é ,Title.10724 Page 1 Tuesday, October 9, 2001 9:25 AM

*

Exim
The Mail Transfer Agent

.

,Title.10724 Page 2 Tuesday, October 9, 2001 9:25 AM

é ,Title.10724 Page 3 Tuesday, October 9, 2001 9:25 AM

*

Exim
The Mail Transfer Agent

Philip Hazel

O’REILLY"

Beijing - Cambridge - Farnbam - Kéln - Paris - Sebastopol - Taipei - Tokyo

.

4~ 4

é ,Copyright.10561 Page 1 Tuesday, October 9, 2001 9:25 AM

Exim: The Mail Transfer Agent
by Philip Hazel

Copyright © 2001 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.
Editor: Andy Oram
Production Editor: Mary Brady

Cover Designer: Ellie Volckhausen

Printing History:

June 2001: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks of O'Reilly & Associates, Inc. Many of the designations used by manufacturers
and sellers to distinguish their products are claimed as trademarks. Where those designations
appear in this book, and O'Reilly & Associates, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps. The association between the image of
an aye-aye and Exim is a trademark of O’Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Library of Congress Cataloging-in-Publication Data

Hazel, Philip
Exim: the mail transfer agent/by Philip Hazel p.cm.
ISBN 0-596-00098-7
1. Exim (Computer program) 2. Email--Computer programs I. Title

TK5105.73 .H39 2001
004.692--dc21 2001036079

9 October 2001 09:13

Table of Contents

Prefacecccccccooiiiiiiiiiiiiiiieee s Xiii
ANIrOdUCTION ..., 1
. How Internet Mail WOTRSccccooooiviiiiiiiiiiiiiiiiccc, 5

Different TyPes Of MTAooiiiiiiieiiece e 10
Internet Message Standardscoooiiiiiiiiiiii 11
RFC 822 Message FOrmat ...ttt 11
The Message “On the WIre”cccciiiiiiiiiiiiie e 13
Summary of the SMTP ProtoCOlccccoiiiiiiiiiiiiiiiiie e 15
FOIEIY oo 18
Authentication and ENCIYPHONocooiiiiiiiiiiiiiiicicee e 18
ROULING @ MESSAZE ...vvvvviiiiiiiiiiiiii e 18
Checking Incoming Mailccccoiiiiiiiiiii e 19
Overview Of the DINS ..ot 21
DNS Records Used for Mail ROUHNGcooiiiiiiiiiiiiiiiiecie e 24
Related DINS RECOIAS ..oiiuiiiiiiiiiiiie ettt 25
Common DNS EITOTScccoiiiiiiiiiiiiiiiiii 27
Role Of the POSUMASIEToiuiiiiiiiieiie ettt 29
o EXE QUCTUICU ... 30
EXim PhilOSOPRNY ...ooiiiiiiiii e 30
EXIM’S QUEUE ..ot 31
Receiving and Delivering MESSAZESooivieuiiiiiiiiiaieaiie et 31
EXIM PIrOCESSES ... e 32
v

9 October 2001 09:13

vi Table of Contents
Coordination Between PrOCESSEScciviiiiiiiiiiiiiiiiiiie et 32
How Exim Is CONfIguredcccooiiiiiiiiiiiiiieec e 33
How EXim Delivers MESSAZESc.iiriiriiiiiaiiiiiiiie ettt 35
Local and Remote AdAIesSescciviiiiiiiiiiiiiiiiiiiit s 37
Processing an AddIessccoiiiiiiiiiiiie e 38
A Simple EXample ..o, 40
Complications While Directing and ROUUNGcccovviiiiiiiiiiiiiieiieie e 46
Complications During DeliVeryccccoiiiiiiiiiiiiiiie e 48
Complications After DEIVEIYcooiiiiiiiiiiiiiii 49
Use of Transports by Directors and ROULETScccooviiviiiiiiiiiiiiieiieaene 49

4. Exim Operations QUervielcccococoevveviniiniin, 52
How Exim Identifies MESSAZESooveiiiiiiaiieiie et 52
Watching Exim at WOrkccccciiiiiiiiiiii e 53
The Runtime Configuration Filecccoooiiiiiiiiiiiiiiiic e, 54
The Default Qualification Domaincccceeoviiiiiiiiioiicccic e 61
Handling Frozen Bounce MESSAZESccceeruiiriiiiiiiiiiaiiiiiiiie et 62
Reducing Activity at High Loadcccoociiiiiiiiiii e 62
Limiting MESSAZE SIZES ...eviiiuiiiiieiie ettt ettt 65
Parallel Remote DElVEIYccoooiiiiiiiiiiiiiieie e 65
Controlling the Number of Delivery ProCessescoccovveviiiiieinieiniencanne. 66
Large MeSSAZE QUEUESoiiuiiiiiaiieeiie et et e tee et ettt ettt e etee e ee et e e enee s 66
Large INStAllAtionsSccoioiiiiiiiiiiiii et 67

5. Extending the Delivery Configuration 71
Multiple Local DOMAINSc.ooiiiiiiiiiiiiii e 71
Virtual DOMAINS ...oviiiiiiiiiiii i 74
MalING LISES ..eteiieiiiiie ittt 78
Using an External Local Delivery AGentccccooeiiviiiiiiiieiiiieiiie e 85
Multiple USEr AAIESSESovuviiiiiiiiiiieiie ettt 87
Mixed Local/Remote DOMAINSoeouiiiiiieiiiieiiiie et 88
Delivering to UUCPociiiiiiiiiiit et 90
Ignoring the Local Part in Local Deliveriescccovviviiiiiiiiiiiiieie e 91
Handling Local Parts in a Case-Sensitive Mannerccceeeveeviieniieeninenns 93
Scanning Messages fOr VIIUSESccoiviiiiiiiiiiiiiiiieiie it 94
Modifying Message BOIESccocoiiiiiiiiiiiiiiicie st 99

9 October 2001 09:13

Table of Contents vii

6.

10.

Options Common to Directors and Routers 101
Conditional Running of Routers and Dir€Ctorscccceovieriiriiinieniicninennn 102
Changing a Driver’s Successful Outcomecccocceviiiiriiiiiiiiic, 107
Adding Data for Use Dy TIanSPOLLSccueeoviiiiiiiieiiiaiiaiie et 108
Debugging Directors and ROULETScociviiiiiiiiiiniiiiieiieiicicece e 113
Summary of Director/Router Generic OPtONScccovevverreenienieiieanieee 114
The DiETECIOTSccooiiiiiiiiiiieiieeete e 118
Conditional RUNNing Of DIr€CLOLScvuiiiiiiiiiiiiiieiieiie ettt 119
Optimizing Single-Level AHasingcccccoiiiiiiiiiiiiiiiiee e 120
Adding Data for Use by TTanSPOItScocveriiiiiieriieniiiniiaieeniieeeesee e 121
The aliasfile and forwardfile DIrectorscccccoceviiniiiiiniiniininiee 121
The aliasfile DITECLOT ...ooveie e 133
The forwardfile DIr€CIOTccoiiiiiiiiiiiiii e 138
The 10caluser DIFECIOToviiiiiiiiiiiic e 146
The smMartuser DIFECIOToocviiiiiiiiiiiiiie ittt 147
TDE ROULCYTS ...t 150
Timeouts While ROUHNGc.oooiiiiiiiiiiiiii i 150
Domains That Route to the Local HOStcccooiiiiviiiiiiiiiiiiciece 151
The loOKUPROSE ROULET ..ottt 154
The domainlist ROULETcoiuiiiiiiiiiiiiiiiii e 158
The Ipliteral ROULET ...c.iiiiiiiiiiii ittt 169
The qUeryprogram ROULETcociiiiiiiiiiiiiie et 169
The TranSPOTEScccccccceveiiiiiiiiiieeeeeeeee s 173
Options Common to All TIANSPOILSeovuiieiiiieiiieiiiie et 174
The SMP TLANSPOIT ..oviiiiiiiiiiiiiiiieie e 184
Environment for Local TranSPOItScccviiiuieiiieiiiiiieaiiesiie et 194
Options Common to the appendfile and pipe Transportscceeueeee. 196
The appendfile TranSPOITccoociviiiiiiiiiiiiii e 203
The PIPE TIANSPOIT oottt 222
The IMEP TIANSPOIT .eeiiiiiiiiiiii et 231
The autoreply TTANSPOTT ...ccviiiiiiiiiiiiie et 232
Message Fillering ..., 238
Examples of Filter CoOmmandscocveiiiiiiiiiiiiiiieeie e 239
Filtering Compared with an External Delivery Agentccccocevveennrnne. 241
Setting Up @ USer Filterooiiiiiiiiiiiiiiiiie e 242
Setting Up a System Filterccooiiiiiiiiiiii e 242
Testing Filter FIleSoooiiiiiiiiiiiioii e 244

9 October 2001 09:13

viii Table of Contents
Format of FIlter FIleSccoiiiiiiiiiiiiiiiiiiicii e 246
SIGNIICANT ACHOTS ...viiiiiiiiit ittt 248
Filter COmMMEANASooiiiiiiiiiiiic e 249
The add Commandcccoiiiiiiiiii e 249
Delivery COmMMANAScoouiiiiiiiiiiie et 250
Mail COMMEANGAS ©.ovine e 253
Logg@ing COMMANGSoiiiiiiiiiiiii ettt 256
The testprint COMMANcoooiiiiiiiii e 256
The finish Commandcoocooiiiiiiii e 257
Obeying Filter Commands Conditionallycccocoiiiiiiiiiiiii 257
Additional Features for System Filterscccoooiiiiiiiiiiiiiiieiieiieeie e 2062

11. Shared Data and Exin Processes 265
MESSAZE FILES ..viiiiiiiiiiiiicii et 266
Locking Message Filesccoiiiiiiiiiiiiiiii e 268
HINES FlES .ottt 269
LOG FilES ..ottt 271
User and Group IDs for EXim ProCeSSEscccooeiiiiiiariiniiiiiaiienieaenn, 271
Process RelationShiPSo.ioiiiiiiiiiiiiie e 272
The DACMON PLOCESS ... e 273
RECEPUON PTOCESSES ...eeiiiiiiiiiiiiiiiiiieiiit et 277
Queue RUNNET PrOCESSESoiiiiiiiiiiiiii e 279
DElIVETY PIOCESSES ...cuvviiiiieiiieiiiiiit et 281
Summary of Message Handling Process TYPeScccocvvveinieniiiiieaiianienne. 283
Other TYPES Of PIOCESSieuvieiieiiiiaiieoiie ettt 283

12. Delivery Errors and Retrying ... 284
Retrying After EITOTSoiiiiiiiiiiiiioiit ettt 284
Remote DElIVETY EITOISooiiiiiiiiiiiiiiieic e 285
LocCal DEliVEry EITOTS ...oiiiiiiiiiiiiie et 288
Routing and Directing EITOTSccoiiiiiiiiiiiiiie et 289
RELIY RULES .ottt 289
Computing REtry TIMESoiiiiiiiiiiiiiiiiiciii e 292
USING RELTY TIMES ..iiiiiiiiiiiiiieiiiiie e 293
Retry Rule EXAMPIES ...oooviiiiiiiiiiiiiei e 294
Timeout Of Ry DAccoeiiiiiiiiiiiiiiie et 295
Long-Term FailUIeScoooiiiiiiiiiiii e 295
Ultimate Address TIMEOULccciiiiiiiiiiiiiieeie e 297
Intermittently Connected HOSESouiiiiiiiiiiiiiiiii it 297

9 October 2001 09:13

Table of Contents ix

13.

14.

15.

16.

Message Reception and Policy Controls 302
MESSAZE SOUICES ...vviiiiiieeeetiiii ettt e e e e 303
Message Size CONIIOLoiiiiiiiiiiii e 303
Messages from LOCAl PrOCESSESoouviiiiiiiiiiieiie it 304
Unqualified Addresses from Remote HOSESccccooviiiiiiiiiiieiiiieiiiee e 307
Checking a RemoOte HOSEccviiiiiiiiiiiiie e 308
Checking Remote Sender AddIessescoovviiiiiiiiiiiiiieiieiie e, 314
Checking Recipient AAdIreSSescociiiiiiiiiiiiiiiieiiie et 322
Checking Header LiNe SYNEAXcccoiiiiiiriiiiiaiie et 320
Relay CONIOL ..ottt 326
Customizing Prohibition MESSAZEScccceeiiuiiiiiiiiiiiiieiiee e 332
Incoming Message ProCessingcooccciiiiiiiiiiiiiiiiiee 333
Rewriting AddAresses ... 339
AUtomatic REWTITINGoooiiiiiiiiiii e 339
Configured REWTIHNGooviiiiiiiiiiii et 340
REWTIING RULESiiiiiiiiiiiiiii et 343
REWTItING PAtL@INIS ..oiiiiiiiiiiiiii e 345
REWTIING FIAGS ..iiiiiiiiiiie e 347
A Further Rewriting EXampleccoooiiiiiiiiiiiiie e 351
Testing REWTItNG RULESooiviiiiiiiiiiiie e 354
Authentication, Encryption, and Other SMTP Processing 355
SMTP AUTNENTCATION t.tiviieeieeeeeeee e 355
Encrypted SMTP CONNECHOMNSccuvviiiiiieiiiieeiieeeiiie ettt e e ns 367
SMTP OVET TCP/IP ..oiiiiiiiiiiiit ittt 372
LOCAL SMTP e 376
BatChed SIMTP oo e e e 377
File and Database LOORUPScccocooviiiiiiiiiiiiiiin, 378
Single-Key LOOKUP TYPES .vviviiiiiiiiiiiiiiiiiie ettt 379
Query-Style LOOKUD TYPES .eeiuiiiiiaiieiiieeiie ettt 382
Quoting LOOKUP DAtA ..ooiiiiiiiiiiiiiie ettt 382
NS e 383
LD AP e 384
MySQL and POSEGIESQLccuuiiiiiiiiiiieeiie e 386
DINS LOOKUPS ...ttt 388
Implicit Keys in Query-Style LOOKUPS ...ccvoiivieiiiiiiiieeiie e 388
Temporary Errors in LOOKUPSooiiiiiiiiiiiiice e 389
Default Values in Single-Key LOOKUPScccceviiiiiiiiiiiiiiicicicec 389

9 October 2001 09:13

x Table of Contents
Partial Matching in Single-Key LOOKUDPSccooiiiiiiiiiiieiieiie e 390
LOOKUP CACING ..ottt 391

17. String EXPANSIONccccocooiiiiiiiiiiiiieeee s 392
Variable SUDSHUIULIONcooooiiiiiiiiii e 394
Header INSEItIONocuiiiiiiiiiiiiii ittt 394
Operations ON SUDSIIINGSciuiiiiiiiiiiie ettt 395
Character TranslaAtiONcoooeeiiieiiiie et 398
TeXt SUDSHIULION ..eiviiiiiiiiiiici e 399
Conditional EXPANSIONioiuiiiiiiiiiiieiie et 399
Lookups in EXpansion StrNESc..ccoveriiiiiiiiiiiiiiiiiieeneee e 406
Extracting Fields from SubStringsccocooviiiiiiiiiiiiiic 410
TP AdAress MaSKINGocuiiiiiiiiiiiiiiie ettt 412
QUOBINIG ettt ettt ettt e et e e 413
REEXPANSION ..iiiieiii ittt 416
Running Embedded Perlccooiiiiiiiii e 417
Testing String EXPANSIONSccoiiiiiiiiiiiiiiiiiiiiicc e 418

18. Domain, Host, and Address LiStsc.ccccccoeveeienen.. 420
Negative Ttems in LISESeviiiiiiiiiiiiiiiiiiiii e 421
List Ttems 10 FIleS ..ioviiiiiiiiiiiiiii e 422
LoOKUP TtemMS 11 LISES ..vvieiiiiieiiiieeiiiie ettt 423
DOMAIN LISES ..ottt 423
HOSE LESES .ttt 426
AAALESS LISTS oot 432

19. MISCOIAMYc.ooooiiiiiieie e 435
SECULILY ISSUES .oeiiiiiiiieeiiiiie ettt ettt e e 435
Privile@ed USEIS ...ocuiiiiiiiiieiie e 442
RFC CONfOIMANCE ..ottt 444
TIMESTAIIDS +.eeeiiiieee ettt ettt ettt e e ettt e e ettt e e et ee e e e eaineeeeene 449
Checking SPOOL SPACEiiiiiiiiiiiie e 450
Control Of DNS LOOKUPS ...c.viiiiiiiiiiiiieeie ettt 451
Bounce Message Handlingcccooiiiiiiiiiiiiiiecceeie e 451
Miscellaneous CONLIOLSc.ciiiiiiiiiiiiiiiiiieic e 456

20. Command-Line Interface to EXimc.cccccovvivinnnnnn. 458
INPUL MOAE CONLIOL ..ttt 459
Additional Message Dataccceiiiiieiiiiiiie e 462
Immediate Delivery COntrolccocoviiiiiiiiiiiiiiecc e 464
ELTOT ROULINE .eiiiiiiiiieiie ettt 465

9 October 2001 09:13

Table of Contents Xxi

QuEeUE RUNNET PTOCESSESiciiiiiiiiiiiiiieeiiee ettt 466
Configuration OVEITIAEScoviiiiiiiiiieeie ettt 469
Watching EXim’s QUEUEccouiiiiiiiiiiiieiiiiie ettt 470
MeESSAZE CONLIOL .ottt 471
TESUNG OPUOMS ..vtieiiiiiiieee ettt e e e e e e 473
Options for DEDUZZINGccouiiiiiiiiiiiiiiieci e 478
Terminating the OPHONSoviiiiiiiii e 479
Embedded Perl OPtionScoouiiiiiiiiiiie et 479
Compatibility with Sendmailccooiiiiiii 479
Calling Exim by Different Namescccccoiiiiiiiiiiiiiiieie e 480
21. Administering EXiN ... 482
LOZ FILES .ttt 483
Log Destination CONLIOLoiiiiiiiiiiiiiie e 483
Format of Main LOZ ENIEScoiiiiiiiiiiiiiiii e 488
Cycling LOG FileS ..uviiiiiiiiieiie e 493
Extracting Information from Log Filesccccooiiiiiiiiiiiiiiiiieceecce 494
Watching What EXim 1S DOING ...cc.eeviiiiiiiiiiiiiie it 500
ThE EXIM MONIEOT .ot 503
Maintaining Alias and Other Datafilesccccooiiiiiiiiiiiii, 511
Hints Database Maintenanceccccocievvirioiirinienieiiaieieereee e 512
MailDOX MAINEENANCE ...eeiiiiiiiiiiiieiieeiie ettt 514
22. Building and Installing EXing ..., 516
PIEIEQUISITES ..evviiiiiiiiiiiiiiii e 517
Fetching and Unpacking the SOUICEcccccooiiiriiiiiiiiiiiiiiieicc 517
Configuration for Buildingcccocoiiiiiiiiii 518
The Building PIrOCESSiiiiiiieiiieiiie e 526
INStalling EXIML wooviiiiiiiii e 5206
Testing Before Turning OMNoocoiiiiiiiiiiiieee e 527
Turning EXIM ON .oooiiiiiiiiiii e 529
Installing Documentation in Info FOrmatccccoceiiiiniiniiiiiicic, 530
Upgrading to a New Releaseccccoviiiiiiiiiiiiiiciiee e 530

9 October 2001 09:13

Table of Contents

i
A. Summary of String EXPansion 533
B. Regular EXPIreSSIONSccccoiiiiiiiiiiiiiiieieeseeesees 548

IRACX ...t 571

9 October 2001 09:06

Preface

Back in 1995, the central computing services at Cambridge University were run-
ning a variety of mail transfer agents, including Sendmail, Smail 3, and PP. Some
years before, I had converted the systems whose mail I managed from Sendmail to
Smail to make it easier to handle the special requirements of the early 1990s in UK
academic networking during the transition from a private X.25-based network to
the Internet. By 1995, the transition was complete, and it was time to move on.

Up to that time, the Internet had been a pretty friendly place, and there was little
need to take many precautions against hostile acts. Most sites ran open mail relays,
for example. It was clear, however, that this situation was changing and that new
requirements were arising. I had done some modifications to the code of Smail,
but by then it was eight-year-old code, written in prestandard C, and originally
designed for use in a very different environment that involved a lot of support for
UUCP. I therefore decided to see if I could build a new MTA from scratch, taking
the basic philosophy of Smail and extending it, but leaving out the UUCP support,
which was not needed in our environment. Because I wasn’t exactly sure what the
outcome would be, T called it EXperimental Internet Mailer (Exim).

One of my colleagues in Computer Science got wind of what I was doing, begged
for an evaluation copy, and promptly put it into service, even before I was run-
ning it on my hosts. He started telling others about it, so I began putting releases
on an FTP site and answering email about it. The early releases were never
“announced”; they just spread by word of mouth. After some time, a UK ISP vol-
unteered to run a web site and mailing list, and it has continued to grow from
there. There has been a continuous stream of comments and suggestions, and
there are far more facilities in current releases than I ever planned at the start.

Although I make a point of maintaining a comprehensive reference manual, one
thing that has been lacking is introductory and tutorial material. I kept hoping that

Xiti

9 October 2001 09:06

Xiv Preface

somebody else would write something, but in the end I was asked to write this
book. I hope it will make life easier for those who find the reference manual diffi-
cult to work with.

Organization of the BooR

After a short overview chapter, this book continues with a general introduction to
Internet email, because this is a subject that does not seem to be well covered
elsewhere. The rest of the book is devoted to explaining how Exim works, and
how you can use its configuration to control what it does. Here is a detailed
breakdown of the chapters:

Chapter 1, Introduction
This chapter is a short “executive” summary.

Chapter 2, How Internet Mail Works
This chapter is a general introduction to the way email is handled on Internet
systems.

Chapter 3, Exim Overview
This chapter contains a general overview of the way Exim works, and intro-
duces you to the way it is configured, in particular in regard to the way mes-
sages are delivered.

Chapter 4, Exim Operations Overview
This chapter continues with more overview material, mostly about topics other
than the delivery of messages.

Chapter 5, Extending the Delivery Configuration
In this chapter, we return to the subject of message delivery, and show how
the configuration can be extended to support additional functionality.

Chapter 6, Options Common to Directors and Routers
This is the first of a sequence of chapters that cover Exim’s directors, routers,
and transports and their options in detail.

Chapter 7, The Directors
This chapter covers the directors, which are the components of Exim that
determine how local addresses are handled.

Chapter 8, The Routers
This chapter describes the routers, which are the components of Exim that
determine how remote addresses are handled.

Chapter 9, The Transports
This chapter discusses the transports, which are the components of Exim that
actually transport messages.

9 October 2001 09:06

Preface xv

Chapter 10, Message Filtering
This chapter describes the filtering language that is used both by users’ filter
files and the system filter.

Chapter 11, Shared Data and Exim Processes
This chapter describes the various different kinds of Exim processes, and the
data that they share.

Chapter 12, Delivery Errors and Retrying
This chapter is concerned with temporary delivery errors, and how Exim han-
dles them.

Chapter 13, Message Reception and Policy Controls
Up to this point, the bulk of the book is concerned with delivering messages.
This chapter describes the facilities that are available for controlling incoming
messages.

Chapter 14, Rewriting Addresses
This chapter covers the facilities for rewriting addresses in messages as they
pass through Exim.

