

®

Oracle Database 11g :
The Complete Reference

This page intentionally left blank

®

Oracle Database 11g :
The Complete Reference

Kevin Loney

New York Chicago San Francisco
Lisbon London Madrid Mexico City Milan
New Delhi San Juan Seoul Singapore Sydney Toronto

Copyright © 2009 by The McGraw-Hill Companies, Inc. All rights reserved. Except as permitted under the United States Copyright Act of
1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system,
without the prior written permission of the publisher.

ISBN: 978-0-07-159876-7

MHID: 0-07-159876-6

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-159875-0, MHID: 0-07-159875-8.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name,
we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where
such designations appear in this book, they have been printed with initial caps.

McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training
programs. To contact a representative please visit the Contact Us page at www.mhprofessional.com.

Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical
error by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information
included in this work and is not responsible for any errors or omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information
contained in this Work, and is not responsible for any errors or omissions.

TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw-Hill”) and its licensors reserve all rights in and to the work. Use
of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the
work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute,
disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is strictly prohibited. Your right to use the work may be terminated if you fail to
comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR WARRANTIES AS TO THE
ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK, INCLUDING ANY
INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK OR OTHERWISE, AND EXPRESSLY DIS-
CLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the
functions contained in the work will meet your requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor
its licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages
resulting therefrom. McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances
shall McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that result from
the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or otherwise.

www.mhprofessional.com

This book is dedicated to my family and friends.
 You are a blessing indeed.

About the Author
Kevin Loney is an internationally recognized expert in the design, development,
administration, and tuning of Oracle databases. An enterprise database architect
in the financial industry, he was named Consultant of the Year by Oracle
Magazine in 2002. His best-selling books include Oracle Database 11g DBA
Handbook, Oracle Advanced Tuning and Administration, and Oracle SQL &
PL/SQL Annotated Archives. He is the author of numerous technical articles in
industry magazines and presents at Oracle user conferences in North America
and Europe, where he is regularly among the highest-rated presenters.

About the Contributors
Scott Gossett (contributing author, technical editor) is a technical director in the
Oracle Advanced Technologies Solutions organization with more than 20 years
experience specializing in RAC, performance tuning, and high-availability
databases. Prior to becoming a technical director, Scott was a senior principal
instructor for Oracle Education for over 12 years, primarily teaching Oracle
internals, performance tuning, RAC, and database administration. In addition,
Scott is one of the architects and primary authors of the Oracle Certified Master
exam. Scott has been a technical editor for nine Oracle Press books.

Sreekanth Chintala (technical editor) is an OCP-certified DBA, has been using
Oracle technologies for 10+ years, and has more than 15 years of IT experience.
Sreekanth specializes in Oracle high availability, disaster recovery, and grid
computing. Sreekanth is an author of many technical white papers and a
frequent speaker at Oracle OpenWorld, IOUG, and local user group meetings.
Sreekanth is active in the Oracle community and is the current web seminar
chair for the community-run Oracle Real Application Clusters Special Interest
Group (www.ORACLERACSIG.org).

www.ORACLERACSIG.org

Contents at a Glance

PART I

Critical Database Concepts
 1 Oracle Database 11g Architecture Options . 3

 2 Installing Oracle Database 11g and Creating a Database 11

 3 Upgrading to Oracle Database 11g . 21

 4 Planning Oracle Applications—Approaches, Risks, and Standards 31

PART II

SQL and SQL*Plus
 5 The Basic Parts of Speech in SQL . 65

 6 Basic SQL*Plus Reports and Commands . 91

 7 Getting Text Information and Changing It . 113

 8 Searching for Regular Expressions . 139

 9 Playing the Numbers . 155

 10 Dates: Then, Now, and the Difference . 175

 11 Conversion and Transformation Functions . 197

 12 Grouping Things Together . 209

 13 When One Query Depends upon Another . 223

 14 Some Complex Possibilities . 241

 15 Changing Data: insert, update, merge, and delete . 257

 16 DECODE and CASE: if, then, and else in SQL . 277

 17 Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 293

 18 Partitioning . 323

 19 Basic Oracle Security . 331

vii

PART III

Beyond the Basics
 20 Advanced Security—Virtual Private Databases . 355

 21 Advanced Security: Transparent Data Encryption . 367

 22 Working with Tablespaces . 375

 23 Using SQL*Loader to Load Data . 385

 24 Using Data Pump Export and Import . 399

 25 Accessing Remote Data . 417

 26 Using Materialized Views . 429

 27 Using Oracle Text for Text Searches . 449

 28 Using External Tables . 467

 29 Using Flashback Queries . 483

 30 Flashback—Tables and Databases . 493

 31 SQL Replay . 501

PART IV

PL/SQL
 32 An Introduction to PL/SQL . 513

 33 Online Application Upgrades . 535

 34 Triggers . 549

 35 Procedures, Functions, and Packages . 569

 36 Using Native Dynamic SQL and DBMS_SQL . 589

 37 PL/SQL Tuning . 597

PART V

Object-Relational Databases
 38 Implementing Object Types, Object Views, and Methods 611

 39 Collectors (Nested Tables and Varying Arrays) . 625

 40 Using Large Objects . 639

 41 Advanced Object-Oriented Concepts . 665

PART VI

Java in Oracle
 42 An Introduction to Java . 683

 43 JDBC Programming . 699

 44 Java Stored Procedures . 709

Hitchhiker’s Guides
 45 The Hitchhiker’s Guide to the Oracle Data Dictionary . 723

 46 The Hitchhiker’s Guide to Tuning Applications and SQL 769

 47 SQL Result Cache and Client-Side Query Cache . 811

 48 Case Studies in Tuning . 823

 49 Advanced Architecture Options—DB Vault, Content DB, and Records DB 835

 50 Oracle Real Application Clusters . 847

 51 The Hitchhiker’s Guide to Database Administration . 857

 52 The Hitchhiker’s Guide to XML in Oracle . 883

PART VIII

 Alphabetical Reference . 899

 Index . 1295

Contents at a Glance ix

This page intentionally left blank

Contents

Acknowledgments . xxix

PART I

Critical Database Concepts

 1 Oracle Database 11g Architecture Options . 3
Databases and Instances . 5
Inside the Database . 5

Storing the Data . 7
Guarding the Data . 8
Programmatic Structures . 8

Choosing Architectures and Options . 9

 2 Installing Oracle Database 11g and Creating a Database . 11
Overview of Licensing and Installation Options . 13
Using OUI to Install the Oracle Software . 13

 3 Upgrading to Oracle Database 11g . 21
Choosing an Upgrade Method . 23
Before Upgrading . 24
Running the Pre-Upgrade Information Tool . 24
Using the Database Upgrade Assistant . 25
Performing a Manual Direct Upgrade . 26
Using Export and Import . 27

Export and Import Versions to Use . 27
Performing the Upgrade . 27

Using the Data-Copying Method . 28

 4 Planning Oracle Applications—Approaches, Risks, and Standards 31
The Cooperative Approach . 33
Everyone Has “Data” . 34
The Familiar Language of Oracle . 35

Tables of Information . 35
Structured Query Language . 35

xi

xii Oracle Database 11g: The Complete Reference

A Simple Oracle Query . 36
Why It Is Called “Relational” . 38

Some Common, Everyday Examples . 39
What Are the Risks? . 41
The Importance of the New Vision . 42

Changing Environments . 42
Codes, Abbreviations, and Naming Standards . 43

How to Reduce the Confusion . 44
Normalization . 44
English Names for Tables and Columns . 49
English Words for the Data . 50

Capitalization in Names and Data . 51
Normalizing Names . 51
Good Design Has a Human Touch . 52

Understanding the Application Tasks . 52
Outline of Tasks . 54

Understanding the Data . 56
The Atomic Data Models . 57
The Atomic Business Model . 57
The Business Model . 57
Data Entry . 58
Query and Reporting . 58

Toward Object Name Normalization . 59
Level-Name Integrity . 59
Foreign Keys . 60
Singular Names . 60
Brevity . 61
Object Name Thesaurus . 61

Intelligent Keys and Column Values . 61
The Commandments . 62

PART II

SQL and SQL*Plus
 5 The Basic Parts of Speech in SQL . 65

Style . 67
Creating the NEWSPAPER Table . 68
Using SQL to Select Data from Tables . 68
select, from, where, and order by . 72
Logic and Value . 74

Single-Value Tests . 74
LIKE . 77
Simple Tests Against a List of Values . 79
Combining Logic . 81

Another Use for where: Subqueries . 82
Single Values from a Subquery . 83
Lists of Values from a Subquery . 84

Combining Tables . 86
Creating a View . 88
Expanding the View . 90

Contents xiii

 6 Basic SQL*Plus Reports and Commands . 91
Building a Simple Report . 94

remark . 94
set headsep . 97
ttitle and btitle . 97
column . 97
break on . 98
compute avg . 99
set linesize . 100
set pagesize . 100
set newpage . 100
spool . 101
/* */ . 102
Some Clarification on Column Headings . 103

Other Features . 103
Command Line Editor . 103
set pause . 106
save . 107
store . 107
Editing . 107
host . 108
Adding SQL*Plus Commands . 109
start . 109

Checking the SQL*Plus Environment . 109
Building Blocks . 111

 7 Getting Text Information and Changing It . 113
Datatypes . 114
What Is a String? . 114
Notation . 116
Concatenation (||) . 117
How to Cut and Paste Strings . 118

RPAD and LPAD . 118
LTRIM, RTRIM, and TRIM . 119
Combining Two Functions . 120
Using the TRIM Function . 122
Adding One More Function . 123
LOWER, UPPER, and INITCAP . 123
LENGTH . 125
SUBSTR . 125
INSTR . 129
ASCII and CHR . 133

Using order by and where with String Functions . 134
SOUNDEX . 135
National Language Support . 136
Regular Expression Support . 137

