way as an
explicit fail on an if or lookup item. If the subroutine aborts by obeying Perl’s
die function, the expansion fails with the error message that was passed to die.

The Perl interpreter is not run in a separate process, so when it is called from an
expansion string, its uid and gid are those of the Exim process. In particular, ini-
tializing the interpreter when Exim starts to run causes it to run as root-only during
its initialization; it does not cause subsequently called subroutines to run as root.

Within any Perl code called from Exim, the function Exim::expand_string is
available to call back into Exim’s string expander. This helps to reduce the number
of arguments you need to pass to a Perl subroutine. For example, the Perl code:

my $lp = Exim::expand_string(’$local_part’);

makes the current value of $local_part available in the Perl variable $lp. Note the
use of single quotes to protect against $local_part being interpolated as a Perl vari-
able.

If the string expansion is forced to fail, the result of Exim::expand_string is
undef. If ther e is a syntax error in the expansion string, the Perl call from Exim’s
expansion string fails with an appropriate error message, in the same way as if die
wer e used.

Testing String Expansions
If you are setting up some complicated expansion string, perhaps involving
lookups, conditionals, or regular expressions, it is helpful to be able to test it in
isolation before you try it in an Exim configuration file. If Exim is called with the
-be option:

exim -be

it doesn’t perfor m any mail handling functions at all. Instead, if there are any com-
mand-line arguments, it expands each one and writes it as a separate line to the
standard output. Otherwise, it reads lines from its standard input, expands them,

9 October 2001 09:11

and writes them to the standard output. It prompts for each line with an angle
bracket. For example:

$ exim -be ’$tod_log’
2000-02-10 15:51:00
$ exim -be
> ${lookup{root}lsearch{/etc/passwd}{$value}}
x:0:1:Super-User:/:/bin/sh
>

This facility allows you to test the general expansion functionality, but, because no
message is being processed, you cannot make use of variables such as $local_part
that relate to messages.

If you develop an expanded string in this way, and subsequently copy it into a
configuration setting that is enclosed in quotes, remember that you will have to
double any backslashes that it contains. There are not likely to be any unless you
have used regular expressions, or needed to include literal dollar, backslash, or
curly brackets in your string.

Testing String Expansions 419

9 October 2001 09:11

18
Domain, Host, and
Address Lists

Lists of domains, hosts, or addresses are used in a number of Exim’s options. In
Chapter 3, Exim Overview, we intr oduced them with this example of a list of local
domains:

local_domains = tiber.rivers.example:\
*.cities.example:\
dbm;/usr/exim/domains

This list contains three differ ent kinds of item, but in fact these are not the only
possibilities. In this chapter we will explore all the variations, not only for domain
lists, but also for host and address lists.

Each list can be thought of as defining a set of domains, hosts, or addresses,
respectively. When Exim is testing to see whether a domain (or host, or address)
matches an item in a list, it asks the question ‘‘Is this domain (or host, or address)
in the set defined by this list?’’ It scans the list from left to right, checking against
each item in turn. As soon as an item matches, the scan stops.

For example, using the previous setting of local_domains, Exim first checks to see
if the domain it is testing is tiber.rivers.example. If it is, the answer to the implied
question is ‘‘Yes, it is a local domain.’’ Otherwise, Exim goes on to check whether
the domain ends with .cities.example, and if not, it looks up the domain in the file.
If that fails, the answer is ‘‘No, this is not a local domain.’’

420

9 October 2001 09:12

All lists use colons as separator characters by default, and whitespace at either end
of an item is ignored. If you need to include a literal colon in an item, it must be
doubled. Unfortunately, this is necessary for all colons that appear in IPv6
addr esses. For example:

local_interfaces = 127.0.0.1: ::::1

contains two items: the IPv4 address 127.0.0.1 and the IPv6 address ::1. The
space after the first colon is vital; without it, the list would be incorrectly inter-
pr eted as the two items 127.0.0.1:: and 1.

Fr om Release 3.14 of Exim onward, it has been possible to change the separator
character in lists, to make it easier to deal with IPv6 addresses. If a list starts with a
< character that is immediately followed by a nonalphanumeric printing character
(excluding whitespace), that character is used as the separator. The earlier exam-
ple could be rewritten to use + as the separator, like this:

local_interfaces = <+ 127.0.0.1 + ::1

Negative Items in Lists
Sometimes it is useful to have exceptions to wildcard patterns. Suppose, for exam-
ple, we wanted to exclude athens.city.example fr om the set of local domains,
while retaining all others ending in .cities.example. The previous list items are pos-
itive items; that is, if they match, the answer is ‘‘yes.’’ It is also possible to have
negative items, which, if they match, cause the answer to be ‘‘no,’’ and this pro-
vides exactly the feature we need. An exclamation mark preceding any item
negates it.* Consider this example:

local_domains = !athens.cities.example:\
*.cities.example

If the domain is athens.cities.example, the first item matches. Because it it negated,
this causes the answer to be ‘‘no.’’ Otherwise the domain is xmatched against
*.cities.example.

* Ther e may be optional whitespace between the exclamation mark and the item.

Negative Items in Lists 421

9 October 2001 09:12

422 Chapter 18: Domain, Host, and Address Lists

If you are using a macro (see the section “Macros in the Configura-
tion File,” in Chapter 4, Exim Operations Overview) in your configu-
ration file to define a number of items for a list, you cannot negate
by putting an exclamation mark in front of the macro name because
macr os work by simple text substitution. For example, if you have
defined:

LOCAL = domain1 : domain2

then:

domains = !LOCAL

is not the same as:

domains = !domain1 : !domain2

If the last item in a list is a negative item, it changes what happens if the end of
the list is reached without anything matching. In the examples we’ve used so far,
reaching the end of the list provokes a ‘‘no’’ answer. However, for a list such as
this:

queue_remote_domains = !*.mydomain.example

reaching the end of the list causes a ‘‘yes’’ answer because that seems the natural
interpr etation of such a list. In effect, a list that ends with a negative item is treated
as if it had an additional ‘‘matches everything’’ item at the end, so the previous
example behaves exactly the same as:

queue_remote_domains = !*.mydomain.example : *

List Items in Files
In any of these lists, an item beginning with a slash is interpreted as the name of a
file that contains out-of-line items, one per line. Empty lines in the file are ignor ed.
The other lines are interpolated into the list exactly as if they appeared inline,
except that the file is read afresh each time the list is scanned. A file may not,
however, contain the names of other files. For domain and host lists, if a # charac-
ter appears anywhere in a line of the file, it and all following characters on the
line are ignor ed. For address lists, # must be followed by whitespace to be recog-
nized as introducing a comment because it can legitimately form part of an

9 October 2001 09:12

addr ess. If a plain filename is preceded by an exclamation mark, the sense of any
match within the file is inverted. For example, with the setting:

hold_domains = !/etc/nohold-domains

and a file containing the lines:

!a.b.c
*.b.c

a.b.c is in the set of domains defined by hold_domains, wher eas any domain
matching *.b.c is not.

Lookup Items in Lists
Lists may also contain lookup items; these operate differ ently for the three kinds of
list, so they are described separately later. However, it is important to realize that a
lookup, even if it uses the lsearch lookup method, is not the same as an interpo-
lated file, as just described. The earlier example file could not be used for an
lsearch lookup because the data in a lookup file is fixed: it cannot contain any
negation or wildcarding.* Consequently, there is an important differ ence between
(for example):

local_domains = /etc/local-mail-domains

and:

local_domains = lsearch;/etc/local-mail-domains

even though the file is read sequentially in both cases. In the first case, each line
of the file is interpolated just as if it appeared inline, and may contain any item
type other than a further filename. For example, it could contain items beginning
with asterisks, or regular expressions. However, if a lookup is used (the second
case), the keys in the file are not interpreted specially; they are always literal
strings.

Domain Lists
Domain lists are used for specifying sets of mail domains for various purposes,
such as which domains are local, or which are acceptable for relaying. The follow-
ing types of items may appear in a domain list:

• If an item consists of a single @ character, it matches the local hostname, as
set in the primary_hostname option. This makes it possible to use the same

The partial and default features of single-key lookups are implemented by multiple probes of the file.

Domain Lists 423

9 October 2001 09:12

424 Chapter 18: Domain, Host, and Address Lists

configuration file on several differ ent hosts that differ only in their names. For
example:

local_domains = @ : plc.com.example

ensur es that the local hostname is a local domain.

• If an item starts with an asterisk, the remaining characters of the item are com-
par ed with the terminating characters of the domain. The use of an asterisk in
domain lists differs from its use in partial matching lookups. In a domain list,
the character following the asterisk need not be a dot, whereas partial match-
ing works only in terms of dot-separated components. For example, a domain
list such as:

local_domains = *key.example

matches donkey.example as well as cipher.key.example. Note that an asterisk
may appear only at the start of an item to denote the commonly requir ed
‘‘ends with’’ test. More complex wildcard matching requir es the use of a regu-
lar expression (see the next bullet).

• If an item starts with a circumflex character, it is treated as a regular expres-
sion, and matched against the domain using a regular expression matching
function. For example:

local_domains = ˆmta\d{3}\.plc\.example$

specifies that any domain named mta followed by three digits and .plc.exam-
ple is a local domain. The circumflex that introduces a regular expression is
tr eated as part of the expression. This means that it ‘‘anchors’’ the expression
to the start of the domain name but you can start with ˆ.* to accommodate
arbitrary leading characters if you need to. A description of the regular expres-
sions that Exim supports can be found in Appendix B, Regular Expressions.

Ther e ar e some cases in which a domain list is the result of string expansion,
for example the domains option in routers and directors. In these cases you
must escape any backslash, dollar, and curly bracket (brace) characters in reg-
ular expressions to prevent them from being interpreted by the string
expander.*

* If the string is specified in quotes, the resulting backslashes must themselves also be escaped.

9 October 2001 09:12

• If an item starts with the name of a single-key lookup type followed by a
semicolon (for example, dbm; or lsearch;), the remainder of the item must be
a filename in a suitable format for the lookup type. For example, for dbm; it
must be an absolute path:

hold_domains = dbm;/etc/holddomains.db

The appropriate type of lookup is done on the file using the domain name as
the key. If the lookup succeeds, the domain that was looked up matches the
item.

• Any of the single-key lookup type names may be preceded by partialn-,
wher e the n is optional, for example:

partial-dbm;/partial/domains

This causes partial matching logic to be invoked; a description of how this
works is given in the section “Partial Matching in Single-Key Lookups,” in
Chapter 16, File and Database Lookups.

• Any of the single-key lookup types may be followed by an asterisk. This
causes a default lookup for a key consisting of a single asterisk to be done if
the original lookup fails. This is not a useful feature when using a domain list
to select particular domains (because any domain would match), but it might
have value if the result of the lookup is being used via the $domain_data
expansion variable (described later in this section).

• If the item starts with the name of a query-style lookup type followed by a
semicolon (for example, nisplus; or ldap;), the remainder of the item must
be an appropriate query for the lookup type. The query is expanded before
use and the expansion variable $key can be used to insert the domain being
tested into the query. For example:

local_domains = \
mysql; select domain from localdomains where domain=’$key’;

If the lookup succeeds, the domain that is being tested matches the item. Note
that this is not looking up a list of domains to test; it is testing a single domain
by running a query (which normally would refer to the domain).

• If none of the earlier cases apply, a straight textual comparison is made
between the item and the domain.

Lookups in domain lists are a way of obtaining a ‘‘yes’’ or ‘‘no’’ answer about a
domain’s membership of a particular set of domains. The data that is looked up as

Domain Lists 425

9 October 2001 09:12

426 Chapter 18: Domain, Host, and Address Lists

part of the test is normally discarded. However, ther e is one case when it is
retained. The domains and local_parts options on a director or router check the
domain and local part, respectively, before running the driver. If either is matched
by means of a lookup, Exim sets the $domain_data and $local_part_data variables,
respectively, to the data that was looked up, for the duration of the driver. These
values can be used in other configuration options. From Exim Release 3.14, this
data is also available to any transport that is run as a result of the director or router
accepting the address.

Her e is an (unrealistic) example of a domain list that uses several differ ent kinds
of items:

local_domains = \
@:\
lib.unseen.edu.example:\
*.foundation.fict.example:\
ˆ[1-2]\d{3}\.fict\.example$:\
partial-dbm;/opt/penguin/example:\
nis;domains.byname:\
nisplus;[name=$key,status=local],domains.org_dir

Ther e ar e some fairly obvious processing trade-offs among the various matching
modes. Using an asterisk is faster than using a regular expression, and listing a few
names explicitly probably is too. The use of a file or database lookup is expensive,
but it may be the only option if hundreds of names are requir ed. Because the
items are tested in order, it makes sense to put the most commonly matched items
earlier in the string.

Some domain lists, of which local_domains is the prime example, are scanned fre-
quently by Exim. It is therefor e important that any lookups they use be quick and
unlikely to defer. You should not, for instance, set local_domains to a lookup on
some heavily loaded database server running on a host on some remote network.
Lookups should normally use a local file or a server running on the local host, or
at least a host on the local LAN.

Host Lists
Host lists are used to control what remote hosts are allowed to do (for example,
use the local host as a relay).

Host Checks by IP Address
When Exim receives an SMTP call from another host, the only reliable identifica-
tion it initially has for the host is its IP address. This address is used for checking
when any of these items is encountered in a host list:

9 October 2001 09:12

• If the entire item is *, it matches any IP address, and therefor e any host. For
example:

sender_verify_hosts = *

specifies that, if sender_verify is turned on, it will apply to all hosts.

• If the item is an IP address, it is compared with the IP address of the subject
host. For example:

host_accept_relay = 10.8.43.23

allows relaying from the host with that particular IP address. If an IPv4 host
calls an IPv6 host, the incoming address actually appears in the IPv6 host as
::ffff:v4address. When such an address is tested against a host list, it is con-
verted into a traditional IPv4 address first.

• If the item is an IP address followed by a slash and a mask length, for
example:

host_lookup = 10.11.0.0/16

it is matched against the IP address of the subject host under the given mask,
which specifies the number of address bits that must match starting from the
most significant end. Thus, an entire network of hosts can be included (or
excluded) by a single item. IPv4 addresses are given in the normal ‘‘dotted-
quad’’ notation. IPv6 addresses are given in colon-separated format, but the
colons have to be doubled so as not to be taken as item separators. This
example shows both kinds of addresses:

receiver_unqualified_hosts = 192.168.0.0/12: \
5f03::1200::836f::::/48

Colons in IPv6 addresses must be doubled only when such addresses appear
inline in a host list. Doubling is not requir ed (and must not be done) when
IPv6 addresses appear in a file. For example:

receiver_unqualified_hosts = /opt/exim/unqualnets

could make use of a file containing:

192.168.0.0/12
5f03:1200:836f::/48

to have exactly the same effect as the earlier example, though it is of course
less efficient for a small number of addresses. If you are using Exim 3.14 or
later, you can change the separator character in the list to avoid having to
double colons in IPv6 addresses. For example:

receiver_unqualified_hosts = <+ 192.168.0.0/12+ \
5f03:1200:836f::/48

Host Lists 427

9 October 2001 09:12

428 Chapter 18: Domain, Host, and Address Lists

• If the item is of the form:

netnumber-search-type;search-data

for example:

net24-dbm;/etc/networks.db

the IP address of the subject host is masked using number as the mask length.
A textual string is constructed from the masked value, followed by the mask,
and this is used as the key for the lookup. For example, if the host’s IP
addr ess is 192.168.34.6, the key that is looked up for the earlier example is
192.168.34.0/24.

IPv6 addresses are converted to a text value using lowercase letters and dots
as separators instead of the more common colon; a colon is the key terminator
in lsearch files, which prevents any string containing a colon from being used
as a key. Full, unabbreviated IPv6 addresses are always used.

• If the item is of the form:

net-search-type;search-data

the text form of the IP address of the subject host is used unmasked as the
lookup key string. This is not the same as specifying net32 for an IPv4 address
or net128 for an IPv6 address, as the mask value is not included in the key.
However, IPv6 addresses are still converted to an unabbreviated form using
lowercase letters, with dots as separators.

Host Checking Using Forward Lookup
If an item in a host list is a plain domain name, for example:

host_accept_relay = my.friend.example

Exim calls gethostbyname() to find its IP addresses. This typically causes a for-
ward DNS lookup of the name. In some cases other sources of information such
as /etc/hosts may be used though, depending on the way your operating system is
set up. The result is compared with the IP address of the host being checked. The
primary name of the local host can be included in a host list by an item consisting
of just the character @; this makes it possible to use the same configuration on sev-
eral hosts that differ only in their names.

Host Checking Using Reverse Lookup
The remaining types of item that can appear in host lists are wildcard, patterns for
matching against the hostname. If this is not already known, Exim calls gethost-
byaddr() to obtain it from the IP address. This typically causes a reverse DNS

9 October 2001 09:12

lookup to occur, though other sources of information such as /etc/hosts may be
used, depending on the configuration of your operating system.

If the lookup fails (that is, if Exim cannot find a hostname for the IP address), it
takes a hard line by default and access is not permitted. If the list is an ‘‘accept’’
list (for example, host_accept_relay), Exim behaves as if the current host is not in
the set defined by the list; if it is a ‘‘reject’’ list (for example, host_reject), it
behaves as if it is.

One side effect of this is that subsequent items in the list are not examined, even if
they do not requir e the hostname to be known.* For this reason, you should
always put items involving IP addresses first if you can. Suppose you had the
setting:

host_accept_relay = *.myfriend.example : 192.168.5.4

When a call from any host arrives, Exim has to find a hostname before it can test
the first item in the list. If a name cannot be found, relaying is denied, even from
the host 192.168.5.4. Putting the items in the opposite order allows relaying from
that host, whether or not its name can be found. It is also more efficient, since the
reverse lookup is not even attempted.

In some circumstances it may be necessary not to reject access if a reverse lookup
fails. To allow this, the special item +allow_unknown may appear in a host list at top
level; it is not recognized in an interpolated file. If any subsequent items requir e a
hostname and the reverse lookup fails, Exim permits the access instead of rejecting
it; that is, its behavior is the opposite to the default. For example:

host_reject = +allow_unknown:*.enemy.example

rejects connections from any host whose name matches *.enemy.example, but only
if it can find a hostname from the incoming IP address. This is a dangerous thing
to do if you really are dealing with a malicious enemy, because the block can eas-
ily be circumvented by unregistering the calling hosts. However, if you must
accept mail from unregister ed hosts but also need to block other register ed hosts
by name, this facility can be useful.

If +warn_unknown is used instead of +allow_unknown, the effect is the same, except
that Exim writes an entry to its log when it accepts a host whose name it cannot
look up.

* The order of items in a list matters because of the existence of negative items, so an unresolvable
item cannot just be skipped.

Host Lists 429

9 October 2001 09:12

430 Chapter 18: Domain, Host, and Address Lists

As a result of aliasing, hosts may have more than one name. When processing any
of the following items, all the host’s names are checked:

• If an item in a host list starts with an asterisk, the remainder of the item must
match the end of the hostname. For example, *.b.c matches all hosts whose
names end in .b.c. The asterisk may appear only at the start of the item; this
special simple form is provided because this is a very common requir ement.
Other kinds of wildcarding requir e the use of a regular expression (see the
next bullet).

• If an item starts with a circumflex, it is taken to be a regular expression that is
matched against the hostname. For example:

ˆ[ab]\.c\.d$

matches either of the two hosts a.c.d or b.c.d. As in the case of a domain list,
the circumflex is interpreted as part of the regular expression.

• If an item is of the form search-type;filename-or-query, for example:

host_reject = ! dbm;/host/accept/list

the hostname is looked up using the search type and file name or query (as
appr opriate). If the lookup succeeds, the item matches. The retrieved data is
not used.

Take care not to confuse lookups that use the hostname as the key with those that
use the IP address. You must precede the search type with net- if you want the
addr ess to be used.

Use of RFC 1413 Identification in Host Lists
RFC 1413 (Identification Protocol) is much misunderstood. It defines a protocol
(usually called ident) by which a server, on receiving a call from a client, can
make an IP call back to the client and retrieve identification information relating to
the original call. In the context of SMTP, the following sequence occurs:

1. Host C (client) connects to the SMTP port on host S (server) from an arbitrary
port.

2. Host S connects to host C’s ident port, passing host C’s calling port.

3. Host C sends host S identification data relating to the SMTP call.

4. Host S records the data with the incoming message.

The misunderstanding some people have is to think that the information is sup-
posed to be of use to the server. It is not; it is something the server can record and
pass back to the client’s administrator if there is a query.

9 October 2001 09:12

Consider a large shared machine with thousands of register ed users. If a user of
that system makes a TCP/IP call to another host and abuses it in some way, the
manager of the shared system, when investigating the resulting complaint, has a
much easier task if the called host recorded RFC 1413 identification information
obtained from the calling host. Many hosts simply send out login names in
response to RFC 1413 calls, in which case the culprit is immediately identifiable.
Some hosts include more infor mation, such as time and source of login, and for
privacy reasons, some hosts encrypt the information. RFC 1413 is an aid to finding
the human responsible for a particular TCP/IP call from a multiuser system. It is of
no use in the context of single-user clients, but that is not a problem because there
should only be one human involved.

Exim makes RFC 1413 callbacks by default, but can be configured to do so only
for particular hosts by setting rfc1413_hosts. This option defaults to:

rfc1413_hosts = *

that is, the callbacks are made for all hosts. A timeout is applied to these calls,
contr olled by rfc1413_query_timeout, which defaults to 30s (30 seconds). If it is
set to a zero length of time, no RFC 1413 calls are ever made. This is the recom-
mended way of disabling these callbacks.

Any identification information that is received is logged with incoming messages,
but in can also be used in other host lists. Any item in a host list other than an
interpolated filename, +allow_unknown (or +warn_unknown) optionally can be pre-
ceded by:

ident@
or
!ident@

wher e ident is an RFC 1413 identification string that must match the RFC 1413
identification sent by the remote host (unless it is preceded by an exclamation
mark, in which case it must not match). The remainder of the item, following the
@, may be either positive or negative. For example:

host_reject = !exim@my.gate.example : !root@public.host.example

rejects messages from my.gate.example unless the RFC identification is exim, and
fr om public.host.example unless the RFC identification is root.

Host Lists 431

9 October 2001 09:12

432 Chapter 18: Domain, Host, and Address Lists

Address Lists
Addr ess lists are used in a number of options to vary Exim’s behavior for certain
sender or recipient addresses. For example:

sender_reject_recipients = cleo@egypt.example : tony@egypt.example

specifies that any messages with those senders be refused by rejecting all their
recipients.

Each item in an address list is matched against a mail address in the form
local_part@domain. The following kinds of items may appear inline or as lines in
an interpolated file:

• If an item starts with a circumflex, a regular expression match is done against
the complete address, using the entire item as the regular expression. For
example:

sender_reject_recipients = ˆ(cleo|tony)@egypt\.example$

As in the case of domain and host lists, the circumflex is interpreted as part of
the regular expression.

• Otherwise, if there is no @ in the item, it is first matched against the domain
part of the address being tested, the local part being ignored. This match is
done exactly as for an entry in a domain list. For example, the item may begin
with * or it may be a (partial) lookup (see the section “Domain Lists,” earlier
in this chapter). For example:

sender_reject_recipients = *.rome.example

matches all addresses whose domains end in .r ome.example. For a fixed
domain name or an asterisk wildcard, such as this example, if the domain
does not match, the entire addr ess does not match. However, when the item is
a lookup and the domain does not match, a second lookup is done, this time
with the entire subject address as the key, not just the domain (but with partial
matching disabled). This means that an item such as:

sender_reject_recipients = partial-dbm;/some/file

can refer ence a single file whose keys are a mixtur e of complete domains,
partial domains, and individual mail addresses. For example, this file:

egypt.example
*.rome.example
caesar@rubicon.example

9 October 2001 09:12

matches all addresses whose domains are egypt.example, rome.example, or
any domain ending in .r ome.example, as well as the specific address
caesar@rubicon.example.*

• If the item starts with @@lookup-item (for example, @@lsearch;/some/file), the
addr ess being checked is split into a local part and a domain. The domain is
looked up in the file. If it is not found, there is no match. If it is found, the
data that is looked up from the file is treated as a colon-separated list of local
part items, each of which is matched against the subject local part in turn. As
in all colon-separated lists in Exim, a colon can be included in an item by
doubling.

The lookup may be partial, or may cause a search for a default keyed by *.
The local part items that are looked up can be regular expressions, begin with
*, or even be further lookups. They may also be negated independently. For
example, with:

sender_reject_recipients = @@dbm;/etc/reject-by-domain

the data from which the DBM file is built could contain lines such as this:

baddomain.example: !postmaster : *

If a sender’s domain is baddomain.example, that line of local part items is
retrieved and scanned. In this case, if the local part is postmaster it matches
the negated item, so the whole address fails to match the list. Any other local
part matches the asterisk. If a local part that actually begins with an exclama-
tion mark is requir ed, it has to be specified using a regular expression.

If the last item in a list of local parts starts with a right angle bracket, the
remainder of the item is taken as a new key to look up in order to obtain a
continuation list of local parts. This is called chaining. The new key can be
any sequence of characters. Thus, one might have entries such as:

h1.example.com: spammer1 : spammer2 : >*
h2.example.com: spammer3 : >*
*: ˆ\d{8}$

to specify a match for eight-digit local parts for all domains, in addition to the
specific local parts listed for each individual domain. Of course, using this fea-
tur e costs another lookup each time a chain is followed, but the effort needed
to maintain the data is reduced. It is possible to construct loops using this
facility, and in order to catch them, the number of times Exim follows a chain
is limited to 50.

* See the section “Partial Matching in Single-Key Lookups” in Chapter 16 for details of the partial
matching facility for single-key lookups.

Address Lists 433

9 October 2001 09:12

434 Chapter 18: Domain, Host, and Address Lists

• If none of the earlier cases apply, the local part of the subject address is com-
par ed with the local part of the item, which may start with an asterisk. If the
local parts match, the domains are compar ed in exactly the same way as
entries in a domain list, except that a regular expression is not permitted.
However, file lookups are allowed. For example:

sender_reject_recipients = \
@.spamming.site.example : \
bozo@partial-lsearch;/list/of/dodgy/sites

The domain may be given as a single @ character, as in a domain list. A single
@ stands for the local hostname, leading to items of the form user@@. If a local
part that actually begins with an exclamation mark is requir ed, it has to be
specified using a regular expression, as otherwise the exclamation mark is
tr eated as a sign of negation.

Case of Letters in Address Lists
Domains in email addresses are always processed without regard to the case of
any letters in their names. For local parts, the case may be significant on some
systems.* However, RFC 2505 (Antispam Recommendations for SMTP MTAs) sug-
gests that matching addresses to blocking lists should be done in a case-insensitive
manner. Since most address lists in Exim are used for this kind of control, Exim
attempts to do this by default.

The domain portion of an address is always made lowercase before matching to
an address list. The local part is lowercase by default, and any string comparisons
that take place are done case insensitively. This means that the data in the address
list itself, in interpolated files, and in any file that is looked up using the @@ mecha-
nism, can be in either case. However, the keys in files that are looked up by a
search type other than lsearch (which works case insensitively) must be in lower-
case because these types of lookup are case sensitive.

To allow for case sensitive address list matching, if the string +caseful is included
as an item in an address list, the original case of the local part is restor ed for any
comparisons that follow, and string comparisons become case sensitive. This does
not affect the domain.

* See the section “Handling Local Parts in a Case-Sensitive Manner,” in Chapter 5, Extending the Deliv-
ery Configuration, to lear n how Exim deals with this when processing local addresses.

9 October 2001 09:12

19
Miscellany

This chapter collects a number of items that do not fit naturally into the other
chapters, but are too small to warrant individual chapters of their own.

Secur ity Issues
We use the word ‘‘security’’ to cover all aspects of the operation of Exim that are
concer ned with letting it perfor m privileged actions not permitted to ordinary user
pr ograms. It also covers aspects concerned with keeping the messages and other
data it handles secure. There are thr ee aspects to this:

• An MTA requir es privilege to carry out the full range of expected functions,
but it must take care to prevent its privilege from being abused. If possible, it
should also relinquish privilege whenever it does not need it.

• An MTA must keep the files containing the messages it handles from being
accessed by ordinary user programs. Under some countries’ data protection
legislation, messages and even mail logs are consider ed personal data, so it
must be processed with appropriate care.

• An MTA must provide extra facilities for its administrators (for example, the
ability to delete a message on the queue) that are safe from abuse by ordinary
users.

Security is an important issue because breaches of security can lead to serious
consequences. The full details of the security aspects of Exim are quite involved

435

9 October 2001 09:12

436 Chapter 19: Miscellany

and allow for some variation in the way it is configured. However, ther e ar e some
‘‘standard’’ recommendations you should normally follow, unless you are sur e you
understand the consequences of doing otherwise. They are as follows:

• You should set up a special user (uid) and group (gid) for Exim’s sole use.
Many sites set up a user and a group called exim; others use mail. If you build
Exim from source, define the uid and gid in your Local/Makefile as shown in
this example:

EXIM_GID=142
EXIM_UID=142

A description of how to build Exim is given in Chapter 22, Building and
Installing Exim. If you are using a precompiled version of Exim that does not
contain the settings you want to use, you can define the uid and gid in the
runtime configuration file like this:

exim_user = 142
exim_group = 142

This is slightly less safe because if those settings are lost, Exim may run under
the wrong uid and gid.

• Add your system administrators to the Exim group. This allows them to read
Exim’s log files and carry out Exim administration functions without needing
to know the root password; for more detail, see the discussion of privileged
users later in this chapter.

• If you want your administrators to be able to run the eximon monitoring tool,
they need to have read access to the message files on Exim’s spool. The Exim
gr oup is set for these files, but the default mode is 0600, which gives access
only to the Exim user (and root, of course). You need to change the mode to
0640; this can be done only if you build Exim from source. For details, see the
section “Recommended Makefile Settings,” in Chapter 22.

• Install Exim as root, using make install. This ensures that the binary is owned
by root and has the setuid bit set.

The remainder of this section discusses security issues in more depth.

Use of Root Privilege
The way Exim uses the root privilege is quite complicated, and it can be config-
ur ed to operate in more than one way. Before we go into the details, we’ll give a
brief review of the Unix features that are used.

9 October 2001 09:12

How Unix uses uids to control privilege

Fr om the start, Unix had the concept of a real uid and an ef fective uid for every
pr ocess. These are both set to the same value when a user logs in. The effective
uid is the one used for privilege checking (for example, file access), and it can be
changed when a new program is run by setting the setuid flag in the owner per-
missions of the executable file. This causes the effective uid to be set to that of the
file’s owner; the real uid is unchanged. Modern versions of Unix also have a saved
uid, which is set to the same value as the effective uid when the latter is changed
at program startup.

The ways in which programs can manipulate these uids while they are running are
not exactly the same in all versions of Unix, but a process whose effective uid is
root is able to set all of them to any value, and any process can change its effec-
tive uid to its real or saved uid as and when it chooses. This means that there are
two differ ent ways in which a program with root privilege (one whose effective
uid is root) can give up the privilege:

• If all three uids are set to something other than root, the abdication is perma-
nent within the current program; privilege cannot be regained except by exe-
cuting a new program that is owned by root and has the setuid flag set.

• If the real or saved uid is set to root and the effective uid is set to something
else, the abdication is only temporary. Because any program may change its
ef fective uid to its real or saved uid, privilege can be regained at any time.

Relinquishing the privilege temporarily is a less secure action because an error
could cause it to be reinstated at the wrong time.*

Why does Exim need root privilege?

Exim does two things that requir es it to be privileged:

• When started as a daemon, it sets up a socket connected to the SMTP port
(port 25), which can be done only by a privileged program.

• It changes uid and gid to read forward files and run local delivery processes
as the receiving user, or as the user specified in the configuration.

Because of these requir ements, the Exim binary is normally setuid to root. In some
special circumstances (for example, when the daemon is not in use and there are

* For those who know about Unix system functions: permanent abdication is implemented by calling
setuid(), wher eas temporary abdication is implemented by calling seteuid() (or, on a few sys-
tems, setresuid()).

Secur ity Issues 437

9 October 2001 09:12

438 Chapter 19: Miscellany

no conventional local deliveries), it may be possible to run it setuid to some user
other than root (usually the Exim user). This possibility is discussed later, but in
the vast majority of Exim installations, the output of the ls -l command should look
like this:

-rwsr-xr-x 1 root smd 560300 Jun 14 08:53 exim

That is, the binary is owned by root, and the s flag is set for the owner. This
means that whenever the program is run, the effective uid is changed to root. The
gr oup (smd in this case) is not normally relevant.

If no Exim user is specified in either the compile time or runtime configuration
files, Exim runs as root all the time, except when perfor ming local deliveries. Oth-
erwise, it gives up root privilege when it no longer needs it and runs as the Exim
user instead. In particular, it does this when receiving messages from any source,
and also when making remote deliveries. This is why it is recommended that you
define an Exim user.

Relinquishing root privilege

When Exim relinquishes root privilege, it may do so using either the permanent or
temporary method described previously. In some cases, this can be controlled by a
configuration option; this allows you to select a little less security to obtain a little
mor e per formance. To avoid cluttering up the text too much, we talk only about
setting the uid in what follows. However, it should be understood that there is
always a corresponding gid, and that whenever the uid is changed, the gid is
changed also.

Ther e ar e two circumstances in which an Exim process always gives up its privi-
lege permanently:

• At the start of running a local delivery process. There are no exceptions. This
applies whether or not an Exim user is defined.

• When a delivery process is about to do remote deliveries, provided an Exim
user and group are defined. Local deliveries are done before remote deliver-
ies, so root privilege is no longer needed.

Ther e ar e also two instances in which Exim always gives up its privilege temporar-
ily:

• When reading a user’s .forwar d file. This is necessary when the file is not pub-
licly readable and is on a remote NFS file system that is mounted without root
privilege. If the file is a filter file, the effective uid remains unprivileged while
being interpreted.

9 October 2001 09:12

• If any director or router has the require_files option set to check the exis-
tence of a file as a specific user, the effective uid is changed to that user for
the duration of the check.

The other circumstances in which privilege is relinquished requir e an Exim user
and group to be defined. If you have not set these up, Exim runs as root, except
as just described, because it has no other uid it can use.

The secur ity option

The security configuration option controls whether Exim relinquishes its privilege
per manently or temporarily in these remaining circumstances. You should not nor-
mally need to change the default setting (which is the most secure) unless you are
running an unusual configuration or are prepar ed to sacrifice a little security in
exchange for less resource usage.

• With the setting:

security = seteuid

Exim gives up root temporarily when it does not need it (for example, while
running the routers and directors) and regains the privilege when necessary.
This enables it to run with a non-root ef fective uid most of the time, at very lit-
tle cost, but offers less security.

• With the setting:

security = setuid

Exim gives up its privilege permanently when it is receiving a locally gener-
ated message and after it has set up a listening socket when running as a dae-
mon. This means that, to deliver any message that it has received, it has to
reinvoke a fresh copy of itself to regain privilege. During delivery, it retains
privilege except when actually transporting the message. In particular, it runs
the directors and routers as root.

• With the setting:

security = setuid+seteuid

which is the default (provided an Exim user and group are defined), Exim
operates as for setuid, but it also gives up privilege temporarily when it needs
to regain it subsequently without losing a lot of state information (for exam-
ple, while running the directors and routers).

The most secure setting necessarily involves the use of more resources because
the Exim binary has to be reinvoked more frequently, but on a busy system it is
likely to remain in the file system’s cache, so the cost is probably not that large.

Secur ity Issues 439

9 October 2001 09:12

440 Chapter 19: Miscellany

Running Local Deliver ies as root
It is generally considered to be a bad idea to run any local deliveries as root on
the grounds of avoiding excessive privilege where it is not needed. Most installa-
tions set up root as an alias for the system administrator, which bypasses this prob-
lem, but just in case this is not done, Exim’s default configuration contains a
‘‘trigger guard’’ in the form of the setting:

never_users = root

Whenever Exim is about to run a local delivery process, it checks to see if the
requir ed uid is one of those listed in never_users. If it is, the delivery is run as
nobody instead. The uid and gid for nobody can be specified by nobody_user and
nobody_group; the default is to look up the login name nobody.

Running an Unprivileged Exim
In some restricted environments, it is possible to run Exim without any privilege at
all, or by retaining privilege only when starting a daemon process. This gives
added security, but restricts the actions Exim is able to take. A host that does no
local deliveries is a good candidate for this kind of configuration. There are two
possibilities if you want to run Exim in this way:

• Keep its setuid to root, as in other configurations, but set:

security = unprivileged

In all cases, except when starting the daemon, this setting causes Exim to give
up privilege permanently as soon as it starts, and thereafter it runs under the
Exim uid and gid. In the case of the daemon, root privilege is retained only
until Exim has bound its listening socket to the SMTP port. The daemon can
respond correctly to a SIGHUP signal requesting that it reload its configuration
because the reinvocation that this causes regains root privilege.

• Make the Exim binary setuid and setgid to the Exim user and group:

-rwsr-sr-x 1 exim exim 560300 Jun 14 08:53 exim

This means that it always runs under the Exim uid and gid and cannot start up
as a daemon unless it is called by a process that is running as root. A daemon
cannot restart itself as a result of SIGHUP because it is no longer a root pr o-
cess at that point. You should still set:

security = unprivileged

in this case, because this setting stops Exim from trying to reinvoke itself to do
a delivery after a message has been received. Such a reinvocation is a waste of
time because it would have no effect. Instead, Exim just carries on in the same
incar nation of the program.

9 October 2001 09:12

If the second approach is chosen, unless Exim is invoked from a root pr ocess, it
ends up running with the real uid and gid set to those of the invoking process,
and the effective uid and gid set to Exim’s values. Ideally, any association with the
values of the invoking process should be dropped; that is, the real (and saved) uid
and gid should be reset to the effective values. Some operating systems have a
function that permits this action for a non-root ef fective uid, but quite a number of
them do not. Because of this lack of standardization, Exim does not address this
pr oblem. For this reason, the first approach is perhaps the better one to take if you
ar e concer ned about this issue.

The unprivileged setting of the security option is more efficient than setuid or
setuid+seteuid because Exim no longer needs to reinvoke itself when starting a
delivery process after receiving a message. However, to achieve this extra effi-
ciency, you have to submit to some restrictions, which are all concerned with han-
dling local addresses and local deliveries. There are no special restrictions on
message reception or remote (SMTP) delivery.

The restrictions are as follows:

• All local deliveries are run under the Exim uid and gid. You should explicitly
use the user and group options to override directors or transports that nor-
mally deliver as the recipient. This use allows configurations that work in this
mode to function the same way with other security settings. Any implicit or
explicit specification of a differ ent user causes an error.

• Use of .forwar d files is severely restricted, such that it is usually not worth-
while to include a forwardfile dir ector in the configuration. Users who wished
to use .forwar d would have to make their home directories and the files them-
selves accessible to the Exim user. Even if this is done, pipe and file items in
.forwar d files, and their equivalents in Exim filters, cannot be permitted in
practice. Although such deliveries could be allowed to run as the Exim user,
that would be insecure and probably not very useful.

• Unless user mailboxes are all owned by the Exim user, which is possible in
some POP3-only or IMAP-only environments:

– They must be owned by the Exim group and be writable by that group.
This implies that you must set mode in the appendfile configuration, as well
as the mode of the mailbox files themselves.

– You must set no_check_owner in the appendfile configuration, since most
or all of the files will not be owned by the Exim user.

– You must set file_must_exist in the appendfile configuration, as Exim
cannot set the owner correctly on a new mailbox when unprivileged. This
also implies that new mailboxes must be created manually.

Secur ity Issues 441

9 October 2001 09:12

442 Chapter 19: Miscellany

Pr ivileged Users
A privileged user is one who is permitted to ask Exim to do things that normal
users may not. There are two differ ent kinds of action involved, so there are two
dif ferent classes of privileged users, called trusted users and admin users. In the
descriptions of the command-line options in Chapter 20, Command-Line Interface
to Exim, a restriction to trusted or admin users is noted for those options to which
it applies.

Tr usted Users
Trusted users are allowed to override certain information when submitting mes-
sages via the command line (that is, other than over TCP/IP). The Exim user and
root ar e automatically trusted and additional trusted users can be defined by the
trusted_users option, for example:

trusted_users = uucp : majordom

In addition, if the current group or any of the supplementary groups of the pro-
cess that calls Exim is the Exim group, or any group listed in the trusted_groups

option, the caller is trusted.

Setting the sender of a locally submitted message

When an ordinary (nontrusted) user submits a message locally, a sender address is
constructed from the login name of the real user of the calling process and the
default qualifying domain. This address is set as the sender in the message’s enve-
lope. It is also placed in an added Sender: header line if the Fr om: header does
not contain it, though this can be disabled by setting no_local_from_check.*

A trusted user may override the sender address by using the -f option. For
example:

exim -f ’alice@carroll.example’ ...

forces the sender address to be alice@carr oll.example. If you are running mailing
list software that is external to Exim, you should arrange for it to run as a trusted
user so it can specify sender addresses when passing messages to Exim for deliv-
ery to subscribers.

* Ther e is more discussion of the Sender: header line in the section “The Sender: Header Line,” in
Chapter 13, Message Reception and Policy Controls.

9 October 2001 09:12

The origin of the concept of trusted users lies in multiuser systems, where the
administration wants to ensure that an authenticated sender address is present in
every message that is sent out.* In this kind of environment, trusted users are
those able to ‘‘forge’’ sender addresses when submitting messages using the com-
mand-line interface.

On small workstations where everything that is done can be accounted to a few
people, the distinction between trusted and nontrusted users is less useful, expe-
cially in the case of sender addresses. If you are running such a system, you may
want to remove the restriction on the use of -f. From Release 3.20, you can do this
by setting the untrusted_set_sender option. This does not, however, make all
users trusted; it applies only to the use of -f.

Setting other infor mation in a locally submitted message

In addition to a sender address, a trusted user may supply additional information,
such as an IP address, as if the message had been received from a remote host,
using command-line options described in the section “Additional Message Data,”
in Chapter 20. These facilities are provided to make it possible for administrators
to inject messages with ‘‘remote’’ characteristics using the command line. This can
be useful when passing on messages that have arrived via some other transport
system, such as UUCP, or when reinjecting messages that initially have been deliv-
er ed to a virus scanner (for example).

Admin Users
Admin users are per mitted to use options that affect the running of Exim, for
example, to start daemon or queue runner processes and to remove messages
fr om the queue. The Exim user and root ar e automatically admin users and addi-
tional admin users can be set up by adding them to the Exim group.

If you want to, you can ‘‘open up’’ two actions normally permitted only to admin
users so that any user can request them:

• If no_prod_requires_admin is set, any user may start an Exim queue run by
means of the -q option, and may also request the delivery of an individual
message by means of the -M option.

• If no_queue_list_requires_admin is set, any user may list the messages on the
queue by means of the -bp option. Otherwise, nonadmin users see only the
messages that they themselves have submitted.

* For messages sent directly over TCP/IP from user processes, the ident pr otocol can help provide
similar accountability. See the section “Use of RFC 1413 Identification in Host Lists,” in Chapter 18,
Domain, Host, and Address Lists.

Pr ivileged Users 443

9 October 2001 09:12

444 Chapter 19: Miscellany

If you want to make all members of an existing group into admin users, you can
do so by specifying the group in the admin_groups option. The current group does
not have to be one of these groups in order for an admin user to be recognized.
For example, setting:

admin_groups = sysadmin

makes every user in the sysadmin gr oup an Exim admin user. However, ther e is
an advantage in doing it the other way; that is, in adding all your administrators to
the exim gr oup explicitly. If you do this, and if you arrange for Exim’s spool and
log files to have mode 0640, it gives the administrators read access to these files,
which is necessary if they want to run the eximon monitor program or examine
log files directly.

RFC Confor mance
The main RFCs that define basic Internet mail services are now very old. RFCs 821
and 822 were published in 1982; some clarifications were published in RFC 1123
in 1989. Subsequent RFCs have mostly been concerned with adding functionality
such as MIME and extending the SMTP protocol.

The Internet has changed dramatically since 1982 and MTAs have had to change
with it, in some cases adopting new conventions that are not in the RFCs, and in
others choosing to ignore the RFCs’ recommendations or relax their restrictions.
Some, but not all, of these changes have been incorporated into revised versions
of RFCs 821 and 822. These have been in preparation for some years, and at the
time of writing are close to becoming Internet standards.

It is important to remember that the RFCs are not legally binding contracts; their
intent is to facilitate widespread interworking over the network. If software con-
for ms to the relevant RFCs, the chances that it can interwork successfully are high.
However, you may find that not following an RFC in some particular instance
extends interworking between your host and those with which it communicates. If
such a change is widely adopted, it may eventually be sanctioned as a standard,
though there are some cases where widely used practice is frowned on by the
purists. Any particular piece of software must steer a middle course between strict
adher ence to the RFCs on the one hand, and total disregard on the other.

Ther e ar e a number of ways in which Exim does not conform strictly to the RFCs.
Some of them are very minor, others you can control by setting options, and a few
ar e fundamental to the way the program works and cannot be disabled. These dis-
tinctions reflect the prejudices of the author.

9 October 2001 09:12

8-Bit Character s
Although TCP/IP has always been an 8-bit transport medium, the mail RFCs, even
in the forthcoming revision, still insist that mail is basically a 7-bit service. Charac-
ters with the most significant bit set (that is, with a value greater than 127) are for-
bidden.

The transfer of 8-bit material can be negotiated in some circumstances, but other-
wise an MTA is supposed to encode 8-bit characters in some way before transmit-
ting them. Note that this does not apply to binary attachments (which are alr eady
encoded into 7-bit characters by the MUA that creates the message), but rather to
‘‘raw’’ 8-bit characters received by the MTA. The most common reason why these
ar e encounter ed is the use of accented and other special letters in European lan-
guages and names.

Requiring an MTA not to pass on 8-bit characters without special action raises
technical problems and issues of design principle. If an MTA has received a mes-
sage containing 8-bit characters and the remote MTA to which it wants to send the
message has not indicated support for 8-bit transfers (which is an SMTP exten-
sion), the sending MTA must choose between three possibilities:

• Bounce the message.

• Translate the message into a 7-bit format, making an arbitrary choice of encod-
ing mechanism.

• Just send the 8-bit characters anyway.