Chapter 15, Authentication, Encryption, and Other SMTP Processing
This chapter covers a number of topics that are concerned with the transmis-
sion and reception of messages using SMTP.

Chapter 16, File and Database Lookups
This is the first of three chapters that go into detail about the three main facili-
ties that provide flexibility in Exim’s configuration. They are all introduced in
earlier chapters, but full details begin here.

Chapter 17, String Expansion
This chapter gives all the details about Exim’s string expansion mechanism.

Chapter 18, Domain, Host, and Address Lists
This chapter provides all the details about the three kinds of lists that can
appear in Exim configurations.

Chapter 19, Miscellany
This chapter collects a number of items that do not fit naturally into the other
chapters, but are too small to warrant individual chapters of their own.

Chapter 20, Command-Line Interface to Exim
This chapter gives details of the options and arguments that are used to con-
trol what a call to Exim actually does.

Chapter 21, Administering Exim
This chapter discusses a number of topics concerned with administration, and
describes the utility programs that are available to help with this, including the
Exim monitor, which is an application for displaying information about Exim’s
activities in an X window.

9 October 2001 09:06

Xvi Preface

Chapter 22, Building and Installing Exim
This chapter describes how to build and install Exim from the source
distribution.

Appendix A, Summary of String Expansion
This appendix is a summary of string expansion items.

Appendix B, Regular Expressions
This appendix is a full reference description of the regular expressions that are
supported by Exim.

Conventions Used in This Book

The following is a list of the typographical conventions used in this book:

Ttalic
Used for file and directory names, program and command names, host and
domain names, email addresses, mail headers, and new terms.

Bold
Used for names of Exim directors, transports, and routers.

Constant Width
Used in examples to show the contents of files or the output from commands,
and in the text to mark Exim options or other strings that appear literally in
configuration files.

Constant Italic
Used to indicate variable options, keywords, or text that the user is to replace
with an actual value.

Constant Bold
Used in examples to show commands or other text that should be typed liter-
ally by the user.

Comments and Questions

We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mis-
takes!). Please let us know about any errors you find, as well as your suggestions
for future editions, by writing to:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

9 October 2001 09:06

Preface Xvii

We have a web page for this book, where we list errata, examples, or any addi-
tional information. You can access this page at:

butp.//www.oreilly.com/catalog/exim
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers,
and the O’Reilly Network, see our web site at:

http.//www.oreilly.com

Acknowledgments

I could not have produced Exim without the support and assistance of many peo-
ple and organizations. There are too many to acknowledge individually, even if T
had been organized enough to keep a full list, which, to my regret, I have not
done. I hope that I have not made any major omissions in what follows.

For Exim itself, I must first acknowledge my colleagues in Computing Service at
the University of Cambridge. The management allowed me to write Exim, and
once it appeared, Computing Service has supported its use around the university
and elsewhere.

Piete Brooks was brave enough to put the first version into service to handle mail
for the Cambridge computer scientists. Piete also implemented the scheme for
compiling on multiple operating systems. Piete suggested that an integral filter
would be a good thing. Alan Barratt provided the initial code for relay checking.
Nigel Metheringham persuaded his employers at that time, Planet Online Ltd., to
provide support for an Exim web site and mailing list. Although he no longer
works for them, he still manages the site and the mailing lists, and Planet (now
called Energis Squared) still provides hardware and network resources. Nigel also
provided code for interfacing to the Berkeley DB library, for supporting cdb files,
and for delivering to mailboxes in maildir format. Yann Golanski provided the
code for the numerical hash function. Steve Clarke did experiments to determine
the most efficient way of finding the load average in Linux. Philip Blundell imple-
mented the first support for IPv6 while he was a student at Cambridge. Jason Gun-
thorpe provided additional IPv6 code for Linux. Stuart Lynne provided the first
code for LDAP support; subsequent modifications came from Michael Haardt,
Brian Candler, and Barry Pederson. Steve Haslam provided some preliminary code
for supporting TLS/SSL. Malcolm Beattie wrote the interface for calling an embed-
ded Perl interpreter. Paul Kelly wrote the original code for calling MySQL, and Petr
ZENTITY-Ccaronech did the same for PostgreSQL. Jeft Goldberg pointed out that T
was using the word “fail” in two different senses in the Exim documentation, and

9 October 2001 09:06

XViii Preface

suggested “decline” for one of them. John Horne reads every edition of the refer-
ence manual, and picks up my typos and other mistakes. Over the five years since
the first Exim release, many other people have sent suggestions for improvements
or new features, and fixes for minor problems.

Finally, I must acknowledge my debt to Smail 3, written by Ron Karr, on which I
based the first versions of Exim. Though Exim has now changed to become almost
unrecognizable, its parentage is still visible.

While writing this book, I have continued to enjoy the support of my colleagues
and the Exim community. My wife Judith was not only generally supportive, but
also read an early draft as a professional copyeditor, and found many places
where I was unclear or inconsistent. Ken Bailey made some useful comments
about some of the early chapters. John Horne read an early draft and made sug-
gestions that helped me to put the material into a more accessible order, and then
read the book again in a late draft, thereby providing further useful feedback.

My editor at O'Reilly is Andy Oram, whose comments and guidance have had a
great effect on the form and shape of the finished book. Andy has prevented me
from becoming too obfuscated, and he also stopped me when I was writing too
much British English.

9 October 2001 09:06

Introduction

Exim is a mail transfer agent (MTA) that can be run as an alternative to Sendmail
on Unix systems.” Exim is open-source software that is distributed under the GNU
General Public License (GPL), and it runs on all the most popular flavors of Unix
and many more besides. A number of Unix distributions now include Exim as their
default MTA.

I wrote Exim for use on medium-sized servers with permanent Internet connec-
tions in a university environment, but it is now used in a wide variety of different
situations, from single-user machines on dial-up connections to clusters of servers
supporting millions of customers at some large ISP sites. The code is small
(between 500 KB and 1.2 MB on most hardware, depending on the compiler and
which optional modules are included), and its performance scales well.

The job of a mail transfer agent is to receive messages from different sources and
to deliver them to their destinations, potentially in a number of different ways.
Exim can accept messages from remote hosts using SMTPT over TCP/IP, and as
well as from local processes. It handles local deliveries to mailbox files or to pipes
attached to commands, as well as remote SMTP deliveries to other hosts. Exim
consists of support for the new IPv6 protocol in its TCP/IP functions, as well as for
the current IPv4 protocol. It does not directly support UUCP, though it can be
interfaced to other software that does, provided that UUCP “bang path” address-
ing is not required, because Exim supports only Internet-style, domain-based
addressing.

* The terms mail transfer agent and mail transport agent are basically synonymous, and are used inter-
changeably.

t If you are not familiar with SMTP or some of the other acronyms used here, don’t be put off. The
next chapter contains a description of how Internet mail works.

9 October 2001 09:06

2 Chapter 1: Introduction

Exim’s configuration is flexible and can be set up to deal with a wide variety of
requirements, including virtual domains and the expansion of mailing lists. Once
you have grasped the general principles of how Exim works, you will find that the
runtime configuration is straightforward and simple to set up. The configuration
consists of a single file that is divided into a number of sections, and entries in
each section that are keyword/value pairs. Regular expressions, compatible with
Perl 5, are available for use in a number of options.

The configuration file can reference data from other files, in linear and indexed
formats, and from NIS, NIS+, LDAP, MySQL, and PostgreSQL databases. It can also
make use of online lists such as the Realtime Blackbole List (RBL).* By this means,
you can make much of Exim’s operation table-driven if desired. For example, it is
possible to do local delivery on a machine on which the users do not have
accounts. The ultimate flexibility can be obtained (at a price) by running a Perl
interpreter while processing certain option strings.

You can use a number of different facilities for checking and controlling incoming
messages. For example, the maximum size of messages can be specified, SMTP
calls from specific hosts and networks (optionally from specific identifiers) can be
locked out, as can incoming SMTP messages from specific senders You can iden-
tify blocked hosts explicitly, or via RBL lists, and you can control which hosts are
permitted to use the Exim host as a relay for onward transmission of mail. The
SMTP AUTH mechanism can be used to authenticate client hosts for this purpose.

End users are not normally concerned with which MTA is delivering into their
mailboxes, but when Exim is in use, its filtering facility, which extends the power
of the traditional .forward file, can be made available to them. A filter file can test
various characteristics of a message, including the contents of the headers and the
start of the body, and then direct delivery to specified addresses, files, or pipes
according to what it finds. The filtering feature can also be used by the system
administrator to inspect each message before delivery.

Like many MTAs, Exim has adopted the Sendmail command interface so that it can
be a straight replacement for /usr/sbin/sendmail or /usr/lib/sendmail. All the rele-
vant Sendmail options are implemented. There are also some additional options
that are compatible with Smail 3, and some further options that are specific to
Exim.

* See bttp://mail-abuse.org/rbl.

9 October 2001 09:06

Introduction 3

Messages on the queue can be controlled by the use of certain privileged com-
mand-line options. There is also an optional monitor program called eximon,
which displays current information in an X window, and contains interfaces to the
command-line options.

Exim is not designed for storing mail for dial-up hosts. When the volumes of such
mail are large, it is better to get the messages “delivered” into files (that is, off
Exim’s queue) and subsequently passed on to the dial-up hosts by other means.

There are some things that Exim does not do: it does not support any form of
delivery status notification,* and it has no built-in facilities for modifying the bod-
ies of messages. In particular, it never translates message bodies from one form of
encoding to another.

The aim of this book is to explain how Exim works, and to give background and
tutorial information on the core facilities that the majority of administrators will
need to know about. Some options that are required only in very special circum-
stances are not covered. In any case, a book can never keep up with developing
software; if you want to know exactly what is available in any given release, you
should consult the reference manual and other documentation that is included in
the distribution for that release.

Exim is still being developed in the light of experience, changing requirements,
and feedback from users. This book was originally written to correspond to
Release 3.16, but while it was being revised, additional facilities, such as support
for LMTP and SSL/TLS, were added to Exim for the 3.20 release. Some references
to these important new features have therefore been included in the book, which
now covers all the major features of the 3.2x releases. No further functional
enhancements to Exim 3 are planned, though in due course a new major release
(Exim 4) is expected.

The Exim reference manual and a FAQ are online at the Exim web site, at
http://www.exim.org and its mirrors. Here you will also find the latest release of
Exim, as a source distribution. In addition to the plain text version that is included
in the distribution, the manual can be downloaded in HTML (for faster browser
access), in PostScript or PDF (for printing), and in Texinfo format for the info
command.

* See RFC 1891.

9 October 2001 09:06

4 Chapter 1: Introduction

Some versions of GNU/Linux are now being distributed with binary versions of
Exim included. For this reason, I've left the material on building Exim from source
until the end of the book, and concentrated on the runtime aspects first. If you are
working with a binary distribution, make sure you have a copy of the text version
of the reference manual that comes with the source distribution. It provides full
coverage of every configuration option, and can easily be searched.

The next chapter is a general discussion of the way email on the Internet works;
Exim is hardly mentioned. This material has been included for the benefit of the
many people who find themselves having to run a mail server without this essen-
tial background knowledge. You can skip to Chapter 3, Exim Overview if you
already know about RFC 822 message format, SMTP, mail routing, and DNS usage.

9 October 2001 09:07

How Internet Mail Works

The programs that users use to send and receive mail (often just called “mailers™)
are formally called mail user agents (MUAs). They are concerned with providing a
convenient mail interface for users. They display incoming mail that is in users’
mailboxes, assist the user in constructing messages for sending, and provide facili-
ties for managing folders of saved messages. They are the “front end” of the mail
system. Many different user agents can be installed, and can be simultaneously
operational on a single computer, thereby providing a choice of different user
interfaces. However, when an MUA sends a message, it does not take on the work
of actually delivering it to the recipients. Instead, it sends it to a mail transfer
agent (MTA), which may be running on the same host or on some local server.

Mail transfer agents do the job of transferring messages from one host to another,
and, after they reach their destination hosts, of delivering them into user mailboxes
or to processes that are managing user mailboxes. This job is complicated, and it
would not be sensible for every MUA to contain all the necessary apparatus. The
flow of data from a message’s sender to its recipient is as shown in Figure 2-1.
However, when an application program or script needs to send a mail message as
part of some automatic activity, it normally calls the MTA directly without involv-
ing an MUA.

Only one MTA can be fully operational on a host at once, because only one pro-
gram can be designated to receive incoming messages from other hosts. It has to
be a privileged program in order to listen for incoming TCP/IP connections on the
SMTP port and to be able to write to users’ mailboxes. The choice of which MTA
to run is made by the system administrator, whereas the choice of which MUA to
run is made by the end user.

An MTA must be capable of handling many messages simultaneously. If it cannot
deliver a message, it must send an error report back to the sender. An MTA must

9 October 2001 09:07

6 Chapter 2: How Internet Mail Works

Sender Recipient

A
v

MUA MUA

(e.g., Pine) (e.g., MS Outlook)
A
Mailbox

s
v

MTA MTA

»
»

(e.g., Sendmail) (e.g., Exim)

Figure 2-1. Message data flow

be able to cope with messages that cannot be immediately delivered, storing such
messages on its local disk, and retrying periodically until it succeeds in delivering
them or some configurable timeout expires. The most common causes of such
delays are network connectivity problems and hosts that are down.

From an MTA’s point of view, there are two sources of incoming messages: local
processes and other hosts. There are three types of destinations: local files, local
processes via pipes, and other hosts, as indicated in Figure 2-2.

The division of labor between MUAs and MTAs also means that an MUA need not
be running on the same host as its MTA; Figure 2-3 illustrates the relationship
between MUAs and MTAs in two common configurations.

In the top part of the figure, the MUA, MTA, and the disk storage are all part of a
single system, indicated by the dashed line. The users access the system by log-
ging on and authenticating themselves by a password or some other means. The
MUA is started by a user command as a process on the system, and when it passes

9 October 2001 09:07

Introduction 7

Remote Hosts Remote Hosts
.“'
Local Files
N
MIA >
%
o & T “a Local
Processes Processes

Figure 2-2. The job of an MTA

a message to the MTA for delivery, it is communicating with another process on
the same system. Consequently, both the MUA and the MTA know the authenti-
cated identity of the message’s sender, and the MTA can ensure that this identity is
included in the outgoing message. As specified in RFC 822," if the contents of the
From: header line do not match the actual sender, the MTA should normally add a
Sender: line containing the authenticated identity.t

Messages are held by the MTA in its spool area while awaiting delivery. The word
“spool” is often used with two different meanings. In this book, we use it to mean
the disk storage that an MTA uses for messages that it has in transit. You will
sometimes see “spool” used for the disk area in which users’ mailboxes are kept,
but this is not the sense in which it is used here.

Messages that are destined for other hosts are transmitted over the Internet to
other MTAs using the Simple Mail Transfer Protocol (SMTP). When the originating
host and the final host are both directly connected to the Internet, the message
can be delivered directly to the final host, but sometimes it has to travel via an
intermediate MTA. Large organizations often arrange for all their incoming mail to
be routed via a central mail hub, which then delivers it to other hosts within the
organization’s local network. These may be behind a firewall and therefore inac-
cessible to the Internet at large. When a message reaches its destination host, the

* RFCs are the documents that lay down the standards by which the Internet operates. You can find
them online at http.//wwuw.ietf.org (and numerous other places). We say a little bit about those that
relate to mail later in this chapter.

t Exim does this by default, but can be configured not to.

9 October 2001 09:07

8 Chapter 2: How Internet Mail Works

folders folders

PV | 1] W — > MIA | <] spool
v
Mailbox
\/
MTA | <3| spool
A
Mailbox
A v
v N
PR R 117 — 5 MIA | e »| spool

folders folders

Figure 2-3. MUAs and MTAs

MTA delivers it into the mailbox of the recipient, who can then access it with the
MUA of his choice.

Another case where an intermediate MTA is involved is when the final destination
or its network connection is down. Using the Domain Name Service (DNS)* or
some private method, a backup host may be designated for a domain. Incoming
mail accumulates on this host until the main one starts working again, at which
point the backlog is transferred. The advantage of this is that the accumulated mail
can be stored close to the final destination, and can eventually be transferred
quickly and in a controlled manner. In contrast, when a busy host without a
backup restarts, it is liable to receive a very large number of simultaneous

* See RFCs 1034 and 1035.

9 October 2001 09:07

Introduction 9

incoming SMTP calls from all over the Internet, which may cause performance
problems.

The bottom part of Figure 2-3 illustrates another popular configuration, in which
the MUA is not running on the same system as the MTA. Instead it runs on a user’s
workstation. Receiving and sending messages in this configuration are entirely sep-
arate operations. When a user reads mail, the MUA uses either the POP (RFC 1939)
or IMAP (RFC 2060) protocol to access the mailbox and remote folders on the
server system. In order to do so, the user has to be authenticated in some way;
commonly a username and password are used to gain access to the mailbox and
remote mail folders. However, neither the POP nor IMAP protocols contain any
facilities for sending messages. MUAs of this type have therefore traditionally used
the SMTP protocol to pass messages to an MTA in a server system. Thus a protocol
that was originally designed for passing messages between MTAs is subverted for
the purpose of submitting new messages to an MTA, which is really a different
kind of operation. This usage leads to a number of problems:

e The MTA cannot distinguish between a new message submission from an
MUA and a message being passed on from another MTA. It may be able to
make a guess, based on the IP address of local hosts it knows not to be run-
ning MTAs, but this is not always easy to arrange. This means that it cannot
treat submissions specially, as it does when messages originate on the local
host.

e The sender of the message is not authenticated; the MTA may be able to verify
that the domain of the sender exists, but often it cannot check the local part of
the address. MUAs of this type require the user to specify a username when
starting; a typo made while doing this may go undetected, leading to incorrect
sender addresses in outgoing messages.

e The MUA is not constrained to sending outgoing mail to the same server it is
using for reading mail. It may sometimes be desirable to use different servers,
but because of the existence of this flexibility, it is possible to direct MUA soft-
ware to send mail to any host on the Internet. This makes it easy for
unscrupulous persons to attempt to dump unsolicited mail on arbitrary servers
for relaying. The fact that this has happened on numerous occasions has led
to the tightening up of relaying servers, and the creation of databases such as
the MAPS Dialup User List.*

* See bttp://mail-abuse.org/dul/.

9 October 2001 09:07

10 Chapter 2: How Internet Mail Works

There are some moves afoot to remedy this situation by defining a new submis-
sion protocol.” This is basically the same as SMTP, but it uses a different port num-
ber. However, at the time of writing, this technology is not yet in common use.

Different Types of MTA

The framework for mail delivery described earlier in this chapter is very general,
and in practice there are many different kinds of MTA configuration that operate
within it. At the simplest level, there are single hosts running in small offices or
homes, each handling a few mailboxes in one domain, receiving incoming exter-
nal messages from one ISP’s mail server only, and sending all outgoing messages
to the ISP for onward delivery. Many such hosts are not permanently connected to
the Internet, but instead dial up from time to time to exchange mail with the
server. In such an environment, the MTA does not have to be capable of doing full
mail routing or complicated queue management.

Hosts that are permanently connected need not send everything via the same
server, but can make use of the DNS to route outgoing messages more directly
toward their final destinations. A single outgoing message may have several recipi-
ents, thus requiring copies to be sent to more than one remote server. This means
that the MTA has to cope with messages where some of the addresses cannot be
immediately delivered, and it must implement suitable retrying mechanisms for use
with multiple servers. For incoming mail, the domain can be configured so that
mail comes direct from anywhere on the Internet, without having to pass through
an intermediate server.

An organization may not want to have all its local mailboxes on the same host.
Even a small organization with just one domain may have users running their own
desktop systems who want their mail delivered to them. The host running the
“corporate” MTA has now become a hub, receiving mail from the world, and dis-
tributing it by user within its local network. It is common in such configurations
for all outgoing mail from the network to pass through the hub. For security rea-
sons, it is also common to configure the network router so that direct SMTP con-
nections between the world and the workstations are not permitted.

Single organizations may support more than one domain, but the MTAs that sup-
port very large numbers of domains are usually those run by ISPs, and there are
two common ways in which these are handled:

* See RFC 2476.

9 October 2001 09:07

RFC 822 Message Format 11

e For personal clients, the ISP normally provides a mailbox for each account,
from which the mail is collected by some means when the client connects. As
far as the MTA is concerned, it is doing a local delivery into a mailbox on the
ISP’s server.

e For corporate clients, ISPs are more likely to transfer mail to the clients’” MTAs
based purely on the domains in the addresses, with the ISP’s MTA acting as a
standard intermediate MTA between unrelated systems.

Internet Message Standards

Electronic mail messages on the Internet are formatted according to RFC 822,
which defines the format of a message as it is transferred between hosts, but not
the protocol that is used for the exchange. The Simple Mail Transfer Protocol
(SMTP) is used to transfer messages between hosts. This is defined in RFC 821,
with additional material in RFC 1123 and several other RFCs that describe exten-
sions. The SMTP address syntax is more restrictive than that of RFC 822, and
requires that components of domain names consist only of letters, digits, and
hyphens. Since any message may need to be transported using SMTP if its destina-
tion is not on the originating host, the format of all addresses is normally restricted
to what RFC 821 permits.

All these RFCs are now very old, and revised versions are nearing completion at
the time of writing (February, 2001). The revisions consolidate the material from
the earlier RFCs, and incorporate current Internet practice.”

RFC 822 Message Format

A message consists of lines of text, and when it is in transit between hosts, each
line is terminated by the character carriage return (ASCII code 13) immediately
followed by linefeed (ASCII code 10), a sequence that is commonly written as
CRLF. Within a host, messages are normally stored for convenience in RFC 822 for-
mat. Many applications use the local operating system’s convention for line termi-
nation when doing this, but some use CRLF. The normal Unix convention is to
terminate lines with a single linefeed character, without a preceding carriage
return.

* The new RFCs were released with the numbers 2821 and 2822 as this book went to press.

9 October 2001 09:07

12 Chapter 2: How Internet Mail Works

A message consists of a header and a body. The header contains a number of lines
that are structured in specific ways as defined by RFC 822. The following examples
are the header lines that are commonly shown to someone who is composing a
message, and will be familiar to any email user:

From: Philip Hazel <phlO@exim.example>
To: My Readers <all@exim.book.example>,
My Loyal Fans <fans@exim.example>

Cc: My Personal Assistant <cwbaft@exim.example>

Subject: How electronic mail works
An individual header line can be continued over several actual lines by starting the
continuations with whitespace. The entire header section is terminated by a blank
line. The body of the message then follows. In its simplest form, the body is
unstructured text, but later RFCs (MIME, RFC 1521) define additional header lines
that allow the body to be split up into several different parts. Each part can be in a
different encoding, and there are standard ways of translating binary data into
printable characters so that it can be transmitted using SMTP. This is the mecha-
nism that is used for message “attachments.”

RFC 822 permits many variations for addresses that appear in message header
lines. For example:

To: caesar@rome.example.com
To: Julius Caesar <caesar@rome.example.com>
To: caesar@rome.example.com (Julius Caesar)

Text in parentheses anywhere in the line is a comment. This applies to all header
lines whose structure is constrained by the RFC, not just those header lines that
contain addresses. For example, in the following:

Date: Fri, 7 Jan 2000 14:20:24 -0500 (EST)

the time zone abbreviation is a comment as far as RFC 822 formatting is con-
cerned. Along with the generally available parenthetical comments, headers that
contain addresses may contain a sequence of words before an actual address in
angle brackets; these are normally used for descriptive text such as the recipient’s
full name. When a header line contains more than one address, a comma must be
used to terminate all but the last of them.*

The terms Jocal part and domain are used to refer to the parts of a mail address
that precede and follow the @ sign, respectively. In the address cae-
sar@rome.example.com, the local part is caesar and the domain is rome.exam-
ple.com. The local part is often a username, but because it can also be an

* Some MUAs allow lists of recipients to be given using spaces as separators, but when such a list is
used to construct a To:, Cc:, or Bce: header line, commas must be inserted.

