Mastering Regular Expressions - Table of Contents
= Mastering Regular Expressions
@ Table of Contents
@ Tables
qn Preface
gp 1 Introduction to Regular Expressions
g 2 Extended Introductory Examples

gp 3 Overview of Regular Expression Features and Flavors

gr 4 The Mechanics of Expression Processing

ap 5 Crafting a Regular Expression
gp 6 Tool-Specific Information

gp 7 Perl Regular Expressions
gr A Online Information

@ B Email Regex Program
gp |ndex

Mastering Regular Expressions
Power ful Techniquesfor Perl and Other Tools

Jeffrey E.F. Friedl

OREILLYO
Cambridge s Koln« Parises Sebastopol « Tokyo

Pageiv

Mastering Regular Expressions
by Jeffrey E.F. Friedl

Copyright © 1997 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Rellly & Associates, Inc., 101 Morris Street, Sebastopol, CA
95472.

Editor: Andy Oram
Production Editor: Jeffrey Friedl

Printing History:

January 1997: First Edition.

March 1997: Second printing; Minor corrections.
May 1997: Third printing; Minor corrections.
July 1997: Fourth printing; Minor corrections.
November 1997: Fifth printing; Minor corrections.
August 1998: Sixth printing; Minor corrections.
December 1998: Seventh printing; Minor corrections.

Nutshell Handbook and the Nutshell Handbook 1ogo are registered trademarks
and The Java Seriesis atrademark of O'Rellly & Associates, Inc.

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this
book, and O'Reilly & Associates, Inc. was aware of atrademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the
publisher assumes no responsibility for errors or omissions, or for damages
resulting from the use of the information contained herein.

Page V

Table of Contents
Preface XV

1: Introduction to Regular Expressions

Solving Real Problems 2
Regular Expressions as a Language 4
The Filename Analogy 4
The Language Analogy 5
The Regular-Expression Frame of Mind 6
Searching Text Files. Egrep 7
Egrep Metacharacters 8
Start and End of the Line 8
Character Classes 9
Matching Any Character—Dot 11
Alternation 12
Word Boundaries 14

In a Nutshell 15

Optional Items
Other Quantifiers. Repetition
Ignoring Differences in Capitalization
Parentheses and Backreferences
The Great Escape
Expanding the Foundation
Linguistic Diversification
The Goal of aRegular Expression

A Few More Examples

Regular Expression Nomenclature
Improving on the Status Quo
Summary

Personal Glimpses

2: Extended Introductory Examples

About the Examples
A Short Introduction to Perl

Matching Text with Regular Expressions
Toward a More Real-World Example
Side Effects of a Successful Match
Intertwined Regular Expressions
| ntermission

Modifying Text with Regular Expressions
Automated Editing
A Small Mail Utility

That Doubled-Word Thing

3: Overview of Regular Expression Features and Flavors.

A Casual Stroll Across the Regex Landscape
The World According to Grep
The Times They Are a Changin'
At aGlance
POSIX
Care and Handling of Regular Expressions
|dentifying a Regex
Doing Something with the Matched Text
Other Examples
Care and Handling: Summary
Engines and Chrome Finish
Chrome and A ppearances
Engines and Drivers
Common Metacharacters
Character Shorthands

Strings as Regular Expression

Class Shorthands, Dot, and Character Classes

Anchoring

Grouping and Retrieving

Quantifiers

Alternation
Guide to the Advanced Chapters
Tool-Specific Information
4: The Mechanics of Expression Processing
Start Y our Engines!
Two Kinds of Engines
New Standards
Regex Engine Types
From the Department of Redundancy Department
Match Basics
About the Examples
Rule 1: The Earliest Match Wins
The "Transmission” and the Bump-Along
Engine Pieces and Parts
Rule 2. Some Metacharacters Are Greedy
Regex-Directed vs. Text-Directed

NFA Engine: Regex-Directed

DFA Engine: Text-Directed 100

The Mysteries of Life Revealed 101
Backtracking 102
A Really Crummy Anaogy 102
Two Important Points on Backtracking 103
Saved States 104
Backtracking and Greediness 106
More About Greediness 108
Problems of Greediness 108
Multi-Character "Quotes" 109
L aziness? 110
Greediness Always Favors a Match 110
|s Alternation Greedy? 112
Uses for Non-Greedy Alternation 113
Greedy Alternation in Perspective 114
Character Classes vs. Alternation 115
NFA, DFA, and POSI X 115

"The Longest-L eftmost" 115

POSIX and the Longest-L eftmost Rule 116
Speed and Efficiency 118

DFA and NFA in Comparison 118

Practical Regex Techniques
Contributing Factors
Be Specific
Difficulties and Impossibilities
Watching Out for Unwanted Matches.
Matching Delimited Text
Knowing Y our Data and Making Assumptions
Additional Greedy Examples

Summary
Match Mechanics Summary
Some Practical Effects of Match Mechanics

5: Crafting a Regular Expression

A Sobering Example
A Simple Change-Placing Y our Best Foot Forward
More Advanced-L ocalizing the Greediness
Reality Check

A Global View of Backtracking

Page viii

121

121

122

125

127

129

132

132

136

136

137

139

140

141

141

144

145

More Work for aPOSIX NFA
Work Required During a Non-Match.
Being More Specific
Alternation Can Be Expensive
A Strong Lead
The Impact of Parentheses
Internal Optimization
First-Character Discrimination
Fixed-String Check
Simple Repetition
Needless Small Quantifiers
L ength Cognizance
Match Cognizance
Need Cognizance
String/Line Anchors
Compile Caching
Testing the Engine Type

Basic NFA vs. DFA Testing

147

147

147

148

149

150

154

154

155

155

156

157

157

157

158

158

160

160

Traditional NFA vs. POSIXNFA Testing 161
Unrolling the Loop 162

Method 1: Building a Regex From Past Experiences 162

The Real "Unrolling the Loop™ Pattern.
Method 2: A Top-Down View
Method 3: A Quoted Internet Hostname
Observations
Unrolling C Comments
Regex Headaches
A Naive View
Unrolling the C Loop
The Freeflowing Regex
A Helping Hand to Guide the Match.
A Well-Guided Regex is a Fast Regex.
Wrapup
Think!
The Many Twists and Turns of Optimizations
6: Tool-Specific Information
Questions Y ou Should Be Asking

Something as Simple as Grep

Pageix

164

166

167

163

168

169

169

171

173

173

174

176

177

177

181

181

181

In This Chapter 182

Awk 183
Differences Among Awk Regex Flavors 184
Awk Regex Functions and Operators 187

Tcl 188
Tcl Regex Operands 189
Using Tcl Regular Expressions 190
Tcl Regex Optimizations 192

GNU Emacs 192
Emacs Strings as Regular Expressions 193
Emacs's Regex Flavor 193
Emacs Match Results 196
Benchmarking in Emacs 197
Emacs Regex Optimizations 197

7: Perl Regular Expressions 199

The Perl Way 201
Regular Expressions as a Language Component 202
Perl's Greatest Strength 202

Perl's Greatest Weakness 203

A Chapter, a Chicken, and The Perl Way 204

Page x

An Introductory Example: Parsing CSV Text 204
Regular Expressions and The Perl Way 207
Perl Unleashed 208
Regex-Related Perlisms 210
Expression Context 210
Dynamic Scope and Regex Match Effects 211
Specia Variables Modified by aMatch 217
"Doublequotish Processing" and Variable Interpolation 219
Perl's Regex Flavor 225
Quantifiers-Greedy and Lazy 225
Grouping 227
String Anchors 232
Multi-Match Anchor 236
Word Anchors 240
Convenient Shorthands and Other Notations 241
Character Classes 243

Modification with \Q and Friends: True Lies 245

The Match Operator 246

Match-Operand Delimiters 247
Match Modifiers 249
Specifying the Match Target Operand 250
Other Side Effects of the Match Operator 251
Match Operator Return Value 252
Outside Influences on the Match Operator 254
The Substitution Operator 255
The Replacement Operand 255
The /e Modifier 257
Context and Return Value 258
Using /g with a Regex That Can Match Nothingness 259
The Split Operator 259
Basic Split 259
Advanced Split 261
Advanced Split's Match Operand 262
Scalar-Context Split 264

Split's Match Operand with Capturing Parentheses 264

Perl Efficiency Issues
"There's More Than One Way to Do It"
Regex Compilation, the /o Modifier, and Efficiency

Unsociable $& and Friends

265

266

268

273

Page xi

The Efficiency Penalty of the /i Modifier 278
Substitution Efficiency Concerns 281
Benchmarking 284
Regex Debugging Information 285
The Study Function 287
Putting It All Together 290
Stripping Leading and Trailing Whitespace 290
Adding Commas to a Number 291
Removing C Comments 292
Matching an Email Address 294
Final Comments 304
Notes for Perl4 305

A Online Information 309

BEmail Regex Program 313

Tables

1-1 Summary of Metacharacters Seen So Far

1-2 Summary of Quantifier "Repetition Metacharacters”

1-3 Egrep Metacharacter Summary

3-1 A (Very) Superficial Look at the Flavor of a Few Common Tools
3-2 Overview of POSIX Regex Flavors

3-3 A Few Utilities and Some of the Shorthand M etacharacters They Provide
3-4 String/Line Anchors, and Other Newline-Related | ssues

4-1 Some Tools and Their Regex Engines

5-1 Match Efficiency for a Traditional NFA

5-2 Unrolling-The-Loop Example Cases

5-3 Unrolling-The-Loop Components for C Comments

6-1 A Superficial Survey of a Few Common Programs' Flavor

6-2 A Comical Look at a Few Greps

6-3 A Superficial Look at a Few Awks

6-4 Tcl's FA Regex Flavor

Page xiii

143

163

172

182

183

184

189

6-5 GNU Emacs's Search-Related Primitives 193

6-6 GNU Emacs's String M etacharacters 194
6-7 Emacs's NFA Regex Flavor 194
6-8 Emacs Syntax Classes 195
7-1 Overview of Perl's Regular-Expression Language 201
7-2 Overview of Perl's Regex-Related Items 203
7-3 The meaning of local 213

7-4 Perl's Quantifiers (Greedy and Lazy) 225

7-5 Overview of Newline-Related Match Modes

7-6 Summary of Anchor and Dot Modes

7-7 Regex Shorthands and Special-Character Encodings

7-8 String and Regex-Operand Case-Modification Constructs

7-9 Examples of m/.../g with a Can-Match-Nothing Regex

7-10 Standard Libraries That Are Naughty (That Reference $& and Friends)

7-11 Somewhat Formal Description of an Internet Email Address

Page xiv

232

236

241

245

250

278

295

Page xv

Preface
This book is about a powerful tool called "regular expressions.”

Here, you will learn how to use regular expressions to solve problems and get the
most out of tools that provide them. Not only that, but much more: this book is
about mastering regular expressions.

If you use a computer, you can benefit from regular expressions all the time (even
If you don't realize it). When accessing World Wide Web search engines, with
your editor, word processor, configuration scripts, and system tools, regular
expressions are often provided as "power user” options. Languages such as Awk,
Elisp, Expect, Perl, Python, and Tcl have regular-expression support built in
(regular expressions are the very heart of many programs written in these
languages), and regular-expression libraries are available for most other
languages. For example, quite soon after Java became available, a
regular-expression library was built and made freely available on the Web.
Regular expressions are found in editors and programming environments such as
vi, Delphi, Emacs, Brief, Visual C++, Nisus Writer, and many, many more.
Regular expressions are very popular.

There's a good reason that regular expressions are found in so many diverse
applications: they are extremely powerful. At alow level, aregular expression
describes a chunk of text. You might useit to verify auser'sinput, or perhapsto
sift through large amounts of data. On a higher level, regular expressions allow
you to master your data. Control it. Put it to work for you. To master regular
expressionsisto master your data.

Page xvi
Why | Wrote This Book

Y ou might think that with their wide availability, general popularity, and
unparalleled power, regular expressions would be employed to their fullest,
wherever found. Y ou might also think that they would be well documented, with
introductory tutorials for the novice just starting out, and advanced manuals for
the expert desiring that little extra edge.

Sadly, that hasn't been the case. Regular-expression documentation is certainly
plentiful, and has been available for along time. (I read my first
regular-expression-related manual back in 1981.) The problem, it seems, is that
the documentation has traditionally centered on the "low-level view" that |
mentioned a moment ago. Y ou can talk all you want about how paints adhere to
canvas, and the science of how colors blend, but this won't make you a great
painter. With painting, as with any art, you must touch on the human aspect to
really make a statement. Regular expressions, composed of a mixture of symbols
and text, might seem to be a cold, scientific enterprise, but | firmly believe they
are very much creatures of the right half of the brain. They can be an outlet for
creativity, for cunningly brilliant programming, and for the elegant solution.

I'm not talented at anything that most people would call art. | go to karaoke bars
in Kyoto alot, but | make up for the lack of talent simply by being loud. | do,
however, fedl very artistic when | can devise an elegant solution to a tough
problem. In much of my work, regular expressions are often instrumental in
developing those elegant solutions. Because it's one of the few outlets for the
artist in me, | have developed somewhat of a passion for regular expressions. It is
my goal in writing this book to share some of that passion.

Intended Audience

This book will interest anyone who has an opportunity to use regular expressions.
In particular, if you don't yet understand the power that regular expressions can
provide, you should benefit greatly as awhole new world is opened up to you.
Many of the popular cross-platform utilities and languages that are featured in this
book are freely available for MacOS, DOS/Windows, Unix, VMS, and more.
Appendix A has some pointers on how to obtain many of them.