Strict adherence to the RFCs permits only the first two of these. However, the first
is not very helpful, and the second may well turn the message into a form that is
not displayed correctly to the final recipient.* Br eaking the rules, however, and just
sending the 8-bit characters as they are has a high probability of achieving the
result that is intended: namely, the transfer of these characters from sender to
recipient.

To make any decisions about 8-bit characters, an MTA has to at least check a mes-
sage’s body for their presence. Some people (including this author) feel strongly
that the job of an MTA is to move messages about, not to spend resources inspect-
ing or modifying their content. For this reason, Exim is ‘‘8-bit clean.’’ It makes no
modification to message bodies and it pays no attention to 8-bit characters con-
tained therein; they are transported unmodified.

Ther e is, however, an option that is concerned with 8-bit characters. When Exim
acts as a server, it happily accepts 8-bit characters in messages in accordance with
the philosophy just described, but not all clients are prepar ed to send such

* Converting messages into ‘‘quoted-printable’’ format is notorious for this.

RFC Confor mance 445

9 October 2001 09:12

446 Chapter 19: Miscellany

characters in the way Exim does. The RFCs specify an SMTP extension called
8BITMIME for the transmission of 8-bit data. If the following:

accept_8bitmime

is set in Exim’s runtime configuration file, it advertises the 8BITMIME extension in its
response to the EHLO command. This causes certain clients to send 8-bit data
unmodified instead of encoding it; they use the BODY= parameter on MAIL com-
mands to indicate this. Exim recognizes this parameter, but it does not affect its
actions in any way. Thus, setting accept_8bitmime is just a way of persuading
clients not to encode 8-bit data. Exim processes such data in the same way,
whether or not the BODY parameter is used.

Address Syntax
Syntactically invalid addresses, both in envelopes and header lines, are a depr ess-
ingly common occurrence. Exim perfor ms syntax checks on all RFC 821 addresses
received in SMTP commands, but it does not check header lines unless head-

ers_check_syntax is set, or it is extracting envelope addresses from header lines as
a result of the -t option.

Built-in address syntax extensions

A number of extensions to the syntax specified in the RFCs are always permitted:

1. Exim accepts a header line such as:

To: A.N.Other <ano@somewhere.example>

which is strictly invalid because dot is a special character in RFC 822; the line
really should be:

To: "A.N.Other" <ano@somewhere.example>

but many mail programs allow the unquoted form.

2. Strictly, a local part may not end with a dot, nor contain adjacent dots, for
example:

P.H.@somewhere.example
A..Z@somewhere.example

Again, these forms are accepted because of widespread use.

3. ‘‘Quoted pairs’’ in unquoted local parts, for example:

abc\@xyz@somwhere.example

ar e per mitted by RFC 821 but not by RFC 822; for simplicity, Exim always
accepts them.

9 October 2001 09:12

4. When reading SMTP MAIL and RCPT commands, Exim does not insist that
addr esses be enclosed in angle brackets.

Configurable address syntax extensions

Two other address extensions can be enabled by setting options:

1. Misconfigured mailers occasionally send out addresses within additional pairs
of angle brackets, for example:

MAIL FROM:<<xyz@bad.example>>

This normally causes a syntax error, but if strip_excess_angle_brackets is set,
the excess brackets are removed by Exim.

2. The DNS use of a trailing dot to indicate a fully qualified domain sometimes
causes confusion and leads to the use of mail addresses that end with a dot,
for example:

dotty@dot.example.

Again, this normally causes a syntax error, but if strip_trailing_dot is set, the
trailing dot is quietly removed.

Domain literal addresses

The RFCs permit the use of domain literal addr esses, which are of the form:

shirley@[10.8.3.4]

That is, instead of a domain name, an IP address enclosed in brackets is used. This
causes the message to be sent to the host whose IP address it is. Even in 1982,
when RFC 822 was written, the use of domain literals was recognized as undesir-
able. The RFC says:

The use of domain-literals is strongly discouraged. It is permitted only as a means
of bypassing temporary system limitations, such as name tables which are not
complete.

In the modern Inter net, addr essing messages to specific hosts by their IP addresses
is seen by many as utterly undesirable. For this reason, Exim’s default configura-
tion file contains:

forbid_domain_literals

which causes Exim not to recognize the syntax of domain literal addresses. If you
want to permit the use of these addresses, you have to remove this setting from
the configuration and ensure that there is an ipliteral router to do the routing.

RFC Confor mance 447

9 October 2001 09:12

448 Chapter 19: Miscellany

If you want to recognize incoming messages containing domain literal addresses
for your own host, you must either include them in local_domains in domain lit-
eral format, for example:

local_domains = myhost.example : [192.168.10.8]

Alter natively, you can set:

local_domains_include_host_literals

which causes all the IP addresses for your host to be added to local_domains auto-
matically.

Sour ce routed addresses

Finally, while on the subject of address syntax, Exim recognizes so-called ‘‘source
routed’’ addresses of the form:

@relay1,@relay2,@relay3:user@domain

However, the use of such addresses has been discouraged since RFC 1123, and an
MTA is entitled to ignore all the routing information and treat such an address as:

user@domain

This is what Exim does.

Canonicizing Addresses
When a mail domain is the name of a CNAME record in the DNS, the original
RFCs suggest that an MTA should automatically change it to the ‘‘canonical name’’
as a message is processed, and there are MTAs that do make this change. How-
ever, the forthcoming revised RFCs do not contain this suggestion, and Exim does
not perfor m this rewriting.

Coping with Broken MX Records
The righthand side of an MX record is defined as a hostname. Some DNS adminis-
trators fail to appreciate this and set up MX records with IP addresses on the right-
hand side, like this:

clueless.example. MX 1 192.168.43.26

Unfortunately, there are broken MTAs in use that do not object to these records,
leading people to think that they will always work. Exim is not one of them; it

9 October 2001 09:12

tr eats the righthand side as a domain name, tries to look up its address records,
and naturally fails.*

If you are in a situation in which you just have to deliver mail to such domains
(perhaps you want to send a message to a postmaster pointing out the error), you
can get Exim to misbehave by setting:

allow_mx_to_ip

in its configuration. This setting is not recommended for general use.

Line Ter minators in SMTP
The specification of SMTP states that lines are ter minated by the two-character
sequence consisting of carriage retur n (CR) followed by linefeed (LF), and this is
what Exim uses when it sends out SMTP. For incoming SMTP, however, ther e ar e
clients known to break the rules and just use linefeed alone to terminate lines. For
this reason, Exim accepts such input.

Syntax of HELO and EHLO
One of the more common errors in client SMTP implementations is sending syn-
tactically invalid HELO or EHLO commands. Exim accepts underscores in the argu-
ment by default because this is an extremely widespread practice, but rejects other
syntax errors. There are some options that can be used to change this behavior;
they are described in the section “Verifying EHLO or HELO,” in Chapter 13.

Timestamps
Exim uses a timestamp for every line it writes to any of its log files and for every
Received: header it creates. By default, these timestamps are in the local wallclock
time zone, but there are two ways you can change this:

• If you set timestamps_utc in Exim’s runtime configuration, all timestamps are
in the Universal Coordinated Time (UTC, also known colloquially as GMT).

• Otherwise, the setting of the timezone option controls which time zone is
used. For example, if you set:

timezone = EST

timestamps are in Easter n Standard Time.

Unfortunately, there is appar ently no standard way a Unix program can specify the
use of local wallclock time without knowing what the local time zone is. It can be

* It does, however, notice what is going on and adds a suitable comment to the failure message.

Timestamps 449

9 October 2001 09:12

450 Chapter 19: Miscellany

done in some operating systems, but not in others. For this reason, the default set-
ting for timezone is taken from the setting of the TZ envir onment variable at the
time Exim is built, in the hope that this does the right thing in most cases.

If TZ is unset when Exim is built or if timezone is set to the empty string, Exim
removes any existing TZ variable from the environment when it is called. On
Linux, Solaris, and BSD-derived operating systems, this causes wallclock time to be
used.

Checking Spool Space
In the section “Incoming SMTP Messages over TCP/IP,” in Chapter 15, Authentica-
tion, Encryption, and Other SMTP Processing, the checking of available spool
space was mentioned in connection with the SIZE option of the MAIL command.
This is just one particular case in which this happens. There are four options that
request checks on disk resources before accepting a new message.

If either check_spool_space or check_spool_inodes contains a value greater than
zer o, for example:

check_spool_space = 50M
check_spool_inodes = 100

the free space in the disk partition that contains the spool directory is checked to
ensur e that there is at least as much free space and as many free inodes as speci-
fied. The check happens at the start of accepting a message from any source. The
check is not an absolute guarantee because there is no interlocking between pro-
cesses handling messages that arrive simultaneously.

If you have configured Exim to write its log files in a differ ent partition to the
spool files, you can set check_log_space and check_log_inodes in the same way to
check that partition.

If there is less space or fewer inodes than requested, Exim refuses to accept
incoming mail. In the case of SMTP input, this is done by giving a 452 temporary
err or response to the MAIL command. If there is a SIZE parameter on the MAIL
command, its value is added to the check_spool_space value and the check is per-
for med even if check_spool_space is zero, unless no_smtp_check_spool_space is
set.

For non-SMTP input and for batched SMTP input, the test is done at startup; on
failur e a message is written to the standard error stream and Exim exits with a
non-zer o code, as it obviously cannot send an error message of any kind.

9 October 2001 09:12

Control of DNS Lookups
In a conventional configuration, Exim makes extensive use of the DNS when han-
dling mail. Most of the time this ‘‘just happens,’’ and you do not need to be con-
cer ned with the details of DNS lookups. However, DNS problems are not entirely
unknown; they can sometimes be alleviated by changing the way Exim does its
DNS lookups.

Wher eas the DNS itself can store domain names that contain almost any character,
domains used in email are restricted to letters, digits, hyphens, and dots. Some
DNS resolvers have been observed to give temporary errors if asked to look up a
domain name (for an MX record, say) that contains other characters. To avoid this
pr oblem, Exim checks domain names before passing them to the resolver by
matching them against a regular expression specified by dns_check_names_pattern.
The default setting is:

dns_check_names_pattern = \
(?i)ˆ(?>(?(1)\.|())[ˆ\W_](?>[a-z0-9-]*[ˆ\W_])?)+$

which permits only letters, digits, and hyphens in domain name components, and
requir es them neither to start nor end with a hyphen. If a name contains illegal
characters, Exim behaves as if the DNS lookup had retur ned ‘‘not found.’’ This
checking behavior can be suppressed by setting no_dns_check_names.

Badly set-up name servers have been seen to give temporary errors for domain
lookups for long periods of time. This causes messages to remain on the queue
and be retried until they time out. Sometimes you may know that a particular
domain does not exist. If you list such domains in dns_again_means_nonexist, a
temporary DNS lookup error is treated as a nonexistent domain, causing messages
to bounce immediately. This option should be used with care because there are
many legitimate cases of temporary DNS errors.

Finally, the options dns_retrans and dns_retry can be used to set the retransmis-
sion and retry parameters for DNS lookups. Values of zero (the defaults) leave the
system default settings unchanged. The value of dns_retrans is the time in sec-
onds between retries and dns_retry is the number of retries. Exactly how these
settings affect the total time a DNS lookup may take is not clear.

Bounce Message Handling
This section covers several options that alter the way Exim handles or generates
bounce messages (that is, delivery failure reports). This also includes warning mes-
sages, which are sent after a message has been on the queue for a specific time.
Warning messages have the same format as bounce messages.

Bounce Message Handling 451

9 October 2001 09:12

452 Chapter 19: Miscellany

Replying to Bounce Messages
When Exim generates a bounce message, it inserts a Fr om: header line specifing
the sender as Mailer-Daemon at the default qualifying domain. For example:

From: Mail Delivery System <Mailer-Daemon@myhost.example>

Experience shows that many people reply, either accidentally, or out of ignorance,
to such messages.* You should normally arrange for mailer-daemon to be an alias
for postmaster if you want to see these messages. Another thing you can do is to
set errors_reply_to, which provides the text for a Reply-to: header line. For
example:

errors_reply_to = postmaster@myhost.example

Taking Copies of Bounce Messages
Sometimes there is a requir ement to monitor the bounce messages that Exim is
cr eating. The errors_copy option can be used to cause copies of bounce messages
sent to particular addresses to be copied to other addresses. The value is a colon-
separated list of items; each item consists of a pattern and a list of addresses, sepa-
rated by whitespace. If the pattern matches the recipient of the bounce, the mes-
sage is copied to the addresses on the list. The items are scanned in order, and
once a match is found, no further items are examined. For example:

errors_copy = spqr@mydomain postmaster@mydomain :\
rqps@mydomain postmaster@mydomain,\

hostmaster@mydomain

takes copies of any bounces sent to spqr@mydomain or rqps@mydomain. The
bounces are copied to postmaster@mydomain in both cases; those for rqps@mydo-
main ar e also copied to hostmaster@mydomain. To send copies of all bounce
messages to the postmaster you could use:

errors_copy = *@* postmaster

Each pattern can be a single regular expression, indicated by starting it with a cir-
cumflex; alternatively, either portion (local part or domain) can start with an aster-
isk, or the domain can be in any format that is acceptable as an item in a domain
list, including a file lookup. A regular expression is matched against the entire
(fully qualified) recipient; nonregular expressions must contain both a local part
and domain.

* In addition, some software, in contravention of the RFCs, generates automatic replies to bounce mes-
sages by extracting an address from the header lines.

9 October 2001 09:12

The address list is a string that is expanded, and must end up as a comma-sepa-
rated list of addresses. The expansion variables $local_part and $domain are set
fr om the original recipient of the error message, and if there is any wildcard
matching, the expansion variables $0, $1, etc. are set in the normal way.

Messages to Postmaster
Exim sends a message to the local postmaster in certain circumstances, and the
addr ess it uses is specified by the errors_address option, defaulting to:

errors_address = postmaster

In current versions of Exim, the only common occasion on which this is used is
when a nonbounce message is frozen, if freeze_tell_mailmaster is set.* No mes-
sage is sent when a bounce message is frozen because of the possibility that this
might cause a loop, so freeze_tell_mailmaster is not useful for alerting the post-
master of these incidents.

Delay War ning Messages
When a message is delayed (that is, if it remains on Exim’s queue for a long time),
Exim sends a warning message to the sender at intervals specified by the
delay_warning option, provided certain conditions (described later) are met. The
default value for delay_warning is 24 hours; if it is set to a zero time interval, no
war nings ar e sent. The data is a colon-separated list of times after which to send
war ning messages. Up to ten times may be given. If a message has been on the
queue for longer than the last time, the last interval between the times is used to
compute subsequent warning times. For example, with:

delay_warning = 1h

war nings ar e sent every hour, wher eas with:

delay_warning = 4h:8h:24h

the first message is sent after 4 hours, the second after 8 hours, and subsequent
ones every 16 hours thereafter. To stop warnings after a given time, set a huge
subsequent time, for example:

delay_warning = 4h:24h:99w

Nowadays, when most messages are deliver ed very rapidly, users appreciate warn-
ings of delay, but on the whole they do not usually like them to be repeated too

* It can also occur if a bounce message fails for any reason other than timeout, but that happens only
if such a message is failed by the -Mg command-line option.

Bounce Message Handling 453

9 October 2001 09:12

454 Chapter 19: Miscellany

often. n the other hand, sending such warnings to the managers of mailing lists is
usually counterproductive. To ensur e that warnings are sent only in appropriate
circumstances, Exim has the delay_warning_condition option.

This string is expanded at the time a warning message might be sent. If all the
deferr ed addr esses have the same domain, it is set in $domain during the expan-
sion; otherwise $domain is empty. If the result of the expansion is a forced failure,
an empty string, or a string matching any of 0, no, or false (the comparison being
done caselessly), the warning message is not sent. The default setting for the
option is:

delay_warning_condition = \
${if match{$h_precedence:}{(?i)bulk|list|junk}{no}{yes}}

which suppresses the sending of warnings for messages that have bulk, list, or
junk in a Pr ecedence: header line. This covers most mailing lists.

Customizing Bounce Messages
Default text for the message that Exim sends when an address is bounced is built
into the code of Exim, but you can change it, either by adding a single string or by
replacing each of the paragraphs by text supplied in a file.

If errmsg_text is set, its contents, which are not expanded, are included in the
default message immediately after ‘‘This message was created automatically by
mail delivery software.’’ For example:

errmsg_text = If you don’t understand it, please ask your postmaster \
for help.

Alter natively, you can set errmsg_file to the name of a template file for construct-
ing error messages. The file consists of a series of text items, separated by lines
consisting of exactly four asterisks. If the file cannot be opened, default text is
used and a message is written to the main and panic logs. If any text item in the
file is empty, default text is used for that item.

Each item of text that is read from the file is expanded, and there are two expan-
sion variables that can be of use here: $errmsg_r ecipient is set to the recipient of
an error message while it is being created, and $retur n_size_limit contains the
value of the return_size_limit option, rounded to a whole number. The items
must appear in the file in the following order:

• The first item is included in the header lines of the bounce message and
should include at least a Subject: header. Exim does not check the syntax of
these lines.

9 October 2001 09:12

• The second item forms the start of the error message. After it, Exim lists the
failing addresses with their error messages.

• The third item is used to introduce any text from pipe transports that is to be
retur ned to the sender. It is omitted if there is no such text.

• The fourth item is used to introduce the copy of the message that is retur ned
as part of the error report.

• The fifth item is added after the fourth one if the retur ned message is trun-
cated because it is bigger than return_size_limit.

• The sixth item is added after the copy of the original message.

The default state (errmsg_file unset) is equivalent to the following file, in which
the sixth item is empty. The Subject: line has been split to fit it on the page:

Subject: Mail delivery failed
${if eq{$sender_address}{$errmsg_recipient}{: returning message to sender}}

This message was created automatically by mail delivery software.

A message ${if eq{$sender_address}{$errmsg_recipient}{that you sent }{sent by

<$sender_address>

}}could not be delivered to all of its recipients.
This is a permanent error. The following address(es) failed:

The following text was generated during the delivery attempt(s):

------ This is a copy of the message, including all the headers. ------

------ The body of the message is $message_size characters long; only the first
------ $return_size_limit or so are included here.

Customizing War ning Messages
The text of delay warning messages (those sent as a result of the delay_warning

option) can be customized in a similar manner to bounce messages. You can set
warnmsg_file to the name of a template file, which in this case contains only three
text sections:

• The first item is included in the header lines and should include at least a Sub-
ject: header. Exim does not check the syntax of these lines.

Bounce Message Handling 455

9 October 2001 09:12

456 Chapter 19: Miscellany

• The second item forms the start of the warning message. After it, Exim lists the
delayed addresses.

• The third item ends the message.

During the expansion of this file, $warnmsg_delay is set to the delay time in one
of the forms n minutes or n hours, and $warnmsg_r ecipients contains a list of
recipients for the warning message. There may be more than one recipient if mul-
tiple addresses have differ ent errors_to settings on the routers or directors that
handled them. The default state is equivalent to the file:

Subject: Warning: message $message_id delayed $warnmsg_delay

This message was created automatically by mail delivery software.

A message ${if eq{$sender_address}{$warnmsg_recipients}{that you sent }{sent by

<$sender_address>

}}has not been delivered to all of its recipients after
more than $warnmsg_delay on the queue on $primary_hostname.

The message identifier is: $message_id
The subject of the message is: $h_subject
The date of the message is: $h_date

The following address(es) have not yet been delivered:

No action is required on your part. Delivery attempts will continue for
some time, and this warning may be repeated at intervals if the message
remains undelivered. Eventually the mail delivery software will give up,
and when that happens, the message will be returned to you.

Miscellaneous Controls
This section contains brief descriptions of some minor options that do not merit a
section to themselves, but that may be of general interest. The Exim refer ence
manual describes additional, minority-interest options.

local_domains_include_host (Boolean, default = false)
If this option is set, the value of primary_hostname is added to the value of
local_domains, unless it is already present. This makes it possible to use the
same configuration file on a number of differ ent hosts. The same effect can be
obtained by including the conventional item @ (which matches the primary
host name) in local_domains.

max_username_length (integer, default = 0)
Some operating systems are broken so they truncate the argument to getpw-
nam() (the function that reads information about a login name) to eight char-
acters, instead of retur ning ‘‘no such user’’ for longer names. If this option is

9 October 2001 09:12

set to greater than zero, any attempt to call getpwnam() with an argument that
is longer than its value behaves as if getpwnam() failed.

received_headers_max (integer, default = 30)
When a message is to be delivered, the number of Received: headers is
counted. If it is greater than this parameter, a mail loop is assumed to have
occurr ed, the delivery is abandoned, and an error message is generated. This
applies to both local and remote deliveries.

smtp_banner (string, default = built-in)
This string, which is expanded every time it is used, is output as the initial
positive response to an SMTP connection. The default setting is:

smtp_banner = $primary_hostname ESMTP Exim \
$version_number #$compile_number $tod_full

Failur e to expand the string causes Exim to write to its panic log and exit
immediately. If you want to create a multiline response to the initial SMTP
connection, put the string in quotes and use \n in the string at appropriate
points, but not at the end. Note that the 220 code is not included in this string.
Exim adds it automatically (several times in the case of a multiline response).

smtp_receive_timeout (time, default = 5m)
This sets a timeout value for SMTP reception. If a line of input (either an SMTP
command or a data line) is not received within this time, the SMTP connection
is dropped and the message is abandoned. For non-SMTP input, reception
timeout is controlled by accept_timeout.

Miscellaneous Controls 457

9 October 2001 09:12

20
Command-Line Interface
to Exim

Whenever Exim is called, it is passed options and arguments specifying what the
caller wants it to do. Because you can call Exim from a shell in this way, this is
called the command-line interface. In practice, most calls of Exim come directly
fr om other programs such as MUAs, and do not involve an actual ‘‘command line.’’
However, the options and arguments are the same.

Many command-line options are compatible with Sendmail, so Exim can be a
dr op-in replacement, but there are additional options specific to Exim. Some
options can be used only when Exim is called by a privileged user, and these are
noted in what follows.

The command-line options are many, but they can be divided into a number of
functional groups as follows:

Input mode control
Options to start processes for receiving incoming messages

Additional message data
Options to supply information to be incorporated into an incoming message
that is submitted locally

Immediate delivery control
Options to control whether a locally submitted message is delivered immedi-
ately on arrival, possibly depending on the type of recipient addresses

Err or routing
Options to control how errors in a locally submitted message are reported

458

9 October 2001 09:12

Queue runner processes
Options for starting queue runners and selecting which messages they process

Configuration overrides
Options for overriding the normal configuration file

Watching Exim
Options for inspecting messages on the queue

Message control
Options for forcing deliveries and doing other things to messages

Testing
Options for testing address handling, filter files, string expansion, and retry
rules

Debugging
Options for debugging Exim and its configuration

Inter nal
Options that are only useful when one instance of Exim calls another

Miscellaneous
A few oddities

Compatibility with Sendmail
Options that are recognized because they are used by Sendmail, but which do
nothing useful in Exim

In this chapter, we’ll discuss the options by functional group. You can find a com-
plete list of options in alphabetical order in the refer ence manual.

Input Mode Control
Four mutually exclusive options control the way messages are received.

Star ting a Daemon Process
If -bd is specified, a daemon process is started in order to receive messages from
remote hosts over TCP/IP connections, using the SMTP procotol. It normally lis-
tens on the SMTP port (25), but the -oX option can be used to specify a differ ent
port. For example:

exim -bd -oX 1225

starts up a daemon that listens on port 1225. This can be useful for some nonstan-
dard applications, and also for testing Exim as a daemon without disturbing the
running mail service. Only admin users are per mitted to start daemon processes.

Input Mode Control 459

9 October 2001 09:12

460 Chapter 20: Command-Line Interface to Exim

Interactive SMTP Reception
If -bs is specified, a reception process starts that reads SMTP commands on its
standard input and writes the responses to its standard output. This option can be
used by any local process; however, if any messages are submitted during the
SMTP session, the senders supplied in the MAIL commands are ignor ed unless the
caller is trusted. The -bs option is also used to start up reception processes from
inetd to receive mail from remote hosts as an alternative to using a daemon. The
necessary entry in /etc/inetd.conf should be along these lines:

smtp stream tcp nowait /usr/exim/bin/exim in.exim -bs

Exim can tell the differ ence between the two uses of -bs by testing its standard
input to see whether it is a socket or not. If there is an associated IP address, the
input must be a socket and the process must have been started by inetd. In this
case, sender addresses from MAIL commands are honor ed.

Batch SMTP Reception
If -bS is specified, a reception process is started that reads SMTP commands on its
standard input, but does not write any responses. This is so-called ‘‘batch SMTP,’’
which is really just another way of injecting messages in a noninteractive format.
This is commonly used for messages received by other transport mechanisms,
such as UUCP, or for messages that have been stored in files temporarily. Once
again, the senders supplied in the MAIL commands are ignor ed unless the caller is
trusted. More details about the handling of all forms of SMTP are given in Chapter
15, Authentication, Encryption, and Other SMTP Processing.

Non-SMTP reception
If -bm is specified, a reception process is started that reads the body of the mes-
sage from the standard input and the list of recipients from the command’s argu-
ments. This option is assumed if no other conflicting options are present, so it is
possible to inject a message by a simple command, such as:

exim theodora@byzantium.example
message
.

wher e message contains all the necessary RFC 822 header lines, though Exim does
add certain headers if they are missing. By default, the message is terminated
either by end-of-file (which can be signalled from a terminal by typing CTRL-D) or
by a line containing only a single dot, as shown previously. The second form of
ter mination is turned off if -i or -oi is present, and this should be used whenever
messages of unknown content are submitted by this means. Otherwise, a line in
the message that consists of a single dot causes the message to be truncated.

9 October 2001 09:12

The -t option provides an alternative way of supplying the message’s envelope
recipients. If it is present, it implies -bm and the recipients are taken from the To:,
Cc:, and Bcc: header lines instead of from the command arguments. Any Bcc:
header lines are then removed from the message. For example:

exim -t
From: caesar@rome.example
To: theodora@byzantium.example
Bcc: cleopatra@cairo.example
...

submits a message to be delivered to theodora@byzantium.example and to cleopa-
tra@cair o.example; neither copy will contain the Bcc: line. This is the only circum-
stance in which Exim removes Bcc: lines. If they are present in messages received
thr ough other interfaces, they are left intact.

If addresses are supplied as command arguments when -t is used, there are two
possibilities: they can be added to or subtracted from the list of addresses obtained
fr om the header lines. By default, Exim follows the behavior that is documented
for many versions of Sendmail and subtracts them from the list. Furthermor e, if
any of the other addresses subsequently generate one of the argument addresses
as a result of aliasing or forwarding, it is also discarded. For example:

exim -t brutus@rome.example
From: caesar@rome.example
To: anthony@rome.example
Cc: senate-list@rome.example
...

submits a message that is not delivered to brutus@r ome.example, even if that
addr ess appears in the expansion of senate-list. Of course, this works only if
aliases are expanded on the same host; if the message is dispatched to another
host with the address senate-list@r ome.example intact, the exception is lost. The
featur e ther efor e seems to be of little use.

In practice, a number of versions of Sendmail do not follow the documentation.
Instead, they add argument addresses to the recipients list. Exim can be made to
behave in this way by setting:

extract_addresses_remove_arguments = false

in its configuration file. When this is done, argument addresses that do not also
appear in To: or Cc: headers behave like additional Bcc: recipients.

Exim expects that messages submitted using -bm or -t contain lines terminated by
a single linefeed character, according to the normal Unix convention, and most
user agents that use the interface conform to this usage. However, ther e ar e some

Input Mode Control 461

9 October 2001 09:12

462 Chapter 20: Command-Line Interface to Exim

pr ograms that supply lines terminated by two characters, carriage retur n and line-
feed (CRLF), as if in an SMTP session. To cope with these maverick cases, Exim
supports the -dr opcr option. When this is set, all carriage-retur n characters in the
input are dropped.

The -or option can be used to set a timeout for receiving a non-SMTP message;
this overrides the accept_timeout configuration option. If no timeout is set, Exim
waits forever for data on the standard input.

Summar y of Reception Options
The options used to control the way in which reception processes operate are
summarized in Table 20-1.

Table 20-1. Input Mode Options

Option Meaning

-bd Start listening daemon

-bs SMTP on stdin and stdout, from local process or via inetd

-bS Batch SMTP from local process

-bm Message on standard input, recipients as arguments

-t Message on standard input, recipients from header lines

-dr opcr Dr op carriage-r eturn characters

-r Set non-SMTP timeout

Additional Message Data
Several options provide additional data to be incorporated into a message received
fr om a local process (that is, not over TCP/IP).

Sender Address
The -f option supplies a sender address to override the address computed from
the caller’s login name, but only if the caller is a trusted user. For example, on a
host whose default mail domain is elysium.example, if a root pr ocess obeys:

exim -f zeus@olympus.example apollo@olympus.example

the envelope sender of the message is set to zeus@olympus.example instead of
root@elysium.example because root is always a trusted user. The -f option is
ignor ed by default for nontrusted users. However, from Exim release 3.20,
untrusted callers can be allowed to use -f by setting the untrusted_set_sender

option true.

9 October 2001 09:12

Even when this option is not set, untrusted callers are always permitted to use one
special form of -f. A call of the form:

exim -f ’<>’ apollo@olympus.example

specifies an empty envelope sender for the message.* Empty envelope senders are
used as a way of identifying messages that must never give rise to bounce mes-
sages. This usage is prescribed in the RFCs for bounce messages themselves, and it
has also been adopted for other kinds of messages, such as delivery delay warn-
ings. If a nontrusted user calls Exim in this way, the -f option is honored in that
the envelope sender is emptied, but unless no_local_from_check is set, there is still
a comparison of the real sender with the contents of the Fr om: header, and a
Sender: header is added if necessary. This does not happen if the caller is trusted.

If a -f option is present on the command line, it overrides any sender information
obtained from an initial From line at the start of the message.

Sender Name
When Exim constructs a Sender: header, or a Fr om: header (which it does if one is
missing) for a local sender, it reads the system’s password information to obtain
the caller’s real name from the so-called ‘‘gecos’’ field, leading to lines of the form:

Sender: The Boss <zeus@olympus.example>

The username part of this (The Boss) can be overridden by means of the -F com-
mand-line option, for example:

exim -F ’The Big Cheese’ apollo@olympus.example

Because users are nor mally per mitted to change the values of their gecos fields in
the password information, this option is not restricted to trusted users.

Remote Host Infor mation
Ther e ar e a number of options starting with -oM that trusted users can use when
submitting a message locally to set values that are nor mally obtained from an
incoming SMTP call. The message then has the characteristics of one that was
received from a remote host. These are as follows:

• -oMa sets the field that contains the IP address of the remote host.

• -oMi sets the field that holds the IP address of the interface on the local host,
which was used to receive the message.

* The angle brackets <> ar e quoted to make this a valid shell command line.

Additional Message Data 463

9 October 2001 09:12

464 Chapter 20: Command-Line Interface to Exim

• -oMr sets the protocol used to receive the message. This value is useful only
for logging; there is no restriction on what it may contain.

• -oMs sets the field that holds the verified name of the remote host.

• -oMt sets the field that holds the identification string obtained by an RFC 1413
(ident) callback to the sending host.

If any of these options are set by a nontrusted caller, or for SMTP input over
TCP/IP, they are ignor ed, except that a nontrusted caller is permitted to use them
in conjunction with the -bh, -bf, and -bF options, for testing host checks and filter
files.

Apart from testing, the -oM options are useful when submitting mail received from
remote hosts by some non-SMTP protocol. Suppose a batch of mail has been
received by UUCP from the host fleeting.example, whose IP address is
192.168.23.45, and stored in batch SMTP format in a file called /etc/uucp/r eceived.
This could be passed to Exim by a trusted user running the command:

exim -bS -oMa 192.168.23.45 -oMs fleeting.example \
-oMr uucp < /etc/uucp/received

The log entries and the Received: header line that is added to every message
would show the values supplied by the -oM options.

Immediate Deliver y Control
This set of options controls what happens to a message immediately after it has
been received; specifically, whether a delivery process is started for it or not. They
ar e rar ely needed except for testing.

The -odb option applies to all modes in which Exim accepts incoming messages,
including the listening daemon. It requests ‘‘background’’ delivery of such mes-
sages, which means that the accepting process automatically starts a delivery pro-
cess for each message received, but Exim does not wait for such processes to
complete (they carry on running ‘‘in the background’’). This is the default action if
none of the -od options are present.

The -odf and -odi options, which are synonymous,* request ‘‘foregr ound’’ (syn-
chr onous) delivery when Exim has accepted a locally generated message.† For a
single message received on the standard input, if the protection regime permits it,

* -odf is compatible with Smail 3; -odi is compatible with Sendmail.

† If given for a daemon process, these are same as -odb.

9 October 2001 09:12

Exim converts the reception process into a delivery process. In other cases, it cre-
ates a new delivery process, but waits for it to complete before proceeding. The
ef fect is that the original reception process does not finish until the delivery
attempt does.

The -odq option applies to all modes in which Exim accepts incoming messages,
including the listening daemon. It specifies that the accepting process should not
automatically start a delivery attempt for each message received. Messages are
placed on the queue and remain there until a subsequent queue runner process
encounters them. The queue_only configuration option has the same effect.

Ther e ar e two variations on -odq that cause partial delivery of incoming messages.
-odqr causes Exim to process local addresses when a message is received, but not
even to try routing remote addresses. The remote addresses are picked up by the
next queue runner. The queue_remote_domains configuration option has the same
ef fect for specific domains.

In contrast, if -odqs is set, the addresses are all processed and local deliveries are
done in the normal way. However, if any SMTP deliveries are requir ed, they are
not done at this time. Such messages remain on the queue until a subsequent
queue runner process encounters them. Because routing was done, Exim knows
which messages are waiting for which hosts, so if there are a number of messages
destined for the same host, they are sent in a single SMTP connection. The
queue_smtp_domains configuration option has the same effect for specific domains.
See also the -qq option in the section “Two-Pass Processing for Remote Addresses”
later in this chapter.

Er ror Routing
If Exim detects an error while receiving a non-SMTP message (for example, a mal-
for med recipient address), it can report the problem either by writing a message
on the standard error file or by sending a mail message to the sender. Which of
these two actions it takes is controlled by the following options:

• If -oem is set, the error is reported by sending a message. The retur n code
fr om Exim is 2, if the error was that the original message had no recipients, or
1 otherwise. This is the default action if none of these options are given.

• If -oee is set, the error is again reported by sending a message, but this time
the retur n code from Exim is zero if the error message was successfully sent. If
sending an error message fails, the retur n code is as for -oem.

• If -oep is set, the error is reported by writing a message to the standard error
str eam and given a retur n code of 1.

Er ror Routing 465

9 October 2001 09:12

466 Chapter 20: Command-Line Interface to Exim

Err ors ar e handled in a special way for batch SMTP input; this is described in the
section “Batched SMTP” in Chapter 15.

If there is a problem with the sender address, which can only happen when it is
supplied via the -f option, an error message is written to the standard error stream,
independently of the setting of these options.

Queue Runner Processes
Queue runner processes are nor mally started periodically by the daemon, or by a
cr on job if you are not using a daemon. They can also be started manually by an
admin user, if necessary. For example, the command:

exim -q

cr eates a single queue runner process that scans the queue once. This is the com-
mand that a daemon issues whenever it is time to start a queue runner.

Over r iding Retr y Times and Freezing
A nor mal queue runner processes only unfrozen messages and only addresses
whose retry times have been reached. Additional letters can be added to -q to
change this. If a single f follows -q, delivery attempts are forced for all addresses
(whether or not they have reached their retry times), but frozen messages are still
skipped. However, if ff follows -q, frozen messages are automatically thawed and
included in the processing. Thus:

exim -qff

ensur es that a delivery attempt is made for every address in every message.

Local Addresses Only
A queue runner can be restricted to local addresses only (those that match
local_domains) by adding the letter l (ell), following f or ff, if present. Thus:

exim -qfl

pr ocesses all local addresses in all unfrozen messages, but ignores all remote
addr esses.

Tw o-Pass Processing for Remote Addresses
In a conventional queue run, each message is processed only once. If a number of
messages have remote addresses that route to the same host and none of them

9 October 2001 09:12

have previously been processed, each is sent in a separate SMTP connection. This
circumstance is quite common in some configurations, such as a host that is con-
nected to the Internet only intermittently.*

For better perfor mance, Exim should know that it has several messages for the
same host so they can be sent in a single SMTP connection. If any of the -q
options is specified with an additional q (for example, -qqf f), the resulting queue
run is done in two stages. In the first stage, remote addresses are routed, but no
transportation is done. The database that remembers which messages are waiting
for specific hosts is updated, as if delivery to those hosts had been deferred. When
this is complete, a second, normal queue scan happens, and normal directing,
routing, and delivery takes place. Messages that are routed to the same host are
deliver ed down a single SMTP connection because of the hints that were set up
during the first queue scan.

Periodic Queue Runs
On most installations, queue runner processes should be started at regular inter-
vals. You can request that an Exim daemon do this job by following -q with a time
value. For example:

exim -q20m

cr eates a daemon that starts a queue runner process every 20 minutes (and does
nothing else). This form of the -q option is usually combined with -bd in order to
start a single daemon that listens for incoming SMTP as well as periodically starting
queue runners. For example:

exim -bd -q30m

In practice, the command that starts this kind of daemon is usually the standard
one that appears in the operating system’s boot scripts, which refer to
/usr/sbin/sendmail or /usr/lib/sendmail. Usually, such scripts are able to start up
Exim instead, without needing modification, provided that the Sendmail path has
been symbolically symbolically to the Exim binary.

You can, if you wish, use a time value with any of the variants of -q discussed so
far, for example:

exim -qff4h

forces a delivery attempt of every address on the queue every four hours.

* See the section “Exim on an Intermittently Connected Host” in Chapter 12, Delivery Errors and Retry-
ing, for a detailed discussion of this case.

Queue Runner Processes 467

9 October 2001 09:12

468 Chapter 20: Command-Line Interface to Exim

Processing Specific Messages
By default, a queue runner process scans the entire queue of messages in an
unpr edicatable order. Sometimes you may want to do a queue run that looks at
only the most recently arrived messages on the queue. For example, you might
lear n that a host that has been offline for a few hours is now working again, but
you also know that the older messages are for a host that is still down.

If you follow -q (or -qf, and so on) with a message ID, all messages whose IDs are
lexically less are skipped. For example:

exim -qf 0t5C6f-0000c8-00

Because message IDs start with the time of arrival, this skips any messages that
arrived before 0t5C6f-0000c8-00. If a second message ID is given, messages
whose IDs are greater than it are skipped. However, the queue is still processed in
an arbitrary order.

Processing Specific Addresses
A queue runner process can be instructed to process only messages whose
senders or recipients match a particular pattern. The -S and -R options specify pat-
ter ns for the sender and recipients, respectively. If both -S and -R ar e specified,
both must be satisfied. In the case of -R, a message is selected as long as at least
one of its undelivered recipients matches. For example:

exim -R zalamea.example

starts a delivery process for any message with an undelivered address that contains
zalamea.example. It is a straightforward textual check; the string may be found in
the local part or in the domain (or in both, if it contains an @).

If you want to use a more complicated pattern, you can specify that the string you
supply is a regular expression, by following -R or -S by the letter r. For example:

exim -Rr ’(major|minor)\.zalamea\.example$’

selects messages that contain an undelivered address that ends with
major.zalamea.example or minor.zalamea.example.

Once a message is selected for delivery, a normal delivery process is started and
all the recipients are processed, not just those that matched -R. For the first
selected message, Exim overrides any retry information and forces a delivery
attempt for each undelivered address. If -S or -R is followed by f or ff, the forcing
applies to all selected messages; in the case of ff, frozen messages are also
included.

The -R option makes it straightforward to initiate delivery of all messages to a
given domain after a host has been down for some time.

9 October 2001 09:12

Summar y of Queue Runner Options
The options for queue runner processes are summarized in Table 20-2.

Table 20-2. Queue Runner Options

Option Meaning

-q Nor mal queue runner

-qf Queue run with forced deliveries

-qf f Forced deliveries and frozen messages

-ql Local domains only

-qfl Forced deliveries, local domains only

-qf fl As -qfl, but include frozen messages

-R Select on recipient, literal string

-Rf Ditto, with forcing

-Rf f Ditto, with forcing and frozen messages

-Rr Select on recipient, regular expression

-Rr f Ditto, with forcing

-Rr ff Ditto, with forcing and frozen messages

-S Select on sender, literal string

-Sf Ditto, with forcing

-Sf f Ditto, with forcing and frozen messages

-Sr Select on sender, regular expression

-Sr f Ditto, with forcing

-Sr ff Ditto, with forcing and frozen messages

Any of the -q . . . options can be given as -qq . . . to cause a two-stage queue run,
and any of them may also be followed by a time to set up a daemon that periodi-
cally repeats the queue run with the same option.

Configuration Over r ides
The name of Exim’s runtime configuration file is defined in the build-time configu-
ration and embedded in the binary. This is necessary because Exim is normally a
setuid program with root privilege that can be called by any process. Allowing use
of arbitrary runtime configurations would be a huge security exposure. However, it
is sometimes useful to be able to use an alternative configuration file or to vary the
contents of the standard file, either for testing or for some special purpose.

Configuration Over r ides 469

9 October 2001 09:12

470 Chapter 20: Command-Line Interface to Exim

The runtime configuration file’s name can be changed by means of the -C option:

exim -C /etc/exim/alt.config ...

If the caller is not root or the Exim user and the filename is differ ent to the built-in
name, Exim immediately gives up its root privilege permanently and runs as the
calling user.

The runtime configuration file can contain macro definitions.* Their values can be
overridden by means of the -D option, for example:

exim -DLOG_LEVEL=6 ...

but again, unless the caller is root or the Exim user, Exim gives up its root privi-
lege when this option is used. The -D option can be repeated up to ten times in a
command line.

Watching Exim’s Queue
Admin users can use this next set of options to inspect the contents of Exim’s
queue and the contents of individual messages. If you have access to an X Win-
dow system server, an alter native way of looking at this information is to run the
Exim monitor (eximon). However, anything that eximon can do can also be done
fr om the command line.

An admin user can obtain a listing of all the messages currently in the queue by
running:

exim -bp

If this option is used by a nonadmin user, only those messages submitted by the
caller are shown. Each message is displayed as in this example:

25m 2.9K 0t5C6f-0000c8-00 <caesar@rome.example>
brutus@rome.example
...

The first line shows the length of time the message has been on the queue (in this
case, 25 minutes), the size (2.9KB), the local ID, and the envelope sender. For
bounce messages that have no sender, <> appears. The remaining lines contain the
envelope recipients, one per line. Those to whom the message has already been
deliver ed ar e marked with the letter D; in the case of an address that is expanded
by aliasing or forwarding, this happens only when deliveries to all its children are
complete.

If -bpu is used instead of -bp, only undelivered addresses are shown. If -bpa is
used, delivered addresses that were generated from the original addresses are

* See the section “Macros in the Configuration File” in Chapter 4, Exim Operations Overview.

9 October 2001 09:12

added. If -bpr is used, the output is not sorted into chronological order of message
arrival. This can speed things up if there are lots of messages on the queue, and is
particularly useful if the output is going to be postprocessed in a way that does
not requir e sorting. You can also use -bpra and -bpru, which act like -bpa and
-bpu, but again without sorting.

Message Control
Ther e is a set of options, all beginning with -M, that permit admin users to inspect
the contents of messages that are on the queue and perfor m certain actions on
them.

Operations on a List of Messages
The options described in this section can all take a list of message IDs as argu-
ments; the action is perfor med on each message that is not in the process of being
deliver ed. For example:

exim -M 123H3N-0003mY-00 0t5C6f-0000c8-00

-M cr eates a delivery process for each message in turn, thawing it first, if neces-
sary. During delivery, retry times are overridden and options such as
queue_remote_domains and hold_domains ar e ignor ed. In other words, Exim carries
out a delivery attempt for every undelivered recipient. This is often called ‘‘forcing
message delivery.’’

-Mf and -Mt fr eeze and thaw messages, respectively. When -Mt has been applied
to a message, the condition manually_thawed is true in an Exim filter.

-Mg and -Mr m both cause messages to be abandoned. The differ ence between
them is that -Mg (g stands for ‘‘give up’’) fails each address with the error ‘‘delivery
cancelled by administrator’’ and generates a bounce message to the sender,
wher eas -Mr m just removes messages from the spool without sending bounces.

If a delivery process is already working on a message, none of these options has
any effect and an error message is output. Actions other than -M ar e logged in the
main log, along with the identity of the admin user who requested them.

Inspecting a Queued Message
The contents of a message’s spool files can be inspected by an admin user; the
options -Mvb, -Mvh, and -Mvl, followed by a message ID, output the body (-D
file), header (-H file), or message log file, respectively. For example:

exim -Mvl 123H3N-0003mY-00

shows the message log for message 123H3N-0003mY-00.

Message Control 471

9 October 2001 09:12

472 Chapter 20: Command-Line Interface to Exim

Modifying a Queued Message
The options described in this section allow an admin user to modify a message on
the queue, provided that it is not in the process of being delivered. They all
requir e a message ID as their first argument; some of them need additional data as
well.

The recipients of a message can be changed by -Mar, -Mmd, and -Mmad. The first
of these adds an additional recipient. For example:

exim -Mar 123H3N-0003mY-00 extra@xyz.example

adds the recipient extra@xyz.example to message 123H3N-0003mY-00. Ther e is no
way to remove recipients, but Exim can be told to pretend that it has delivered to
them. The command:

exim -Mmad 123H3N-0003mY-00

marks all recipient addresses as delivered, whereas:

exim -Mmd 123H3N-0003mY-00 godot@waiting.example

marks just the address godot@waiting.example as delivered. If you need to divert a
message to one or more new recipients, perhaps because the original addresses
ar e known to be invalid, the safe way to do it is by:

• Freezing the message using -Mf to ensure that no Exim process tries to deliver
it while you are working on it.

• Using -Mmad to mark all the existing recipients as delivered, or using -Mmd to
do that to certain recipients only.

• Using -Mar as many times as necessary to add new recipients.

• Thawing the message using -Mt, or forcing a delivery with -M.

You can also change the envelope sender of a message using the -Mes option. For
example:

exim -Mes 123H3N-0003mY-00 newsender@new.domain.example

To remove the sender altogether (that is, to make the message look like a bounce
message), the new sender may be specified as <>.