9 October 2001 09:07

The Message “On the Wire” 13

abstraction such as the name of a mailing list or an address in some other mail
domain in a message that is being sent to a gateway, the more general term is
used here, as it is in the Exim reference documentation.

The Message “On the Wire”

A message that is transmitted between MTAs has several things added to it over
and above what the composing user sees. In addition to the header section and
the body, another piece of data called the envelope is transmitted immediately
before the RFC 822 data, using the SMTP commands MATL and RCPT. The envelope
contains the sender address and one or more recipient addresses. These addresses
are of the form <user@domain> without the additional textual information, such as
the user’s full name, that may appear in message header lines.

The deliveries done by the receiving MTA (either to local mailboxes or by passing
the message on to other hosts) are based on the recipients listed in the envelope,
not on the 7o: or Cc: header lines in the message. If any delivery fails, it is to the
envelope sender address that the failure report is sent, not the address in the
From: or Reply-to: header line.

The need for a separate envelope becomes obvious when considering a message
with multiple recipients, whose mailboxes may be on several different hosts. The
RFC 822 header lines normally list all the recipients, but in order to be delivered,
the message has to be cloned into separate copies, one for each receiving host,
and in each copy the envelope contains just those recipients whose mailboxes are
on that host.

As well as an envelope, additional header lines are added by both the MUA and
MTA before a message is transmitted to another host. Here is an example of a
message “in transit,” where the envelope lists only two of the three recipients.
This example shows just the SMTP commands and data that the client sends, with-
out the responses from the server:*

MATIL FROM:<phlO@exim.example>

RCPT TO:<fans@exim.example>

RCPT TO:<cwbaft@exim.example>

DATA

Received: from phlO by draco.exim.example with local (Exim 3.22 #1)
id 14T1i0-000501-00;
Fri, 16 Feb 2001 14:18:05 +0000

From: Philip Hazel <phlO@exim.example>

To: My Readers <all@exim.book.example>,

My Loyal Fans <fans@exim.example>
Cc: My Personal Assistant <cwbaft@exim.example>

* More details of the SMTP protocol are given in the next section of this chapter.

9 October 2001 09:07

14 Chapter 2: How Internet Mail Works

Subject: How electronic mail works

Date: Fri, 16 Feb 2001 14:18:05 +0000

Message-ID: <Pine.SOL.3.96.990117111343.19032A-100000@
draco.exim.example>

MIME-Version: 1.0

Content-Type: TEXT/PLAIN; charset=US-ASCII

Hello,
If you want to know about Internet mail, look at chapter 2.

The first three lines are the envelope; the message itself follows the DATA com-
mand, and is terminated by a line containing just a dot. Notice that lines have
been added at both the start and the end of the header section.

Before passing a message to an MTA, an MUA normally adds Date: (required by
RFC 822) and Message-id:. The MUA may also add header lines such as MIME-
Version: and Content-Type: if the body of the message is structured according to
the MIME definitions. Each MTA through which a message passes adds a Received:
header line at the front, as required by RFC 821. The routing history of a message
can therefore be obtained by reading these header lines in reverse order.

Because there may be quite a number of “behind-the-scenes” header lines by the
time a message is delivered, most MUAs normally show only a subset when dis-
playing a message to a user (typically the lines containing addresses, the subject,
and the date). However, there is usually some way to configure the MUA to show
all the header lines.

A recipient address that appears in the envelope need not appear in any header
line in the message itself. This is usually the case after a message has passed
through a mailing list expander, and is also the means by which “blind carbon
copies” are implemented. When a user sends a message, either the MUA or the
first MTA creates the envelope, taking the recipients from the 7o:, Cc:, and Bcc:
data, and removing any Bcc: header line, unless there are no other recipients, in
which case an empty Bcc: header line is retained.” An alternative permitted imple-
mentation is to retain the Bcc: header line only in those copies of the message that
are transmitted to Bcc: recipients.

When a message is delivered into a user’s mailbox, some MTAs, including Exim
(as normally configured), add an Envelope-to: header line giving the envelope
recipient address that was received with the message. This can be helpful if the
final envelope recipient does not appear in the header lines. For example, con-
sider a message sent from a mailing list to an address such as postmas-
ter@xyz.example, which is handled by an alias. Messages from mailing lists do not

* RFC 822 does not permit empty 7o: or Cc: header lines; if there are no relevant addresses, these lines
must be omitted. Only Bcc: may appear with no addresses.

9 October 2001 09:07

Summary of the SMTP Protocol 15

normally contain the recipient in any of the header lines. Instead, there is likely to
be a line such as:

To: some-list@listdomain.example

The address postmaster@xyz.example appears only in the envelope. Suppose that
aliasing causes this message to be delivered into the mailbox of the user called
pat, who is the local postmaster. Without the addition of Envelope-to:, there is
nothing in the message itself that indicates why it ended up in Pat’s mailbox.

The envelope sender is also known as the return path, because of its use for
returning delivery failure reports. In most personal messages, it is identical to the
address in the From: header, but it need not be. There are two common cases
where it differs:

e When a message is sent to a mailing list, the original envelope sender that was
received with the message is normally replaced with the address of the list
manager before the message is sent out to the subscribers. This means that
any delivery failures are reported to the list manager, who can take appropri-
ate action, rather than to the original sender, who cannot.

e Delivery failure reports (often called “bounce messages”) that are generated
by MTAs are sent out with empty envelope sender addresses. These often
appear in listings as <>. This convention is used to identify such messages as
bounces, so that if they in turn fail to get delivered, no subsequent failure
report is generated. The reason for this is to avoid the possibility of mail
bounce loops occurring.

When a message is delivered into a user’s mailbox, Exim (as normally configured)
adds a Return-path: header, in which it records the envelope sender.

Summary of the SMTP Protocol

SMTP is a simple command-reply protocol. The client host sends a command to
the server, and then waits for a reply before proceeding to the next command.”
Replies always start with a three-digit decimal number; for example:

250 Message accepted
The text is usually information intended for human interpretation, though there are
some exceptions, where the number encodes the type of response. The first digit
is the most important, and is always one of those shown in Table 2-1.

* There is an optional optimization called “pipelining,” which allows batches of commands to be sent,
and batches of replies to be received, but this is purely to improve performance. The overall behav-
ior remains the same, and we describe only the simple case here.

9 October 2001 09:07

16 Chapter 2: How Internet Mail Works

Table 2-1. SMTP Response Codes

Code | Meaning

2xx The command was successful

3xx Additional data is required for the command
4ocx The command suffered a temporary error
S5xx The command suffered a permanent error

The second and third digits give additional information about the response, but an
MTA need not pay any attention to them. Exim, for example, operates entirely on
the first digit of SMTP response codes. Replies may consist of several lines of text.
For all but the last of them, the code is followed by a hyphen; in the last line it is
followed by whitespace. For example:

550-Host is not on relay list
550 Relaying prohibited by administrator

When a client connects to a server’s SMTP port (port 25), it must wait for an initial
success response before proceeding. Some servers include the identity of the soft-
ware they are running (and maybe other information) in the response, but none of
this is actually required. Others send a minimal response such as:

220 ESMTP Ready

The client initializes the session by sending an EHLO (extended hello) command,
which gives its own name.* For example:

EHLO client.example.com

Unfortunately, there are many MTAs in use that are misconfigured, either acciden-
tally or deliberately, such that they do not give their correct name in the EHLO com-
mand. This means that the data obtained from this command is not of much use.
The server’s response to EHLO gives the server’s name in the first line, optionally
followed by other information text, and lists the extended SMTP features that the
server supports in subsequent lines. For example, the following:

250-server.example.com Hello client.example.com
250 SIZE 10485760

indicates that the server supports the SIZE option, with a maximum message size
of 10,485,760 characters.

Once an EHLO command has been accepted, the client may attempt to send any
number of messages to the host. Each message is begun by a MATL command,

* The original SMTP protocol used HELO (sic) as the initializing command, and servers are still obliged
to recognize this. The difference is that the response to EHLO includes a list of the optional SMTP
extensions that the server supports.

9 October 2001 09:07

Summary of the SMTP Protocol 17

which contains the envelope sender address. If the SIZE option is supported by
the server, the size of the message may also be given. For example:

MAIL FROM:<caesar@rome.example> SIZE=12345

After this has been accepted, each recipient address is transmitted in a separate
RCPT command such as:

RCPT TO:<brutus@rome.example>

The client waits for a reponse to each one before sending the next. The server
may accept some recipients and reject others, either permanently or temporarily.
After a permanent error, the client should not attempt to resend the message to
that address. The most common reasons for permanent rejection are as follows:

e The address contains a domain that is local to the server, but the local part is
not recognized.

e The address contains a domain that is not local to the server, and the client is
not authorized to relay through the server to that domain.

Temporary errors are caused by problems that are expected to be resolved in due
course, such as the inability to check an incoming address because a database is
down, or a lack of disk space. After a temporary error, a client is expected to try
the address again in a new SMTP connection, after a suitable delay. This is nor-
mally at least 10 or 15 minutes after the first failure; if the temporary error condi-
tion persists, the time between retries is usually increased.

Provided that at least one recipient has been accepted, the client sends:

DATA

and the server responds with a 354 code, requesting further data; namely, the mes-
sage itself. The client transmits the message without waiting for any further
responses, and ends it with a line containing just a single dot character. If the mes-
sage contains any lines that begin with a dot, an extra dot is inserted to guard
against premature termination. The server strips a leading dot from any lines that
contain more text. If the server returns a success response after the data has been
sent, it assumes responsibility for subsequent handling of the message, and the
client may discard its copy of it. Once it has sent all its messages, a client ends the
SMTP session by sending a QUIT command.

Because SMTP transmits the envelope separately from the message itself, servers
can reject envelope addresses individually, before much data has been sent. How-
ever, if a server is unhappy with the contents of a message* it cannot send a rejec-
tion until the entire message has been received. Unfortunately, some client

* For example, if the message is too big, or if the server is configured to check the syntax of addresses
in header lines and comes across one containing invalid syntax.

9 October 2001 09:07

18 Chapter 2: How Internet Mail Works

software (in violation of RFC 821) treats any error response to DATA or following
the data itself as a temporary error, and continues to try to deliver the message at
successive intervals.

Forgery

It is trivial to forge unencrypted mail. In general, MTAs are “strangers” to each
other, so there is no way a receiving MTA can authenticate the contents of the
envelope or the message itself. All it can do is log the IP address of the sending
host, and include it in the Received: line that it adds to the message.

Unsolicited junk mail (spam) usually contains some forged header lines. You need
to be aware of this if you ever have to investigate the origin of such mail. If a mes-
sage contains a header line such as:

Received: from foobar.com.example ([10.9.8.7])

by podunk.edu.example (8.9.1/8.9.1) with SMTP id DAA00447;

Tue, 6 Mar 2001 03:21:43 -0500 (EST)
it does not mean that the FooBar company or the University of Podunk are neces-
sarily involved at all; the header may simply have been inserted by the spam per-
petrator to mislead. The only Received: headers you can count on are those at the
top of the message that were added by MTAs running on hosts whose administra-
tors you trust. Once you pass these Received: headers, those below them, even if
they appear to relate to a reputable organization such as an ISP, may be forged.

Authentication and Encryption

The original SMTP protocol had no facilities for authenticating clients, nor for
encrypting messages as they were transmitted between hosts. As the Internet
expanded, it became clear that these features were needed, and the protocol has
been extended to allow for them. However, the vast majority of Internet mail is
still transmitted between unauthenticated hosts, over unencrypted connections. For
this reason, we won’t go into any details in this introductory chapter, but there is
some discussion in Chapter 15, Authentication, Encryption, and Other SMTP Pro-
cessing, regarding the way Exim handles these features.

Routing a Message

The most fundamental part of any MTA is the apparatus for deciding where to
send a message. There may be many recipients, both local and remote. This
means that a number of different copies may need to be made and sent to differ-
ent destinations. Some domains may be known to the local host and processed
specially; the remainder normally causes copies of the message to be sent to
remote hosts, which may either be the final destinations or intermediate hosts.

9 October 2001 09:07

Checking Incoming Mail 19

There are two distinct types of address: those for which the local part is used
when deciding how to deliver the message, and those for which only the domain
is relevant. Typically, when a domain refers to a remote host, the local part of the
address plays no part in the routing process, but if the domain is the name of the
local host, the local part is all-important. The steps that an MTA has to perform in
order to handle a message are as follows, though they are not necessarily done in
this order:

e First, it has to decide what deliveries to do for each recipient address. In order
to do this, it must:

— Process addresses that contain domains for which this host is the ultimate
destination. These are often called “local addresses.” Processing may
involve expanding aliases into lists of replacement addresses, handling
users’ forward files, dealing with mailing lists, and checking that the
remaining local parts refer to existing local user mailboxes.

— Process the nonlocal addresses for which there is local routing knowledge
(for example, domains for which the host is a mail hub or firewalD to
determine which of its clients” hosts these addresses should be sent to.

— For the remaining addresses, those for which there is no local knowledge,
look up destination hosts in the DNS. The details of how this is done are
given in the section, “DNS Records Used for Mail Routing,” later in this
chapter. Successful routing produces a list of one or more remote hosts for
each address.

e After sorting out what deliveries need to be done, the MTA must carry out the
local deliveries; that is, deliveries to pipes or files on the local host.

e Then, for each remote delivery, it must try to send to each host in turn, until
one succeeds or gives a hard failure. If several addresses are routed to the
same set of hosts, the RFCs recommend sending a single copy with multiple
recipients in the envelope.

e If all hosts give temporary failures, the MTA must try the corresponding
addresses again later. There is a timeout, normally a few days, to stop a client
from retrying forever.

Checking Incoming Mail

Some MTAs check the validity of local addresses during the SMTP transaction. If an
incoming message has an incorrect local part, the RCPT command that transfers that
part of the envelope is rejected by giving an error reponse. This means that the
sending MTA retains control of the message for that recipient, and is the one that
generates the bounce message that goes back to the sender. The benefit of doing

9 October 2001 09:07

20 Chapter 2: How Internet Mail Works

this checking is that it stops such undeliverable messages from ever getting into
the local host. However, receiving a bounce message from an MTA that is not at
the site they were mailing to confuses some users, and makes them think that
something is broken. “How can the local mailer daemon know that this is an
invalid address at the remote site?” they ask.

The alternative approach that is adopted by some MTAs is to accept messages
without checking the recipient addresses, and do the checking later. This has the
benefit of minimizing the duration of the SMTP transaction, and for invalid
addresses, the bounce messages are what the users intuitively expect, and they
can be made to contain helpful information about finding correct mail addresses.
The disadvantage is that undeliverable messages whose envelope senders are also
invalid give rise to undeliverable bounce messages that have to be sorted out by
the postmaster. Sadly, many spam messages are sent out with invalid envelope
senders, leading to more and more administrators configuring their MTAs to imple-
ment the former behavior.

Exim can be configured to behave in either of these two ways, and the behavior
can be made conditional on the domain of the sender address. For example, all
addresses from within a local environment can be accepted, and unknown ones
passed to a program that sends back a helpful message, while unknown addresses
from the outside can be rejected in the SMTP protocol.

Not all MTAs check the validity of envelope sender addresses. These can be
invalid for a number of reasons, such as:

e Misconfigured MUAs or MTAs. For an MUA running on a workstation, the user
has to supply the sender address, while an MTA’s configuration contains a
default domain that it adds to local usernames to create sender addresses. In
either case, a typo can render the address invalid. Errors can also arise in gate-
ways that are converting messages from some other protocol regime. Neverth-
less, such messages sometimes have a valid address in the From: header line.

e Use of domains not registered in the DNS.

e Misconfigured DNS name servers; for example, a typo in a zone file.

e Forgery.

In general, the checking of sender addresses is normally confined to verifying that

the domain is registered in the DNS. It is not normally practicable to verify the
local parts of remote addresses.”

* Exim 3.20 does contain a facility for making a “callback” to verify that an incoming sender address is
acceptable as a recipient to a host that handles its domain, but this is a costly approach that is not
suitable for use on busy systems.

9 October 2001 09:07

Overview of the DNS 21

The enormous increase in the amount of unsolicited mail being transmitted over
the Internet has caused MTA implementors to add facilities for blocking certain
types of message as a matter of policy. Typical features include the following:

e Checking local lists of known miscreant hosts and sender addresses.

)

e Checking one or more of the public “blacklists,” such as the Realtime Black-
hole List (http.//mail-abuse.org), and either refusing messages from blacklisted
hosts, or annotating them by adding an informational header line.

e Blocking third-party relaying through the local host. That is, preventing arbi-
trary hosts from sending mail to the local host for onward transmission to
some other destination. MTAs that do not block such mail are called “open
relays” and are a favorite target of spammers.

e Refusing messages with malformed header lines.

e Recognizing junk mail by scanning the content, and either discarding it or
annotating it to inform the recipient, who then has the choice of discarding it
by means of a filter file.

e Checking for certain types of attachments in order to block viruses.

Overview of the DNS

The DNS is a worldwide, distributed database that holds various kinds of data
indexed by keys that are called domain names. Here is a very brief summary of
the facilities that are relevant to mail handling.” The data is held in units called
records, each containing a number of items, of which the following are relevant to
applications that use the DNS:t

<domain name> <record type> <type-specific data>

For example, for the record:

www.web.example. A 10.8.6.4
the domain name is www.web.example, the record type is “A” (for “address™), and
the data is 10.8.6.4. Address records like this are used for finding the IP addresses
of hosts from their names, and are probably the most common type of DNS
record.

* For a full discussion, see DNS and BIND by Paul Albitz and Cricket Liu (O’Reilly). The primary DNS
RFCs are 1034 and 1035.

t The other fields are concerned with the internal management of the DNS itself.

9 October 2001 09:07

22 Chapter 2: How Internet Mail Works

In the world of the DNS, a complete, fully qualified domain name is
always shown with a terminating dot, as in the previous example.
Incomplete domain names, without the trailing dot, are relative to
some superior domain. Unfortunately, there is confusion because
some applications that interact with the DNS do not show or require
the trailing dot. In particular, domains in email addresses must 7ot
include it, because that is contrary to RFC 821/822 syntax.

The present Internet addressing scheme, which uses 32-bit addresses and is
known as IPv4, is going to be replaced by a new scheme called IPv6, which uses
128-bit addresses. Support for IPv6 is gradually beginning to appear in operating
systems and application software. Two different DNS record types are currently
used for recording IPv6 addresses, which are normally written in hexadecimal,
using colon separators. The AAAA record, which is a direct analogue to the A
record, was defined first. For example:

ipv6.example. AAAA 5£03:1200:836£:0a00:000a:0800:200a:c031

However, it has been realized that a more flexible scheme, in which prefix por-
tions of IPv6 addresses can be held separately, is preferable, because it makes
aggregation and renumbering easier. For this reason, another record type, A6, has
been defined and is expected in due course to supersede the AAAA type. The pre-
vious example could be converted into a single A6 record such as this:

ipv6.example. A6 0 5£03:1200:836£:0a00:000a:0800:200a:c031
The zero value indicates that no additional prefix is required. Alternatively, the
address could have its prefix recorded in a separate record, like this:

ipv6.example. A6 64 ::000a:0800:200a:c031 pref.example.
pref.example. A6 0 5f03:1200:836£:0a00::

The value of 64 indicates that an additional 64 bits of prefix are required, and
domain name pref.example identifies another A6 record where this prefix can be
found. Several levels of prefix are permitted.”

If a host has more than one IP interface, each appears in a separate address record
with the same domain name. The case of letters in DNS domain names is not sig-
nificant, and the individual components of a name may contain a wide range of
characters. For example, a record in the DNS could have the domain name
abc_xyz#2.example.com. However, the characters that are used for hostnames are
restricted by RFC 952 to letters, digits, and hyphens, and domains that are used in
email addresses in the SMTP protocol are similarly restricted. It is not possible to

* See RFC 2874 for further details of how A6 records work.

9 October 2001 09:07

Overview of the DNS 23

send mail to an address such as wuser@abc_xyz#2.example.com using SMTP,
because of the characters in the domain that are illegal according to RFC 821. For
this reason, all MX domain names (which are described shortly) and hostnames
use only the restricted character set. This constraint is often misunderstood to be
an internal DNS restriction, which it is not.*

The servers that implement the DNS are called name servers, and are distributed
throughout the Internet. The hierarchical name space is broken up into zones,
each of which is managed by its own human administrator, and stored on its own
master server. Division into zones that are stored on independent servers is what
makes the management of such a large set of data practicable.t

The breakpoints between zones are always between components of a domain
name, but not necessarily at every boundary. For example, there is a uk zone, and
ac.uk and cam.ac.uk zones, but there is no separate csx.cam.ac.uk zone, although
there are domain names ending with those components. The data for those names
is held within the cam.ac.uk zone. This does not prevent there being other differ-
ent zones below cam.ac.uk. This example is illustrated in Figure 2-4, using dashed
lines to represent the zones.

There is usually one master name server for a zone, and several slaves that copy
their data from the master. A single name server may be a master for some zones
and a slave for others. Any name server (master or slave) that has its own com-
plete copy of a zone file is said to be authoritative for that zone. You will some-
times see this word used in output from commands such as host, which
interrogate the DNS. Data that a name server has obtained from some other name
server without transferring the entire zone is nonauthoritative.

It is preferable for the slaves to be at least on different LANs to the master, and
best if some of them are at entirely different locations in order to maximize the
availability of the zone for queries. ISPs commonly provide name server slaving
facilities for their customers. A name server for a zone that has subzones knows
the location of the servers for those zones. At the base of the hierarchy are the
root name servers at “well-known” locations on the Internet.

Caching is extensively used in DNS software to improve performance. Each record
contains a time-to-live field, and name servers are entitled to remember and reuse
the data for that length of time. A typical time-to-live is around one day. Data is
looked up by passing the domain name and type to a nearby name server; if there
has been a recent request for the same data, it will be in the server’s cache and the
request can be answered immediately. Otherwise, if the server happens to have

* See also RFC 2181.

t Before the DNS, the list of Internet hosts was kept in a single file that had to be copied in its entirety
to all of them.

9 October 2001 09:07

24 Chapter 2: How Internet Mail Works

root

cam.ac.uk

*_cesx.cam.acuk | ucs.cam.acuk

Figure 2-4. DNS domains and zones

cached the identity of the name servers for the required zone, it can query them
directly, but if it has no relevant information, it starts by querying one of the root
name servers and works its way down the zone hierarchy. For example: if a query
for www.cam.ac.uk is received by a root name server, it responds with the list of
name servers for the wuk zone. Querying one of them produces a list of name
servers for the ac.uk zone, and so on, until a name server that contains the actual
data is reached.