Anyone who uses GNU Emacs or vi, or programsin Perl, Tcl, Python, or Awk,
should find a gold mine of detail, hints, tips, and understanding that can be put to
immediate use. The detail and thoroughness is simply not found anywhere else.
Regular expressions are an idea—one that is implemented in various ways by
various utilities (many, many more than are specifically presented in this book). If
you master the general concept of regular expressions, it's a short step to
mastering a

Page xvii

particular implementation. This book concentrates on that idea, so most of the
knowledge presented here transcend the utilities used in the examples.

How to Read This Book

Thisbook is part tutorial, part reference manual, and part story, depending on
when you use it. Readers familiar with regular expressions might feel that they
can immediately begin using this book as a detailed reference, flipping directly to
the section on their favorite utility. | would like to discourage that.

This Book, asa Story

To get the most out of this book, read it first asastory. | have found that certain
habits and ways of thinking can be a great help to reaching a full understanding,
but such things are absorbed over pages, not merely memorized from alist. Here's
ashort quiz: define the word "between" Remember, you can't use the word in its
definition! Have you come up with agood definition? No? It's tough! It's lucky
that we all know what "between" means because most of us would have a devil of
atime trying to explain it to someone that didn't know. It's a simple concept, but
it's hard to describe to someone who isn't already familiar with it. To some extent,
describing the details of regular expressions can be similar. Regular expressions
are not really that complex, but the descriptions can tend to be. I've crafted a story
and away of thinking that begins with Chapter 1, so | hope you begin reading
there. Some of the descriptions are complex, so don't be alarmed if some of the
more detailed sections require a second reading. Experience is 9/10 of the law (or
something like that), so it takes time and experience before the overall picture can
sink in.

ThisBook, as a Reference

This book tells a story, but one with many details. Once you've read the story to
get the overall picture, this book is also useful as areference. I've used cross
references liberally, and I've worked hard to make the index as useful as possible.
(Cross references are often presented as “=" followed by a page number.) Until
you read the full story, its use as a reference makes little sense. Before reading the
story, you might look at one of the tables, such as the huge chart on page 182, and
think it presents all the relevant information you need to know. But a great deal of
background information does not appear in the charts themselves, but rather in the
associated story. Once you've read the story, you'll have an appreciation for the
Issues, what you can remember off the top of your head, and what is important to
check up on.

Page xviii
Organization

The seven chapters of this book can be logically divided into roughly three parts,
with two additional appendices. Here'sa quick overview:

The Introduction

Chapter 1 introduces the concept of regular expressions.
Chapter 2 takes alook at text processing with regular expressions.
Chapter 3 provides an overview of features and utilities, plus abit of history.

The Details

Chapter 4 explains the details of how regular expressions work.
Chapter 5 discusses ramifications and practical applications of the details.

Tool-Specific I nformation

Chapter 6 looks at a few tool-specific issues of several common utilities.
Chapter 7 looks at everything to do with regular expressions in Perl.

Appendices

Appendix A tells how to acquire many of the tools mentioned in this book.
Appendix B provides afull listing of a program developed in Chapter 7.

The I ntroduction

The introduction elevates the absolute novice to "issue-aware" novice. Readers
with afair amount of experience can feel free to skim the early chapters, but |
particularly recommend Chapter 3 even for the grizzled expert.

 Chapter 1, Introduction to Regular Expressions, is geared toward the
complete novice. | introduce the concept of regular expressions using the
widely available program egrep, and offer my perspective on how to think
regular expressions, instilling a solid foundation for the advanced conceptsin
later chapters. Even readers with former experience would do well to skim this
first chapter.

 Chapter 2, Extended Introductory Examples, looks at real text processing in a
programming language that has regular-expression support. The additional
examples provide abasis for the detailed discussions of later chapters, and
show additional important thought processes behind crafting advanced regular
expressions. To provide afeel for how to "speak in regular expressions,” this
chapter takes a problem requiring an advanced solution and shows ways to
solve it using two unrelated regular-expression-wielding tools.

 Chapter 3, Overview of Regular Expression Features and Flavors, provides
an overview of the wide range of regular expressions commonly found in tools
today. Dueto their turbulent history, current commonly used regular expression
flavors can differ greatly. This chapter also takes alook at a bit of the history
and evolution of regular expressions and the programs that use them. The

Page xix

end of this chapter also contains the "Guide to the Advanced Chapters." This
guide is your road map to getting the most out of the advanced materia that
follows.

The Details

Once you have the basics down, it's time to investigate the how and the why. Like
the "teach aman to fish" parable, truly understanding the issues will allow you to

apply that knowledge whenever and wherever regular expressions are found. That
true understanding beginsin:

» Chapter 4, The Mechanics of Expression Processing, ratchets up the pace
severa notches and begins the central core of this book. It looks at the
important inner workings of how regular expression engines really work from a
practical point of view. Understanding the details of how aregular expression
Isused goes avery long way toward allowing you to master them.

 Chapter 5, Crafting a Regular Expression, looks at the real-life ramifications
of the regular-expression engine implemented in popular tools such as Perl, sed,
grep, Tcl, Python, Expect, Emacs, and more. This chapter puts information
detailed in Chapter 4 to use for exploiting an engine's strengths and stepping
around its weaknesses.

Tool-Specific Information

Once the lessons of Chapters 4 and 5 are under your belt, there is usualy little to
say about specific implementations. However, |'ve devoted an entire chapter to
one very notable exception, the Perl language. But with any implementation, there
are differences and other important issues that should be considered.

 Chapter 6, Tool-Specific Information, discusses tool-specific concerns,
highlighting many of the characteristics that vary from implementation to
Implementation. As examples, awk, Tcl, and GNU Emacs are examined in more
depth than in the general chapters.

» Chapter 7, Perl Regular Expressions, closely examines regular expressionsin
Perl, arguably the most popular regular-expression-laden programming
language in popular use today. There are only three operators related to regular
expressions, but the myriad of options and special cases provides an extremely
rich set of programming options—and pitfalls. The very richness that allows the
programmer to move quickly from concept to program can be a minefield for
the uninitiated. This detailed chapter will clear a path.

Page xx

Typographical Conventions

When doing (or talking about) detailed and complex text processing, being
precise isimportant. The mere addition or subtraction of a space can make a
world of difference, so | use the following special conventions:

* A regular expression generally appearslike [t hi s . Notice the thin corners

which flag "thisis aregular expression.” Literal text (such asthat being
searched) generally appearslike’ t hi s' . Attimes, I'll feel free to leave off the

thin corners or quotes when obviously unambiguous. Also, code snippets and
screen shots are always presented in their natural state, so the quotes and
corners are not used in such cases.

» Without special presentation, it isvirtually impossible to know how many
spaces are between the lettersin”a b", so when spaces appear in regular

expressions and selected literal text, they will be presented with the' *'
symbol. Thisway, it will be clear that there are exactly four spacesin' a®* *

*b' . | aso usevisual tab and newline characters. Here's a summary of the
three:

- a space character

atab character

anewline character

 Attimes, | use underlining, or shade the background to highlight parts of
literal text or aregular expression. For example:

« Because | cat | matches' It *i ndi cat es *your *cat *i s..."instead of
theword' cat ', weredlize. ..

In this case, the underline shows where in the text the expression actually
matched. Another example would be:

To make this useful, we can wrap [su bj ect | Dat e | with parentheses, and

append a colon and a space. Thisyields ' (subject|pate): "]

In this case, the underlines highlight what has just been added to an
expression under discussion.

* | useavisualy distinct ellipses within literal text and regular expressions. For
example|[...] representsaset of square brackets with unspecified contents,
while[. . .] would be aset containing three periods.

Exercises

Occasionally, particularly in the early chapters, I'll pose a question to highlight
the importance of the concept under discussion. They're not there just to take up
space; | really do want you to try them before continuing. Please. So as to not to
dilute their importance, I've sprinkled only afew throughout the entire book. They

Page xxi

also serve as checkpoints: if they take more than afew moments, it's probably
best to go over the relevant section again before continuing on.

To help entice you to actually think about these questions as you read them, I've
made checking the answers a breeze: just turn the page. Answers to questions

marked with * are always found by turning just one page. Thisway, they're out
of sight while you think about the answer, but are within easy reach.

Personal Comments and Acknowledgments

My Mom once told me that she couldn't believe that she ever married Dad. When
they got married, she said, they thought that they loved each other. It was nothing,
she continued, compared with the depth of what they now share, thirty-something
years later. It's just aswell that they didn't know how much better it could get, for
had they known, they might have considered what they had to be too little to
chance the future on.

The analogy may be a bit melodramatic, but several years ago, | thought |
understood regular expressions. I'd used them for years, programming with awk,
sed, and Perl, and had recently written a rather full regular-expression package
that fully supported Japanese text. | didn't know any of the theory behind it—I
just sort of reasoned it out myself. Still, my knowledge seemed to be enough to
make me one of the local expertsin the Perl newsgroup. | passed along some of

my posts to afriend, Jack Halpern {#ﬂﬁﬁﬁ}’ who was in the process of
learning Perl. He often suggested that | write a book, but | never seriously
considered it. Jack has written over a dozen books himself (in various languages,
no less), and when someone like that suggests you write a book, it's somewhat
akin to Carl Lewistelling you to just jump far. Y eah, sure, easy for you to say!

Then, toward the end of June, 1994, a mutual friend, Ken Lunde CIHRED ,d
suggested | write abook. Ken is also an author (O'Reilly & Associates

Under standing Japanese Information Processing), and the connection to O'Reilly
was too much to pass by. | wasintroduced to Andy Oram, who became my editor,
and the project took off under his guidance.

SO

| soon learned just how much | didn't know.

Knowing | would have to write about more than the little world of the tools that |
happened to use, | thought | would spend a bit of time to investigate their wider
use. This began what turned out to be an odyssey that consumed the better part of
two years. Just to understand the characteristics of aregular-expression flavor, |
ended up creating atest suite implemented in a 60,000-line shell script. | tested
dozens and dozens of programs. | reported numerous bugs that the suite

Page xxii

discovered (many of which have consequently been fixed). My guiding principle
has been, as Ken Lunde so succinctly put it when | was grumbling one day: "you
do the research so your readers don't haveto."

Originaly, | thought the whole project would take a year at the very most. Boy,
was | wrong. Besides the research necessitated by my own ignorance, afew
months were lost as priorities shifted after the Kobe earthquake. Also, there's
something to be said for experience. | wrote, and threw out, two versions of this
book before feeling that | had something worthy to publish. As| found out, there's
a big difference between publishing a book and firing off a posting to Usenet. It's
been almost two and a half years.

Shouldersto Stand On

As part of my research, both about regular expressions and their history, | have
been extremely lucky in the knowledge of othersthat | have been able to tap.
Early on, Tom Wood of Cygnus Systems opened my eyes to the various ways that
aregular-expression match engine might be implemented. Vern Paxson (author of
flex) and Henry Spencer (regular-expression god) have also been a great help. For
enlightenment about some of the very early years, before regular expressions
entered the realm of computers, | am indebted to Robert Constable and Anil
Nerode. For insight into their early computational history, I'd like to thank Brian
Kernighan (co-author of awk), Ken Thompson (author of ed and co-creator of
Unix), Michael Lesk (author of lex), James Gosling (author of the first Unix
version of Emacs, which was also the first to support regular expressions),
Richard Stallman (original author of Emacs, and current author of GNU Emacs),
Larry Wall (author of rn, patch, and Perl), Mark Biggar (Perl's maternal uncle),
and Don Libes (author of Life with Unix, among others).

The work of many reviewers has helped to insulate you from many of my
mistakes. Thefirst line of defense has been my editor, Andy Oram, who has
worked tirelessly to keep this project on track and focused. Detailed reviews of
the early manuscripts by Jack Halpern saved you from having to see them. In the
months the final manuscript was nearing completion, William F. Maton devoted
untold hours reviewing numerous versions of the chapters. (A detailed review isa
lot to ask just once William definitely went above and beyond the call of duty.)
Ken Lunde's review turned out to be an incredibly detailed copyedit that
smoothed out the English substantially. (Steve Kleinedler did the official copyedit
on alater version, from which | learned more about English than | did in 12 years
of compulsory education.) Wayne Berke's 25 pages of detailed, insightful
comments took weeks to implement, but added substantially to the overall quality.
Tom Christiansen's review showed his prestigious skills are not only
computational, but linguistic aswell: | learned quite a bit about English from him,
too. But Tom's skills

Page xxiii

are computational indeed: discussions resulting from Tom's review were
eventualy joined in by Larry Wall, who caught afew of my more major Perl
gaffes. Mike Stok, Jon Orwant, and Henry Spencer helped with detailed reviews
(in particular, 1'd like to thank Henry for clarifying some of my misconceptions
about the underlying theory). Mike Chachich and Tim O'Reilly also added
valuable feedback. A review by expertsis one thing, but with abook designed to
teach, areview by anon-expert is also important. Jack Halpern helped with the
early manuscripts, while Norris Couch and Paul Beard were willing testers of the
later manuscript. Their helpful comments allowed me to fill in some of the gaps
I'd left.

Errorsthat might remain

Even with all the work of these reviewers, and despite my best efforts, there are
probably still errorsto be found in this book. Please realize that none of the
reviewers actually saw the very final manuscript, and that there were afew times
that | didn't agree with areviewer's suggestion. Their hard works earns them
much credit and thanks, but it's entirely possible that errors were introduced after
their review, so any errors that remain are wholly my responsibility. If you do
find an error, by all means, please let me know. Appendix A has information on
how to contact me.