Finally, you can edit the body of a message with the -Meb option, which takes just
a single message ID as its argument:

exim -Meb 123H3N-0003mY-00

This runs, under /bin/sh, the command defined in the environment variable VISUAL

or, if that is not defined, EDITOR or, if that is not defined, the command vi, on a

9 October 2001 09:12

copy of the spool file containing the body of the message. If the editor exits nor-
mally, the result of editing replaces the spool file. The message is locked during
this process, so no delivery attempts can occur. Note that the first line of the spool
file is its own name; care should be taken not to disturb this.

The original thinking behind providing this feature is that an administrator who
has had to mess around with the addresses to get a message delivered might want
to add some comment at the start of the message text. However, when messages
ar e in MIME format or have digital signatures, this is not an appropriate thing to
do. It is better to arrange for the message to be delivered to yourself and then for-
ward it with a covering note.

Summar y of Message Control Options
The options for message control are summarized in Table 20-3.

Table 20-3. Queue Runner Options

Option Meaning

-M Force delivery

-Mar Add recipient

-Meb Edit body

-Mes Edit sender

-Mf Fr eeze

-Mg Give up (bounce)

-Mmad Mark all delivered

-Mmd Mark delivered

-Mr m Remove message (no bounce)

-Mt Thaw

-Mvb View message body

-Mvh View message header

-Mvl View message log

Testing Options
A number of options to help you test out Exim and its configuration or find out
why it did what it did. Sometimes the options in the next section, the section
“Options for Debugging,” can be helpful too.

Testing Options 473

9 October 2001 09:12

474 Chapter 20: Command-Line Interface to Exim

Testing the Configuration Settings
If you want to be sure that the Exim binary is usable and that it can successfully
read its configuration file, run:

exim -bV

Exim writes its version number, compilation number, and compilation date to the
standard output, reads its configuration file, and exits successfully if no problems
ar e encounter ed. Err ors in the configuration file cause messages to be written to
the standard error stream.

You can also check what it has read from the configuration file. If -bP is given
with no arguments, it causes the values of all Exim’s main configuration options to
be written to the standard output. However, if any of the option settings are pre-
ceded by the word hide, their values are shown only to admin users. You should
use hide when you place sensitive information, such as passwords for access to
databases, in the configuration file.

The values of one or more specific options can be requested by giving their names
as arguments, for example:

exim -bP qualify_domain local_domains

The name of the configuration file can be requested by:

exim -bP configure_file

Configuration settings for individual drivers can be obtained by specifying one of
the words director, router, transport, or authenticator, followed by the name of
an appropriate driver instance. For example:

exim -bP transport local_delivery

The generic driver options are output first, followed by the driver’s private
options. A complete list of all drivers of a particular type, with their option set-
tings, can be obtained by using directors, routers, transports, or authentica-

tors. For example:

exim -bP authenticators

Finally, a list of the names of drivers of a particular type can be obtained by using
one of the words director_list, router_list, transport_list, or authentica-

tor_list. For example:

exim -bP director_list

might output:

system_aliases
cancelled_users
real_localuser
userforward
localuser

9 October 2001 09:12

Testing Address Handling
In most common cases, it is not necessary to send a message to find out how
Exim would handle a particular address; the -bt option does this for you. For
example:

$ exim -bt ph10@exim.example
ph10@exim.example
deliver to ph10@exim.example
router = lookuphost, transport = remote_smtp
host ppsw.exim.example [10.111.8.38] MX=7
host ppsw.exim.example [10.111.8.40] MX=7

This tells you that the lookuphost router was the one that handled the address,
routing it to the remote_smtp transport with the given host list. For more infor ma-
tion about how this outcome was reached, you can set debugging options (see the
section “Options for Debugging” later).

The -bv and -bvs options allow you to check what Exim would do when verifying
a recipient or a sender address, respectively, as opposed to processing the address
for delivery. If you have not used options that cause directors or routers to behave
dif ferently when verifying (for example, verify_only), the result is the same as for
-bt. Ther e is a differ ence between -bv and -bvs only if you have set verify_sender
or verify_recipient on a driver, in order to make a distinction between these two
cases.

Ther e is one shortcoming of all these address tests. If you set up a configuration
so that the routing or directing process makes use of data from within a message
that is being delivered, this cannot be simulated in the absence of a message. For
example, suppose you want to send all output from your mailing lists to a central
server that has plenty of disk for holding a large queue (because deliveries to a
large list can take some time), but you want to deliver other messages directly to
their destinations. You can identify mailing list messages by the fact that they con-
tain the header line:

Precedence: list

Configuring Exim to do this is straightforward, using a router of this kind:

list_to_server:
driver = domainlist
condition = ${if eq {$h_precedence:}{list}{yes}{no}}
transport = remote_smtp
route_list = * server.name.example byname

However, when you use -bt to test addresses, this router is never run because the
condition never matches. See the description of -N in the section “Suppressing
Delivery,” later in this chapter, for an alternative approach to testing that could be
mor e useful here.

Testing Options 475

9 October 2001 09:12

476 Chapter 20: Command-Line Interface to Exim

Testing Incoming Connections
If you set up verification and rejection policies for use when mail is received from
other hosts, following through exactly how the checks are going to be applied can
sometimes be quite tricky. The -bh option is there to help you. Specify an IP
addr ess, and Exim runs a fake SMTP session, as if it had received a connection
fr om that address. While it is doing so, it outputs comments about the checks that
it is applying, so you can see what is happening. You can go through the entire
SMTP dialog if you want to; if you want to check on relay controls, you have to
pr oceed at least as far as the RCPT commands.

Nothing is written to the log files and no data is written to Exim’s spool directory.
This is all totally fake, and is purely for the purpose of testing. Here is a transcript
of part of a testing session, interspersed with comments:

$ exim -bh 192.203.178.4

Start up a fake SMTP session, as if a call from 192.203.178.4 had been received:

**** SMTP testing session as if from host 192.203.178.4
**** Not for real!

Exim is reminding you that this is all make-believe:

>>> host in host_lookup? yes (end of list)

Exim checks to see if the calling host matches anything in the host_lookup option.
The answer is ‘‘yes,’’ but what it has matched is the end of the list. How can this
be? The final item in host_lookup must have been a negative item (starting with an
exclamation mark). When this is the case, reaching the end of the list yields ‘‘yes’’
rather than ‘‘no.’’

>>> looking up hostname for 192.203.178.4
>>> IP address lookup yielded dul.crynwr.com

Because the IP address matched host_lookup, Exim did a reverse DNS lookup to
find the hostname, and what it found was dul.crynwr.com. This is a test host that
is guaranteed to be on the MAPS DUL (dial-up user list), so that people can test
their configurations:

>>> host in host_reject? no (option unset)
>>> host in host_reject@_recipients? no (option unset)

Two mor e configuration options are checked; both are unset, so the host does not
match either of them:

>>> host in rbl_hosts? yes (*)
>>> RBL lookup for 4.178.203.192.dialups.mail-abuse.org succeeded
>>> => that means it is black listed ...
>>> See <http://mail-abuse.org/dul/>
LOG: recipients refused from dul.crynwr.com
[192.203.178.4] (RBL dialups.mail-abuse.org)

9 October 2001 09:12

The host matched rbl_hosts and the item it matched was *. Exim therefor e looked
it up using the domain from rbl_domains, which in this case was dialups.mail-
abuse.or g. The lookup succeeded, which means that this host is on the blacklist.
The refer ence to the URL are the contents of the DNS TXT record that is associated
with the address. The line starting LOG: is what Exim would write to its log file if
this were a real SMTP session. It is going to refuse all the recipients in any mes-
sages because the host is blacklisted:

220 libra.test.example ESMTP Exim 3.22 ...

Exim has now finished its preliminary testing, and this is the initial response it
would send to the remote host. You now have to play the part of the client by
typing SMTP commands, the first of which should be HELO or EHLO:

helo dul.crynwr.com
>>> dul.crynwr.com in local_domains? no (end of list)
250 libra.test.example Hello dul.crynwr.com [192.203.178.4]

Exim checks the argument of HELO in case the client has erroneously used the local
host’s name instead of its own, a common mistake. (When this happens, it forces a
DNS lookup to get the real name.) After a successful HELO you can try to ‘‘send’’ a
message, using the MAIL, RCPT, and DATA commands, and Exim will output com-
ments about the checks it perfor ms on the addresses and give the appropriate
responses. You can end the testing session with the QUIT command or by breaking
out, using CTRL-C.

Testing Retry Rules
You can check which retry rule will be used for a particular address by means of
the -brt option, which must be followed by at least one argument. Exim outputs
the applicable retry rule. For example:

$ exim -brt bach.comp.example
Retry rule: *.comp.example F,2h,15m; F,4d,30m;

The argument can be a complete email address or just a domain name. Another
domain name can be given as an optional second argument; if no retry rule is
found for the first argument, the second is tried. This ties in with Exim’s behavior
when looking for retry rules for remote hosts. If no rule is found that matches the
host, one that matches the mail domain is sought.

A third optional argument, the name of a specific delivery error, may also be
given. So the following:

exim -brt host.comp.example comp.example timeout_connect

asks the question ‘‘Which retry rule will be used if a connection to the host
host.comp.example times out while attempting to deliver a message with a recipi-
ent in the comp.example domain?’’

Testing Options 477

9 October 2001 09:12

478 Chapter 20: Command-Line Interface to Exim

Testing Rewr iting Rules
The -brw option for testing address rewriting rules is described in the section
“Testing Rewriting Rules” in Chapter 14, Rewriting Addresses.

Testing Filter Files
The -bf and -bF options for testing user and system filters are described in the sec-
tion “Testing Filter Files” in Chapter 10, Message Filtering.

Testing String Expansion
The -be option for testing string expansions is described in the section “Testing
String Expansions” in Chapter 17, String Expansion.

Options for Debugging
It is helpful, both to its author and to its users, if a complicated program like Exim
can output some information about what it is doing to make it easier to track
down problems. You can ask Exim to write debugging information to the standard
err or str eam by setting the -d option. This can be followed by a number; the
higher the number, the more infor mation is output. Without a number, -d is the
same as -d1, and for compatibility, -v and -ov (for ‘‘verbose’’) are additional syn-
onyms.

The maximum amount of general information is given when -d9 is set; -d10 gives,
in addition, details of the interpretation of filter files, and -d11 or higher turns on
the debugging options for DNS lookups, causing the DNS resolver to output
copies of its queries and the responses it receives from name servers.

The debugging output is designed primarily to help Exim’s author track down
pr oblems, but a lot of it should be understandable by most administrators. In par-
ticular, if you turn on debugging in conjunction with -bt or when delivering a mes-
sage, you can track the flow of control through the various directors and routers as
an address is processed. If any SMTP connections are made, the SMTP dialog is
shown at all debugging levels.

The -dm option causes information about memory allocation and freeing opera-
tions to be written to the standard error stream. This information is very much for
the Exim internals expert.

9 October 2001 09:12

Suppressing Deliver y
When discussing -bt and -bv in the section “Testing Address Handling” earlier in
this chapter, it was pointed out that they cannot be used to test any address pro-
cessing that involves the contents of a message. One way this can be tested is to
use the -N option. This is a debugging option that inhibits delivery of a message at
the transport level. It implies at least -d1. Exim goes through many of the motions
of delivery but does not actually transport the message. Instead, it behaves as if it
had successfully done so. However, it does not make any updates to the retry
database, and the log entries for deliveries are flagged with *> rather than =>.

Once -N has been used on a message, it can never be delivered normally. If the
original delivery is deferred, subsequent delivery attempts are done automatically
with -N.

Because -N thr ows away mail, only root and the Exim user are allowed to use it in
conjunction with -bd, -q, -R or -M; that is, to ‘‘deliver’’ arbitrary messages in this
way. Any other user can use -N only when supplying an incoming message, to
which it will apply.

Terminating the Options
A pseudo-option consists of two hyphens whose only purpose is to terminate the
options, and therefor e cause subsequent command-line items to be treated as
arguments rather than options, even if they begin with a hyphen. It is possible
(though unlikely) for the local part of an email address to begin with a hyphen; to
send a message to such an address, you would need to call Exim like this:

exim -- -oddname@wherever.example

Embedded Perl Options
The -pd and -ps options, which control the way an embedded Perl interpreter is
intialized, are described in the section “Running Embedded Perl” in Chapter 17.

Compatibility with Sendmail
Many of Exim’s command-line options are dir ectly compatible with Sendmail, for
Exim to be installed as a ‘‘drop-in’’ replacement. However, because Exim’s design
is differ ent, some options are not relevant or operate in a differ ent way. Sendmail
also has a number of obsolete options and synonyms that still seem to be used by
some older MUAs.

Compatibility with Sendmail 479

9 October 2001 09:12

480 Chapter 20: Command-Line Interface to Exim

• The following options are recognized by Exim, but do nothing: -B, -h, -n, -m,
-om, -oo, and -x.

• Any option that begins with -e is treated as a synonym for the corresponding
option that begins -oe.

• -oeq is synonymous with -oep and -oew is synonymous with -oem.

• -i and -oitrue ar e synonyms for -oi.

• -r is a synonym for -f.

• -qR and -qS ar e synonyms for -R and -S, respectively.

Sendmail interprets a call with the -bi option as a request to rebuild its alias file,
and there is often a command called newaliases whose action is something like
‘‘r ebuild the data base for the mail aliases file.’’

Exim does not have the concept of the alias file; you can configure as many alias-
file dir ectors as you like, though in practice just one is most common. ‘‘Rebuild-
ing’’ may be relevant if you are using a DBM or cdb file for aliases, but not if you
ar e using NIS or a database such as MySQL.

Scripts that are run when the system boots (or at other times) may call newaliases
or /usr/sbin/sendmail with the -bi option. Exim does nothing if called with -bi,
unless you specify:

bi_command = /the/path/to/some/command

in which case it runs the given command, under the uid and gid of the caller of
Exim. The value of bi_command is just a command name with no arguments. If an
argument is requir ed, it must be given by the -oA option on the command line.

Calling Exim by Different Names
Ther e ar e some fairly common command names that are used by other MTAs for
per forming various mail actions. If you are running Exim, the actions can be
requested by means of command-line options, and it would be possible to use
shell scripts to set this up. There is an easier way though. If you call the Exim
binary under certain other names, by means of symbolic links, it assumes specific
options. The supported names are:

mailq:
This name assumes the -bp option, which causes Exim to list the contents of
the queue.

rsmtp:
This name assumes the -bS option, which causes Exim to read batch SMTP
fr om the standard input (this is for Smail compatibility).

9 October 2001 09:12

rmail:
This name assumes the -i and -oee options; the former turns off the recogni-
tion of a single dot as a message terminator, and the latter changes the han-
dling of errors that are detected on input. The name rmail is used by some
UUCP systems.

runq:
This name assumes -q and causes a single queue run (this is for Smail compat-
ibility).

None of these alternative names are set up by the standard installation scripts. If
you want to use them, you must create the symbolic links yourself.

Calling Exim by Different Names 481

9 October 2001 09:12

21
Administer ing Exim

Once Exim is up and running, there are a few things that must be done regularly
to ensure that it keeps on handling your mail the way you want it to. How much
regular attention it needs very much depends on the nature of your installation
and the volume of mail you are handling.

One thing you might want to do is to watch what Exim is actually in the process
of doing or what it has just done. You can check up on Exim processes using the
exiwhat utility and you can read the log files directly, or use the Exim monitor to
display a rolling main log. A utility script called exigr ep pr ovides a packaged way
of extracting log entries for messages that match a given pattern.

Log files can become very large; normally they are ‘‘cycled’’ on a regular (often
daily) basis so that logs for previous days can be compressed. Some operating sys-
tems have standard procedur es for cycling log files; for those that do not, a utility
script called exicyclog is provided.

In this chapter, we describe Exim’s logging mechanism, the format of the entries
that are written when messages are received or delivered, and the options you can
use to control what is logged. The available utilities for extracting and displaying
log information are also described. After that, the facilities for finding out what
Exim processes are doing are cover ed, including use of the Exim monitor, which is
an X11 application for Exim administration. Finally, there is a discussion of the
maintenance needs of alias and other datafiles, hints databases, and user
mailboxes.

482

9 October 2001 09:12

Log Files
Exim writes three differ ent logs, referr ed to as the main, reject, and panic logs.

• The main log records the arrival of each message and each delivery in a single
logical line in each case. The format is as compact as possible in an attempt to
keep down the size of log files. Two-character flag sequences make it easy to
pick out these lines. A number of other events are also recorded in the main
log, some of which are conditional on the setting of configuration options.

• The reject log records information from messages that are rejected as a result
of a configuration option (that is, for policy reasons). If the message’s header
has been read, its contents are written to this log, following a copy of the one-
line message that is also written to the main log.

• An entry is written to the panic log when Exim suffers a disastrous error (such
as a syntax error in its configuration file). It often (but not always) bombs out
afterwards. When all is going well, the panic log should be empty. You
should check its contents regularly to pick up any problems.* If Exim cannot
open a panic log file, it tries as a last resort to write to the system log (syslog).

In addition to these three log files, Exim writes a log file for each message it han-
dles. The names of these per-message logs are the message IDs, and they are kept
in the msglog subdir ectory of the spool directory. The contents of a message log
ar e, in effect, a copy of the main log entries for the message in question. These
files are written purely to make it easy for the administrator to find the history of
what has happened to a particular message. Unless preserve_message_logs is set, a
message log is deleted when the message to which it refers is complete.

Log Destination Control
Exim’s logs may be written to local files, to syslog, or to both. However, it should
be noted that many syslog implementations use UDP as a transport. They are
ther efor e unr eliable in the sense that messages are not guaranteed to arrive at the
log host, nor is the ordering of messages necessarily maintained.†

* For example, you could set up a cr on job to mail you if it finds a nonempty panic log.

† It has also been reported that on large log files (tens of megabytes), you may need to tweak syslog to
pr event it from syncing the file with each write; on Linux, this has been seen to make syslog take
over 90 percent of CPU time.

Log Destination Control 483

9 October 2001 09:12

484 Chapter 21: Administering Exim

The destination for Exim’s logs can be configured when the binary is built, or by
setting log_file_path in the runtime configuration. This latter string is expanded
so it can contain, for example, refer ences to the hostname:

log_file_path = /var/log/$primary_hostname/exim_%slog

It is generally advisable, however, for the log destination to be included in the
binary rather than setting it at runtime because then the setting is available right
fr om the start of Exim’s execution. Otherwise, if there is something it wants to log
befor e it has read the configuration file (for example, an error in the configuration
file), it will not use the path you want, and may not be able to log at all.

The value of log_file_path is a colon-separated list, currently limited to two items
at most.* If an item is syslog, then syslog is used; otherwise the item must either
be an absolute path, containing %s at the point where main, reject, or panic is to
be inserted, or be empty, implying the use of the default path (which is log/%slog
in the spool directory). The default path is used if nothing is specified. Here are
some examples of possible settings:

log_file_path=/usr/log/exim_%s
log_file_path=syslog
log_file_path=:syslog
log_file_path=syslog : /usr/log/exim_%s

Log data is written only to files for the first of these settings, and only to syslog for
the second. The third setting uses the default path and syslog, and the fourth uses
syslog and a file path. If there is mor e than one path in the list, the first is used and
a panic error is logged.

Logg ing to syslog
The use of syslog does not change what Exim logs or the format of its messages.
The same strings are written to syslog as to log files. The syslog ‘‘facility’’ is set to
LOG_MAIL and the program name to exim. On systems that permit it (all except
ULTRIX), the LOG_PID flag is set so that the syslog call adds the pid as well as the
time and hostname to each line. The three log streams are mapped onto syslog pri-
orities as follows:

1. The main log is mapped to LOG_INFO.

2. The reject log is mapped to LOG_NOTICE.

3. The panic log is mapped to LOG_ALERT.

Many log lines are written to both the main and the reject logs, so there will be
duplicates if these are routed by syslog to the same place.

* The delimiter for most lists in Exim can be changed from a colon to another character, but this
option is an exception. A colon must be used.

9 October 2001 09:12

Exim’s log lines can sometimes be very long, and some of its reject log entries
contain multiple lines when headers are included. To cope with both these cases,
entries written to syslog ar e split into separate syslog calls at each internal newline,
and also after a maximum of 1,000 characters. To make it easy to reassemble them
later, each component of a split entry starts with a string of the form [n/m] or
[n\m], wher e n is the component number and m is the total number of components
in the entry. The separator is / when the line was split because it was too long; if
it was split because of an internal newline, the separator is \.

For example, if the length limit is 70 instead of 1,000, the following would be the
result of a typical rejection message to the main log (LOG_INFO), each line in addi-
tion being preceded by the time, hostname, and pid as added by syslog:

[1/3] 1999-09-16 16:09:43 11RdAL-0006pc-00 rejected from [127.0.0.1] (ph10):
[2/3] syntax error in ’From’ header when scanning for sender: missing or ma
[3/3] lformed local part in "<>" (envelope sender is <ph10@cam.example>)

The same error might cause the following lines to be written to the reject log
(LOG_NOTICE):

[1/14] 1999-09-16 16:09:43 11RdAL-0006pc-00 rejected from [127.0.0.1] (ph10):
[2/14] syntax error in ’From’ header when scanning for sender: missing or ma
[3\14] lformed local part in "<>" (envelope sender is <ph10@cam.example>)
[4\14] Recipients: ph10@some.domain.cam.example
[5\14] P Received: from [127.0.0.1] (ident=ph10)
[6\14] by xxxxx.cam.example with smtp (Exim 3.22 #27)
[7\14] id 11RdAL-0006pc-00
[8\14] for ph10@cam.example; Mon, 16 Apr 2001 16:09:43 +0100
[9\14] F From: <>
[10\14] Subject: this is a test header
[11\14] X-something: this is another header
[12\14] I Message-Id: <E11RdAL-0006pc-00@xxxxx.cam.example>
[13\14] B Bcc:
[14/14] Date: Mon, 16 Apr 2001 16:09:43 +0100

Log lines that are neither too long nor contain newlines are written to syslog with-
out modification, for example:

1999-09-16 16:09:47 SMTP connection from [127.0.0.1] closed by QUIT

The times added by syslog ar e nor mally the same as Exim’s timestamps (though in
a dif ferent format and without the year), but can sometimes be differ ent.

Log Level
The log_level configuration option controls the amount of data written to the
main log. The higher its value, the more is written. Zero sets a minimal level of
logging, with higher levels adding information as shown in Table 21-1.

Log Destination Control 485

9 October 2001 09:12

486 Chapter 21: Administering Exim

Table 21-1. Log Levels

Le vel Infor mation Logged

1 Rejections because of policy readdr essing by the system filter

2 Rejections because of message size

3 Verification failures

4 SMTP timeouts

SMTP connection refusals because too busy

SMTP unexpected connection loss

SMTP (dis)connections when log_smtp_connections is set

SMTP syntax errors when log_smtp_syntax_errors is set

Nonimmediate delivery of SMTP messages because of load level

or number of connections, and so on

5 Retry time not reached [for any host]

Spool file locked (i.e. some other process is delivering the message)

Message is frozen (when skipping it in a queue run)

Err or message sent to . . .

6 Invalid HELO and EHLO arguments (see helo_verify)

A log level of 6 currently causes all possible messages to appear, though higher
levels may be defined in the future. The default log level is 5, which is on the ver-
bose side. Rejection information is still written to the reject log in all cases.

If the log level is 5 or higher, ‘‘r etry time not reached’’ messages are also written to
individual message logs. If the log level is 4 or less, they are suppr essed after the
first delivery attempt.

Other Options Affecting Log Content
The log_level mechanism has turned out to be too simple for controlling the vari-
ous logging requir ements that people have. As a result, a number of other options
vary the contents of the main log. Some of them affect the contents of log lines
that record message arrivals and deliveries; these are described in the section “Log-
ging Message Reception” and the section “Logging Deliveries” later in this chapter.
The others are summarized here:

log_arguments (Boolean, default = false)
Setting this option causes Exim to write the options and arguments with which
it was called to the main log. This is a debugging feature, added to make it
easy to find out with what arguments certain MUAs call the MTA. The logging
does not happen if Exim has given up root privilege because it was called

9 October 2001 09:12

with the -C or -D options. This facility cannot log illegal arguments because
the arguments are checked before the configuration file is read. The only way
to log such cases is to interpose a script between the caller and Exim.*

log_queue_run_level (integer, default = 0)
This option specifies the log level for the messages ‘‘start queue run’’ and ‘‘end
queue run.’’ Setting it higher than the value of log_level causes them to be
suppr essed.

log_refused_recipients (Boolean, default = false)
If this option is set, an entry is written in the main and reject logs for each
recipient that is refused for policy reasons. Otherwise, cases in which all recip-
ients are to be refused just cause a single log entry for the message.

log_rewrites (Boolean, default = false)
This option causes all address rewriting to be logged as an aid to debugging
rewriting rules.

log_smtp_connections (Boolean, default = false)
This option turns on more verbose logging of incoming SMTP connections at
log level 4. This does not apply to batch SMTP, but it does apply to SMTP con-
nections from local processes that use the -bs option, including incoming calls
using inetd. A log line is written whenever a connection is established or
closed. If a connection is dropped in the middle of a message, a log line is
always written, but otherwise nothing is written at the start and end of SMTP
connections unless log_smtp_connections is set.

log_smtp_syntax_errors (Boolean, default = false)
If this option is set, syntax errors in incoming SMTP commands are logged at
level 4. An unrecognized command is treated as a syntax error. For an external
connection, the host identity is given; for an internal connection using -bs, the
sender identification (normally the calling user) is given.

rbl_log_headers (Boolean, default = false)
When this option is set, the headers of each message received from a host that
matches an RBL domain are written to the reject log. This can occur only if the
recipients of the message are not rejected; that is, if the RBL check is config-
ur ed to warn only.

rbl_log_rcpt_count (Boolean, default = false)
When this option is set and rbl_reject_recipients is false, the number of
RCPT commands for each message received from a host that is in the RBL is
written to the reject log. This may be greater than the number of valid recipi-
ents in the message.

* An example of such a script, called logar gs.sh, is provided in Exim’s utility directory.

Log Destination Control 487

9 October 2001 09:12

488 Chapter 21: Administering Exim

Ther e is one final option that affects logging. When Exim includes data from a
message within a log entry, it takes care to ensur e that unprintable characters are
escaped, so as not to mess up the format of the log. For example, if a message
contains these lines in its header:

Subject: This subject covers
more than one line

and log_subject is set, the text that is written to the log is:

T="This subject covers\n more than one line"

Characters whose values are greater than 127 (so-called ‘‘8-bit’’ or ‘‘top-bit’’ charac-
ters) are by default printed using octal escape sequences. However, if you set
print_topbitchars, these characters are consider ed to be printing characters and
ar e sent to the log unmodified.

Format of Main Log Entries
Each entry in the main log is a single line of text. Some of the lines are quite long,
but it is done this way to make it easier to parse the lines in programs that analyze
the data. Every line starts with a timestamp of the form:

2000-06-30 01:07:31

See the section “Timestamps” in Chapter 19, Miscellany, for a discussion of the
time zone used for Exim’s timestamps. Log lines that relate to the reception or
delivery of messages have a two-character ‘‘flag’’ after the timestamp to make them
readily identifiable. The flags are:

<= for an arrival
=> for a successful delivery
== for deferment of delivery till later
** for a delivery failure

In addition, -> and *> ar e used for some special kinds of delivery, as described
later in this chapter.

Logg ing Message Reception
The arrival of a message that is not received over TCP/IP is logged by a line of the
for m shown in this example, which is split over several lines here in order to fit it
on the page:

2000-06-30 00:11:51 137nTL-0005br-00 <= holly@dwarf.example
U=holly P=local S=811
id=Pine.SOL.3.96.1000630001852.21797A-100000@dwarf.example

9 October 2001 09:12

The address that immediately follows <= is the envelope sender address, after any
rewriting rules have been applied and the U field records the login name of the
pr ocess that called Exim to submit the message.

When a message arrives from another host, the U field records the RFC 1413 iden-
tity of the user that sent the message, if one was received, and an H field identifies
the sending host:

1995-10-31 08:57:53 0tACW1-0005MB-00 <= kryten@dwarf.example
H=mailer.dwarf.example [192.168.123.123] U=exim
P=smtp S=5678 id=20000630091558.B12616@dwarf.example

The number given in square brackets is the IP address of the host. If there is just a
single name in the H field, as shown earlier, it has been verified to correspond to
the IP address.* If the name is in parentheses, it is the name that was quoted by
the remote host in the HELO or EHLO command and has not been verified. If verifi-
cation yielded a differ ent name to that given for HELO or EHLO, the verified name
appears first, followed by the HELO or EHLO name in parentheses. In this example,
the client did not give its fully qualified name:

H=mm272.lucy.example (mm272) [192.168.215.229]

Misconfigur ed hosts (and mail forgers) sometimes put an IP address, with or with-
out brackets, in the HELO or EHLO command, leading to entries in the log containing
extracts such as this:

H=(10.21.32.43) [192.168.8.34]
H=([10.21.32.43]) [192.168.8.34]

Such entries can be confusing. Only the final address in square brackets can be
relied on.

For all messages, the P field specifies the protocol used to receive the message.
This is set to asmtp for messages received from hosts that have authenticated them-
selves using the SMTP AUTH command. In this case, the name of the authenticator
that was used is logged with A as the field name. If an authenticated identification
was set up by the authenticator’s server_set_id option, this is logged too, sepa-
rated by a colon from the authenticator name. For example:

A=fixed_plain:ph10

If you are using a version of Exim that supports encrypted transfers, the cipher
that was used for an incoming message is logged with X as the field name. For
example:

X=TLSv1:DES-CBC3-SHA:168

* This verification occurs only if Exim’s configuration requir es it to happen.

Format of Main Log Entries 489

9 October 2001 09:12

490 Chapter 21: Administering Exim

If you don’t want this, set tls_log_cipher to false. Nothing is logged by default
when Exim requests a certificate from a client, but if you set tls_log_peerdn, the
Distinguished Name is logged with DN as the field name.

The size of the received message is given in bytes by the S field. When the mes-
sage is delivered, headers may be removed or added so that the size of delivered
copies of the message may be differ ent to this value (and indeed may be differ ent
to one another).

The ID field records the contents of any existing Message-Id: header line. If the
message does not contain such a line, nothing is logged, but Exim adds one
befor e delivering the message.

A delivery error (bounce) message is shown with the sender address <>, and if it is
a locally generated message, this is normally followed by an R field, which is a ref-
er ence to the local identification of the message that caused the error message to
be sent. For example:

2000-06-30 00:49:27 137o3j-0005mU-00 <= <> R=137o3e-0005mO-00 U=root
P=local S=1239

records the arrival of a bounce message that was provoked by the message with
the ID 137o3e-0005mO-00.

By setting certain configuration options, you can request that additional data be
added to the message reception log line. If log_received_sender is set, the original
sender of a message is added, after the word from, and if log_received_recipients
is set, a list of all the recipients is added, preceded by the word for. This happens
after any unqualified addresses are qualified, but before any rewriting (except
SMTP-time rewriting) is done. If log_subject is set, the contents of the Subject:
header line are added to the log line, preceded by T= (T is for ‘‘topic’’ because S is
alr eady used for ‘‘size’’). Here is an example in which all this information is
requested and the envelope sender is being rewritten:

2000-06-30 00:11:51 137nTL-0005br-00 <= holly@dwarf.example
U=holly P=local S=811
id=Pine.SOL.3.96.1000630001852.21797A-100000@dwarf.example
T="Testing subject" from <hc1009@mix.dwarf.example>
for lister@dwarf.example hal@2001.example

Logg ing Deliver ies
Her e ar e examples of delivery log lines for a local and a remote delivery, respec-
tively:

1995-10-31 08:59:13 0tACW1-0005MB-00 => marv <marv@hitch.example>
D=localuser T=local_delivery

1995-10-31 09:00:10 0tACW1-0005MB-00 => monk@holistic.example
R=lookuphost T=remote_smtp H=holistic.example [192.168.234.234]

9 October 2001 09:12

The D, R, and T fields identify the director or router and the transport that were
used for the delivery. The H field identifies the remote host.

When a local delivery is set up by a director, the field that immediately follows =>
is either just a local part, the name of a file, or a pipe command. This is followed
by the original address, in angle brackets, as in the first line in the previous exam-
ple. If (as a result of aliasing or forwarding) intermediate addresses exist between
the original and the final address, the last of these is given in parentheses after the
final address. However, log_all_parents can be set to cause all intermediate
addr esses to be logged.

The generation of a reply message by a filter file gets logged as a ‘‘delivery’’ to the
addr essee, pr eceded by >. The D and T items record the director and transport. For
example:

2000-06-30 09:42:35 137wNf-0000ng-00 => >hermione@hws.thaum.example
<harry@hws.thaum.example> D=userforward T=address_reply

shows that user harry has a filter file that used a reply command to generate a
message to her mione@hws.thaum.example. Nearby in the log, often immediately
pr eceding such a line, you will find the entry recording the arrival of the generated
message.

When a local delivery occurs as a result of routing rather than directing (for exam-
ple, messages are being batched up for transmission by some other means), the
log entry looks more like that for a remote delivery.

If a shadow transport was run after a successful local delivery, the log line for the
successful delivery has an item added on the end, of the form:

ST=shadow transport name

If the shadow transport did not succeed, the error message is put in parentheses
afterwards.

For remote deliveries, if the final delivery address is not the same as the original
addr ess (owing to changes made by routers), the original is shown in angle brack-
ets. If log_smtp_confirmation is set, the text in the final response from the remote
host (that is, the response when it accepted responsibility for the message) is
added to the log line, preceded by C=. A number of MTAs (including Exim) retur n
an identifying string in this response, so logging this information allows messages
to be tracked more easily.

When more than one address is included in a single delivery (for example, two
SMTP RCPT commands are used in one transaction), the second and subsequent
addr esses ar e flagged with -> instead of => so that statistics gathering programs

Format of Main Log Entries 491

9 October 2001 09:12

492 Chapter 21: Administering Exim

can draw a distinction between copies delivered and addresses delivered. If two or
mor e messages are deliver ed down a single SMTP connection, an asterisk follows
the IP address in the log lines for the second and subsequent messages.

When a delivery is discarded as a result of the command seen finish being obeyed
in a user’s filter file that generates no deliveries, a log entry of the form:

1998-12-10 00:50:49 0znuJc-0001UB-00 => discarded
<low.club@trick4.bridge.example> D=userforward

is written, to record why no deliveries are logged for that address. If a system filter
discards all deliveries for a message, the log line is:

1999-12-14 00:30:42 0znuKe-0001UB-00 => discarded (message_filter)

Finally, when the -N debugging option is used to prevent deliveries from actually
occurring, log entries are flagged with *> instead of => or ->.

Defer red Deliver ies
When a delivery is deferred, a line of the following form is logged:

1995-12-19 16:20:23 0tRiQz-0002Q5-00 == marvin@endrest.example
T=smtp defer (146): Connection refused

In the case of remote deliveries, the error is the one that occurred for the last IP
addr ess that was tried. Details of individual SMTP failures are also written to the
log, so the previous line would be preceded by a line such as this:

1995-12-19 16:20:23 0tRiQz-0002Q5-00 mail12.endrest.example
[192.168.0.62]: Connection refused

When a delivery is deferred because a retry time has not been reached, a defer
message is written to the log, but only if log_level is at least 5.

• ‘‘Retry time not reached’’ means that the address previously suffer ed a tempo-
rary error during directing or routing or local delivery and the time to retry it
has not yet arrived.

• ‘‘Retry time not reached for any host’’ means that the address previously suf-
fer ed temporary errors during remote delivery and the retry time has not yet
arrived for any of the hosts to which it is routed.

Deliver y Failures
If a delivery fails, a line of the following form is logged:

1995-12-19 16:20:23 0tRiQz-0002Q5-00 ** jim@trek99.example
<jim@trek99.example>: unknown mail domain

9 October 2001 09:12

Later in the log, a line gives the address to which the delivery error message has
been sent, but only if the log level is 5 or higher. For example:

1995-12-19 16:20:25 0tRiQz-0002Q5-00 Error message sent to
spock@vulcan.example

If the message has many recipients, this line might be much further down the log
because Exim does not send the bounce message until all the recipients have been
pr ocessed.

Message Completion
A line of the form:

1995-10-31 09:00:11 0tACW1-0005MB-00 Completed

is written to the main log when a message is about to be removed from the spool
at the end of its processing. This guarantees that no further log entries for
0tACW1-0005MB-00 will be written.

Other Log Entries
Various other types of log entries are written from time to time. Most should be
self-explanatory. One that sometimes causes worry is ‘‘Spool file is locked.’’ This
means that an attempt to deliver a message cannot proceed because some other
Exim process is already working on the message. This is not normally an error and
it can be quite common if queue runner processes are started at frequent intervals.
The message can be suppressed by setting the log level to less than 5.

However, if you see this log line repeating for the same message for an unreason-
able amount of time, there may be a problem. You can use the exiwhat utility to
find out what the Exim process that is working on the message is trying to do.

Cyc ling Log Files
If you are using local files rather than syslog (the most common configuraion) to
record Exim’s logs, you should normally ‘‘cycle’’ the main log and the reject log
periodically. The cycling process consists of renaming the current log file and
deleting previous ones that are too old. Most sites do this by setting up a cr on job
that runs once a day, commonly at midnight, so that each file contains the log for
one day.*

* You cannot, of course, ensure that the renaming happens on the dot of midnight, nor can you syn-
chr onize with any Exim processes that might be in the process of writing to the log, so in practice
ther e will usually be a few log lines in the ‘‘wrong’’ file.

Cyc ling Log Files 493

9 October 2001 09:12

494 Chapter 21: Administering Exim

An Exim delivery process opens the main log when it first needs to write to it, and
it keeps the file open in case subsequent entries are requir ed: for example, if a
number of differ ent deliveries are being done for the same message. However,
remote SMTP deliveries can take a long time, and this means that the file might be
kept open and used long after it was renamed. To avoid this, Exim checks the
main log file by name before reusing an open file, and if the file does not exist, or
if its inode has changed (that is, although it has the same name, it is actually a dif-
fer ent file), the old file is closed and Exim tries to open the main log again from
scratch. Thus, an old log file may remain open for quite some time, but no Exim
pr ocesses should write to it once it has been renamed.

Some operating systems have standard scripts for log cycling, which of course can
be used. For those that do not, a utility script called exicyclog is provided as part
of the Exim distribution. It cycles both the main log and the reject log files. You
can run it from a root cr ontab entry of the form:

1 0 * * * /usr/exim/bin/exicyclog

which runs the script at 00:01 every day. However, the script does not need to be
run as root if an Exim user is defined, because in that case, the log files are owned
by that user. One way to run the script as the Exim user is to use this cr ontab
entry:

1 0 * * * su exim -c /usr/exim/bin/exicyclog

If no main (or reject) log file exists, the script does nothing (for that set of files).
Otherwise, each time exicyclog is run, the files get ‘‘shuffled down’’ by one: main-
log becomes mainlog.01, the previous mainlog.01 becomes mainlog.02, and so
on, up to a limit that is set in the script when it is built (the default is 10). All the
old files except for yesterday’s log (mainlog.01) are automatically compressed to
save disk space.*

Extracting Infor mation from Log Files
Two Perl scripts used to extract information from main log files are provided in
the Exim distribution. They provide fairly basic facilities, but of course you can
modify them or write your own if you need additional functionality.

* We have used the default filename, mainlog, in this description, but the script works fine with what-
ever log filenames you choose to use.

9 October 2001 09:12

The exig rep Utility
The exigrep utility extracts from one or more log files all entries relevant to any
message whose entries contain at least one that matches a given pattern. For
example:

exigrep ’H=orange\.csi\.example’ /var/spool/exim/log/mainlog

not only picks out the lines containing the string H=orange.csi.example, but also
all the other lines for the messages that have an entry that matches. Thus, the out-
put would be the complete set of log lines for all messages involving that particu-
lar host. The entries are sorted so that all the entries for each message are printed
together, and there is a blank line between each message’s entries.

exigr ep makes it easy to search for all mail for a given user or a given host or
domain. The script’s usage is as follows:

exigrep [-l] <pattern> [<log file>] ...

wher e the -l flag means ‘‘literal,’’ that is, treat all characters in the pattern as stand-
ing for themselves. Otherwise the pattern must be a Perl regular expression. The
log files can be compressed or uncompressed; those that are compr essed ar e
piped through the zcat utility as they are read.* If no filenames are given on the
command line, the standard input is read.

The eximstats Utility
A Perl script called eximstats is supplied with the Exim distribution. It extracts
statistics from Exim log files. Originally, it was intended merely as a demonstration
of how this could be done, but it has found its way into regular use. Over time, it
has been hacked about quite a bit and it now gives quite a lot of information by
default, but there are options for suppressing various parts of it. Following any
options, the arguments to the script are a list of files, which should be main log
files. For example:

eximstats -nr -ne /var/spool/exim/log/mainlog.01

eximstats extracts information about the number and volume of messages received
fr om or delivered to various hosts. The information is sorted both by message
count and by volume, and the top 50 hosts in each category are listed on the stan-
dard output. For messages delivered and received locally, similar statistics are pro-
duced per user.

* This assumes that the location of zcat was known at the time Exim was built.

Extracting Infor mation from Log Files 495

9 October 2001 09:12

496 Chapter 21: Administering Exim

The output also includes total counts and statistics about delivery errors and his-
tograms showing the number of messages received and deliveries made in each
hour of the day. A delivery with more than one address in its ‘‘envelope’’ (for
example, an SMTP transaction with more than one RCPT command) is counted as a
single delivery.

Though normally more deliveries than receipts are reported (because messages
may have multiple recipients), it is possible for eximstats to report more messages
received than delivered, even though the spool is empty at the start and end of the
period in question. If an incoming message contains no valid recipients, no deliv-
eries are recorded for it. An error report is handled as a separate message.

eximstats outputs a grand total summary giving the volume and number of mes-
sages received and deliveries made and the number of hosts involved in each
case. It also outputs the number of messages that were delayed (that is, not com-
pletely delivered at the first attempt), and the number that had at least one address
that failed. Here is an example of this initial output:

Exim statistics from 1999-01-21 00:11:08 to 1999-01-22 00:10:46

Grand total summary

At least one address
TOTAL Volume Messages Hosts Delayed Failed
Received 153MB 16520 2341 53 0.3% 104 0.6%
Delivered 182MB 23197 1513

The remainder of the output is in sections that can be independently disabled or
modified by various options. First, there is a summary of deliveries by transport:

Deliveries by transport

Volume Messages
bypassed 960 1
:blackhole: 27KB 4
address_file 1665KB 425
address_pipe 2134KB 417
address_reply 4368 3
local_delivery 135MB 16141
remote_smtp 43MB 6206

bypassed is recorded when a message is directed to /dev/null, which Exim rec-
ognizes as a special case. :blackhole: records the use of the special :blackhost:
featur e of alias files. This part of the output can be suppressed by setting the -nt
option.

The next part of the output consists of two textual histograms, showing the num-
ber of messages received and delivered per hour, respectively. They are automati-
cally scaled, which is why the numbers of messages per dot in these examples are
rather strange:

9 October 2001 09:12

Messages received per hour (each dot is 27 messages)
--

00-01 342
01-02 249
02-03 206
03-04 154
04-05 134
05-06 160
06-07 141
07-08 245
08-09 562
09-10 1208 ..
10-11 1228 ...
11-12 1300 ..
12-13 1242 ..
13-14 1070
14-15 1320 ..
15-16 1335 ...
16-17 1281 ...
17-18 1026
18-19 890
19-20 597
20-21 452
21-22 448
22-23 467
23-24 463

Deliveries per hour (each dot is 47 deliveries)

00-01 411
01-02 266
02-03 236
03-04 189
04-05 139 ..
05-06 208
06-07 164 ...
07-08 263
08-09 985
09-10 1801
10-11 1780
11-12 1916 ..
12-13 1624
13-14 1607
14-15 2087 ..
15-16 2373 ..
16-17 1764
17-18 1299
18-19 1118
19-20 693
20-21 579
21-22 524
22-23 634
23-24 537

Extracting Infor mation from Log Files 497

9 October 2001 09:12

498 Chapter 21: Administering Exim

By default, the time interval is one hour. If -h0 is given, the histograms are sup-
pr essed; if -h followed by a number is given, the value gives the number of divi-
sions per hour, so -h2 sets an interval of 30 minutes and the default is equivalent
to -h1.

Next, there is an analysis of the time spent on the queue, first by all messages:

Time spent on the queue: all messages

Under 1m 16271 98.5% 98.5%
5m 168 1.0% 99.5%
15m 30 0.2% 99.7%
30m 19 0.1% 99.8%
1h 10 0.1% 99.9%
3h 10 0.1% 99.9%
6h 4 0.0% 100.0%
12h 3 0.0% 100.0%
1d 1 0.0% 100.0%

Over 1d 1 0.0% 100.0%

and then by messages that had at least one remote delivery:

Time spent on the queue: messages with at least one remote delivery

Under 1m 5073 95.6% 95.6%
5m 167 3.1% 98.7%
15m 27 0.5% 99.2%
30m 12 0.2% 99.5%
1h 10 0.2% 99.7%
3h 10 0.2% 99.8%
6h 4 0.1% 99.9%
12h 3 0.1% 100.0%

Over 1d 1 0.0% 100.0%

These particular statistics were recorded on a very good day. This output can be
suppr essed by the -q0 option. Alternatively, -q can be followed by a list of time
intervals for this analysis. The values are separated by commas and are in seconds,
but can involve arithmetic multipliers, so, for example, you can set 3*60 to specify
3 minutes. A setting such as:

-q60,5*60,10*60

causes eximstats to give counts of messages that stayed on the queue for less than
one minute, less than 5 minutes, less than 10 minutes, and over 10 minutes.

Unless -nr is specified, there follows a list of all messages that were relayed via
the local host, starting off like this:

9 October 2001 09:12

Relayed messages

5 (rosemary) [192.168.182.138] jcbreb@cus.example
=> green.gra.example [192.168.8.57] r5j4m@herm.gra.example

...

Total: 1949 (plus 0 unshown)

Each pair of lines repr esents a single relay route; the leading number shows how
many differ ent messages were deliver ed over this route. The rest of the first line
contains the sending hostname and IP address and the envelope sender address.