DNS Records Used for Mail Routing

The domain in a mail address need not correspond to a hostname. For example,
an organization might use the domain plc.example.com for all its email, but handle
it with hosts called mail-1.pic.example.com and mail-2.plc.example.com. This kind
of flexibility is obtained by making use of mail exchange (MX) records in the DNS.
An MX record maps a mail domain to a host that is registered as handling mail for
that domain, with a preference value. There may be any number of MX records for
a domain, and when a name server is queried, it returns all of them. For example:

hermes.example.com. MX 5 green.csi.example.com.
hermes.example.com. MX 7 sw3.example.com.
hermes.example.com. MX 7 swd.example.com.

shows three hosts that handle mail for hermes.example.com. The preference val-
ues can be thought of as distances from the target; the smaller the value, the more

9 October 2001 09:07

Related DNS Records 25

preferable the corresponding host, so in this example, green.csi.example.com is
the most preferred. An MTA that is deliverying mail for hermes.example.com first
tries to deliver to green.csi.example.com; if that fails, it tries the less preferred
hosts in order of their preference values. It is only the numerical order of the pref-
erences that is used; the absolute values do not matter. When there are MX
records with identical preference values (as in the previous example), they are
ordered randomly before they are used.

Before an MTA can make use of the list of hosts it has obtained from MX records,
it first has to find the IP addresses for the hosts. It does this by looking up the cor-
responding address records (A records for IPv4, and AAAA or A6 records for IPv6).
For the previous example, there might be the following address records:

green.csi.example.com. A 192.168.8.57
sw3 .example.com. A 192.168.8.38
swi . example.com. A 192.168.8.44

In practice, if a name server already has an address record for any host in an MX
list that it is returning, it sends the address record along with the MX records. In
many cases, this saves an additional DNS query.

In the early days of the DNS there were no MX records, and mail domains corre-
sponded to hostnames. For backward compatibility to that time, if there are no MX
records for a domain, an MTA is entitled to look for an address record and treat it
as if it were obtained from an MX record with a preference value of zero (most
preferred). However, if it cannot determine whether or not there are any MX
records (because, for example, the relevant name servers are unreachable), it must
not do this.

MX records were originally invented for use by gateways to other mail systems,
but nowadays they are heavily used to implement “corporate” mail domains that
do not necessarily correspond to any specific host.

Related DNS Records

Two other kinds of DNS records are useful in connection with mail. PTR
(“pointer”) records map IP addresses to names via special zones called in-
addr.arpa for 1Pv4 addresses, and ip6.int or ip6.arpa for IPv6 addresses.* PTR
records allow the reverse of a normal host lookup: given an IP address, PTR
records allow you to find out the corresponding hostname. The name of a PTR
record consists of the IP address followed by one of the special domains. How-
ever, for the in-addr.arpa and ip6.int domains, the components of the address are

* The top-level domain name arpa is rooted in history, and refers to the original wide-area network
called the Arpanet.

9 October 2001 09:07

206 Chapter 2: How Internet Mail Works

reversed to allow for DNS delegation of parts of an IP network. For the address
192.168.8.57, the PTR record would be as follows:

57.8.168.192.in-addr.arpa. PTR green.csi.example.com.
This registers that the name of the host that has the IP address 192.168.8.57 is
green.csi.example.com. For IPv6 addresses in the ip6.int domain, the components
that are reversed are the hexadecimal digits. For the address:

5£03:1200:836£:0a00:000a:0800:200a:c031

the name of the PTR record is:

1.3.0.c.a.0.0.2.0.0.8.0.2.0.0.0.0.0.2.0.£.6.3.8.0.0.2.1.3.0.£.5.ip6.1int.

Not only is this rather clumsy to notate, it also has the disadvantage that DNS zone
breaks are not possible at arbitrary points in the 128-bit address. For this reason, at
the time A6 records were introduced for name-to-address lookups, an alternative
format for IPv6 PTR records was defined for use with the domain ip6.arpa. In this
form, part of the domain name is a binary number with an implied component
break between each binary digit. For convenience, in textual versions of the
record, the number is given in conventional notation without having to be
reversed. In this new formulation, the name of the PTR record in the previous IPv6
address is:

\ [x5£031200836£0a00000a0800200ac031] . ip6.arpa.

where the backslash and brackets indicate an encoding of a binary value.

PTR records do not have to match the corresponding address record. In the exam-
ple in the previous section, the address record:

swl.example.com. A 192.168.8.44
is shown. If you use the address 192.168.8.44 to look up the hostname via a PTR
record, you might find the name sw4.example.com, or you might find something
completely different; for example:

44.8.168.192.in-addr.arpa. PIR lilac.csi.example.com.
This record gives the name /lilac.csi.example.com for the address 192.168.8.44,
despite the fact that the address was given for the name sw4.example.com. This
kind of arrangement is often found where the name of some kind of service is
widely published, with an address record to point to a host that is currently pro-
viding the service. The host itself, however, has a different primary name, which is
what the PTR record contains.

For example, the name we’ve been using, sw4.example.com, might be the name of
a mail switching service that currently is provided by the host lilac.csi.exam-
ple.com. Moving the service to another host just requires the DNS to be updated;
no host has to change its name. If more than one host is providing the service,

9 October 2001 09:07

Common DNS Errors 27

several address records may exist for the same domain. Modern name servers
return these in a different order each time they are queried, which provides a form
of load-sharing.

There is no enforced connection between address records and PTR records, and
for any given host, one may exist without the other. The main use of these records
in connection with mail is for finding the name of the remote host that is sending
a message, because all that is initially known about the host at the far end of an
incoming TCP/IP call is its IP address. The hostname may be required for checking
against policy rules controlling what types of message remote hosts may send.

CNAME (“canonical name”) records provide another kind of aliasing facility. For
example:

pelican.example.com. CNAME redshank.csx.example.com.

states that the canonical name (real or main name) for the host that can be
accessed as pelican.example.com is actually redshank.csx.example.com. CNAME
records should not normally be used in connection with mail routing. MX records
provide sufficient redirection capabilities, and excessive aliasing just slows things
down.

Common DNS Errors

These are a number of common mistakes that are made by DNS administrators
(who are usually known as “hostmasters”), shown in the following list. All except
the first prevent mail from being delivered:

e MX records point to aliases instead of canonical names. That is, the domains
on the righthand side of MX records are the names of CNAME records instead
of A, A6, or AAAA records. This should not prevent mail from working, but it
is inefficient, and not strictly correct.

e MX records point to nonexistent hosts; that is, to names that have no corre-
sponding A, A6, or AAAA record.

e MX records contain IP addresses on the righthand side instead of hostnames.
This error is unfortunately becoming more widespread, abetted by the fact that
some MTAs, in violation of RFC 1034, support the usage. Exim does not do so
by default, but does have an option to enable this unrecommended, nonstan-
dard behavior.

e MX records do not contain preference values.

Some broken name servers give a server error when asked for a nonexistent MX
record. This prevents mail from being delivered because an MTA is permitted to
search for an address record only if it is sure there are no MX records. In the case
of a server error, the MTA does not know this. Similar server errors have been

9 October 2001 09:07

28 Chapter 2: How Internet Mail Works

seen in cases where a preference value has been omitted from an MX record.
More robust name servers check records when loading their zones, and generate
an error if any contain bad data such as this.

Occasionally, the DNS appears to be giving different answers to identical queries.
In the context of mail, this causes some messages to be rejected with “unknown
domain” errors, whereas other messages to the same domain are delivered nor-
mally. The most common cause of this kind of behavior is that the name servers
for the zone are out of step. If you suspect this, you can check by directing a DNS
query to a specific name server. The first step is to find the relevant name servers
by looking for the zone’s NS records. To find the name servers for the zone
ioe.example.com, for example, you can use the command:

S nslookup -type=ns ioe.example.com

which might give these lines as the relevant parts of its answer:*

ioe.example.com nameserver = mentor.ioe.example.com
ioe.example.com nameserver = ns0.example.net

Once you know the name servers, you can query each one in turn for the domain
in question; if the nslookup command is given a second argument, it is the name
of a specific name server to which the query is to be sent. This sequence of com-
mands and responses (where the commands are shown in boldface) indicates that
there is a problem because the different name servers are giving conflicting
answers:

$ nslookup saturn.example.com mentor.ioe.example.com
Server: mentor.ioe.example.com
Address: 192.168.34.22

Name : saturn.example.com

Addresses: 192.168.5.4

$ nslookup saturn.example.com ns0.example.net
Server: ns0.example.net

Address: 192.168.255.249

*** ng0.example.net can’t find saturn.example.com: Nonexistent host/domain

The problem may, however, be temporary. When a master name server is
updated, it can take some hours before the data reaches the slaves, during which
time this behavior may be seen. However, if the discrepancy persists for any
length of time, it is indicative of some kind of DNS error.

* mnslookup is one of the applications that omits the trailing dots when it displays domain names.

9 October 2001 09:07

Role of the Postmaster 29

Role of the Postmaster

Postmaster is the name given to the person who is in charge of administering an
MTA. He or she should be familiar with the software and its configuration, and
should regularly monitor its behavior. If there are local users of the system, they
should be able to contact the postmaster about any mail problems. If the MTA
sends or receives mail to or from the Internet at large, people on other hosts must
also be able to contact the postmaster.

The traditional way that this is done is by maintaining an alias address postmas-
ter@your.domain, which redirects to the person who is currently performing the
postmaster role. Indeed, the RFCs state that postmaster must always be supported
as a case-insensitive local name.

9 October 2001 09:07

Exim Overview

In the previous chapter, the job of an MTA is described in general terms. In this
chapter, we explain how Exim is organized to do this job, and the overall way in
which it operates. Then in the next chapter, we cover the basics of Exim adminis-
tration before launching into more details about the configuration.

Exim Pbhilosophy

Exim is designed for use on a network where most messages can be delivered at
the first attempt. This is true for most of the time over a large part of the Internet.
Measurements taken in the author’s environment (a British university) indicate that
well over 90 percent of messages are delivered almost immediately under normal
conditions. This means that there is no need for an elaborate centralized queuing
mechanism through which all messages pass. When a message arrives, an immedi-
ate delivery attempt is likely to be successful; only for a small number of messages
is it necessary to implement a holding and retrying mechanism.

Therefore, although it is possible to configure Exim otherwise, the normal action is
to try an immediate delivery as soon as a message has been received. In many
cases this is successful, and nothing more is needed to process the message. Nev-
ertheless, some precautions must be taken to avoid system overload in times of
stress. For example, if the system load rises above some threshold, or if there are a
large number of simultaneous incoming SMTP connections, immediate delivery
may be temporarily disabled. In these events, incoming messages wait on Exim’s
queue and are delivered later.

All operations are performed by a single Exim binary, which operates in different
ways, depending on the arguments with which it is called. Although receiving and
delivering messages are treated as entirely separate operations, the code for

30

9 October 2001 09:07

Receiving and Delivering Messages 31

determining how to deliver to a specific address is needed in both cases, because
during message reception, addresses are verified by checking whether it would be
possible to deliver to them. For example, Exim verifies a remote sender address by
looking up the domain in the DNS in exactly the same way as when setting up a
delivery to that address.

Exim’s Queue

The word queue is used for the set of messages that Exim has under its control at
any one time, because this word is common in the context of mail transfer. How-
ever, Exim’s queue is normally treated as a collection of messages with no implied
ordering, more like a “pool” than a “queue.” Furthermore, Exim does not maintain
separate queues for different domains or different remote hosts.

There is just a single collection of messages awaiting delivery, each of which may
have several recipients. You can list the messages on the queue by running the
command:

exim -bp
assuming that your path is set up to contain the directory where the Exim binary is
located. Messages that are not delivered immediately on arrival are picked up later
by queue runner processes that scan the entire queue and start a delivery process
for each message in turn. A queue runner process waits for each delivery process
to complete before starting the next one.

Receiving and Delivering Messages

Message reception and message delivery are two entirely separate operations in
Exim, and their only connection is that Exim normally tries to deliver a message as
soon as it has received it. Receiving a message consists of writing it to local spool
files (“putting it on the queue”) and checking that the files have been successfully
written before acknowledging reception to the sending host or local process.
There is only one copy of each message, however many recipients it has, and the
collection of spool files is the queue; there are no additional files or in-memory
lists of messages.

A delivery operation gets all its data from the spool files. Each attempt at deliver-
ing a message processes every undelivered recipient address afresh. Exim does not
normally retain previous alias, forwarding, or mailing list expansions from one
delivery attempt to another.”

* There is, however, one exception to this: if the one_time option is set for a mailing list, the list’s
addresses are added to the original list of recipients at the first delivery attempt, and no re-expansion
occurs at subsequent attempts.

9 October 2001 09:07

32 Chapter 3: Exim Overview

Exim Processes

Parallelism is obtained by the use of multiple processes, but one important aspect
of Exim’s design is that there is no central process that has overall responsibility
for coordinating Exim’s actions, and therefore there is no concept of starting or
stopping Exim as a whole. Exim processes can be started at any time by other pro-
cesses; for example, user agents are always able to start Exim processes in order to
send messages. Such processes perform a single task and then exit. Most processes
are therefore short-lived, but Exim does make use of long-running daemon pro-
cesses for two purposes:

1. To listen on the SMTP port for incoming TCP/IP connections. On receiving
such a connection, the listener forks a new process to deal with it. An upper
limit to the number of simultaneously active reception processes can be set.
When the limit is reached, additional SMTP connections are refused.

2. To start up queue runner processes at fixed intervals. These scan the pool of
waiting messages (by default in an arbitrary order) and initiate fresh delivery
attempts. A message may be on the queue because a previous delivery
attempt failed, or because no delivery attempt was initiated when the message
was received. Each delivery attempt processes a single message and runs in its
own process, and the queue runner waits for it to complete before moving on
to the next message. A limit may be set for the number of simultaneously
active queue runner processes run by a daemon.

A single daemon process can be used to perform both these functions, and this is
the most common configuration. However, it is possible to run Exim without using
a daemon at all; inetd can be used to accept incoming SMTP calls and start up an
Exim process for each one, and queue runner processes can be started by cron or
some other means. However, in these cases Exim has no control over how many
such processes are run, so if you are worried about system overload, you must
control the number of processes yourself.*

Coordination Between Processes

Processes for receiving and delivering messages are for the most part entirely inde-
pendent. The small amount of coordination that is needed is achieved by sharing
files. Minimizing synchronization and serialization requirements between processes
helps Exim to scale well. Apart from the messages themselves, the shared data

* xinetd (www.xinetd.org) is a replacement for inetd that includes additional control facilities.

9 October 2001 09:07

How Exim Is Configured 33

consists of a number of files containing “hints” about mail delivery. For example,
if a remote host cannot be contacted, the time of the failure and the suggested
next time to try that host are recorded. Any delivery process that has a message for
that host will read the hint and refrain from trying the delivery if the retry time has
not been reached. This does not affect delivery of the same message to other hosts
when there is more than one recipient address.

Because the coordinating data is treated as a collection of hints, it is not a major
disaster if any or all of it is lost; there may be a period of less optimal mail deliv-
ery, but that is all. Consequently, the code that maintains the hints can be quite
simple because it does not have to be made robust against unusual circumstances.

How Exim Is Configured

Configuration information, supplied by the administrator, is used at two different
times: one configuration file is used when building the Exim binary, and another is
read whenever the binary is run. Most options can be specified in only one of
these files; that is, they either control how the binary is built, or they modify its
behavior at runtime, but there are a few build-time options that set defaults for
runtime behavior. The sources of Exim’s configuration information are shown in
Figure 3-1.

Build-time
configuration

Building o
. — : -
P '@ Scripts - - - - confained in distribution

creafed by Exim
administrator binary
Runtime
\ configuration y
. R B Auxiliary
B data

TGS T IR SP——

Figure 3-1. Exim configuration

9 October 2001 09:07

34 Chapter 3: Exim Overview

The build-time options are of three kinds:

e Those that specify the inclusion of optional code; for example, to support spe-
cific database lookups such as LDAP, or to support IPv6.

e Those that specify fixed values that cannot be changed at runtime; for exam-
ple, the mode of message files in Exim’s spool directory.

e Those that specify default values for certain runtime options; for example, the
location of Exim’s log files.

The process of building Exim from source is described in detail in Chapter 22,
Building and Installing Exim. Here, we consider the runtime configuration. This is
controlled by a single text file, often called something like /etc/exim.conf. You can
find out the actual name by running the following command:

exim -bP configure file
On a system where Exim is fully installed as a replacement for Sendmail, one or
both of the paths /usw/lib/sendmail or /usr/sbin/sendmail is a symbolic link to the
Exim binary. Therefore, any MUA, program, or script that attempts to send a mes-
sage by calling Sendmail actually calls Exim.*

Whenever Exim is executed, it starts by reading its runtime configuration file. A
large number of settings can be present, but for any one installation only a few are
normally used. The data from the file is held in main memory while an Exim pro-
cess is running. For this reason, if you change the file, you have to tell the Exim
daemon to reload it. This is done by sending the daemon a SIGHUP signal. All other
Exim processes are short-lived, so as new ones start up after the change, they pick
up the new configuration.

For very simple installations, it may be possible to include all the configuration
data within the runtime configuration file. A minimal usable configuration of this
type is shown in the next chapter, in the section “A Minimal Usable Configuration
File.” Normally, however, the runtime configuration refers to auxiliary data, which
can be in ordinary files, or in databases such as NIS or LDAP. Common examples
are the system alias file (usually called /etc/aliases) and users’ .forward files. Files
or databases can also be used for lists of hosts, domains, or addresses that are to
be handled in some special way and that are too long to conveniently include
within the configuration file itself. Data from such sources is read afresh every
time it is needed, so updates take immediate effect and there is no need to send a
SIGHUP signal to the daemon.

* BSD-based systems tend to use /usr/sbin/sendmail, whereas Solaris uses /usr/lib/sendmail. Difterent
MUAs have different defaults, so some administrators set both paths to cater for both kinds.

9 October 2001 09:07

How Exim Delivers Messages 35

The simplest item that is found in the runtime configuration file is an option set to
a fixed string. For example, the following line:

qualify domain = example.com
specifies that addresses containing only a local part and no domain are to be
turned into complete addresses (“qualified”) by appending @example.com.” Each
such setting appears on a line by itself. For many option settings, fixed data suf-
fices, but Exim also provides ways for you to supply data that is re-evaluated and
modified every time it is used. Examples and explanations of this feature are intro-
duced later in this chapter.

How Exim Delivers Messages

Exim’s configuration determines how it processes addresses; this processing
involves finding information about the destinations of a message and how to trans-
port it to those destinations. In this and the following sections, we discuss how the
configuration that you set up controls what happens.

There are many different ways an address can be processed. For example, looking
up a domain in the DNS involves a completely different way of processing from
looking up a local part in an alias file, and delivering a message using SMTP over
TCP/IP has very little in common with appending it to a mailbox file. There are
separate blocks of code in Exim for doing the different kinds of processing, and
each is separately and independently configurable. The word driver is used as the
general term for one of these code blocks. In many cases, when you specify that a
particular driver is to be used, you need only give one or two parameters for it.
However, most drivers have a number of other options whose defaults can be
changed to vary their behavior.

There are four different kinds of drivers. Three of them are concerned with han-
dling addresses and delivering messages, and are called directors, routers, and
transports. The fourth kind of driver handles SMTP authentication and is described
in Chapter 15, Authentication, Encryption, and Other SMTP Processing.

Transports are the components of Exim that actually deliver messages by writing
them to files, or to pipes, or over SMTP connections. Directors and routers are
very similar in that their job is to process addresses and decide what deliveries are
to take place. The difference between them is in the kinds of address that they

* Unqualified addresses are accepted only from local processes, or from certain designated remote
hosts.

9 October 2001 09:07

36 Chapter 3: Exim Overview

handle; directors handle local addresses and routers handle remote addresses. As
Exim has evolved, the original differences in concept between directors and
routers have diminished, and it may come about that they are merged in some
future release. For the moment, however, a distinction remains.

Before going into more detail, we take a brief look at the way drivers are used as
a message makes its way through the system. Exim has to decide whether each
address is to be delivered on the local host or to a remote one, then it has to
choose the right form of transport for each address (appending to a user’s mail-
box, for instance, or connecting to another host via SMTP), and finally it has to
invoke those transports. For example, in a typical configuration, a message
addressed to bug_reports@exim.example, where exim.example is a local domain,
might be handled like this:

1. The first driver in the configuration is a director that handles system aliases;
this tells Exim to check the /etc/aliases file. Here it finds that the local part
bug_reports is indeed an alias, and that it resolves to two other addresses: the
local address brutus@exim.example, and the remote address julia@belper-
sys.org.example. Further drivers must be invoked to handle each of these new
recipients.

2. Later in the configuration is a director that recognizes local users like brutus,
and it arranges for Exim to run a transport called appendfile, which adds a
copy of the message to Brutus’ mailbox. The actual delivery does not take
place until after Exim has worked out how to handle all the addresses.

3. For the other recipient, Exim runs a router that looks up the domain helper-
sys.org.example in the DNS, and finds the IP address of the remote host to
which the message should be sent. It then arranges for Exim to run the smip
transport in order to do the delivery.

This example has introduced several of the most commonly used drivers. Later in
this chapter, we work through a similar example in much more detail. The individ-
ual drivers are described in their own sections in later chapters; here is an alpha-
betical list of them:

aliasfile
A director that expands aliases into one or more different addresses.

appendlfile

A transport that writes messages to local files.

autoreply
A transport that generates automatic replies to messages.

9 October 2001 09:07

Local and Remote Addresses 37

domainlist
A router that routes remote domains using locally supplied information.
Sforwardfile
A director that handles users’ forward files and Exim filter files.
ipliteral
A router that handles “IP literal” addresses such as user@/192.168.5.6/. These
are relics of the early Internet that are no longer in common use.

Imip
A transport that delivers messages to external processes using the LMTP
protocol.”

localuser
A director that recognizes local usernames.

lookuphost
A router that looks up remote domains in the DNS.

pipe

A transport that passes messages to external processes via pipes.

queryprogram

A router that runs an external program in order to route a domain.
smartuser

A director that accepts any address; it is used as a “catchall.”

smip
A transport that writes messages to other hosts over TCP/IP connections, using
either SMTP or LMTP.

The configuration may refer to the same driver code more than once, but with dif-
ferent options, in order to create multiple instances of the same driver type. Each
driver instance is given an identifying name in the configuration file, for use in
logging and for reference from other drivers.

Local and Remote Addresses

There are two distinct types of mail address: those for which the local part is used
when deciding how to deliver the message, and those for which only the domain
is relevant. Typically, when a domain refers to a remote host, the local part of the
address plays no part in the routing process, but if the domain is the name of the
local host, the local part is usually used in determining where to deliver the mes-
sage. This is not a hard and fast rule (a small company might accept mail for any

* LMTP (RFC 2033) is a variation of SMTP that is designed for passing messages between local
processes.

9 October 2001 09:07

38 Chapter 3: Exim Overview

local part in a single mailbox), but it forms the basis of the distinction between
directors and routers.

The first thing Exim does when processing an address is to determine whether it
should be handled by the directors or by the routers. An Exim configuration nor-
mally contains definitions of a number of directors and at least one router, though
there may be any number of either. If the domain is listed in the configuration as a
local domain, the address is processed by the directors and is called a Jocal
addpress. Otherwise it is processed by the routers and is called a remote address.