Appendix A aso tells how to get the current errataonline. | hope it will be short.
Other Thanks

There are a number of people whose logistic support made this book possible.

Ken Lunde of Adobe Systems created custom characters and fonts for a number

of the typographical aspects of this book. The Japanese characters are from Adobe
Systems Heisei Mincho W3 typeface, while the Korean is from the Korean
Ministry of Culture and Sports Munhwa typeface.

| worked many, many hours on the figures for this book. They were nice. Then
Chris Reilley stepped in, and in short order whipped some style into them. Almost
every figure bears his touch, which is something you'll be grateful for.

= s
I'd like to thank my company, Omron Corporation #F40 "’J.H&_EF&J, andin
ME '
particular, (Keith Masuda) and ™8 (v i0 Takasaki), for their
support and encouragement with this project. Having a 900dpi printer at my

disposal made development of the special typesetting used in this book possible.

il

Very special thanks goes to (Kenji Aoyama): the mouse on my
ThinkPad broke down as | was preparing the manuscript for final copyedit, and in
an unbelievable act of selflessness akin to giving up hisfirstborn, he loaned me
his ThinkPad for the several weeksit took IBM to fix mine. Thanks!

Page xxiv

In the Future

| worked on this book for so long, | can't remember what it might feel liketo
spend arelaxing, lazy day and not feel guilty for it. | plan to enjoy some of the
finer luxuriesin life (folded laundry, afilled ice tray, atidy desk), spend afew
weekends taking lazy motorcycle rides through the mountains, and take a nice
long vacation.

Thiswill be nice, but there's currently alot of excitement in the
regular-expression world, so | won't want to be resting too much. As| go to press,
there are active discussions about revamping the regular expression engines with
both Python and Perl. My web page (see Appendix A) will have the latest news.

Page 1

1
I ntroduction to Regular Expressions

In this chapter:

e Solving Real Problems

e Regular Expressions as a Language

e The Regular-Expression Frame of Mind
e Egrep Metacharacters

e Expanding the Foundation

e Personal Glimpses

Here's the scenario: your boss in the documentation department wants a tool to
check for doubled words (such as "this this"), a common problem with documents
subject to heavy editing. Y our job isto create a solution that will:

» Accept any number of filesto check, report each line of each file that has
doubled words, highlight (using standard ANSI escape sequences) each doubled
word, and ensure that the source filename appears with each line in the report.

» Work across lines, even finding situations when aword at the end of oneline
Isfound at the beginning of the next.

* Find doubled words despite capitalization differences, such aswith "The the’,
aswell as allow differing amounts of whitespace (spaces, tabs, newlines, and
the like) to lie between the words.

* Find doubled words that might even be separated by HTML tags (and any
amount of whitespace, of course). HTML tags are for marking up text on World

Wide Web pages, such asto makeaword bold: '...it i s very
very inportant’.

That's certainly atall order! However, areal problem needsareal solution, and a
real problemitis. | used such atool on the text of this book and was surprised at
the way numerous doubled-words had crept in. There are many programming
languages one could use to solve the problem, but one with regular expression
support can make the job substantially easier.

Regular expressions are the key to powerful, flexible, and efficient text
processing. Regular expressions themselves, with a general pattern notation
almost like amini programming language, alow you to describe and parse text.
With additional support provided by the particular tool being used, regular
expressions can add,

Page 2

remove, isolate, and generaly fold, spindle, and mutilate all kinds of text and
data. It might be as simple as atext editor's search command or as powerful asa
full text processing language. This book will show you the many ways regular
expressions can increase your productivity. It will teach you how to think regular
expressions so that you can master them, taking advantage of the full magnitude
of their power.

Aswelll see in the next chapter, afull program that solves the doubled-word
problem can be implemented in just afew lines of Perl or Python (among others),
scripting languages with regular-expression support. With asingle
regular-expression search-and-replace command, you can find and highlight
doubled words in the document. With another, you can remove all lines without
doubled words (leaving only the lines of interest |eft to report). Finaly, with a
third, you can ensure that each line to be displayed begins with the name of the
file the line came from.

The host language (Perl, Python, or whatever) provides the peripheral processing
support, but the real power comes from regular expressions. In harnessing this
power for your own needs, you will learn how to write regular expressions which
will identify text you want, while bypassing text you don't. You'll then combine
your expressions with the language's support constructs to actually do something
with the text (add appropriate highlighting codes, remove the text, change the
text, and so on).

Solving Real Problems

Knowing how to wield regular expressions unleashes processing powers you
might not even know were available. Numerous timesin any given day, regular
expressions help me solve problems both large and small (and quite often, ones
that are small but would be large if not for regular expressions). With specific
examples that provide the key to solving a large problem, the benefit of regular
expressions is obvious. Perhaps not so obviousis the way they can be used
throughout the day to solve rather "uninteresting” problems. "Uninteresting" in
the sense that such problems are not often the subject of barroom war stories, but
quite interesting in that until they're solved, you can't get on with your real work. |
find the ability to quickly save an hour of frustration to be somehow exciting.

Asasimple example, | needed to check aslew of files (the 70 or so files
comprising the source for this book, actually) to confirm that each file contained
'Set Si ze' exactly asoften (or asrarely) asit contained' Reset Si ze' . To
complicate matters, | needed to disregard capitalization (such that, for example,
' set SI ZE' would be counted just thesame as' Set Si ze'). The thought of

Inspecting the 32,000 lines of text by hand makes me shudder. Even using the
normal "find thisword" search in

Page 3

an editor would have been truly arduous, what with all the files and all the
possible capitalization differences.

Regular expressions to the rescue! Typing just asingle, short command, | was
able to check all files and confirm what | needed to know. Total elapsed time:
perhaps 15 seconds to type the command, and another 2 seconds for the actual
check of al the data. Wow! (If you're interested to see what | actually used, peek
ahead to page 32).

As another example, the other day | was helping afriend, Jack, with some email
problems on a remote machine, and he wanted me to send a listing of messagesin
his mailbox file. | could have loaded a copy of the whole file into atext editor and
manually removed all but the few header lines from each message, leaving a sort
of table of contents. Even if the file wasn't as huge as it was, and even if | wasn't
connected viaa slow dia-up line, the task would have been slow and
monotonous. Also, | would have been placed in the uncomfortable position of
actually seeing the text of his personal mail.

Regular expressions to the rescue again! | gave a simple command (using the
common search tool egrep described later in this chapter) to display the Fr om

and Subj ect : line from each message. To tell egrep exactly which kinds of
lines| did (and didn't) want to see, | used the regular expression

f/\(Fron| Subj ect): * | Once Jack got hislist, he asked meto send a
particular (5,000-line!) message. Again, using atext editor or the mail system
itself to extract just the one message would have taken along time. Rather, | used
another tool (one called sed) and again used regular expressions to describe
exactly the text in the file | wanted. Thisway, | could extract and send the desired
message quickly and easily.

Saving both of us alot of time and aggravation by using the regular expression
was not "exciting," but surely much more exciting than wasting an hour in the text
editor. Had | not known regular expressions, | would have never considered that
there was an aternative. So, to afair extent, this story is representative of how
regular expressions and associated tools can empower you to do things you might
have never thought you wanted to do. Once you learn regular expressions, you
wonder how you could ever have gotten by without them.

A full command of regular expressions represents an invaluable skill. This book
provides the information needed to acquire that skill, and it is my hope that it will
provide the motivation to do so, aswell.

Page 4

Regular Expressions as a Language

Unless you've had some experience with regular expressions, you won't

understand the regular expression r’\(Fron| Subj ect) : * | from the last

example, but there's nothing magic about it. For that matter, there is nothing
magic about magic. The magician merely understands something simple which
doesn't appear to be simple or natural to the untrained audience. Once you learn
how to hold a card while making your hand look empty, you only need practice
before you, too, can "do magic." Like aforeign language—once you learnit, it
stops sounding like gibberish.

The Filename Analogy

Since you have decided to use this book, you probably have at |east some idea of
just what a"regular expression” is. Even if you don't, you are ailmost certainly
already familiar with the basic concept.

Y ou know that report.txt is a specific filename, but if you have had any
experience with Unix or DOS/Windows, you also know that the pattern

"* txt" canbeused to select multiple files. With such filename patterns like
this (called file globs), there are afew characters' that have special meanings. The
star means "match anything," and a question mark means "match any one

character." With" * . t xt ", we start with a match-anything [+] and end with the

literal | . t xt I, soweend up with a pattern that means "select the files whose
names start with anything and end with . t xt " .

Most systems provide afew additional special characters, but, in general, these
filename patterns are limited in expressive power. Thisis not much of a
shortcoming because the scope of the problem (to provide convenient ways to
specify groups of files) islimited, well, smply to filenames.

On the other hand, dealing with general text is a much larger problem. Prose and
poetry, program listings, reports, lyrics, HTML, articles, code tables, the source to
books (such asthis one), word lists.. . . you name it, if aparticular need is specific
enough, such as "selecting files," you can develop a specialized scheme or tool.
However, over the years, a generalized pattern language has developed which is
powerful and expressive for awide variety of uses. Each program implements and
uses them differently, but in general, this powerful pattern language and the
patterns themselves are called regular expressions.

* The term "character” is pretty loaded in computing, but here | useit merely asa
more conversational form of "byte." See "Regular Expression Nomenclature” later in
this chapter for details.

Page 5
The Language Analogy

Full regular expressions are composed of two types of characters. The special
characters (like the * from the filename analogy) are called metacharacters, while

everything else are called literal, or normal text characters. What sets regular
expressions apart from filename patterns is the scope of power their
metacharacters provide. Filename patterns provide limited metacharacters for
limited needs, but aregular expression "language" provides rich and expressive
metacharacters for advanced uses.

It might help to consider regular expressions as their own language, with literal
text acting as the words and metacharacters as the grammar. The words are
combined with grammar according to a set of rulesto create an expression which
communicates an idea. In the email example, the expression | used to find lines

beginning with ' From *' or' Subj ect: *' was rﬂFronj_Subj ect): *
1. The metacharacters are underlined, and well get to thelir interpretation soon.

Aswith learning any other language, regular expressions might seem intimidating
at first. Thisiswhy it seems like magic to those with only a superficial
understanding, and perhaps completely unapproachable to those that have never

seenit at all. But just as IER ZE ML &
student of Japanese, the regular expression in

* would soon become clear to a

s! <enphasi s>([0-9] +(\.[0-9] +){3)) </ enphasi s>! <i net >$1</i net >!
will soon become crystal clear to you, too.

Thisexampleisfrom a Perl language script that my editor used to modify a
manuscript. The author had mistakenly used the typesetting tag <enphasi s> to

mark Internet IP addresses (which are sets of periods and numbers that ook like
198. 112. 208. 25) . The incantation uses Perl's text-substitution command

with the regular expression

EEEEEEE |_<err'phasi s>([0-9]+(\.[0-9]+){3}) </ enphasi s>J

to replace such tags with the appropriate <i net > tag, while leaving other uses of
<enphasi s> aone. In later chapters, you'll learn all the details of exactly how

this type of incantation is constructed, so you'll be able to apply the techniques to
your own needs.

* "Regular expressions are easy!" A somewhat humorous comment about this: As
Chapter 3 explains. the term regular expression originally comes from formal
algebra. When people ask me what my book is about, the answer "regular
expressions’ always draws a blank face if they are not already familiar with itsusein

computers. The Japanese word for regular expression, ERER, means aslittle to the
average Japanese as its English counterpart, but my reply in Japanese usually draws a
bit more than ablank stare. Y ou see, the "regular” part is unfortunately pronounced
identically to a much more common word, a medical term for reproductive organs.

Y ou can only imagine what flashes through their minds until | explain!

Page 6
The goal of thisbook

The chances that you will ever want to replace <enphasi s> tagswith <i net >

tagsissmall, but it isvery likely that you will run into similar "replace this with
that" problems. The goal of this book is not to teach solutions to specific
problems, but rather to teach you how to think regular expressions so that you will
be able to conquer whatever problem you may face.

The Regular-Expression Frame of Mind

Aswell soon see, complete regular expressions are built up from small
building-block units. Each building block isin itself quite simple, but since they
can be combined in an infinite number of ways, knowing how to combine them to
achieve a particular goal takes some experience.

Don't get me wrong—regular expressions are not difficult to learn and use. In
fact, by the end of this very chapter, you'll be able to wield them in powerful
ways, even if thisisyour first real exposure to them.

Still, as with anything, experience helps. With regular expressions, experience can
provide aframe of mind, giving direction to one's thinking. Thisis hard to
describe, but it's easy to show through examples. So, in this chapter | would like
to quickly introduce some regular-expression concepts. The overview doesn't go
into much depth, but provides a basis for the rest of this book to build on, and sets
the stage for important side issues that are best discussed before we delve too
deeply into the regular expressions themselves.

While some examples may seem silly (because some are silly), they really do
represent the kind of tasks that you will want to do—you just might not realize it
yet. If each and every point doesn't seem to make sense, don't worry too much.
Just let the gist of the lessons sink in. That's the goal of this chapter.

|f you have some regular-expression experience

If you're already familiar with regular expressions, much of the overview will not
be new, but please be sure to at least glance over it anyway. Although you may be
aware of the basic meaning of certain metacharacters, perhaps some of the ways
of thinking about and looking at regular expressions will be new.

Just as there is a difference between playing amusical piece well and making
music, there is a difference between understanding regular expressions and really
under standing them. Some of the lessons present the same information that you
are aready familiar with, but in ways that may be new and which are the first
steps to really understanding.