The relay information lists messages that were actually relayed; that is, they came
fr om a remote host and were deliver ed to some other remote host directly. A
delivery that is considered as a relay by the checking features described in the sec-
tion “Relay Control” in Chapter 13, Message Reception and Policy Controls, because
its domain is not in local_domains, might still end up being delivered locally under
some configurations. If this happens, it does not show up as a relay in the exim-
stats output.

Sometimes you only want to know about certain relays. You can selectively omit
relay information by providing a regular expression after -nr, like this:

eximstats ’-nr/busy\.host\.name/’ /var/spool/exim/log/mainlog.01

The pattern matched against a string of the following form:

H=<host> [<ip address>] A=<sender address> => H=<host> A=<recipient address>

for example:

H=in.host [10.2.3.4] A=from@some.where => H=out.host A=to@else.where

The sending hostname appears in parentheses if it has not been verified as match-
ing the IP address. The mail addresses are taken from the envelope, not the head-
ers. Relays that are suppr essed by this mechanism contribute to the ‘‘unshown’’
count in the final total line.

The next part of the output consists of ‘‘league tables,’’ starting with:

Top 50 sending hosts by message count

3178 14592162 local
1049 14995154 mauve.csi.example
991 11919355 lilac.csi.example
990 13009635 navy.csi.example
711 1418843 red.csi.example
595 2673643 green.csi.example
537 3563842 violet.csi.example
169 419187 (murphy.novore.example)
101 261352 (imelda.cpug.example)
...

Extracting Infor mation from Log Files 499

9 October 2001 09:12

500 Chapter 21: Administering Exim

which lists the hosts from which the most messages were received. It is followed
by:

• Top 50 sending hosts by volume (as shown earlier, but based on volume).

• Top 50 local senders by message count; this lists the local parts for messages
originating on the local host.

• Top 50 local senders by volume.

• Top 50 destinations by message count; this is by host.

• Top 50 destinations by volume.

• Top 50 local destinations by message count; this is by local part.

• Top 50 local destinations by volume.

You can change the number 50 by means of the -t option; for example, -t10 lists
only the top 10 in each category. If you set -t0, this part of the output is sup-
pr essed; if you set -tnl, the information about local senders and destinations is
suppr essed.

The final section of output from eximstats is a list of delivery errors:

List of errors

1 " peter"@cus.example D=unknownuser T=unknownuser_pipe:
return message generated

1 1996@southwest.cim.example R=lookuphost T=smtp: SMTP error
from remote mailer after RCPT TO: <1996@southwest.cim.example>:
host tuert.southwest.cim.example [192.168.9.19]:
550 <1996@southwest.cim.example>...
User unknown

...

Errors encountered: 118

The number at the start of each item is a count of the number of identical errors.
This output can be suppressed by specifying -ne.

Watching What Exim is Doing
Ther e ar e two aspects to watching what Exim is actually doing at any time. The
message files in its spool directory contain the work that it has undertaken to do
and repr esent its activity on a relatively long time scale, whereas the current set of
Exim processes are what it is actually doing at this instant. Facilities are provided
for looking at both of these kinds of activity.

9 October 2001 09:12

The exiqsumm Utility
One way of watching what Exim is doing is to inspect the list of messages it is in
the process of handling. The -bp command-line option and its variants (see the
section “Watching Exim’s Queue” in Chapter 20, Command-Line Interface to Exim)
pr ovide this information. There is also a short utility script called exiqsumm that
postpr ocesses it to provide a summary, so the command:

exim -bp | exiqsumm

pr oduces output lines of this form:

3 2322 74m 66m wek.example

This means that three messages on the queue have undelivered addresses in the
wek.example domain. Their total size is 2322 bytes; the oldest has been queued for
74 minutes and the youngest for 66 minutes.

The exinext Utility
If you want to know when Exim will next try a particular delivery that has suffer ed
a temporary error, you can use a utility called exinext, which is mostly a Perl
script, to extract information from Exim’s retry database. Given a mail domain or a
complete address, it looks up the hosts for the domain and outputs any retry infor-
mation that it may have. At present, the retry information is obtained by running
exim_dumpdb (see example in this section) and postprocessing the output.
exinext is not particularly efficient, but then it is not expected to be run very often.
For example:

$ exinext piglet@milne.fict.example
kanga.milne.fict.example:192.168.8.1 error 146: Connection refused
first failed: 21-Feb-1996 14:57:34
last tried: 21-Feb-1996 14:57:34
next try at: 21-Feb-1996 15:02:34

roo.milne.fict.example:192.168.8.3 error 146: Connection refused
first failed: 20-Jan-1996 13:12:08
last tried: 21-Feb-1996 11:42:03
next try at: 21-Feb-1996 19:42:03
past final cutoff time

The phrase ‘‘past final cutoff time’’ means that an error has been occurring for
longer than the maximum time mentioned in the relevant retry rule. You can give
exinext a local part, without a domain, to obtain retry information for a local deliv-
ery that has been failing temporarily. A message ID can be given to obtain retry
infor mation pertaining to a specific message. This exists only when an attempt to
deliver a message to a remote host suffers a message-specific error (see the section
“Message Errors” in Chapter 12, Delivery Errors and Retrying).

Watching What Exim is Doing 501

9 October 2001 09:12

502 Chapter 21: Administering Exim

Quer ying Exim Processes
You can, of course, use the Unix ps command to obtain a list of Exim processes.
Typically, this is combined with gr ep to form a command such as:

ps -ef | grep exim

The output might contain lines such as this:

exim 295 1 0 Jul 01 ? 0:05 /usr/sbin/sendmail -bd -q15m
exim 4240 295 0 10:09:40 ? 0:00 /usr/sbin/sendmail -bd -q15m
exim 4342 295 0 10:10:59 ? 0:00 /usr/exim/bin/exim -q
exim 4345 4342 0 10:10:59 ? 0:00 /usr/exim/bin/exim -q
exim 4376 295 0 10:11:13 ? 0:00 /usr/sbin/sendmail -bd -q15m

These processes are all running as the Exim user, and none of them has an associ-
ated terminal (that’s what the question marks mean). You can deduce that process
295 is a daemon process because its parent is process number 1, the init pr ocess
that becomes the parent of all daemon processes. Also, it was started some days
ago, so its starting time is given as a date rather than a time.

Pr ocesses 4240, 4342, and 4376 are all children of the daemon. The first and the
third must be reception processes for incoming SMTP calls because the command
that is shown is the same as the daemon’s. This means that it has forked new pro-
cesses, but has not executed a new command. Process 4342, however, although
also forked from the daemon, is running a differ ent command (namely, a queue
runner process) and has created process 4345 to deliver a message.

This information from ps is rather limited. You cannot tell, for example, from
which remote hosts messages are arriving, or which messages a queue runner is
delivering. A technique that is adopted by some programs for making their activi-
ties available is to change the values of the argument variables with which they
ar e called so that the output from ps changes as the program proceeds. Unfortu-
nately, this technique does not work on all operating systems, so Exim does not
use it.

Instead, Exim processes respond to the SIGUSR1 signal by writing a line of text
describing what they are doing to the file exim-pr ocess.info in Exim’s spool direc-
tory. This facility is packaged up for use via a utility script called exiwhat. You
must run this command as root, so that it has the privilege to send a signal to pro-
cesses running under any uid.*

* This is differ ent fr om restarting the daemon using SIGHUP, which can be done either as root or as
exim.

9 October 2001 09:12

The first thing exiwhat does is empty the process information file. Then it uses ps
to find all processes running Exim and sends each one a SIGUSR1 signal. The script
waits for one second to allow the Exim processes to react, then copies the file to
the standard output. It might look like this:

295 daemon: -q15m, listening on port 25
4240 handling incoming call from [192.168.243.242]
4342 running queue: waiting for 0tAycK-0002ij-00 (4345)
4345 delivering 0tAycK-0002ij-00 to mail.ref.example [192.168.42.42]
(editor@ref.example)

4375 handling incoming call from [192.168.234.111]

The number at the start of each output line is the process number.* The fourth line
has been split here, in order to fit it on the page.

Unfortunately, the ps command varies between differ ent versions of Unix. Not only
ar e dif ferent options used, but the format of the output is differ ent. If it does not
seem to work for you, check the first few noncomment lines of the shell script,
which should be something like this:

ps_cmd=/bin/ps
ps_arg=-e
kill_arg=-USR1
egrep_arg=’ exim(|$)’

The first line sets the path to the ps command and the second is the argument for
ps. The third sets the argument for the kill command to make it send a SIGUSR1

signal and the fourth is the argument for egr ep to make it extract the list of Exim
pr ocesses fr om the ps output. The actual values may vary, depending on which
operating system you are running.

If you find you need to change these values and you have compiled and installed
Exim from the source code, you should change the defaults at compile time so
that the right values will be used when you build the next release.

The Exim Monitor
The Exim monitor is an X Window system application that continuously displays
infor mation about what Exim is doing. An admin user can perfor m certain opera-
tions on messages from this GUI interface; however, all such facilities are also
available from the command line, and, indeed, the monitor itself makes use of the
command-line interface to carry out these operations.

* Up to and including Release 3.16, the Exim version number was also given, but this rather redundant
infor mation was removed in later versions.

The Exim Monitor 503

9 October 2001 09:12

504 Chapter 21: Administering Exim

Running the Monitor
The monitor is started by running the script called eximon. This is a shell wrapper
script that sets up a number of environment variables and then runs the binary
called eximon.bin. The environment variables are a way of configuring the moni-
tor, for example, specifying the size of its window. Their default values are speci-
fied when Exim is built. However, even if you are using a precompiled version of
Exim, the parameters that are built into the eximon script at compile time can be
overridden for a particular invocation by setting up environment variables of the
same names, preceded by EXIMON_. For example, a shell command such as:

EXIMON_LOG_DEPTH=400 eximon

(in a Bourne-compatible shell) runs eximon with an overriding setting of the
LOG_DEPTH parameter.

If EXIMON_LOG_FILE_PATH is set in the environment, it overrides the Exim log file
configuration. This makes it possible to have eximon tailing log data that is written
to syslog, provided that MAIL.INFO syslog messages are routed to a file on the local
host. Otherwise, if only syslog is used to record logging data, the Exim monitor is
unable to provide a log tail display.

X resources can be used to change the appearance of the window in the normal
way. For example, a resource setting of the form:

Eximon*background: gray94

changes the color of the background to light gray rather than white. The
stripcharts are drawn with both the data lines and the refer ence lines in black. This
means that the refer ence lines are not visible when on top of the data. However,
their color can be changed by setting a resource called ‘‘highlight’’ (an odd name,
but that is what the Athena stripchart widget uses). For example, if your X server
is running Unix, you could set up lighter refer ence lines in the stripcharts by obey-
ing the following:

xrdb -merge <<End
Eximon*highlight: gray50
End

In order to see the contents of messages on the spool and to operate on them, exi-
mon must either be run as root or by an admin user; that is, a user who is a mem-
ber of the Exim group.

9 October 2001 09:12

The monitor’s window is divided into three parts, as shown in Figure 21-1, which
is an actual screen shot taken on a live system. However, mail addresses, host-
names, and IP addresses have been hidden with x’s for privacy reasons.

Figur e 21-1. Monitor scr eenshot

The first part contains one or more stripcharts and two action buttons, the second
contains a ‘‘tail’’ of the main log file, and the third is a display of the queue of
messages awaiting delivery, with two more action buttons.

The Str ipcharts
The first stripchart is a count of messages on the queue. The remaining stripcharts
ar e defined in the configuration script by regular expression matches on log file
entries, making it possible to display, for example, counts of messages delivered to
certain hosts or using certain transports. The supplied defaults display counts of
received and delivered messages, and of local and SMTP deliveries. The default
period between stripchart updates is one minute.

The Exim Monitor 505

9 October 2001 09:12

506 Chapter 21: Administering Exim

The stripchart displays rescale themselves automatically as the value they are dis-
playing changes. There are always 10 horizontal lines in each chart; the title string
indicates the value of each division when it is greater than one. For example, x2
means that each division repr esents a value of 2.

It is also possible to have a stripchart that shows the percentage fullness of a par-
ticular disk partition, which is useful when local mailboxes are confined to a single
partition. This relies on the availability of the statvfs() function or equivalent in
the operating system. Most, but not all, versions of Unix that support Exim have
this. For this particular stripchart, the top of the chart always repr esents 100 per-
cent, and the scale is given as x10%. You can start up eximon with this additional
stripchart by a command of this form:

EXIMON_SIZE_STRIPCHART=/var/mail eximon

assuming you are running a Bourne-compatible shell. This example monitors the
size of the partition containing the /var/mail dir ectory. If you build Exim from
source, you can specify in the build-time configuration that this is to be the
default. The name of the chart is the last component of the path, but you can
change this by setting EXIMON_SIZE_STRIPCHART_NAME if you want to.

Main Action Buttons
Below the stripcharts is an action button for quitting the monitor. Next to this is
another button marked Size. They are placed here so that shrinking the window
to its minimum size leaves just the queue count stripchart and these two buttons
visible. The Size button is a toggle that causes the window to flip between its
maximum and minimum sizes. When expanding to the maximum, if the window
cannot be fully seen where it curr ently is, it is moved back to where it was the last
time it was at full size. The old position is remember ed and next time the window
is reduced to the minimum, it is moved back.

The idea is that you can keep a reduced window just showing one or two
stripcharts at a convenient place on your screen, easily expand it to show the full
window when requir ed, and just as easily put it back to what it was. This feature
is copied from what the twm window manager does for its f.fullzoom action. The
minimum size of the window can be changed by setting the environment variables
EXIMON_MIN_HEIGHT and EXIMON_MIN_WIDTH when starting the monitor.

The Log Display
The second section of the window is an area in which a display of the main log
tail is maintained. This is not available when the only destination for logging data

9 October 2001 09:12

is syslog, unless the syslog lines are routed to a local file whose name is passed to
eximon via the EXIMON_LOG_FILE_PATH envir onment variable.

The log subwindow has a scrollbar at its lefthand side that can be used to move
back to look at earlier text, and the up and down arrow keys also have a scrolling
ef fect. If new text arrives in the window when it is scrolled back, the caret remains
wher e it is, but if the window is not scrolled back, the caret automatically moves
to the end of the new text.

The amount of log that is kept depends on the setting of EXIMON_LOG_BUFFER,
which specifies the amount of memory to use. When this is full, the earlier 50 per-
cent of data is discarded; this is much more efficient than throwing it away line by
line. The subwindow also has a horizontal scrollbar for accessing the ends of long
log lines. This is the only means of horizontal scrolling; the right and left arrow
keys are not available. Text can be cut from this part of the window using the
mouse in the normal way. The size of this subwindow is controlled by EXI-

MON_LOG_DEPTH.

Searches of the text in the log window can be carried out by means of the CTRL-R
and CTRL-S keystrokes, which default to a reverse and forwards search, respec-
tively. The search covers only the text that is displayed in the window. It cannot
go further back up the log. The point from which the search starts is indicated by
a car et marker. This is normally at the end of the text in the window, but can be
positioned explicitly by pointing and clicking with the left mouse button, and is
moved automatically by a successful search.

Pr essing CTRL-R or CTRL-S pops up a window into which the search text can be
typed. There are buttons for selecting forward or reverse searching, for carrying
out the search, and for cancelling. If the Search button is pressed, the search hap-
pens and the window remains so that further searches can be done. If the Enter
key is pressed, a single search is done and the window is closed. If CTRL-C is
pr essed, the search is cancelled.*

The Queue Display
The bottom section of the monitor window contains a list of all messages that are
on the queue, including those currently being delivered, as well as those awaiting
delivery in the future.

* The searching facility is implemented using the facilities of the Athena text widget. By default, this
pops up a window containing both ‘‘search’’ and ‘‘replace’’ options. In order to suppress the
unwanted ‘‘replace’’ portion for eximon, a modified version of the TextPop widget is distributed
with Exim. However, the linkers in BSDI and HP-UX seem unable to handle an externally provided
version of TextPop when the remaining parts of the text widget come from the standard libraries.
On these systems, therefor e, eximon has to be built with the standard widget, which results in these
unwanted items in the search pop-up window.

The Exim Monitor 507

9 October 2001 09:12

508 Chapter 21: Administering Exim

The depth of this subwindow is controlled by EXIMON_QUEUE_DEPTH, and the fre-
quency with which it is updated is controlled by EXIMON_QUEUE_INTERVAL; the
default is 5 minutes because queue scans are quite expensive. However, ther e is
an Update action button just above the display that can be used to force an update
of the queue display at any time.

When a host is down for some time, a lot of pending mail can build up for it, and
this can make it hard to deal with other messages on the queue. To help with this
situation, there is a button next to Update called Hide. If pressed, a dialog box
called ‘‘Hide addresses ending with’’ opens. If you type anything in here and press
Enter, the text is added to a chain of such texts, and if every undelivered address
in a message matches at least one of the texts, the message is not displayed.

If an address does not match any of the texts, all the addresses are displayed as
nor mal. The matching happens on the ends of addresses so, for example,
foo.com.example specifies all addresses in that domain, whereas
xxx@foo.com.example specifies just one specific address. When any hiding has
been set up, a button called Unhide is displayed. If pressed, it cancels all hiding.
Also, to ensure that hidden messages are not forgotten, a hide request is automati-
cally cancelled after one hour.

While the dialog box is displayed, you cannot press any buttons or do anything
else to the monitor window. For this reason, if you want to cut text from the
queue display to use in the dialog box, you must do the cutting before pressing
the Hide button.

The queue display contains, for each unhidden queued message, the length of
time it has been on the queue, the size of the message, the message ID, the mes-
sage sender, and the first undelivered recipient, all on one line. If it is a delivery
err or message, the sender is shown as <>. If ther e is more than one recipient to
which the message has not yet been delivered, subsequent ones are listed on
additional lines, up to a maximum configured number, following which an ellipsis
is displayed. Recipients that have already received the message are not shown. If a
message is frozen, an asterisk is displayed at the lefthand side.

The queue display has a vertical scrollbar and can also be scrolled by means of
the arrow keys. Text can be cut from it using the mouse in the normal way. The
text searching facilities, as described earlier for the log window, are also available,
but the caret is always moved to the end of the text when the queue display is
updated.

9 October 2001 09:12

The Queue Menu
If the Shift key is held down and the left button is clicked when the mouse pointer
is over the text for any message in the queue window, an action menu pops up
and the first line of the queue display for the message is highlighted. This does not
af fect any selected text. If you want to use some other event for popping up the
menu, you can set EXIMON_MENU_EVENT in the environment before starting the moni-
tor. The value set in this parameter is a standard X event description. For example,
to run eximon using Ctrl rather than Shift you could use:

EXIMON_MENU_EVENT=’Ctrl<Btn1Down>’ eximon

An example of an eximon menu is shown in Figure 21-2.

Figur e 21-2. Monitor menu

The title of the menu is the message ID, and it contains entries that act as follows:

Message log
The contents of the message log for the message are displayed in a new text
window.

The Exim Monitor 509

9 October 2001 09:12

510 Chapter 21: Administering Exim

Headers
Infor mation fr om the spool file containing the envelope information and head-
ers is displayed in a new text window.

Body
The contents of the spool file containing the body of the message are dis-
played in a new text window. There is a default limit of 20KB to the amount
of data displayed. This can be changed by setting EXIMON_BODY_MAX.

Deliver message
A call to Exim is made using the -M option to request delivery of the message.
This call causes an automatic thaw if the message is frozen. The -v option is
also set and the output from Exim is displayed in a new text window. The
delivery is run in a separate process to avoid holding up the monitor while the
delivery proceeds.

Fr eeze message
A call to Exim is made using the -Mf option to request that the message be
fr ozen.

Thaw message
A call to Exim is made using the -Mt option to request that the message be
thawed.

Give up on msg
A call to Exim is made using the -Mg option to request that Exim gives up try-
ing to deliver the message. A delivery failure report is generated for any
remaining undelivered addresses.

Remove message
A call to Exim is made using the -Mr m option to request that the message be
deleted from the system without generating any failure reports.

Add recipient
A dialog box is displayed into which a recipient address can be typed. Press-
ing Enter causes a call to Exim to be made using the -Mar option (to request
that an additional recipient be added to the message), unless the entry box is
empty, in which case no action is taken.

Mark delivered
A dialog box is displayed into which a recipient address can be typed. Press-
ing Enter causes a call to Exim to be made using the -Mmd option (to mark
the given recipient address as already delivered), unless the entry box is
empty, in which case no action is taken.

9 October 2001 09:12

Mark all delivered
A call to Exim is made using the -Mmad option to mark all recipient addresses
as already delivered.

Edit sender
A dialog box is displayed initialized with the current sender’s address for you
to edit. Pressing Enter causes a call to Exim to be made using the -Mes option
(to replace the sender address), unless the entry box is empty, in which case
no action is taken.

Edit body
A new xterm process is forked in which a call to Exim is made using the -Meb
option in order to allow the body of the message to be edited. Note that the
first line of the body file is the name of the file, and this should never be
changed.

In cases when a call to Exim is made, the actual command used is reflected in a
new text window by default, but this command can be turned off for all except
the delivery action by setting EXIMON_ACTION_OUTPUT=no in the environment. How-
ever, if the call results in output from Exim (in particular, if the command fails) a
window containing the command and the output is displayed. Otherwise, the
results of the action are nor mally appar ent fr om the log and queue displays. The
latter is automatically updated for actions such as freezing and thawing, unless
EXIMON_ACTION_QUEUE_UPDATE=no has been set. In this case, the Update button has
to be used to force an update to the display after freezing or thawing.

In any text window that is displayed as a result of a menu action, the normal cut-
and-paste facility is available and searching can be carried out using CTRL-R and
CTRL-S, as described earlier for the log tail window.

Maintaining Alias and Other Datafiles
Although Exim uses just one runtime configuration file, this generally refers to
other files containing various kinds of data. If you update any of these files, Exim
pr ocesses will pick up the new contents immediately; you do not need to take
special action. However, if you update the runtime configuration itself, you need
to send a SIGHUP signal to the daemon process. You need to be root or exim to do
this, using a command such as:

kill -HUP ‘cat /var/spool/exim/exim-daemon.pid‘

This command causes it to restart and rer ead the configuration. It is a good idea to
check the log after you have done this to ensure that the daemon has restarted
successfully. All Exim processes other than the daemon are short-lived, so as new
ones start, they will see the new configuration.

Maintaining Alias and Other Datafiles 511

9 October 2001 09:12

512 Chapter 21: Administering Exim

Maintaining DBM Files
If you are using DBM files for aliases or any other data, you need to rebuild them
fr om source files if you want to change the data. A utility program called
exim_dbmbuild is provided for doing this. It reads an input file in the format of an
alias file and writes a DBM database using the lowercased alias names as keys,
and the remainder of the information as data. The lowercasing can be prevented
by calling the program with the -nolc option.

A ter minating zer o is included as part of the key string. This is expected by the dbm

lookup type. However, if the option -nozer o is given, exim_dbmbuild cr eates files
without terminating zeros in either the key strings or the data strings. The dbmnz

lookup type can be used with such files.

The program requir es two arguments: the name of the input file (which can be a
single hyphen to indicate the standard input) and the name of the output
database. It creates the database under a temporary name and then renames the
file(s) if all went well. If the native Berkeley DB interface is in use (common in
fr ee versions of Unix), the two filenames must be differ ent because in this mode,
the Berkeley DB functions create a single output file using exactly the name given.
For example:

exim_dbmbuild /etc/aliases /etc/aliases.db

reads the system alias file and creates a DBM version of it in /etc/aliases.db.

In systems that use the ndbm routines (mostly proprietary versions of Unix), DBM
databases consist of two files with suffixes .dir and .pag. In this environment, the
suf fixes ar e added to the second argument of exim_dbmbuild, so it can be the
same as the first.

The program outputs a warning if it encounters a duplicate key. By default, only
the first of a set of duplicates is used; this makes it compatible with lsearch

lookups. An option called -lastdup causes it to use the last instead. There is also
an option -nowar n, which stops it from listing duplicate keys to the standard error
str eam. If any duplicates are encounter ed, the retur n code is 1, unless -noduperr is
used. For other errors for which it does not actually make a new file, the retur n
code is 2.

Hints Database Maintenance
Exim uses DBM files to hold the data for its hints databases. Under normal circum-
stances you do not have to worry very much about these, except in one respect:
they need ‘‘tidying’’ periodically. Out-of-date information accumulates in the files

9 October 2001 09:12

and if they are not tidied, their size keeps on increasing. This is usually quite grad-
ual, so that weekly tidying is often sufficient, though some sites prefer to do it
daily. A utility program called exim_tidydb is provided to do this job.

Ther e is also a utility for dumping the contents of a hints database and one for
making modifications. However, you are most unlikely to want to use either of
them, so they are not described here. The refer ence manual has details if you
need them.

The exim_tidydb utility program requir es two arguments. The first specifies the
name of Exim’s spool directory, and the second is the name of the database that
exim_tidydb is to operate on. These names are as follows:

retry:
The database of retry information.

reject:
The database of information about rejected messages.

wait-transport-name:
Databases of information about messages waiting for remote hosts, using par-
ticular transports. Usually there is only one remote transport, so there is just
one such database with a name such as wait-remote_smtp.

serialize-transport-name:
Databases of information about current connections to hosts that are restricted
to one connection at a time, using particular transports.

serialize-etrn-runs:
Database of information about current queue runs started by the ETRN com-
mand when smtp_etrn_serialize is set.

If exim_tidydb is run with no options, it removes all records from the database
that are mor e than 30 days old. For example:

exim_tidydb /var/spool/exim retry

The cutoff date can be altered with the -t option, which must be followed by a
time. For example, to remove all records older than a week from the retry
database, use:

exim_tidydb -t 7d /var/spool/exim retry

Some of the hints databases contain data pertaining to specific messages. For
these, the -f option can also be used. This option causes a check to be made to
ensur e that message IDs in database records are those of messages still on the
queue. The hints concerning messages that no longer exist are removed.

The exim_tidydb utility outputs comments on the standard output whenever it
removes information from the database. It is suggested that it be run periodically

Hints Database Maintenance 513

9 October 2001 09:12

514 Chapter 21: Administering Exim

on all databases, but at a quiet time of day, since it requir es a database to be
locked (and therefor e be inaccessible to Exim) while it does its work. It can be
run as the Exim user.

For example, if you are not using host or ETRN serialization and have just one
remote transport called remote_smtp, these commands would be appropriate:

exim_tidydb -f /var/spool/exim retry >/dev/null
exim_tidydb -f /var/spool/exim reject >/dev/null
exim_tidydb -f /var/spool/exim wait-remote_smtp >/dev/null

You can put these commands in a file (called /usr/exim/bin/tidy_alldb, for exam-
ple) and have it run daily by a root cr ontab entry such as:

10 3 * * * su exim -c /usr/exim/bin/tidy_alldb

You have to make sure that exim_tidydb can be found, either by using an absolute
pathname or by setting PATH in the script. Alternatively, you can use a cr ontab
entry for exim instead of root, and, of course, you can put the individual com-
mands directly into the cr ontab if you want to.

Mailbox Maintenance
Now and again there are occasions when you want to prevent any new messages
fr om being delivered into a user’s mailbox because you want to carry out mainte-
nance activity on it, or investigate a problem. You could modify Exim’s configura-
tion file to defer deliveries to that user, but then you would have to remodify it
afterwards, and in any case, this would not prevent user agents from modifying
the mailbox. A better approach is to lock the mailbox.*

The exim_lock utility locks a mailbox file using the same algorithm as Exim. This
pr events modification of a mailbox by Exim or a user agent. The utility requir es
the name of the file as its first argument. If the locking is successful, the second
argument is run as a command. If there is no second argument, the value of the
SHELL envir onment variable is used; if this is unset or empty, /bin/sh is run. When
the command finishes, the mailbox is unlocked and the utility ends. For example:

exim_lock /var/spool/mail/spqr

runs an interactive shell while the file is locked, whereas:

exim_lock -q /var/spool/mail/spqr <<End
some commands
End

* Locking only works, of course, if the mailbox is a single file. If you are using multifile mailboxes,
another approach must be found.

9 October 2001 09:12

runs a specific noninteractive sequence of commands while the file is locked. The
-q (‘‘quiet’’) option suppresses verification output. A single command can be run
while the file is locked by a command such as:

exim_lock -q /var/spool/mail/spqr "cp /var/spool/mail/spqr /some/where"

Note that if a command is supplied, it must be entirely contained within the sec-
ond argument; hence the quotes.

Without -q, some verification output is written. More detailed verification of the
locking process can be requested with -v. Ther e ar e also some options that are
similar to the options on the appendfile transport used to control the way the mail-
box is locked. Unless you have made changes to the locking options of append-
file, you should not need to specify any of these options.

-fcntl:
Use fcntl() locking on the open mailbox.

-interval:
Interval to sleep between retries, default 3 (seconds).

-lockfile:
Cr eate a lock file before opening the mailbox.

-mbx:
Lock the mailbox using MBX rules.

-r etries:
Specifies the number of times to retry (default 10).

-timeout:
Specifies the timeout value for fcntl() locking.

If none of -fcntl, -lockfile or -mbx ar e given, the default is to create a lock file and
also use fcntl() locking on the mailbox, which is the same as Exim’s default. The
use of -fcntl requir es that the file be writable; the use of -lockfile requir es that the
dir ectory containing the file be writable. Locking by lock file does not last forever;
Exim assumes that a lock file is expired if it is more than 30 minutes old. The
-mbx option is mutually exclusive with -fcntl.

Mailbox Maintenance 515

9 October 2001 09:12

22
Building and Installing Exim

So far, we have talked only about how to use Exim, assuming that it is already
installed on your system. We have not yet covered how to get it there. There are
thr ee possibilities:

• Some operating systems (for example, Debian GNU/Linux) are now dis-
tributed with Exim already installed. If yours is one of these, you do not need
to do anything, unless you want to use some of the optional code that is not
included in your binary or you want to upgrade to a later release. If you do,
you will have to fetch the source and compile it yourself.

• Some operating systems (for example, FreeBSD) have a standardized ‘‘ports’’
mechanism, with a simple command that fetches the Exim source, compiles it
with a particular set of options, and installs it for you. Again, if the options are
suitable, you need do no more; if not, you must recompile, but in this sce-
nario, the source is already available on your host. However, if you want to
upgrade to a later release, you will have to fetch a new source.

• If neither of these apply to you, you will have to fetch a copy of the source
yourself, and then compile and install it.

Ther e is no general repository of binary distributions. One reason for this is there
ar e a number of choices to be made when compiling Exim; for example, whether
to include support for database lookups, and if so, for which database. Thus a sin-
gle binary (even for one operating system) would suit only a few people.

This chapter describes the process of building and installing Exim from the source
distribution.

516

9 October 2001 09:13

Prerequisites
You need to have a working ANSI/ISO C compiler installed before you can build
Exim. If you do not have a compiler, either consult your vendor or consider
installing gcc, the GNU C compiler. You can find information about gcc at
http://www.fsf.or g/order/ftp.html. If you want to build the Exim monitor, the X
Window system libraries and header files must also be available.

You will need gunzip (or bunzip) and tar to unpack the source. The building
pr ocess assumes the availability of standard Unix tools such as make and sed. You
do not need Perl in order to build or run Exim, but as some of the associated utili-
ties are Perl scripts, it is a good idea to make sure that it is installed as well.

Finally, even if you do not use DBM lookups in your configuration, Exim requir es
a DBM library, because it uses DBM files for holding its hints databases. Licensed
versions of Unix normally contain a library of DBM functions operating via the
ndbm inter face. Fr ee versions of Unix vary in what they contain as standard. Some
older versions of Linux have no default DBM library at all, and differ ent distribu-
tors have chosen to include differ ent libraries. However, the more recent releases
of all the free operating systems seem to have standardized on the Berkeley DB
library.

The original Berkeley DB package reached Version 1.85 before being superseded
by Release 2 and then Release 3. The older versions are no longer maintained.
You can find information about Berkeley DB at http://www.sleepycat.com.

Fetching and Unpacking the Source
The ‘‘Availability’’ link on the Exim home page, at http://www.exim.or g, leads to a
page containing a list of sites from which the source may be downloaded. The
home page also contains information about the status of differ ent versions. You
can use your browser to download a distribution into an appropriate directory
such as /usr/sour ce/exim. The distribution is a single compressed tar file, for
example:

/usr/source/exim/exim-3.22.tar.gz

Move to that directory, and unpack Exim using gunzip and tar:*

$ cd /usr/source/exim
$ gunzip exim-3.22.tar.gz
$ tar -xf exim-3.22.tar

* The distribution is available in bzip2 as well as gzip for mat; the former is substantially smaller, and
ther efor e quicker to download. The final file extension is .bz2, instead of .gz, and you decompress it
using bunzip instead of gunzip.

Fetching and Unpacking the Source 517

9 October 2001 09:13

518 Chapter 22: Building and Installing Exim

You should now have a directory called exim-3.22, which is the distribution file
tr ee. You can delete the tar file to save space, and then move into the distribution
dir ectory:

$ rm exim-3.22.tar
$ cd exim-3.22

You should see the following files:

CHANGES infor mation about changes
LICENCE the GNU General Public License
Makefile top-level makeffile
NOTICE conditions for the use of Exim
README list of files, directories, and simple build instructions

Other files whose names begin with README may also be present. The following
subdir ectories should be present:

OS OS-specific files
doc documentation files
exim_monitor source files for the Exim monitor
scripts scripts used in the building process
src source files for Exim and some utilities
util independent utilities

The doc dir ectory contains a copy of the refer ence manual as a plain text file
called spec.txt. This is provided more for convenient searching than for sequential
reading. You can download copies of the manual in various other formats; to save
space, these are not included in the distribution. PostScript or PDF is best if you
want to make a printed copy, whereas HTML and Texinfo are indexed formats for
reading online.* The doc dir ectory also contains information about changes and
new additions to Exim. A complete list of runtime and build-time options can be
found in the file doc/OptionLists.txt.

Some utilities are contained in the sr c dir ectory and are built with the Exim binary;
those distributed in the util dir ectory ar e things such as the log file analyzer, which
does not depend on any compile-time configuration.

Configuration for Building
The configuration that you set up for building Exim is contained in a directory
called Local, so the first thing you have to do is to create that directory:

$ mkdir Local

* See the section “Installing Documentation in Info Format,” later in this chapter for more on the Tex-
info documentation.

9 October 2001 09:13

The configuration for Exim itself must be created in a file called Local/Makefile,
and the configuration for the Exim monitor in a file called Local/eximon.conf. You
should never need to modify any of the original distribution files. If something in
your operating system requir es a dif ferent setting to the one in the file in the OS
dir ectory for your system, do not modify the default setting; instead insert an over-
riding setting in Local/Makefile. If you do things this way, you will be able to copy
the contents of the Local dir ectory and reuse them when the time comes to build
the next release.

The Contents of Local/Makefile
The contents of Local/Makefile ar e a series of settings such as:

BIN_DIRECTORY=/usr/exim/bin

The settings can be in any order, and you can insert comment lines starting with #

if you wish. A template for Local/Makefile is supplied in sr c/EDITME. It contains
sample settings and comments describing what they are for. One way of creating
your Local/Makefile is to copy the template and then edit the copy:

$ cp src/EDITME Local/Makefile
$ vi Local/Makefile

However, you can, of course, create Local/Makefile fr om scratch. There are a num-
ber of differ ent types of settings that it can contain:

Mandatory
These settings are necessary, or else Exim will not build.

Drivers
These settings specify which drivers are included in the binary.

Modules
These settings specify which optional modules (for example, lookup types)
ar e included in the binary.

Recommended
Ther e ar e some values that can be set either at build time or in the runtime
configuration. It is recommended they be set here if possible.

Optional
These settings are simply a matter of choice.

System
These settings depend on the configuration of your operating system.

Configuration for Building 519

9 October 2001 09:13

520 Chapter 22: Building and Installing Exim

The contents of Local/Makefile ar e combined with files from the OS dir ectory to
arrive at the settings to be used for building Exim in the following way:

• OS/Makefile-Default contains a common list of default settings. For example, it
contains:

CC=gcc

to specify gcc as the default C compiler.

• Settings in the OS-specific Makefile can override the common defaults for a
particular operating system. For example, in OS/Makefile-IRIX65, ther e is:

CC=cc

that specifies cc as the default C compiler when building under Irix 6.5.

• Finally, settings in Local/Makefile can override anything previously set. Sup-
pose you wanted to use gcc under Irix 6.5 after all. The right way to do this is
not to delete the setting in OS/Makefile-IRIX65, but instead to add:

CC=gcc

in Local/Makefile, so as to leave the distribution files unchanged.

Some option settings are for use in special cases, and are rar ely needed. The fol-
lowing sections cover briefly those that are mor e commonly requir ed. The
sr c/EDITME and OS/Makefile-Defaults files contain more details, in the form of
extended comments.

Mandator y Makefile Settings
Ther e ar e only two settings that you must include in Local/Makefile. They specify
the directory into which Exim will be installed, and the location of its runtime con-
figuration file. For example:

BIN_DIRECTORY=/usr/exim/bin
CONFIGURE_FILE=/usr/exim/configure

However, if you build Exim with just these two settings, it will not be very useful,
because the resulting binary contains no drivers and no code for any lookup
types. It would be capable of receiving messages, but not delivering them.

Dr iver Choices in the Makefile
In practice, most people take the default settings in sr c/EDITME when it comes to
choosing which directors, routers, and transports to include. These are as follows:

DIRECTOR_ALIASFILE=yes
DIRECTOR_FORWARDFILE=yes
DIRECTOR_LOCALUSER=yes

9 October 2001 09:13

DIRECTOR_SMARTUSER=yes

ROUTER_DOMAINLIST=yes
ROUTER_LOOKUPHOST=yes

TRANSPORT_APPENDFILE=yes
TRANSPORT_AUTOREPLY=yes
TRANSPORT_PIPE=yes
TRANSPORT_SMTP=yes

If you want to include support for SMTP authentication, you must add one or both
of the following:

AUTH_CRAM_MD5=yes
AUTH_PLAINTEXT=yes

Module Choices in the Makefile
The default settings for lookup types are:

LOOKUP_DBM=yes
LOOKUP_LSEARCH=yes

which cause the inclusion of code for lsearch and dbm lookup types. Other possi-
bilities are as follows:

LOOKUP_CDB=yes
LOOKUP_DNSDB=yes
LOOKUP_LDAP=yes
LOOKUP_MYSQL=yes
LOOKUP_NIS=yes
LOOKUP_NISPLUS=yes
LOOKUP_PGSQL=yes

Apart from LOOKUP_DNSDB, you should set these only if you have the relevant soft-
war e installed on your system. It is usually also necessary to specify where the
appr opriate library and include files may be found. For example, if you want to
include support for MySQL, you might use:

LOOKUP_MYSQL=yes
LOOKUP_INCLUDE=-I /usr/local/mysql/include
LOOKUP_LIBS=-L/usr/local/lib -lmysqlclient

Recommended Makefile Settings
A few important settings can be specified either at build time or at runtime. It is
recommended that these are set at build time if their values are fixed, for two
reasons:

• Runtime settings can be lost accidentally, which might lead to serious
misbehavior.

Configuration for Building 521

9 October 2001 09:13

522 Chapter 22: Building and Installing Exim

• A change to the log file path at runtime cannot take effect until the runtime
configuration has been read. If there is a serious problem before this (for
example, an inability to read the runtime configuration), Exim cannot log it to
the correct place, and maybe cannot log it at all.

If it is so dangerous, why can these settings be changed at runtime? There are two
reasons:

• Some administrators need to distribute copies of the binary to a number of
machines with slightly differ ent requir ements. They are prepar ed to accept the
risk.

• It makes certain kinds of testing easier.

Examples of the five settings that are in this recommended category are as follows:

EXIM_UID=42
EXIM_GID=42
LOG_FILE_PATH=/var/log/exim_%slog
SPOOL_DIRECTORY=/var/spool/exim
SPOOL_MODE=0640

EXIM_UID and EXIM_GID define the uid and gid for the Exim user; that is, the iden-
tity under which it runs when it does not need root privilege.

You do not need to set LOG_FILE_PATH at all if you are happy with the default,
which is to use a subdirectory of the spool directory, equivalent in this example
to:

LOG_FILE_PATH=/var/spool/exim/log/%slog

You do not need to set SPOOL_MODE if you are happy with the default value of
0600. Setting it to 0640 allows members of the Exim group to read spool files,
which is necessary for running the Exim monitor.

A Plausible Minimal Makefile
Her e is an example of a minimal Local/Makefile that includes the recommended
settings as well as the default drivers and lookups:

BIN_DIRECTORY=/usr/exim/bin
CONFIGURE_FILE=/usr/exim/configure

DIRECTOR_ALIASFILE=yes
DIRECTOR_FORWARDFILE=yes
DIRECTOR_LOCALUSER=yes
DIRECTOR_SMARTUSER=yes

EXIM_GID=42
EXIM_UID=42

9 October 2001 09:13

LOOKUP_DBM=yes
LOOKUP_LSEARCH=yes

ROUTER_DOMAINLIST=yes
ROUTER_LOOKUPHOST=yes

SPOOL_DIRECTORY=/var/spool/exim
SPOOL_MODE=0640

TRANSPORT_APPENDFILE=yes
TRANSPORT_AUTOREPLY=yes
TRANSPORT_PIPE=yes
TRANSPORT_SMTP=yes

Building Exim with this file produces a usable binary that can do straightforward
mail delivery.

System-Related Makefile Settings
The C compiler is called either cc or gcc, or sometimes something else again, and
dif ferent compilers accept differ ent option settings. The system-related settings
allow you to specify the name of your compiler and its options, for example:

CC=cc
CFLAGS=-Otax -4

On some operating systems, additional libraries must be specified. For example,
Solaris keeps the socket-related functions in a separate library. The OS-dependent
makefiles use LIBS for these settings. For example, the Solaris file contains:

LIBS=-lsocket -lnsl -lkstat

If you want to add yet more libraries of your own, you should use EXTRALIBS

rather than LIBS, but you can of course use LIBS if you want to override what is in
the distribution files.

The settings in LIBS and EXTRALIBS ar e used for every binary that is built, which
includes some of the utilities. If you want to restrict certain libraries to just the
Exim binary or just the eximon binary, you can use EXTRALIBS_EXIM and EXTRAL-

IBS_EXIMON, respectively.

Settings for the DBM library are also commonly requir ed:

USE_DB=yes
DBMLIB=-ldb

The defaults for these settings are taken from the system-specific makefiles in the
OS dir ectory, so, in most cases, you should not need to set them in Local/Makefile.

Configuration for Building 523

9 October 2001 09:13

524 Chapter 22: Building and Installing Exim

If you are not going to use timestamps_utc in the runtime configuration (in other
words, if you want Exim to use wallclock time for its timestamps), you might want
to set TIMEZONE_DEFAULT in Local/Makefile, for example:

TIMEZONE_DEFAULT=EST

This will provide the default value for the timezone option (see the section “Times-
tamps,” in Chapter 19, Miscellany). If it is not included, the value of the TZ envi-
ronment variable at the time Exim is built is used.

Optional Settings in the Makefile
The remaining settings in Local/Makefile ar e simply a matter of choice. For
example:

EXICYCLOG_MAX=28

specifies that the exicyclog utility should keep a maximum of 28 old log files (the
default is 10). The comments in sr c/EDITME explain what the settings do in each
case.

Configuration for Building the Exim Monitor
The Exim monitor is built along with Exim, and if you want to do this, you must
set up a suitable configuration for it. There are only two things that are mandatory:

• In the main configuration file, Local/Makefile, you must include:

EXIM_MONITOR=eximon.bin

If this setting is not present, the monitor is omitted from the building process.
You may also need to specify the whereabouts of the X11 library and include
files if the defaults are not correct. For example:

X11=/opt/X11R6.3
XINCLUDE=-I$(X11)/include
XLFLAGS=-L$(X11)/lib
X11_LD_LIB=$(X11)/lib

• You must create Local/eximon.conf, which is a configuration file containing
your choices.

A commented template for Local/eximon.conf is supplied in exim_moni-
tor/EDITME. In this case, there are no mandatory settings, so the file can be com-
pletely empty, though it must exist. You can set up an empty file with the
command:

touch Local/eximon.conf

9 October 2001 09:13

The available settings allow you to change the size of the window and the appear-
ance of some of the data. Descriptions of each setting appear as comments in
exim_monitor/EDITME.

Building Exim for Multiple Systems
If you are building Exim for just a single operating system on a single host, you
can skip this section entirely. If, on the other hand, you have a single source direc-
tory that is accessible to a number of hosts that are running differ ent operating
systems, or using differ ent hardwar e architectur es, you may want to set differ ent
values for differ ent cases.

So far, we have talked about a single Local/Makefile containing all the local set-
tings. You can, in fact, supply separate files for each operating system, each hard-
war e architectur e, and each combination of operating system and architectur e, if
you so wish. These are optional files that are consulted in addition to Local/Make-
file only if they exist. The full list of all possible files is as follows:

Local/Makefile
Local/Makefile-ostype
Local/Makefile-archtype
Local/Makefile-ostype-archtype

wher e ostype is the operating system type (for example, Linux), and ar chtype is
the hardware architectur e type (for example, i386). The files are used in that
order. In other words, settings in Local/Makefile apply to all cases, but can be
overridden by settings in Local/Makefile-ostype, which in turn can be overriden by
the other two files. Thus, a single set of files can contain the correct settings for all
the differ ent cases, with a minimum of repetition.

A similar scheme is used for the Exim monitor, wher e the filenames are as shown:

Local/eximon.conf
Local/eximon.conf-ostype
Local/eximon.conf-archtype
Local/eximon.conf-ostype-archtype

The values that are used for ostype and ar chtype ar e obtained from scripts called
scripts/os-type and scripts/ar ch-type, respectively. If either of the environment vari-
ables EXIM_OSTYPE or EXIM_ARCHTYPE is set, their values are used instead, thereby
pr oviding a means of forcing particular settings. Otherwise, the scripts try to find
suitable values by running the uname command. If this fails, the shell variables
OSTYPE and ARCHTYPE ar e inspected. A number of ad hoc transformations are then
applied, to produce the standard names that Exim expects. You can run these
scripts directly from the shell in order to find out what values will be used on your
system.

Configuration for Building 525

9 October 2001 09:13

526 Chapter 22: Building and Installing Exim

The toplevel makefile copes with rebuilding Exim correctly if any of the configura-
tion files are edited. However, if an optional configuration file is deleted, it is nec-
essary to touch the associated nonoptional file (that is, Local/Makefile or
/Local/eximon.conf) befor e rebuilding.