Exim decides whether a domain is local by checking the local domains option,
which contains a colon-separated list of patterns. If it is not set, the name of the
local host is used as the only local domain. Otherwise, it may contain various
types of patterns, of which the most common are shown in this example:

local_domains = tiber.rivers.example:\

*.cities.example:\

dbm; /usr/exim/domains
The first item in the list is a single domain name, tiber.rivers.example, while the
second is a simple pattern, matching all domains that end in .cities.example.* The
third item is a reference to an external file, /usr/exim/domains, which is a DBM-
keyed file. This type of item is useful when a host is handling a very large number
of local domains. We discuss DBM files and this kind of lookup item in more
detail later.

Notice the use of backslashes for continuing the option value over several lines.
This is a general feature of Exim’s configuration file; any line can be continued in
this way. Whitespace at the start of continuation lines is ignored.t

Processing an Address

After it has decided whether an address is local or remote, Exim offers it to each
configured director or router (as appropriate) in turn, in the order in which they
are defined, until one of them is able to deal with it. The order in which directors
and routers are defined in the configuration file is therefore important. The pro-
cess of directing a local address is illustrated in Figure 3-2; a similar process hap-
pens using the routers for a remote address.

A director that successfully handles an address may add that address to a queue
for a particular transport. Alternatively, it may generate one or more ‘“child”

* More complicated patterns can be given in the form of regular expressions.

t In versions of Exim prior to 3.14, this continuation mechanism is available only in macro definitions,
rewriting rules, and option settings where the value is given enclosed in double quotes. Thus, the
earlier example would have to be quoted if used in an earlier version.

9 October 2001 09:07

Processing an Address 39

Local address

First director handled it? — YES—— done

I
No

Second director handled it? — YES—> done

I
No

Last director handled it? — YES— done
|
NO

Addres& failed.
Cannot deliver.

Figure 3-2. Directing a local address

addresses that are added to the message’s address list and processed in their own
right, with the original address no longer playing any part. This is what happens
when a local part matches an entry in an alias list, or when a user’s forward file is
activated.

A successful router, on the other hand, can only add the address to a queue for a
transport, or modify the domain and pass it on to the next router. It cannot gener-
ate “child” addresses. When a director or a router cannot handle an address, it is
said to decline. If every director or router declines, the address cannot be handled
at all, and delivery fails.

The way addresses are handled by directors and routers is illustrated in Figure 3-3.
(The line labeled “local after all” is a special case that is discussed in the section
“Remote Address Becoming Local,” later in this chapter.) All the addresses in a
message, and any that are generated from them (for example, by aliasing), are
processed by the directors and routers before any deliveries take place from the
transport queues. Any router or director can queue an address for any transport;
directors are not restricted to local transports, nor routers to remote ones.

9 October 2001 09:07

40 Chapter 3: Exim Overview

Address <
New Address
Matches
NO— —VE
r 0 local_domains? S_l
routers = local after dll—— directors
Transport
queues
Remote ‘ Local
delivery < > delivery
(SMTP) (pipe, file)

Figure 3-3. Routing and directing

A Simple Example

To help clarify the mechanisms described earlier, an example of a simple message
delivery is presented here. The scenario is a host called simple.example, where the
hostname is the only local mail domain. The host is using a simple Exim configu-
ration file that supports aliases, user-forward files, delivery to local users’ mail-
boxes, and remote SMTP delivery. The relevant portions of the configuration are
quoted here. Suppose a user of this host has sent a message addressed to one
local and one remote recipient:

postmaster@simple.example
friend@another.example

At the start of delivery, Exim’s list of addresses to process is initialized with the
two original recipients, and its first job is to work through this list, deciding what
to do for each address. For postmaster@simple.example, the domain is local, so it is
passed to the first defined director, whose configuration is as follows:

system aliases:
driver = aliasfile
file = /etc/aliases
search_type = lsearch

The first line, terminated by a colon, is the name for this particular director
instance, chosen by the system administrator. Each driver of a particular type
(director, router, or transport) must have a distinct name. However, names of
driver instances can be the same as the names of the drivers themselves; you can
have the following:

9 October 2001 09:07

A Simple Example 41

aliasfile:

driver = aliasfile

file = /etc/aliases

search_type = lsearch
if you want to, but some people find this usage confusing. The second configura-
tion line specifies which kind of director this is (or, to put it another way, it
chooses which block of director code to run), and the remaining two lines are
options for the director.

The aliasfile director handles an address by looking up the local part in an alias
list, and the options control how the lookup is done. In this case, the list is in the
file /etc/aliases, and a linear search (“Isearch”) is required. This expects each line
of the file to contain an alias name, optionally terminated by a colon, followed by
the list of replacement addresses for the alias, which may be continued onto sub-
sequent lines by starting them with whitespace. A comma is used to separate
addresses in the list. For example:

root: postmaster@simple.example,
herb@simple.example
postmaster: simon@simple.example

Notice that the first line specifies that root is an alias for postmaster, which itself is
an alias. This is a common practice, and works exactly as you might expect.” The
aliasfile director reads through this file and finds the entry for postmaster, so it
adds a new address, simon@simple.example, to the list of addresses to process,
and returns a code that indicates success, meaning that postmaster@simple.example
has been completely processed. The list of pending addresses now contains the
following:

simon@simple.example

friend@another.example
Exim proceeds to tackle simon@simple.example,t which is another local address,
so again it is offered to the system_aliases director. This time, however, there is no
match in /etc/aliases, so the director cannot handle the address. It returns a code
indicating “decline,” which causes Exim to offer the address to the next director,
whose configuration is as follows:

userforward:
driver = forwardfile
file = .forward

The job of a forwardfile director is to check for the existence of files containing
lists of forwarding addresses. This instance is configured to look for .forward files
in users’ home directories. First of all, it has to check that the local part of the

* See the section “Directing Loops,” later in this chapter, for a discussion of how it might go wrong.

t In practice, it might not actually happen in this order.

9 October 2001 09:07

42 Chapter 3: Exim Overview

address corresponds to a user login name.* If there is no matching user, the direc-
tor declines, but if simon is in fact a user of the host, the director goes on to check
the existence of the given file.

If the file is defined using a relative pathname, as shown earlier, it is sought in the
user’s home directory. Because home directories are often NFS-mounted, Exim first
checks that the directory is available before trying to open the file so that the
absence of the directory is not mistakenly interpreted as the absence of the file.t

If simon has a forward file, its contents are a list of forwarding addresses and
other types of items, as described in the section “Items in Alias and Forward Lists,”
in Chapter 7, The Directors. The addresses are added to the list of addresses to
process, the userforward director returns a code indicating success, and the new
addresses are eventually processed independently.

If simon does not have a jforward file, the director declines, and
simon@simple.example is offered to the third director in the configuration:

localuser:

driver = localuser

transport = local_delivery
The job of localuser is to check whether the local part of the address corresponds
to a user login name. In this configuration, this check has already been done by
the previous director. This is quite a common occurrence, so Exim keeps a cache
of the most recently looked-up name to avoid wasteful repetition. If simon were
not a local user, the director would decline, and as there are no more directors in
the configuration, the address would fail. It would be placed on a list of failed
addresses and used to generate a bounce message at the end of the delivery
attempt.

When the local user does exist, the director succeeds, and it places the address on
a queue for the local_delivery transport, attaching to it the uid, gid, and home
directory that it looked up. That is all that happens at this stage; no actual delivery
takes place until later. The processing of postmaster@simple.example is illustrated
in Figure 3-4, where the ovals represent sources of information, and the rectangles
represent drivers.

There is still one address to process: friend@another.example. Its domain is not a
local one, so it is processed by routers rather than by directors. Exim offers it to
the first router:

* It does this by calling the system function getpwnam() rather than looking at /etc/passwd directly, so
that users defined by other means (such as NIS) are recognized.

t In an automounted environment, the directory check causes an automount to occur.

9 October 2001 09:07

A Simple Example 43

postmuster@slimple.ex:ly /etc/dliases

system_aliases —— userforward | <——{ home directory

I

localuser ' «——{ password data

simon@simple.example

appendfile
queve

Figure 3-4. Directing example

lookuphost :

driver = lookuphost

transport = remote_smtp
This is in fact the only router in this simple configuration, so if it declines, the
address fails. The job of lookuphost is to obtain a list of remote hosts for the
domain of an address, and in its normal configuration (as shown earlier), it does
this by looking up the domain in the DNS using MX and address records, as
described in the section “DNS Records Used for Mail Routing,” in Chapter 2, How
Internet Mail Works. When it is successful, it ends up with an ordered list of hosts
and their TP addresses. It puts the mail address on a queue for the remote_smtp
transport, attaching the host list. In our example, if the MX and address records
were the following:

another.example. MX 6 mail-2.another.example.
another.example. MX 4 mail-1.another.example.
mail-1l.another.example. A 192.168.34.67
mail-2.another.example. A 192.168.88.32

then the list of hosts to be passed with the address to remote_smtp would be:

mail-1l.another.example 192.168.34.67

mail-2.another.example 192.168.88.32
Any hosts that have the same MX preference value are sorted into a random order.
The processing of friend@another.example is illustrated in Figure 3-5.

There are now no more unprocessed addresses, so the directing and routing phase
of the delivery process is complete, and Exim moves on to do the actual deliveries
by running the transports that have been set up. Local transports are run first; in
our example, there is one local delivery setup for the address simon@simple.exam-
ple, using the local_delivery transport. This was specified by a localuser director

9 October 2001 09:07

44 Chapter 3: Exim Overview

friend@another.example

lookuphost | «——] DNS

l

remofe_smip
transport queue

Figure 3-5. Routing example

that handled the address. The transport is configured thus:

local_delivery;
driver = appendfile
file = /var/mail/$local_part
delivery date add
envelope_to_add
return_path_add

This uses the appendfile driver, which adds a copy of the message to the end of a
mailbox file in conventional Unix format when configured in this way.*

The name of the file is given by the file option. Its value, with an embedded dol-
lar character, is different from the option settings that we have met so far, which
have all been fixed values. Much of the flexibility of Exim’s configuration comes
from the use of option settings where the specified strings are changed each time
they are used. This process is called string expansion, and we’ll see it in many
examples throughout this book. A complete description of all the expansion fea-
tures is given in Chapter 17, String Expansion.

The simplest change that can be made to a string is the insertion of a variable
value, and this is what is happening in the earlier example. Exim replaces teh sub-
string $local_part by the local part of the address that is being delivered, so the
file that is actually used is /vaw/mail/simon. The remaining three options request
the addition of three generally useful header lines as the message is written:

Delivery-Date:
A header that records the date and time of delivery, for example:

Delivery-Date: Fri, 31 Dec 1999 23:59:59 +0000

* Other configurations (see the section “The appendfile Transport,” in Chapter 9, The Transports) sup-
port different formats.

9 October 2001 09:07

A Simple Example 45

Envelope-To:
A header that records the original recipient address (the “envelope to”
address) that caused the delivery; in this example it would be:

Envelope-To: postmaster@simple.example

Preserving this address is useful in case it does not appear in the 7o: or Cc:
headers.

Return-Path:
A header that records the sender from the message’s envelope, for example:

Return-Path: <user@simple.example>

For bounce messages that have no sender, it looks like this:
Return-Path: <>

Local deliveries are always run sequentially in separate processes that change their
user identity to some specific value. In this case, the user ID (uid) and group ID
(gid) of the local user were passed to the transport by the localuser director, so
these are used. The delivery subprocess is therefore running “as the user” when it
accesses the mailbox.”

When the subprocess has finished, there are no more local deliveries, so Exim
proceeds to the remote ones. Before it does so, it gives up its root privilege per-
manently, and runs as the Exim user if a uid and gid for Exim have been defined
in the configuration (either at build time or at runtime). This is the recommended
way to run Exim.

There is one remote delivery, for friend@another.example, which was set up by
the lookuphost router to use the remote_smtp transport:

remote_smtp:
driver = smtp
There are no option settings here beyond the one that selects the type of trans-
port, because the list of hosts was obtained by the lookuphost router and passed
to the transport along with the address. The parameters of the outgoing SMTP call
(for example, the timeouts) can be changed by other options, but in this case we
accept all the defaults. The smtp transport tries to make an SMTP connection to
each host in turn. If all goes well, a connection is made to one of them, and the
message is transferred.

There are now no more deliveries to be done, and all the recipients have been
successfully handled, so at this point Exim can delete the message files on its

* The use of different uids and gids in Exim is discussed in the section “Security Issues,” in Chapter 19,
Miscellany.

9 October 2001 09:07

46 Chapter 3: Exim Overview

spool and log the fact that this message has been delivered. The delivery process
then exits.

The fragments of configuration file used in this example have been shown in the
order in which they are used during delivery. The actual configuration file defines
the transports first, followed by the directors, and finally the routers. The trans-
ports come first, so that when Exim is reading the file, they are defined before the
director and router configurations that refer to them. In the following chapter, we
show a complete configuration file.

Complications While Directing
and Routing

Things do not always go as smoothly as described in the simple example. These
are some of the more common complications that can be encountered when
directing or routing an address.

Duplicate Addresses

Duplicate addresses are a complication that Exim may have to handle, either
because the sender of the message specified the same address more than once, or
because aliasing or forwarding duplicated an existing recipient address. For any
given address, only a single delivery takes place, except when the duplicates are
pipe commands. If one user is forwarding to another, and a message is sent to
both of them, only a single copy is delivered. If, on the other hand, two different
users set up their forward files to pipe to /us#/bin/vacation (for example), a mes-
sage that is sent to both of them runs the vacation program twice, once as each
user.

Missing Data

Sometimes, a director or router is unable to determine whether it can handle an
address. For example, if the administrator has misspelled the name of an alias file,
or if it has been accidentally deleted, an aliasfile director cannot operate. Timeouts
can occur when a router queries the DNS, and both routers and directors can refer
to databases that may at times be offline. In these situations, the director or router
returns a code indicating “defer” to the main part of Exim, and the address is nei-
ther delivered nor bounced, but left on the spool for another delivery attempt at a

9 October 2001 09:07

Complications While Directing and Routing 47

later time. The control of retry times is described in Chapter 12, Delivery Errors
and Retrying. If the error condition is felt to be sufficiently serious, the message is
“frozen,” which means that queue runner processes will not try to deliver it. As
frozen messages are highlighted in queue listings, this also serves to bring it to the
administrator’s attention.

Directing Loops

When an aliasfile or forwardfile director handles an address, the new addresses
that it generates are each processed afresh, just like the original recipient
addresses.” This means that one alias can refer to another, as in the example we
showed earlier:

root: postmaster@simple.example
postmaster: simon@simple.example

However, it opens up the possibility of directing loops. To prevent this, Exim auto-
matically skips a director if the address it is handling has a “parent” address that
was processed by that director. Consider the following broken alias file:

chicken: egg@simple.example

egg: chicken@simple.example
This director turns a message addressed to chicken@simple.example into
egg@simple.example, and then turns it back into chicken@simple.example the next
time through. However, on the third pass, Exim notices that the address was previ-
ously processed by the director, so it is skipped and the next director is called.
The chances are that the resulting delivery or bounce are not what was intended,
but at least the loop is broken.

Remote Address Becoming Local

It sometimes turns out that when a router is processing an address, it discovers
that the domain is a local domain after all. This can happen if the domain was
originally given in an abbreviated form (for example, as in the address bru-
tus@rome), because DNS lookups are commonly configured to expand single-
component names into the full form, within the local encompassing domain. If
routing changes the domain name, and the result is a local domain, the address is
automatically passed from the router to the directors.

* This is the normal practice; there are occasions when it is not wanted, and there is an option,
new_director, that can be used to disable it.

9 October 2001 09:07

48 Chapter 3: Exim Overview

Remote Address Routing to the Local Host

After Exim has routed a remote address, it checks to see whether the first host on
the list of hosts to which the message could be sent is the local host. Usually, this
indicates some kind of configuration error, and by default Exim treats it as such.
However, there are types of configuration where it is legitimate, and for these
cases the self option can be used to pass such addresses from the router to the
directors.”

Complications During Delivery

A successful routing process for a remote address discovers a list of hosts to which
it can be sent, but it cannot check the local part of the address. The most common
permanent error during a remote delivery is “unknown user,” which is given in
response to an SMTP RCPT command. Responsibility for the message remains with
the sending host, which must return a bounce message to the sender.

Not all receiving hosts behave like this; some accept any local part (in their local
domain) during the SMTP dialog, and do the check later. By this time, responsibil-
ity for the message has been passed, so it is the receiving host that has to generate
the bounce. When Exim is a receiving host, it can be configured to act in either
manner, depending on the setting of receiver_verify and related options (see the
section “Verifying Recipient Addresses,” in Chapter 13, Message Reception and Pol-
icy Controls).

There are other reasons a remote host might permanently refuse a message, and in
addition, there are many common temporary errors, such as the inability to contact
a host. These cause a message to remain on the spool for later delivery.

In contrast to routing, directors for local addresses normally check local parts, so
any “unknown user” errors happen at directing time. The only problems a local
transport is likely to encounter are errors in the actual copying of the message.
The most common is a full mailbox; Exim respects system quotas and can be con-
figured to impose its own quotas (see the section “Mailbox Quotas,” in Chapter 9).
A quota failure leaves the message on the spool for later delivery.

The runtime configuration contains a set of retry rules (see Chapter 12) that spec-
ify how often, and for how long, Exim is to go on trying to deliver messages that
are suffering temporary failures. The rules can specify different behaviors for dif-
ferent kinds of error.

* See, for example, the section “Mixed Local/Remote Domains,” in Chapter 5, Extending the Delivery
Configuration.

9 October 2001 09:07

Use of Transports by Directors and Routers 49

Complications After Deliver)y

When all delivery attempts for a message are complete, a delivery process has two
final tasks. If any deliveries suffered temporary errors, or if any deliveries suc-
ceeded after previous temporary errors, the delivery process has to update the
retry hints database. This work is saved up for the end of delivery so that the pro-
cess opens the hints database for updating only once at most, and for as short a
time as possible. If the updating should fail, the new hint information is lost, but
previous hint information remains. In practice, except in exceptional circumstances
such as a power loss, hint information is rarely lost.

Finally, unsuccessful delivery may cause a message to be sent to the sender. If any
addresses failed, a single bounce message is generated that contains information
about all of them. If any addresses were deferred, and have been delayed for
more than a certain time (see the section “Delay Warning Messages,” in Chapter
19), a warning message may be sent.

Exim sends such messages by calling itself in a subprocess. Failure to create a
bounce message causes Exim to write to its panic log and immediately exit. This
has the effect of leaving the message on the spool so that there will be another
delivery attempt, and presumably another attempt at sending the bounce message
when the delivery fails again. Failure to create a warning message, on the other
hand, is not treated as serious. Another attempt to send it is made when the origi-
nal message is processed again.

Use of Transports by Directors
and Routers

In the simple example we have been considering, the localuser director and the
lookuphost router include the transport option, referring to the local_delivery and
remote_smtp transports, respectively, whereas the other directors do not have any
transport settings. A transport is required for any router or director that actually
sets up a message delivery to determine how the delivery should be done. When a
director is just changing the delivery address by aliasing or forwarding, a transport
is not required because no delivery is being set up at that stage.

Depending on their configurations, some directors and routers require a transport
setting, and some require there is not a transport setting. Exim detects an incorrect
configuration when the configuration file is read. In other cases, the director or
router may behave differently, depending on whether or not a transport is sup-
plied. These variations are explained in the detailed descriptions of the directors
and routers (see Chapter 7 and Chapter 8, 7he Routers).

9 October 2001 09:07

50 Chapter 3: Exim Overview

Two directors, aliasfile and forwardfile, have additional options for special-purpose
transports. These directors can deliver a message to a specific file, or to a pipe
associated with a given command. For example, a line in an alias file of the form:

majordomo: |/usr/mail/majordomo .

specifies that a message addressed to the local part majordomo is to be passed via
a pipe to a process running the command:

/usr/mail /majordomo ...
The other entries in the alias file may just be changing delivery addresses, and
therefore may not require a transport. However, this line is setting up a delivery,
and so a transport is required. We can add to the system_aliases director configura-
tion the following line, which in our example runs the aliasfile director:

address_pipe transport = alias_pipe
This tells Exim which transport to run when a pipe is specified in the alias file.
The transport itself is very simple:
alias_pipe:
transport = pipe

ignore_status
return_output

A pipe transport runs a given command in a new process, and passes the message
to it using a pipe for its standard input. In this example, the command is provided
by the alias file, so the transport does not need to define it.* Setting ignore_status
tells Exim to ignore the status returned by the command; without this, any value
other than zero is treated as an error, causing the delivery to fail and a bounce
message to be returned to the sender.

Setting return_output changes what happens if the command produces output on
its standard output or standard error streams. By default, such output is discarded,
but if return_output is set, the production of such output is treated as an error,
and the output itself is returned to the sender in the bounce message.

There is one piece of information that the pipe transport needs that we have not
yet given, and that is the uid and gid under which it should run the command.
When a pipe is triggered by an entry in a user’s forward file, the user’s identity is
assumed by default, but when an alias file is used, as it is here, there is no default.

* 1If the pipe transport is run directly from a director or router, the command to be run is defined using
its command option.

9 October 2001 09:07

Use of Transports by Directors and Routers 51

The user (and, optionally, group) option can appear in either the director or the
transport’s configuration, so the transport could become:*

alias_pipe:
transport = pipe
ignore_status
return_output
user = majordom
In addition to delivery to pipes, alias files and forward files may also specify spe-
cific files into which messages are to be delivered. For example, if user caesar has

a jforward containing:

caesar@another.domain.example, /home/caesar/mail-archive

it requests delivery to another mail address, and also into the named file, which is
a delivery that needs a transport. To support this feature, the userforward director
could contain:

address_file transport = address_file

This tells Exim which transport to run when a filename is specified instead of an
address in a forward file. The transport itself is even more simple than the pipe
transport:

address_file:
driver = appendfile

The filename comes from the forward file, and all other options are defaulted.

An alias or forward file may contain both of these kinds of entries, thus requiring
both address_pipe transport and address_file transport to be given on a single
director. These options are used for these very specific purposes only, and should
not be confused with the generic transport option that applies to all directors and
routers.

* This assumes that all the pipes specified in the alias file are to be run under the same uid. If there
are several instances that require different user identities, an expansion string can be used to select
the correct uid, but that is too advanced for the discussion here.

9 October 2001 09:07

Exim Operations Overview

The previous chapter used some fragments of a simple Exim configuration file to
show how it goes about delivering a message. Later chapters go into more detail
about the various options that can be used to set up configurations that can han-
dle many different circumstances. However, if you have just installed Exim, or if
you have inherited responsibility for an Exim system from somebody else, you
most likely want to know a little bit about the basic operational aspects. This
chapter is an introductory overview; the features that are described reappear later
in more detailed discussions, and Chapter 21, Administering Exim, covers Exim
administration in more detail.

How Exim Identifies Messages

Each message that Exim handles is given a unique message ID when it is received.
The ID is 16 characters long, and consists of three parts, separated by hyphens.
For example:

11uNWX-0004£P-00

Each part is actually a number, encoded in base 62. The first is the time that the
message started to be received, and the second is the ID of the process (the pid)
that received the message. The third part is used to distinguish between messages
that are received by the same process in the same second. It is almost always 00.