Page 7
Searching Text Files: Egrep

Finding text is one of the simplest uses of regular expressions—many text editors and
word processors allow you to search a document using a regular-expression pattern.
Even more smpleisthe utility egrep.* Give egrep aregular expression and some files
to search, and it attempts to match the regular expression to each line of each file,
displaying only those lines that are successfully matched.

Returning to the initial email example, the command | actually used is shown in Figure
1-1. egrep interprets the first command-line argument as a regular expression, and any
remaining arguments as the file(s) to search. Note, however, that the quotes shown in
Figure 1-1 are not part of the regular expression, but are needed by my command
shell.** When using egrep, | almost always wrap the regular expression with quotes
like this.

regex actually passed to agrap

% egrep '*(From|Subject): * mailbox-file

Figure 1-1:
Invoking egrep from the command line

If your regular expression doesn't use any of the dozen or so metacharacters that egrep
understands, it effectively becomes a simple "plain text" search. For example,
searching for [cat linafilefindsand displays al lineswith the three lettersc- a- t
inarow. Thisincludes, for example, any line containing vacat i on.

Even though the line might not havetheword cat ,thec- a-t sequencein
vacat i on isstill enough to be matched. That's the only thing asked for, and since it's

there, egrep displays the whole line. The key point is that regular-expression searching
Isnot done on a"word" basis—egrep can understand the concept of

* egrep isfreely-available for many systems, including DOS, MacOS, Windows, Unix, and
so on (see Appendix A for information on how to obtain a copy of egrep for your system).
Some users might be more familiar with the program egrep, which is similar in many
respects. The discussion of the regular-expression landscape in Chapter 3 makesit clear
why | chose egrep to begin with.

** The command shell isthat part of the system that accepts your typed commands and
actually executes the programs you request. With the shell | use, the quotes serve to group
the command argument, telling the shell not to pay too much attention to what's inside
(such as, for example, not treating * . t xt as afilename pattern so that it isleft for egrep to

interpret as it seesfit, which for egrep means aregular expression). DOS users of
COMMAND.COM should probably use doublequotes instead.

Page 8

bytesand linesin afile, but it generally has no idea of English (or any other
language's) words, sentences, paragraphs, or other high-level concepts.*

Egrep Metacharacters

Let's start to explore some of the egrep metacharacters that supply its
regular-expression power. There are various kinds which play various roles. I'll
go over them quickly with afew examples, leaving the detailed examples and
descriptions for later chapters.

Before we begin, please make sure to review the typographical conventions
explained in the preface (on page xx). This book forges a bit of new ground in the
area of typesetting, so some of my notations will be unfamiliar at first.

Start and End of the Line

Probably the easiest metacharacters to understand are [~ (caret) and (s
(dollar), which represent the start and end, respectively, of the line of text asit is

being checked. Aswe've seen, the regular expression [cat | findsc-a-t
anywhere on the line, but [~cat | matches only if thec- a- t isat the beginning

of the line—the [] is used to effectively anchor the match (of the rest of the

regular expression) to the start of theline. Similarly, [cat $] findsc- a- t only
at the end of the line, such asaline ending with scat .

Get into the habit of interpreting regular expressionsin arather literal way. For
example, don't think

[Acat] matchesalinewith cat at the beginning

but rather:

[Acat | matchesif you have the beginning of aline, followed
immediately by c,
followed immediately by a, followed immediately by t .

They both end up meaning the same thing, but reading it the more literal way
allowsyou to intrinsically understand a new expression when you see it. How

would you read [rcat$d, 28], oreven simply [~] dlone? ®

to check your interpretations.

Turn the page

The caret and dollar are particular in that they match a position in the line rather
than any actual text characters themselves. There are, of course, various ways to
actually match real text. Besides providing literal charactersin your regular
expression, you can also use some of the items discussed in the next few sections.

* The ideaisthat egrep breaks the input file into separate text lines and then checks
them with the regular expression. Neither of these phases attempts to understand the
human units of text such as sentences and words. | was struggling for the right way to
express thisuntil 1 saw the phrase "high-level concepts' in Dale Dougherty's sed &
auk and felt it fit perfectly.

Page 9
Character Classes

M atching any one of several characters

Let's say you want to search for "grey," but also want to find it if it were spelled
"gray". The f[o] I construct, usually called acharacter class, letsyou list the

characters you want to allow at that point: rgr [ea] y I. This meansto find "g,
followed by r , followed by an e or an a, al followed by y." | am areally poor
speller, so I'm always using regular expressions like thisto check aword list for
proper spellings. One | use oftenis rsep[eajr[ea]t e |, because | can never
remember whether the word is spelled "seperate,” "separate,” "separete,’ or what.

As another example, maybe you want to allow capitalization of aword's first

letter: f[Ss]mt hJ. Remember that this still matches lines that contain smi t h
(or Smi t h) embedded within another word, such aswith bl acksm t h. | don't

want to harp on this throughout the overview, but thisissue does seem to be the
source of problems among some new users. I'll touch on some waysto handle this
embedded-word problem after we examine afew more metacharacters.

You can list in the class as many characters as you like. For example,
f[123456] I matches any of the listed digits. This particular class might be

useful as part of | <H[123456] >, which matches <H1>, <H2>, <H3>, etc.
This can be useful when searching for HTML headers.

Within acharacter class, the character-class metacharacter '-' (dash) indicates a
range of characters: r<H[1- 6] > | isidentical to the previous example. f[0- 9]
I and f[a- z] | are common shorthands for classes to match digitsand
lowercase |etters, respectively. Multiple ranges are fine, so

([0123456789abcdef ABCDEF] | can bewrittenas [[0- 9a- f A- F] J.
Either of these can be useful when processing hexadecimal numbers. Y ou can

even combine ranges with literal characters: f[0-9A-Z 1. 7] | matches adi git,
uppercase letter, underscore, exclamation point, period, or a question mark.

Note that a dash is a metacharacter only within a character class—otherwise it
matches the normal dash character. In fact, it is not even always a metacharacter
within acharacter class. If it isthe first character listed in the class, it can't
possibly indicate arange, so it is not considered a metacharacter.

Consider character classes as their own mini language. The rulesregarding
which metacharacters are supported (and what they do) are completely
different inside and outside of character classes.

WEe'll see more examples of this shortly.

Page 10

Reading [~cat $1, [2$] and [~]

Answers to the questions on page 8.

[ncat $]

Literally: matches if the line has a beginning-of-line (which, of course, al lines have), followed immediately by C- a- t , and then
followed immediately by the end of theline.

Effectively means; aline that consists of only cat —no extrawords,
spaces, punctuation . . . nothing.

[ng]

Literally: matchesif the line has a beginning-of-line, followed
immediately by the end of the line.

Effectively means: an empty line (with nothing in it, not even spaces).

[l

Literally: matchesif the line has a beginning-of-line.

Effectively meaningless! Since every line has a beginning, every line
will match—even lines that are empty!

Negated character classes

If you user[A 1 instead of |_[o] J,theclassmatch&eany character that isn't listed. For example, f["N1-6]]

matches a character that's not 1 through 6. More or less, the leading ~ in the class "negates’ the list—rather than listing
the characters you want to include in the class, you list the characters you don't want to be included.

Y ou might have noticed that the * used here is the same as the start-of-line caret. The character is the same, but the
meaning is completely different. Just as the English word "wind" can mean different things depending on the context
(sometimes a strong breeze, sometimes what you do to a clock), so can a metacharacter. We've already seen one
example, the range-building dash. It isvalid only inside a character class (and at that, only when not first inside the
class). " is an anchor outside a class, a class metacharacter inside, but only when it isimmediately after the class's
opening bracket (otherwise, inside a classit's not special).

Returning to our word list, we know that in English, the letter q isamost always followed by u. Let's search for odd

words that have q followed by something el se—translating into a regular expression, that becomes rq[Au] 1.1 tried it
on my word list, and there certainly aren't many! | did find afew, and thisincluded a number of wordsthat | didn't even
know were English.

Page 11
Here'swhat | typed:

% egrep 'g[~u]' word.list
I raqi

I ragi an

m qra

gasi da

gi nt ar

goph
zaqqum
%

Two notable words not listed are "Qantas", the Australian airline, and "Iraq".

Although both arein my list, neither were listed. Why? * Think about it for a

bit, then turn the page to check your reasoning.

Remember that a negated character class means "match a character that's not
listed" and not "don't match what is listed." These might seem the same, but the
| r ag example shows the subtle difference. A convenient way to view a negated

classisthat it is ssimply a shorthand for a normal class which includes all possible
characters except those that are listed.

Matching Any Character—Dot

The metacharacter! . | (usually called dot) is a shorthand for a character class that

matches any character. It can be convenient when you want to have an "any
character here" place-holder in your expression. For example, if you want to
search for adatesuchas07/ 04/ 76, 07-04-76,oreven07. 04. 76, you
could go to the trouble to construct aregular expression that uses character classes
toexplicitly allow' /"' ,' -' ,or' . "' between each number, such as

fo7[-.1104[-.1] 76, You could also try smply using [07.04. 76 .

Quite afew things are going on with this example that might be unclear at first.

Inlo7 [-./] 04 [-./] 761, the dots are not metacharacters because they

are within a character class. (Remember, the list of metacharacters and their
meanings are different inside and outside of character classes.) The dashes are
also not metacharacters, although within a character class they normally are. As
I've mentioned, a dash is not special when it isthe first character in the class.

with [07. 04. 76 1, the dots are metacharacters that match any character,

including the dash, period, and slash that we are expecting. However, it is
important to know that each dot can match any character at all, so it can match,
say, 'lottery numbers: 19 207304 7639'.

rO?[-.1]104[-.1] 76 1 ismore precise, but it's more difficult to read and

write. [07. 04. 761 is easy to understand, but vague. Which should we use? It

all depends upon what you know about the data you are searching, and just how
specific you feel you need to be. One important, recurring issue has to do with
balancing your

Page 12

Why doesn't rq[Aul I match '‘Qantas or 'lrag?

“* Answer to the guestion on page 11.

Qantas didn't match because the regular expression called for alowercase g, whereas the Qin Qantasis
uppercase. Had we used TQ[Aul | instead, we would have found it, but not the others, since they don't

have an uppercase Q The expression f[Q] [~u | would have found them all.

The | r ag example is somewhat of atrick question. The regular expression calls for g followed by a
character that's not u. But because egrep strips the end-of-line character(s) before checking with the
regular expression (alittle fact | neglected to mention, sorry!) there's no data at all after theq. Yes,
thereis no u after the q, but there's no non-u either!

Don't feel too bad because of the trick question.” Let me assure you that had egrep not stripped the newlines (as some
other tools don't), or had | r aq been followed by spaces or other words or whatnot, the line would have matched. It is

eventually important to understand the little detail s of each tool, but at this point what I'd like you to come away with
from this exercise isthat a character class, even negated, still requires a character to match.

knowledge of the text being searched against the need to always be exact when writing an expression.

For example, if you know that with your datait would be highly unlikely for [07. 04. 76] to match in

an unwanted place, it would certainly be reasonable to use it. Knowing the target text well is an
important part of wielding regular expressions effectively.

Alternation

Matching any one of several subexpressions

A very convenient metacharacter is f| I, which means"or" It allows you to combine multiple
expressions into a single expression which matches any of the individual expressions used to make it up.

For example, [BobJ and [Robert | aretwo separate expressions, while [Bob| Rober t l'isone
expression that matches either. When combined this way, the subexpressions are called alter natives.

L ooking back to our rgr [ea] yJ example, it isinteresting to realize that it can be written as

rgr ey| gr ayJ, and even rgr (ale)y I The latter case uses parentheses to constrain the alternation.
(For the record, parentheses are metacharacters too.)

*Once, in fourth grade, | was leading the spelling bee when | was asked to spell "miss"." m i - s- s wasmy
answer. Miss Smith relished in telling methat no, itwas" M i - s- s " with acapital M, that | should have

asked for an example sentence, and that | was out. It was a traumatic moment in ayoung boy's life. After that, |
never liked Miss Smith, and have since been avery poor speler.

Page 13

Without the parentheses, [gr a| eyJ means " rgr alor reyJ" , which is not
what we want here. Alternation reaches far, but not beyond parentheses. Another

exampleisr(First|1st) *[Ss]treet J.Actually, since both [Fi r st | and
[1st] end with [st J,they can be shortened to f(Fir |1)st ®*[Ss]treet

1, but that's not necessari ly quite as easy to read. Still, be sure to understand that
they do mean the same thing.

Although the rgr [ea] yJ Versus rgr (al e) yJ examples might blur the

distinction, be careful not to confuse the concept of alternation with that of a
character class. A character class represents a single character in the target text.
With alternation, each alternative can be afull-fledged regular expression in and
of itself. Character classes are amost like their own special mini-language (with
their own ideas about metacharacters, for example), while alternation is part of
the "main” regular expression language. Y ou'll find both to be extremely useful.

Also, take care when using caret or dollar in an expression with aternation.
Compare [~Fr on| Subj ect | Dat e: * | with f/\(Fron| Subj ect | Dat e) :

* |. Both appear similar to our earlier email example, but what each matches
(and therefore how useful it is) differs greatly. The first is composed of three plain

aternatives, so it will match when we have"[~Fr oml or rSubj ect | or
[Date: * I, " which is not particularly useful. We want the leading caret and
trailing [e]to apply to each alternative. We can accomplish this by using
parentheses to "constrain” the alternation:

|-"(Fron] Subj ect | Date): .