Review . 137

 8 Searching for Regular Expressions . 139
Search Strings . 140

xiv Oracle Database 11g: The Complete Reference

REGEXP_SUBSTR . 144
REGEXP_INSTR . 146
REGEXP_LIKE . 147
REPLACE and REGEXP_REPLACE . 147
REGEXP_COUNT . 152

 9 Playing the Numbers . 155
The Three Classes of Number Functions . 156
Notation . 156
Single-Value Functions . 157

Addition (+), Subtraction (–), Multiplication (*), and Division (/) 157
NULL . 158
NVL: NULL-Value Substitution . 158
ABS: Absolute Value . 159
CEIL . 160
FLOOR . 160
MOD . 160
POWER . 161
SQRT: Square Root . 161
EXP, LN, and LOG . 161
ROUND and TRUNC . 162
SIGN . 163
SIN, SINH, COS, COSH, TAN, TANH, ACOS, ATAN, ATAN2, and ASIN 164

Aggregate Functions . 164
NULLs in Group-Value Functions . 164
Examples of Single- and Group-Value Functions . 165
AVG, COUNT, MAX, MIN, and SUM . 166
Combining Group-Value and Single-Value Functions . 167
STDDEV and VARIANCE . 169
DISTINCT in Group Functions . 169

List Functions . 170
Finding Rows with MAX or MIN . 172
Precedence and Parentheses . 173
Review . 174

 10 Dates: Then, Now, and the Difference . 175
Date Arithmetic . 176

SYSDATE, CURRENT_DATE, and SYSTIMESTAMP . 176
The Difference Between Two Dates . 177
Adding Months . 178
Subtracting Months . 178
GREATEST and LEAST . 179
NEXT_DAY . 180
LAST_DAY . 181
MONTHS_BETWEEN Two Dates . 182
Combining Date Functions . 182

ROUND and TRUNC in Date Calculations . 183
TO_DATE and TO_CHAR Formatting . 184

The Most Common TO_CHAR Error . 188
NEW_TIME: Switching Time Zones . 189
TO_DATE Calculations . 190

Contents xv

Dates in where Clauses . 192
Dealing with Multiple Centuries . 193
Using the EXTRACT Function . 194
Using the TIMESTAMP Datatypes . 194

 11 Conversion and Transformation Functions . 197
Elementary Conversion Functions . 200

Automatic Conversion of Datatypes . 202
A Warning About Automatic Conversion . 204

Specialized Conversion Functions . 205
Transformation Functions . 206

TRANSLATE . 206
DECODE . 207

Review . 208

 12 Grouping Things Together . 209
The Use of group by and having . 210

Adding an order by . 212
Order of Execution . 213

Views of Groups . 214
Renaming Columns with Aliases . 215
The Power of Views of Groups . 216

Using order by in Views . 217
Logic in the having Clause . 218
Using order by with Columns and Group Functions . 220
Join Columns . 220

More Grouping Possibilities . 221

 13 When One Query Depends upon Another . 223
Advanced Subqueries . 224

Correlated Subqueries . 224
Coordinating Logical Tests . 226
Using EXISTS and Its Correlated Subquery . 227

Outer Joins . 229
Pre-Oracle9i Syntax for Outer Joins . 229
Current Syntax for Outer Joins . 231
Replacing NOT IN with an Outer Join . 232
Replacing NOT IN with NOT EXISTS . 233

Natural and Inner Joins . 234
UNION, INTERSECT, and MINUS . 235

IN Subqueries . 238
Restrictions on UNION, INTERSECT, and MINUS . 239

 14 Some Complex Possibilities . 241
Complex Groupings . 242
Using Temporary Tables . 243
Using ROLLUP, GROUPING, and CUBE . 244
Family Trees and connect by . 248

Excluding Individuals and Branches . 251
Traveling Toward the Roots . 253
The Basic Rules . 255

xvi Oracle Database 11g: The Complete Reference

 15 Changing Data: insert, update, merge, and delete . 257
insert . 258

Inserting a Time . 258
insert with select . 259
Using the APPEND Hint to Improve insert Performance 260

rollback, commit, and autocommit . 261
Using savepoints . 262
Implicit commit . 263
Auto rollback . 263

Multitable Inserts . 263
delete . 267
update . 268

update with Embedded select . 269
update with NULL . 270

Using the merge Command . 270
Handling Errors . 273

 16 DECODE and CASE: if, then, and else in SQL . 277
if, then, else . 278
Replacing Values via DECODE . 281
DECODE Within DECODE . 282
Greater Than and Less Than in DECODE . 285
Using CASE . 286
Using PIVOT . 289

 17 Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 293
Creating a Table . 294

Character Width and NUMBER Precision . 295
Rounding During Insertion . 297
Constraints in create table . 299
Designating Index Tablespaces . 300
Naming Constraints . 301

Dropping Tables . 302
Altering Tables . 302

The Rules for Adding or Modifying a Column . 305
Creating Read-Only Tables . 306
Altering Actively Used Tables . 306
Creating Virtual Columns . 306
Dropping a Column . 307

Creating a Table from a Table . 308
Creating an Index-Organized Table . 310
Creating a View . 311

Stability of a View . 311
Using order by in Views . 312
Creating a Read-Only View . 313

Indexes . 313
Creating an Index . 314
Enforcing Uniqueness . 315
Creating a Unique Index . 315
Creating a Bitmap Index . 315
When to Create an Index . 316

Contents xvii

Creating Invisible Indexes . 317
Variety in Indexed Columns . 317
How Many Indexes to Use on a Table . 318
Placing an Index in the Database . 318
Rebuilding an Index . 319
Function-Based Indexes . 319

Clusters . 320
Sequences . 321

 18 Partitioning . 323
Creating a Partitioned Table . 324
List Partitioning . 326
Creating Subpartitions . 327
Creating Range and Interval Partitions . 327
Indexing Partitions . 329
Managing Partitioned Tables . 329

 19 Basic Oracle Security . 331
Users, Roles, and Privileges . 332

Creating a User . 332
Password Management . 333
Standard Roles . 336
Format for the grant Command . 337
Revoking Privileges . 338

What Users Can Grant . 338
Moving to Another User with connect . 340
create synonym . 343
Using Ungranted Privileges . 343
Passing Privileges . 343
Creating a Role . 345
Granting Privileges to a Role . 345
Granting a Role to Another Role . 346
Granting a Role to Users . 346
Adding a Password to a Role . 347
Removing a Password from a Role . 347
Enabling and Disabling Roles . 348
Revoking Privileges from a Role . 348
Dropping a Role . 349
Granting UPDATE to Specific Columns . 349
Revoking Object Privileges . 349
Security by User . 349
Granting Access to the Public . 351

Granting Limited Resources . 352

PART III

Beyond the Basics

 20 Advanced Security—Virtual Private Databases . 355
Initial Configuration . 356
Create an Application Context . 357
Create a Logon Trigger . 359

xviii Oracle Database 11g: The Complete Reference

Create a Security Policy . 360
Apply the Security Policy to Tables . 361
Test VPD . 361
How to Implement Column-Level VPD . 363
How to Disable VPD . 363
How to Use Policy Groups . 365

 21 Advanced Security: Transparent Data Encryption . 367
Transparent Data Encryption of Columns . 368

Setup . 368
Additional Setup for RAC Databases . 369
Opening and Closing the Wallet . 370
Encrypting and Decrypting Columns . 370

Encrypting a Tablespace . 371
Setup . 372
Creating an Encrypted Tablespace . 372

 22 Working with Tablespaces . 375
Tablespaces and the Structure of the Database . 376

Tablespace Contents . 376
RECYCLEBIN Space in Tablespaces . 378
Read-Only Tablespaces . 379
nologging Tablespaces . 380
Temporary Tablespaces . 380
Tablespaces for System-Managed Undo . 380
Bigfile Tablespaces . 381
Encrypted Tablespaces . 381
Supporting Flashback Database . 381
Transporting Tablespaces . 382

Planning Your Tablespace Usage . 382
Separate Active and Static Tables . 382
Separate Indexes and Tables . 382
Separate Large and Small Objects . 383
Separate Application Tables from Core Objects . 383

 23 Using SQL*Loader to Load Data . 385
The Control File . 386

Loading Variable-Length Data . 387
Starting the Load . 388
Logical and Physical Records . 391
Control File Syntax Notes . 392
Managing Data Loads . 394
Repeating Data Loads . 394
Tuning Data Loads . 395
Direct Path Loading . 396
Additional Features . 398

 24 Using Data Pump Export and Import . 399
Creating a Directory . 400
Data Pump Export Options . 400
Starting a Data Pump Export Job . 403

Contents xix

Stopping and Restarting Running Jobs . 404
Exporting from Another Database . 405
Using EXCLUDE, INCLUDE, and QUERY . 405

Data Pump Import Options . 407
Starting a Data Pump Import Job . 410

Stopping and Restarting Running Jobs . 411
EXCLUDE, INCLUDE, and QUERY . 412
Transforming Imported Objects . 412
Generating SQL . 413

 25 Accessing Remote Data . 417
Database Links . 418

How a Database Link Works . 418
Using a Database Link for Remote Queries . 419
Using a Database Link for Synonyms and Views . 420
Using a Database Link for Remote Updates . 421
Syntax for Database Links . 421

Using Synonyms for Location Transparency . 424
Using the User Pseudo-Column in Views . 425

 26 Using Materialized Views . 429
Functionality . 430
Required System Privileges . 430
Required Table Privileges . 431
Read-Only vs. Updatable . 431
create materialized view Syntax . 432

Types of Materialized Views . 435
RowID vs. Primary Key–Based Materialized Views . 436
Using Prebuilt Tables . 436
Indexing Materialized View Tables . 436

Using Materialized Views to Alter Query Execution Paths . 437
Using DBMS_ADVISOR . 438
Refreshing Materialized Views . 441

What Kind of Refreshes Can Be Performed? . 441
Fast Refresh with CONSIDER FRESH . 444
Automatic Refreshes . 444
Manual Refreshes . 445

create materialized view log Syntax . 446
Altering Materialized Views and Logs . 448
Dropping Materialized Views and Logs . 448