The uniqueness of Exim’s message IDs relies on the fact that Unix process IDs are
used cyclically, so in practice there is no chance of the same process ID being
reused within one second. For most installations, uniqueness is required only

52

9 October 2001 09:07

Watching Exim at Work 53

within a single host, and the scheme just described suffices. However, in some
cluster configurations, it is useful to ensure that message IDs are unique within the
cluster. For example, suppose two hosts are providing identical gateway or hub-
bing services for some domain, and one of the processors has a catastrophic fail-
ure. If its disk can be attached to the other processor, and the message IDs are
unique across both systems, spooled message files can simply be moved into the
survivor’s spool directory.

Uniqueness across several hosts can be ensured by assigning each host a number
in the range 0-255, and specifying it in each Exim configuration. For example:
localhost number = 4
When this option is set, the third part of the message ID is no longer a simple
sequence number. Instead, it is computed as:
sequence number * 256 + host number

For example, in the following message ID:

11vHQS-0006ZD-4C
the number 4c is 260 in decimal, which is 256 * 1 + 4, so this message ID was
generated on host number 4 for the second message received by some process
within one second. In the most common case, when the sequence number is zero,
the final part of the message ID is just the host number.*

Watching Exim at Work

As a new administrator of an MTA, the first questions you should ask are:

e How do I find out what messages are on the queue?

e How do I find out what the MTA has been doing?

Exim can output a list of its queue in a number of ways, which are detailed in the
section “Watching Exim’s Queue,” in Chapter 20, Command.-Line Interface to Exim.
The most basic is the -bp command-line option. This option is compatible with
Sendmail, though the output is specific to Exim:*
$ exim -bp
25m 2.9K 0t5C6£-0000c8-00 <caesar@rome.example>
brutus@rome. example

* In this type of configuration, the maximum sequence number is 14. If more than 14 messages are
received by one process within one second, a delay of one second is imposed before reading the
next message, in order to allow the clock to tick.

t In examples of commands that are run from the shell, the input is shown in boldface type.

9 October 2001 09:07

54 Chapter 4: Exim Operations Overview

This shows that there’s just one message, from caesar@rome.example to bru-
tus@rome.example, which is 2.9 KB in size, and has been on the queue for 25
minutes. Exim also outputs the same information if it is called under the name
mailg, which is a fairly common convention.*

Exim logs every action it takes in its main log file. A log line is written whenever a
message arrives and whenever a delivery succeeds or fails. The name of the log
file depends on the configuration, with two common choices being
/var/spool/exim/log/mainlog or /var/log/exim_mainlog.t If you have access to an X
Window server, you can run the eximon utility, which displays a “tail” of the main
log in a window (see the section “The Exim Monitor,” in Chapter 21). The entries
that Exim writes to the log are described in detail in the section “Log Files,” in
Chapter 21.

Exim uses two additional log files that are in the same directory as the main log.
One is called rejectlog; it records details of messages that have been rejected for
reasons of policy. The other is called paniclog, this is used when Exim encounters
some disaster that it can’t handle. The paniclog should normally be empty; it is a
good idea to set up some automatic monitoring to let you know if something has
been written to it, because that usually indicates there has been an incident that
warrants investigation.

The Runtime Configuration File

Exim’s runtime configuration is held in a single text file that you can modify with
your favorite text editor. If you make a change, newly started Exim processes will
immediately pick up the new file, but the daemon process will not. You have to
tell the daemon to reread its configuration, and this is done in the traditional Unix
way, by sending it a HUP signal. The process number of the daemon is stored in
Exim’s spool directory, so that you can do this by running (as root or exim) the
following command:

kill -HUP ‘cat /var/spool/exim/exim-daemon.pid®

On receiving a HUP signal, the daemon closes itself down, and then restarts in a
new process, thereby picking up the new configuration.

* Many operating systems are set up with the mailq command as a symbolic link to sendmail; if this in
turn has been linked to exim, the mailq command will “just work.”

t It is possible to configure Exim to use syslog instead, but this has several disadvantages.

9 October 2001 09:07

The Runtime Configuration File 55

Layout of the Configuration File

The runtime configuration file is divided into seven different sections, as shown in
Figure 4-1. Tt consists of the following sections:

Main section
General option settings and input controls

Transport section
The configuration for the transports

Director section
The configuration for the directors

Router section
The configuration for the routers

Retry section
The retry rules for specifying how often Exim is to retry temporarily failing
addresses (see Chapter 12, Delivery Errors and Retrying)

Rewriting section
The global address rewriting rules (see Chapter 14, Rewriting Addresses)

Authenticator section
The configuration for the SMTP authenticators (see the section “SMTP Authen-
tication,” in Chapter 15, Authentication, Encryption, and Other SMTP Process-
ing

Main configuration

Director configuration -

frneees Router configuration
Retry configuration
Rewrite configuration

Authenticator configuration

Figure 4-1. Runtime configuration file

56 Chapter 4: Exim Operations Overview

The arrows in the figure indicate that the drivers defined in the directors and
routers sections refer back to the transports that are defined in the transports sec-
tion. We saw an example of this in the previous chapter, where the lookuphost
router referred to the remote_smtp transport:

lookuphost :
driver = lookuphost
transport = remote_smtp

In the actual file, the separators between the sections are lines containing just the
word end. Sections that are not needed may be empty, and if they occur at the end
of the file, they can be completely omitted. This means that a completely empty
file is, in fact, a valid configuration file, but it would not be much use because no
way to deliver messages is defined.

The retry and rewriting configuration sections each contain lines in a format that is
unique to the section, and we discuss these in later chapters. The remaining sec-
tions contain option settings in the form name=value, one per line. Except when
we are discussing a specific driver, unqualified references to options always refer
to one of the options in the main configuration section.

A Minimal Usable Configuration File

The simplest complete configuration that is capable of delivering both local and
remote mail is as follows:

Main configuration: all defaults taken
end
Transports: SMTP and local mailboxes

remote_smtp:
driver = smtp

local _delivery:
driver = appendfile
file = /var/mail/$local_part
end
Directors: local user mailbox only
localuser:
driver = localuser

transport = local_delivery

end

9 October 2001 09:07

9 October 2001 09:07

The Runtime Configuration File 57

Routers: standard DNS routing

lookuphost :
driver = lookuphost
transport = remote_smtp

Lines beginning with # characters are comments, which are ignored by Exim. This
example is cut down from the default configuration, and is even simpler in its han-
dling of local domains than the case we considered in the previous chapter; it
does not support aliasing or forwarding. Because there are no retry rules in this
configuration, messages that suffer temporary delivery failures will be returned to
their senders without any retries, so this would not be a very good example to use
for real.

Notice that, although there are no settings in the main part of the configuration (so
that default values are used for all the options), the end line is still required to
mark the end of the section.

Option Setting Syntax

We've already seen a number of examples of option settings. Each one is on a line
by itself, and they can always be in the form name=value. For those that are on/off
switches (Boolean options), other forms are also permitted. The name on its own
turns the option on, whereas the name preceded by no_ or not_ turns it off. These
settings are all equivalent:

sender_verify
sender _verify = true
sender_verify = yes

So are these:

no_sender_verify

not_sender_verify

sender_verify = false

sender_verify = no
You do not have to use quote marks for option values that are text strings, but if
you do, any backslashes in the strings are interpreted specially.” For example, the
sequence \n in a quoted string is converted into a linefeed character. This feature
is not needed very often.

Some options specify a time interval; for example, the timeout period for an SMTP
connection. A time interval is specified as a number followed by one of the letters

* Exim recognizes only double-quote characters for this purpose.

9 October 2001 09:07

58 Chapter 4: Exim Operations Overview

w (week), d (day), h (hour), m (minute), or s (second). You can combine several of
these to make up one value. For example, the following:

connect_timeout = 4m30s

specifies a time interval of 4 minutes and 30 seconds.

Macros in the Configuration File

For more complicated configuration files, it may be helpful to make use of the
simple macro facility. If a line in the main part of the configuration (that is, before
the first end line) begins with an uppercase letter, it is taken as a macro definition,
of the form:

name = rest of line

The name must consist of letters, digits, and underscores, and need not all be in
uppercase, though that is recommended. The rest of the logical line is the replace-
ment text, and has leading and trailing whitespace removed. Quotes are not
removed.

Once a macro is defined, all subsequent lines in the file are scanned for the macro
name; if there are several macros, the line is scanned for each in turn, in the order
in which they are defined. The replacement text is not rescanned for the current
macro, though it will be for subsequently defined macros. For this reason, a macro
name may not contain the name of a previously defined macro as a substring. You
could, for example, define the following:

ABCD _XYZ = something
ABCD = something

but putting those definitions in the opposite order would provoke a configuration
error.

As an example of macro usage, suppose you have lots of local domains, but they
fall into three different categories. You could set up the following:
LOCAL1 = domainl:domain2

LOCAL2 = domain3:domaind
LOCAL3 = dbm;/list/of/other/domains

local_domains = LOCALL :LOCAL2 :LOCAL3

and use the domains option on appropriate directors to handle each set of domains
differently. This avoids having to list each domain in more than one place.” The
values of macros can be overridden by the -D command-line option (see the sec-
tion “Configuration Overrides,” in Chapter 20).

* However, there may be a difficulty if you are using negated items in the list. This is explained in the
section “Negative Items in Lists,” in Chapter 18, Domain, Host, and Address Lists.

9 October 2001 09:07

The Runtime Configuration File 59

Hiding Configuration Data

The command-line option -bP requests Exim to output the value of one or more
configuration options. This can be used by any caller of Exim, but some configura-
tions may contain data that should not be generally accessible. For example, a
configuration that references a MySQL database or an LDAP server may contain
passwords for controlling such access. If any option setting is preceded by the
word hide, only an admin user is permitted to see its value. For example, if the
configuration contains:

hide mysql_servers = localhost/usertable/admin/secret

an unprivileged user gets this response:

$ exim -bP mysql_ servers
mysqgl_servers = <value not displayable>

This feature was added to Exim at Release 3.20.

String Expansions

We have already met a simple string expansion in the following setting:

file = /var/mail/$local_part
for an appendfile transport. Expansions are a powerful feature in configuration
files. We explain some more of their abilities in examples in subsequent chapters.
If you want to know about everything they can do, skip ahead to Chapter 17,
String Expansion, which has the full story. Meanwhile, remember that whenever
you see a $ character in a configuration setting, it means that the string will change
in some way whenever it is expanded for use.

Incorrect syntax in a string expansion is a serious error, and usually causes Exim to
give up what it is trying to do; for example, an attempt to deliver a message is
deferred if Exim cannot expand a relevant string. However, there are some expan-
sion constructions that deliberately provoke a special kind of error, called a forced
expansion failure, in a number of such cases, these failures just cause Exim to
abandon the activity that uses the string, but otherwise to carry on. For example, a
forced expansion failure during an attempt to rewrite an address just abandons the
rewriting. Whenever a forced expansion failure has a special effect like this, we’ll
mention it.

File and Database Lookups

The ability to use data from databases and files in a variety of formats is another
powerful feature of Exim’s configuration. Earlier, we showed this director for han-
dling traditional alias files:

9 October 2001 09:07

60 Chapter 4: Exim Operations Overview

aliasfile:
driver = aliasfile
file = /etc/aliases
search_type = lsearch
This looks up data in /etc/aliases by means of a linear search, but it could equally
use an indexed file format such as DBM:

aliasfile:
driver = aliasfile
file = /etc/aliases.db
search_type = dom

or, the aliasing data could be held in a database:

aliasfile:

driver = aliasfile

query = select addresses from aliases where name='$local_part’

search_type = mysql
Each different lookup type is implemented in a different module. Which ones are
included in the Exim binary is configured when Exim is built. As far as the main
part of Exim is concerned, there is a fixed internal interface (APD to these
lookups, and it is unaware of the details of the actual lookup mechanism. How-
ever, it does distinguish between the two different kinds of lookup:

Single-key
Use a single key string to extract data from a file. The key and the file have to
be specified.

Query-style
Access a database using a query written in the query language of the database
package.

As well as being configured in options for drivers such as aliasfile, lookups can be
used in expansion strings to replace part of the string with data that comes from a
file or database. They can also be used as a mechanism for managing lists of
domains, hosts, or addresses. We encounter examples of these uses throughout the
book. Full details of all the lookup types and how they operate are given in Chap-
ter 16, File and Database Lookups.

Domain, Host, and Address Lists

The list mechanism is the third facility that, together with string expansion and
lookups, is the main building block of Exim configurations. Earlier, we showed the
example:

local_domains = tiber.rivers.example:\

*.cities.example:\
dom; /usr/exim/domains

9 October 2001 09:07

The Default Qualification Domain 61

in which the value of local domains is a colon-separated list containing several
types of patterns for matching a domain name. Similar list facilities are used for
recognizing specific hosts and email addresses for particular purposes. The full
description of lists is in Chapter 18, but we come across plenty of examples before
then.

If a colon is actually needed in an item in a string list, it can be entered as two
colons. Leading and trailing whitespace on each item in a string list is ignored.
This makes it possible to include items that start with a colon, and in particular,
certain forms of IPv6 address. For example:

local_interfaces = 127.0.0.1 : ::::1

defines the IPv4 address 127.0.0.1 followed by the IPv6 address ::1. Because the
requirement to double colons is particularly unfortunate in the case of IPv6
addresses, a means of changing the separator was introduced with Exim Version
3.15.% If a list starts with a left-angle bracket followed by any punctuation charac-
ter, that character becomes the list separator. The previous example could be
rewritten as:

local_interfaces = <; 127.0.0.1 ; ::1

where the separator is changed to a semicolon.

The Default Qualification Domain

In a locally submitted message, if an unqualified address (that is, a local part with-
out a domain) is found in the envelope or any of the header lines that contain
addresses, it is qualified using the domain defined by qualify demain (for senders)
or qualify recipient (for recipients) at the time the message is received. User
agents normally use fully qualified addresses, but there are exceptions.

The default value for both these options is the name of the local host. If only
qualify domain is set, its value is used as a default for qualify recipient. It is
common in some installations to use these options to set a generic domain. For
example, the Acme Widget Corporation might have two hosts handling its mail,
maill.awc.example.com and mail2.awc.example.com, but would probably require
messages created on these hosts to use just awc.example.com as the default
domain, rather than the individual hostnames. This can be done by setting the fol-
lowing:

qualify domain = awc.example.com

in the Exim configurations on both hosts.

* This applies to all lists, with the exception of log_file path andtls_verify ciphers.

9 October 2001 09:07

62 Chapter 4: Exim Operations Overview

Handling Frozen Bounce Messages

When a message on Exim’s queue is marked as frozen, queue runner processes
skip over it and do not attempt to deliver it. One reason why a message might be
frozen is mentioned in the section “Missing Data,” in Chapter 3, Exim Overview,
namely, there may be a problem with Exim’s configuration. However, by far the
most common reason that a message becomes frozen is that it is a bounce mes-
sage that cannot be delivered. Such messages are often the result of incoming junk
mail that is addressed to an unknown local user, but which contains an invalid
sender address that causes the resulting bounce message to fail.”

In order to avoid mail loops, Exim does not let a failing bounce message give rise
to another bounce message. Instead, Exim freezes the message to bring it to the
postmaster’s attention. On busy systems, frozen messages of this type may be
quite common.

Some administrators do not have the human resources to inspect each frozen mes-
sage in order to determine what the problem is, and their policy may be to discard
such failures. Exim can be configured to do this by setting ignore errmsg_errors,
which has the effect of discarding failing addresses in bounce messages (the action
is logged). A slightly less harsh option is to set ignore errmsg_errors_after,
which allows such failures to be kept for a given time before being discarded. For
example, the following:

ignore_errmsg_errors_after = 12h
keeps such messages for 12 hours. After the first failure, the message is frozen as
in the default case, but after it has been on the queue for the specified time, it is
automatically unfrozen at the next queue run; if delivery fails again, the message is
discarded.

Reducing Activity at High Load

In the main section of the configuration file, there are several options that allow
you to limit or reduce Exim’s activities when a lot of mail arrives at once, or when
the system load is too high. “System load” in this sense is the average number of

* It is possible to do some checking on the sender and recipients before a message is accepted, as
described in the section “Verifying Recipient Addresses,” in Chapter 13, Message Reception and Policy
Controls. This can dramatically cut down the number of frozen messages, but there may still be
undeliverable messages that get through.

9 October 2001 09:07

Reducing Activity at High Load 63

processes in the operating system’s run queue over the last minute, a figure that
can be obtained by running the uptime command to obtain output like this:

4:15om up 1 day(s), 22:23, 75 users, load average: 0.09, 0.15, 0.22
The first of the “load average” figures is the one-minute average. On an unloaded
system, it is a small number, usually well under 10. When it gets too high, every-
thing slows down; reducing the load created by mail reception and delivery can
alleviate the impact of this.

Delaying or Suspending Delivery
When the Load Is High

By default, Exim starts a delivery process for each new message, and uses its
queue for messages that cannot be delivered immediately. You can use various

configuration options to modify Exim’s behavior when system load is sufficiently
high.

If the system load is higher than the value of queue only load, automatic delivery
of incoming messages does not occur; instead, they wait on Exim’s queue until the
next queue runner process finds them. The effect of this is to serialize their deliv-
ery because a queue runner delivers just one message at a time. This reduces the
number of simultaneously running Exim processes without significantly affecting
mail delivery, as long as queue runners are started fairly frequently. For example,
a setting of:

queue_only load = 8
is a useful insurance against an overload caused by the simultaneous arrival of a
large number of messages. If, on the other hand, deliver_load max is set to:

deliver_ load max = 10
no deliveries at all are done if the load is higher that this setting, and if this is
detected during a queue run, the remainder of the run is abandoned. A different
threshold can be specified for queue runs by setting deliver_queue load max, for
example:

deliver_queue load max = 14

If combined with the previous setting, this would allow deliveries only from queue
runs when the load was between 10 and 14.

These three options are not fully independent. If queue only load (described ear-
lier) is set, forcing all deliveries to take place in queue runs above a given load
level, you can set either deliver load max or deliver queue load max to a higher

9 October 2001 09:07

64 Chapter 4: Exim Operations Overview

value in order to suspend all deliveries when the load is above that value. For
example:

queue_only load = 8

deliver_queue_load max = 11
Setting both deliver load max and deliver_queue load max is useful only when
queue_only load is not set.

Deliveries that are forced with the -M or -gf command-line options override these
load checks.

Suspending Incoming Mail When the Load Is High

There is no option for stopping incoming messages from local processes when the
load is high, but mail from other hosts can be stopped or restricted to certain
hosts. If smtp load_reserve is set, and the system load exceeds its value, incoming
SMTP calls over TCP/IP are accepted only from those hosts that match an entry in
smtp_reserve_hosts. If this is unset, all calls from remote hosts are rejected with a
temporary error code. For example, with the following:

smtp_load_reserve = 5
smtp_reserve_hosts = 192.168.24.0/24

only hosts in the 192.168.24.0/24 network can send mail to the local host when its
load is greater than 5. The host list in smtp reserve hosts is also used by the
smtp_accept_reserve option, which is described later.

If you are running user agents that submit messages by making TCP/IP calls to the
local interface, you should probably add 127.0.0.1 (or ::1 in an IPv6 system) to
smtp reserve_hosts, to allow these submissions to proceed even at high load.

Controlling the Number of
Incoming SMTP Connections

It's a good idea to set a limit on the number of simultaneous incoming SMTP calls,
because each one uses the resources required for a separate process. Exim has the
smtp_accept_max option for this purpose. The default setting is 20, which is reason-
able for small to medium-sized systems, but if you are running a large system,
increasing this to 100 or 200 is reasonable.

You can reserve some of these incoming SMTP slots for specific hosts. If you set
smtp_accept_reserve to a value less than smtp accept_max, that number of slots is
reserved for the hosts listed in smtp_reserve hosts. This feature is typically used to
reserve slots for hosts on the local LAN so that they can never be all taken up by
external connections. For example, if you set:

9 October 2001 09:07

Parallel Remote Delivery 65

smtp_accept_max = 200
smtp_accept_reserve = 40
smtp_reserve_hosts = 192.168.24.0/24

then once 160 connections are active, new connections are accepted only from
hosts in the 192.168.24.0/24 network.

You can also set smtp_accept_queue; if the number of simultaneous incoming
SMTP calls exceeds its value, automatic delivery of incoming SMTP messages is
suspended; they are placed on the queue and left there for the next queue runner.
The default for this option is unset, so that all messages are delivered immediately.

If new SMTP connections arrive while the daemon is busy setting up a process to
handle a previous connection, they are held in a queue by the operating system,
waiting for the daemon to request the next connection. The size of this queue is
set by the smtp_comnect backlog option, which has a default value of 5. On large
systems, this should be increased, say to 50 or more.

Checking for Free Disk Space

You can arrange for Exim to refuse incoming messages temporarily if the amount
of free space in the disk partition that holds its spool directory falls below a given
threshold. For example:

check_spool_space = 50M
specifies that no mail can be received unless there is at least 50 MB of free space
in which to store it.* The check is not a complete guarantee because of the possi-
bility of several messages arriving simultaneously.

Limiting Message Sizes
It is a good idea to set a limit on the size of message your host will process. There
is no default in Exim, but you can set, for example:

message_size limit = 20 M

to apply a limit of 20 MB per message.

Parallel Remote Delivery

If a message has a number of recipients on different remote hosts, Exim does
these deliveries one at a time, unless you set remote max parallel to a value
greater than one. On systems that are handling mostly personal mail, where mes-
sages typically have at most two or three recipients, this is not an important issue.

* Digits in a numerical option setting can always be followed by K or M, which cause multiplication
by 1024 and 1024x1024, respectively.

9 October 2001 09:07

66 Chapter 4: Exim Operations Overview

However, on systems that are handling mailing lists, where a single address may
end up being delivered to hundreds or even thousands of addresses, parallel
delivery can make a noticeable improvement to performance. Setting, for example:

remote max parallel = 10

allows Exim to create up to 10 simultaneous processes to do remote deliveries for
a message that has multiple recipients. Note that this option applies to the parallel
delivery of individual messages; it is not an overall limit on Exim delivery
processes.

Controlling the Number
of Delivery Processes

In a conventional configuration, where Exim attempts to deliver each message as
soon as it receives it, there is no control over the number of delivery processes
that may be running simultaneously. On a host where processing mail is just one
activity among many, this is not usually a problem. However, on a heavily loaded
host that is entirely devoted to delivering mail, it may be desirable to have such
control. It can be achieved by suppressing immediate delivery (which means that
all deliveries take place in queue runs) and limiting the number of queue runner
processes, for example, by placing these settings in the cofiguration file:

queue_only

queue_run max = 15
Setting queue_only disables immediate delivery, and queue_run max specifies the
maximum number of simultaneously active queue runners. The maximum number
of simultaneous delivery processes is then:

queue_run max X remote max parallel
With this kind of configuration, you should arrange to start queue runner
processes frequently (up to the maximum number) so as to minimize any delivery
delay. This can be done by starting a daemon with an option such as -g7m, which
starts a new queue runner every minute.”

Large Message Queues

Back in Chapter 3, we explained that Exim is designed for an environment in
which most messages can be delivered almost instantaneously. Consequently, the
queue of messages awaiting delivery is expected to be short. In some situations,

* See the section “The Daemon Process,” in Chapter 11, Shared Data and Exim Processes, for more
details of the daemon process.