This matches:
1) start-of-line, followed by F- r - 0- m followed by " *'
or 2) start-of-line, followed by S- u- b-j - e-c- t, followed by ":*'

or 3) start-of-line, followed by D- a- t - e , followed by " *'

Asyou can see, the alternation happens within the parentheses, which effectively

allows the wrapping (A o*]to apply to each alternative, so we can say it
matches:

eee [~(From: *] or [r(subject): *] or [~(pate):*]

Putting it less literally: it matches any line that begins with 'Fr om *,

'Subj ect: *',or 'Dat e: * ', whichisexactly what would be useful to get a
listing of the messagesin an emall file.

Here's an example:

% egrep '~(From SubjectlDate): ' rmail box
From elvis@abl oid.org (The King)

Subj ect: be seein' ya around

Date: Thu, 31 Cct 96 11:04:13

From The Prez <president @hitehouse. gov>
Date: Tue, 5 Nov 1996 8: 36: 24

Subj ect: now, about your vote...

Page 14

Word Boundaries

A common problem isthat aregular expression that matches the word you want can often
also match where the "word" is embedded within alarger word. | mentioned thisin the
cat,gray, and Sm t h examples, but despite what | said about egrep generally not

having any concept of words, it turns out that some versions of egrep offer limited
support: namely the ability to match the boundary of aword (where aword begins or
ends).

Y ou can use the (perhaps odd looking) metasequences N\ <land I\ > if your version
happens to support them (not all versions of egrep do). Word-based equivalents of [~

and r$J, they match the position at the start and end of aword, respectively (so, like the
line anchors caret and dollar, they never actually consume any characters). The

expression N\ <cat\>] literally means "match if we can find a start-of-word position,
followed immediately by c- a- t , followed immediately by an end-of-word position ."

More naturally, it means "find the word cat." If you wanted, you could use N\ <cat lor
[cat\ > to find words starti ng and ending with cat.

Note that [<] and [>] alone are not metacharacters when combined with a backslash,

the sequences become special. Thisiswhy | called them "metasequences.” It's their
special interpretation that's important, not the number of characters, so for the most part |
use these two meta-words interchangeably.

Remember, not all versions of egrep support these word-boundary metacharacters, and

those that do don't magically understand the English language. The "start of aword" is

simply the position where a sequence of al phanumeric characters begins; "end of word"
being where such a sequence ends. Figure 1-2 shows a sample line with these positions
marked.

'I".I::I.J.'l.'t;T dmg"- tn::rti;::‘ #@] %> :.ra.rminl.'."‘l; Fnatf mnlIr .‘,‘:159'.'95“
d dl d ']

i
= pesilions Witera \ < 15 i - POSITGNS WNEre \» 15 Irle = “Worgs-
T

Figure 1-2:
Start and end of "word" positions

The word-starts (as egrep recognizes them) are marked with up arrows, the word-ends
with down arrows. Asyou can see, "start and end of word" is better phrased as "start and
end of an alphanumeric sequence," but perhaps that's too much of a mouthful.

Page 15
In a Nutshell

Table 1-1: Summary of Metacharacters Seen So Far

M etachar acter Name Meaning
dot any on character
[..] character class any character listed
[~..] negated character class any character not listed

n caret the position at the start of the line
$ dollar the position at the end of the line

\ < backslash less-than *the position at the start of aword

\ > backslash greater-than *the position at the end of aword

*not supported by all versions of egrep

| or; bar matches either expression it separates
() parentheses used to limit the scope of |-|J,plus additional usesyet to

be discussed

Table 1-1 summarizes the metacharacters we have seen so far. In addition to the table, some important points to
remember are:

 The rules about which characters are and aren't metacharacters (and exactly what they mean) are different inside a
character class. For example, dot is a metacharacter outside of a class, but not within one. Conversely, adashisa
metacharacter within a class, but not outside. And a caret has one meaning outside, another if specified inside a class
immediately after the opening [, and athird if given elsewhere in the class.

» Don't confuse alternation with a character class. The class f[abc] | and the alternation f(al b| c) | effectively

mean the same thing, but the similarity in this example does not extend to the general case. A character class can
match exactly one character, and that's true no matter how long or short the specified list of acceptable characters
might be. Alternation, on the other hand, can have arbitrarily long alternatives, each textually unrelated to the other:

M <(1, 000, 000| mIlion|thousand*t housand)\>J. But alternation can't be negated like a character
class.

* A negated character classis simply a notational convenience for a normal character class that matches everything not

listed. Thus, f[X] 1 doesn't mean " match unlessthereisan x ," but rather "match if there is somethi ng that is not
x." The difference is subtle, but important. The first concept matches a blank line, for example, while, in reality,

[~x] 1 does not.

What we have seen so far can be quite useful, but the real power comes from optional and counting elements.

Page 16

Optional Items

Let'slook at matching col or or col our . Since they are the same except that
one has au and the other doesn't, we can use [col ou?r 1 to match either. The

metacharacter [2 | (question mark) means optional. It is placed after the character

that is allowed to appear at that point in the expression, but whose existence isn't
actually required to still be considered a successful match.

Unlike other metacharacters we have seen so far, the question-mark attaches only
to the immediately-preceding item. Thus [col ou?r | Isinterpreted as™" ch,

then [oJ then [l J then o then Tu? I thenlr J. "

The [u? part will always be successful: sometimesit will match au in the text,

while other times it won't. The whole point of the ?-optional part isthat it's
successful either way. Thisisn't to say that any regular expression that contains ?

will always be successful. For example, against 'sem col on', both [col ol and
['u?] are successful (matching col o and nothing, respectively). However, the
final ['r J will fail, and that's what disallows semicolon, in the end, from being
matched by | col ou?r J.

As another example, consider matching a date that represents July fourth, with the
July part being either Jul y or Jul , and the fourth part being f our t h, 4t h, or

simply 4. Of course, we could just user(JuI y| Jul) ® (fourth|4th|4) 1,
but let's explore other ways to express the same thing.

First, Wecanshortenther(JuI y\ Jul) Ito r(JuI y?) 1. Do you see how they
are effectively the same? The removal of the f| | meansthat the parentheses are
no longer really needed. L eaving the parentheses doesn't hurt, but [Jul y? 1, with
them removed, isabit less cluttered. This leaves us with [Jul y?
*(fourth|4th|4)]

Moving now to the second half, we can simplify the [4t h| 41to r4(t h) 21, As

you can see, [2] canattachto a parenthesi zed expression. Inside the parentheses
can be as complex a subexpression as you like, but "from the outside” it is

considered a unit. Grouping for (2] (and other similar metacharacters that I'l
introduce momentarily) is one of the main uses of parentheses.

Our expression now looks like [Jul y?*(fourth|4(th)?) 1. Although there

are afair number of metacharacters, and even nested parentheses, it is not that
difficult to decipher and understand. This discussion of two essentially simple
examples has been rather long, but in the meantime we have covered tangential
topicsthat add alot, if perhaps only subconsciously, to our understanding of
regular expressions. It's easier to start good habits early, rather than to have to
break bad ones |ater.

Page 17

Other Quantifiers: Repetition

Similar to the question mark are [+ 1 (plus) and [* | (an asterisk, but asa
regular-expression metacharacter, | prefer the term star). The metacharacter [+],
means "one or more of the immediately-preceding item," and [+ | means "any

number, including none, of the item.” Phrased differently, [.x] means "try to
match it as many times as possible, but it's okay to settle for nothing if need be."

The construct with plus, r+J, issimilar in that it will also try to match as many
times as possible, but different in that it will fail if it can't match at least once.
These three metacharacters, question mark, plus, and star, are called quantifiers
(because they influence the quantity of a match they govern).

Likel .21 the...* | part of aregular expression will always succeed, with the

only issue being what text (if any) will be matched. Contrast this to [...+] which
fails unless the item matches at |east once.

An easily understood example of star is [ox 1, the combination with aspace

allowing optional spaces. (f- 2] allows one optional space, while [*« | allows
any number.) We can use this to make page 9's <H[1- 6] > exampleflexible. The
HTML specification* says that spaces are allowed immediately before the closing

>, such aswith<H3*>and <H4 * * *>. Inserting [** | into our regular
expression where we want to allow (but not require) spaces, we get r<H[1- 6]

**> | This still matches <H1>, as no spaces are required, but it also flexibly
picks up the other versions.

Exploring further, let's search for a particular HTML tag recognized by Netscape's

World Wide Web browser Navigator. A tag such as <HR* SI ZE=14> indicates

that aline (aHorizontal Rule) 14 pixels thick should be drawn across the screen.
Like the <H3> example, optional spaces are allowed before the closing angle

bracket. Additionally, they are allowed on either side of the equal sign. Finally,
one space is required between the HR and SI ZE, although more are allowed. For
thislast case, we could just insert [*+« | putinstead let'suse [*+1. The plus
allows extra spaces while still requiring at least one. Do you see how this will

match the same as [o0x 1?2 This leaves us with r<HR'+SI ZE**=®*14%*> |,

Although flexible with respect to spaces, our expression is still inflexible with
respect to the size given in the tag. Rather than find tags with only a particular
size (such as 14), we want to find them all. To accomplish this, we replace the

[14 1 with an expression to find a general number. Well, anumber is one or more
digits. A digitis f[0- 9] 1, and "one or more" adds aplus, so we end up

replacing [14] by f[0- 9] +] . Asyou can see, asingle character classisone
"unit", so can be subject directly to plus, question mark, and so on, without the
need for parentheses.

* |If you are not familiar with HTML, never fear. | use these as real-world examples,
but | provide all the details needed to understand the points being made. Those
familiar with parsing HTML tags will likely recognize important considerations |
don't address at this point in the book.

Page 18

This leaves uswith [<HR* +S| ZE®**="*[0-9] +*x> | which Is certainly a mouthful. It looks

particularly odd because the subject of most of the stars and pluses are space characters, and our eye
has always been trained to treat spaces specially. That's a habit you will have to break when reading
regular expressions, because the space character is anormal character, no different from, say,j or 4.

Continuing to exploit a good example, let's make one more change. With Navigator, not only can you
use this sized-HR tag, but you can still use the standard sizeless version that looks simply like <HR>

(with extra spaces allowed before the >, as always). How can we modify our regular expression so

that it matches either type? The key isrealizing that the size part is optional (that's a hint). * Tumn
the page to check your answer.

Take agood look at our latest expression (in the answer box) to appreciate the differences among the
question mark, star, and plus, and what they really mean in practice. Table 1-2 summarizes their
meanings. Note that each quantifier has some minimum number of matches that it needs to be
considered a successful match, and a maximum number of matches that it will ever attempt. With
some, the minimum number is zero; with some, the maximum number is unlimited.

Table 1-2: Summary of Quantifier "Repetition Metacharacters”

Minimum Maximumto Meaning

Required Try
? none 1 one allowed; none required (" one optional")
* none no limit unlimited allowed; none required ("any amount optional")
+ 1 no limit one required; more allowed ("some required")

Defined range of matches: intervals

Some versions of egrep support a metasequence for providing your own minimum and maximum :

f1/4{ m n, max} I. Thisiscalled theinterval quantifier. For example, f1/4{ 3,12} I matches upto 12
timesif possible, but settles for three. Using this notation, { 0, 1} isthe same as a question mark.

Not many versions of egrep support this notation yet, but many other tools do, so I'll definitely
discussit in Chapter 3 when | ook in detail at the broad spectrum of metacharacters in common use
today.

Ignoring Differencesin Capitalization

HTML tags can be written with mixed capitalization, so <h3> and <Hr *Si ze=26> are both legal.
Modifying <H[1- 6] ** > would be a simple matter of using f[Hh] I for rHJ, but it becomes more
troublesome with the longer [HRI and [SI ZE] of the other example. Of course, we could use
[[Hh][Rr]Jand [Ss][1i][Zz][Ee]], butitis

Page 19

easier to tell egrep to ignore case by performing the match in a case insensitive
manner in which capitalization differences are ssimply ignored.

Thisis not a part of the regular-expression language, but is arelated useful feature
many tools provide. Use the -i option to tell egrep to do a case-insensitive match.
Place - i on the command line before the regular expression:

Y% egrep -i '<HR(+SIZE *= *[0-9]+)? *>' file
In future chapters, we will look at many convenient support features of this kind.
Parentheses and Backreferences

So far, we have seen two uses for parentheses: to limit the scope of | , and to

provide grouping for quantifiers, such as question mark and star, to work with. I'd
like to discuss another specialized use that's not common in egrep (although
GNU's popular version does support it), but which is commonly found in many
other tools.

Parentheses can "remember” text matched by the subexpression they enclose.
WE'l use thisin apartia solution to the doubled-word problem at the beginning
of this chapter. If you knew the the specific doubled word to find (such as "the"
earlier in this sentence—did you catch it?), you could search for it explicitly, such

aswith [\ <t he*t he>\ | In this case, you would also find items such ast he
*t heory, but you could easily get around that problem if your egrep supports

the [\ <...\ > 1 mentioned earlier: [\ <t he*t he\ >J. We could even use [*+
for the space to make it more flexible.

However, having to check for every possible pair of words would be an
Impossible task. Wouldn't it be nice if we could match one generic word, and then
say "now match the same thing again”? If your egrep supports backreferencing,
you can. Backreferencing is a regular-expression feature which allows you to
match new text that is the same as some text matched earlier in the expression
without specifically knowing the text when you write the expression.

We start with [\ <t he *+t he\ > and replace theinitial [the] with aregular
expression to match a general word, say f[A- Za- 7] + 1. Then, for reasons that
will become clear in the next paragraph, let's put parentheses around it. Finally,
we replace the second 'the' by the special metasequence "\ 11. This yields

N\ <(A-za-z]+) *+ 1\ > .