 27 Using Oracle Text for Text Searches . 449
Adding Text to the Database . 450
Text Queries and Text Indexes . 451

Text Queries . 452
Available Text Query Expressions . 452
Searching for an Exact Match of a Word . 453
Searching for an Exact Match of Multiple Words . 454
Searching for an Exact Match of a Phrase . 457
Searches for Words That Are Near Each Other . 458
Using Wildcards During Searches . 459

xx Oracle Database 11g: The Complete Reference

Searching for Words That Share the Same Stem . 460
Searching for Fuzzy Matches . 460
Searches for Words That Sound Like Other Words . 461
Using the ABOUT Operator . 463
Index Synchronization . 463

Index Sets . 464

 28 Using External Tables . 467
Accessing the External Data . 468
Creating an External Table . 469

External Table Creation Options . 472
Loading External Tables on Creation . 477

Altering External Tables . 478
Access Parameters . 479
Add Column . 479
Default Directory . 479
Drop Column . 479
Location . 479
Modify Column . 479
Parallel . 479
Project Column . 480
Reject Limit . 480
Rename To . 480

Limitations, Benefits, and Potential Uses of External Tables . 480

 29 Using Flashback Queries . 483
Time-Based Flashback Example . 484
Saving the Data . 485
SCN-Based Flashback Example . 486
What If the Flashback Query Fails? . 488
What SCN Is Associated with Each Row? . 488
Flashback Version Queries . 489
Planning for Flashbacks . 491

 30 Flashback—Tables and Databases . 493
The flashback table Command . 494

Privileges Required . 494
Recovering Dropped Tables . 494
Enabling and Disabling the Recycle Bin . 496
Flashing Back to SCN or Timestamp . 496
Indexes and Statistics . 497

The flashback database Command . 497

 31 SQL Replay . 501
High-level Configuration . 502

Isolation and Links . 502
Creating a Workload Directory . 503

Capturing the Workload . 503
Defining Filters . 503
Starting the Capture . 505
Stopping the Capture . 505
Exporting AWR Data . 506

Contents xxi

Processing the Workload . 506
Replaying the Workload . 506

Controlling and Starting the Replay Clients . 507
Initializing and Running the Replay . 507
Exporting AWR Data . 509

PART IV

PL/SQL

 32 An Introduction to PL/SQL . 513
PL/SQL Overview . 514
Declarations Section . 514
Executable Commands Section . 518

Conditional Logic . 519
Loops . 521
CASE Statements . 529

Exception Handling Section . 531

 33 Online Application Upgrades . 535
Highly Available Databases . 536

Oracle Data Guard Architecture . 537
Creating the Standby Database Configuration . 538
Managing Roles—Switchovers and Failovers . 540

Making Low-Impact DDL Changes . 543
Creating Virtual Columns . 543
Altering Actively Used Tables . 544
Adding NOT NULL Columns . 544
Online Object Reorganizations . 544
Dropping a Column . 547

 34 Triggers . 549
Required System Privileges . 550
Required Table Privileges . 550
Types of Triggers . 550

Row-Level Triggers . 550
Statement-Level Triggers . 551
BEFORE and AFTER Triggers . 551
INSTEAD OF Triggers . 551
Schema Triggers . 552
Database-Level Triggers . 552
Compound Triggers . 552

Trigger Syntax . 552
Combining DML Trigger Types . 554
Setting Inserted Values . 556
Maintaining Duplicated Data . 556
Customizing Error Conditions . 558
Calling Procedures Within Triggers . 560
Naming Triggers . 560
Creating DDL Event Triggers . 560
Creating Database Event Triggers . 564
Creating Compound Triggers . 565

xxii Oracle Database 11g: The Complete Reference

Enabling and Disabling Triggers . 566
Replacing Triggers . 567
Dropping Triggers . 567

 35 Procedures, Functions, and Packages . 569
Required System Privileges . 570
Required Table Privileges . 572
Procedures vs. Functions . 572
Procedures vs. Packages . 572
create procedure Syntax . 573
create function Syntax . 575

Referencing Remote Tables in Procedures . 576
Debugging Procedures . 577
Creating Your Own Functions . 579
Customizing Error Conditions . 580
Naming Procedures and Functions . 581

create package Syntax . 582
Viewing Source Code for Procedural Objects . 585
Compiling Procedures, Functions, and Packages . 586
Replacing Procedures, Functions, and Packages . 586
Dropping Procedures, Functions, and Packages . 587

 36 Using Native Dynamic SQL and DBMS_SQL . 589
Using EXECUTE IMMEDIATE . 590
Using Bind Variables . 591
Using DBMS_SQL . 592

OPEN_CURSOR . 593
PARSE . 594
BIND_VARIABLE and BIND_ARRAY . 594
EXECUTE . 594
DEFINE_COLUMN . 595
FETCH_ROWS, EXECUTE_AND_FETCH, and COLUMN_VALUE 595
CLOSE_CURSOR . 596

 37 PL/SQL Tuning . 597
Tune the SQL . 598
Steps for Tuning the PL/SQL . 598
Use DBMS_PROFILER to Identify Problems . 599
Use PL/SQL Features for Bulk Operations . 605

forall . 605
bulk collect . 607

PART V

Object-Relational Databases

 38 Implementing Object Types, Object Views, and Methods . 611
Working with Object Types . 612

Security for Object Types . 612
Indexing Object Type Attributes . 615

Implementing Object Views . 617
Manipulating Data via Object Views . 619

Contents xxiii

Using INSTEAD OF Triggers . 620
Methods . 622

Syntax for Creating Methods . 623
Managing Methods . 624

 39 Collectors (Nested Tables and Varying Arrays) . 625
Varying Arrays . 626

Creating a Varying Array . 626
Describing the Varying Array . 627
Inserting Records into the Varying Array . 628
Selecting Data from Varying Arrays . 629

Nested Tables . 632
Specifying Tablespaces for Nested Tables . 633
Inserting Records into a Nested Table . 633
Working with Nested Tables . 634

Additional Functions for Nested Tables and Varying Arrays . 636
Management Issues for Nested Tables and Varying Arrays . 637

Variability in Collectors . 637
Location of the Data . 638

 40 Using Large Objects . 639
Available Datatypes . 640
Specifying Storage for LOB Data . 641
Manipulating and Selecting LOB Values . 643

Initializing Values . 645
Using insert with Subqueries . 647
Updating LOB Values . 647
Using String Functions to Manipulate LOB Values . 647
Using DBMS_LOB to Manipulate LOB Values . 648
Deleting LOBs . 664

 41 Advanced Object-Oriented Concepts . 665
Row Objects vs. Column Objects . 666
Object Tables and OIDs . 666

Inserting Rows into Object Tables . 667
Selecting Values from Object Tables . 668
Updates and Deletes from Object Tables . 669
The REF Function . 669
Using the DEREF Function . 670
The VALUE Function . 672
Invalid References . 673

Object Views with REFs . 673
A Quick Review of Object Views . 674
Object Views Involving References . 674

Object PL/SQL . 677
Objects in the Database . 679

PART VI

Java in Oracle
 42 An Introduction to Java . 683

Java vs. PL/SQL: An Overview . 684

xxiv Oracle Database 11g: The Complete Reference

Getting Started . 685
Declarations . 685
Executable Commands . 686

Conditional Logic . 687
Loops . 690
Exception Handling . 693
Reserved Words . 694

Classes . 694

 43 JDBC Programming . 699
Using the JDBC Classes . 700
Using JDBC for Data Manipulation . 704

 44 Java Stored Procedures . 709
Loading the Class into the Database . 711
How to Access the Class . 716

Calling Java Stored Procedures Directly . 718
Where to Perform Commands . 718

PART VII

Hitchhiker’s Guides

 45 The Hitchhiker’s Guide to the Oracle Data Dictionary . 723
A Note about Nomenclature . 724
New Views Introduced in Oracle Database 11g . 725
The Road Maps: DICTIONARY (DICT) and DICT_COLUMNS 729
Things You Select From: Tables (and Columns), Views, Synonyms, and Sequences 730

Catalog: USER_CATALOG (CAT) . 730
Objects: USER_OBJECTS (OBJ) . 731
Tables: USER_TABLES (TABS) . 731
Columns: USER_TAB_COLUMNS (COLS) . 734
Views: USER_VIEWS . 735
Synonyms: USER_SYNONYMS (SYN) . 737
Sequences: USER_SEQUENCES (SEQ) . 738

Recycle Bin: USER_RECYCLEBIN and DBA_RECYCLEBIN . 738
Constraints and Comments . 739

Constraints: USER_CONSTRAINTS . 739
Constraint Columns: USER_CONS_COLUMNS . 740
Constraint Exceptions: EXCEPTIONS . 741
Table Comments: USER_TAB_COMMENTS . 742
Column Comments: USER_COL_COMMENTS . 742

Indexes and Clusters . 743
Indexes: USER_INDEXES (IND) . 743
Indexed Columns: USER_IND_COLUMNS . 745
Clusters: USER_CLUSTERS (CLU) . 746
Cluster Columns: USER_CLU_COLUMNS . 747

Abstract Datatypes and LOBs . 747
Abstract Datatypes: USER_TYPES . 747
LOBs: USER_LOBS . 749

Contents xxv

Database Links and Materialized Views . 750
Database Links: USER_DB_LINKS . 750
Materialized Views . 751
Materialized View Logs: USER_MVIEW_LOGS . 752

Triggers, Procedures, Functions, and Packages . 753
Triggers: USER_TRIGGERS . 753
Procedures, Functions, and Packages: USER_SOURCE 753

Dimensions . 755
Space Allocation and Usage, Including Partitions and Subpartitions 756

Tablespaces: USER_TABLESPACES . 756
Space Quotas: USER_TS_QUOTAS . 757
Segments and Extents: USER_SEGMENTS and USER_EXTENTS 757
Partitions and Subpartitions . 758
Free Space: USER_FREE_SPACE . 761