The Building Process
Once you have created the appropriate configuration files in the Local dir ectory,
you can run the building process by the single command:

$ make

The first thing this does is to create a ‘‘build directory’’ whose name is
build-ostype-ar chtype ; for example, build-SunOS5-5.8-spar c. Links to the source
files are installed in this directory, and all the files that are created while building
ar e written here. This way of doing things means that you can build Exim for dif-
fer ent operating systems and differ ent architectur es fr om the same set of shared
source files if you want to.

If this is the first time make has been run, it calls a script that builds a makefile
inside the build directory, using the configuration files from the Local dir ectory.*

The new makefile is passed to another instance of make, which does the real
work. First, it builds a C-header file called config.h, using values from Local/Make-
file, and then it builds a number of utility scripts. Next, it compiles and links the
binaries for the Exim monitor (if configured), a number of utilities, and finally
Exim itself. If all goes well, the last line of output on your screen should be:

>>> exim binary built

If you have problems building Exim, check for any comments there may be in the
README file concerning your operating system, and also take a look at the FAQ,
wher e some common problems are cover ed. It is available from any of the FTP
sites, and also via http://www.exim.or g.

Installing Exim
The command:

$ make install

runs a script called scripts/exim_install, which copies the binaries and scripts into
the directory whose name is specified by BIN_DIRECTORY in Local/Makefile. Files are
copied only if they are newer than any versions already in the directory, and when
they are copied, old versions are renamed by adding .O to their names.

* The command make makefile can be used to force a rebuild of the makefile in the build directory,
should this ever be necessary. If you make changes to Local/Makefile, it is automatically rebuilt when
next you run make.

9 October 2001 09:13

You need to be root when you run this command, because, for most configura-
tions, the main Exim binary is requir ed to be owned by root and have the setuid
bit set. The install script therefor e tries to set root as the owner of the main binary
and to make it setuid. If you want to see what the script will do before running it
for real, run it from the build directory, using the -n option (for which root privi-
lege is not needed):

$ (cd build-SunOS5-5.5.1-sparc; ../scripts/exim_install -n)

The -n option causes the script to output a list of the commands it would obey,
without actually obeying any of them.

If the runtime configuration file, as defined by CONFIGURE_FILE in Local/Makefile,
does not exist, the default configuration file sr c/configure.default is copied there
by the installation script. If a runtime configuration file already exists, it is left
alone.

The default configuration uses the local host’s name as the only local domain, and
is set up to do local deliveries into the shared directory /var/mail, running as the
local user. Aliases in /etc/aliases and .forwar d files in users’ home directories are
supported. Remote domains are routed using the DNS, with delivery over SMTP.

You do not need to create the spool directory when installing Exim. When it starts
up, it creates the spool directory if it does not exist. If a specific Exim uid and gid
ar e specified, these are used for the owner and group of the spool directory. Sub-
dir ectories ar e automatically created in the spool directory as necessary.

If you are installing Exim on a system that is running some other MTA, installing
the files by running make install does not of itself cause Exim to supersede the
other MTA. Once you get this far, it is all ready to go, but it still needs to be
‘‘tur ned on’’ before it will start handling your mail. Before you take this final step,
it is a good idea to do some testing.

Testing Before Tur ning On
When all the files are in place, you can run various tests, including passing mes-
sages to Exim directly and having it deliver them. You can then inspect the log
files or run the monitor if you wish. The one thing you cannot do while another
MTA is running is to run a daemon on the standard SMTP port, but if you wish to
test the daemon, an alternative port can be used.

First, check that the runtime configuration file is syntactically valid by running the
command:

exim -bV

Testing Before Tur ning On 527

9 October 2001 09:13

528 Chapter 22: Building and Installing Exim

If there are any errors in the configuration file, Exim outputs error messages,
which are also written to the panic log. Otherwise it just outputs the version num-
ber and build date. Directing and routing tests can be done by using the address
testing option. For example:

exim -v -bt user@your.domain

checks that it recognizes a local mailbox, and:

exim -v -bt user@somewhere.else.example

a remote one. Then try getting it to deliver mail, both locally and remotely. This
can be done by passing messages directly to Exim, without going through a user
agent. For example:

exim postmaster@your.domain
From: user@your.domain
To: postmaster@your.domain
Subject: Testing Exim

This is a test message.
.

If you encounter problems, look at Exim’s log files to see if there is any relevant
infor mation ther e, and use the -bp option to see if the message is still on Exim’s
queue. Another source of information is running Exim with debugging turned on.
With -d2, for example, the sequence of directors or routers that process an address
is output. If a message is stuck on Exim’s spool, you can force a delivery with
debugging turned on by a command of the form:

exim -d2 -M 13A918-0000iT-00

One specific problem that has shown up on some sites is the inability to do local
deliveries into a single shared mailbox directory that does not have the ‘‘sticky bit’’
set on it.* By default, Exim tries to create a lock file before writing to a mailbox
file, and if it cannot create the lock file, the delivery is deferred. You can get round
this either by setting the ‘‘sticky bit’’ on the directory, or by setting a specific group
for local deliveries and allowing that group to create files in the directory (see the
comments above the local_deliver y transport in the default configuration file). For
further discussion of locking issues, see the section “Locking a File for Appending”
in Chapter 9.

You can test a daemon by running it on a nonstandard port by a command such
as the following:

exim -bd -oX 1225

* An explanation of the ‘‘sticky bit’’ is given in the section “Mailbox location,” in the description of the
appendfile transport in Chapter 9, The Transports.

9 October 2001 09:13

and using telnet to connect to port 1225.* However, if you want to test out policy
contr ols for incoming mail, the -bh option is better, because it allows you to simu-
late an incoming call from any IP address you like.

Testing a new version on a system that is already running Exim can most easily be
done by building a binary with a differ ent CONFIGURE_FILE setting. From within the
runtime configuration, all other file and directory names that Exim uses can be
alter ed, in order to keep it entirely clear of the production version.

Turning Exim On
The conventional pathname that is used to call the MTA on a Unix system is either
/usr/sbin/sendmail or /usr/lib/sendmail. In some cases, both paths exist, usually
pointing to the same file. User agents use one or the other of these names to send
messages, and there is usually a refer ence fr om one of the system boot scripts that
starts a listening daemon.

The process of ‘‘turning Exim on’’ consists of changing these paths so that they
refer to Exim instead of to the previous MTA. This is normally done by renaming
the existing file and setting up a symbolic link. You need to be root to do this. It is
also a good idea to remove the setuid bit from the previous MTA, and/or make it
inaccessible. For example:

$ mv /usr/sbin/sendmail /usr/sbin/sendmail.old
$ chmod 0600 /usr/sbin/sendmail.old
$ ln -s /usr/exim/bin/exim /usr/sbin/sendmail

Once this is done, any program that calls /usr/sbin/sendmail actually calls Exim.
Your Exim installation is now ‘‘live.’’ Check it by sending a message from your
favourite user agent.

Ther e ar e two more things to do once you have Exim running on your host: set
up cr on jobs to cycle the log files (unless you are using syslog only) and tidy the
hints databases from time to time, as described in the section “Cycling Log Files,”
and the section “Hints Database Maintenance,” in Chapter 21, Administering Exim.

* It is often useful to add -d to such a command; it outputs minimal debugging, and, in addition, it
leaves the daemon connected to the terminal, so you can easily kill it with CTRL-C.

Turning Exim On 529

9 October 2001 09:13

530 Chapter 22: Building and Installing Exim

Installing Documentation
in Info For mat
Some operating systems have standardized on the GNU info system for documen-
tation, and if yours is one of these, you probably want to install Exim’s documen-
tation in this format. You can arrange for this to happen as part of the Exim
installation process by making a few preliminary preparations.

The source of the info version of the documentation is not included in the Exim
distribution, because not everybody wants it, so you have to fetch it separately.
The site from which you obtained Exim should also have a file with a name such
as this:

exim-texinfo-3.20.tar.gz

This unpacks into three files called:

exim-texinfo-3.20/doc/filter.texinfo
exim-texinfo-3.20/doc/oview.texinfo
exim-texinfo-3.20/doc/spec.texinfo

The version number will always end in a zero, because the main documentation is
not updated for intermediate releases where the version number ends with a
nonzer o digit. Copy or move these into the doc dir ectory of the source tree that
you are using:

$ mv exim-texinfo-3.20/doc/* exim-3.22/doc

Then add to your Local/Makefile a line of the form:

INFO_DIRECTORY=/usr/local/info

to define the location of the info files on your system. Once this is done, running
the following:

$ make install

automatically builds the info files from the texinfo sources, and installs them in
/usr/local/info.

Upg rading to a New Release
Once you have fetched and unpacked the source of a new release, you should
read the file called README.UPDATING. This contains information about changes
that might affect the way Exim runs or that requir e changes to the configuration.
Most releases of Exim are entir ely backwards-compatible with their predecessors,
though there was an incompatible change to the runtime configuration between
Release 2.12 and Release 3.00, and a further big change is planned in due course
for Exim 4.

9 October 2001 09:13

You can normally just copy the files in your Local dir ectory to the source tree for
the new release in order to build it with the same settings as before. You may, of
course, need to add to them in order to take advantage of new features that
requir e configuration at build time.

After you have built a new release, provided that it is compatible with the old run-
time configuration, you can install it ‘‘on the fly’’ without having to stop anything.
Ther e has only been one new release where this was not possible. If it happens
again, you can be sure that README.UPDATING will warn you about it, and tell
you how to proceed. Otherwise, just run:

$ make install

Once this has been done, programs that call the MTA will immediately start using
the new version instead of the old. However, the daemon process will continue to
run the old version until you tell it to reload itself by sending it a HUP signal.

Upg rading to a New Release 531

9 October 2001 09:13

9 October 2001 09:13

A
Summar y of String Expansion

This appendix contains a list of all the available expansion items, conditions, and
variables, in alphabetical order in each case, with brief descriptions. A more
detailed discussion of the expansion items and conditions can be found in Chapter
17, String Expansion.

Expansion Items
The following items are recognized in expanded strings. Whitespace may be used
between subitems that are keywords or substrings enclosed in braces inside an
outer set of braces, to improve readability.

$variable-name or ${variable-name}

The contents of the named variable are substituted. An unknown variable
name causes an error.

${domain:string}

The string is expanded; it is then interpreted as an RFC 822 address and the
domain is extracted from it.

${escape:string}

If the expanded string contains any nonprinting characters, they are converted
to escape sequences starting with a backslash.

${expand:string}

The string is expanded twice.

${extract{key} {string}}

The subfield identified by the key is extracted from the expanded string,

533

9 October 2001 09:05

534 Appendix A: Summary of Str ing Expansion

${extract{number} {separators} {string}}

The subfield numbered number is extracted from the expanded string.

${hash_n_m:string}

A textual hash of length n is generated, using characters from the first m char-
acters of the concatenation of lowercase letters, uppercase letters, and digits.
See also nhash.

$header_header-name: or $h_header-name:
The contents of the named message header are substituted. If there is no such
header, no err or occurs, and nothing is substituted.

${if condition {string1}{string2}}

If condition is true, string1 is expanded; otherwise string2 is expanded.

${lc:string}

The letters in the expanded string are forced into lowercase.

${length_number:string}

The initial number characters of the expanded string are substituted.

${local_part:string}

The expanded string is interpreted as an RFC 822 address, and the local part is
extracted from it.

${lookup{key} single-key-lookup-type {file}{string1}{string2}}

The key is looked up in the given file using the given lookup type. If it is
found, string1 is expanded with $value containing the data; otherwise
string2 is expanded.

${lookup query-style-lookup-type {query}{string1}{string2}}

The query is passed to the given query-style lookup. If it succeeds, string1 is
expanded with $value containing the data; otherwise string2 is expanded.

${mask:IP address/bitcount}

An IP address where all but the most significant bitcount bits are forced to
zer o is substituted, followed by /bitcount.

${nhash_n:string}

The string is expanded and then processed by a hash function that retur ns a
numeric value in the range 0 to n-1.

${nhash_n_m:string}

The string is expanded and then processed by a div/mod hash function that
retur ns two numbers, separated by a slash, in the ranges 0 to n-1 and 0 to m-1,
respectively.

9 October 2001 09:05

${perl{subroutine}{arg}{arg}...}

The Perl subroutine is called with the given arguments, up to a maximum of
eight. The arguments are first expanded.

${quote:string}

The string is expanded and then substituted, in double quotes if it contains
anything other than letters, digits, underscores, dots, and hyphens. Any occur-
rences of double quotes and backslashes are escaped with a backslash.

${quote_lookup-type:string}

Lookup-specific quoting rules are applied to the expanded string.

${rxquote:string}

A backslash is inserted before any nonalphanumeric characters in the
expanded string.

${sg{subject}{regex}{replacement}}

The regular expression is repeatedly matched against the expanded subject
string, and for each match, the expanded replacement is substituted. $1, $2,
and so on can be used in the replacement to insert captured substrings.

${substr_offset_length:string}

A substring of length length starting at offset offset is extracted from the
expanded string. Negative offsets count backwards from the end of the string.

${tr{subject}{string1}{string2}}

The expanded subject is translated by replacing characters found in string1

by the corresponding characters in string2.

${uc:string}

The letters in the expanded string are forced into uppercase.

Expansion Conditions
The following conditions are available for testing by the ${if item while expand-
ing strings:

!condition

Pr eceding any condition with an exclamation mark negates the result of the
condition.

symbolic operator {string1}{string2}

Ther e ar e a number of symbolic operators for doing numeric comparisons.
They are:

= equal to
== equal to
> gr eater than
>= gr eater than or equal to

Expansion Conditions 535

9 October 2001 09:05

536 Appendix A: Summary of Str ing Expansion

< less than
<= less than or equal to

The two strings must take the form of optionally signed decimal integers,
optionally followed by one of the letters K or M (in either upper- or lower-
case), signifying multiplication by 1024 or 1024×1024, respectively.

crypteq {string1}{string2}

The crypteq condition has two arguments. The first is encrypted and com-
par ed against the second, which is already encrypted. This condition is
included in the Exim binary if it is built to support any authentication mecha-
nisms. Otherwise, it is necessary to define SUPPORT_CRYPTEQ in Local/Makefile
to have crypteq included in the binary.

def:variable-name

This form of the def condition must be followed by the name of one of the
expansion variables defined in the section “Expansion Variables,” later in this
appendix. The condition is true if the named expansion variable does not con-
tain the empty string. The variable name is given without a leading dollar
character. If the variable does not exist, the expansion fails.

def:header_header-name: or def:h_header-name:

This form of the def condition is true if a message is being processed and the
named header exists in the message. No dollar appears before header_ or h_
in the condition, and the header name must be terminated by a colon if
whitespace does not follow.

eq {string1}{string2}

The two substrings are first expanded. The condition is true if the two result-
ing strings are identical, including the case of letters.

exists {filename}

The substring is first expanded and then interpreted as an absolute path. The
condition is true if the named file (or directory) exists.

first_delivery

This condition, which has no data, is true during a message’s first delivery
attempt. It is false during any subsequent delivery attempts.

match {string1}{string2}

The two substrings are first expanded. The second is treated as a regular
expr ession and applied to the first. Because of the preexpansion, if the regular
expr ession contains dollar or backslash characters, they must be escaped with
backslashes. Care must also be taken if the regular expression contains braces

9 October 2001 09:05

(curly brackets). A closing brace must be escaped so that it is not taken as a
pr ematur e ter mination of string2. It does no harm to escape opening braces,
but this is not strictly necessary.

pam {string1:string2:...}

The Pluggable Authentication Module (PAM) module is initialized with the ser-
vice name ‘‘exim’’ and the username taken from the first item in the colon-sep-
arated data string (that is, string1). The remaining items in the data string are
passed over in response to requests from the authentication function. In the
simple case, there will only be one request for a password, so the data will
consist of two strings only.*

queue_running

This condition, which has no data, is true during delivery attempts that are ini-
tiated by queue runner processes, and false otherwise.

Combining Conditions
Two or mor e conditions can be combined using and and or:

and {{cond1}{cond2}...}

The subconditions are evaluated from left to right. The condition is true if all
of the subconditions are true. If there are several match subconditions, the val-
ues of the numeric variables afterwards are taken from the last one. When a
false subcondition is found, the following ones are parsed but not evaluated.

or {{cond1}{cond2}...}

The subconditions are evaluated from left to right. The condition is true if any
one of the subconditions is true. When a true subcondition is found, the fol-
lowing ones are parsed but not evaluated. If there are several match subcondi-
tions, the values of the numeric variables afterwards are taken from the first
one that succeeds.

Note that and and or ar e complete conditions on their own, and precede their lists
of subconditions. Each subcondition must be enclosed in braces within the overall
braces that contain the list. No repetition of if is used.

* Pluggable Authentication Modules (http://ftp.ker nel.org/pub/linux/libs/pam/) are a facility that is
available in the latest releases of Solaris and in some GNU/Linux distributions.

Expansion Conditions 537

9 October 2001 09:05

538 Appendix A: Summary of Str ing Expansion

Expansion Var iables
The variable substitutions available for use in expansion strings are as follows:

$0, $1, and so on
When a matches expansion condition succeeds, these variables contain the
captur ed substrings identified by the regular expression during subsequent
pr ocessing of the success string of the containing if expansion item. They
may also be set externally by some other matching process that precedes the
expansion of the string.

$addr ess_file
When a message is directed to a specific file as a result of aliasing or forward-
ing, this variable holds the name of the file when the transport is running. For
example, using the default configuration, if user r2d2 has a .forwar d file con-
taining:

/home/r2d2/savemail

then when the address_file transport is running, $address_file contains
/home/r2d2/savemail. At other times, the variable is empty.

$addr ess_pipe
When a message is directed to a pipe, as a result of aliasing or forwarding,
this variable holds the pipe command when the transport is running.

$authenticated_id
When a server successfully authenticates a client, it may be configured to pre-
serve some of the authentication information in the variable $authenticated_id.
For example, a user/password authenticator configuration might preserve the
user name for use in the directors or routers.

$authenticated_sender
When a client host has authenticated itself, Exim pays attention to the AUTH=

parameter on the SMTP MAIL command. Otherwise, it accepts the syntax, but
ignor es the data. Unless the data is the string <>, it is set as the authenticated
sender of the message, and the value is available during delivery in the
$authenticated_sender variable.

$body_linecount
This variable holds the number of lines in the body of a message.

$caller_gid
This variable holds the group ID under which the process that called Exim
was running. This is not the same as the group ID of the originator of a mes-
sage (see $originator_gid). If Exim re-execs itself, this variable in the new
incar nation nor mally contains the Exim gid.

9 October 2001 09:05

$caller_uid
This variable holds the user ID under which the process that called Exim was
running. This is not the same as the user ID of the originator of a message
(see $originator_uid). If Exim re-execs itself, this variable in the new incarna-
tion normally contains the Exim uid.

$compile_date
This variable holds the date on which the Exim binary was compiled.

$compile_number
The building process for Exim keeps count of the number of times it has been
compiled. This serves to distinguish differ ent compilations of the same version
of the program.

$domain
When an address is being directed, routed, or delivered on its own, this vari-
able contains the domain. In particular, it is set during user filtering, but not
during system filtering, since a message may have many recipients and the
system filter is called just once.

For remote addresses, the domain that is being routed can change as routing
pr oceeds, as a result of router actions (see, for example, the domainlist

router). However, the value of $domain remains as the original domain. The
curr ent routing domain can often be accessed by other means.

When a remote or local delivery is taking place, if all the addresses that are
being handled simultaneously contain the same domain, it is placed in
$domain. Otherwise, this variable is empty during delivery. Transports should
be restricted to handling only one domain at once if its value is requir ed at
transport time. This is the default for local transports.

At the end of a delivery, if all deferred addresses have the same domain, it is
set in $domain during the expansion of delay_warning_condition.

When an address rewriting configuration item is being processed, $domain
contains the domain portion of the address that is being rewritten; it can be
used in the expansion of the replacement address.

When the smtp_etrn_command option is being expanded, $domain contains the
complete argument of the ETRN command.

$domain_data
When a director or a router has a setting of the domains option, and the
domain is matched by a file lookup, the data obtained from the lookup is
available during the running of the director or router, and any subsequent
transport, as $domain_data.

Expansion Var iables 539

9 October 2001 09:05

540 Appendix A: Summary of Str ing Expansion

$err msg_recipient
This is set to the recipient address of an error message while Exim is creating
it. It is useful if a customized error message text file is in use.

$home
A home directory may be set during a local delivery, either by the transport or
by the director that handled the address. When this is the case, $home con-
tains its value and may be used in any expanded options for the transport.
The forwardfile dir ector also makes use of $home. Full details are given in the
section “The forwardfile Director,” in Chapter 7, The Directors. When interpret-
ing a user’s filter file, Exim is normally configured so that $home contains the
user’s home directory. When running a filter test via the -bf option, $home is
set to the value of the environment variable HOME.

$host
When a local transport is run as a result of routing a remote address, this vari-
able is available to access the hostname that the router defined. A router may
set up many hosts; in this case $host refers to the first one.

When used in a transport filter (see the section “Transport Filters,” in Chapter
9, The Transports) $host refers to the host involved in the current connection.

When used in the client part of an authenticator configuration, or when the
smtp transport is expanding its options for TLS authentication, $host contains
the name of the server to which Exim is connected.

$host_addr ess
This variable is set to the remote host’s IP address whenever $host is set for a
remote connection.

$host_lookup_failed
This variable contains ‘‘1’’ if the message came from a remote host and there
was an attempt to look up the host’s name from its IP address, but the attempt
failed. Otherwise the value of the variable is ‘‘0.’’

$inter face_address
For a message received over a TCP/IP connection, this variable contains the
addr ess of the IP interface that was used. See also the -oMi command-line
option.

$key
When a domain, host, or address list is being searched, this variable contains
the value of the key, so that it can be inserted into strings for query-style
lookups. See Chapter 16, File and Database Lookups, for details.

9 October 2001 09:05

$local_ part
When an address is being directed, routed, or delivered on its own, this vari-
able contains the local part. If a local part prefix or suffix has been recog-
nized, it is not included in the value. When a number of addresses are being
deliver ed in a batch by a local or remote transport, $local_part is not set.

When a message is being delivered to a pipe, file, or autoreply transport as a
result of aliasing or forwarding, $local_part is set to the local part of the parent
addr ess.

When a configuration rewrite item is being processed, $local_part contains the
local part of the address that is being rewritten.

$local_ part_data
When a director or a router has a setting of the local_parts option and the
local part is matched by a file lookup, the data obtained from the lookup is
available during the running of the director or router, and any subsequent
transport, as $local_part_data.

$local_ part_ prefix
When an address is being directed or delivered locally, and a specific prefix
for the local part is recognized, it is available in this variable.

$local_ part_suffix
When an address is being directed or delivered locally, and a specific suffix
for the local part is recognized, it is available in this variable.

$localhost_number
This contains the expanded value of the localhost_number option. The expan-
sion happens after the main options have been read.

$message_age
This variable is set at the start of a delivery attempt to contain the number of
seconds since the message was received. It does not change during a single
delivery attempt.

$message_body
This variable contains the initial portion of a message’s body while it is being
deliver ed, and is intended mainly for use in filter files. The maximum number
of characters of the body that are used is set by the message_body_visible

configuration option; the default is 500. Newlines are converted into spaces to
make it easier to search for phrases that might be split over a line break.

$message_body_end
This variable contains the final portion of a message’s body while it is being
deliver ed. The format and maximum size are as for $message_body.

Expansion Var iables 541

9 October 2001 09:05

542 Appendix A: Summary of Str ing Expansion

$message_body_size
When a message is being received or delivered, this variable contains the size
of the body in bytes. The count starts from the character after the blank line
that separates the body from the header lines. Newlines are included in the
count. See also $message_size.

$message_headers
This variable contains a concatenation of all the header lines when a message
is being processed. They are separated by newline characters.

$message_id
When a message is being received or delivered, this variable contains the
unique message ID that is used by Exim to identify the message.

$message_ precedence
When a message is being delivered, the value of any Pr ecedence: header is
made available in this variable. If there is no such header, the value is the null
string.

$message_size
When a message is being received or delivered, this variable contains its size
in bytes. The size includes those headers that were received with the message,
but not those (such as Envelope-to:) that are added to individual deliveries. See
also $message_body_size.

$n0 to $n9
These variables are counters that can be incremented by means of the add
command in filter files.

$original_domain
When a top-level address is being processed for delivery, this contains the
same value as $domain. However, if a ‘‘child’’ address (for example, generated
by an alias, forward, or filter file) is being processed, this variable contains the
domain of the original address. This differs from $parent_domain when there
is more than one level of aliasing or forwarding. When more than one address
is being delivered in a batch by a local or remote transport, $original_domain
is not set.

Addr ess rewriting happens as a message is received. Once it has happened,
the previous form of the address is no longer accessible. It is the rewritten
top-level address whose domain appears in this variable.

$original_local_ part
This is the counterpart of $original_domain, and contains the local part of the
original top-level address.

9 October 2001 09:05

$originator_gid
This is the value of $caller_gid that was set when the message was received.
For messages received via the command line, this is the gid of the sending
user. For messages received by SMTP over TCP/IP, this is normally the gid of
the Exim user.

$originator_uid
The value of $caller_uid that was set when the message was received. For
messages received via the command line, this is the uid of the sending user.
For messages received by SMTP over TCP/IP, this is normally the uid of the
Exim user.

$par ent_domain
This variable is empty, except when a ‘‘child’’ address (generated by aliasing
or forwarding, for example) is being processed, in which case it contains the
domain of the immediately preceding parent address.

$par ent_local_part
This variable is empty, except when a ‘‘child’’ address (generated by aliasing
or forwarding, for example) is being processed, in which case it contains the
local part of the immediately preceding parent address.

$pipe_addr esses
This is not an expansion variable, but is mentioned here because the string
$pipe_addresses is handled specially in the command specification for the
pipe transport and in transport filters. It cannot be used in general expansion
strings, and provokes an ‘‘unknown variable’’ error if encountered.

$primary_hostname
This variable holds the value set in the configuration file, or the value deter-
mined by running the uname() function.

$pr ohibition_reason
This variable is set only during the expansion of prohibition messages. See the
section “Customizing Prohibition Messages,” in Chapter 13, Message Reception
and Policy Controls, for details.

$qualify_domain
This variable holds the value set for this option in the configuration file.

$qualify_r ecipient
This variable holds the value set for this option in the configuration file, or if
not set, the value of $qualify_domain.

$rbl_domain
This variable holds the name of the RBL domain that caused rejection during
the expansion of the contents of the prohibition_reason option.

Expansion Var iables 543

9 October 2001 09:05

544 Appendix A: Summary of Str ing Expansion

$rbl_text
This variable holds the contents of an RBL TXT record during the expansion
of the contents of the prohibition_reason option.

$r eceived_for
If there is only a single recipient address in an incoming message when the
Received: header line is being built, this variable contains that address.

$r eceived_pr otocol
When a message is being processed, this variable contains the name of the
pr otocol by which it was received.

$r ecipients
This variable contains a list of envelope recipients for a message, but is recog-
nized only in the system filter file, to prevent exposure of BCC: recipients to
ordinary users. A comma and a space separate the addresses in the replace-
ment text.

$r ecipients_count
When a message is being processed, this variable contains the number of
envelope recipients that came with the message. Duplicates are not excluded
fr om the count.

$r eply_addr ess
When a message is being processed, this variable contains the contents of the
Reply-T o: header if one exists, or otherwise the contents of the Fr om: header.

$r eturn_ path
When a message is being delivered, this variable contains the retur n path; that
is, the sender field that will be sent as part of the envelope. It is not enclosed
in angle brackets. In many cases, $retur n_path has the same value as
$sender_addr ess, but if, for example, an incoming message to a mailing list
has been expanded by a director that specifies a specific address for delivery
err or messages, $retur n_path contains the new error address, while
$sender_addr ess contains the original sender address that was received with
the message.

$r eturn_size_limit
This contains the value set in the return_size_limit option, rounded up to a
multiple of 1,000.

$r oute_option
A router may set up an arbitrary string to be passed to a transport via this vari-
able. Currently, only the quer yprogram router has the ability to do so.

9 October 2001 09:05

$self_hostname
The router option self can be set to the values local or pass (among others).
These cause the address to be passed over to the directors, as if its domain
wer e a local domain, or to be passed on to the next router, respectively. While
subsequently directing or routing (and doing any deliveries), $self_hostname is
set to the name of the local host that the router encountered.

$sender_addr ess
When a message is being processed, this variable contains the sender’s
addr ess that was received in the message’s envelope. For delivery failure
reports, the value of this variable is the empty string.

$sender_addr ess_domain
This variable holds the domain portion of $sender_address.

$sender_addr ess_local_part
This variable holds the local part portion of $sender_address.

$sender_fullhost
When a message has been received from a remote host, this variable contains
the hostname and IP address in a single string, which always ends with the IP
addr ess in square brackets. The format of the rest of the string depends on
whether the host issued a HELO or EHLO SMTP command, and whether the host-
name was verified by looking up its IP address. (Looking up the IP address
can be forced by the host_lookup option, independent of verification.) A plain
hostname at the start of the string is a verified hostname; if this is not present,
verification either failed or was not requested. A hostname in parentheses is
the argument of a HELO or EHLO command. This is omitted if it is identical to
the verified hostname or to the host’s IP address in square brackets.

$sender_helo_name
When a message has been received from a remote host that has issued a HELO

or EHLO command, the first item in the argument of that command is placed in
this variable. It is also set if HELO or EHLO is used when a message is received
using SMTP locally via the -bs or -bS options.

$sender_host_addr ess
When a message has been received from a remote host, this variable contains
the host’s IP address.

$sender_host_authenticated
During message delivery, this variable contains the name (not the public
name) of the authenticator driver that successfully authenticated the client
fr om which the message was received. It is empty if there was no successful
authentication.

Expansion Var iables 545

9 October 2001 09:05

546 Appendix A: Summary of Str ing Expansion

$sender_host_name
When a message has been received from a remote host, this variable contains
the host’s name as verified by looking up its IP address. If verification failed or
was not requested, this variable contains the empty string.

$sender_host_ port
When a message is received from a remote host, this variable contains the port
number that was used on the remote host.

$sender_ident
When a message has been received from a remote host, this variable contains
the identification received in response to an RFC 1413 request. When a mes-
sage has been received locally, this variable contains the login name of the
user that called Exim.

$sender_r cvhost
This variable is provided specifically for use in Received: header lines. It starts
with either the verified hostname (as obtained from a reverse DNS lookup), or,
if there is no verified hostname, the IP address in square brackets. After that
ther e may be text in parentheses. When the first item is a verified hostname,
the first thing in the parentheses is the IP address in square brackets. There
may also be items of the form helo=xxxx if HELO or EHLO was used and its
argument was not identical to the real hostname or IP address, and
ident=xxxx if an RFC 1413 ident string is available. If all three items are pre-
sent in the parentheses, a newline and tab are inserted into the string to
impr ove the formatting of the Received: header.

$sn0 to $sn9
These variables are copies of the values of the $n0 to $n9 accumulators that
wer e curr ent at the end of the system filter file. This allows a system filter file
to set values that can be tested in users’ filter files. For example, a system filter
could set a value indicating how likely it is that a message is junk mail.

$spool_dir ectory
This variable holds the name of Exim’s spool directory.

$thisaddr ess
This variable is set only during the processing of the foranyaddr ess command
in a filter file. Its use is explained in the description of that command in the
section “Testing a List of Addresses,” in Chapter 10, Message Filtering.

$tls_cipher
When a message is received from a remote host over an encrypted SMTP con-
nection, this variable is set to the cipher that was negotiated.

9 October 2001 09:05

$tls_ peerdn
When a message is received from a remote host over an encrypted SMTP con-
nection, and Exim is configured to request a certificate from the client, this
variable is set to the value of the Distinguished Name of the certificate.

$tod_bsdinbox
This variable holds the date and time of day, in the format requir ed for BSD-
style mailbox files; for example: Thu Oct 17 17:14:09 1995.

$tod_full
This variable holds a full version of the date and time; for example: Wed, 16
Oct 1995 09:51:40 +0100. The time zone is always given as a numerical offset
fr om GMT.

$tod_log
This variable holds the date and time in the format used for writing Exim’s log
files; for example: 1995-10-12 15:32:29.

$value
This variable contains the result of an expansion lookup operation during the
expansion of the ‘‘success’’ substring. Also, if a domainlist router has a lookup
patter n in a route item, $value contains the data that was looked up during the
expansion of the host list.

$version_number
This variable holds the version number of Exim.

$war nmsg_delay
This variable is set only during the creation of a message warning about a
delivery delay. Details of its use are explained in the section “Customizing
Warning Messages,” in Chapter 19, Miscellany.

$war nmsg_recipients
This variable is set only during the creation of a message warning about a
delivery delay. Details of its use are explained in the section “Customizing
Warning Messages,” in Chapter 19.

Expansion Var iables 547

9 October 2001 09:05

B
Regular Expressions

Regular expression support in Exim is provided by the PCRE library, which imple-
ments regular expressions whose syntax and semantics are the same as those in
Perl.* The description here is taken from the PCRE documentation, and is intended
as refer ence material. For an introduction to regular expressions, see Mastering
Regular Expressions by Jeffr ey Friedl (O’Reilly).

When you use a regular expression in an Exim configuration, you have to be a lit-
tle careful about backslash, dollar, and brace characters, which quite often appear
in regular expressions, because these characters are also interpreted specially by
Exim. Backslash is special inside quoted strings, and all four characters are special
in a string that is expanded. One way of setting up such configuration items is as
follows:

• First of all, create your regular expression according to the description in this
appendix. In other words, find the character string that you ultimately want to
pass to the regular expression matcher.

• If the Exim option you are setting is one that is expanded, go through your
expr ession and insert a backslash before every backslash, dollar, and brace
character.

• If the Exim option is a string inside double quotes, go through the expression
again, inserting a backslash before every backslash.

* PCRE was implemented and is maintained by the same author as Exim. Although originally written
in support of Exim, it is a freestanding library that is now used in many other programs. However,
the version that is incorporated in the Exim source is minimal. If you want to use PCRE in other pro-
grams, you should obtain and install the full distribution from ftp://ftp.csx.cam.ac.uk/pub/soft-
war e/programming/pcr e.

548

9 October 2001 09:06

If you are using Exim Version 3.14 or later, you do not need to use double quotes
unless you specifically need to use escape sequences in the string. For example,
suppose you want to allow relaying to any domain whose first component consists
of letters followed by three digits within some enclosing domain. A regular expres-
sion that matches the requir ed domains is:

ˆ(?>[a-z]+)\d{3}\.enc\.example$

You could use this regular expression to control relaying with the setting:

relay_domains = ˆ(?>[a-z]+)\d{3}\.enc\.example$

because the value of relay_domains is not expanded. However, if you wanted to
use the same pattern in a domains option in a director or router, you would have
to set it as:

domains = ˆ(?>[a-z]+)\\d\{3\}\\.enc\\.example\$

because this option is expanded before it is used. If for some reason you choose
to enclose the string in quotes, it has to be:

domains = "ˆ(?>[a-z]+)\\\\d\\{3\\}\\\\.enc\\\\.example\\$"

which is one reason for avoiding the use of quotes if possible.

Testing Regular Expressions
The PCRE library comes with a program called pcr etest that can be used to test
regular expressions, though it was originally written to test the library itself. The
Exim distribution includes pcr etest, but it does not install it automatically. If you
have built Exim from source, you will find pcr etest in the util dir ectory.

When you run pcr etest, it prompts for a regular expression, which must be sup-
plied between delimiters and can be followed by flags. Then it prompts for a suc-
cession of data lines to be matched; for each one, the results of the match are
output. For example:

$ pcretest
PCRE version 3.4 22-Aug-2000

re> /ˆabc(\d+)/i
data> aBc123xyz
0: aBc123
1: 123
data> xyz
No match

After a successful match, string 0 is what the entire patter n matched, and strings 1,
2, and so on are the contents of the captured substrings. For more details of
pcr etest, take a look at its specfication, which is supplied in the file doc/pcr etest.txt
in the Exim distribution.

Testing Regular Expressions 549

9 October 2001 09:06

550 Appendix B: Regular Expressions

Metacharacter s
A regular expression is a pattern that is matched against a subject string from left
to right. Most characters stand for themselves in a pattern, and match the corre-
sponding characters in the subject. As a trivial example, the pattern:

The quick brown fox

matches a portion of a subject string that is identical to itself. The power of regular
expr essions comes from the ability to include alternatives and repetitions in the
patter n. These are encoded in the pattern by the use of metacharacters, which do
not stand for themselves, but instead are interpr eted in some special way. When a
patter n matches, it is possible to arrange for portions of the subject string that
matched particular parts of the pattern to be identified. These are called captur ed
substrings.

Ther e ar e two differ ent sets of metacharacters: those that are recognized anywhere
in the pattern except within square brackets, and those that are recognized in
squar e brackets. Outside square brackets, the metacharacters are as follows:

\ general escape character with several uses
ˆ Assert start of subject (or line, in multiline mode)
$ Assert end of subject (or line, in multiline mode)
. Match any character except newline (by default)
[Start character class definition
| Start of alternative branch
(Start subpattern
) End subpattern
? Extends the meaning of (

also 0 or 1 quantifier
also quantifier minimizer

* 0 or mor e quantifier
+ 1 or mor e quantifier
{ Start minimum/maximum quantifier

Part of a pattern that is in square brackets is called a character class. In a character
class, the only metacharacters are as follows:

\ General escape character
ˆ Negate the class, if the first character
- Indicates character range
] Terminates the character class

The following sections describe the use of each of the metacharacters.

9 October 2001 09:06

Backslash
The backslash character has several uses. First, if it is followed by a nonalphanu-
meric character, it takes away any special meaning that character may have. This
use of backslash as an escape character applies both inside and outside character
classes.

For example, if you want to match a * character, write * in the pattern. The effect
of backslash applies whether or not the following character would otherwise be
interpr eted as a metacharacter, so it is always safe to precede a nonalphanumeric
with a backslash to specify that it stands for itself. In particular, if you want to
match a backslash, write \\.

If a pattern contains the (?x) option (see later in this appendix), whitespace in the
patter n (other than in a character class) and characters between a # outside a char-
acter class and the next newline character are ignor ed. An escaping backslash can
be used to include whitespace or a # character as part of the pattern in this cir-
cumstance.

A second use of backslash provides a way of encoding nonprinting characters in
patter ns in a visible manner. Ther e is no restriction on the appearance of nonprint-
ing characters, apart from the binary zero that terminates a pattern, but when a
patter n is being prepar ed by text editing, it is usually easier to use one of the fol-
lowing escape sequences than the binary character it repr esents:

\a Alar m, that is, the BEL character (character 7)
\cx ‘‘Contr ol-x,’’ wher e x is any character
\e Escape (character 27)
\f For mfeed (character 12)
\n Newline or linefeed (character 10)
\r Carriage retur n (character 13)
\t Tab (character 9)
\xhh Character with hex code hh
\ddd Character with octal code ddd, or a backrefer ence (see later in this appendix)

The precise effect of \cx is as follows: if x is a lowercase letter, it is converted to
uppercase. Then bit 6 of the character (hex 40) is inverted. Thus \cz becomes hex
1A, but \c{ becomes hex 3B, and \c; becomes hex 7B.

After \x, up to two hexadecimal digits are read (letters can be in upper- or lower-
case).

After \0, up to two further octal digits are read. In both cases, if there are fewer
than two digits, just those that are present are used. Thus, the sequence \0\x\07

specifies two binary zeros followed by a BEL character. Make sure you supply two
digits after the initial zero if the character that follows is itself an octal digit.

Backslash 551

9 October 2001 09:06

552 Appendix B: Regular Expressions

The handling of a backslash followed by a digit other than 0 is complicated. Out-
side a character class, PCRE reads it and any following digits as a decimal number.
If the number is less than 10, or if there have been at least that many previous
capturing left parentheses in the expression, the entire sequence is taken as a back
refer ence. A description of how this works is given later in the section “Back Ref-
er ences,” following the discussion of parenthesized subpatterns.

Inside a character class, or if the decimal number is greater than 9 and there have
not been that many capturing subpatterns, PCRE rer eads up to three octal digits
following the backslash, and generates a single byte from the least significant 8
bits of the value. Any subsequent digits stand for themselves. For example:

\040 Another way of writing a space
\40 The same, provided there are fewer than 40

pr evious capturing subpatterns
\7 Always a back refer ence
\11 Might be a back refer ence, or another way of writing a tab
\011 Always a tab
\0113 A tab followed by the character 3
\113 The character with octal code 113 (since there

can be no more than 99 back refer ences)
\377 A byte with every bit set to 1
\81 Either a back refer ence, or a binary zero

followed by the two characters 8 and 1

Note that octal values of 100 or greater must not be introduced by a leading zero,
because no more than three octal digits are ever read.

All the sequences that define a single byte value can be used both inside and out-
side character classes. In addition, inside a character class, the sequence \b is
interpr eted as the backspace character (character 8). Outside a character class, it
has a differ ent meaning (see later in this appendix).

The third use of backslash is for specifying generic character types:

\d any decimal digit
\D Any character that is not a decimal digit
\s Any whitespace character
\S Any character that is not a whitespace character
\w Any ‘‘word’’ character
\W Any ‘‘nonword’’ character

Each pair of escape sequences partitions the complete set of characters into two
disjoint sets. Any given character matches one, and only one, of each pair.

9 October 2001 09:06

A ‘‘word’’ character is any letter or digit or the underscore character; that is, any
character that can be part of a Perl ‘‘word.’’

These character type sequences can appear both inside and outside character
classes. They each match one character of the appropriate type. If the current
matching point is at the end of the subject string, all of them fail, because there is
no character to match.

The fourth use of backslash is for certain simple assertions. An assertion specifies a
condition that has to be met at a particular point in a match, without consuming
any characters from the subject string. The use of subpatterns for more compli-
cated assertions is described later in the section “Assertions.” The backslashed
assertions are:

\b Word boundary
\B Not a word boundary
\A Start of subject (independent of multiline mode)
\Z End of subject or newline at end (independent of multiline mode)
\z End of subject (independent of multiline mode)

These assertions may not appear in character classes (but note that \b has a differ-
ent meaning, namely the backspace character, inside a character class).

A word boundary is a position in the subject string where the current character
and the previous character do not both match \w or \W (that is, one matches \w

and the other matches \W), or the start or end of the string if the first or last char-
acter matches \w, respectively.

The \A, \Z, and \z assertions differ from the traditional circumflex and dollar (see
the section “Circumflex and Dollar,” later in this appendix) in that they only ever
match at the very start and end of the subject string, whatever options are set. The
dif ference between \Z and \z is that \Z matches before a newline that is the last
character of the string as well as at the end of the string, whereas \z matches only
at the end.

Chang ing Matching Options
Some details of the matching process are contr olled by options that can be
changed from within the pattern itself. The syntax is a sequence of Perl option let-
ters enclosed between (? and). The option letters are:

i Case-independent matching
m ‘‘Multiline’’ matching (see the section “Circumflex and Dollar”)
s ‘‘Single-line’’ matching (see the section “Dot (Period, Full Stop)”)
x Ignor e literal whitespace in the pattern

Chang ing Matching Options 553

9 October 2001 09:06

554 Appendix B: Regular Expressions

For example, (?im) sets caseless, multiline matching. It is also possible to unset
these options by preceding the letter with a hyphen; a combined setting and
unsetting such as (?im-sx) is also permitted. If a letter appears both before and
after the hyphen, the option is unset.

The scope of these option changes depends on where in the pattern the setting
occurs. For settings that are outside any parenthesized subpattern (defined later in
this appendix), the effect is the same as if the options were set or unset at the start
of matching. The following patterns all behave in exactly the same way:

(?i)abc
a(?i)bc
ab(?i)c
abc(?i)

In other words, such ‘‘top level’’ settings apply to the whole pattern (unless there
ar e other changes inside subpatterns). If there is mor e than one setting of the
same option at top level, the rightmost setting is used. If an option change occurs
inside a subpattern, the effect is differ ent. Such a change affects only that part of
the subpattern that follows it, so:

(a(?i)b)c

matches abc and aBc and no other strings. By this means, options can be made to
have differ ent settings in differ ent parts of the pattern. Any changes made in one
alter native do carry on into subsequent branches within the same subpattern. For
example:

(a(?i)b|c)

matches ab, aB, c, and C, even though when matching C, the first branch is aban-
doned before the option setting. This is because the effects of option settings hap-
pen at compile time. There would be some very weird behavior otherwise.

In addition to the standard Perl options, PCRE has some extra ones of its own.
These are as follows:

U Invert greedy/ungr eedy matching
R Recursive matching

Their use is described later in this appendix, in the section “Repetition,” and the
section “Recursive Patterns,” respectively.

Cir cumflex and Dollar
Outside a character class, in the default matching mode, the circumflex character is
an assertion that is true only if the current matching point is at the start of the sub-
ject string. Inside a character class, circumflex has an entirely differ ent meaning
(see the section “Square Brackets,” later in this appendix).

9 October 2001 09:06

Circumflex is used in Exim configuration files to indicate that the string it intro-
duces is a regular expression rather than a literal string, and it is interpreted as part
of that expression. However, when a string can only be a regular expression (for
example, as part of the matches condition in a string expansion), a leading circum-
flex is not necessary.

If all possible alternatives start with a circumflex (that is, if the pattern is con-
strained to match only at the start of the subject), it is said to be an ‘‘anchored’’
patter n. (Ther e ar e also other constructs that can cause a pattern to be anchor ed.)

A dollar character is an assertion that is true only if the current matching point is at
the end of the subject string, or immediately before a newline character that is the
last character in the string (by default). Dollar need not be the last character of the
patter n if a number of alternatives are involved, but it should be the last item in
any branch in which it appears. Dollar has no special meaning in a character class.

The meanings of the circumflex and dollar characters are changed if the (?m)

option is set. This is referr ed to in Perl as the ‘‘multiline’’ option. When this is the
case, they match immediately after and immediately before an inter nal newline
character, respectively, in addition to matching at the start and end of the subject
string. For example, the pattern ˆabc$ matches the subject string def\nabc (wher e
\n repr esents a newline) in multiline mode, but not otherwise. Consequently, pat-
ter ns that are anchor ed in single-line mode because all branches start with ˆ ar e
not anchored in multiline mode.