With tools that support backreferencing, parentheses "remember” the text that the

subexpression inside them matches, and the special metasequence 1l

represents that text later in the regular expression, whatever it happensto be at the
time.

Y ou can have more than one set of parentheses, of course, and you use 1 1,

2 1, 3 |, etc., to refer to the set that matched the text you want to match with.
Pairs of parentheses are numbered by counting opening parentheses from the left.

Page 20

Making a subexpression optional

* Answer to the question on page 18.

In this case, "optional" means that it is allowed once, but is not required. That means using |_? 1

Since the thing that's optional islarger than one character, we must use parentheses: |_(L) ? | .
Inserting into our expression, we get:

[<HR(*+S1 ZE®*=**[0-9] +)2°*>]

Note that the ending [ex] s kept outside of the I-()’7J This

still allows sonething such as <HR®*>. Had we included it within the

par ent heses, endi ng spaces woul d have been all owed only when the
Si ze conmponent was present.

With our 't he*t he' example, f[A- Za- 7] + | matchesthefirstt he. It iswithin the
first set of parentheses, so the 't he' matched becomes available via 1l ifthe

following [*+] matches, the subsequent [\ 11 will require 'the’. If successful, [\ >
then makes sure that we are now at an end-of-word boundary (which we wouldn't be were

thetextt he®t hef t). If successful, we've found arepeated word. It's not always the

case that that is an error (such as with "that" in this sentence), but once the suspect lines
are shown, you can peruse what's there and decide for yourself.

When | decided to include this example, | actually tried it on what | had written so far. (I
used aversion of egrep which supports both [\ <...\ > and backreferenci ng.) To makeit

more useful, so that The*t he' would also be found, | used the case-insensitive -i option
mentioned earlier:

% egrep -i "\<([a-z]+) +\1\> files...

I'm somewhat embarrassed to say that | found fourteen sets of mistakenly ‘doubled
doubled' words!

Asuseful asthisregular expression is, it isimportant to understand its limitations. Since
egrep considers each line in isolation, it isn't able to find when the ending word of one
line is repeated at the beginning of the next. For this, amore flexible tool is needed, and
we will see some examplesin the next chapter.

The Great Escape

One important thing | haven't mentioned yet is how to actually match a character that in a
regular expression would normally be interpreted as a metacharacter. For example, if |

wanted to search for the Internet hostname ega. at t . comusing rega. att.coml, I

might end up matching something like megawatticomputing . Remember, [

| is ametacharacter that matches any character.

Page 21

The metasequence to match an actual period is a period preceded by a backslash:

rega\ att\.coml. The\. liscaledan escaped period, and you can do this
with all the normal metacharacters except in a character-class. When a
metacharacter is escaped, it losesits special meaning and becomes alitera
character. If you like, you can consider the sequence to be a special metasequence
to match the literal character. It'sall the same.

As another example, you could use M ([a-zA-Z] +\) 1 to match aword within

parentheses, such as'(ver y) . The backslashesin the A\ (| and f\) |

sequences remove the specia interpretation of the parentheses, leaving them as
literals to match parentheses in the text.

When used before a non-metacharacter, a backslash can have different meanings
depending upon the version of the program. For example, we have already seen

how some versions treat | \ <l A\ > 1, M1l , etc. as metasequences. We will see
more examplesin later chapters.

Expanding the Foundation

| hope the examples and explanations so far have helped to establish the basis for
a solid understanding of regular expressions, but please redlize that what 1've
provided so far lacks depth. There's so much more out there.

Linguistic Diversification

| mentioned a number of regular expression features that most versions of egrep
support. There are other features, some of which are not supported by all versions,
that I'll leave for later chapters.

Unfortunately, the regular expression language is no different from any other in
that it has various dialects and accents. It seems each new program employing
regular expressions devises its own "improvements.” The state of the art
continually moves forward, but changes over the years have resulted in awide
variety of regular expression "flavors." We'll see many examplesin the following
chapters.

The Goal of a Regular Expression

From the broadest top-down view, aregular expression either matches alump of

text (with egrep, each line) or it doesn't. When crafting aregular expression, you

must consider the ongoing tug-of-war between having your expression match the
lines you want, yet still not matching lines you don't want.

Page 22

Also, while egrep doesn't care where in the line the match occurs, this concern is
important for many other regular-expression uses. If your text is something such
as

...zip is 44272. If you wite, send $4.95 to cover postage
and. .

and you merely want to find lines matching f[0- 9] +], you don't care which

numbers are matched. However, if your intent is to do something with the number
(such as save to afile, add, replace, and such—we will see examples of this kind
of processing in the next chapter), you'll care very much exactly which numbers
are matched.

A Few More Examples

Aswith any language, experience is a very good thing, so I'm including afew
more examples of regular expressions to match some common constructs.

Half the battle when writing regular expressions is getting successful matches
when and where you want them. The other half isto not match when and where
you don't want. In practice, both are important, but for the moment | would like to
concentrate on the "getting successful matches' aspect. Not taking the examples
to their fullest depths doesn't detract from the experiences we do take from them.

Variable names

Many programming languages have identifiers (variable names and such) that are
allowed to contain only a phanumeric characters and underscores, but which may

not begin with a number, that is, f[a-zA-Z][a-zA-Z 0-9]* I. Thefirst

class matches what the first character can be, the second (with its accompanying
star) alowstherest of the identifier. If thereisalimit on the length of an

identifier, say 32 characters, you might replace the star with f{ 0, 31) 1if the

f{ m n, max) I notation is supported. (This construct, the interval quantifier, was
briefly mentioned on page 18.)

A string within doublequotes

A simple solution might be: ["[A"]*"]

The quotes at either end are to match the open and close quote of the string.
Between them, we can have anything. . . except another doublequote! So, we use
f[At | to match all characters except a doublequote, and apply using a star to
Indicate we can have any number of such non-doublequote characters.

A more useful (but more complex) definition of a doublequoted string allows
doublequotes within the string if they are escaped with a backslash, such asin
"nai |l *the®2\ " x4\ " *pl ank" . Well see this example again in Chapters 4

and 5 during the discussion of the details about how a match is actually carried
out.

Page 23

Dollar amount (with optional cents)
One approachis: [\ $[0-9] +(\.[0-9][0-9]) 2.

From atop-level perspective, thisis asimple regular expression with three parts:

N$land!...+] and r(o) 2 1, which might be loosely paraphrased as"A literal

dollar sign, abunch of one thing, and finally perhaps another thing." In this case,
the "onething" isadigit (with a bunch of them being a number), and "another
thing" is the combination of a decimal point followed by two digits.

This exampleisabit naive for severa reasons. For instance, with egrep, you care
only whether there's a match or not, not how much (nor how little) is actually
matched, so bothering to allow optional cents makes no sense. (Ignoring them
doesn't change which lines do and don't match.) If, however, you need to find
lines that contain just a price, and nothing else, you can wrap the expression with

[A.$). Insucha case, the optional cents part becomes important since it might
or might not come between the dollar amount and the end of the line.

One type of value our expression won't matchis' $. 49' . To solvethis, you
might be tempted to change the plus to a star, but that won't work. Asto why, I'll

leave it as ateaser until we look at this example again in Chapter 4 (-“' 127).
Time of day, such as" 9:17 am" or " 12:30 pm"

Matching atime can be taken to varying levels of strictness. Something such as
[[0-9]2[0-9]:[0-9][0-9] *(an] pm)

picksup both 9: 17*amand 12: 30*pm but also allows99: 99*pm

Looking at the hour, we realize that if it is atwo-digit number, the first digit must
be aone. But rl?[0- 9] 1 il allows an hour of 19 (and aso an hour of 0), so

maybe it is better to break the hour part into two possibilities: rl[012] I for
two-digit hours and f[1- 9] I for single-digit hours. Theresult is
[(1[012]|11-9]) J.

The minute part is easier. Thefirst digit should be f[0- 5] 1. For the second, we
can stick with the current [[0- 9] 1. Thisgives
f(11012]|[1-9]):[0-5][0-9] *(am pm | when we put it all together.

Using the same logic, can you extend this to handle 24-hour time with hours from
0 through 23? As achallenge, alow for aleading zero, at least through to

09: 59. * Try building your solution, then turn the page to check mine.

Page 24

Extending the time regex to handle a 24-hour clock

< Answer to the question on page 23.

[0?2[0-9]|1[0-9]|2[0-3] ..

There are various solutions, but we can use similar logic as before. Thistime. I'll break the task into three groups. one
for the morning (hours 00 through 09, with the leading zero being optional), one for the daytime (hours 10 through

19), and one for the evening (hours 20 through 23). This can be rendered in a pretty straightforward way:

asingle aternative.

Actually, we can combine the first two alternatives, resulting in the shorter f[01] ?[0-9]| 2[O- 3] 1. You might

need to think about it a bit to convince yourself that they'll really match exactly the same text, but they do. The figure
below might help, and it shows another approach as well. The shaded groups represent numbers that can be matched by

"ro117r0-91 |21

D-33J

of 1] 2[3]] 5[6] 7] o] 9|

00|01{02{03|04|05/06

07|08

09

10{11]12{13]14[15]16
20|21|22|23

17|18

13

r[ﬂl]?[dw91|fﬂ12]?[D-311

HEEERENKDE

oo

01

02

03

04

05

06

07|08

09|

io

11

12

i3

14

15

16

17|18

i3

20

21

22

23

Regular Expression Nomenclature

n R%ex”

Asyou might guess, using the full phrase "regular expression” can get a bit tiring, particularly in writing. Instead, |

normally use "regex"”. It just rolls right off the tongue (it rhymes with "FedEx") and it is amenable to a variety of useslike
"when you regex . . ." "budding regexers,” and even "regexification."* | use the phrase "regex engine" to refer to the part

of aprogram that actually does the work of carrying out a match attempt.

"Matching"

When | say aregex matches astring, | really mean that it matches in a string. Technically, the regex ['a | doesn't match

cat , but matichesthea in cat . It's not something that people tend to confuse, but it's still worthy of mention

* Y ou might al'so come across 'regexp’ | recommend eschewing this unpronounceable blot on English

Page 25
"Metacharacter"

The concept of a character being a metacharacter (or "metasequence’'—I use the
words interchangeably) depends on exactly where in the regex it's used. For
example, [+]isa metacharacter, but only when it's not within a character class
and when not escaped. "Escaped" means that it has a backslash in front of
it—Usually. The star is escaped in [\ , but not in] (where the first

backsl ash escapes the second), although the star "has a backslash in front of it" in
both examples.

Depending upon the regex flavor, there are various situations when certain
characters are and aren't metacharacters. Chapter 3 discusses thisin more detail.

"Flavor"

As I've hinted, different tools use regular expressions for many different things,
and the set of metacharacters and other features that each support can differ.
Some might not support such-and-such a metacharacter, others might add
this-and-that additional feature. Let's ook at word boundaries again as an
example. Some versions of egrep support the\ <...\ > notation we've seen.

However, some do not support the separate word-start and word-end, but one

catch-all '\ b J metacharacter. Still others support both, and there are certainly
those that support neither.

| use "flavor" to describe the sum total of all these little implementation decisions.
In the language analogy, it's the same as adialect of an individual speaker.
Superficialy, this refers to which metacharacters are and aren't supported, but

there's much moreto it. Even if two programs both support N<.\> I, they

might disagree on exactly what they do and don't consider to be aword. This
concern isimportant if you really want to use the tool. These kind of
"behind-the-scenes” differences are the focus of Chapter 4.

Don't confuse "flavor" with "tool." Just as two people can speak the same dialect,
two completely different programs can support exactly the same regex flavor.
Also, two programs with the same name (and built to do the same task) often have
dightly (and sometimes not-so-slightly) different flavors.

" Subexpression”

The term subexpression simply means any part of alarger expression, but usually
refers to that part of an expression within parentheses, or an aternation

aternative. For example, with f/\(Subj ect | Dat e) : * |, the
rSubj ect | Dat elis usually referred to as a subexpression. Within that, the
alternatives rSubj ect 1 and [Dat e | arereferred to as subexpressions as well.

Something such as [1- 6 isn't considered a subexpression of rH[1- 6] ** 1
sncethe 1- 61 is part of an unbreakable "unit,' the character class. Conversely,
[HI, f[1- 6] I, and [** | areall subexpressions of the original.

Page 26

Unlike alternation, quantifiers (star, plus, and friends) always work with the
smallest immediately-preceding subexpression. Thisiswhy with [i s+pel | 1,

the + governsthe s I, not the ‘mislorlisl of course, when what

immediately precedes a quantifier is a parenthesized subexpression, the entire
subexpression (no matter how complex) is taken as one unit.

"Character"

As| mentioned in an earlier footnote, character can be aloaded termin
computing. The character that a byte representsis merely a matter of
interpretation. A byte with such-and-such a value has that same value in any
context in which you might wish to consider it, but which character that value
represents depends on the encoding in which it is viewed. For example, two bytes
with decimal values 64 and 53 represent the characters"@" and "5" if

considered as ASCII, yet on the other hand are completely different if considered
as EBCDIC (they are a space and the <TRN> character, whatever that is).