Users and Privileges . 761
Users: USER_USERS . 761
Resource Limits: USER_RESOURCE_LIMITS . 761
Table Privileges: USER_TAB_PRIVS . 762
Column Privileges: USER_COL_PRIVS . 762
System Privileges: USER_SYS_PRIVS . 762

Roles . 763
Auditing . 764
Miscellaneous . 765
Monitoring: The V$ Dynamic Performance Tables . 765

CHAINED_ROWS . 765
PLAN_TABLE . 765
Interdependencies: USER_DEPENDENCIES and IDEPTREE 766
DBA-Only Views . 766
Oracle Label Security . 766
SQL*Loader Direct Load Views . 766
Globalization Support Views . 767
Libraries . 767
Heterogeneous Services . 767
Indextypes and Operators . 767
Outlines . 768
Advisors . 768
Schedulers . 768

 46 The Hitchhiker’s Guide to Tuning Applications and SQL . 769
New Tuning Features in Oracle Database 11g . 770
New Tuning Features in Oracle 11g . 770
Tuning—Best Practices . 772

Do as Little as Possible . 772
Do It as Simply as Possible . 775
Tell the Database What It Needs to Know . 776
Maximize the Throughput in the Environment . 776
Divide and Conquer Your Data . 778
Test Correctly . 779

xxvi Oracle Database 11g: The Complete Reference

Generating and Reading Explain Plans . 781
Using set autotrace on . 781
Using explain plan . 785

Major Operations Within Explain Plans . 786
TABLE ACCESS FULL . 786
TABLE ACCESS BY INDEX ROWID . 787
Related Hints . 787
Operations That Use Indexes . 787
When Indexes Are Used . 789
Operations That Manipulate Data Sets . 794
Operations That Perform Joins . 801
How Oracle Handles Joins of More than Two Tables . 801
Parallelism and Cache Issues . 808

Implementing Stored Outlines . 808
Review . 810

 47 SQL Result Cache and Client-Side Query Cache . 811
Database Parameter Settings for SQL Result Cache . 818
The DBMS_RESULT_CACHE Package . 819
Dictionary Views for the SQL Result Cache . 821
Additional Details for SQL Result Cache . 821
Oracle Call Interface (OCI) Client Query Cache . 821
Oracle Call Interface (OCI) Client Query Cache Restrictions . 822

 48 Case Studies in Tuning . 823
Case Study 1: Waits, Waits, and More Waits . 824
Case Study 2: Application-Killing Queries . 827

Using the 10053 Trace Event . 829
Case Study 3: Long-Running Batch Jobs . 830

 49 Advanced Architecture Options—DB Vault, Content DB, and Records DB 835
Oracle Database Vault . 836

New Concepts for Oracle Database Vault . 836
Disabling Oracle Database Vault . 837
Enabling Oracle Database Vault . 838
Database Vault Installation Notes . 839

Oracle Content Database Suite . 842
Repository . 843
Document Management . 843
User Security . 844

Oracle Records Database . 845

 50 Oracle Real Application Clusters . 847
Preinstallation Steps . 848
Installing RAC . 849

Storage . 849
Initialization Parameters . 850

Starting and Stopping RAC Instances . 852
Transparent Application Failover . 854
Adding Nodes and Instances to the Cluster . 855

Contents xxvii

 51 The Hitchhiker’s Guide to Database Administration . 857
Creating a Database . 858

Using the Oracle Enterprise Manager . 858
Starting and Stopping the Database . 859
Sizing and Managing Memory Areas . 860

The Initialization Parameter File . 862
Allocating and Managing Space for the Objects . 862

Implications of the storage Clause . 863
Table Segments . 865
Index Segments . 865
System-Managed Undo . 866
Temporary Segments . 867
Free Space . 868
Sizing Database Objects . 868

Monitoring an Undo Tablespace . 871
Automating Storage Management . 871

Configuring ASM . 872
Segment Space Management . 872
Transporting Tablespaces . 873

Generating a Transportable Tablespace Set . 873
Plugging in the Transportable Tablespace Set . 874

Performing Backups . 875
Data Pump Export and Import . 875
Offline Backups . 876
Online Backups . 877
Recovery Manager . 880

Where to Go from Here . 881

 52 The Hitchhiker’s Guide to XML in Oracle . 883
Document Type Definitions, Elements, and Attributes . 884
XML Schema . 887
Using XSU to Select, Insert, Update, and Delete XML Values . 890

Insert, Update, and Delete Processing with XSU . 891
XSU and Java . 892
Customizing the Query Process . 894

Using XMLType . 895
Other Features . 897

PART VIII

 Alphabetical Reference . 899

 Index . 1295

This page intentionally left blank

Acknowledgments

any people played roles in the creation of this book and in supporting me
in the process. My family, my coworkers, and my readers all provided the
spark to start this effort and see it through to the finish. I am deeply indebted
to my editors and the publication staff who put up with my schedule
changes and kept the focus on the delivery of the book you’re holding.

At McGraw-Hill, I am ever grateful for the work and support of Lisa McClain, Scott
Rogers, Laura Stone, Jennifer Housh, Mandy Canales, Bart Reed, Apollo Publishing
Services, Paul Tyler, Marian Selig, and Jack Lewis. Special thanks to the technical editors,
Scott Gossett and Sreekanth Chintala.

At work, I am blessed to have coworkers who are accepting and supportive. This
update to the Complete Reference was insisted upon and supported by my peers there,
notably Joyce Walsh, Brian Albert, Rich Menuchi, Earl Patterson, and John Bauer. I am
grateful for the leadership and support of Phil Steitz, Bernie McGarrigle, Susan Terranova,
Robert Brown, Linda Heckert, Susan St. Claire, and others who encouraged me in this
process. My team’s professionalism and thoroughness have allowed me to spend time on
this project—thanks to Alex Yankelevich, Kapil Ladha, Tony Price, Rati Mishra, Mike
Connolly, Dave Hansen, Uday Kommireddy, Noyal Thomas, Bhanu Thirumurthy, Manish
Tare, Abhimanyu Kapil, Saurabh Srivistava, and Eric Felice.

Thanks to all those who start, run, and support user groups. People such as Monica
Penshorn of the TCOUG, David Teplow of the NEOUG, and Dan Norris of the RAC SIG
provide a wonderful service to their members. We are all indebted to those who devote
their time to professional altruism through the creation, running, and support of user groups,
newsletters, newsgroups, books, and conferences, and through the mentoring of others.
It’s an honor to be in your company.

Thanks to my family and to all the friends along the way. You’ve made the trip worth
taking. If I’ve accidentally left your name off this page, you know it is still written in my heart.

M

xxix

This page intentionally left blank

PART
I

Critical Database
Concepts

This page intentionally left blank

CHAPTER
1

Oracle Database 11g
Architecture Options

3

4 Part I: Critical Database Concepts

racle Database 11g is a significant upgrade from prior releases of Oracle. New
features give developers, database administrators, and end users greater control
over the storage, processing, and retrieval of their data. In this chapter, you will
see highlights of the Oracle Database 11g architecture. You will see detailed
discussions of new features such as SQL replay, change management, and result

caching in later chapters. The goal of this chapter is to present a high-level overview of the
capabilities you can feature in your Oracle applications and provide an introduction to the
chapters that describe them.

This book is divided into eight major sections.
In Part I, “Critical Database Concepts,” you will see an overview of Oracle Database 11g’s

options, how to install the Oracle software, how to create or upgrade a database, and advice on
planning your application implementation. These chapters establish the common vocabulary that
both end users and developers can use to coherently and intelligently share concepts and ensure
the success of any development effort. This introductory chapter and Chapter 4 are intended for
both developers and end users of Oracle; Chapters 2 and 3 are intended for database administrators.

Part II, “SQL and SQL*Plus,” teaches the theory and techniques of relational database systems
and applications, including SQL (Structured Query Language) and SQL*Plus. The section begins
with relatively few assumptions about data-processing knowledge on the part of the reader and
then advances, step by step, through some very deep issues and complex techniques. The method
very consciously uses clear, conversational English, with unique and interesting examples, and
strictly avoids the use of undefined terms or jargon. This section is aimed primarily at developers
and end users who are new to Oracle or need a quick review of certain Oracle features. It moves
step by step through the basic capabilities of SQL and Oracle’s interactive query facility, SQL*Plus.
When you’ve completed this section, you should have a thorough understanding of all SQL
keywords, functions, and operators. Within an Oracle database, you should be able to produce
complex queries, create tables, and insert, update, and delete data.

Part III, “Beyond the Basics,” covers advanced options, including virtual private databases,
Data Pump, replication, text indexing, external tables, change replay, and the use of the flashback
options for developers and database administrators. Most of the features described in this section
will not be directly used by end users, but the applications they use can be based on these features.

Part IV, “PL/SQL,” provides coverage of PL/SQL. The topics include a review of PL/SQL structures,
plus triggers, stored procedures, and packages. Both standard and native dynamic PL/SQL is covered.

Part V, “Object-Relational Databases,” provides extensive coverage of object-oriented features
such as abstract datatypes, methods, object views, object tables, nested tables, varying arrays, and
large objects.

Part VI, “Java in Oracle,” provides coverage of the Java features in the Oracle database. This
section includes an overview of Java syntax as well as chapters on JDBC and Java stored procedures.

Part VII, “Hitchhiker’s Guides,” provides an overview of the Real Application Cluster and grid
architecture available in Oracle Database 11g as well as case studies in using Oracle’s tuning
tools, the new features such as the client-side cache, an overview of database administration,
and a high-level description of the use of XML in Oracle.

Part VIII, “Alphabetical Reference,” is a reference for the Oracle server—a book unto itself.
Reading the introductory pages to this reference will make its use much more effective and
understandable. This section contains references for most major Oracle commands, keywords,
products, features, and functions, with extensive cross-referencing of topics. The reference is

O

Chapter 1: Oracle Database 11g Architecture Options 5

intended for use by both developers and users of Oracle but assumes some familiarity with the
products. To make the most productive use of any of the entries, it’s worthwhile to read the
introductory pages of the reference. These pages explain in greater detail what is and is not
included and how to read the entries.