Note that the sequences \A, \Z, and \z can be used to match the start and end of
the subject in both modes, and if all branches of a pattern start with \A, the pattern
is always anchored.

Dot (Per iod, Full Stop)
Outside a character class, a dot in the pattern matches any one character in the
subject, including a nonprinting character, but not (by default) newline. If the (?s)

option is set, dots match newlines as well. (In Perl, this is referr ed to as the ‘‘sin-
gle-line’’ option.) The handling of dot is entirely independent of the handling of
circumflex and dollar, the only relationship being that they both involve newline
characters. Dot has no special meaning in a character class.

Square Brackets
An opening square bracket introduces a character class, terminated by a closing
squar e bracket. A closing square bracket on its own is not special. If a closing

Square Brackets 555

9 October 2001 09:06

556 Appendix B: Regular Expressions

squar e bracket is requir ed as a member of the class, it should be the first data
character in the class (after an initial circumflex, if present) or escaped with a
backslash.

A character class matches a single character in the subject; the character must be in
the set of characters defined by the class, unless the first character in the class is a
circumflex, in which case the subject character must not be in the set defined by
the class. If a circumflex is actually requir ed as a member of the class, ensure it is
not the first character, or escape it with a backslash.

For example, the character class [aeiou] matches any lowercase vowel, while
[ˆaeiou] matches any character that is not a lowercase vowel. This use of circum-
flex is just a convenient notation for specifying the characters that are in the class
by enumerating those that are not. A character class that starts with a circumflex is
not an assertion: it still consumes a character from the subject string, and fails if
the current pointer is at the end of the string.

When caseless matching is set, any letters in a class repr esent both their uppercase
and lowercase versions, so for example, a caseless [aeiou] matches U as well as u,
and a caseless [ˆaeiou] does not match U, wher eas a caseful version would.

The newline character is never treated in any special way in character classes,
whatever the setting of the (?s) or (?m) options is. A class such as [ˆa] always
matches a newline.

The hyphen (minus) character can be used to specify a range of characters in a
character class. For example, [d–m] matches any letter between d and m, inclusive.
If a hyphen is requir ed in a class, it must be escaped with a backslash, or appear
in a position where it cannot be interpreted as indicating a range, typically as the
first or last character in the class.

It is not possible to have the literal character] as the end character of a range. A
patter n such as [W-]46] is interpreted as a class of two characters (W and -) fol-
lowed by a literal string 46], so it would match W46] or -46]. However, if the] is
escaped with a backslash, it is interpreted as the end of range, so [W-\]46] is inter-
pr eted as a single class containing a range followed by two separate characters.
The octal or hexadecimal repr esentation of] can also be used to end a range.

Ranges operate in ASCII-collating sequence. They can also be used for characters
specified numerically; for example [\000-\037]. If a range that includes letters is
used when caseless matching is set, it matches the letters in either case. For exam-
ple, [W–c] is equivalent to [][\ˆ_‘wxyzabc], matched caselessly.

The character types \d, \D, \s, \S, \w, and \W may also appear in a character class,
and add the characters that they match to the class. For example, [\dABCDEF]

matches any hexadecimal digit.

9 October 2001 09:06

The interpretation of a nonnegated class can be understood by reading it with the
word ‘‘or’’ between each item, whereas for a negated class, ‘‘and not’’ is implied.
For example, [ANZ] matches a character that is A, N, or Z, wher eas [ˆANZ] matches
a character that is not A, N, and Z. This means that a negated class can conve-
niently be used with the uppercase character types to specify a more restricted set
of characters than the matching lowercase type. For example, the class [ˆ\W_]

matches any letter or digit, but not underscore, because it matches a character that
is not a nonword character (that is, it is a word character), and not an underscore.

All nonalphanumeric characters other than \, -, ˆ (at the start) and the terminating
] ar e nonspecial in character classes, but it does no harm if they are escaped.

POSIX Character Classes
Perl 5.6 supports POSIX notation for character classes, which uses names enclosed
by [: and :] within the enclosing square brackets. PCRE supports this notation.
For example:

[01[:alpha:]%]

matches 0, 1, any alphabetic character, or %. The supported class names are:

alnum letters and digits
alpha Letters
ascii Character codes 0–127
cntrl Contr ol characters
digit Decimal digits (same as \d)
graph Printing characters, excluding space
lower Lowercase letters
print Printing characters, including space
punct Printing characters, excluding letters and digits
space Whitespace (same as \s)
upper Uppercase letters
word ‘‘Word’’ characters (same as \w)
xdigit Hexadecimal digits

The names ascii and word ar e Perl extensions. Another Perl extension is negation,
which is indicated by a ˆ character after the colon. For example:

[12[:ˆdigit:]]

matches 1, 2, or any nondigit. PCRE and Perl also recognize the POSIX syntax
[.ch.] and [=ch=] wher e ‘‘ch’’ is a ‘‘collating element,’’ but these are not sup-
ported, and an error is given if they are encounter ed.

POSIX Character Classes 557

9 October 2001 09:06

558 Appendix B: Regular Expressions

Vertical Bar
Vertical bar characters are used to separate alternative patterns. For example, the
following pattern:

gilbert|sullivan

matches either gilbert or sullivan. Any number of alternatives may appear, and
an empty alternative is permitted (matching the empty string). The matching pro-
cess tries each alternative in turn, from left to right, and the first one that succeeds
is used. If the alternatives are within a subpattern (defined in the next section),
‘‘succeeds’’ means matching the rest of the main pattern as well as the alternative
in the subpattern.

Subpatter ns
Subpatter ns ar e delimited by parentheses (round brackets), which can be nested.
Marking part of a pattern as a subpatter n does two things:

• It localizes a set of alternatives. For example, the pattern:

cat(aract|erpillar|)

matches one of the words cat, cataract, or caterpillar. Without the paren-
theses, it would match cataract, erpillar, or the empty string.

• It sets up the subpattern as a capturing subpattern. When the whole pattern
matches, that portion of the subject string that matched the subpattern is
passed back to the caller, and in Exim, such values are made available in the
numerical variables $1, $2, and so on. Opening parentheses are counted from
left to right (starting from 1) to obtain the numbers of the capturing subpat-
ter ns.

For example, if the string the red king is matched against the following pattern:

the ((red|white) (king|queen))

the captured substrings are red king, red, and king, and are number ed 1, 2, and 3,
respectively.

The fact that plain parentheses fulfill two functions is not always helpful. There are
often times when a grouping subpattern is requir ed without a capturing requir e-
ment. If an opening parenthesis is followed by ?:, the subpattern does not do any
capturing, and is not counted when computing the number of any subsequent
capturing subpatterns. For example, if the string ‘‘the white queen’’ is matched
against the pattern:

the ((?:red|white) (king|queen))

9 October 2001 09:06

the captured substrings are white queen and queen, and are number ed 1 and 2.
The maximum number of captured substrings is 99, and the maximum number of
all subpatterns, both capturing and noncapturing, is 200.

As a convenient shorthand, if any option settings are requir ed at the start of a non-
capturing subpattern, the option letters may appear between the ? and the :.
Thus, the two patterns:

(?i:saturday|sunday)
(?:(?i)saturday|sunday)

match exactly the same set of strings. Because alternative branches are tried from
left to right, and options are not reset until the end of the subpattern is reached,
an option setting in one branch does affect subsequent branches, so the previous
patter ns match SUNDAY as well as Saturday, and any other case variants.

Repetition
Repetition is specified by quantifiers, which can follow any of the following items:

• A single character, possibly escaped

• The . metacharacter

• A character class

• A back refer ence (see the next section)

• A par enthesized subpatter n (unless it is an assertion; see later in this
appendix)

The general repetition quantifier specifies a minimum and maximum number of
per mitted matches, by giving the two numbers in curly brackets (braces), sepa-
rated by a comma. The numbers must be less than 65536, and the first must be
less than or equal to the second. For example:

z{2,4}

matches zz, zzz, or zzzz. A closing brace on its own is not a special character. If
the second number is omitted, but the comma is present, there is no upper limit; if
the second number and the comma are both omitted, the quantifier specifies an
exact number of requir ed matches. Thus:

[aeiou]{3,}

matches at least three successive vowels, but may match many more, while the
following:

\d{8}

Repetition 559

9 October 2001 09:06

560 Appendix B: Regular Expressions

matches exactly eight digits. An opening curly bracket that appears in a position
wher e a quantifier is not allowed, or one that does not match the syntax of a
quantifier, is taken as a literal character. For example, {,6} is not a quantifier, but a
literal string of four characters.

The quantifier {0} is permitted, causing the expression to behave as if the previ-
ous item and the quantifier were not present.

For convenience (and historical compatibility), the three most common quantifiers
have single-character abbreviations:

* Equivalent to {0,}
+ Equivalent to {1,}
? Equivalent to {0,1}

It is possible to construct infinite loops by following a subpattern that can match
no characters with a quantifier that has no upper limit, for example:

(a?)*

Earlier versions of Perl and PCRE used to give an error at compile time for such
patter ns. However, because there are cases where this can be useful, such patterns
ar e now accepted, but if any repetition of the subpattern does, in fact, match no
characters, the loop is forcibly broken.

By default, the quantifiers are ‘‘gr eedy’’; that is, they match as much as possible
(up to the maximum number of permitted times), without causing the rest of the
patter n to fail. The classic example of where this gives problems is in trying to
match comments in C programs. These appear between the sequences /* and */,
within the sequence, individual * and / characters may appear. An attempt to
match C comments by applying the pattern:

/*.**/

to the string:

/* first comment */ not comment /* second comment */

fails, because it matches the entire string owing to the greediness of the .* item.
However, if a quantifier is followed by a question mark, it ceases to be greedy,
and instead matches the minimum number of times possible, so the pattern:

/*.*?*/

does the right thing with the C comments. The meaning of the various quantifiers
is not otherwise changed, just the preferr ed number of matches. Do not confuse
this use of question mark with its use as a quantifier in its own right. Because it
has two uses, it can sometimes appear doubled, as in:

\d??\d

which matches one digit by prefer ence, but can match two if that is the only way
the rest of the pattern matches.

9 October 2001 09:06

If the (?U) option is set (an option that is not available in Perl), the quantifiers are
not greedy by default, but individual ones can be made greedy by following them
with a question mark. In other words, it inverts the default behavior.

When a parenthesized subpattern is quantified with a minimum repeat count that
is greater than 1, or with a limited maximum, more stor e is requir ed for the com-
piled pattern, in proportion to the size of the minimum or maximum.

If a pattern starts with .* (or .{0,}) and the (?s)option is set, thus allowing the
dot to match newlines, the pattern is implicitly anchored, because whatever fol-
lows will be tried against every character position in the subject string. At first, the
.* item consumes the entire subject string, but if the rest of the pattern does not
match, it ‘‘gives up’’ characters one by one until either the whole pattern does
match, or the start of the string is reached (when .* matches no characters). If .*?
is used instead of .*, the same thing happens, but in the opposite order.

For such patterns, therefor e, ther e is no point in retrying the overall match at any
position after the first. PCRE treats such a pattern as though it were preceded by
\A. In cases where it is known that the subject string contains no newlines, it is
worth setting (?s) when the pattern begins with .* in order to obtain this opti-
mization, or alternatively using ˆ to indicate anchoring explicitly.

When a capturing subpattern is repeated, the value captured is the substring that
matched the final iteration. For example, after the following:

(tweedle[dume]{3}\s*)+

has matched tweedledum tweedledee, the value of the captured substring is twee-

dledee. However, if ther e ar e nested capturing subpatterns, the corresponding cap-
tur ed values may have been set in previous iterations, and they retain the last
values that were set. For example, after the following:

/(a|(b))+/

matches aba, the value of the second captured substring is b.

Back References
Outside a character class, a backslash followed by a digit greater than 0 (and pos-
sibly further digits) is a back refer ence to a capturing subpattern earlier (that is, to
its left) in the pattern, provided there have been that many previous capturing left
par entheses.

However, if the decimal number following the backslash is less than 10, it is
always taken as a back refer ence, and causes an error only if there are not that

Back References 561

9 October 2001 09:06

562 Appendix B: Regular Expressions

many capturing left parentheses in the entire patter n. In other words, the paren-
theses that are refer enced need not be to the left of the refer ence for numbers less
than 10. See earlier in the section “Backslash” for further details of the handling of
digits following a backslash.

A back refer ence matches whatever actually matched the capturing subpattern in
the current subject string, rather than anything matching the subpattern itself. So
the pattern:

(sens|respons)e and \1ibility

matches sense and sensibility and response and responsibility, but not sense
and responsibility. If caseful matching is in force at the time of the back refer-
ence, the case of letters is relevant. For example:

((?i)rah)\s+\1

matches rah rah and RAH RAH, but not RAH rah, even though the original capturing
subpatter n is matched caselessly.

Ther e may be more than one back refer ence to the same subpattern. If a subpat-
ter n has not actually been used in a particular match, any back refer ences to it
always fail. For example, the pattern:

(a|(bc))\2

always fails if it starts to match a rather than bc. Because there may be up to 99
back refer ences, all digits following the backslash are taken as part of a potential
back refer ence number. If the pattern continues with a digit character, some delim-
iter must be used to terminate the back refer ence. If the (?x) option is set, this can
be whitespace. Otherwise an empty comment can be used.

A back refer ence that occurs inside the parentheses to which it refers fails when
the subpattern is first used, so, for example, (a\1) never matches. However, such
refer ences can be useful inside repeated subpatterns. For instance, the pattern:

(a|b\1)+

matches any number of as and also aba, ababbaa, and so on. At each iteration of
the subpattern, the back refer ence matches the character string corresponding to
the previous iteration. In order for this to work, the pattern must be such that the
first iteration does not need to match the back refer ence. This can be done using
alter nation, as in the earlier example, or by a quantifier with a minimum of zero.

9 October 2001 09:06

Asser tions
An assertion is a test on the characters following or preceding the current match-
ing point that does not actually consume any characters. The simple assertions
coded as \b, \B, \A, \Z, \z, ˆ and $ ar e described earlier in the the section “Back-
slash.” More complicated assertions are coded as subpatterns. There are two kinds:
those that look ahead of the current position in the subject string, and those that
look behind it.

An assertion subpattern is matched in the normal way, except that it does not
cause the current matching position to be changed. Lookahead assertions start
with (?= for positive assertions and (?! for negative assertions. For example:

\w+(?=;)

matches a word followed by a semicolon, but does not include the semicolon in
the match, and the following:

foo(?!bar)

matches any occurrence of foo that is not followed by bar. Note that the appar-
ently similar pattern:

(?!foo)bar

does not find an occurrence of bar that is preceded by something other than foo;
it finds any occurrence of bar whatsoever, because the assertion (?!foo) is always
true when the next three characters are bar. A lookbehind assertion is needed to
achieve this effect.

Lookbehind assertions start with (?<= for positive assertions and (?<! for negative
assertions. For example:

(?<!foo)bar

does find an occurrence of bar that is not preceded by foo. The contents of a
lookbehind assertion are restricted such that all the strings it matches must have a
fixed length. The only permitted repetition is a quantifier with a fixed value; for
example, a{4}; unlimited repeats are forbidden. However, if ther e ar e several alter-
natives in a lookbehind assertion, they do not all have to have the same fixed
length. Thus:

(?<=bullock|donkey)

is permitted, but:

(?<!dogs?|cats?)

Asser tions 563

9 October 2001 09:06

564 Appendix B: Regular Expressions

causes an error at compile time. Branches that match differ ent length strings are
per mitted only at the top level of a lookbehind assertion. This is an extension
compar ed with Perl 5.005, which requir es all branches to match the same length of
string. An assertion such as:

(?<=ab(c|de))

is not permitted, because its single top-level branch can match two differ ent
lengths, but it is acceptable if rewritten to use two top-level branches:

(?<=abc|abde)

Similarly, the previous example could be rewritten as:

(?<!dog|cat|dogs|cats)

The implementation of lookbehind assertions is, for each alternative, to temporar-
ily move the current position back by the fixed number of characters, and then try
to match. If there are insuf ficient characters before the current position, the match
fails. Lookbehinds in conjunction with once-only subpatterns can be particularly
useful for matching at the ends of strings; an example is given at the end of the
section on once-only subpatterns.

Several assertions (of any sort) may occur in succession. For example:

(?<=\d{3})(?<!999)foo

matches foo pr eceded by three digits that are not 999. Notice that each of the
assertions is applied independently at the same point in the subject string. First,
ther e is a check that the previous three characters are all digits, then there is a
check that the same three characters are not 999. This pattern does not match foo

pr eceded by six characters, the first of which are digits and the last three of which
ar e not 999. For example, it doesn’t match 123abcfoo. A patter n to do that is as fol-
lows:

(?<=\d{3}...)(?<!999)foo

This time, the first assertion looks at the preceding six characters, checking that
the first three are digits. Then the second assertion checks that the preceding three
characters are not 999.

Assertions can be nested in any combination. For example:

(?<=(?<!foo)bar)baz

matches an occurrence of baz that is preceded by bar, which, in turn, is not pre-
ceded by foo, while the following:

(?<=\d{3}(?!999)...)foo

9 October 2001 09:06

is another pattern that matches foo pr eceded by three digits and any three charac-
ters that are not 999.

Assertion subpatterns are not capturing subpatterns, and may not be repeated,
because it makes no sense to assert the same thing several times. If any kind of
assertion contains capturing subpatterns within it, these are counted for the pur-
poses of numbering the capturing subpatterns in the whole pattern. However, sub-
string capturing is carried out only for positive assertions, because it does not
make sense for negative assertions.

Assertions count towards the maximum of 200 parenthesized subpatterns.

Once-Only Subpatter ns
With both maximizing and minimizing repetition, failure of what follows normally
causes the repeated item to be reevaluated to see if a differ ent number of repeats
allows the rest of the pattern to match. Sometimes it is useful to prevent this,
either to change the nature of the match, or to cause it to fail earlier than it other-
wise might, when the author of the pattern knows there is no point in carrying on.

Consider, for example, the pattern \d+foo when applied to the following subject
line:

123456bar

After matching all six digits and then failing to match foo, the normal action of the
matcher is to try again with only five digits matching the \d+ item, and then with
four, and so on, before ultimately failing. Once-only subpatterns provide the
means for specifying that once a portion of the pattern has matched, it is not to be
reevaluated in this way, so the matcher would give up immediately on failing to
match foo the first time. The notation is another kind of special parenthesis, start-
ing with (?> as in this example:

(?>\d+)bar

This kind of parenthesis ‘‘locks up’’ the part of the pattern it contains once it has
matched, and a failure further into the pattern is prevented from backtracking into
it. Backtracking past it to previous items, however, works as normal.

An alternative description is that a subpattern of this type matches the string of
characters that an identical standalone pattern would match, if anchored at the
curr ent point in the subject string.

Once-Only Subpatter ns 565

9 October 2001 09:06

566 Appendix B: Regular Expressions

Once-only subpatterns are not capturing subpatterns. Simple cases such as the
pr evious example can be thought of as a maximizing repeat that must swallow
everything it can. So, while both \d+ and \d+? ar e pr epar ed to adjust the number
of digits they match in order to make the rest of the pattern match, (?>\d+) can
only match an entire sequence of digits.

This construction can of course contain arbitrarily complicated subpatterns, and it
can be nested.

Once-only subpatterns can be used in conjunction with lookbehind assertions to
specify efficient matching at the end of the subject string. Consider a simple pat-
ter n such as:

xyz$

when applied to a long string that does not match. Because matching proceeds
fr om left to right, PCRE will look for each x in the subject and then see if what fol-
lows matches the rest of the pattern. If the pattern is specified as:

ˆ.*xyz$

the initial .* matches the entire string at first, but when this fails (because there is
no following x), it backtracks to match all but the last character, then all but the
last two characters, and so on. Once again, the search for x covers the entire
string, from right to left, so we are no better off. However, if the pattern is written
as:

ˆ(?>.*)(?<=xyz)

ther e can be no backtracking for the .* item; it can match only the entire string.
The subsequent lookbehind assertion does a single test on the last three charac-
ters. If it fails, the match fails immediately. For long strings, this approach makes a
significant differ ence to the processing time.

When a pattern contains an unlimited repeat inside a subpattern that can itself be
repeated an unlimited number of times, the use of a once-only subpattern is the
only way to avoid some failing matches taking a very long time indeed. The fol-
lowing pattern:

(\D+|<\d+>)*[!?]

matches an unlimited number of substrings that either consist of nondigits, or dig-
its enclosed in <>, followed by either ! or ?. When it matches, it runs quickly.
However, if it is applied to the following:

aa

9 October 2001 09:06

it takes a long time before reporting failure. This is because the string can be
divided between the two repeats in a large number of ways, and all have to be
tried.* If the pattern is changed to:

((?>\D+)|<\d+>)*[!?]

sequences of nondigits cannot be broken, and failure happens quickly.

Conditional Subpatterns
It is possible to cause the matching process to obey a subpattern conditionally or
to choose between two alternative subpatterns, depending on the result of an
assertion or whether a previous capturing subpattern matched or not. The two
possible forms of conditional subpattern are:

(?(condition)yes-pattern)
(?(condition)yes-pattern|no-pattern)

If the condition is satisfied, the yes-pattern is used; otherwise the no-pattern (if
pr esent) is used. If there are mor e than two alternatives in the subpattern, a com-
pile-time error occurs.

Ther e ar e two kinds of conditions. If the text between the parentheses consists of
a sequence of digits, the condition is satisfied if the capturing subpattern of that
number has previously matched. Consider the following pattern, which contains
nonsignificant whitespace to make it more readable (assume the (?x) option) and
is divided it into three parts for ease of discussion:

(\()? [ˆ()]+ (?(1) \))

The first part matches an optional opening parenthesis, and if that character is pre-
sent, sets it as the first captured substring. The second part matches one or more
characters that are not parentheses. The third part is a conditional subpattern that
tests whether the first set of parentheses matched or not. If they did (that is, if the
subject started with an opening parenthesis), the condition is true, and so the yes-
patter n is executed and a closing parenthesis is requir ed. Otherwise, since the no-
patter n is not present, the subpattern matches nothing. In other words, this pattern
matches a sequence of nonparentheses, optionally enclosed in parentheses.

If the condition is not a sequence of digits, it must be an assertion. This may be a
positive or negative lookahead or lookbehind assertion. Consider this pattern,

* The example used [!?] rather than a single character at the end, because both PCRE and Perl have
an optimization that allows for fast failure when a single character is used. They remember the last
single character that is requir ed for a match, and fail early if it is not present in the string.

Conditional Subpatterns 567

9 October 2001 09:06

568 Appendix B: Regular Expressions

again containing nonsignificant whitespace, and with the two alternatives on the
second line:

(?(?=[ˆa-z]*[a-z])
\d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2})

The condition is a positive lookahead assertion that matches an optional sequence
of nonletters followed by a letter. In other words, it tests for the presence of at
least one letter in the subject. If a letter is found, the subject is matched against the
first alternative; otherwise, it is matched against the second. This pattern matches
strings in one of the two forms dd-aaa-dd or dd-dd-dd, wher e aaa ar e letters and
dd ar e digits.

Comments
The sequence (?# marks the start of a comment that continues up to the next clos-
ing parenthesis. Nested parentheses are not permitted. The characters that make
up a comment play no part in the pattern matching at all.

If the (?x) option is set, an unescaped # character outside a character class intro-
duces a comment that continues up to the next newline character in the pattern.

Recur sive Patter ns
Consider the problem of matching a string in parentheses, allowing for unlimited
nested parentheses. Without the use of recursion, the best that can be done is to
use a pattern that matches up to some fixed depth of nesting. It is not possible to
handle an arbitrary nesting depth. Perl 5.6 provides an experimental facility that
allows regular expressions to recurse (among other things). It does this by interpo-
lating Perl code in the expression at runtime, and the code can refer to the expres-
sion itself. A Perl pattern to solve the parentheses problem can be created in the
following manner:

$re = qr{\((?: (?>[ˆ()]+) | (?p{$re}))* \)}x;

The (?p{ . . . }) item interpolates Perl code at runtime, and, in this case, refers
recursively to the pattern in which it appears. Obviously, PCRE cannot support the
interpolation of Perl code. Instead, the special item (?R) is provided for the spe-
cific case of recursion. This PCRE pattern solves the parentheses problem (assume
the (?x) option is set so that whitespace is ignored):

\(((?>[ˆ()]+) | (?R))* \)

First, it matches an opening parenthesis. Then, it matches any number of sub-
strings that can either be a sequence of nonparentheses, or a recursive match of
the pattern itself (that is, a correctly parenthesized substring). Finally, there is a
closing parenthesis.

9 October 2001 09:06

This particular example pattern contains nested unlimited repeats, and so the use
of a once-only subpattern for matching strings of nonparentheses is important
when applying the pattern to strings that do not match. For example, when it is
applied to the following:

(aaa()

it yields ‘‘no match’’ quickly. However, if a once-only subpattern is not used, the
match runs for a very long time indeed because there are so many differ ent ways
the + and * repeats can carve up the subject, and all have to be tested before fail-
ur e can be reported.

The values set for any capturing subpatterns are those from the outermost level of
the recursion at which the subpattern value is set. If the previous pattern is
matched against the following:

(ab(cd)ef)

the value for the capturing parentheses is ef, which is the last value taken on at
the top level. If additional parentheses are added, giving the following:

\((((?>[ˆ()]+) | (?R))*) \)

the string they capture is ab(cd)ef, the contents of the top level parentheses. If
ther e ar e mor e than 15 capturing parentheses in a pattern, PCRE has to obtain
extra memory to store data during a recursion. If no memory can be obtained, it
saves data for the first 15 capturing parentheses only, as there is no way to give an
out-of-memory error from within a recursion.

Perfor mance
Certain items that may appear in patterns are mor e ef ficient than others. It is more
ef ficient to use a character class like [aeiou] than a set of alternatives such as
(a|e|i|o|u). In general, the simplest construction that provides the requir ed
behavior is usually the most efficient.

When a pattern begins with .* and the (?s) option is set, the pattern is implicitly
anchor ed by PCRE, since it can match only at the start of a subject string. How-
ever, if (?s) is not set, PCRE cannot make this optimization, because the .

metacharacter does not then match a newline, and if the subject string contains
newlines, the pattern may match from the character immediately following one of
them, instead of from the very start. For example, the pattern:

(.*) second

matches the subject first\nand second (wher e \n stands for a newline character)
with the first captured substring being and. In order to do this, PCRE may have to
try the match several time, starting after every newline in the subject as well as at
the start.

Perfor mance 569

9 October 2001 09:06

570 Appendix B: Regular Expressions

If you are using such a pattern with subject strings that do not contain newlines,
the best perfor mance is obtained by setting (?s), or starting the pattern with ˆ.*

to indicate explicit anchoring. That saves PCRE from having to scan along the sub-
ject looking for a newline to restart at.

Bewar e of patterns that contain nested indefinite repeats. These can take a long
time to run when applied to a string that does not match. Consider the pattern
fragment:

(a+)*

This can match aaaa in 33 differ ent ways,* and this number increases very rapidly
as the string gets longer. When the remainder of the pattern is such that the entire
match is going to fail, PCRE has, in principle, to try every possible variation, and
this can take an extremely long time.

An optimization catches some of the more simple cases such as:

(x+)*y

wher e a literal character follows. Before embarking on the standard matching pro-
cedur e, PCRE checks that there is a y later in the subject string, and if there is not,
it fails the match immediately. However, when there is no following literal, this
optimization cannot be used. You can see the differ ence by comparing the behav-
ior of:

(x+)*\d

with the previous pattern. The former gives a failure almost instantly when applied
to a whole line of x characters, whereas the latter takes an appreciable time with
strings longer than about 20 characters.

* The * repeat can match 0, 1, 2, 3, or 4 times, and for each of those cases other than 0, the + repeat
can match differ ent numbers of times.

9 October 2001 09:06

Index

Symbols
< (left angle bracket)

<= flag, 488
<= operator, 535
in expansion strings, 535
in lists, 61

<> (angle brackets)
in addresses, 447
in delivery logs, 491
in -f option, 463

> (right angle bracket)
>= operator, 535
in expansion strings, 535
in lists of addresses, 433

* (asterisk)
*> flag, 488, 492
** flag, 488
in delivery logs, 492
in domain names, 157
in lists

of domains, 424
of hosts, 313, 426, 430

lookups
partial matching, 391
single-key lookup type names, 389

as metacharacter, 550
in prefixes/suf fixes, 120
in retry rules, 290
in rewriting rules, 344
in route_list option, 89, 160
in search types, 76

We’d like to hear your suggestions for improving our indexes. Send email to index@or eilly.com.

\ (backslash)
in configuration file, 38
data values and, 247
in options, 57

domains option, 114
in pipe commands, 252
in PTR records, 26
in qualified addresses, 123
quoting and, 414

URLs, 415
in regular expressions, 258, 548, 551-553,

561
in string expansions, 392

! (exclamation mark)
in expansion strings, 535
in ident strings, 431
in lists, 78
in string expanions, 400

| (vertical bar)
in addresses, 132
as metacharacter, 550, 558

{} (curly braces)
in conditional operators, 405
in headers, 394
in LDAP encryption, 402
as metacharacters, 550
in regular expressions, 548

matching, 401
in string expansions, 392, 537
in substrings, 75

571

9 October 2001 09:13

572 Index

[] (squar e brackets)
in domain-literal addresses, 447
metacharacters and, 550, 555
in PTR records, 26

ˆ (circumflex)
in lists

of addresses, 432
of domains, 424
of hosts, 430

as metacharacter, 550, 554
: (colon)

:blackhole:, 125
forbid_special option and, 137
new_addr ess option and, 147

in client_send option, 366
:defer:/:fail:, 125

forbid_special option and, 137
new_addr ess option and, 147

in exim_tidydb utility, 513
in headers, 176, 394
:include:, 124, 129, 132, 135
IP address masking and, 413
in IPv6 addresses, 421, 427
key/value pairs, 380
in ldap_default_servers option, 384
in lists, 109

local_inter faces option and, 276
strings, 61

in maildir files, 215
in passwords with PAM, 402
:unknown:, 126

forbid_special option and, 137
, (comma)

in headers, 12
in lists

of addresses, 432
of domains, 424
of hosts, 428
as separator, 122

in local parts, 328
in source pattern of rewriting rules, 345

- (hyphen)
-> flag, 488, 491
- - option, 479
in exim_dbmbuild utility, 512
in keywords, 254
as metacharacter, 550

$ (dollar sign)
$0 variable, 163, 538
$1, $2, etc. variables, 159, 335, 538

authentication and, 364
$addr ess_file variable, 538
$addr ess_pipe variable, 538
$authenticated_id variable, 364, 538

$authenticated_sender variable, 538
$body_linecount variable, 538
$caller_gid variable, 538
$caller_uid variable, 539
$compile_date variable, 539
$compile_number variable, 539
in configuration file, 59
data values and, 247
$domain variable, 539

addr ess rewriting, 345
batch option and, 200
bounce messages, replying to, 452
delay warning messages, 454
local_parts option and, 106
smtp_etr n_command option and, 376

$domain_data variable, 426, 539
in domains option, 114
$err msg_recipient variable, 454, 540
$home variable, 121, 540

appendfile transport and, 196
forwardfile director and, 142

$host variable, 540
$host_addr ess variable, 540
$host/$host_addr ess variable, 181, 200
$host_lookup_failed option, 540
incr emented variables and, 250
$inter face_address variable, 540
$key variable, 388, 540
$localhost_number variable, 541
$local_part variable, 200, 394, 541

addr ess rewriting, 345
bounce messages, replying to, 452

$local_part_data variable, 426, 541
$local_part_pr efix variable, 541
$local_part_suf fix variable, 87, 541
in maildir files, 215
$message_age/$message_body

variables, 541
$message_body_end variable, 541
$message_body_size variable, 542
$message_headers variable, 542
$message_id/$message_pr ecedence

variables, 542
$message_size variable, 542

maildir format and, 215
as metacharacter, 550, 554
$n0–$n9 variables, 542
$original_domain variable, 542
$original_local_part variable, 542
$originator_gid/$originator_uid

variables, 543
$par ent_domain variable, 543
$par ent_local_part variable, 543

9 October 2001 09:13

$ (dollar sign) (continued)
$pipe_addr ess variable, 181, 225
$pipe_addr esses variable, 543
$primary_hostname variable, 543
$pr ohibition_reason variable, 332, 543
$qualify_domain/$qualify_r ecipient

variables, 543
$rbl_domain variable, 543
$rbl_text variable, 544
$r eceived_for variable, 544
$r eceived_protocol variable, 95, 113, 544

server authentication, 360
$r ecipients variable, 238, 544

system filters, 262
$r ecipients_count variable, 544
in regular expressions, 548

matching, 401
$r eply_addr ess variable, 544
$r eturn_path variable, 544
$r eturn_size_limit variable, 454, 544
$r oute_option variable, 200, 544
$self_hostname variable, 152, 545
$sender_addr ess variable, 180, 545

addr ess rewriting, 341
$sender_addr ess_domain variable, 545
$sender_addr ess_local_part variable, 545
$sender_fullhost variable, 545
$sender_helo_name variable, 545
$sender_host_addr ess variable, 403, 545
$sender_host_addr ess variable, address

rewriting conditionally, 345
$sender_host_authenticated variable, 545

server authentication, 360
$sender_host_name variable, 309, 546
$sender_host_port variable, 546
$sender_ident variable, 546
$sender_rcvhost variable, 546
$sn0–$sn9 variables, 546
$spool_dir ectory variable, 546
in string expansions, 392
$thisaddr ess variable, 546
$tls_cipher variable, 370, 546
$tls_peerdn variable, 370, 547
$tod_bsdinbox variable, 197, 547
$tod_full variable, 547
$tod_log variable, 405, 547
$value variable, 159, 407, 547
$version_number variable, 547
$war nmsg_delay variable, 456, 547
$war nmsg_recipients variable, 547

. (period)
addr esses ending in, 447
in domain names, 21
as message terminator, 481

message transmission and, 17
as metacharacter, 550, 555

= (equal sign)
=> flag, 488, 491
== flag, 488
== operator, 535
in expansion strings, 535
in rbl_domains option, 312

(hash mark)
in configuration file, 57
ETRN command format, 375
in filter files, 247
in .forward files, 138
key/value pairs, 380
in lists, 423
in Makefile, 519

() (par entheses)
(?<!, 563
(?< =, 563
(?>, 565
(?>) option, 549, 565
(?!, 563
(?=, 563
(?#, 568
(?i) option, 554, 559, 562
(?im) option, 554
(?s) option, 555, 561, 569
(?U) option, 560
(?x) option, 551, 562
in headers, 12
if command and, 247, 257
as metacharacters, 550, 558

% (percent sign) in local parts, 328
+ (plus sign)

+allow_unknown/+war n_unknown
settings, 429

with ident prefix, 431
with filenames, 105
as metacharacter, 550

; (semicolon)
in retry rules, 292
in routing rules, 168

/ (forward slash), 124
/accept option, rbl_domains option, 313
in lists, 422
in maildir files, 215
/r eject option, rbl_domains option, 311
/skipr elay option, rbl_domains

option, 313
/war n option, rbl_domains option, 311

_ (underscor e)
in domain names, 310
in keywords, 254

Index 573

9 October 2001 09:13

574 Index

" (double quote)
data values and, 247
ldap_default_servers option and, 385
in lists, 122

of hosts, 163
in named field extractions, 410
in options, 57
in pipe commands, 124, 252
in query-style lookups, 383
quoting and, 414
in regular expressions, 258, 548
in rewriting rules, 344
in string expansions, 393

' (single quote)
in hosts lists, 163
in pipe commands, 124

Number s
$0 variable, 163, 538
$1, $2, etc. variables, 159, 335, 538

authentication and, 364
8BITMIME extension (SMTP), 446
12tocdbm command, 381

A
A record type, DNS lookups, 388
A6 record type, 22, 26

DNS lookups, 388
AAAA record type, 22

DNS lookups, 388
/accept option, rbl_domains option, 313
accept_8bitmime option, 446
accept_timeout option, overriding, 462
add command, 249

counters incremented by, 542
addr esses, 37, 304

adding/r emoving while transporting, 115
batched messages and, 202
canonicizing, 448
child/par ent, 39, 543
deferr ed delivery of, pass_on_timeout

option and, 151
domain-literal, 447
drivers and, 35
duplicate, 46, 122

filtering and, 241
err or (see error address, changing)
expansion variables derived from, 196
forcing to fail, 107
generating

new, 147
smartuser director and, 149

handling, 475

incoming, including in .forward file, 123
incomplete, qualify_domain option

and, 35
IP domain literal, 150, 169
lists of, 432-434

configuration file and, 60
testing, 261

local, 19
pr ocessing, 38
restricting queue runners to, 466

lookups, options for specifying, 160
missing data in, 46
multiple, 12
multiple-user, 87
named director vs. first director, 121
nonlocal, 19
pr eventing passing of, 102
pr ocessing, 35, 38

options for, 468
quoting characters in, 414
recipient

checking, 322-325
local senders, 306
options for, 325
rejecting explicitly, 324
sources of, 306
specifying, 304
testing verification, 324
verifying, 323

rejecting, reasons for, 17
remote, 38

becoming local, 47
routing to local host, 48
two-pass processing for, 466

remote sender, 314-322
bad envelopes, fixing, 318
failur es, per manent, 317
failur es, temporary, 316
headers, checking, 319
options for, 321
rejecting explicitly, 320
SMTP, 314
verification, testing, 319

rewriting, 149, 177, 339-354
automatically, 339
Bcc:/Cc: headers, 347
conditionally, 344
configur ed, 340-343
envelope fields, 347
Fr om: header, 348
general, 341
headers, 348
lookup-driven, 345

9 October 2001 09:13

addr esses, rewriting (continued)
per-transport, 342
Reply-To: header, 348
rules for, 343-345, 347-351
Sender: header, 348
To: header, 348
as unqualified local part, 348

rewriting generated, 128
sender

options for, 462
$sender_addr ess variable and, 545

smartuser director and, 118
source-r outed, 448
splitting, 410
syntax of, 446-448

angle brackets in, 447
built-in extensions, 446
err ors, 133
period in, 447

timeouts of, 297
types of, 18
unqualified, 128, 132, 149, 304

domains, adding to, 339
new_addr ess option and, 147
fr om remote hosts, 307

validity of, 20
verifying, 103, 114, 117

by directors/r outers, 316
virtual domains and, 74

$addr ess_file variable, 538
addr ess_file_transport option, 242
$addr ess_pipe variable, 538
addr ess_pipe_transport option, 242
admin group, 195
admin users (see system administrators)
admin_gr oups option, 444
administering, 436, 482-515

addr ess rewriting (see rewriting
addr esses)

MTAs, 29
queue inspection, 470
system filters, 238
(see also system administrators)

alias files
local parts without domains in, 76
maintaining, 511
names of, specifying, 137
owners of, specifying, 132
single-key lookups and, 389

alias lists
databases for storing, 133
duplicate addresses and, 122
expanding, 135
syntax errors in, 129

aliases, 15
defaulting unknown to postmasters, 135
forwarding and, 123
system

drivers and, 36
aliasfile director, 36, 118, 121-138

addr ess_pipe_transport option and, 111
expand option and, 125
lookups and, 134, 378
multiple, 134
NFS-mounted mailing lists and, 80
options for, 126-133
pipes and, 111
transports and, 135

special-purpose, 49
aliasing, 118, 222

DNS records and, 25
domains

multiple, 73
virtual, 74

expansion variables and, 538
headers_add/headers_r emove options

and, 109
host-checking and, 430
ignoring local parts in local deliveries, 91
nonaddr ess items and, 124-126
one-time, 129
to pipes, 111
for postmasters, 29
single-level, 120
by smartuser director, 77
(see also aliasfile director; pipe transport)

all value (batch option), 200, 202
allow_commands option, 227, 229

restrict_to_path option and, 230
allow_fifo option, 206, 218
allow_localhost option, 191
allow_mx_to_ip option, 449
allow_symlink option, 206, 218
allow_system_actions option, 142-143
+allow_unknown/+war n_unknown

settings, 429
with ident prefix, 431

ancestor checking, 127, 131
and operator, 405, 537
angle brackets (<>) (see <> (angle

brackets))
ANSI/ISO C compiler, 517
anywher e value (create_file option), 206
appendfile transport, 36, 173

append_string/check_string options
and, 198

comsat, notifying, 218

Index 575

9 October 2001 09:13

576 Index

appendfile transport (continued)
deliveries

batched, 199-202
contr olling envir onment for, 197
to separate files, 213-214
to separate files, maildir format, 220

files
for mat of, checking, 209
locking, 209-213
modes of, 207
multimessage, setting up, 204
nonexistent, creating, 206
owners of, checking, 207, 218

$home variable and, 196
locking function, 210
mailboxes

in home directories, 204
locking, 68
MBX, 212, 220, 222
non-MBX, locking, 211
symbolic links for, 206, 218

messages
appended, format of, 207
line termination in, 199
in single file, separating, 197

named pipes, delivering to, 206, 218
operating modes, 203
options for, 196-222
pr efix/suffix options and, 197
quotas

exclusive/inclusive, 217
mailbox, 215
war nings, 217

append_string option, MMDF format
and, 198

arguments, writing to main log, 486
asterisk (*) (see * (asterisk))
attachments, 12

viruses in, 21
scanning for, 94-99

AUTH command (SMTP), 188, 356
authenticated senders and, 362
PLAIN authentication and, 357
plaintext authenticator and, 365

auth_always_advertise option, 361
$authenticated_id variable, 364, 538
$authenticated_sender variable, 538
authenticate_hosts option, 188, 192, 363
authenticating, 6, 18, 355-367

expansion variables and, 538
forged email and, 18
mechanisms for, 357-360

CRAM-MD5, 358
LOGIN, 357

PLAIN, 357
MTAs and, 9
options for, 363
with PAM, 402
$sender_host_authenticated variable, 545
string expansions and, 536
(see also Exim, authenticators)

authenticator setting (-bP option), 474
authenticator_list setting (-bP option), 474
authenticators, 360-367

client-based, 363
server-based, 360

auth_hosts option, server
authentication, 361

automatic reply messages, 145, 232, 240
disabling use of, 253
logging, 235-236
once-only, 235-236
parameters of, 233
user filters and, 259
(see also autoreply transport)

autor eply transport, 36, 173
mailing lists, nonexistent, 234
messages

once-only, 235-236
parameters of, 233
sent, logging, 235-236

options for, 232-237
pipe transport and, 233

auto_thaw option, 281

B
b flag (rewriting rules), 347
backlists, 21
backslash (\) (see \ (backslash))
backups, MX, automatic relaying for, 329
batch option, 183, 202, 232

batch_max option and, 202
variables, 199

Batch SMTP (see BSMTP)
batch_max option, 192, 200, 202, 232

hosts serialization and, 186
SMTP over TCP/IP, 373

bcc (blind carbon copy), 14
bcc option, 234-235
Bcc: header, 305

pr ocessing messages with, 336
rewriting, 347

-bd option, 273, 283, 459, 462
-q option with time value and, 467

-be option, expansion string testing
and, 418

9 October 2001 09:13

begins test, 258
belowhome value (create_file option), 196,

206
Berkeley DB library Version 2 or 3, 381
Berkeley mailbox format, 197
-bf option

filter files, 244, 262
-oM options and, 464

-bF option
-oM options and, 464
system filters, testing, 246

-bfd option, changing recipient
domain, 245

-bfl option, changing recipient local
part, 245

-bfp option, specifying local part
pr efix, 245

-bfs option, specifying local part suffix, 245
-bh option, 476, 529

-oM options and, 464
server authentication, testing, 361

:blackhole:, 125
forbid_special option and, 137
new_addr ess option and, 147

blacklist (see DNS blocking lists)
blind carbon copy (bcc), 14
-bm option, 462

message reception and, 460
$body_linecount variable, 538
body_only option, 174, 182
bounce messages, 282, 473

automatic messages and, 253
changing addresses for, 110
copies of, taking, 452
customizing, 454
delay warnings, 453
envelope senders, empty, 463
fail command and, 263
handling, 451-455

alerting postmaster, 453
replying to, 452

pr efix/suffix options and, 197
reception of, logging, 490
replying to, 452
retur n_path option and, 177
senders, verifying, 315
size of, controlling, 303
SMTP errors and, 286

-bP option, 59, 387, 474
security and, 385

-bp option, 53, 470, 480
exiqsumm utility, 501
user privilege and, 443

-bpr option, 471

-bpu option, 470
-brt option, 477
-brw option, 354, 478
-bS option, 283, 377, 462, 480

message reception and, 305, 460
-bs option, 283, 462

local SMTP, 376
message reception and, 305, 460

BSD-based systems
configuring Exim on, 34
timestamps, 450
$tod_bsdinbox variable, 547

BSMTP (Batch SMTP), 96, 199-202, 377, 480
addr ess verification, 316
check_string/escape_string options

and, 199
HELO command and, 201-202
message reception and, 305

options for, 460
pipe transport and, 226
reception process, 283
use_crlf option and, 199

bsmtp option, 183, 201-202
batch_max option and, 202

bsmtp value (transport option), 164
bsmtp_helo option, 202
-bt option, 475

-d option and, 478
verify_only option and, 117

building Exim, 518-526
for multiple systems, 525

build-time options, 34
-bV option, 527
-bv option, 324, 475

-bvs option and, 319, 324
verify_only option and, 117

-bvs option, 319, 475
bydns/bydns_a/bydns_mx options, 160
byname option, 160

C
c flag (rewriting rules), 347
-C option, 469

log_arguments option and, 487
caching

in DNS, 23
in lookups, 391

$caller_gid variable, 538
$caller_uid variable, 539
canonical name records (see CNAME

records)
carriage retur n, 11

Index 577

9 October 2001 09:13

578 Index

carriage retur n (continued)
dr opping characters, 462

carriage retur n/linefeed (see CRLF)
case sensitivity

in address list matching, 434
in alias files, 133
case of letters, forcing, 398
in domain names, 22
in filter commands, 258
in filter files, 246
header insertions in string

expansions, 394
in local parts of message headers, 93
in macros, 58
in postmaster addresses, 29

cc option, 234, 236
Cc: header

pr ocessing messages with, 336
rewriting, 347

cdb format, 75
lookups and, 381

cdb value (search_type option), 134
cdbmake command, 381
character translation in string

expansions, 398
characters

8-bit, 445
nonprinting, 551

check_ancestor option, 127, 131
check_gr oup option, 140, 144, 218

file ownership and, 207
check_local_user option, 144

$home variable and, 142
match_dir ectory and, 145

check_log_inodes option, 450
check_log_space option, 450
check_owner option, 218
check_secondary_mx option, 155, 157

gethostbyname option and, 156
check_spool_inodes option, 450
check_spool_space option, 65, 450
check_string/escape_string options, 198,