9 October 2001 09:07

Large Installations 67

nevertheless, large queues of messages occur, resulting in a large number of files
in a single directory (usually called /var/spool/exim/input). This can affect perfor-
mance significantly. To reduce this degradation, you can set:

split_spool_directory
When this is done, the input directory is split into 62 subdirectories, with names
consisting of a single letter or digit, and incoming messages are distributed
between them according to the sixth character of the message ID, which changes
every second. This requires Exim to do a bit more work when it is scanning
through the queue, but the directory access performance is much improved when
there are many messages on the queue.

Large Installations

One of the advantages of Exim’s decentralized design is that it scales fairly well,
and can handle substantial numbers of mailboxes and messages on a single host.
However, when the numbers start to get really large, a conventional configuration
may not be able to cope. In this section, a number of general observations are
made that are relevant to large installations.

Linear Password Files

Above a thousand or so users, the use of a linear password file is extremely ineffi-
cient, and can slow down local mail delivery substantially. Some operating systems
(for example, FreeBSD) automatically make use of an indexed password file, or
can be configured to do so, which is one easy way round this problem if you hap-
pen to be using such a system. The alternative is to make use of NIS or some
other database for the password information, provided that it operates quickly.

Even if you don’t have any login accounts on your mail server, you still need some
kind of list of local users, and it is important to make the searching of this list as
efficient as possible.

It is not only mail delivery that provokes password file lookups. If you are running
a POP daemon, a password check happens every time a POP client connects; in
environments where users remain connected and leave their POP MUAs running,
these checks happen every few minutes for each user, whenever the POP client
checks for the arrival of new mail.* IMAP is much less expensive than POP in this
regard, because it establishes a session that remains active, so there is a password
check only at the start.

* Users have been known to configure their MUAs to check as often as every 20 or 30 seconds; such
usage will eat up your machine and should be strongly discouraged.

9 October 2001 09:07

68 Chapter 4: Exim Operations Overview

Mailbox Directories

You will get very bad performance if you have too many mailboxes in a single
directory. What constitutes too many depends on your operating system; the
default Linux filing system starts to degrade at about one thousand files in a single
directory, whereas for Solaris the number is around ten thousand. This applies
whether you are using individual files as multimessage mailboxes, or delivering
messages as separate files in a directory.

The solution to this is to use multiple directory levels. For example, instead of stor-
ing jimbo's mailbox in /var/mail/jimbo, you could use /var/mail/j/jimbo. Splitting
on the initial character(s) of the local part is easy to implement, but it is not as
good as using some kind of hashing function. Exim’s string expansion facilities can
be used to implement either a substring-based or hash-based split. Of course, you
will have to ensure that all the programs that read the mailboxes use the same
algorithm.

For a very large number of mailboxes, a two-level split is recommended, using
Exim’s numeric hash function, as in this example:

/var/mail/${nhash_8_512:$1local_part}/$local_part
The hashing expansion generates two numbers separated by a slash, in this case
using the local part as the data and ensuring that the numbers are in the ranges
0-7 and 0-511. This example places jimbo's mailbox in /var/mail/6/71/jimbo. The
initial split could be between different disks or file servers, and the second one
could be between directories on the same disk.

Simultaneous Message Deliveries

If two messages for the same mailbox arrive simultaneously, they cannot both be
delivered at once if the mailbox is just a single file. One delivery process has to
wait for the other, thus tying up resources. The default way that Exim does this (in
the appendfile transport) is by sleeping for a bit, and then starting the process of
locking the mailbox from scratch. This is the safest approach, and the only way to
operate when lock files are in use.

Attempts to lock a mailbox continue for a limited time. If a process cannot gain
access to a mailbox within that time, it defers delivery with the error message:

failed to lock mailbox

and Exim will try the delivery again later. If you see a lot of these messages in the
main log file, it is an indication that there is a problem with contention for the
mailbox.

If you are in an environment in which only fentl () locks are used, and no sepa-
rate lock files, you can configure the appendfile transport to use blocking calls,

9 October 2001 09:07

Large Installations 69

instead of sleeping and retrying. This gives better performance because a waiting
process is released as soon as the lock is available instead of waiting out its sleep
time. In this environment, this single change can make a big performance
difference.

If the mailbox files are NFS-mounted, and more than one host can
access them, you must not disable the use of lock files. If you do,
you are likely to end up with mangled mailboxes.

The whole problem of locking can be bypassed if you use mailboxes in which
each message is stored in a separate file.” One example of this type of message
storage, called maildir format, is now quite popular, and has support in a number
of MUAs and other programs that handle mailboxes. Because each message is
entirely independent, no locking is required, several messages can be delivered
simultaneously, and old messages can even be deleted while new ones are arriv-
ing. See the section “Maildir Format,” in Chapter 9, The Transports, for a descrip-
tion of how to configure Exim to use maildir format.

Minimizing Name Server Delays

A busy general mail server makes a large number of calls to the DNS. For this rea-
son, you should arrange for it to run its own name server, or make sure that there
is a name server running on a nearby host with a high-speed connection, typically
on the mail server’s LAN. Ensure that the name server has plenty of memory so
that it can build up a large cache of DNS data.

Storing Messages for Dial-up Hosts

You should not plan to store large numbers of messages for intermittently con-
nected clients in Exim’s spool. As explained in the section “Intermittently Con-
nected Hosts,” in Chapter 12, it is much better to have them delivered into local
files, for onward transmission by some other means.

Hardware Configuration

If you keep increasing the workload of an Exim installation, disk I/O capacity is
what runs out first. Each message that is handled requires the creation and dele-
tion of at least four files. Large installations should therefore use disks with as high

* There is still some locking, of course, between processes that are updating the mailbox directory, but
it is handled internally in the file system and is no longer Exim’s responsibility.

9 October 2001 09:07

70 Chapter 4: Exim Operations Overview

a performance as possible. Also, it does not make sense to keep on increasing the
performance of the processor if the disks cannot keep up.

Better overall performance can be obtained by splitting up the work between a
number of different hosts, each with its own set of disks. For example, separate
hosts can be used for incoming and outgoing mail. A general form of scalable con-
figuration that is used by some very large installations is shown in Figure 4-2.

Long-term
outserver

D S— A
Internet g T

' __________ v _
i inserver2 : inserver] outserver] i outserver? :
e T e
Fileserver(s)
; POP/IMAP
Mailboxes —|—— — POF/
F server
Dial-in queue

Dial-in Clients' POP/IMAP
deliverer boxes

sl
Clients’ SMTP
boxes

Figure 4-2. Large system configuration

This configuration has separate servers for incoming and outgoing messages, and
can be expanded “sideways” by the addition of more servers (indicated by the
dashed lines) as necessary. Incoming mail is delivered to one or more file servers,
which hold local mailboxes in a split directory structure, as described earlier, and
also messages that are waiting for dial-up hosts. The mailboxes are accesssed from
POP and IMAP servers, and the dial-up hosts use yet another server to access their
stored mail.

The outgoing servers send messages that they cannot deliver in a short time to a
long-term outgoing server, so as not to impact their performance with very long
message queues. This can be implemented using fallback hosts on appropriate
drivers on the main servers, or using the $message_age variable to move messages
after some fixed time.

9 October 2001 09:07

Extending the Delivery
Configuration

In Chapter 3, Exim Overview, we describe the basics of how Exim delivers mes-
sages and works through a simple, straightforward example. The chapters that fol-
low this one cover all the different drivers and their options, but before we
descend into such detail, we’ll look at some further examples of fairly common
delivery requirements and discuss ways of configuring Exim to support them. In
many cases, the suggested solution is not necessarily the only possible approach;
there are often several ways of achieving the same result. The main intent of this
chapter is to show you some more of the many ways in which the driver options
can be used.

Multiple Local Domains

Any number of domains can be designated as local by listing them in
local_domains. For example:

local domains = simple.example : *.simple.example
If there are many local domains, it is cumbersome to include the list in the config-
uration file, and it is better to refer to a file instead. A setting such as:

local_domains = /etc/local.domains

could be used with a file containing lines such as:

simple.example
~[7.1*\d{4}\.simple\ .example$

The second line is a regular expression that matches domains ending in
simple.example whose first component ends with four digits. The file can contain
any type of item that may appear in a domain list, except for another filename. It
is read each time it is needed, and so can be updated independently of Exim’s
configuration file. However, it is still scanned linearly, just like an in-memory list,

71

9 October 2001 09:07

72 Chapter 5: Extending the Delivery Configuration

and this can be slow when the number of items in the list is large. If the list con-
tains only fixed names (that is, no wildcarded items of any kind), it can be con-
verted into an indexed file that can be searched more quickly, by a setting such
as:

local_domains = dbm; /etc/local.domains.db
This form of list entry specifies a lookup type (that is, a way of looking something
up) as well as additional data required by the lookup, separated by a semicolon.
In this example, the lookup type is dom and the additional data is a filename.

There are several different software libraries that support indexed datafiles; DBM is
a generic term that refers to this kind of file access method.” Most modern operat-
ing systems have a suitable library installed as standard. As a user of Exim, all you
really need to know is that an indexed file gives quicker access to specific data,
just as an index in a book allows you to find something more quickly than reading
through. The details of how the index is implemented inside the DBM library are
not important.

Although DBM libraries support the addition and removal of individual entries in a
DBM file, the usual approach for applications that are just using the file as a fast
way of accessing fixed data is to rebuild the file from scratch whenever the data
changes. A utility program called exim_dbmbuild is supplied to do this job.

In order to determine whether a domain is local or not, Exim uses the domain
name as the key for an indexed lookup. If data with a matching key is found in
the file, the domain is local. The data that was looked up is not itself used in this
case; Exim is interested only in whether or not the key exists in the file.

You do not have to put every local domain into a single lookup, because a lookup
is just one item in the list that is searched. For example, you could have some
domains inline, and some in one or more lookups:

local_domains = maindomain.example : dbm;/etc/otherdomains.db
Exim processes lists from left to right, so it makes sense to put the most commonly
expected domains first.

DBM is only one of several lookup types supported by Exim; whenever a lookup
is permitted, any of the available types may be used. For example, a list of local
domains could be held in a MySQL database, and checked by a setting such as:

local_domains = mysql;select * from domainlist where domain=’Skey’

* DBM probably once stood for “database management,” but nobody ever spells it out in full any
more.

9 October 2001 09:07

Multiple Local Domains 73

When processing a list of this sort, the variable $key contains the name of the
domain that is being checked, so that it can be included in database queries such
as this.

However, in the case of local_domains, using a database such as MySQL is not
recommended, because local_domains is central to Exim’s handling of addresses,
so you want any lookups that are involved to be as fast as possible. The availabil-
ity of the data for local domains is also important. If you use (for example) an
LDAP lookup as the only entry in local domains, all mail delivery ceases if the
LDAP server becomes unavailable. For these reasons, if the number of local
domains is too large for an inline list, it is best to use an indexed file on a local
disk.

Differentiating Between Multiple Domains

If you define a set of local domains using local_domains, and make no other
changes to the configuration, Exim treats all of them as synonymous, with the
same local part at any one of them being handled in the same way. In order to
distinguish between different domains, the directors have to be made to act differ-
ently for different domains. The usual way this is done is to set the domains option
on one or more directors. This option provides a list of domains for which the
director is to operate. Here is a simple example with two local domains, each with
its own alias file:

local_domains = a.local.domain : b.local.domain

a.aliases:
driver = aliasfile
domains = a.local.domain
file = /etc/a.aliases
search _type = lsearch

b.aliases:

driver = aliasfile

domains = b.local.domain

file = /etc/b.aliases

search_type = lsearch
Addresses of the form user@a.local.domain are processed by the first director, but
not the second, whereas user@b.local.domain is processed by the second and not
the first. If there are a number of domains whose alias filenames follow a regular
pattern, there is no need to have a separate director for each one, because the file

name can be varied depending on the domain, and a single director can be used:

aliases:
driver = aliasfile
file = /etc/$Sdomain.aliases
search_type = lsearch

9 October 2001 09:07

74 Chapter 5: Extending the Delivery Configuration

In this example, all domains are processed, but because the filename contains the
expansion variable $domain, a different file is used for each domain. Using the
string expansion features of Exim, much more complicated transformations of the
domain name are possible, including, for example, looking up a domain’s alias
filename from a file or database.

Virtual Domains

The term virtual domain is used to refer to a domain in which all the valid local
parts are aliases for other addresses. There are no real mailboxes associated with a
virtual domain. Because each address that is generated by an aliasing operation is
independently processed, the result of handling an address in a virtual domain can
be the address of a local mailbox, or a remote address that causes the message to
be sent to another host.

The aliasing scheme just described can be used to handle virtual domains with a
separate alias file for each domain. This makes it easy to have a separate main-
tainer for each file. However, it is important to consider what happens when a
local part does not match any item in an alias file. Exim would normally offer the
address to the next director. However, for a virtual domain, no further directors
should be run, and instead the address should fail.

One way of doing this is for all subsequent directors to have a setting of domains
that excludes the virtual domains, but a shortcut is provided by the no more
option, which specifies that no more directors are to be run after the current one.
Here is an extract from a configuration file that handles a mixture of real and vir-
tual domains:

local_domains = real.domain.example : cdb;/etc/virtuals

virtuals:
driver = aliasfile
domains = cdb;/etc/virtuals
file = /etc/$domain.aliases
search_type = lsearch
no_more

system aliases:
driver = aliasfile
file = /etc/aliases
search_type = lsearch

The list of virtual domains in this example is kept in an indexed file in c¢db format.
This is a format that is optimized for files that are never updated after they have

9 October 2001 09:07

Virtual Domains 75

been created, and it performs better than conventional DBM, which allows for
both reading and writing.*

The virtual domains are handled by the first director only; the real domain is han-
dled by the remaining directors (of which only the first is shown here). The
lookup in the /etc/virtuals file happens twice in principle (once to establish that
the domain is local, and again to check before running the first director), but Exim
caches the results of the last lookup on a per-file basis, so the file is read only
once in practice.

For more complicated requirements (for example, when some virtual domains are
synonymous, and therefore use the same alias file), multiple directors can be used,
or the name of the alias file for each domain can be looked up by a setting such
as:

file = ${lookup{Sdomain}cdb{/etc/virtuals}{$value}}
This is an example of the use of a file lookup from within an expansion string. A
description of the syntactic niceties is left until later, but you can see that it is trig-
gered by the word lookup, and various substrings are provided, some within curly
brackets (braces).

The key for the lookup is the content of $domain, the lookup type is cdb, and the
indexed file is /etc/virtuals. We know the lookup is going to succeed, because it is
the same lookup that was used by domains to control the running of the director.t
After performing the lookup, the final substring is expanded, with the data that
was looked up contained in $value, so the result of the expansion in this case is
just that string.

The data that is used to create the cdb file for this example could contain lines
such as this, where the first two domains use the same alias file:

virtl0.example: /etc/virtl.aliases

virtll.example: /etc/virtl.aliases

virt20.example: /etc/virt2.aliases
Another approach to virtual domains that is sometimes used when the alias lists
are not too large and are managed by a single person is to keep a single list for all
of them that contains entries such as this:

jan@virtl.example: J.Smith@doml . example
jim@virtl.example: J.Smith@dom? . example
jan@virt2.example: J.Jones@doml . example
jim@virt2.example: J.Joyce@dom3 . example

* See the section “Single-Key Lookup Types,” in Chapter 16, File and Database Lookups, for more
details.

t In fact, because there is lookup caching, the lookup isn’t repeated; the cached result is reused.

9 October 2001 09:07

76 Chapter 5: Extending the Delivery Configuration

Note that this differs from a “traditional” alias file in that the aliases are listed with
domains attached, instead of just being local parts. The aliasfile director can use
data like this, but only if you set the include domain option. Without it, only the
local part of the address is used when looking up aliases. The director might look
like this:

virtuals:
driver = aliasfile
domains = cdb;/etc/virtuals
file = /etc/virtual.aliases
search_type = cdb
include_domain
no_more

There is scope for confusion if local parts without domains are used in alias files.

Consider the following:

jac@virt2.example: J.Hawkins
What domain should be added to J.Hawkins to make it a fully qualified address?
Does it refer to a user on the local host, or should it retain the incoming domain
virt2.example? Unless you tell it otherwise, Exim assumes that unqualified local
parts are local, and it uses the value of qualify recipient (a main configuration
option) to create a complete address. If you want the other behavior, you must set
qualify preserve domain on the aliasfile driver.

Defaults in Virtual Domains

When you configure a virtual domain, you may want to trap unknown local parts
and forward them to a designated address such as the postmaster. Adding an aster-
isk to the search type causes Exim to look for a single asterisk entry if it cannot
find the original address, so a configuration such as:

virtuals:
driver = aliasfile
domains = cdb; /etc/virtuals
file = /etc/Sdomain.aliases
search_type = lsearch*
no_more

would allow a separate default to be specified for each domain in its alias file. For
example, in the file /etc/virt3.example.aliases, you could have:

*: postmaster@virt3.example
postmaster: pat@dom5.example
jill: jkre@dom4 . example

When Exim looks up a local part other than postmaster or jill in this file, it fails.
Because of the asterisk in the search type, it then does a second lookup for the
key string *, which finds the default entry that directs all other local parts to the
postmaster.

9 October 2001 09:07

Virtual Domains 77

Putting the default entry first in a file that is linearly searched is a
good idea, because it is then found quickly. This may look like a
wildcard that would match any keystring, including postmaster and
Jill, but this is not the case. The asterisk is just being used as a spe-
cial key that means “default.”

If lookup defaulting is used when domains are included as part of lookup keys
(that is, when include domain is set), it provides a single default for all the
domains. You can give each domain its own default by adding *@ (instead of just
*) to the search type. For example:

virtuals:
driver = aliasfile
domains = cdb;/etc/virtuals
file = /etc/virtual.aliases
search_type = lsearch*@
include_domain
no_more

Then you can include data such as:

*@virtd.example: virtd-admin@dom6.example

in the combined virtual domain file. If an initial lookup fails, the local part is
replaced with an asterisk for the second attempt, and only if that also fails is the
plain asterisk tried as a key.

Postmasters in Virtual Domains

If each virtual domain has its own postmaster, these can be included in the alias
data and there is no problem. Sometimes, however, there is a requirement for a
single address to receive postmaster mail for a number of domains, and there is an
easier approach than maintaining the same entry in all the alias files. If this applies
to all local domains, a smartuser director, placed as the first director, can be used:

postmaster:

driver = smartuser

local_parts = postmaster

new_address = postmaster@your.domain.example
The effect of setting local parts is analagous to setting domains because it causes
the director to be run only for those local parts that it matches. In this case, it runs
only when the local part is postmaster, but as there is no domains setting, it runs
for the postmaster address in any local domain.

The smartuser director itself applies no tests to the local part or domain. If it runs,
it always succeeds. In this configuration, it is doing an aliasing operation, replacing

9 October 2001 09:07

78 Chapter 5: Extending the Delivery Configuration

any incoming address with the same fixed address. The new address is repro-
cessed in its own right; if your.domain.example is a local domain, it is processed
again by this director, but on the third occasion, the antilooping rule takes effect,
and the director is skipped. The unnecessary second pass through the director can
be avoided in one of two ways:

* You can arrange to skip this director when the domain is already correct, by
adding:

domains = !your.domain.example

to its configuration. An exclamation mark at the start of an item in the list
negates the item, so this setting specifies that the director is to be run only
when the domain is not your.domain.example.

e Alternatively, you can arrange to process the new address by starting at a spe-
cific director, instead of at the first one. This is done by setting new director
to the name of the director at which to start:

postmaster:
driver = smartuser
local_parts = postmaster
new_address = postmaster@your.domain.example
new_director = system aliases

This goes straight to the system_aliases director.

If some of the virtual domains do have their own postmasters, but you want to
pick up postmaster mail for the others, you can extend the domains setting to
exclude the unwanted domains (or include the wanted ones, if that is easier).
Another possibility, if defaults are not being used, is to place the smartuser direc-
tor after those that handle the virtual domains.

Mailing Lists
Exim can be used on its own to run simple mailing lists that are maintained by

hand, but for large or complicated requirements, the use of additional specialized
mailing list software (such as Majordomo or SmartList) is strongly recommended.*

Lists of just a few addresses can be managed as aliases, but when larger lists are
involved, it is usually more convenient to keep each list in a separate file. Also,
this allows each list to be managed by its own manager, who need not have
access to other Exim configuration files.

* For Majordomo, see bttp.//www.greatcircle.com/majordomo, and for SmartList see
bttp://www.procmail.org (sic).

9 October 2001 09:07

Mailing Lists 79

The forwardfile director can be used to “explode” such mailing lists, and the
domains option can be used if it is required to run these lists in a separate domain
from normal mail. For example, if your domain is simple.example, you might want
to use lists.simple.example for addresses that refer to mailing lists to keep them
entirely separate from normal mail. This director does just that:

lists:

driver = forwardfile

domains = lists.simple.example

no_more

file = /usr/lists/$local_part

no_check local_user

forbid _pipe

forbid file

errors_to = $local_part-request@Sdomain
The domain must, of course, be set up as local, and appropriate MX records must
be created in the DNS if it is to be accessible from other hosts. If you use list
names that are distinct from any of your local usernames, you can have them in

your normal domain, and the domains and no_more settings are not needed.

The no_check local user option stops forwardfile from checking that the local
part is the login ID of a local user, which it does by default (because it is most
commonly used for users’ .forward files). No check is made on the ownership of
the file containing the list, because neither owners nor owngroups is set. The
forbid pipe and forbid file options prevent a local part from being expanded
into a filename or a pipe delivery, which is not normally appropriate for a mailing
list.

The errors_to option specifies that any delivery errors caused by addresses taken
from a mailing list are to be sent to the given address rather than the original
sender of the message. In other words, it changes the envelope sender of the mes-
sage as it passes through. However, before acting on errors_to, Exim verifies the
error address. If verification fails, the envelope sender is not changed. In the ear-
lier example, verification succeeds if the -request file that corresponds to the mail-
ing list exists.

Using this scheme, you can create a list by creating the main file containing the
members, and the -request file containing the managers. For example, as soon as a
file called /us/lists/exim-users is created, mail to exim-users@lists.simple.example is
accepted, and sent to all the addresses in that file. As soon as /us#/lists/exim-users-
request is created, verification of the address exim-users-request@lists.simple.exam-
ple succeeds, allowing the envelope sender address of messages to exim-
users@lists.simple.example to be changed when they are forwarded.

9 October 2001 09:07

80 Chapter 5: Extending the Delivery Configuration

An alternative to handling both the list address and the errors address with the
same director is to set up an earlier director to handle the errors address. An
example of this is shown in the section “Closed Mailing Lists,” later in this chapter.

Syntax Errors in Mailing Lists

If an entry in a forward file contains a syntax error, Exim normally defers all deliv-
eries for the original address. This may not be appropriate when the list is being
maintained automatically from address texts supplied by users, because a single
bad address shuts down the entire list.

If skip_syntax errors is set on the forwardfile director, the director just skips
entries that fail to parse, noting the incident in the log. Valid addresses are recog-
nized and used. If in addition syntax_errors_to is set to a verifiable address, mes-
sages about skipped addresses are sent to it. It is usually approriate to set this to
the same value as errors_to.

NFS-Mounted Mailing Lists

It is not advisable to have list files that are NFS-mounted, because the absence of
the mount cannot be distinguished from a nonexistent file. Thus, Exim would
behave as if a list did not exist when the NFS server was down. One way around
this problem is to use an aliasfile director with the alias file containing a list of lists
that are kept on local disk. This makes the existence or nonexistence of a list clear.