On the third hand, if considered in the JIS (1SO-2022-JP) encoding, those two

bytes together represent the single character i= (you might recognize this from
the phrase mentioned in the "The Language Analogy" section on page 5). Yet, to

represent that same I in the EUC-JP encoding requires two completely different
bytes. Those bytes, by the way, yield the two characters "Ap" in the Latin-1

(1S0O-8859-1) encoding, and the one Korean character # in the Unicode
encoding (but only from Version 2.0, mind you).*

Y ou see what | mean. Regex tools generaly treat their data as a bunch of bytes
without regard to the encoding you might be intending. Searching for rAuJ with

IE

most tools still finds in EUC-JP-encoded data and el in Unicode data.

These issues are immediate (and even more complex than I've led you to believe
here) to someone working with data encoded in Unicode or any other
multiple-byte encoding. However, these issues are irrelevant to most of you, so |
use "byte" and "character” interchangeably.

| mproving on the Status Quo

When it comes down to it, regular expressions are not difficult. But if you talk to
the average user of aprogram or language that supports them, you will likely find
someone that understands them "abit," but does not feel secure enough to really
use them for anything complex or with any tool but those they use most often.

* The definitive book on multiple-byte encodings is Ken Lunde's Under standing
Japanese Information Processing, also published by O'Reilly & Associates.

(Japanese title: H ‘ﬂﬁﬁmﬂﬁ). As | was going to press, Ken was working on his
Second Edition, tentatively retitled Understanding CIKV Information Processing.
The CIKV stands for Chinese, Japanese, Korean, and Vietnamese, which are
languages that tend to require multiple-byte encodings.

Page 27

Traditionally, regular expression documentation tends to be limited to a short and
incompl ete description of one or two metacharacters, followed by atable of the

rest. Examples often use meaningless regular expressions like [a* ((ab) *| b*)

I, and text like' a®xxx *ce*XxXXxxX *ci *xxx *d’ . They aso tend to

completely ignore subtle but important points, and often claim that their flavor is
the same as some other well-known tool, almost always forgetting to mention the
exceptions where they inevitably differ. The state of regex documentation needs
help.

Now, | don't mean to imply that this chapter fills the gap. Rather, it merely
provides the foundation upon which the rest of the book is built. It may be
ambitious, but | hope this book will fill the gaps for you. Perhaps because the
documentation has traditionally been so lacking, | feel the need to make the extra
effort to make things really clear. Because | want to make sure you can use
regular expressionsto their fullest potential, | want to make sure you really, really
understand them.

Thisis both good and bad.

It is good because you will learn how to think regular expressions. Y ou will learn
which differences and peculiarities to watch out for when faced with a new tool
with a different flavor. Y ou will know how to express yourself even with aweak,
stripped-down regular expression flavor. When faced with a particularly complex
task, you will know how to work through an expression the way the program
would, constructing it as you go. In short, you will be comfortable using regular
expressions to their fullest.

The problem is that the learning curve of this method can be rather steep:

. How regular expressions are used—Most programs use regular
expressions in ways that are more complex than egrep. Before we can discussin
detail how to write areally useful expression, we need to look at the ways regular
expressions can be used. We start in the next chapter.

. Regular expression features—Sel ecting the proper tool to use when faced
with a problem seems to be half the battle, so | don't want to limit myself to only
using one utility throughout the book. Different programs, and often even
different versions of the same program, provide different features and
metacharacters. We must survey the field before getting into the details of using
them. Thisis Chapter 3.

. How regular expressions really work—Before we can learn from useful
(but often complex) examples, we need to know just how the regular expression
search is conducted. Aswe'll see, the order in which certain metacharacters are
checked in can be very important. In fact, regular expressions can be implemented
in different ways, so different programs sometimes do different things with the
same expression. We examine this meaty subject in Chapters 4 and 5.

Page 28

Thislast point is the most important and the most difficult to address. The
discussion is unfortunately sometimes a bit dry, with the reader chomping at the
bit to get to the fun part—tackling real problems. However, understanding how
the regex engine really worksis the key to true understanding.

Y ou might argue that you don't want to be taught how a car works when you
simply want to know how to drive. But learning to drive acar is a poor analogy in
which to view regular expressions. My goal is to teach you how to solve problems
with regular expressions, and that means constructing regular expressions. The
better analogy is not how to drive a car, but how to build one. Before you can
build a car, you have to know how it works.

Chapter 2 gives more experience with driving, Chapter 3 looks at the bodywork

of aregex flavor, and Chapter 4 looks at the engine of aregex flavor. Chapter 3
also provides alight look at the history of driving, shedding light on why things
are asthey are today. Chapter 5 shows you how to tune up certain kinds of
engines, and the chapters after that examine some specific makes and models.
Particularly in Chapters 4 and 5, we'll spend alot of time under the hood, so make
sure to have your overalls and shop rags handy.

Summary

Table 1-3 summarizes the egrep metacharacters we've looked at in this chapter. In
addition, be sure that you understand the following points:

* Not all egrep programs are the same. The supported set of metacharacters, as
well astheir meanings, are often different—see your local documentation.

 Three reasons for using parentheses are grouping, capturing, and constraining
alternation.

» Character classes are special: rules about metacharacters are entirely different
within character classes.

« Alternation and character classes are fundamentally different, providing
unrelated services that appear, in only one limited situation, to overlap.

A negated character classis till a"positive assertion"—even negated, a
character class must match a character to be successful. Because the listing of
characters to match is negated, the matched character must be one of those not
listed in the class.

» Theuseful - i option discounts capitalization during a match.

Page 29
Table 1- 3: Egrep Metacharacter Summary
Items to Match a Single Character —

M etachar acter M atches

[A..]

dot

character class

negated character class

Matches any one character

Matches any character listed

Matches any character not listed

\ char escaped character When char is a metacharacter, or the escaped combination is not otherwise special,

matches the literal char

Items Appended to Provide "Counting”: The Quantifiers —
? question One alowed, but is optional
* star Any number allowed, but are optional
+ plus One required, additional are optional
{ min, max} specified range* Min required, max allowed
Items That Match Positions —
N caret Matches the position at the start of the line
$ dollar Matches the position at the end of the line
\< word boundary* Matches the position at the start of aword
\ > word boundary* Matches the postion at the end of aword
Other —

| alternation Matches either expression it separates
(...) parentheses Limits scope of aternation, provides grouping for the quantifiers, and "captures' for

backreferences
\1, \2, backreference* Matches text previously matches within first, second, etc., set of parentheses.

» There are three types of escaped items:

* not supported by all versions of egrep

1. The pairing of M\ | and ametacharacter isa metasequence to match the literal character (for example, [\
matches aliteral asterisk).

2. The pairing of [\ | and sdlected non-metacharacters becomes a metasequence with an implementation-defined

meaning (for example, [\ <] often means "start of word").

3. The pairing of "\ land any other character defaults to simply matching the character (that is, the backslash is

ignored).

Remember, though, that a backslash within a character classis not specia at all, so it provides no "escape services'
In such a situation.

* Items governed by a question mark or star don't need to actually match any charactersto "match successfully.” They
are always successful, even if they don't match anything.

Page 30

Personal Glimpses

The doubled-word task at the start of this chapter might seem daunting, yet
regular expressions are so powerful that we could solve much of the problem with
atool aslimited as egrep, right here in the first chapter. 1'd like to fill this chapter
with flashy examples, but because I've concentrated on the solid foundation for
the later chapters, | fear that someone completely new to regular expressions
might read this chapter, complete with all the warnings and cautions and rules and
such, and feel "why bother?"

Recently, my brothers were teaching some friends how to play schafkopf, a card
game that's been in my family for generations. It is much more exciting than it
appears at first glance, but has arather steep learning curve. After about half an
hour, my sister-in-law Liz, normally the quintessence of patience, got frustrated
with the seemingly complex rules and said "can't we just play rummy?" Yet asit
turned out, they ended up playing late into the night. Once they were able to get
over theinitial hump of the learning curve, afirst-hand taste of the excitement
was al it took to hook them. My brothers knew it would, but it took some time
and work to get to the point where Liz and the others new to the game could
appreciate what they were getting into.

It might take some time to become acclimated to regular expressions, so until you
get aread taste of the excitement by using them to solve your problems, it might
all feel just a bit too academic. If so, | hope you will resist the desire to "play
rummy." Once you understand the power that regular expressions provide, the
small amount of work spent learning them will feel trivial indeed.

Page 31

2
Extended Introductory Examples

In this chapter:

 About the Examples

e Matching Text with Regular Expressions
» Modifying Text with Regular Expressions

Remember the double-word problem from the first chapter? | said that a full
solution could be written in just afew linesin alanguage like Perl. Such a
solution might look like:

$/ =".\n";

while (<>) {
next if

s/\b([a-z]+) ((\s|<[~r>]+>)+)(\I\Db)/\e[7nbl\ e[nB2\ e[7TnB4\e[m i g;

s/~([™\e]*\'n)+//ng; # Remove any unmarked lines.
s/ M $ARGV: [ny; # Ensurelines begin with filename.
print;

}

Y up, that's the whole program.

| don't expect you to understand it (yet!). Rather, | wanted to show an example
beyond what egrep can alow, and to whet your appetite for the real power of
regular expressions—most of this program's work is centered around its three
regular expressions.

b([a-z]+) ((\s| <[">]+>)+) (\ 1\ b)
(1

\
AC[™MNe]l*\n)+
N

That last [~ | is certai nly recognizable, but the other expressions have items

unfamiliar to our egrep-only experiences (although b 1, at least, was mentioned

briefly on page 25 as sometimes being a word-boundary, and that'swhat isitis
here). Thisis because Perl's regex flavor is not the same as egrep's. Some of the
notations are different, and Perl provides a much richer set of metacharacters.
WEe'll see examples throughout this chapter.

Page 32

About the Examples

Perl allows you to employ regular expressions in much more complex ways than
egrep. Examplesin Perl will alow usto see additional examples of regular
expressions, but more importantly, will allow you to view them in quite a
different context than with egrep. In the meantime, we'll be exposed to asimilar
(yet somewhat different) flavor of regular expression.

This chapter takes afew sample problems—validating user input; working with
email headers—and wanders through the regular expression landscape with them.
Well see abit of Perl, and insights into some thought processes that go into
crafting aregex. During our journey, we will take plenty of side trips to look at
various other important concepts as well.

There's nothing particularly special about Perl in this respect. | could just as easily
use any number of other advanced languages (such as Tcl, Python, even GNU
Emacs elisp). | choose Perl primarily because it has the most ingrained regex
support among these popular languages and is, perhaps, the most readily
available. Also, Perl provides many other concise data-handling constructs that
will aleviate much of the "dirty work," letting us concentrate on regular
expressions. Just to quickly demonstrate some of these powers, recall the
file-check example from page 2. The utility | used was Perl, and the command
was:

% perl -One "print "$ARGWN" if s/ResetSize/lig !=
s/ SetSizellig *

(I don't expect that you understand this yet—I hope merely that you'll be
impressed with the shortness of the solution.)

| like Perl, but it'simportant to not get too caught up in its trappings here.
Remember, this chapter concentrates on regular expressions. As an analogy,
consider the words of a computer science professor in afirst-year course: "You're
going to learn CS concepts here, but we'll use Pascal to show you." (Pascal isa
traditional programming language originally designed for teaching.)*

Since this chapter doesn't assume that you know Perl, I'll be sure to introduce
enough to make the examples understandable. (Chapter 7, which looks at all the
nitty-gritty details of Perl, does assume some basic knowledge.) Even if you have
experience with avariety of programming languages, Perl will probably seem
guite odd at first glance because its syntax is very compact and its semantics
thick. So, while not "bad," the examples are not the best models of The Perl Way
of programming. In the interest of clarity, I'll not take advantage of much that Perl
has to offer; I'll attempt to present programs in a more generic, amost
pseudo-code style. But we will see some great uses of regular expressions.

* Thanks to William F. Maton, and his professor, for the analogy.

Page 33
A Short I ntroduction to Perl

Perl is a powerful scripting language built by Larry Wall in the late 1980s,
drawing ideas from many other programming languages. Many of its concepts of
text handling and regular expressions are derived from two languages called awk
and sed, both of which are quite different from a "traditional" language such asC
or Pascal. Perl isavailable for many platforms, including DOS/Windows, MacOS,
0S/2, VMS, and Unix. It has a powerful bent toward text-handling and isa
particularly common tool used for World Wide Web CGl s (the programs that
construct and send out dynamic Web pages). See Appendix A for information on
how to get a copy of Perl for your system. I'm writing as of Perl Version 5.003,
but the examples in this chapter are written to work with Version 4.036 or |ater.*

Let'slook at asimple example:

$cel sius = 30;
$fahrenheit = ($celsius * 9/ 5) + 32; # calculateFahrenheit
print "$celsius Cis $fahrenheit F.\n"; # reportbothtemps

When executed, this produces:

30 Cis 86 F.

Simple variables, such as $f ahr enhei t and $cel si us, aways begin with a

dollar sign and can hold a number or any amount of text. (In this example, only
numbers are used.) Comments begin with # and continue for the rest of the line. If

you're used to traditional programming languages like C or Pascal, perhaps most
surprising is that variables can appear within Perl doublequoted strings. With the
string" $cel sius C is $fahrenheit F.\n",eachvariableisreplaced

by itsvalue. In this case, the resulting string is then printed. (The\ n represents a
newline.)

There are control structures similar to other popular languages:

$cel sius = 20;
whil e ($cel sius <= 45)

{
$fahrenheit = ($celsius * 9/ 5) + 32; # calculateFahrenheit
print "$celsius Cis $fahrenheit F.\n";
$cel sius = $cel sius + 5;

}

The body of the code controlled by the while loop is executed repeatedly so long
asthe condition (the $cel si us <= 45 inthiscase) istrue. Putting thisinto a

file, say temps, we can run it directly from the command line.