202
bsmpt option and, 201
maildir_for mat and, 215
mbx_for mat option and, 208
MMDF format and, 198

circumflex (ˆ) (see ˆ (circumflex))
client_name option, 367
clients

authenticators in
cram_md5, 367
plaintext, 366

connecting to servers, 16

Exim, authentication on, 363
TLS

configuring Exim to use, 371
forcing use of, 370
relaying, 370

client_secr et option, 367
client_send_string option, 366
CNAME records, 27

DNS lookups, 388
colon (:) (see : (colon))
comma (,) (see , (comma))
command line, parsing, 224
command option, 169, 172, 223, 229, 232
command_gr oup/command_user

options, 170, 172
command-line interface, 458-481
command-line options

for BSMTP reception, 460
for configuration overrides, 469
daemon process, starting, 459
for debugging, 478
for delivery control, immediate, 464
for error routing, 465
for hosts, remote, 463
for input mode control, 459-462
for message control, 471-473
for non-SMTP reception, 460
for queue inspection, 470
for queue runner processes, 466-469
for sender addresses, 462
for sender names, 463
for Sendmail compatibility, 479
for SMTP reception, interactive, 460
ter minating, 479
for testing, 464, 473-478
for testing retry rules, 477

commands
delivery, 250-253

noerr or value, 253
filter, 239-241

addr ess list testing, 261
conditional, 257-262
delivery status testing, 261
err or message testing, 261
number testing, 259
personal mail testing, 259
significant actions testing, 261
string testing, 258

lmtp transport, defining, 232
logging, 256
mail, 253
pipe, 224, 229

defining, 222

9 October 2001 09:13

commands, pipe (continued)
envir onment for, 225, 229
envir onment variables for, 226
err or handling, 227, 230
failur e to execute, 229
gids/uids for, 224
output from, handling, 228-229
parsing command line, 224
restricting, 227
running from shell, 225, 231
timing, 226

command_timeout option, 187, 192
comments, 568

in headers, 12
$compile_date variable, 539
$compile_number variable, 539
comsat, notifying, 218
condition option, 96, 103, 114

debug_print option and, 113
querypr ogram router and, 169

conditions, testing
addr ess lists, 261
delivery status, 261
err or messages, 261
numbers, 259
personal mail, 259
significant actions, 261
strings, 258

configuration file, 34, 54-61
addr ess rewriting, 341
comsat, setting, 218
domains and, 74
drivers and, 37
gids/uids, defining, 436
hostname in, 543
hosts, using on differ ent, 456
IP domain literal addresses and, 169
log destination, configuring, 484
lookups, 59
macr os in, 58

overriding, 470
name of, changing, 469
options in

order of, 101
setting, 57

overrides, options for, 469
qualify_domain/qualify_r ecipient options

and, 543
retry rules, 48
sections of, 55
string expansions in, 59
testing, 474
updating, 511

configur e_file option, 474

configuring, 2, 33
bounce messages, 179
for building, 518-526
debugging, 113, 174
delivery configurations, 71-100
dial-up hosts, 299
dir ectories for shared files, 266
dir ectors, 118-149

for address verification, 316
header additions/removals and, 176
(see also individual directors; director

drivers; transport drivers)
hardwar e, 69
incoming mail, 20
local transports, 194
log destination, 484
RBLs, 311
routers, 150-172

for address verification, 316
header additions/removals and, 176
(see also individual routers)

runtime configuration, 34
setuid root, 271
TLS as client, 371
TLS as server, 368
transports, 173-237

(see also individual transports)
connect(), 187

timeout for, 192
connect_timeout option, 187, 192
contains test, 258
cram_md5 authenticator

in a client, 367
in a server, 366

cram_md5 value (driver option), 363
cr eate_dir ectory option, 214, 219
cr eate_file option, 206, 219

belowhome/inhome values, 196
CRLF (carriage retur n/linefeed), 11

message separation and, 203
message termination, 462
use_crlf option and, 199

cr on, 32
log files, cycling, 493
message reception and, 304
queue runner processes, starting, 279

crypt(), 401
crypteq condition, 401, 536
CTRL-R/CTRL-S (Exim monitor), 507
curly braces ({}) (see {} (curly braces))
curr ent_dir ectory option, 121, 143, 172, 203

delivery environment, controlling, 197
settings, overriding, 196

Index 579

9 October 2001 09:13

580 Index

Cyrus IMAP server, local deliveries and, 86

D
D field (delivery logging), 491
-d option, 478
-D option, 58, 470

log_arguments option and, 487
-d9–-d11 options, 478
daemon process, 32, 265, 273-277, 283

configuration file and, 54
options for, 276, 459
SMTP calls, 274

daemons
comsat, notifying, 220
Exim on dial-up hosts, 300
IMAP, single-file delivery, 214
listening, 464
mailer, 452
POP

password lookups and, 67
single-file delivery, 214

reception processes and, 277
daemon_smtp_port option, 273
DATA command (SMTP), 17

BSMTP and, 201
data option, 144

file option and, 144
forwarding lists and, 139

databases
alias lists stored in, 133
Exim and, 2
filtering instructions stored in, 138
hints, 285

maintaining, 512
serialization and, 185
(see also retry database)

lookups (see lookups)
MySQL, 386

list of domains in, 72
quoting in, 415

names of, in exim_tidydb utility, 513
Postgr eSQL, 387

quoting in, 415
queries, 137

reducing number of, 408
reject, 269, 513
retry (see retry database)
routing information in, 162
serialize-, 513
serialize-etr n, 270
serialize-etr n-runs, 513
wait-, 269, 513

data_timeout option, 187, 192

Date: header, processing messages
with, 337

date/time, $tod_full variable, 547
-days option (req command), 368
db directory, 269

for retry database, 285
DBM files, 38, 72

mail commands and, 255
maintaining, 512

DBM library, 517
DBM lookups, 72, 380

ter minating zer os and, 381
dbm value (search_type option), 134
Debian, Exim installation and, 516
debugging

dir ectors and routers, 113
with log_arguments option, 486
options for, 478
transports, 174

debug_print option, 113-114, 174, 182
def condition, 403, 536
defer value (host_find_failed option), 161,

167
:defer:/:fail:, 125

forbid_special option and, 137
new_addr ess option and, 147

deferr ed value (self option), 153
def:header_ condition, 536
delay_after_cutof f option, 191-192, 296
delay_war ning option, 453
delay_war ning_condition option, 454

$domain variable, 539
deliver command, 249-250

as significant action, 248
in system filters, 262

delivering email (see email, delivering)
deliver_load_max option, 63
deliver_queue_load_max option, 63
delivery agents, external local, 85
delivery errors, temporary, 114, 284-301

during directing/r outing, 289
local, 288
remote, 285-288

host errors, 285
message errors, 286
multiple hosts, 288
recipient errors, 287

retrying after, 284
delivery processes, 265, 272, 281

queue runners and, 279
Delivery-date: header, 183

pr ocessing messages with, 337
delivery_date_add option, 175, 183

9 October 2001 09:13

dial-up clients
ETRN command and, 375
storing mail for, 159, 163

dial-up hosts, 270
batched delivery and, 199
configuring Exim on, 299
Exim daemon on, 300
incoming mail, 298, 301
message handling, 284
queue_only_file option and, 278
retrying delivery to, 297-301

Dial-up User List (DUL), 310
dir ector drivers, 35, 101

addr esses, pr ocessing, 37-49
aliasfile, 36
aliasing, single-level, 120
conditional running of, 119
configuring, 118-149

for address verification, 316
header additions/removals, 176

debugging, 113
delivery errors, 289
forwardfile, 37
localuser, 37
named vs. first, 121
options for, 101-121

summary of, 114-117
restricting to specific domains, 114
vs. router drivers, 38
smartuser, 37
smtp transport and, 184
transports, 49
types of, 118
(see also drivers)

dir ector setting (-bP option), 474
dir ectories

cr eating automatically, 219
curr ent, 143

local transports and, 196
db, 269

for retry database, 285
deliveries and, 203
doc, 518
exim-3.22, 518
for hints files, 266
home, 143, 540

checking, 146
input, 267
local transports and, 195-196
local, deliveries to, 131
log, 266, 271
for mailboxes, 395
for message files, 266
msglog, 268, 483

msglog.OLD, 268
routers and, 196
setting, 121
spool, 266
src, 518
sticky, 205

dir ector_list setting (-bP option), 474
dir ectory mode (appendfile transport), 203
dir ectory option, 214, 219

file option and, 219
quota option and, 215, 221

dir ectory paths, 124, 131
log destinations, 484
setting, 144

to turn on Exim, 529
dir ectory_mode option, 214, 219
dir ectory_transport option, 131

save command and, 251
disk partitions, fullness of, 506
disk space, checking for free, 65, 450
disk storage, 7
-dm option, 478
DNS administrators (see hostmasters)
DNS blocking lists, 310-313

DUL, 310
RBL, 310

DNS (Domain Name Service), 21-24
caching and, 23
err ors, 27
lookups, 388

contr olling, 154, 451
delivery errors, 289
host verification and, 308
remote routers, 150

system host lookup instead, 156
DNS records

mail routing and, 24
related, 25

dns_again_means_nonexist option, 451
dns_check_names_patter n option, 451
dnsdb lookup, 388
dns_qualify_single option, 192
dns_r etrans option, 451
dns_r etry option, 451
dns_search_par ents option, 190, 192
doc directory, 518
documentation, 3

installing, 530
dollar sign ($) (see $ (dollar sign))
Domain Name Service (see DNS)
domain names, 21

case sensitivity in, 22
characters allowed in, 451

Index 581

9 October 2001 09:13

582 Index

domain operator, 410
domain records, 21, 24

types of, 22
(see also DNS records)

domain value (batch option), 200, 202
$domain variable, 539

addr ess rewriting, 345
batch option and, 200
bounce messages, replying to, 452
in delay warning messages, 454
local_parts option and, 106
smtp_etr n_command option and, 376

DOMAIN variable, 226
$domain_data variable, 426, 539
domainlist router, 36, 89, 150

domains option and, 161
host lists and, 163
lookups and, 378
on mail hubs, 165
options for, 158-168
routing domain, changing, 166
routing rules

inline, 159
looked-up, 162

transports, varying, 166
domains

adding to unqualified addresses, 339
changing, 166
default qualification, 61
lists of, 423-426

configuration file and, 60
partial- setting in, 425
single-key lookups in, 425
fr om string expansions, escaping

characters in, 424
local, 71

retry rules and, 290
(see also domains, multiple-local)

in message headers, 12
hostnames and, 24
not local to server, 17
qualify_domain option and, 35
routing and, 18

mixtur e of, 194
local/r emote, 88

multiple-local, 71-74
dif ferentiating between, 73

partial matching in lookups and, 390
pr eventing delivery to, 282
remote, 150

looking up in DNS, 150
manually routing, 158

in retry rules, 290
routed to local host, 151

routed to self, 152-153
deferring, 153
failing, 153
passing to next router, 152
rerouting, 153
transporting, 153
tr eating as local, 152

virtual, 74-78
defaults in, 76
postmasters in, 77

domains in message headers, 38
domains option, 102, 114

domainlist router and, 161
lookups and, 425
mailing lists and, 78
querypr ogram router and, 169

double quote (") (see " (double quote))
driver option, 101, 114, 174, 183, 363
drivers, 35

restricting, 103
by file existence, 104
to specific domains, 102
to specific local parts, 102, 115
to specific sender addresses, 102, 116
to verification, 103

specifying, 114
types of, 35

-dr opcr option, 462
DUL (Dial-up User List), 310

E
E flag (rewriting rules), 347
Easter n Standard Time (EST), 449
EDITOR environment variable, 472
EHLO command (SMTP), 16

err or code in response to, 286
host verification and, 308
message reception logging, 489
syntax of, 449
verifying, 309

elif-then (if command), 257
else (if command), 257
email, 5-29

bouncing, 15, 20
delivering, 31, 33, 35-51, 199, 272

commands for, 250-253
contr olling envir onment for, 110, 197
debugging, 479
deferring, 132
deferring to local parts, 125
delaying/suspending, 63
delays in, 453-455

9 October 2001 09:13

email, delivering (continued)
delivery errors, ignoring, 253
delivery status testing, 261
expansion variables, 541
failur es (see bounce messages)
filtering and, 241
forced, 283
forcing, 469, 471
hints files, 270
logging, 490-493
multiple, 148
to named pipes, 206, 218
options for, 464
parallel remote, 65, 281
without password data, 136
via pipes, 195
pr eventing, 263
pr ocesses, contr olling number of, 66,

192
remotely, 272
retrying (see retrying delivery)
root privilege and, 438, 440
simultaneous, 68
status of, checking, 404
suppr essing, 479
to UUCP, 90
(see also Exim, processes; messages,

batched; delivery processes)
filtering, 2, 87, 107, 118, 184, 232,

238-264
with case independence, 398
expansion variable for users, 539
exter nal delivery agent and, 241
filter files, 244-246
instructions in databases, 138
pr ocmail and, 241
system filter, setting up, 242
user filter, setting up, 242
virus scanning and, 94
(see also autoreply transport)

forgery of, 18
message reception logging, 489

forwarding, deliver command and, 250
identifying, 52
incoming, 6, 302-338

Bcc:/Cc:/To: headers, 336
checking, 2, 19
Date: headers, 337
Delivery-date:/Envelope-to:/Retur n-

path: headers, 337
for dial-up hosts, 298
on dial-up hosts, 301
Fr om: header, 334
host blocking, 313

fr om local processes, 304-307
Message-id:/Envelope-to:/Retur n-path:

headers, 337
pr ocessing, 333-338
RBLs, 310-313
reception processes and, 265
remote sender addresses,

checking, 314-322
Sender: header, 335
testing connections, 476
fr om UUCP, 334

message standards, 11
outgoing, 6, 10, 249
personal, distinguishing from mailing

lists, 259
receiving, 31

logging, 488
options for, 460
pr ocesses and, 33

reducing at high load, 62-65
routing, 18
saving, 107
storing for dial-up hosts, 69
timeout for response to, 193
transmitting, 13-15
viruses (see security, viruses)
(see also messages)

encryption (see security, encryption)
end queue run message, setting log level

for, 487
ends test, 258
ENOENT error, 137
ENOTDIR error, 145
envelope From field, 347
envelope To field, 347
envelopes, 13

pr eserving, batched deliveries and, 200
$r ecipients_count variable and, 544
rejected by servers, 17
senders

changing, 110
fixing bad, 318

Envelope-to: header, 14, 183
pr ocessing messages with, 337

envelope_to_add option, 175, 183
envelope preservation and, 200

envir onment option, 226, 229
envir onment variables

EXIMON_ prefix, 504
for pipe commands, 226
pipe transport and, 195

eq condition, 399
equal sign (=) (see = (equal sign))

Index 583

9 October 2001 09:13

584 Index

err msg_file option, 454
$err msg_recipient variable, 454, 540
err msg_text option, 454
err or addr ess, changing, 110
err or messages, 5

customized, 540
delivering to users’ mailboxes, 130
failed to lock mailbox, 68
Per mission denied

checking file existence, 105
ignor e_eacces option and, 140

testing for, 261
unknown local part, 108
unknown user, 48

err or_message condition, 261
err ors

authentication response, 363
command, handling, 227
delivery, 114, 284-301

ignoring, 253
remote, 285-288
retrying after, 284

detection of on input, 481
DNS, 27
during DNS lookups, 151
ENOENT, 137
ENOTDIR, 145
forced expansion failure, 59
handling

forwardfile director and, 140
routing, 465

host, 285
message, 286
recipient, 287
reporting message, 465
routing, options for, 465
syntax

in addresses, 133
in alias/forward lists, 129
in EHLO/HELO commands, 310
in .forward file, 80
in headers, 326
logging, 487
in mailing lists, 80

temporary, 17, 19, 227
in lookups, 389

err ors_address option, 453
err ors_copy option, 452
err ors_reply_to option, 452
err ors_to option, 114

bounce messages and, 110
mailing lists and, 79

escape operator, 416
EST (Eastern Standard Time), 449

EST value (timezone option), 449
/etc/aliases file (see system alias file)
ETRN command (SMTP), 270, 374

delivery, forcing, 298
EX_CANTCREAT value (temp_errors

option), 228
exclamation mark (!) (see ! (exclamation

mark))
exicyclog utility, 271, 482, 494
exigr ep utility, 482, 495

-f flag, 495
Exim, xiii, 1, 30-51

binary, date compiled, 539
building, 518-526

configuration for, 518-526
for multiple systems, 525

calling by other names, 480
command-line interface, 458-481
compilation count, 539
daemon on dial-up hosts, 300
eximon program (see eximon program)
flexibility of, 2
gid/uid, 271

(see also gids, uids)
ident protocol and, 431
installing, 516-531

pr er equisites, 517
testing, 527
on various operating systems, 516

monitoring, 500-503
Exim monitor, 503-511
exinext utility, 501
exiqsumm utility, 501
(see also processes, querying)

operations, 52-70
pr ocesses, 31-33

addr ess pr ocessing, 38
querying, 502

root privilege and, 437
scalability of, 32, 67
security in (see security)
Sendmail and, 2, 479
Smail compatibility, 481
source distribution, 3

unpacking, 517
unprivileged, running, 440
upgrading, 530
versions of, 3

$version_number variable, 547
Exim monitor, 503-511

action buttons, 506
building, 524
eximon program, 504

9 October 2001 09:13

Exim monitor (continued)
log display, 506
queue display, 507
Queue menu, 509
stripcharts, 505

Exim web site, 517
exim-3.22 directory, 518
exim-daemon.pid file, 273
exim_dbmbuild utility, 72, 381, 512
exim_dumpdb utility, 285, 501
exim_lock utility, 514

options for, 515
eximon program, 3, 504

enabling sysadmins to run, 436
EXIMON_, preceding environment

variables, 504
exim-pr ocess.info file, 502
eximstats utility, 495-500

-t option, 500
exim_tidydb utility, 270, 513
exim_user option, 436
exinext utility, 285, 501
exiqsumm utility, 501
exists condition, 404, 408
exiwhat utility, 482, 502
expand operator, reexpansion and, 416
expand option, 136

aliasfile directors and, 125
Experimental Internet Mailer (see Exim)
EXPN command (SMTP), 120, 374
expn option, 120
EX_TEMPFAIL value (temp_errors

option), 228
extract operator, 386

named fields, extracting, 411
extract_addr esses_r emove_arguments

option, 305, 461

F
F flag (rewriting rules), 347
f flag (rewriting rules), 348
-F option, 334

user names, overriding, 463
-f option, 442

exim_tidydb utility, 513
filter files, testing, 245
message reception and, 307
sender addresses and, 462

fail command, 142, 249, 263
fail value

in conditional operations, 405
host_find_failed option, 161, 167
self option, 153

:fail:/:defer:, 125
forbid_special option and, 137
new_addr ess option and, 147

failed to lock mailbox error message, 68
fail_verify option, 107, 114, 316
fail_verify_r ecipient/fail_verify_sender

options, 107-108, 114
fallback_hosts option, 112, 115, 190, 192

allow_localhost option and, 191
dns_qualify_single option and, 192
dns_search_par ents option and, 192
gethostbyname option and, 193
mx_domains option and, 194

-fcntl option (exim_lock utility), 515
fcntl(), 210, 221

mailboxes, locking, 515
non-MBX mailbox locking, 212

f/f f values
-q option, 466
-R/-S options, 468

FIFOs (see named pipes)
file attributes, checking, 144
file mode (appendfile transport), 203
file option, 137, 144, 219, 234, 254

autor eply transport and, 236
data option and, 144
dir ectory option and, 214, 219
file existence, testing for, 404
file_expand option and, 236
file_must_exist option and, 219
file_optional option and, 236
mailbox in home directory, setting

up, 204
file value (search_type option), 134
file_dir ectory option, 139, 144

$home variable and, 142
file_expand option, 236

file option and, 234
file_for mat option, 219
file_must_exist option, 206, 219

unprivileged Exim, running, 441
filenames

.db extension, 270

.dir extension, 270

.lock extension, 270

.pag extension, 270
in system filters, 251

file_optional option, 236
file option and, 234

files
alias

local parts without domains in, 76
maintaining, 511

Index 585

9 October 2001 09:13

586 Index

files, alias (continued)
owners of, specifying, 132
single-key lookups and, 389

appending
locking for, 209-213
messages to, 251
multimessage, 204

attributes of, checking, 126
cdb format, 75
configuration, 34, 54-61

addr ess rewriting, 341
comsat, setting, 218
domains and, 74
drivers and, 37
gids/uids, defining, 436
hostname in, 543
hosts, using on differ ent, 456
IP domain literal addresses and, 169
log destination, 484
lookups, 59
macr os in, 58, 470
name of, changing, 469
options in, 57, 101
overrides, options for, 469
qualify_domain/qualify_r ecipient

options and, 543
sections of, 55
string expansion in, 59
testing, 474
updating, 511

-D, 268
reception processes and, 277

DBM, 38, 72
maintaining, 512

delivering to separate, 213
maildir format, 214, 220

disabling, 128, 131-132
/etc/aliases (see system alias file)
exim-daemon.pid, 273
exim-pr ocess.info, 502
existence of

restricting drivers by, 104
testing, 116, 404

extracting from
named fields, 410
unnamed fields, 412

filter
err or_message condition and, 261
expansion variable for, 541
for mat of, 246
significant actions and, 248, 261

filtering, 2
testing, 244-246

for mat of, checking, 209, 219

.forward, 34, 138
aliasing and, 123
bypassing, 119
expansion variables and, 538
filenames in, specifying, 51
as filter file, 242
filtering instructions in, 238
forwardfile director and, 37, 118
nonaddr ess items and, 124
outside home directory, 143
owners of, specifying, 132
pipe commands from, 227
pipe deliveries from, 222
restricting contents of, 128
root privilege and, 438
specifying, 139
syntax errors in, 80

-H, 266, 268
reception processes and, 277

hints, 266, 269
exim_tidydb utility, 270

indexed, 72
-J, 268
jour nal, 268
list items in, 422
local, deliveries to, 131
location of, appendfile transport and, 219
locking, 219

lock files, 221
log, 54, 249, 266, 271

build-time options and, 34
cycling, 482, 493
extracting information from, 494-500
of filtering actions, 256
mail commands and, 255
main log, 488-493
$tod_full variable, 547
types of, 483
writing to spool files, 450

lookups (see lookups)
mainlog, 54
maintaining, 511
Makefile, 518-524

contents of, 519
driver choices in, 520
minimal requir ed, 522
module choices in, 521
settings, optional, 524
settings, recommended, 521
settings, system-related, 523

message, 266
locking, 268
names of, 266

9 October 2001 09:13

files (continued)
missing, 129
modes of, 207, 220
nonexistent, creating, 206
nsswitch.conf, 90
OptionLists.txt, 518
paniclog, 54
password, on large installations, 67
rejectlog, 54
routing information in, 162
shar ed, pr ocesses and, 265
spool (see Exim, queue)
system alias, 34, 36

pipes specified in, 51
specifying filenames in, 51

tidy_alldb, 514
transport drivers for, 127
.vacation.msg, 239
writing messages to, 203

file_transport/pipe_transport options, 127,
131

filter commands, 239-241
conditional, 257-262
err or message testing, 261
number testing, 259
personal mail testing, 259
significant actions testing, 261
string testing, 258
testing address list, 261
testing delivery status, 261

filter files
err or_message condition and, 261
expansion variable for, 541
for mat of, 246
lookups and, 145
significant actions and, 248

testing for, 261
string expansions in, exists condition

and, 145
system, $recipients variable and, 544
testing, 244-246

filter option, 144, 242
forwardfile director and, 138

filtering email (see email, filtering)
filters

string expansions in, 141
system, 238

options for, 243
$r ecipients variable, 262
setting up, 242
testing, 246

transport, 180
modifying messages and, 99

user, 238

setting up, 242
final_timeout option, 187, 193
finish command, 241, 248-249, 257
fir ewalls, 8

mail hubs and, 165
first_delivery condition, 261, 404, 536
foranyaddr ess command

$thisaddr ess variable and, 546
forbid_domain_literals option, 447
forbid_file option, 128, 131-132

mailing lists and, 79
forbid_filter_existstest option, 141, 145
forbid_filter_logwrite option, 141, 145
forbid_filter_lookup option, 141, 145
forbid_filter_perl option, 141, 145
forbid_filter_r eply option, 141, 145

automatic messages and, 253
forbid_include option, 131
forbid_log option, 256
forbid_pipe option, 128, 131-132

mailing lists and, 79
forbid_special option, 137
forced expansion failure err or, 59
forgery, 18
.forward file, 34, 138

aliasing and, 123
bypassing, 119
expansion variables and, 538
as filter file, 242
filtering instructions in, 238
forwardfile director and, 37, 118
nonaddr ess items and, 124
outside home directory, 143
pipe deliveries from, 222
restricting contents of, 128
root privilege and, 438
specifying, 139

filenames in, 51
owners of, 132

syntax errors in, 80
forward lists

duplicate addresses and, 122
syntax errors in, 129

forward slash (/) (see / (forward slash))
forwardfile director, 37, 118, 121-133,

138-146
addr ess_file/pipe_transport options

and, 242
check_local_user option and, 111, 115,

121
err or handling, 140
filter option and, 138
gr oup/user options and, 111, 115

Index 587

9 October 2001 09:13

588 Index

forwardfile director (continued)
$home variable and, 142
mailing lists and, 78
options for, 126-133
requir e_files option and, 105
save command and, 252
skip_syntax_err ors option and, 130
special-purpose transports and, 49

forwarding email, 250
(see also .forward file)

forwarding list, inline, 139
Fr eeBSD, Exim installation and, 516
fr eeze command, 142, 249, 263
fr eeze value (host_find_failed option), 161
fr eeze_exec_fail option, 229
fr eeze_missing_include option, 132
fr eeze_tell_mailmaster option,

err ors_address option and, 453
fr om inetd option, 283
fr om keyword, 255
fr om option, 234, 236
Fr om: header

automatic reply messages, 234, 236
pr ocessing messages with, 334
rewriting, 348
sender names and, 463

G
gcc (GNU C compiler), 517
gecos field (passwords), 334
gecos_name option, 334
gecos_patter n option, 334
gethostbyaddr(), host-checking and, 428
gethostbyname option, 156-157, 190, 193
gethostbyname(), 156, 190, 193

host checking and, 428
gethostbyname2(), 156
getipnodebyname(), 156
getpwnam(), 456
gids (group ids), 543

batch option and, 200
local transports and, 195
pipe commands, 224
for processes, 271

calling Exim, 538
security and, 436

GMT (Greenwich mean time), 449
GNU C compiler, 517
GNU General Public License (GPL), 1
GNU/Linux, 3

Exim installation and, 516
GPL (GNU General Public License), 1
Gr eenwich mean time (GMT), 449

gr ep command with ps command, 502
gr oup ids (see gids)
gr oup/user options, 110, 115, 117, 232

delivery environment, controlling, 197
gids/uids, 224
initgr oups option and, 111
local transports and, 195
unprivileged Exim, running, 441

H
H field

delivery logging, 491
message reception logging, 489

h flag (rewriting rules), 348
hash mark (#) (see # (hash mark))
hash_1 operator, 397
hashing operators, 397
headers, 11

adding/r emoving, 175, 249
forcing expansion failure and, 405
while transporting, 109

addr esses in, 304
rewriting, 177

Bcc:, 305
pr ocessing messages with, 336
rewriting, 347

Cc:
pr ocessing messages with, 336
rewriting, 347

commas in, 12
concatenation of during processing, 542
Date:, processing messages with, 337
Delivery-date:, 183

pr ocessing messages with, 337
domains in, 12

nonlocal, 17
Envelope-to:, 14, 183

pr ocessing messages with, 337
forged, in spam, 18
Fr om:

automatic reply messages, 234, 236
pr ocessing messages with, 334
rewriting, 348
sender names and, 463

inserting into strings, 394
lines added to in transmit, 14
local part of, 12
malfor med, 21
Message-id:, processing messages

with, 337
nonexistent, string expansions and, 403
par entheses in, 12

9 October 2001 09:13

headers (continued)
Pr ecedence:, value of, 542
in quota warnings, 217
fr om RBL domains, logging, 487
Received:

loops and, 457
$r eceived_for variable and, 544
$sender_rcvhost variable, 546
$tls_cipher variable, 370

$r eply_addr ess variable and, 544
Reply-To:

automatic reply messages, 234, 236
rewriting, 348

Resent-, 333
Retur n-path:, 175, 184

pr ocessing messages with, 337
rewriting, 157, 348
Sender:

pr ocessing messages with, 335
rewriting, 348
sender names and, 463

senders in, checking, 319
Subject:, 240

automatic reply messages, 234, 237
syntax, checking, 326
To:

automatic reply messages, 237
pr ocessing messages with, 336
rewriting, 348

X-RBL-War ning:, 311
headers add/remove commands, 264
headers command, 249
headers option, 234
headers_add/headers_r emove options, 109,

115, 176, 183
autor eply transport, 233

headers_checks_fail option, 320-321
headers_check_syntax option, 326, 446
headers_only option, 174, 183
headers_r ewrite option, 177, 342-343
headers_sender_verify option, 320-321
headers_sender_verify_err msg option, 319,

321
HELO command (SMTP), 16

BSMTP and, 201-202
err or code in response to, 286
host verification and, 308
message reception logging, 489
syntax of, 449
verifying, 309

helo_strict_syntax option, 310
helo_verify option, 309
Hide button (Exim monitor), 508

hide setting
configuration options, outputting, 474
mysql_servers option, 387
in pgsql_servers option, 387
in query option, 385
specifying, 59

hints database, maintaining, 512
hints files, 266, 269

exim_tidydb utility, 270
hold_domains option, 282
HOME variable, 196, 226

home_dir ectory option and, 226
$home variable, 121, 540

appendfile transport and, 196
forwardfile director and, 142

home_dir ectory option, 121, 143, 172, 196,
203

delivery environment, controlling, 197
settings, overriding, 196

host errors, 285
$host variable, 540
HOST variable, 226
host_accept_r elay option, 313, 329,

331-332, 355, 427
dial-up accounts and, 356
server authentication and, 361

$host_addr ess variable, 540
host_auth_accept_r elay option, 331, 370

server authentication and, 361
host_find_failed option, 106, 160, 167

values for, 161
$host/$host_addr ess variable, 181, 200
host_lookup option, 308
$host_lookup_failed option, 540
hostmasters, 27
hostnames

in configuration file, 543
defined by routers, 540
domains and, 24
PTR records and, 26
$sender_fullhost variable and, 545
valid characters in, 22

host_r eject option, 313, 332
host_r eject_r ecipients option, 313, 332
hosts, 10, 15

authenticating, 192
relaying from, 330

blocking explicitly, 313
client, authenticated, 362
clusters of, mail interchange, 274
destination, 19
dial-up, 270

batched delivery and, 199

Index 589

9 October 2001 09:13

590 Index

dial-up
hosts, dial-up (continued)

configuring Exim on, 299
Exim daemon on, 300
incoming mail and, 298, 301
message handling, 284
message storage and, 69
queue_only_file option and, 278
retrying delivery, 297-301

on DNS blocking lists, 310-313
exter nal, virus checking on, 98
fallback, specifying, 190, 192
lists of, 426-431

checks by forward and reverse
lookups, 428

checks by IP address, 426
configuration file and, 60
domainlist router and, 163
ident protocol in, 430
order of, 429
randomizing, 190, 193

local
domains routed to, 151
routing remote addresses to, 48
$self_hostname variable and, 545
virus checking on, 95

lookups, 156
message IDs and, 53
multihomed, 186
multiple, delivery to, 288
nonexistent, 167
open relays, 302
per mitting relaying by, 330
pr efer ences and, 25
primary, 189
relaying mail through, 21
remote, 184

checking, 308-314
deliveries to, 184
IP address of, 540
messages received over, 303
options for, 463
port number of, 546
storing mail for locally, 159, 163
unqualified addresses from, 307
(see also smtp transport)

reserved for SMTP connnections, 277
retrying, 191, 202-203, 269, 284-301

with hostname only, 194
(see also retrying delivery)

serializing, 185
smart, 158
sorting randomly, 158
specifying fallback, 112, 115

TCP/IP connection, 194
verifying names of, 308
on virtual interfaces, 273
(see also SMTP)

hosts option, 189, 193
allow_localhost option and, 191
dns_qualify_single option and, 192
dns_search_par ents option and, 192
gethostbyname option and, 193
mx_domains option and, 194

hosts_override option, 189, 193
hosts option and, 193

hosts_randomize option, 98, 158, 167, 190,
193

hubs, 8, 10
hyphen (-) (see - (hyphen))

I
-i option, 481

message termination and, 460
ID field (message reception logging), 490
ident protocol in host lists, 430
Identification Protocol (ident protocol), 430
if command, 239, 249

conditional execution and, 257
IFS variable, 224
ignor e_eacces option, 140, 145
ignor e_enotdir option, 145
ignor e_errmsg_err ors option, 62, 314
ignor e_fromline_hosts option, 334
ignor e_fromline_local option, 334
ignor e_status option, 50, 227, 229
IMAP daemon, single-file delivery, 214
IMAP (Internet Message Access Protocol), 9

password lookups and, 67
unprivileged Exim and, 441

in-addr.arpa zone, 25
include files, missing, 129
:include:, 124, 129, 132, 135
include_domain option, 137
incoming relaying (see relaying messages)
inetd, 32, 277

message reception and, 460
SMTP over TCP/IP, 373

inhome value (create_file option), 196, 206
initgr oups option, 111, 115

pipe transport and, 196
initgr oups(), 115
input directory, 67, 267

splitting, 267
input/output errors (see host errors)
installing Exim, 516-531

9 October 2001 09:13

installing Exim (continued)
documentation, 530
pr er equisites for, 517
source distribution, utilities for

unpacking, 517
testing, 527
on various operating systems, 516

inter face option, 186, 193
$inter face_address variable, 540
inter faces

command-line, 458-481
(see also command-line options)

SMTP calls and, 193
virtual, running host on, 273

Inter net
gateways, hosts on, 274
mail (see email)
message standards, 11

Inter net Message Access Protocol (see
IMAP)

Inter net Pr otocol (IP), 1
(see also IPv6 protocol)

Inter net Service Providers (see ISPs)
-interval option (exim_lock utility), 515
IP addresses, 21

host
$sender_host_addr ess variable

and, 545
verification and, 309

host, checks by, 426
IPv6, 22
masking, 412
retrying, 191-192, 202-203, 285

(see also retrying delivery)
smtp transport and, 190

IP (Internet Protocol), 1
(see also IPv6 protocol)

IP literal addresses, 150
ip6.arpa zone, 25
ip6.int zone, 25
ipliteral router, 37, 150, 169
IPv4 protocol, 22
IPv6 protocol, 1, 22

addr esses, colons in, 421, 427
build-time options and, 34
inter face binding, 193
IP addresses, masking, 413
PTR record format, 26

is test, 258
ISPs (Internet Service Providers)

MTAs, running, 10
name servers and, 23

J
-J file, 268
jour nal files, 268

K
keepalive option, 193
$key variable, 388, 540
key/value pairs, lookups and, 379
kill command, 511

L
-l flag (exigrep utility), 495
l value (-q option), 466
LANs (local area networks)

hosts on, 274
masters and slaves on, 23

large installations, 67-70
lc operator, 398
LDAP (Lightweight Delivery Access

Pr otocol)
build-time options and, 34
encrypted strings and, 401
lookups, 384

data retur ned by, 385
quoting characters in, 415
types of, 386

ldap_default_servers option, 384
left angle bracket (<) (see < (left angle

bracket))
length operator, 395
Lightweight Delivery Access Protocol (see

LDAP)
linefeed, 11

message termination, 461
Linux

per formance on, 68, 267
syslog and, 483

timestamps, 450
list_dir ector softwar e, 84
listen(), 276
lists, 420-434

of addresses, 432-434
testing, 261

alias, duplicate addresses and, 122
configuration file and, 60
DNS blocking, 310-313

DUL, 310
RBL, 310

of domains, 423-426
partial- setting in, 425
single-key lookups in, 425

Index 591

9 October 2001 09:13

592 Index

lists, of domains (continued)
fr om string expansions, escaping

characters in, 424
forward, duplicate addresses and, 122
of hosts, 426-431

checks by IP address, 426
domainlist router and, 163
host checks by forward and reverse

lookups, 428
ident protocol in, 430
order in, 429
randomizing, 190, 193

items in files, 422
lookup items in, 423
mailing, 78-84

closed, 81
distinguishing personal mail from, 259
expanding, 138
exter nal softwar e for, 82
NFS-mounted, 80
nonexistent, reporting status of, 234
one_time option and, 129
reexpansion of, 81
syntax errors in, 80

of messages
operations on, 471
in queue, 31

negative items in, 421
searching, 540
separator character in, changing, 421
white, 313

list_transport option, 84
LMTP (Local Mail Transfer Protocol), 37,

188, 194
message store, 231
messages from, 376

lmtp transport, 37, 173, 231
options for, 232

lmtp value (protocol option), 188, 194
local area networks (see LANs)
Local Mail Transfer Protocol (see LMTP)
local part of message header

expansion variable for, 541
local parts of message headers, 12

addr ess rewriting and, 348
:blackhole: with, 125
case sensitivity in, 93
checking, 144
commas in, 328
deferring delivery, 125
delivering remotely, 189
ignoring in local deliveries, 91
percent signs in, 328
pr efix/suffix options and, 119

quoting characters in, 413
restricting drivers to specific, 102
routing and, 18
suf fixes in, 88
unr ecognized, 17

local_domains option, 38, 71, 420
dif ferentiating between multiple local

domains, 73
domain-literal addresses and, 447
primary_hostname option and, 456

local_domains_include_host option, 456
local_domains_include_host_literals

option, 448
local_fr om_check option, 336
local_fr om_prefix option, 336
localhost_number option, 53
$localhost_number variable, 541
local_inter faces option, 276
locally_caseless option, 133
local_part operator, 410
LOCAL_PAR T variable, 226
$local_part variable, 200, 394, 541

addr ess rewriting, 345
bounce messages, replying to, 452

$local_part_data variable, 426, 541
$local_part_pr efix variable, 541
local_parts option, 77, 102, 115

$domain variable and, 106
lookups and, 425
mailing lists and, 84
querypr ogram router and, 169

$local_part_suf fix variable, 87, 541
local_people router, 90
local_smtp transport

local/r emote domains and, 89
localuser director, 37, 146

check_local_user option and, 121
gr oup/user options and, 111
match_dir ectory option and, 108
pipe transport and, 223
requir e_files option and, 105
transport option, 49
transports for, 146

lock files, 210, 221
lock_fcntl_timeout option, 212, 219
-lockfile option (exim_lock utility), 515
lockfile_mode option, 211, 220
lockfile_timeout option, 220
locking function, 210
lock_interval option, 219
lock_r etries option, 219
log directory, 271
log files, 54, 249, 266, 271

9 October 2001 09:13

log files (continued)
build-time options and, 34
cycling, 482, 493

exicyclog utility, 494
extracting information from, 494-500

exigr ep utility, 495
eximstats utility, 495-500

of filtering actions, 256
mail commands and, 255
main log, 483

arguments/options, writing to, 486
deliveries, 490, 492
entries, format of, 488-493
mapping, 484
message completion, 493
message reception, 488
refused recipients, entries for, 487

panic log, 483
mapping, 484

reject log, 483
mapping, 484
refused recipients, entries for, 487

shadow transports and, 182
syslog, 483-484
$tod_full variable, 547
types of, 483

mappings, 484
writing to spool files, 450

log option, 235-236, 254
LOG_ALER T flag, 484
log_arguments option, 486
log_defer_output option, 228-229
log_fail_output option, 228-229
logfile command, 249, 256
log_file_path option, 484
logging, 483-500

automatic reply messages, 235-236
characters, escaping unprintable, 488
deliveries, 490

deferr ed, 492
failur es, 492

destination control, 483-488
log level, 485
to syslog, 484

exicyclog utility, 494
exigr ep utility, 482, 495
Exim monitor log display, 506
eximstats utility, 495-500

-t option, 500
in filter files, 145
message completion, 493
message delivery progr ess, 268
message reception, 488
-oMr option and, 463

options for, 486
SMTP over TCP/IP and, 373
(see also log files)

LOG_INFO flag, 484
log_level option, 485

deferr ed delivery logs, 492
LOGNAME variable, 226
LOG_NOTICE flag, 484
log_output option, 228-229
LOG_PID flag, 484
log_queue_run_level option, 487
log_r eceived_r ecipients option, 490
log_r eceived_r ecipients/log_r eceived_sender

options, 490
log_r efused_r ecipients option, 487
log_r ewrites option, 487
log_smtp_confir mation option, 491
log_smtp_connections option, 487
log_smtp_syntax_err ors option, 487
log_subject option, 488, 490
logwrite command, 249, 256

disabling, 141
lookup setting, 406
lookuphost router, 37, 150, 152, 154-158

DNS lookups, controlling, 154
fallback_hosts option and, 112
headers, rewriting, 157
host lookup failure and, 156
MX records, conditions for, 155
system host, looking up, 156
transport option, 49
verify_only option and, 154

lookup_open_max option, 391
lookups, 378

addr ess rewriting driven by, 345
caching, 391
databases

in configuration file, 59
delivery errors, 289

DBM, 72, 380
ter minating zer os and, 381

disabling, 141
DNS, 388

contr ol of, 451
dnsdb, 388
expansion strings, 406
in expansion strings, 406-410
file, in configuration file, 59
forward/r everse, host-checking by, 428
items in lists, 423
LDAP, 384

data retur ned by, 385
quoting in, 415

Index 593

9 October 2001 09:13

594 Index

lookups, LDAP (continued)
types of, 386

lookup data, quoting, 382
lsearch, 380

lists and, 423
named fields, extracting, 410

multiple-local domains and, 72
NIS, 382
NIS+, 383

quoting characters in, 415
partial, in expansion strings, 407
query-style, 134, 379, 382

in expansion strings, 408
implicit keys in, 388
quoting data in, 415
search_type option and, 162

single-key, 137, 168, 379
default values in, 389
in expansion strings, 406
partial matching in, 390
search_type option and, 162

specifying, 134
string expansions and, 145
style of, 379
temporary errors in, 389
virtual domains and, 75

loops, in delivery, 123
self option and, 153

lsearch lookups, 380
lists and, 423
named fields, extracting, 410

lsearch value (search_type option), 134

M
-M option, 263, 283

delivery processes
forcing, 298
starting, 281

Exim monitor, 510
fr ozen messages, processing, 281
user privilege and, 443

-M options, 471-473
macr os

in configuration file, 58
overriding values in, 58

mail command, 146, 233, 249, 254
MAIL command (SMTP), 13, 17

BSMTP and, 201
EHLO/HELO commands and, 309
err or responses to, 287

message errors, 286
sender addresses, ignoring, 460
sender_verify option and, 314

SIZE option, 188
verification failures, 318

mail exchange records (see MX records)
mail hubs, domainlist router on, 165
mail transfer agents (see MTAs)
mail user agents (see MUAs)
mailboxes

dir ectories for, 395
in directories, number of, 68
err or messages to, delivering, 130
in home directory, 204
locking, 68

exim_lock utility, 514
maildir format and, 69
maintaining, 514
MBX, 208

locking, 212, 220, 222
message store, managing, 231
multiple, handling, 241
NFS-mounted, 69
non-MBX, locking options for, 211
per missions to, 205
quotas, 215
symbolic links for, 206, 218

maildir format, 69, 214, 220
maildir_for mat option, 214, 220
maildir_r etries option, 220
maildir_tag option, 215, 220

quota_size_r egex option and, 216
mailer-daemon, messages from, 452
mailers (see MUAs)
mailing lists, 78-84

closed, 81
distinguishing personal mail from, 259
expanding, 138
exter nal softwar e for, 82
NFS-mounted, 80
nonexistent, reporting status of, 234
one_time option and, 129
reexpansion of, 81
syntax errors in, 80

mailq, 480
mailq command, 54
main log, 483

arguments/options, writing to, 486
deliveries, 490

deferr ed, 492
failur es, 492

entries, format of, 488-493
mapping, 484
message completion, 493
message reception, 488
refused recipients, entries for, 487

9 October 2001 09:13

mainlog file, 54
Majordomo program, 78

majordomo_aliases option and, 83
trusted_users option and, 84

majordomo_aliases option, 83
make install command, 526
Makefile file, 518-524

contents of, 519
driver choices in, 520
minimal requir ed, 522
module choices in, 521
settings

optional, 524
recommended, 521
system-r elated, 523

manually_thawed condition, 261, 471
MAPS Dialup User List, 10
-Mar option, 472

Exim monitor, 510
mask operator, 413
masking IP addresses, 412
match condition, 400
match_dir ectory option, 140, 145, 147

localuser director and, 108
matches test, 258
max_output option, 228, 230
max_rcpt option, 112, 185, 193
max_user name_length option, 456
MBX format, mailboxes, 208, 212, 220, 222
-mbx option (exim_lock utility), 515
mbx_for mat option, 208, 212, 220, 222
-MC option, SMTP over TCP/IP, 372
-Meb option, 472