On the Downloads page at www.oraclepressbooks.com, you will find the table-creation
statements and row insertions for all the tables used in this book. For anyone learning Oracle,
having these tables available on your own Oracle ID, or on a practice ID, will make trying or
expanding on the examples very easy.

Databases and Instances
An Oracle database is a collection of data in one or more files. The database contains physical
and logical structures. In the course of developing an application, you create structures such as
tables and indexes to store rows and speed their retrieval. You can create synonyms for the object
names, view objects in different databases (across database links), and restrict access to the
objects. You can even use external tables to access files outside the database as if the rows in the
files were rows in tables. In this book, you will see how to create these objects and develop
applications based on them.

An Oracle instance comprises a memory area called the System Global Area (SGA) and the
background processes that interact between the SGA and the database files on disk. In an Oracle
Real Application Cluster (RAC), more than one instance will use the same database (see Chapter
50). The instances generally are on separate servers connected by a high-speed interconnect.

Inside the Database
Within the Oracle database, the basic structure is a table. Oracle Database 11g supports many
types of tables, including the following:

Relational tables Using the Oracle-supplied datatypes (see “Datatypes” in the Alphabetical
Reference), you can create tables to store the rows inserted and manipulated by your
applications. Tables have column definitions, and you can add or drop columns as the
application requirements change. Tables are created via the create table command.

Object-relational tables To take advantage of features such as type inheritance, you can
use Oracle’s object-relational capabilities. You can define your own datatypes and then
use them as the basis for column definitions, object tables, nested tables, varying arrays,
and more. See Part V of this book.

Index-organized tables You can create a table that stores its data within an index
structure, allowing the data to be sorted within the table. See Chapter 17.

External tables Data stored in flat files may be treated as a table that users can query
directly and join to other tables in queries. You can use external tables to access large
volumes of data without ever loading them into your database. See Chapter 28. Note that
Oracle also supports BFILE datatypes, a pointer to an external binary file. Before creating a
BFILE or an external table, you must create a directory alias within Oracle (via the create
directory command) pointing to the physical location of the file. See Chapter 40 for details
on BFILEs and other large object datatypes.

■

■

■

■

www.oraclepressbooks.com

6 Part I: Critical Database Concepts

Partitioned tables You can divide a table into multiple partitions, which allows you
to separately manage each part of the table. You can add new partitions to a table, split
existing partitions, and administer a partition apart from the other partitions of the table.
Partitioning may simplify or improve the performance of maintenance activities and user
queries. You can partition tables on ranges of values, on lists of values, on hashes of
column values, or on combinations of those options. See Chapter 18.

Materialized views A materialized view is a replica of data retrieved by a query. User
queries may be redirected to the materialized views to avoid large tables during
execution—the optimizer will rewrite the queries automatically. You can establish and
manage refresh schedules to keep the data in the materialized views fresh enough for
the business needs. See Chapter 26.

Temporary tables You can use the create global temporary table command to create a
table in which multiple users can insert rows. Each user sees only his or her rows in the
table. See Chapter 14.

Clustered tables If two tables are commonly queried together, you can physically store
them together via a structure called a cluster. See Chapter 17.

Dropped tables You can quickly recover dropped tables via the flashback table to
before drop command. You can flash back multiple tables at once or flash back the
entire database to a prior point in time. Oracle supports flashback queries, which return
earlier versions of rows from an existing table.

To support access to tables, you can use views that perform joins and aggregations, limit the
rows returned, or alter the columns displayed. Views may be read-only or updatable, and they
can reference local or remote tables. Remote tables can be accessed via database links. You can
use synonyms to mask the physical location of the tables. See Chapter 25 for details on database
links, and Chapter 17 for details on views.

To tune the accesses to these tables, Oracle supports many types of indexes, including the
following:

B*-tree indexes A B*-tree index is the standard type of index available in Oracle, and
it’s very useful for selecting rows that meet an equivalence criteria or a range criteria.
Indexes are created via the create index command.

Bitmap indexes For columns that have few unique values, a bitmap index may be able
to improve query performance. Bitmap indexes should only be used when the data is
batch loaded (as in many data warehousing or reporting applications).

Reverse key indexes If there are I/O contention issues during the inserts of sequential
values, Oracle can dynamically reverse the indexed values prior to storing them.

Function-based indexes Instead of indexing a column, such as Name, you can index
a function-based column, such as UPPER(Name). The function-based index gives the
Oracle optimizer additional options when selecting an execution path.

Partitioned indexes You can partition indexes to support partitioned tables or to simplify
the index management. Index partitions can be local to table partitions or may globally
apply to all rows in the table.

■

■

■

■

■

■

■

■

■

■

Chapter 1: Oracle Database 11g Architecture Options 7

Text indexes You can index text values to support enhanced searching capabilities, such
as expanding word stems or searching for phrases. Text indexes are sets of tables and
indexes maintained by Oracle to support complex text-searching requirements. Oracle
Database 11g offers enhancements to text indexes that simplify their administration and
maintenance.

See Chapters 17 and 46 for further details on the index types listed here (excluding text
indexes). For text indexes, see Chapter 27.

Storing the Data
All of these logical structures in the database must be stored somewhere in the database. Oracle
maintains a data dictionary (see Chapter 45) that records metadata about each object—the object
owner, a definition, related privileges, and so on. For objects that require physical storage space
of their own, Oracle will allocate space within a tablespace.

Tablespaces
A tablespace consists of one or more datafiles; a datafile can be a part of one and only one
tablespace. Oracle Database 11g creates at least two tablespaces for each database—SYSTEM and
SYSAUX—to support its internal management needs. You can use Oracle managed files (OMF) to
simplify the creation and maintenance of datafiles.

You can create a special kind of tablespace, called a bigfile tablespace, that can be many
thousands of terabytes in size. Along with OMF, the management of bigfiles makes tablespace
management completely transparent to the DBA; the DBA can manage the tablespace as a unit
without worrying about the size and structure of the underlying datafiles.

If a tablespace is designated as a temporary tablespace, the tablespace itself is permanent;
only the segments saved in the tablespace are temporary. Oracle uses temporary tablespaces
to support sorting operations such as index creations and join processing. Temporary segments
should not be stored in the same tablespaces as permanent objects.

Tablespaces can be either dictionary managed or locally managed. In a dictionary-managed
tablespace, space management is recorded in the data dictionary. In a locally managed tablespace
(the default), Oracle maintains a bitmap in each datafile of the tablespace to track space availability.
Only quotas are managed in the data dictionary, dramatically reducing the contention for data
dictionary tables.

Automated Storage Management
Automatic storage management (ASM) automates the layout of datafiles and other operating
system–level files used by the database, by distributing them across all available disks. When new
disks are added to the ASM instance, the database files are automatically redistributed across all
disks in the defined disk group for optimal performance. The multiplexing features of an ASM
instance minimize the possibility of data loss and are generally more effective than a manual
scheme that places critical files and backups on different physical drives. See Chapter 51.

Automatic Undo Management
To support your transactions, Oracle can dynamically create and manage undo segments, which
help maintain prior images of the changed blocks and rows. Users who have previously queried
the rows you are changing will still see the rows as they existed when their queries began.
Automatic Undo Management (AUM) allows Oracle to manage the undo segments directly
with no database administrator intervention required. The use of AUM also simplifies the use of

■

8 Part I: Critical Database Concepts

flashback queries. You can execute flashback version queries to see the different versions of a row
as it changed during a specified time interval. See Chapters 29 and 30 for further details on the
use of undo segments, flashback queries, and flashback version queries.

Dropped Data
The recycle bin concept introduced with Oracle Database 10g impacts the space requirements
for your tablespaces and datafiles. The default behavior for the drop of a table is for the table to
retain its space allocation; you can see its space usage via the RECYCLEBIN data dictionary view.
If you create and drop a table twice, there will be two copies of the table in the recycle bin.
Although this architecture greatly simplifies recoveries of accidentally dropped tables, it may
considerably increase the space used in your database. Use the purge command to remove old
entries from your recycle bin. See the Alphabetical Reference for the syntax of the purge command.

Guarding the Data
You can fully control the access to your data. You can grant other users privileges to perform
specific functions (such as select, insert, and so on) on your objects. You can pass along the right
to execute further grants. You can grant privileges to roles, which are then granted to users, grouping
privileges into manageable sets.

Oracle supports a very detailed level of privileges; you can control which rows are accessible
and, during auditing, which rows trigger audit events to be recorded. When you use the Virtual
Private Database (VPD) option, users’ queries of tables are always limited regardless of the method
by which they access the tables.

You can enable column masking for sensitive data, and you can encrypt the data as it is stored
on disk. See Chapter 20 for details on the implementation of VPD.

In addition to securing access to the data, you can audit activities in the database. Auditable
events include privileged actions (such as creating users), changes to data structures, and access
of specific rows and tables.

Programmatic Structures
Oracle supports a wide array of programmatic access methods. The SQL language, described in
detail throughout this book, is key to any application development effort. Other access methods
include the following:

PL/SQL As described in Part IV of this book, PL/SQL is a critical component of most
application implementations. You can use PL/SQL to create stored procedures and
functions, and you can call your functions within queries. Procedures and functions can
be collected into packages. You can also create triggers, telling the database what steps to
take when different events occur within the database. Triggers may occur during database
events (such as database startup), changes to structures (such as attempts to drop tables),
or changes to rows. In each case, you will use PL/SQL to control the behavior of the
database or application when the triggering event occurs.

Dynamic SQL You can generate SQL at run time and pass it to procedures that execute
it via dynamic SQL. See Chapter 36.