Each alias expansion can then be an “include” item to read the list itself from a
separate, NFS-mounted file. If no_freeze _missing_include is set for the aliasfile
director, an unavailable file causes delivery to be deferred without freezing. For
example, the director could be:

lists:
driver = aliasfile
file = /usr/list.of.lists
search_type = lsearch
no_freeze missing include
forbid_pipe
forbid _file
errors_to = $local_part-request@Sdomain

with the alias file containing lines such as:

exim-users: :include: /usr/lists/exim-users

This is a bit more complicated to maintain, because in addition to creating the
files, the aliases have to be updated in order to set up a new list.

9 October 2001 09:07

Mailing Lists 81

Reexpansion of Mailing Lists

In order to avoid duplicate deliveries, Exim remembers every individual address to
which a message has been delivered, but it normally stores only the original recip-
ient addresses with a message. If all the deliveries to a mailing list cannot be done
at the first attempt, the mailing list is reexpanded when the delivery is next tried.
This means that alterations to the list are taken into account at each delivery
attempt, and as a consequence, addresses that have been added to the list since
the message arrived will receive a copy of the message, even though it predates
their subscription.

If this behavior is felt to be undesirable, the one_time option can be set on the for-
wardfile director. When this is done, any addresses generated by the director that
fail to deliver at the first attempt are added to the message as “top level”
addresses, and the address that generated them is marked “delivered.” As a result,
expansion of the mailing list does not happen again at subsequent delivery
attempts. The disadvantage of this is that if any of the failing addresses are incor-
rect, changing them in the file has no effect on pre-existing messages.

Closed Mailing Lists

The examples so far have assumed open mailing lists, to which anybody may send
mail. It is also possible to set up closed lists, where mail is accepted from specified
senders only. This is done by making use of the senders option that restricts the
running of a director or router to messages that have specific senders.

The following example uses the same file for each list, both as a list of recipients
and as a list of permitted senders, but different or multiple sender lists could, of
course, be used. For instance, a list for announcements could restrict senders to
those people who are permitted to make the announcements.

First, it is necessary to set up a separate director to handle the -request address, to
which anybody may send mail:

lists_request:
driver = forwardfile
domains = lists.simple.example
suffix = -request
file = /usr/lists/$local_part-request
no_check _local_user
no_more

Here we see a new option, suffix, which we have not met before. It has the
effect of testing the local part for the given suffix, and bypassing the director if it
does not match. This director, therefore, is run only for local parts that end with
-request.

9 October 2001 09:07

82 Chapter 5: Extending the Delivery Configuration

The director runs with $local part stripped of the suffix, which is placed in
$local_part_suffix (though that variable is not used in this example). There is an
analagous option called prefix, which operates by testing the other end of the
local part. You would use this if your mailing lists used the form owmner-xxx for list
management instead of xxx-request.

The next director handles the closed list itself:

lists:

driver = forwardfile

domains = lists.simple.example

require files = /usr/lists/$local_part

senders = lsearch;/usr/lists/$local_part

file = /usr/lists/$local_part

no_check_local_user

forbid_pipe

forbid file

one_time

skip syntax_errors

errors_to = $local_part-request@lists.simple.example

no_more
The require_files option tests for the existence of one or more files, before run-
ning the director. It is needed here to ensure that the file exists before trying to
search it using the senders option, because an attempt to search a nonexistent file
causes an error. If the file does not exist (that is, if the mailing list is unknown),
the director declines, but because no_more is set, no further directors are tried.

Therefore, Exim fails the address.

If the file exists and contains the address of the sender, the director is run and the
message is delivered to the list. However, if the file does not contain the sender,
the director is not run, and no further directors are run because of no_more. Note
that senders behaves differently from domains in the way it interacts with no_more,
as explained in the section “Interaction of Conditions,” in Chapter 6, Options Com-
mon to Directors and Routers.

External Mailing List Software

The use of specialized mailing list software such as Majordomo is recommended if
you are running mailing lists in a big way. Messages addressed to a mailing list are
handed off to an external program, which ultimately resubmits them to Exim for
delivery to the subscribers. This can be done either by providing a recipient list
with each resubmitted message, or by using Exim’s aliasing or forwarding mecha-
nisms to pick up lists of addresses from files. This approach helps you to deal with
the following issues:

9 October 2001 09:07

Mailing Lists 83

Although Exim is capable of delivering a single message to thousands of recip-
ients, having one large forwarding list is not the best way of handling a mail-
ing list with thousands of subscribers. Remember that Exim routes or directs
every address in a message before it does any deliveries. It does this serially,
so if there are very many recipients, a long time may elapse after the arrival of
a message before any deliveries are actually done. To avoid this, mailing list
software should normally be configured to send multiple copies of messages,
with a maximum of around one hundred recipients in each copy. This intro-
duces some parallelism into the routing process. It is an advantage if the
addresses can be sorted, to keep all those in the same domain together.*

An external program makes it easier to check and possibily modify the con-
tents of messages posted to your lists. For example, some lists prohibit the use
of attachments; others require modification of header lines or the addition of
standard texts to messages.

The common practice of sending an email message for automatic subscription
and unsubscription from lists can be supported only by using an external mail-
ing list agent.

Different mailing list software packages provide different facilities. For example,
automatic subscription might be supported without the ability to generate multiple
copies of the message when there are large numbers of recipients. You should
investigate several packages to see which one best fits your needs.

When external mailing list software is in use, Exim has to recognize certain local
parts and pipe the messages to appropriate programs. Occasionally, there is also a
requirement to recognize messages that have come back from the mailing list soft-
ware, and process their addresses in some special way. Exim is usually configured
to run as a specific mailing list user when delivering incoming messages through a
pipe. For example, if you are using Majordomo and keeping all the mailing list
information in a single alias file, you could use this director:

majordomo_aliases:
driver = aliasfile
file = /usr/local/majordomo/lists/majordomo.aliases
search_type = lsearch
user = majordom
group = majordom

This ensures that any pipes that are run as a result of that particular alias file do so
as the user majordom.

* Many general mailing lists contain lots of subscribers from big ISP domains such as aol.com. Unless
you are using VERP (see the section “Changing the Return Path,” in Chapter 9, The Transports), mak-
ing sure the addresses are sorted minimizes the number of copies sent to such domains.

9 October 2001 09:07

84 Chapter 5: Extending the Delivery Configuration

When an ordinary user submits a message to Exim from a process running on the
same host, an envelope sender address is created from the user’s login name and
the domain in qualify domain (which defaults to the hostname). There is a com-
mand-line option -£ that can override this, but Exim ignores it unless the caller is
trusted. Trusted users are discussed more fully in the section “Privileged Users,” in
Chapter 19, Miscellany, but the basic idea is that such users are allowed to forge
sender addresses and other message data. If you are using Majordomo, for exam-
ple, you should have the following:

trusted users = majordom

in your Exim configuration, so that the -f option is honored for messages coming
from Majordomo, thus allowing it to specify an appropriate envelope sender for
each mailing list.

Using aliases as the means of directing messages to list management software is
not the only possibility. Another approach is to use specialized directors and trans-
ports. For example, the following transport could be used to pipe messages to
SmartList:

list transport:
driver = pipe
command = /usr/slist/.bin/flist $local_part$local_part_suffix
current_directory = /usr/slist
home_directory = /usr/slist
user = slist
group = slist

The transport is activated from a director like this:

list_director:
driver = smartuser
suffix = -request
suffix optional
local _parts = !.bin:!.etc
require files = /usr/slist/$local_part/rc.init
transport = list transport

The require files option ensures that the director runs only when the local part
is the name of an existing list. That is, the existence of a file whose name contains
the list name is used as the trigger for passing the message to SmartList. Note the
use of the local_parts option to avoid treating /usw/slist/.bin and /us/slist/.etc as
mailing lists.

9 October 2001 09:07

Using an External Local Delivery Agent 85

Using an External Local Delivery Agent

An alternative to using the appendfile transport for writing to local mailboxes is to
use an external program for this purpose. This could be for all local deliveries, or
only for certain local parts. The pipe transport can be used to pass messages to a
separate local delivery agent such as procmail* We use procmail as an example of
a local delivery agent in what follows, but a similar approach could be used for
any local delivery agent.

Individual users can arrange for their mail to be delivered using procmail by call-
ing it from their .forward files, provided that the Exim configuration permits the
use of pipes from forward files. In some installations, however, there may be a
requirement always to use procmail for local deliveries, or to allow users to
choose to use it without letting them run pipe commands from their .forward files.
One way to handle these cases is to set up a separate transport just for the use of
procmail.

When doing this, care must be taken to ensure that the pipe is run under an
appropriate uid and gid. In some configurations, one wants this to be a uid that is
trusted by the delivery agent to supply the correct sender of the message. It may
be necessary to recompile or reconfigure the delivery agent so that it trusts an
appropriate user. The following is an example of a transport that delivers using
procmail:

procmail_pipe:
driver = pipe
command = /usr/local/bin/procmail -d $local_part
return_path_add
delivery date_add
envelope_ to_add
check_string = "From "
escape_string = ">From "
user = $local part
group = mail

This runs procmail with the user’s uid, but with the group set to mail.

* See http://www.procmail.org. Many, but not all, of the things procmail can do can also be done
using an Exim filter. See Chapter 10, Message Filtering, for a discussion of the differences.

9 October 2001 09:07

86 Chapter 5: Extending the Delivery Configuration

The command specified for the transport does not begin with the
following:

IFS=" "

as shown in some procmail documentation. This setting arose on
systems where the MTA runs pipe commands via a shell; it ensures
that the separator character between the arguments of a shell com-
mand is a space. Exim does not by default use a shell to run pipe
commands, so if this shell construct is present, it is not recognized.
Instead of using a shell, Exim itself splits up the command into sepa-
rate arguments before it does string expansion. This means that any
shell metacharacters that occur in substituted values (for example, in
$local_part) cannot affect the parsing of the command. Exim then
runs the command directly. This approach not only avoids problems
with shell metacharacters, but also saves the overhead of starting
another process.

The transport shown earlier could be used by a director, which checks that the
user has a .procmailrc file:

procmail:
driver = localuser
transport = procmail pipe
require_files = .procmailrc

If there is no .procmailrc file in the user’s home directory, this director declines to
handle the address. The following director could be a conventional localuser
director that directs to an appendfile transport in the usual way. Thus, all a user
needs to do to change from Exim’s normal delivery to delivery via procmail is to
create .procmailrc. No forward file is required.

The next example shows a transport for a system where local deliveries are han-
dled by the Cyrus IMAP server:

local_delivery cyrus:

driver = pipe

command = /usr/cyrus/bin/deliver \
-m ${substr_1:${local_part suffix}} \
-- ${local_part}

user = cyrus

group = mail

return_output

log_output

prefix =

suffix =

9 October 2001 09:07

Multiple User Addresses 87

Note the unsetting of prefix and suffix, and the use of return output to cause
any text written by Cyrus to be returned to the sender. This transport could be
activated by a director such as this:

local_user cyrus:
driver = localuser
transport = local_delivery cyrus

Multiple User Addresses

A single user normally has a single email address and a single mailbox. For exam-
ple, the user caesar on the host simple.example has the following address:

caesar@simple.example

and mail to that address is commonly delivered into /var/mail/caesar. Users with
high volumes of incoming mail often like to use some method of automatically
sorting it into categories to make it more convenient to handle. One way of doing
this is to make use of Exim’s filtering capability or to run an external local delivery
agent such as procmail. These methods rely on analyzing the header lines or mes-
sage content.

Another approach is to allow the use of prefixes or suffixes on usernames in the
local parts of incoming mail. For example, additional addresses such as the follow-

ing:

caesar-rome@simple.example

casear-gaul@simple.example
are recognized as belonging to the user caesar. The user can then make use of
forwarding or filtering files to inspect the suffix. Fixed suffixes could be specified,
but usually the wildcard facility is used so that users can choose their own suf-
fixes. For example, the director shown in the following:

userforward:
driver = forwardfile
file = .forward
suffix = -*
suffix optional
filter

runs a user’s jforward file (usually this would be an Exim filter file) for all local
parts that start with a valid username, optionally followed by a hyphen and then
arbitrary text. Within a filter file, the user can distinguish different cases by testing
the variable $local_part_suffix. For example:

if $local_part_suffix contains -special then

save /home/$local_part/Mail/special
endif

9 October 2001 09:07

88 Chapter 5: Extending the Delivery Configuration

If the filter file does not exist or does not deal with such addresses, they are
offered to subsequent directors, and assuming no subsequent use of the suffix
option is made, those with suffixes presumably fail. Thus, users have control over
which suffixes are valid.

An alternative way of differentiating between suffixes in local parts is to arrange
for a suffix to trigger the use of a different .forward file. This has the advantage
that the user does not need to learn about Exim filter files. For example:

userforward:
driver = forwardfile
file = .forward${local_part_suffix}

suffix = -*
suffix optional
filter

If there is no suffix, .forward is used; if the suffix is -special, for example,
Jorward-special is used. Once again, if the appropriate file does not exist, or does
not deal with the address, it is offered to subsequent directors. The user controls
which suffixes are valid by creating appropriate files, which may forward messages
to other addresses or direct them to specific files or pipe commands using tradi-
tional .forward features or Exim filter commands.

Mixed Local/Remote Domains

Consider a corporate mail gateway that delivers some local parts in one particular
domain into local mailboxes, and sends others on to personal workstations. The
domain is local in the Exim sense, but the deliveries to workstations are remote
deliveries. To implement this, a mapping from local parts to workstation names is
required; for example, the following:

ceo: bigcheese.plc.co.example
alice: castor.plc.co.example
bob: pollux.plc.co.example

means that mail for the local part ceo is to be sent on to the host
bigcheese.plc.co.example, and so on. The first director might be as follows:

workstation:
driver = smartuser
local _parts = lsearch;/etc/wsusers
transport = local_smtp

9 October 2001 09:07

Mixed Local/Remote Domains 89

Local parts that are not present in the file cause the director to be skipped, and
they can then be processed by subsequent directors as conventional local users,
whereas any local part that is found in the file is sent to the local_smtp transport,
which could be configured thus:

local_smtp:

driver = smtp

hosts = $local_part data
Earlier examples of the smtp transport have not used the hosts option, because
they have been referenced from routers that supply a list of hosts for delivery. In
this case, however, the transport is referenced from a director, which cannot pass a
host list, so the list must appear on the transport itself. The wvariable
$local_part_data contains the data from the lookup in the local parts director
option. So, in this case, if the local part is ceo, $local_part_data contains
bigcheese.plc.example, the host to which the message is to be sent.

Another approach to the same situation is not to define the domain as a local
domain, thereby causing its addresses to be offered first to the routers. The first
router picks off the local parts that are to be delivered to workstations:

workstation_people:

driver = domainlist

domains = plc.co.example

local _parts = lsearch;/etc/wsusers

route_list = * $local part_data byname

transport = remote_smtp
We haven’t come across the domainlist router before. It is the main router used for
manually routing certain domains; that is, for implementing rules of the form
“send mail for this domain to that host.” Normally all such routers are placed early
in the list, followed by a final lookuphost router to deal with those domains that

are not special in any way.

In this example, we've restricted this router to the plc.co.example domain and to
those local parts that are found in the /etc/wsusers file. The routing rule is specified
by the route_list option, which has three parts:

e The asterisk means “for all domains,” but because of the setting of domains,
we know the domain is actually plc.co.example. Another way of configuring
this router would be to omit the domains setting, and replace the asterisk by
plc.co.example. This would be slightly less efficient because it would not do
the domain check until Exim was actually running the router.

e The second part of the rule is the name of the host to which the message
should be sent. The value of $local_part_data is the result of the lookup that
was done to match the local part, which in this case is exactly the workstation
name we need.

9 October 2001 09:07

90 Chapter 5: Extending the Delivery Configuration

e The word byname at the end specifies how the IP address of the host is to be
looked up, in this case by calling the system function gethostbyname (). Most
operating systems allow this to be configured to search /etc/bosts and possibly
other data sources, including the DNS.*

Because the router is defining the host to which the message is to be sent, the
standard remote_smtp transport can be used.

So far, we've dealt with the local parts that get sent on to workstations. What
about those that are to be delivered locally? They will bypass the first domainlist
router because they will not be found in /etc/wsusers. What we want to happen is
for them to get passed to the directors. This can be done by setting up a second
special router:

local_people:

driver = domainlist

domains = plc.co.example

route_list = * localhost byname

self = local
This routes the domain plc.co.example to the local host. The default action on dis-
covering that an apparently remote domain routes to the local host is to freeze the
message, because actually sending it in the normal way would probably create a
tight loop. However, for special cases like this, the self option can be used to tell
Exim to do something different. In this case, the setting of self specifies that any-
thing routed to the local host by this router is to be treated as a local domain. Any
address in the plc.co.example domain that reaches this router is therefore passed
to the directors. This is a useful trick that can often be used to advantage for
domains that need to be partly routed and partly directed.

Delivering to UUCP

Exim contains no special UUCP features, and in particular, it does not support
UUCP’s “bang path” method of addressing. However, if you stick to using Internet
domain addresses, mail can easily be routed to UUCP. First of all, you need to set
up a mapping from domain names to UUCP hostnames. This could be a file con-
taining data such as:

darksite.plc.example: darksite

bluesite.plc.example: indigo

* The file /etc/nsswitch.confis often used to specify how a system lookups up hostnames.

9 October 2001 09:07

Ignoring the Local Part in Local Deliveries 91

Then you need a router that uses this data:

uucphost :
transport = uucp
driver = domainlist
route_file = /usr/local/uucpdomains
search _type = lsearch
This router searches the file /usr/local/uucpdomains. If it finds the domain, it
places the data it found in the shost variable, and routes the address to the uucp

transport:

uucp:

driver = pipe

user = nobody

command = /usr/local/bin/uux -r - S$host!rmail $local part

return_fail_output = true
Because this is a local transport, the entries in the routing file must contain just a
single hostname (as they do in this example). Using this configuration, a message
addressed to the following:

postmaster@darksite.plc.example
would end up being piped to the command:

/usr/local/bin/uux -r - darksite!rmail postmaster

which is run as the user nobod)y.

Ignoring the Local Part
in Local Deliveries

Local deliveries are not required to make use of the local part of an address. One
common example is a small company that has only one person reading incoming
email. Rather than set up fixed local parts such as sales, info, enquiries, and so on,
they want all mail delivered into a single mailbox, whatever the local part. One
way of doing this would be to set up a default alias, as described in the section
“Defaults in Virtual Domains,” earlier in this chapter, but it does not even have to
be this complicated. Assuming the chosen recipient is postmaster, all you need is
the following director:

catchall:
driver = smartuser
new_address = postmaster
It should be placed last in the list of directors, so that it picks up all unknown
local parts and redirects them to postmaster.

9 October 2001 09:07

92 Chapter 5: Extending the Delivery Configuration

Some ISPs allocate a domain name to each small account, and then deliver all
messages addressed to that domain into a single mailbox, ignoring local parts. For
Exim running on such an ISP’s mail server, there are two issues to consider:

e How to find the mailbox from the domain name

e How to enable the owner of the mailbox to distinguish between different
recipients

Suppose that the ISP allocates the domain name diego.isp.example to a customer
whose username is diego and whose mailbox is /var/mail/diego on the ISP’s mail
host to which the lowest-numbered MX record points. The Exim configuration on
the mail host could set the following:

local _domains = *.isp.example
to recognize all such domains as local; a single smartuser director can pick up
these addresses and direct them to a special transport:

onebox_customers:
driver = smartuser
domains = *.isp.example
transport = onebox

The transport extracts the mailbox name from the domain and delivers to the rele-
vant file:

onebox:
driver = appendfile
file = /var/mail/${if match{$domain}{" ([".]1+)}{$1}}
user = ${if match{Sdomain}{"([".1+)}{S1}}

envelope_ to_add
return_path_add

The value the file option introduces a new kind of expansion item, starting with
$if{. In general, if tests a condition, and expands a substring only if the condition
is met.* In this example, the condition is that the contents of $domain match a reg-
ular expression. The regular expression ~ ([~.]1+) matches a string that begins with
a sequence of non-dot characters, and saves that sequence in $1. Since the domain
has already been checked, we know that in this case the regular expression will
always match. For our example, the string expansion:

${if match{$domain}{"(["~.]1+)}{S1}}
causes the regular expression to be applied to the string created by substituting
the domain name, that is, to diego.isp.example. It matches and saves the substring
diego in the variable $1. This is then substituted in the final set of braces, giving
diego as the result of the whole if expansion item.

* See Chapter 17, String Expansion, for a full explanation.

9 October 2001 09:07

Handling Local Parts in a Case-Sensitive Manner 93

The same expansion is used to specify the user that is used to run the delivery.
Setting envelope to_add and return path add has the effect of preserving the
envelope addresses in header lines, so it is possible for the owner of the mailbox
to distinguish between messages to different local parts, even if the recipient
addresses do not appear in the 7o: header lines.

Handling Local Parts in a
Case-Sensitive Manner

RFC 822 states that the case of letters in the local parts of addresses must be
assumed to be significant. (In contrast, the case of letters in domain names is
never significant.) Exim preserves the case of local parts in remote addresses, in
accordance with the RFC. However, on most Unix systems, usernames are in
lowercase, and local parts in email addresses are expected to be handled without
regard to case, so that messages addressed to:

icarus@knossos.example

Tcarus@knossos.example

ICARUS@Knossos . example

i1CaRuS@knossos . example
are all delivered to the local user icarus. By default, therefore, whenever it is pro-
cessing an address in one of its local domains, Exim forces the local part into

lowercase. This behavior can be disabled by setting:

locally caseless = false

If you do this, the four addresses in the previous example would be treated as
having different local parts on the host where knossos.example is a local domain.
However, sites that use mixed-case usernames do not usually have accounts that
differ only in the case of their letters. They generally still want to have case-insen-
sitive treatment of local parts in email. That is, they still want to recognize local
parts without regard to the case of their letters, but deliver them to case-sensitive
mailboxes. Unsetting locally caseless is therefore not sufficient; you also have to
arrange to convert local parts to the correct casing. One way of doing this is to set
up the first director as a smartuser director to do the conversion by a file lookup
such as:
adjust_casing:
driver = smartuser
new_address = ${lookup{${lc:$local_part}}cdb\

{/etc/usercased.cdb} {$value}fail}\
@$domain

9 October 2001 09:07

94 Chapter 5: Extending the Delivery Configuration

This director generates a new address by using the 1c expansion item to force the
local part into lowercase, and then looking up the lowercased version in (in this
example) a cdb file, whose data might contain entries such as:

icarus: Icarus
j.caesar: J.Caesar

Thus, all four addresses previously listed would be turned into
Icarus@knossos.example. The new address has the correct casing, and can there-
fore be successfully looked up in the password file by other directors.

For maximum efficiency, a director such as this should also contain a setting of the
new_director option. Without it, the new address is processed afresh, and if it is
different from the original address, it passes through the adjust_casing director for
a second time, though this just regenerates the same new address. The next time
around, the director is skipped because it has already processed that address. Set-
ting new_director to the next director, as shown in the following example:

new_director = system aliases

avoids the wasted second pass through adjust_casing.

Scanning Messages for Viruses

There are a number of programs that will scan an email message to determine
whether it contains any viruses as attachments. Some of these run on Unix sys-
tems, but others are available only for other operating systems. The general tech-
nique for using such a program from Exim is the same