* Although all the examplesin this chapter will work with earlier versions, asa
general rule | strongly recommend using Perl version 5.002 or later. In particular, |
recommend that the archaic version 4.036 not be used unless you have a very specific
need for it.

Page 34
Here's how it looks:

% perl -w tenps

20 Cis 68 F.
25 Cis 77 F.
30 Cis 86 F.
35 Cis 95 F.
40 Cis 104 F.
45 Cis 113 F.

The - woption is neither necessary, nor has anything directly to do with regular

expressions. It tells Perl to check your program more carefully and issue warnings
about items it thinks to be dubious (such as using uninitialized variables and the
like variables do not need to be predeclared in Perl). | useit here merely because
it is good practice to always do so.

Matching Text with Regular Expressions

Perl uses regexes in many ways, the most simple being to check if aregex can
match the text held in avariable. The following program snippet checks the string
invariable $r epl y and reports whether it contains only digits:

if ($reply =~ m~[0-9]+%/) {
print "only digits\n";
} else {
print "not only digits\n";
}

The mechanics of the first line might seem abit strange. The regular expression is

f/\[0- 9] +$ 1, whilethe surrounding n1 .../ tells Perl what to do withit. The m
means to attempt aregular expression match, while the slashes delimit the regex
itself. The=~ linksn1 .../ with the string to be searched, in this case the contents
of thevariable $r epl y.

Don't confuse =~ with = or ==, asthey are quite different. The operator == tests
whether two numbers are the same. (The operator eq, as we will soon seg, is used

to test whether two strings are the same.) The = operator is used to assign avalue
to avariable, aswith $cel si us = 20. Finally, =~ links aregex search with

the target string to be searched. (In the example, the searchisni [0- 9] +$/
and the target is$r epl y.) It might be convenient to read =~ as "matches," such
that

if ($reply =~ m~[0-9]+%/) {
becomes:
if the text in the variable reply matches the regex r"[0-9] +$., then . ..

Thewhole result of $repl y =~ ni ~[0- 9] +$/ isatruevalueif the

f/\[0- 9] +$ matches the string in $r epl y, afalse value otherwise. The if uses
thistrue or false value to decide which message to print.

Page 35

Notethat atest suchas$reply =~ m [0- 9] +/ (the same as before except
the wrapping caret and dollar have been removed) would be true if $repl y

contained at least one digit anywhere. The [~ ...$] ensuresthat $r epl y contains
only digits.

Let's combine the last two examples. We'll prompt the user to enter avalue,

accept that value, then verify its form with aregular expression to make sureit'sa
number. If it is, we calculate and display the Fahrenheit equivalent. Otherwise, we
ISsue a warning message.

print "Enter a tenperature in Celsius:\n";
$cel sius = <STDI N>; # thiswill read one line from the user
chop ($cel sius); # thisremoves the ending new line from $celsius

if ($celsius =~ mM~[0-9]+%/) {
$fahrenheit = ($celsius * 9 / 5) + 32; # calculate Fahrenheit
print "$celsius C = $fahrenheit F\n";
} else {
print "Expecting a nunber, so don't understand
\"$cel sius\".\n";

}

Noticeinthelast pri nt how we escaped the quotes to be printed. Thisissimilar
to escaping a metacharacter in aregex. The section "metacharacters galore," ina

few pages (-“' 41), discusses thisin a bit more detail.

If we put this program into the file c2f we might run it and see:

% perl -w c2f

Enter a tenperature in Celsius:
22

22 C = 71.599999999999994316 F

Oops. Asit turnsout, Perl'ssimple pri nt isn't so good when it comesto

floating-point numbers. | don't want to get bogged describing all the details of
Perl in this chapter, so I'll just say without further comment that you can use
printf ("print formatted") to make thislook better (pri nt f issimilar tothe C

language'spr i nt f , or the format of Pascal, Tcl, eisp, and Python):

printf "%2f C = %2f F\n", $celsius, $fahrenheit;

This doesn't change the values of the variables, but merely their display. The
result now looks like

Enter a tenperature in Celsius:
22
22.00 C =71.60 F

which is much nicer.

Page 36

Toward a More Real-World Example

| think it'd be useful to extend this example to allow negative and fractional
temperature values. The math part of the program isfine Perl normally makes no
distinction between integers and floating-point numbers. We do, however, need to
modify the regex to let negative and floating-point values pass. We can insert a

leading [~ 2] toalow aleading minus sign. In fact, we may as well make that
[1-+] 2] to alow aleading plus sign, too.

To alow an optional decimal part, we add f(\ .[0-9]%*) 21 The escaped dot
matches aliteral period, so . [0-9]* | is used to match aperiod followed by
any number of optional digits. Since . [0-9]* | isenclosed by f() 21, it
as awhole becomes optional. (Thisislogically different from M. ?[0-9]* 1,

which allows additional digitsto match even if M\ . | doesnot match.)

Putting this all together, we get

if ($celsius =~ mA[-+]2[0-9]+(\.[0-9]1*)2%/) {

asour check line. It allows numberssuchas 32, - 3. 723, and +98. 6. Itis

actually not quite perfect: it doesn't allow a number that begins with a decimal
point (such as. 357). Of course, the user can just add aleading zero (i.e.,

0. 357) to allow it to match, so | don't consider it amajor shortcoming. This

floating-point problem can have some interesting twists, and | look at it in detalil
in Chapter 4 (s 127).

Side Effects of a Successful Match

L et's extend the example further to allow someone to enter avaluein either
Fahrenheit or Celsius. We'll have the user append a C or F to the temperature

entered. To let this pass our regular expression, we can simply add f[CF] | after

the expression to match a number, but we still need to change the rest of the
program to recognize which kind of temperature was entered and to compute the
other.

Perl, like many regex-endowed languages, has a useful set of special variables
that refer to the text matched by parenthesized subexpressionsin aregex. In the
first chapter, we saw how some versions of egrep support M 1], K 21, K 3r,

etc. as metacharacters within the regex itself. Perl supports these, and also
provides variables which can be accessed outside of the regular expression, after a
match has been completed. These Perl variablesare $1, $2, $3, etc. Asodd asiit

might seem, these are variables. The variable names just happen to be numbers.
Perl sets them every time aregular expression is successful. Again, use the
metacharacter [\ 1| within the regular expression to refer to some text matched
earlier during the same match attempt, and use the variable $1 to allow the
program to refer to the text once the match has been successfully completed.

Page 37

To keep the example uncluttered and focus on what's new, I'll remove the
fractional-value part of the regex for now, but we'll return to it again soon. So, to see
$1 in action, compare:

$cel sius =~ m A[-+] ?[0-9] +[CF] $/
$cel sius =~ m A([-+]?[0-9]+) ([CF])$/

Do the added parentheses change the meaning of the expression? Well, to answer
that, we need to know whether they:

. provide grouping for star or other quantifiers?

. provide an enclosure for f| 19

second paranthasis
gnira f._‘!,';'!.'l'.'.‘l' EXLESSLNT
Dairs with

3 7
Scelsius =~ mf*f{;_[-_ﬂl 7[0-9]1+) ([CF]) &/

R

—ie) e
i 1
i

1
i i |'l.|.| 5 1) l'l' .'l.: T g o
first parenthesis

pairs wilh

Figure 2-1:
capturing parentheses

The answer is no on both counts, so what is matched remains unchanged. However,
they do enclose two subexpressions that match "interesting” parts of the string we are
checking. As Figure 2-1 illustrates, $1 will hold the number entered and $2 will hold

the C or F entered. Referring to the flowchart in Figure 2-2 on the next page, we see
that this allows usto easily decide how to proceed after the match.

Assuming the program shown on the next page is named convert, we can use it like
this:

% perl -w convert

Enter a tenperature (i.e. 32F, 1000):
39F

3.89 C=39.00 F

% perl -w convert

Enter a tenperature (i.e. 32F, 1000):
39C

39.00 C = 102.20 F

% perl -w convert

Enter a tenperature (i.e. 32F, 1000):
oops

Expecting a nunber, so don't understand "oops.

Page 38

[l
LISEr
At
validate i note tamparaiure p .
|'.I'.|,I'.'|'|'.|'J' malch i i}'m' from ype 15 pis
oo =l g
;..:Ei.'r..'l)
calcutate calculate
Calsins Fahrenhait

! 2!

display l display l
arfor message resulls

Figure 2-2:
Temperature-conversion program's logic flow

print "Enter a tenperature (i.e. 32F, 1000):\n";
$i nput = <STDI N>; # thiswill read one line from the user
chop ($input); # thisremoves the ending new line from $input

if ($input =0 m~([-+]?[0-9]+)([CF])$/)
{

If we get in here, we had a match. $1 isthe number, $2is"C" or "F".
$l nput Num = $1; # savetonamed variablesto makethe. ..
$type = $2; # ...restof theprogrameasier to read.

if ($type eq "C') { # ' eq testsif two strings are equal
Theinput was Celsius, so calculate Fahrenheit
$cel si us = $I nput Num
$f ahrenheit = ($celsius * 9 / 5) + 32;
} else {
Gee, must bean"F" then, so calculate Celsius
$f ahrenheit = $I nput Num
$cel sius = ($fahrenheit - 32) * 5/ 9;
}

at this point we have both temperatures, so display the results:

printt "% 2t C= %2t F\n", $celsius, $tahrennheit;
} else {
Theinitial regex did not match, so issue a warning.
print "Expecting a nunber, so don't understand
\"$i nput\".\n";
}

Page 39
Negated matches
Our program logic has the structure:
i f (logical test) {
... LOTSOF PROCESSING if the test result wastrue. . .

} else {
... just a bit of processing if the test result wasfalse.. . .

}

Any student of structured programming knows (or should know) that when one
branch of ani f isshort and the other long, it is better to put the short onefirst if

reasonably possible. Thiskeepsthe el se closetothei f, which makes reading
much easier.

To do thiswith our program, we need to invert the sense of the test. The "when it
doesn't match" part is the short one, so we want our test to be true when the regex
doesn't match. One way to do thisisby using ! ~ instead of =~, as shown in:

$input '~ m~A([-+]?[0-9]+)([CF])$/

The regular expression and string checked are the same. The only differenceis
that the result of the whole combination is now false if the regex matches the
string, true otherwise. When thereisamatch, $1, $2, etc., are still set. Thus, that

part of our program can now look like:

if ($input '~ m~A([-+]?[0-9]1+)([CF])$/) {
print "Expecting a nunber, so don't understand
\"$i nput\" .\n";
} else {
If we get in here, we had a match. $1 is the number, $2is"C" or "F".

}

| ntertwined Regular Expressions

With advanced programming languages like Perl, regex use can become quite
intertwined with the logic of the rest of the program. For example let's make three
useful changes to our program: allow floating-point numbers as we did earlier,
allow alowercasef or c to be entered, and allow spaces between the number and

letter. Once all these changes are done, input such as'98. 6 *f ' will be allowed.

Earlier, we saw how we can allow floating-point numbers by adding
[(\.[0-9]*) 2] tothe expression:

if ($input =~ mA([-+]?[0-9]+(\.[0-9]1*)?)([CF])$/)

Noticethat it is added inside the first set of parentheses. Since we use that first set
to capture the number to compute, we want to make sure that they will capture the
fractional portion aswell. However, the added set of parentheses, even though

Page 40

ostensibly used only to group for the question mark, also has the side effect of capturing
into avariable. Since the opening parenthesis of the pair is the second (from the left), it
capturesinto $2. Thisisillustrated in Figure 2-3.

MACNES IR0 §1

into §2 inte $3

$input =~ m/A([=+12[0=81%(\.[0-91*)7) ([CF1)$/
i T- i

1% ppan paranthesis 2™ pnan parenthesis 3™ ppen parenthesis

Figure 2-3:
Nesting parentheses

Y ou can see how closing parentheses nest with opening ones. Adding a set of

parentheses earlier in the expression doesn't influence the meaning of f[CF] | directly,

but it does so indirectly because the parentheses surrounding it have become the third
pair. Becoming the third pair means that we need to change the assignment to $t ype to

refer to $3 instead of $2.

Allowing spaces between the number and letter is not so involved. We know that an

unadorned space in aregex requires exactly one space in the matched text, so [ox | can
be used to allow any number of spaces (but still not require any):

if ($input =~ mA([-+]?[0-9]+(\.[0-9]*)?) *([CF])$/)

This provides for a certain amount of flexibility, but since we are trying to make
something useful in the real world, let's construct the regex to also allow for other kinds
of whitespace aswell. Tabs, for instance, are quite common. Writing f* 1: of course,
doesn't allow for spaces, so we need to construct a character class to match either: f[-

] Here'saquick quiz: how isthis fundamentally different from f(*| *) 12

* After consideri ng this, turn the page to check your answer.

In this book, spaces and tabs are easy to notice because of the * and L_E! typesetting
conventions I've used. Unfortunately, it is not so on-screen. If you see something like
[] *, you can guess that it is probably a space and atab, but you can't be sure until

you check. For convenience, Perl regular expressions provide the M\ t] metacharacter.
It ssimply matches atab—its only benefit over aliteral tab isthat it is visually apparent,

so | useit in my expressions. Thus, f[' * | becomasr["\t]* 1.

Some other convenience metacharactersare [\ n | (newling), [\ f 1 (ASCII formfeed),

and [\ b | (backspace). Wait a moment! Earlier | said that [\ b | was for matching a
word boundary. So, which isit? Well, actually, it's both!

Page 41

A short asidde—metacharacte