SQL*Plus As shown throughout this book, SQL*Plus provides a simple interface to the
Oracle database. SQL*Plus can support rudimentary reporting requirements, but it is

■

■

■

Chapter 1: Oracle Database 11g Architecture Options 9

better known for its support of scripting. It provides a consistent interface for retrieving
data from the data dictionary and creating database objects.

Java and JDBC As shown in Part VI of this book, Oracle’s support for Java and JDBC
allows you to use Java in place of PL/SQL for many operations. You can even write Java-
based stored procedures. Oracle’s Java offerings have been expanded and enhanced with
each new release.

XML As described in Chapter 52, you can use Oracle’s XML interfaces and XML types
to support inserting and retrieving data via XML.

Object-oriented SQL and PL/SQL You can use Oracle to create and access object-
oriented structures, including user-defined datatypes, methods, large objects (LOBs),
object tables, and nested tables. See Part V.

Data Pump Data Pump Import and Data Pump Export, both introduced in Oracle
Database 10g, greatly enhance the manageability and performance of the earlier Import
and Export utilities. You can use Data Pump to quickly extract data and move it to
different databases while altering the schema and changing the rows. See Chapter 24
for details on the use of Data Pump.

SQL*Loader You can use SQL*Loader to quickly load flat files into Oracle tables. A
single flat file can be loaded into multiple tables during the same load, and loads can
be parallelized. See Chapter 23.

External programs and procedures You can embed SQL within external programs, or
you can create procedural libraries that are later linked to Oracle. See Chapter 35.

UTL_MAIL A package introduced in Oracle Database 10g, UTL_MAIL allows a PL/SQL
application developer to send e-mails without having to know how to use the underlying
SMTP protocol stack.

Choosing Architectures and Options
Oracle provides a full array of tools for developing applications based on Oracle Database 11g.
Many of the features introduced with Oracle Database 11g will be available to you regardless of
the application architecture you select.

If you have previously implemented applications in earlier versions of Oracle, you should
review your database to identify areas where new features will benefit your application. For
example, if you have previously implemented materialized views, you may be able to take
advantage of new features that expand the possibilities for incremental (“fast”) refreshes of the
materialized views. Oracle provides a set of procedures that help you manage your materialized
view refresh schedule. For example, you can execute a procedure that will generate a description of
your refresh possibilities and the configuration issues (if any) that prevent you from using the fastest
options possible. You can use another Oracle-provided procedure to generate recommendations for
tuning materialized view structures based on a provided set of sample queries.

Some of the new features may contain small changes that can have a dramatic impact on your
application or your coding approach. For example, you can use the change replay features to
capture commands executed on one database and replay them on another. Some of the significant

■

■

■

■

■

■

■

10 Part I: Critical Database Concepts

new features include “invisible” indexes, simplified table maintenance, and editioned objects. You
should evaluate your previous architecture decisions in light of the new features available.

In the next several chapters, you will see how to install Oracle Database 11g and how to
upgrade to Oracle Database 11g from prior releases. Following those chapters, you will see an
overview of application planning, followed by many chapters on the use of SQL, PL/SQL, Java,
object-oriented features, and XML to get the most out of your Oracle database. Your application
architecture may change over time as the business process changes. During those changes you
should be sure to review the latest features to determine how your application can best exploit
them for functionality and performance.

CHAPTER
2

Installing Oracle
Database 11g and

Creating a Database

11

12 Part I: Critical Database Concepts

s Oracle’s installation software becomes easier to use with each release, it is very
tempting to open the box of CDs and start the installation right away. Although this
is fine if you’re going to experiment with some new database features, a lot more
planning is required to perform a successful installation without rework or even
reinstallation a month from now. Although the complete details of an Oracle

Database 11g installation are beyond the scope of this book, you will see the basics of an
Oracle install using the Oracle Universal Installer (OUI). In any case, a thorough review of the
installation guide for your specific platform is key to a successful Oracle database deployment.

NOTE
Although this chapter is intended for beginning database
administrators, the planning process should include end users,
application developers, and system administrators, so the workload
and space requirements will be as accurate as possible.

The following issues should be addressed or resolved before you start the installation:

Decide on the local database name, and which domain will contain this database.

For the first project to use the database, estimate the number of tables and indexes as
well as their size, to plan for disk space estimates beyond what is required for the Oracle
SYSTEM tablespace and the associated Oracle software and tools.

Plan the locations of the physical datafiles on the server’s disk to maximize performance
and recoverability. In general, the more physical disks, the better. If a RAID or a shared
storage area will be used for the datafiles, consider Oracle Managed Files to manage the
placement of the datafiles. You can use automatic storage management (ASM) to simplify
your storage management. See Chapter 51 for details on ASM.

Review and understand the basic initialization parameters.

Select the database character set, along with an alternate character set. Although it’s easy
to let the character sets default on install, you may need to consider where the users of
the database are located and their language requirements. Character sets can be changed
after installation only if the new character set is a superset of the existing character set.

Decide on the best default database block size. The default block size defined by DB_
BLOCK_SIZE cannot be changed later without reinstalling the database. Note that Oracle
can support multiple block sizes within a single database.

Plan to store non-SYSTEM user objects in non-SYSTEM tablespaces. Make sure that
all non-administrative users are assigned a non-SYSTEM tablespace as their default
tablespace.

Plan to implement Automatic Undo Management to ease administration of transaction
undo information.

Plan a backup and recovery strategy. Decide how the database needs to be backed up,
and how often. Plan to use more than one method to back up the database.

■

■

■

■

■

■

■

■

■

A

Chapter 2: Installing Oracle Database 11g and Creating a Database 13

Familiarity with a couple of key Web sites is a must. Oracle Technology Network (OTN), at
http://otn.oracle.com, has a wealth of information, including white papers, free tools, sample code,
and the online version of Oracle Magazine. There is no charge for using OTN, other than registering
on the site. You can download the latest version of the Oracle software from the OTN site.

Purchasing a license for Oracle database software is a good start, but an Oracle support
contract with Web support may be the key to a successful installation and deployment. Using
Oracle’s Metalink (http://metalink.oracle.com) means you might never have to leave the friendly
confines of your Web browser to keep your database up and running. Through Metalink, you can
submit a support request, search through other support requests, download patches, download
white papers, and search the bug database.

Overview of Licensing and Installation Options
A successful initial software installation is the first step. Regardless of the software and hardware
platform on which you’re installing Oracle, the types of installations you can perform are the
same. Although these may change with product releases, they generally include the following:

Enterprise Edition This is the most feature rich and extensible version of the Oracle
database. It includes features such as Flashback Database and allows you to add
additional pieces of licensed functionality, such as Oracle Spatial, Oracle OLAP,
Oracle Label Security, and Oracle Data Mining.

Standard Edition This edition provides a good subset of the features of the Enterprise
Edition, generally including the features that a small business will need.

Personal Edition This edition allows for development of applications that will run on
either the Standard or Enterprise Edition. This edition cannot be used in a production
environment.

Licensing for the Oracle database is only by named user or CPU, and there is no longer a
concurrent user licensing option. Therefore, the DBA should use the initialization parameter
LICENSE_MAX_USERS to specify the maximum number of users that can be created in the database.
In addition, the Oracle Management Server (the back end for an Oracle Enterprise Manager, or
OEM, client) can be installed during a server- or client-side installation. However, it is recommended
that this installation be performed after a basic database installation has been completed.

Using OUI to Install the Oracle Software
Use the Oracle Universal Installer (OUI) to install and manage all Oracle components for both the
server-side and client-side components. You can also deinstall any Oracle products from the initial
OUI screens.

During the server installation, you will choose the version of Oracle Database 11g from
the list in the previous section: Enterprise Edition, Standard Edition, or one of the other options
available for your platform.

It is strongly recommended that you create a starter database when prompted during the install.
Creating the starter database is a good way to make sure the server environment is set up correctly,
as well as to review any new features of Oracle Database 11g. The starter database may also be a
good candidate as a repository for either OEM or Recovery Manager.

■

■

■

http://otn.oracle.com
http://metalink.oracle.com

14 Part I: Critical Database Concepts

The exact flow of the installation process may change depending on your operating environment
and Oracle version. At the conclusion of the Oracle software installation, the Database Configuration
Assistant (DBCA) will launch and will begin the process of creating a new database for use on
your server.

NOTE
For UNIX environments, you will need to set a proper value for the
DISPLAY environment variable and enable xhost prior to starting OUI
via the runInstaller script.

When you launch the OUI, you will be asked to provide information about your configuration
choices. As shown in Figure 2-1, the first screen will ask for the base location for the Oracle software,
the home location for the database, and the type of installation. You can also choose to have a
starter database created following the successful Oracle software installation. For the database,
you will need to specify its name and a password.

FIGURE 2-1 OUI initial screen

Chapter 2: Installing Oracle Database 11g and Creating a Database 15

OUI will then
perform a series of
prerequisite checks
to make sure your
environment is
configured to support
the Oracle installation.
These checks include
basic network
configuration and
environment variable
settings, as shown in the
illustration at right.

Your database can
be configured to associate
with your Metalink
(Oracle Support)
account. In the next
section of the OUI,
shown here, you can
specify the Metalink
username and password
you use. You can use the
Test Registration option
to verify connectivity to
the Metalink site from
your computer.

16 Part I: Critical Database Concepts

At this point, the
installation is ready to
proceed, and OUI will
display a list of the
selected products to
install. As shown here,
that list will include the
core software as well
as related utilities and
scripts.

The Oracle
installation can now
begin. As shown below,
Oracle provides a
status bar to show the
installation progress.
The time to complete
the installation depends
on the processing speed
of your computer. Do
not run other processes
on your computer
during this time because they may interfere with the successful completion of the Oracle
software installation.

Chapter 2: Installing Oracle Database 11g and Creating a Database 17

After the Oracle software has been successfully installed, the Database Configuration Assistant
will be automatically launched if you selected that option. As shown in the following illustration,
the creation steps include copying the datafiles for the starter database into the targeted area on
your computer and then creating an instance. The result of this step will be a fully functional
database that you can use for the practice exercises in this book.