Exim monitor, 511
-Mes option, 472

Exim monitor, 511
message errors, 286
message files, 266

locking, 268
names of, 266

message IDs, 52
expansion variable for, 542
as option arguments, 471
with -q option, 468

message log, 268
message store, 231
$message_age/$message_body

variables, 541
$message_body_end variable, 541
$message_body_size variable, 542
message_filter option, 243

filtering and, 242

message_filter_dir ectory_transport
option, 243

save command and, 251
message_filter_file_transport option, 243
message_filter_gr oup/message_filter_user

options, 243
message_filter_pipe_transport

option, 243-244
message_filter_r eply_transport

option, 243-244
$message_headers variable, 542
MESSAGE_ID variable, 226
Message-id: header, processing messages

with, 337
$message_id/$message_pr ecedence

variables, 542
messages, 303

appending
to files, 251
for mat of, 207
MBX format, 208, 212, 220, 222

attachments to (see attachments)
automatic reply, 145, 232, 240

disabling use of, 253
logging, 235-236
once-only, 235-236
parameters, 233
user filters and, 259
(see also autoreply transport)

batched, 199-202, 232
multiple files for, 201

blocks in, timeout for transmission
of, 192

body of, 11
bounce (see bounce messages)
contents of, inspecting

options for, 470
deferr ed, 47
envelopes, 13
err or

customized, 540
options for, 465

files for (see message files)
for mat of, 11, 197-199
forwarding (see .forward file)
fr eezing, 47, 62

allow_localhost option and, 191
delivery processes and, 281
Exim monitor and, 510
options for, 466

handling
options for, 471-473
pr ocesses for, 283

Index 595

9 October 2001 09:13

596 Index

messages (continued)
header (see headers)
incoming processing, 333-338
line termination in, 11, 199
lines in

escaping, 198
number of, 538

lists of
monitoring, 501
operations on, 471

fr om local processes, 304-307
addr esses in headers, 304
addr esses, local sender, 306
addr esses, specifying recipient, 304
infor mation in, setting, 443
sender of, setting, 442

fr om Mailer-Daemon, 452
modifying, 99
parts of

local, unrecognized, 17
transporting, 174

pr ocessing, 280
options for, 468

pr ohibition, 543
customizing, 332

in queue
listing, 31, 470, 480
modifying, 472
removing, 471

rejection, RBL, 312
relaying, 302

fr om authenticated hosts, 330
contr ol of, 326-331
encryption, using, 330
incoming/outgoing, 327-328
with incomplete domains, 328
for MX backups, 329
options for, 331
outgoing, 329
per mitting, 330
relay checking, 327
fr om specific senders, 330

separating, 197
Berkeley mailbox format, 197
MMDF format, 198

size of, 188, 194, 542
contr olling, 175, 183, 303
limiting, 65

sources of, 303
Spool file is locked, 268, 493
start/end queue run, setting log level

for, 487
transmitting, 13-15
war ning

alerting postmaster, 453
copies of, taking, 452
customizing, 455
delay, 453
handling, 451-454
replying to, 452

writing to files, 203
(see also email)

$message_size variable, 542
maildir format and, 215

message_size_limit option, 175, 183, 303
transport option, 303

metacharacters in regular expressions, 550
-Mf option, 471-472

Exim monitor, 510
-Mg option, 471, 473

Exim monitor, 510
MIME (Multimedia Internet Mail

Extensions), 94
mimencode command, 362
-Mmad option, 472

Exim monitor, 510
-Mmd option, 472

Exim monitor, 510
MMDF format, message separation, 198
mode option, 220, 236

file modes and, 207
mode_fail_narr ower option, 220
modemask option, 126, 167
mor e option, 116
-Mr m option, 471

Exim monitor, 510
msglog directory, 268, 483
msglog.OLD directory, 268
-Mt option, 263, 471

Exim monitor, 510
MTAs (mail transfer agents), xiii, 1, 5

administering, 29
authentication and, 9
EHLO command (SMTP) and, 16
incoming email, 6

checking, 19
mailbox files and, 209
message store and, 231
messages transmitted between, 13-15
modifying message bodies and, 99
MUAs and, 6
as open relays, 21
outgoing email, 6
relaying, 302, 326

(see also relaying messages)
routing and, 18
run by ISPs, 10

9 October 2001 09:13

MTAs (mail transfer agents) (continued)
types of, 10

MUAs (mail user agents), 5
Exim processes and, 32
mailbox files and, 209
MBX-for mat mailboxes and, 213
MMDF format and, 198
MTAs and, 6
running locally, 9
spam and, 10

multi_domain option, 194
multihomed hosts, 186
Multimedia Internet Mail Extensions

(MIME), 94
-Mvb/-Mvh/-Mvl options, 471
MX backups, automatic relaying for, 329
MX records, 24, 194

br oken, 448
conditions for, 155
DNS errors and, 27
DNS lookups, 388
requir ed by domain names, 191
wildcard, 155

mx_domains option, 155, 157, 191, 194
gethostbyname option and, 156

MySQL database
list of domains in, 72
lookups, 386
quoting characters in, 415

mysql_servers option, 387

N
-n option, 362

make install command, 527
-N option, 479

delivery logs, 492
$n0–$n9 variables, 542
name servers, 23

masters, 23
minimizing delays on, 69
slaves, 23
zones and, 23

finding, 28
named pipes, delivering to, 206, 218
names of senders, options for, 463
ndbm library, 381
ndbm routines, 512
net- prefix in search types, 430
network group, 195
never_users option, 440
new_addr ess option, 147, 149

addr ess rewriting, 341
new_dir ector option, 47, 78, 121

newlines
in alias expansions, 125
in Exim output, 245
headers_add option and, 109
in lists as separators, 122
message separation and, 198

NFS (Network File System)
files mounted on

MBX locking and, 208
no_fr eeze_missing_include option

and, 129
mailing lists mounted on, 80

nhash operator, 397
NIS lookups, 382
nis value (search_type option), 134
NIS+ lookups, 383

quoting characters in, 415
-no zero option (exim_dbmbuild

utility), 512
nobody_gr oup/nobody_user options, 170,

440
no_check_local_user option, mailing lists

and, 79
no_check_owner option, 207

unprivileged Exim, running, 441
no_delivery_date_r emove option, 176
-nodes option (req command), 368
no_dns_check_names option, 451
no_dns_qualify_single option, 190
no_envelope_to_r emove option, 176
noerr or value, 253
no_expn option, 120
no_fr eeze_missing_include option, 129

aliasfile director and, 80
no_headers_checks_fail option, 326
no_keepalive option, 187
no_local_fr om_check option, -f option

and, 463
no_mode_fail_narr ower option, 207
no_mor e option, 74, 102

pass_on_timeout option and, 151
no_multi_domain option, 185
no_panic_expansion_fail option, 148
no_pr od_requir es_admin option, 443
no_qualify_single option, 154, 167
no_queue_list_r equir es_admin option, 443
no_r etry_include_ip_addr ess option, 191

for retries based on hostname, 299
no_r etry_use_local_part option, 202
no_r eturn_path_r emove option, 176
no_r ewrite_headers option, 157
no_sender_verify_r eject option, 317
notify_comsat option, 218, 220

Index 597

9 October 2001 09:13

598 Index

no_verify option, 103, 316
no_verify_r ecipient option, 104
no_verify_sender option, 104, 316
nslookup command, 28
nsswitch.conf file, 90
numbers

comparisons, 403
testing conditions, 259

O
-odb/-odf/-odl options, 464
-odq option, 465

reception processes started by, 278
-odqr option, 278
-odqr/-odqs options, 465
-odqs option, 278
-oee option, 465, 481
-oem/-oep options, 465
-oi option, recipient addresses and, 305
-oM options, 463

remote host address, setting, 245
sender verification, 319

-oMa option, 463
-oMr option, 95, 463
-oMs/-oMt options, 464
once/once_r epeat options, 235-236,

254-255
vacation command and, 255

one_time option, 31, 129, 132
forwardfile director and, 81

OOB (out-of-band) data, 193
open relays, 21, 302
openssl dhparam command, 369
OpenSSL, Diffie-Hellman ciphers, 369
operators

for numeric comparisons, 535
for query-style lookup types, 415

optional option, 134, 137
OptionLists.txt file, 518
options

for address lookups, 160
for aliasfile director, 126-133
for appendfile transport, 196-222
as arguments to -bP option, 474
for authentication, 363
for autoreply transport, 232-237
build-time, 34
command-line, 458-481

for BSMTP reception, 460
for configuration overrides, 469
daemon process, starting, 459
for debugging, 478
for delivery control, immediate, 464

for error routing, 465
for hosts, remote, 463
for input mode control, 459-462
for message control, 471-473
for non-SMTP reception, 460
for queue inspection, 470
for queue runner processes, 466-469
for sender addresses, 462
for sender names, 463
for Sendmail compatibility, 479
for SMTP reception, interactive, 460
ter minating, 479
for testing, 464, 473-478
for testing retry rules, 477

configuration, outputting list of, 474
for daemon process, 276
for directors, 101-121

summary of, 114-117
for domainlist router, 158-168
for exim_lock utility, 515
for forwardfile director, 126-133
generic, 101-117

summary of, 114-117
hide setting in, 59
interaction of, 106
for lmtp transport, 232
for logging, 486
outputing values of, 59
for pipe transport, 196-203, 222-231
RBL, 313
for recipient rejection, 325
for relay control, 331
for routers, 101-117, 150-153

summary of, 114-117
sender-checking, 321
for smtp transport, 184-194
syntax, 57
for system filters, 243
time intervals in, specifying, 57
for transports, 174-184
writing to main log, 486

or operator, 405, 537
-or option, setting timeout, 462
$original_domain variable, 542
$original_local_part variable, 542
$originator_gid/$originator_uid

variables, 543
outgoing relaying (see relaying messages)
out-of-band (OOB) data, 193
owners/owngr oups options, 126, 132, 167
-oX option, 273

port for receiving messages,
specifying, 459

9 October 2001 09:13

P
P field (message reception logging), 489
pam condition, 402
PAM (Pluggable Authentication

Module), 402, 537
panic log, 483

mapping, 484
panic_expansion_fail option, 149
paniclog file, 54
parallelism, 32
$par ent_domain variable, 543
par entheses () (see () (par entheses))
$par ent_local_part variable, 543
partial- setting

in domain lists, 425
in single-key lookup types, 390

pass value
host_find_failed option, 161, 167
self option, 152

pass_on_timeout option, 151
password files

on large installations, 67
unnamed fields in, extracting, 412

passwords, 358
authentication mechanisms and, 359
CRAM-MD5 authentication and, 358
encrypted, 401
gecos field, 334
with PAM authentication, 402
plaintext authenticator and, 365
in query option, 385
(see also authenticating)

PA TH envir onment variable, exim_tidydb
utility, 514

path option, 223, 230
allow_commands option and, 227

PA TH variable, 226
PCRE library, 548
pcr etest command, 549
-pd option, perl_at_start option and, 417
percent sign (%) in local parts, 328
per formance, 9

contr olling delivery processes and, 278
database queries, reducing number

of, 408
DNS lookups, 308
hardwar e configuration and, 69
input directory and, 67, 267
on large installations, 67-70
lookups and, 426
messages in queue, listing, 471
regular expressions and, 569

supplementary group access list and, 195
syslog and, 483

period (.) (see . (period))
Perl, embedded

disabling, 141, 145
string expansion and, 417

perl_at_start option, 417
perl_startup option, 417
Per mission denied error message

checking file existence, 105
ignor e_eacces option and, 140

per missions
files, checking owners of, 207, 218
to mailboxes, 205

pgsql_servers option, 387
pid_file_path option, 273
Pine program, 358
pipe command, 239, 249, 252

as significant action, 248
in system filters, 262

pipe transport, 37, 50, 173, 196
append_string/check_string options

and, 198
autor eply transport and, 233
commands

envir onment for, 225, 229
err or handling, 227, 230
failur e to execute, 229
output from, handling, 228-229
parsing command line, 224
restricting, 227
running, 224
running from shell, 225, 231
specifying, 222
timing, 226

deliveries
batched, 199-202
contr olling envir onment for, 197

envir onment variables, 195
local delivery agents and, 85
messages

line termination in, 199
in single file, separating, 197

options for, 196-203, 222-231
pr efix/suffix options and, 198
UUCP and, 164

$pipe_addr ess variable, 181, 225
$pipe_addr esses variable, 543
pipelining, 15, 222

disabling, 128, 131-132
supplementary group access list and, 195
tranport drivers for, 127
(see also pipe transport)

Index 599

9 October 2001 09:13

600 Index

pipes, named (see named pipes)
pipe_transport/file_transport options, 127,

131
plaintext authenticator

in a client, 366
in a server, 364

plaintext value (driver option), 363
Pluggable Authentication Module

(PAM), 402
plus sign (+) (see + (plus sign))
pointer records (see PTR records)
POP daemon

password lookups and, 67
single-file delivery, 214

POP (Post Office Protocol), 9
POP3 and unprivileged Exim, 441

port option, 186, 194
pr otocol option and, 194

Post Office Protocol (see POP)
Postgr eSQL database

lookups, 387
quoting characters in, 415

postmasters, 29
bounce messages to, 453
defaulting unknown aliases to, 135
in virtual domains, 77

PP, xiii
Pr ecedence: header, value of, 542
pr efixes/suffixes with usernames, 87
pr efix_optional/suffix_optional options, 119
pr efix/suffix options, 81, 119, 203

maildir_for mat option and, 215
mbx_for mat option and, 208
messages, separating, 197
$tod_bsdinbox variable, 197
use_crlf option and, 199

pr eserve_message_logs option, 268, 483
primary_hostname option, 456

domain lists and, 424
$primary_hostname variable, 543
printing

quoting characters in, 416
while testing, 256

privileged users, 442-444
pr ocesses, 265-283

checking, 482
comsat, notifying, 218, 220
daemon, 32, 265, 273-277, 283

configuration file and, 54
options for starting, 459
SMTP calls, 274

delivery, 265, 272, 281
contr olling number of, 66
queue runners and, 279

Exim, 32-33
forking for remote deliveries, 272
gids/uids for, 271
interlocking, exicyclog utility, 271
local, messages from, 303-307
message-handling, summary of, 283
pipe command and, 252
querying, 502
queue runner, 265, 279-280, 283

addr esses, pr ocessing specific, 468
addr esses, remote, 466
addr esses, restricting to local, 466
delivery attempts by, 537
messages, processing specific, 468
number of, controlling, 279
options for, 466-469
running periodically, 467
starting, 279

reception, 265, 277, 283
relationships among, 272
shar ed files and, 265
types of, 265
zombie, 275

pr ocmail pr ogram, 85, 223
filtering and, 241
multiple user addresses, 87

pr ohibition messages, customizing, 332
pr ohibition_message option, 312, 332
pr ohibition_reason option

$rbl_domain/$rbl_text variables and, 544
$pr ohibition_reason variable, 332, 543
pr otocol option, 194

lmtp value, 188
pr otocols, messages received by, 544
ps command, 502
-ps option, perl_at_start option and, 417
PTR records, 25

DNS lookups, 388
IPv6 format for, 26

public_name option, 363

Q
Q flag (rewriting rules), 348
q flag (rewriting rules), 348
-q option, 283, 466, 481

exim_lock utility, 514
user privilege and, 443

-q options, summary of, 280
q value (-q option), 467
-q15m option, 273, 279
-q1m option, 66
-qf option, 279, 300, 469

9 October 2001 09:13

-qf f option, 263, 279, 469
fr ozen messages, processing, 281

-qf fl/-qfl/-ql options, 469
-ql option, 469
-qqf option, 300
qualify_domain option, 35, 61, 128,

304-305, 307
addr esses, rewriting, 339
client authentication and, 363
EXPN command and, 374

QUALIFY_DOMAIN variable, 226
$qualify_domain/$qualify_r ecipient

variables, 543
qualify_pr eserve_domain option, 76, 123,

128, 132, 149
qualify_r ecipient option, 61, 147, 304-305,

307
qualify_single option, 157, 168

gethostbyname option and, 156
query option, 383

values for, 385
querypr ogram command, 169
querypr ogram router, 37, 150, 169-172

$r oute_option variable and, 544
query/queries options, 137
query-style lookups, 60, 379, 382

implicit keys in, 388
question mark, regular expressions, 560
queue, 31

addr esses, adding to, 38
displaying via Exim monitor, 507
handling large, 66
inspecting, options for, 470
listing messages on, 53
writing log files to spool, 450

queue runners, 31, 265, 279-280, 283
addr esses

local, restricting to, 466
pr ocessing specific, 468
two-pass processing for remote, 466

daemon process and, 275
delivery attempts by, 537
delivery processes and, 279
maximum, 276
messages, processing specific, 468
number of, controlling, 279
options for, 466-469
periodic runs, 467
-q15m option and, 273
reception processes and, 278
starting, 279

queue_only option, 66, 279
reception processes and, 278

queue_only_file option, 278

queue_only_load option, 63, 278
queue_r emote_domains option, 278, 299
queue_run_in_order option, 280
queue_run_max option, 66, 275-276, 279
queue_running condition, 404, 537
queue_smtp_domains option, 278, 300
QUIT command (SMTP), 17
quota option, 215, 221
quota_filecount option, 216, 221
quota_is_inclusive option, 217, 221
quotas

exclusive/inclusive, 217, 221
mailboxes, 215, 221
war nings, 217, 221

quota_size_r egex option, 216, 221
quota_war n_message option, 217, 221
quota_war n_threshold option, 217, 221
quote operator, 414
quote_ldap operator, 415
quote_mysql operator, 415
quote_nisplus operator, 415
quote_pgsql operator, 415
quoting in string expansions, 413-416

addr esses, 414
lookup queries, 415
regular expressions, 414

R
R field

delivery logging, 491
message reception logging, 490

R flag (rewriting rules), 348
r flag (rewriting rules), 348
-R option, 468-469

delivery, forcing, 298
-r option, 462
r value (-R/-S options), 468
RBL (Realtime Blackhole List), 21, 310, 543

configuring Exim to use, 311
data values, 312
domains, logging headers from, 487
options for, 313
rejection, 312
war nings, 311

$rbl_domain variable, 543
rbl_domains option, 311-312
rbl_hosts option, 311
rbl_log_headers option, 487
rbl_log_rcpt_count option, 487
rbl_r eject option, 332
rbl_r eject_r ecipients option, 311

rbl_log_rcpt_count option and, 487

Index 601

9 October 2001 09:13

602 Index

$rbl_text variable, 544
rbl_war n_header option, 311
RCPT command (SMTP), 13, 19

BSMTP and, 201
callbacks, verifying, 315
err or responses to, 287
host_r eject_r ecipients option and, 313
number of

limiting, 193
in one message, 185

verification failures, 318
Realtime Blackhole List (see RBL)
Received: header

loops and, 457
$r eceived_for variable and, 544
$sender_rcvhost variable, 546
$tls_cipher variable, 370

$r eceived_for variable, 544
received_headers_max option, 457
$r eceived_protocol variable, 95, 113, 544

server authentication, 360
receiver_try_verify option, 325

receiver_verify option and, 325
receiver_verify_addr esses option

and, 325
recipient address, verifying, 323

receiver_unqualified_hosts option, 307
addr esses, rewriting, 339

receiver_verify option, 48, 325, 332
-bv/-bvs options and, 324
receiver_try_verify option and, 325

receiver_verify_addr ess option, 323
receiver_verify_addr esses option, 325
receiver_verify_hosts option, 323, 325
receiver_verify_senders option, 323-325
receiving email (see email, receiving)
reception processes, 265, 277, 283
recipient errors, 287
recipients

multiple, 13
refused, logging, 487
saving email addressed to certain, 107

$r ecipients variable, 238, 544
system filters, 262

$r ecipients_count variable, 544
recipients_r eject_except option, 312
recursive patterns, 568
regular expressions, 548-570

assertions, 563
lookbehind assertions, 563

back refer ences, 561
comments, 568
conditional subpatterns, 567
matching, 400

options, changing, 553
metacharacters in, 550
once-only subpatterns, 565
per formance and, 569
POSIX character classes, 557
quoting data for, 414
recursive patterns, 568
relaying, controlling, 549
repetition, 559-561
route_list option and, 160
subpatter ns, 558
testing, 549

reject database, 269, 513
reject log, 483

mapping, 484
refused recipients, entries for, 487

/r eject option, rbl_domains option, 311
rejectlog file, 54
relay_domains option, 328, 331
relay_domains_include_local_mx

option, 329, 331
relaying messages, 302

fr om authenticated hosts, 330
contr ol of, 326-331
encryption, using, 330
incoming, 327-328
with incomplete domains, 328
for MX backups, 329
options for, 331
outgoing, 327, 329
per mitting, 330
regular expression for controlling, 549
relay checking, 327
sending host, checking, 355
fr om specific senders, 330
over TLS sessions, 370

relay_match_host_or_sender option, 331
remote_max_parallel option, 66, 279, 281

max_rcpt option and, 193
remote_smtp option, 184
remote_smtp transport, 152

domains resolved to remote hosts
and, 152

remote_sort option, 282
reply command, disabling, 141
$r eply_addr ess variable, 544
reply_to keyword, 254
reply_to option, 234, 236
Reply-To: header

automatic reply messages, 234, 236
rewriting, 348

reply_transport option, 146
req command, 368

9 October 2001 09:13

request for comments (see RFCs)
requir e_files option, 82, 104, 116

dir ectors and, 84
uids and, 439

requir e_lockfile option, 211, 221
reroute: value (self option), 153
RES_DEFNAMES option, 154, 157

no_dns_qualify_single option and, 190
RES_DNSRCH option, 154, 158

dns_search_par ents option and, 190
Resent- headers, 333
restrict_to_path option, 227, 230
-r etries option (exim_lock utility), 515
retry database, 49, 269, 285

extracting information from, 501
retry rules, 285, 289-292

err or field, 291
examples of, 294
parameter sets, 292
patter ns, 290
retry times, 292
testing, options for, 477
ultimate address timeout, 297

retry_data_expir e option, 295
retry_include_ip_addr ess option, 194
retrying delivery, 284-301

addr ess timeouts, 297
to dial-up hosts, 297-301
err ors, 284

remote, 285-288
host-based, 284
long-ter m failur es, 295
message-based, 284
overriding times, options for, 466
timeouts, 295
times

computing, 292
using, 293

(see also retry rules)
retry_use_local_part option, 203

retry rules and, 291
retur n paths, 15

batch option and, 200
changing, 110, 177
$r eturn_path variable and, 544

retur n_fail_output option, 230
retur n_message option, 234, 255
retur n_output option, 50, 228, 230
retur n_path option, 177, 183

envelope sender, rewriting, 342
$r eturn_path variable, 544
Retur n-path: header, 175, 184

pr ocessing messages with, 337
retur n_path_add option, 175, 184

envelope preservation and, 200
retur n_size_limit option, 175, 303

$r eturn_size_limit variable and, 544
$r eturn_size_limit variable, 454, 544
rewrite option, 133, 149
rewrite: value (self option), 153
rewrite_headers option, 158
rewriting addresses, 339-354

addr ess components, expansion
variables, 542

automatically, 339
Bcc:/Cc: headers, 347
conditionally, 344
configur ed, 340-343
envelope fields, 347
Fr om: header, 348
general, 341
headers, 348
logging, 487
lookup-driven, 345
per-transport, 342
Reply-To: header, 348
rules for, 343-345

applying, 344
flags, 347-351
for mat of, 344
rewriting patterns, 345
testing, 354

Sender: header, 348
To: header, 348
as unqualified local part, 348

-Rf option, 469
RFC conformance, 444-449

8-bit characters, 445
addr ess syntax, 446-448
addr esses

canonicizing, 448
domain-literal, 447
source-r outed, 448

EHLO/HELO syntax, 449
line terminators in SMTP, 449
MX records, 448

rfc1413_hosts option, 431
rfc1413_query_timeout option, 431
RFCs (request for comments), 7

message format definition, 11
-Rf f option, 469
right angle bracket (>) (see > (right angle

bracket))
rmail, 481
root privilege, 436-439

in Exim, 437
guids/uids and, 437

Index 603

9 October 2001 09:13

604 Index

root privilege (continued)
relinquishing, 438

route_file option, 163, 168
route_list option, 89, 159, 162, 168

$0 variable, 163
$1, $2, etc. variables, 159
$value variable, 159

routelist router, local transports, 163
$r oute_option variable, 200, 544
route_query/r oute_queries options, 162,

168
router drivers, 18, 35, 101

addr esses, pr ocessing, 37-49
configuring, 150-172

for address verification, 316
header additions/removals, 176

debugging, 113
delivery errors, 289
vs. director drivers, 38
domainlist, 36
invoking smtp transport from, 189
ipliteral, 37
lookuphost, 37
options for, 101-117, 150-153

summary of, 114-117
querypr ogram, 37
restricting to specific domains, 114
transports, using, 49
(see also drivers)

router setting (-bP option), 474
router_list setting (-bP option), 474
routing (see router drivers)
routing rules

inline, 159
looked-up, 162

-Rr/-Rr f/-Rr ff options, 469
rsmtp, 480
runq, 481
rxquote operator, 414

S
S field (message reception logging), 490
-S option, 468-469
save command, 240, 249, 251

filtering and, 243
as sigificant action, 248
in system filters, 262

save option, file modes and, 207
scanning for viruses, 94-99

on external hosts, 98
on local hosts, 95

Search button (Exim monitor), 507
search_par ents option, 154, 158, 167-168

gethostbyname option and, 156
search_type option, 134, 138, 162, 168
Secur e Sockets Layer (SSL), 367

(see also OpenSSL, Diffie-Hellman
ciphers; TLS)

security, 435-442
authentication, 6, 18

forged email and, 18
-bP option and, 385
encryption, 18, 180, 367-377

certificates, creating self-signed, 368
digital signitures, modifying messages

and, 99
relaying and, 330
SMTP, 330
string comparison, 401
$tls_cipher variable, 546
(see also OpenSSL, Diffie-Hellman

ciphers)
fir ewalls (see firewalls)
ident protocol and, 430
privileged users, 442-444
relay_domains_include_local_mx option

and, 329
root privilege, 436-439

guids/uids and, 437
relinquishing, 438

symbolic links and, 206
system administrators, 443
trusted users, 442
TURN command and, 374
viruses, 21

scanning messages for, 94-99
VRFY/EXPN commands and, 374

security option, 439
unprivileged Exim, running, 440

seen finish command, 248, 492
seen option, significant actions and, 248
self option, 106, 152-153

deferr ed setting, 153
domainlist router and, 159
fail value, 153
fail_soft/fail_hard settings, 153
pass value, 152
reroute: value, 153
rewrite: value, 153
send value, 153

$self_hostname variable, 152, 545
semicolon (;) (see ; (semicolon))
send value (self option), 153
SENDER variable, 226
Sender: header

pr ocessing messages with, 335

9 October 2001 09:13

Sender: header (continued)
rewriting, 348
sender names and, 463

$sender_addr ess variable, 180, 545
addr ess rewriting, 341

$sender_addr ess_domain variable, 545
$sender_addr ess_local_part variable, 545
sender_addr ess_r elay option, 330-331
sender_addr ess_r elay_hosts option, 330-331
$sender_fullhost variable, 545
$sender_helo_name variable, 545
$sender_host_addr ess variable, 403, 545
$sender_host_addr ess variable, address

rewriting conditionally, 345
$sender_host_authenticated variable, 545

server authentication, 360
$sender_host_name variable, 309, 546
$sender_host_port variable, 546
$sender_ident variable, 546
$sender_rcvhost variable, 546
sender_r eject option, 320-321, 332
sender_r eject_r ecipients option, 320-321,

332
sender_r elay option, 332
senders option, 102, 116

mailing lists and, 81
sender_try_verify option, 321

verification failures, 317
sender_unqualified_hosts option, 307

addr esses, rewriting, 339
sender_verify option, 314, 321, 332

sender_verify_batch option and, 377
sender_verify_fixup option and, 321

sender_verify_batch option, 316, 321
sender_verify option and, 377

sender_verify_callback_domains
option, 315

sender_verify_callback_timeout option, 315
sender_verify_fixup option, 318, 321
sender_verify_hosts option, 316, 320, 322,

427
sender_verify_hosts_callback option, 315
sender_verify_max_r etry_rate option, 317,

322
sender_verify_r eject option, 322

sender_verify_fixup option and, 319, 321
verification failures, 317

Sendmail, xiii
argument addresses and, 461
command interface, 2
compatibility in Exim, 479
configuring Exim as replacement for, 34
daemon process and, 273

serialize- database, 513

serialize-etr n database, 270
serialize-etr n-runs database, 513
serialize_hosts option, 185, 194
server_condition option, 364
servers, 540

authenticators in
cram_md5, 366
deter mining, 359
plaintext, 364

connecting to, 16
EHLO command (SMTP) and, 16
Exim, authentication on, 360
name (see name servers)

minimizing delays on, 69
rejecting envelopes, 17
TLS, configuring Exim to use, 368
X Window system, 470

server_secr et option, 366
server_set_id option, 364

message reception logging, 489
seteuid(), 437
setuid flag, 437
setuid root, configuring Exim as, 271
setuid(), 437
-Sf/-Sf f options, 469
sg operator, 399
shadow transports, 184
shadow_condition option, 182, 184
shadow_transport option, 182, 184
shar ed files, processes and, 265
shell option, restrict_to_path option

and, 227
SHELL variable, 226
shell, calling Exim from (see command-line

inter face)
SIGHUP signal, 34

configuration file, updating, 511
daemon process and, 275

significant actions
in filter files, 248
testing for, 261

SIGUSR1 signal, 502
Simple Mail Transfer Protocol (see SMTP)
single quote (') (see ' (single quote))
single-key lookups, 60, 379

default values in, 389
partial matching in, 390

Size button (Exim monitor), 506
SIZE option (SMTP), 16, 188

message errors and, 286
size_addition option and, 194

size_addition option, 188, 194
smtp transport and, 181

Index 605

9 October 2001 09:13

606 Index

/skipr elay option, rbl_domains option, 313
skip_syntax_err ors option, 130, 133

mailing lists and, 80
Smail, xiii, 481
smart host, 158
SmartList program, 78

list_transport option and, 84
requir e_files option and, 104

smartuser director, 37, 77, 118, 147
addr ess verification and, 104
generating new addresses, 147
requir e_files option and, 104
transport settings and, 136

smtp option, BSMTP and, 201
SMTP (Simple Mail Transfer Protocol), 7,

15-18, 184
authentication (see authenticating)
-bd option and, 273, 283
commands, timeouts for receiving

response to, 192
connections, 274

addr ess verification, 103
contr olling number of, 64
daemon process and, 274
encrypted, 367-377
hosts reserved for, 277
inter face binding, 193
locking out, 2
logging, 487
maximum allowed, 276
queue of, 275
responding to, 457
suspending, 64
virtual interfaces and, 273

daemon process and, 265
encryption (see security, encryption)
exchanges, timeouts associated with, 187
ident protocol and, 430
line terminators in, 449
local, 376
message reception and, 283, 303

options for, 460
reception, setting timeout for, 457
response codes, 15
rewriting addresses, flags for, 349
sender addresses, checking, 314
smtp transport and, 37
standards, 11
over TCP/IP, 372-376

incoming, 373
outgoing, 372

(see also smtp transport)
smtp transport, 36-37, 173

addr esses, multiple, 185

AUTH command and, 188
calls, control of outgoing, 185
domains, mixed, 194
hosts

fallback, specifying, 190
local, 191
retrying, 191
specifying, 189

IP addresses and, 190
LMTP and, 188
messages, size of, 194
options for, 184-194
retry records, 194
router invocation of, 189
SIZE option and, 188
size_addition option and, 181
SMTP over TCP/IP, 372-376
TCP/IP

connection, 186, 194
ports, specifying, 194

TLS client configuration, 371
smtp value (port option), 187
smtp_accept_keepalive option, keepalive

option and, 193
smtp_accept_max option, 64, 274, 276
smtp_accept_max_per_host option, 274,

276
smtp_accept_queue option, 65, 274, 276
smtp_accept_queue_per_connection

option, 301
smtp_accept_r eserve option, 274, 277
smtp_banner option, 457
smtp_connect_backlog option, 65, 275, 277
smtp_etr n_command option, 376

$domain variable and, 539
smtp_etr n_hosts option, 375
smtp_etr n_serialize option, 375

smtp_etr n_command option and, 376
smtp_expn_hosts option, 120, 374
smtp_load_r eserve option, 64, 274, 277
smtp_r eceive_timeout option, 457
smtp_r eserve_hosts option, 64, 277
smtp_verify option, VRFY command

and, 374
$sn0–$sn9 variables, 546
SO_KEEPALIVE option, 187, 193
Solaris

Bour ne shell, server authentication
on, 362

configuring Exim on, 34
per formance on, 267
timestamps, 450

spam, 310

9 October 2001 09:13

spam (continued)
blocking, 21
callback verification and, 315
filtering, 240
forged headers and, 18
fr ozen messages and, 62
MUAs and, 10
senders, explicitly rejecting, 320
$sn0–$sn9 variables and, 546
(see also DNS blocking lists)

split_spool_dir ectory option, 67, 267, 280
spool area, 7
spool directory, 266
Spool file is locked message, 268, 493
spool files, writing log files to, 450
$spool_dir ectory variable, 546
squar e brackets ([]) (see [] (squar e

brackets))
src dir ectory, 518
-Sr/-Sr f/-Sr ff options, 469
s/S flags (rewriting rules), 348
SSL (Secure Sockets Layer), 367

(see also OpenSSL, Diffie-Hellman
ciphers; TLS)

staf f gr oup, 195
start queue run message, log level for,

specifying, 487
STAR TTLS command (SMTP), 367
stat(), exists condition and, 404
sticky bit directory, 205
string expansions, 392-419, 533-547

character translation, 398
conditional, S

combining, 405
encrypted string comparison, 401
expansion failure, forcing, 405
files, testing existence of, 404
headers, nonexistent, 403
message delivery, testing status of, 404
negated, 400
numeric comparisons, 403
PAM authentication, 402
regular expression matching, 400
specific strings, testing for, 399
variables, empty, 403

conditions for, 535
combining conditions, 537

in configuration file, 59
disabling exists condition, 141
domain lists from, escaping characters

in, 424
embedded Perl, 417
in filter files, exists condition and, 145
header insertion, 394

lookups in, 378, 406-410
database queries, reducing number

of, 408
defaults for, 409
query-style, 408
single-key, 406

numeric comparisons in, 103
operators for, 535

quoting characters in, 413-416
addr esses, 414
lookup queries, 415
printing characters, 416
regular expressions, 414

reexpansion, 416
substring operations, 395-398

case of letters, forcing, 398
extracting fields from, 410-412
hashing operators, 397
initial part, extracting, 395
parts of, extracting, 396

testing, 418
text substitution, 399
valid items in, 533
variable substitutions, 394, 538-547

strings
encrypted comparison of, 401
substring operations, 395-398

case of letters, forcing, 398
extracting fields from, 410-412
hashing operators, 397
initial part, extracting, 395
parts of, extracting, 396

testing conditions, 258
testing for specific, 399

stripcharts (Exim monitor), 505
strip_excess_angle_brackets option, 447
strip_trailing_dot option, 447
subject option, 234, 237
Subject: header

automatic reply messages, 234, 237
filtering by, 240

substr operator, 396
suf fixes/prefixes with usernames, 87
suf fix/prefix options, 81, 203

maildir_for mat option and, 215
mbx_for mat option and, 208
messages, separating, 197
$tod_bsdinbox variable, 197
use_crlf option and, 199

supplementary group access list, 195
SUPPOR T_CRYPTEQ option, 536
syntax_err ors_text option, 130, 133
syntax_err ors_to option, 130, 133

Index 607

9 October 2001 09:13

608 Index

sysadmin value (admin_groups option), 444
syslog, 483-484

UDP and, 483
system administrators, 443

Exim group, adding to, 436
queue runner processes, starting, 466

system alias file, 34, 36
filenames in, specifying, 51
pipes specified in, 51

system filters, 238
deliver command and, 250
delivery processes and, 281
filenames in, 251
options for, 243
$r ecipients variable, 262
save command and, 251
setting up, 242
significant actions and, 248
testing, 246
virus scanning and, 97

T
T field (delivery logging), 491
t flag (rewriting rules), 348
T flag (rewriting rules), 347
-t option, 283, 446, 462

addr esses as arguments to, 461
Bcc: option and, 336
exim_tidydb utility, 513
message reception and, 460

addr esses, 305
message termination and, 460

-t option (eximstats utility), 500
TCP/IP

connection
contr ol of, 186
hosts and, 194
message relay options, 331
messages received over, 540
number of message deliveries

over, 192
hosts and, serialization, 186
messages received over, 303
ports, 186

specifying, 194
reception processes and, 277
SMTP over, 372-376

incoming, 373
outgoing, 372

temp_err ors option, 227, 230
testprint command, 245, 249, 256
text option, 234, 237

text substitution in string expansions, 399
$thisaddr ess variable, 546
tidy_alldb file, 514
time intervals, specifying in options, 57
time values (-q option), 467
time/date, $tod_full variable, 547
timeout option, 170, 172, 226, 230, 232
-timeout option (exim_lock utility), 515
timeouts

for connect(), 192
for connection attempts, 285
file locking, 220
for ident callbacks, 431
mailbox locking and, 212, 219
for non-SMTP message reception, 462
pipe commands, 226, 230
for responses

to messages, 193
to SMTP commands, 192

for retry data, 295
SMTP

exchanges, 187
reception, 457

for transmission of message blocks, 192
timestamps, 449
timestamps_utc option, 449
time-to-live field, 23
timezone option, 449
TLS (Transport Layer Security), 367

clients
forcing use of, 370
relaying, 370

configuring as client, 371
configuring as server, 368
connections, setting conditions on, 369
variables for, 370

tls_advertise_hosts option, 368
tls_certificate option, smtp transport

and, 371
$tls_cipher variable, 370, 546
tls_dhparam option, 369
tls_host_accept_r elay option, 330
tls_host_accept_r eplay option, 370
tls_hosts option, 370
tls_log_cipher option, 489
tls_log_peerdn option, 371, 489
$tls_peerdn variable, 370, 547
tls_privatekey option, smtp transport, 371
tls_verify_certificates option, 370

smtp transport and, 371
tls_verify_ciphers option, 369

smtp transport and, 371
tls_verify_hosts option, 369

9 October 2001 09:13

to option, 234, 237
To: header

automatic reply messages, 237
pr ocessing messages with, 336
rewriting, 348

$tod_bsdinbox variable, 197, 547
$tod_full variable, 547
$tod_log variable, 405, 547
tr operator, 398
translating characters in string

expansions, 398
transport drivers, 35, 101

adding data for use by, 108-113, 121
addr ess rewriting and, 177, 342
configuring, 173-237
debugging, 174
dir ecting to, 148
for files, 127
filtering (see transport filters)
headers and, adding/removing, 175
local, 163

curr ent/home dir ectories and, 196
envir onment for, 194-196
expansion variables derived from

addr ess, 196
gids/uids and, 195

for local delivery agents, 85
for localuser director, 146
messages and

size of, controlling, 175, 183
transporting only parts of, 174

options for, 174-184
for pipes, 127
piping messages to external software, 84
remote, 184

(see also smtp transport)
retur n path, changing, 177
shadow, 182, 184
specifying for aliasfile director, 135
types of, 36
varying, 166
(see also drivers)

transport filters, 180, 242
encryption and, 180
modifying messages and, 99

Transport Layer Security (see TLS)
transport option, 49, 101, 135, 146

bsmtp value, 164
ipliteral router and, 169

transport setting (-bP option), 474
transport_filter option, 180, 184
transport_list setting (-bP option), 474
trusted users, 442
trusted_users option, 84, 442

TZ environment variable, 450

U
U field (message reception logging), 489
uc operator, 398
UDP (User Datagram Protocol), syslog

and, 483
uids (user ids), 543

batch option and, 200
ef fective/real/saved, 437
local transports, 195
no_check_owner option and, 207
pipe commands, 224
privilege control by, 437
for processes, 271

calling Exim, 539
security and, 436

ultimate address timeout, 297
umask option, 231
Unifor m Resource Locators (URLs), quoting

characters in, 415
Universal Coordinated Time (UTC), 449
Unix

file locking in, 209
line termination, 11
uptime command, 274

Unix-to-Unix Copy (see UUCP)
unknown local part error message, 108
unknown user error message, 48
:unknown:, 126

forbid_special option and, 137
unprivileged setting (security option), 441
unseen option, 107, 116

headers_add option and, 110
noerr or value, 253
pipe command and, 239
significant actions and, 248

unsolicited junk mail (see spam)
untrusted_set_sender option, 443, 462
Update action button (Exim monitor), 508
upgrading Exim, 530
uptime command (Unix), 63

system load averages, 274
URLs (Uniform Resource Locators), quoting

characters in, 415
use_crlf option, 199, 203
use_fcntl_lock option, 211, 221

use_mbx_lock option and, 212
use_lockfile option, 211, 222
use_mbx_lock option, 222

use_fcntl_lock option and, 212
User Datagram Protocol (see UDP)

Index 609

9 October 2001 09:13

610 Index

user filters, 238
deliver command and, 250
save command and, 251
setting up, 242
significant actions and, 248

user ids (see uids)
USER variable, 226
user variables, 249
user forward dir ector, 87
user/gr oup options, 110-111, 115, 117, 232

delivery environment, controlling, 197
gids/uids, 224
local transports and, 195
unprivileged Exim, running, 441

user names, 13
length of, 456
pr efixes/suffixes with, 87
(see also local parts of message headers)

users
admin (see system administrators)
checking local, 139
privileged, 442-444
trusted, 306, 442

use_shell option, 225, 231
allow_commands option and, 227

UTC (Universal Coordinated Time), 449
UUCP (Unix-to-Unix Copy)

batched delivery and, 199
Berkeley mailbox format, 197
email deliveries to, 90, 164
Fr om line, processing, 334

uucp_fr om_pattern option, 306
uucp_sender_addr ess, 306

V
-v option

Exim monitor, 510
exim_lock utility, 515
results of conditional tests, 244

vacation command, 146, 233, 239, 249, 254
once keyword, 255

.vacation.msg file, 239
$value variable, 159, 407, 547
variable envelope retur n paths (see VERPs)
variables

empty, 403
envir onment

EXIMON_ prefix, 504
for pipe commands, 226
pipe transport and, 195

expansion, 536
in expansion strings, 538-547
HOME, 196

local transports and, 196
set for TLS connection, 370
substitution, 394
user, 249
values of

checking, 174
printing, 256

verification callback, 315
verify option, 117
verifying addresses (see addresses,

verifying)
verify_only option, 104, 117, 316

lookuphost router and, 154
verify_r ecipient option, 117

-bv/-bvs options and, 475
verify_sender option, -bv/-bvs options

and, 475
VERPs (variable envelope retur n

paths), 177
max_rcpt option and, 185

$version_number variable, 547
vertical bar (|) (see | (vertical bar))
virtual domains, 74-78
viruses (see security, viruses)
VISUAL environment variable, 472
VRFY command (SMTP), 374

W
w flag (rewriting rules), 349
wait- database, 269, 513
/war n option, rbl_domains option, 311
war ning messages

alerting postmaster, 453
copies of, taking, 452
customizing, 455
delay, 453
handling, 451-454

replying to, 452
$war nmsg_delay variable, 456, 547
war nmsg_file option, 455
$war nmsg_recipients variable, 547
+war n_unknown/+allow_unknown

settings, 429
with ident prefix, 431

web servers
local_inter faces option and, 276
virtual, 273

web site, Exim, 517
white lists, 313
whitespace in string expansions, 393, 533
widen_domains option, 156, 158

9 October 2001 09:13

wildcards
exceptions to in lists, 421
in host lists, 428

X
X field (message reception logging), 489
X Window system, 3

Exim monitor and, 503-511
server, 470

xinetd, 32
X-RBL-War ning: header, 311

Z
zer os, ter mination, DBM lookups and, 381
zombie processes, 275
zones, 23

name servers and, 23
finding, 28

types of, 25

Index 611

9 October 2001 09:13

9 October 2001 09:13

About the Author
Philip Hazel has a Ph.D. in applied mathematics, but has spent the last 30 years
writing general-purpose software for the Computing Service at the University of
Cambridge in England. Since moving from an IBM mainframe to Unix about ten
years ago, he has gotten more and more involved with email. Philip started
developing Exim in 1995 and is its sole author.

Colophon
Our look is the result of reader comments, our own experimentation, and feed-
back from distribution channels. Distinctive covers complement our distinctive
approach to technical topics, breathing personality and life into potentially dry
subjects.

The animal on the cover of Exim: The Mail Transfer Agent is an aye-aye. The aye-
aye is part of the order of primates, and in fact is part of the lemur group. Native
to Madagascar, they are considered one of the strangest looking primates, and not
very much is known about them. A full-grown adult is about the size of a raccoon.
Its features include large round ears, black fur with white spots, a flat nose, and
big round eyes. Two very distinctive characteristics of the aye-aye are its incisor
teeth, which never stop growing, and its long, spindly fingers, of which the middle
finger is the longest. Both of these traits are used as tools in hunting food. The
aye-aye lives mostly on bug larvae and fruit; it often uses its teeth to break open
dead tree bark, then uses its long middle finger to reach inside and take hold of
the bugs.

The aye-aye is completely nocturnal, and lives mostly in trees in the forest. Unfor-
tunately, it is dangerously close to extinction. One reason for this is that its natural
habitat, the rain forest, is gradually being destroyed for resources. Due to this loss
of its food source, the aye-aye has had to forage for food in other areas, and often
steals from local farms. For this reason, it is killed as a pest. Also, in parts of Mada-
gascar, there is a superstition that the aye-aye is a harbinger of bad luck and
death; therefore, it is often killed on sight. However, steps are being taken to
ensure the safety of the species, such as breeding some in captivity and declaring
certain areas of the forest as protected.

Mary Brady was the production editor and proofreader and Mark Nigara was the
copyeditor for Exim: The Mail Transfer Agent. Jane Ellin and Claire Cloutier
provided quality control. Ann Schirmer, Gabe Weiss, and Lucy Muellner provided
production assistance. Nancy Crumpton wrote the index.

,Colophon.10429 Page 1 Tuesday, October 9, 2001 9:25 AM

Ellie Volckhausen designed the cover of this book, based on a series design by
Edie Freedman. The cover image is a 19th-century engraving from the Dover
Pictorial Archive. Erica Corwell produced the cover layout with QuarkXPress 4.1
using Adobe’s ITC Garamond font.

David Futato designed the interior layout based on a series design by Nancy Priest.
The print version of this book was created by translating the DocBook XML
markup of its source files into a set of gtroff macros using a filter developed at
O’Reilly & Associates by Norman Walsh. Steve Talbott designed and wrote the
underlying macro set on the basis of the GNU troff –gs macros; Lenny Muellner
adapted them to XML and implemented the book design. The GNU groff text
formatter Version 1.11.1 was used to generate PostScript output. The text and
heading fonts are ITC Garamond Light and Garamond Book; the code font is
Constant Willison. The illustrations that appear in the book were produced by
Robert Romano and Jessamyn Read using Macromedia FreeHand 9 and Adobe
Photoshop 6. This colophon was written by Mary Brady.

Whenever possible, our books use a durable and flexible lay-flat binding. If the
page count exceeds this binding’s limit, perfect binding is used.

,Colophon.10429 Page 2 Tuesday, October 9, 2001 9:25 AM