As shown here, multiple configuration assistants will run. The Database Configuration
Assistant (DBCA) creates the database, whereas the Oracle Net Configuration Assistant verifies
your networking configuration. Connections to your database will use Oracle Net. You can
choose not to run the configuration assistants or to retry those that fail.

18 Part I: Critical Database Concepts

With the networking configuration verified, the DBCA can now complete the database
creation, as shown next.

When the database creation completes, you will see a summary screen similar to the one shown
in the following illustration. The summary screen will list the name of the database that was created,
the location of the database parameter file, and the accounts that are unlocked. As a security
measure, most of the accounts inside a new Oracle database are locked. The password for the
unlocked accounts is the password set during the initial creation (refer to Figure 2-1).

If you chose to change the security settings, you will see the security management page,
shown next. You may choose to unlock any of the standard accounts provided with your Oracle
database. For each of the unlocked accounts, you can specify a password. By default, the only
unlocked accounts are those used to manage the database, such as SYS and SYSTEM.

Chapter 2: Installing Oracle Database 11g and Creating a Database 19

Following the password management screen, you will see a final set of summary screens
showing the success of the individual configuration assistants and the overall success of the
installation. The database you created will be fully available, with an instance running on your
local computer to access that database. You can now use tools such as SQL*Plus to access the
sample database.

As part of the Windows installation, Oracle installs an Oracle Administration Assistant (in the
Start menu structure, it is available under the Oracle configuration and migration tools menu).
Use the Administration Assistant to simplify your management of your local database. For example,
you can navigate through the Administration Assistant interface to select your database. When
you right-click the database, a series of options will become available, including Startup/Shutdown
Configuration Options. You can use this screen to specify that the database instance will be started
and shut down whenever the Windows service is started and shut down, thereby simplifying your

20 Part I: Critical Database Concepts

database administration. You can also specify the type of shutdown to perform (Shutdown Normal,
by default).

If you need to relaunch the DBCA manually, it is available in the same configuration and
migration tools menu structure as the Administration Assistant. The use of the DBCA is advised for
those users who are not experienced database administrators (DBAs). DBAs may choose to either
use the DBCA or execute the create database command. The syntax for the create database
command is provided in the Alphabetical Reference section of this book.

CHAPTER
3

Upgrading to Oracle
Database 11g

21

22 Part I: Critical Database Concepts

f you have previously installed an earlier version of the Oracle database server, you
can upgrade your database to Oracle Database 11g. Multiple upgrade paths are
supported; the right choice for you will depend on factors such as your current
Oracle software version and your database size. In this chapter, you will see
descriptions of these methods along with guidelines for their use.

If you have not used a version of Oracle prior to Oracle Database 11g, you can skip this
chapter for now. However, you will likely need to refer to it when you upgrade from Oracle
Database 11g to a later version or when you migrate data from a different database into your
database.

Prior to beginning the upgrade, you should read the Oracle Database 11g Installation Guide
for your operating system. A successful installation is dependent on a properly configured
environment—including operating system patch levels and system parameter settings. Plan to
get the installation and upgrade right the first time, rather than attempting to restart a partially
successful installation.

This chapter assumes that your installation of the Oracle Database 11g software (see Chapter 2)
completed successfully and that you have an Oracle database that uses an earlier version of the
Oracle software. To upgrade that database, you have four options:

Use the Database Upgrade Assistant to guide and perform the upgrade in place. The old
database will become an Oracle 11g database during this process.

Perform a manual upgrade of the database. The old database will become an Oracle 11g
database during this process.

Use the Data Pump Export and Data Pump Import utilities to move data from an earlier
version of Oracle to the Oracle 11g database. Two separate databases will be used—the
old database as the source for the export, and the new database as the target for the import.

Copy data from an earlier version of Oracle to an Oracle 11g database. Two separate
databases will be used—the old database as the source for the copy, and the new
database as the target for the copy.

Upgrading a database in place—via either the Database Upgrade Assistant or the manual
upgrade path—is called a direct upgrade.

NOTE
Direct upgrade of the database to version 11 is only supported if your
present database is using Oracle 9.2.0.4 or higher (preferably 9.2.0.8),
10.1.0.2 or higher, or 10.2.0.1 or higher. If you are using any other
release, you will have to first upgrade the database to one of those
releases, or you will need to use a different upgrade option.

Because a direct upgrade does not involve creating a second database for the one being
upgraded, it may complete faster and require less disk space than an indirect upgrade.

NOTE
Plan your upgrades carefully; you may need to allow time for multiple
incremental upgrades (such as from 9.2.0.3 to 9.2.0.8) prior to
upgrading to Oracle Database 11g.

■

■

■

■

I

Chapter 3: Upgrading to Oracle Database 11g 23

Choosing an Upgrade Method
As described in the previous section, two direct upgrade paths and two indirect upgrade paths
are available. In this section, you will see a more detailed description of the options, followed by
usage descriptions.

In general, the direct upgrade paths will perform the upgrade the fastest because they upgrade
the database in place. The other methods involve copying data, either to a Data Pump Export
dump file on the file system or across a database link. For very large databases, the time required
to completely re-create the database via the indirect methods may exclude them as viable options.

The first direct method relies on the Database Upgrade Assistant (DBUA). DBUA is an
interactive tool that guides you through the upgrade process. DBUA evaluates your present
database configuration and recommends modifications that can be implemented during the
upgrade process. These recommendations may include the sizing of files and the specifications
for the new SYSAUX tablespace (if upgrading from a pre-Oracle 10g database). After you accept
the recommendations, DBUA performs the upgrade in the background while a progress panel is
displayed. DBUA is very similar in approach to Database Configuration Assistant (DBCA). As
discussed in Chapter 2, DBCA is a graphical interface to the steps and parameters required to
make the upgrade a success.

The second direct method is called a manual upgrade. Whereas DBUA runs scripts in the
background, the manual upgrade path involves database administrators’ running the scripts
themselves. The manual upgrade approach gives you a great deal of control, but it also adds
to the level of risk in the upgrade because you must perform the steps in the proper order.

You can use Data Pump Export and Data Pump Import as an indirect method for upgrading
a database. In this method, you export the data from the old version of the database and then
import it into a database that uses the new version of the Oracle software. This process may
require disk space for multiple copies of the data—in the source database, in the dump file,
and in the target database. In exchange for these costs, this method gives you great flexibility
in choosing which data will be migrated. You can select specific tablespaces, schemas, tables,
and rows to be exported.

In the Data Pump Export/Import method, the original database is not upgraded; its data is
extracted and moved, and the database can then either be deleted or be run in parallel with the
new database until testing of the new database has been completed. In the process of performing
the export/import, you are selecting and reinserting each row of the database. If the database is
very large, the import process may take a long time, impacting your ability to provide the
upgraded database to your users in a timely fashion. See Chapters 24 and 51 for details on the
Data Pump Export and Import utilities.

In the data-copying method, you issue a series of create table as select or insert as select
commands that cross database links (see Chapter 25) to retrieve the source data. The tables are
created in the Oracle 11g database based on queries of data from a separate source database. This
method allows you to bring over data incrementally and to limit the rows and columns migrated.
However, you will need to be careful that the copied data maintains all the necessary
relationships among tables. As with the Data Pump Export/Import method, this method may
require a significant amount of time for large databases.

Selecting the proper upgrade method requires you to evaluate the technical expertise of your
team, the data that is to be migrated, and the allowable downtime for the database during the
migration. In general, using DBUA will be the method of choice for very large databases, whereas
smaller databases may use an indirect method.

24 Part I: Critical Database Concepts

Before Upgrading
Prior to beginning the migration, you should back up the existing database and database software.
If the migration fails for some reason and you are unable to revert the database or software to its
earlier version, you will be able to restore your backup and re-create your database.

You should develop and test scripts that will allow you to evaluate the performance and
functionality of the database following the upgrade. This evaluation may include the performance of
specific database operations or the overall performance of the database under a significant user load.

Prior to executing the upgrade process on a production database, you should attempt the
upgrade on a test database so that any missing components (such as operating system patches)
can be identified and the time required for the upgrade can be measured.

Prior to performing a direct upgrade, you should analyze the data dictionary tables. During
the upgrade process to Oracle Database 11g, the data dictionary will be analyzed if it has not
been analyzed already, so performing this step in advance will aid the performance of the upgrade.

NOTE
After you upgrade to Oracle Database 11g, the CONNECT role will
have only the CREATE SESSION privilege; the other privileges granted to
the CONNECT role in earlier releases are revoked during the upgrade.

Running the Pre-Upgrade Information Tool
After you have installed the Oracle 11g software, you should check your database before
upgrading it to the new release. The checks of the existing database are automated via the Pre-
Upgrade Information Tool. Running this tool is a necessary step if you are upgrading manually
and is recommended for all upgrades.

The Pre-Upgrade Information Tool is a SQL script that ships with Oracle Database 11g and
must be copied to and run from the environment of the database being upgraded. Complete the
following steps to run the Pre-Upgrade Information Tool:

 1. Log into the system as the owner of the Oracle Database 11g home directory.

 2. Copy the Pre-Upgrade Information Tool (utlu111i.sql) from the ORACLE_HOME/rdbms/
admin directory to a directory outside of the Oracle home, such as the temporary
directory on your system. Make a note of the new location of this file.

 3. Log into the system as the owner of the Oracle home directory of the database to be
upgraded.

 4. Change to the directory you copied files to in Step 2.

 5. Start SQL*Plus.

 6. Connect to the database instance as a user with SYSDBA privileges.

 7. Set the system to spool results to a log file for later analysis:

SQL> SPOOL upgrade_info.log

 8. Run the Pre-Upgrade Information Tool:

SQL> @utlu111i.sql

 9. Turn off the spooling of script results to the log file:

SQL> SPOOL OFF

Chapter 3: Upgrading to Oracle Database 11g 25

Check the output of the Pre-Upgrade Information Tool in upgrade_info.log for any identified
problems prior to the upgrade.

NOTE
When you upgrade to Oracle Database 11g, optimizer statistics
are collected for dictionary tables that lack statistics. This statistics
collection can be time-consuming for databases with a large number
of dictionary tables, but statistics gathering only occurs for those tables
that lack statistics or are significantly changed during the upgrade. To
decrease the amount of downtime incurred when collecting statistics,
you can collect statistics prior to performing the actual database
upgrade. As of Oracle Database 10g, Oracle recommends that you
use the DBMS_STATS.GATHER_DICTIONARY_STATS procedure to
gather these statistics.

Using the Database Upgrade Assistant
You can start the Database Upgrade Assistant (DBUA) via the

dbua

command (in UNIX environments) or by selecting “Database Upgrade Assistant” from the Oracle
Configuration and Migration Tools menu option (in Windows environments).

When started, DBUA will display a Welcome screen, followed by a list of the upgrade options
(to upgrade a database or an ASM instance). At the next screen, select the database you want to
upgrade from the list of available databases. You can upgrade only one database at a time. You
can then select to have your database files moved during the upgrade process.

DBUA will then prompt you for a flash recovery area destination for the storage of backup-
and-recovery-related files. Following that selection, the database management options screen will
prompt you for basic configuration information, such as an e-mail address for the database
administrator. After you enter the management configuration information, you will be prompted
for passwords for the accounts supplied with the Oracle database.

If Oracle detects multiple Oracle Net listeners on the server, you will then be prompted to
select a listener for your database, and the network configuration details will be displayed for
your review and editing.

After you make your selection, the upgrade process begins. DBUA will perform pre-upgrade
checks (such as for obsolete initialization parameters or files that are too small). DBUA will then
prompt you to recompile invalid PL/SQL objects (see Part IV of this book) following the upgrade.
If you do not recompile these objects after the upgrade, the first user of these objects will be
forced to wait while Oracle performs a run-time recompilation.

DBUA will then prompt you to back up the database as part of the upgrade process. If you
have already backed up the database prior to starting DBUA, you may elect to skip this step. If
you choose to have DBUA back up the database, it will shut down the database and perform an
offline backup of the datafiles to the directory location you specify. DBUA will also create a batch
file in that directory to automate the restoration of those files to their earlier locations.

A final summary screen displays your choices for the upgrade, and the upgrade starts when
you accept them. After the upgrade has completed, DBUA will display the Upgrade Results screen,
showing the steps performed, the related log files, and the status. The section of the screen titled
Password Management allows you to manage the passwords and the locked/unlocked status of
accounts in the upgraded database.

26 Part I: Critical Database Concepts

If you are not satisfied with the upgrade results, you can choose the Restore option. If you
used DBUA to perform the backup, the restoration will be performed automatically; otherwise,
you will need to perform the restoration manually.

When you exit DBUA after successfully upgrading the database, DBUA removes the old
database’s entry in the network listener configuration file, inserts an entry for the upgraded
database, and reloads the file.

Performing a Manual Direct Upgrade
In a manual upgrade, you must perform the steps that DBUA performs. The result will be a direct
upgrade of the database in which you are responsible for (and control) each step in the upgrade
process.

You should use the Pre-Upgrade Information Tool to analyze the database prior to its upgrade.
This tool is provided in a SQL script that is installed with the Oracle Database 11g software; you
will need to run it against the database to be upgraded. The file, named utlu111i.sql, is located in
the /rdbms/admin subdirectory under the Oracle Database 11g software home directory. You
should run that file in the database to be upgraded as a SYSDBA-privileged user, spooling the
results to a log file. The results will show potential problems that should be addressed prior to
the upgrade.

If there are no issues to resolve prior to the upgrade, you should shut down the database and
perform an offline backup before continuing with the upgrade process.

Once you have a backup you can restore if needed, you are ready to proceed with the
upgrade process. The process is detailed and script based, so you should consult with the Oracle
installation and upgrade documentation for your environment and version. The upgrade steps are
operating system specific and are dependent on your existing configuration.

The detailed steps for manual upgrades are provided in the Oracle Database Upgrade Guide.
You should consult that documentation for the specific steps to follow when upgrading. At a high
level, they are as follows:

 1. Shut down the Oracle database and all services accessing it.

 2. Back up the database.

 3. Prepare the new Oracle software home directory and edit all related configuration
files.

 4. Start the database using the startup upgrade command.

 5. If you’re upgrading from Oracle 9.2, create a SYSAUX tablespace.

 6. Upgrade the data dictionary tables via the catupgrd.sql script.

 7. Start the instance.

 8. Run the Post-Upgrade Status Tool (the utlu111s.sql script) to verify all database
components are properly upgraded.

 9. Run the catuppst.sql script to perform additional upgrade steps.

 10. Run the utlrp.sql script to recompile packages and procedures.

See the Oracle Database Upgrade Guide for the detailed steps for your environment, along
with troubleshooting guidance in the event errors are encountered.

Chapter 3: Upgrading to Oracle Database 11g 27

Using Export and Import
Data Pump Export and Import and the original Export and Import utilities provide you with an
indirect method for the upgrade. You can create an Oracle 11g database alongside your existing
database and use Data Pump Export and Import to move data from the old database to the new
database. When the movement of the data is complete, you will need to point your applications
to connect to the new database instead of the old database. You will also need to update any
configuration files, version-specific scripts, and the networking configuration files (tnsnames.ora
and listener.ora) to point to the new database.

Depending on the version you are upgrading from, you may need to use the original Export
and Import utilities, as described in the following sections.

Export and Import Versions to Use
When you create an Export dump file via the Export utility, that file can be imported into all later
releases of Oracle. Export dump files are not backward compatible, so if you ever need to revert
to an earlier version of Oracle, you will need to carefully select the version of Export and Import
used. The following table shows the versions of the Export and Import executables you should use
when going between versions of Oracle.

Export From Import To Export Version to Use Import Version to Use

Release 10.2 Release 11.1 Data Pump Export
Release 10.2

Data Pump Import Release 11.1

Release 10.1 Release 11.1 Data Pump Export
Release 10.1

Data Pump Import Release 11.1

Release 9.2 Release 11.1 Original Export
Release 9.2

Original Import Release 11.1

Release 8.1.7 Release 11.1 Original Export
Release 8.1.7

Original Import Release 11.1

Release 8.0.6 Release 11.1 Original Export
Release 8.0.6

Original Import Release 11.1

Release 7.3.4 Release 11.1 Original Export
Release 7.3.4

Original Import Release 11.1

Performing the Upgrade
Export the data from the source database using the version of the Export utility specified in the
prior section. Perform a consistent export, or perform the export when the database is not
available for updates during and after the export.

NOTE
If you have little free space available, you may have to back up and
delete the existing database at this point and then install Oracle
Database 11g software and create a target database for the import. If
at all possible, maintain the source and target databases concurrently
during the upgrade. The only benefit of having only one database on
the server at a time is that they can share the same database name.

28 Part I: Critical Database Concepts

Install the Oracle Database 11g software and create the target database. In the target database,
pre-create the users and tablespaces needed to store the source data. If the source and target
databases will coexist on the server, you need to be careful not to overwrite datafiles from one
database with datafiles from the other. The Import utility will attempt to execute the create
tablespace commands found in the Export dump file, and those commands will include the
datafile names from the source database. By default, those commands will fail if the files already
exist (although this can be overridden via Import’s DESTROY parameter). Pre-create the
tablespaces with the proper datafile names to avoid this problem.

NOTE
You can export specific tablespaces, users, tables, and rows.

Once the database has been prepared, use Import or Data Pump Import (see Chapter 24) to
load the data from the Export dump file into the target database. Review the log file for
information about objects that did not import successfully.

Using the Data-Copying Method
The data-copying method requires that the source database and target database coexist. This
method is most appropriate when the tables to be migrated are fairly small and few in number.
You must guard against transactions occurring in the source database during and after the
extraction of the data. In this method, the data is extracted via queries across database links.

Create the target database using the Oracle Database 11g software and then pre-create the
tablespaces, users, and tables to be populated with data from the source database. Create database
links (see Chapter 25) in the target database that access accounts in the source database. Use the
insert as select command to move data from the source database to the target.

The data-copying method allows you to bring over just the rows and columns you need; your
queries limit the data migrated. You will need to be careful with the relationships between the
tables in the source database so you can re-create them properly in the target database. If you
have a long application outage available for performing the upgrade and you need to modify the
data structures during the migration, the data-copying method may be appropriate for your needs.
Note that this method requires that the data be stored in multiple places at once, thus impacting
your storage needs.

To improve the performance of this method, you may consider the following options:

Disable all indexes and constraints until all the data has been loaded.

Run multiple data-copying jobs in parallel.

Use the parallel query option to enhance the performance of individual queries and inserts.

Use the APPEND hint to enhance the performance of inserts.

See Chapter 46 for additional advice on performance tuning.

■

■

■

■

Chapter 3: Upgrading to Oracle Database 11g 29

After Upgrading
Following the upgrade, you should double-check the configuration and parameter files related to
the database, particularly if the instance name changed in the migration process. These files include

The tnsnames.ora file

The listener.ora file

Programs that may have hard-coded instance names in them

NOTE
You will need to manually reload the modified listener.ora file if you
are not using DBUA to perform the upgrade.

Additional post-upgrade steps should include verifying the values for all environment
variables (such as ORACLE_HOME and PATH) and upgrading the recovery catalog.

You should review your database initialization parameters to make sure deprecated and
obsolete parameters have been removed; these should have been identified during the migration
process. Be sure to recompile any programs you have written that rely on the database software
libraries.

Once the upgrade has completed, perform the functional and performance tests identified
before the upgrade began. If there are issues with the database functionality, attempt to identify
any parameter settings or missing objects that may be impacting the test results. If the problem
cannot be resolved, you may need to revert to the prior release.

■

■

■

This page intentionally left blank

CHAPTER
4

Planning Oracle
Applications—Approaches,

Risks, and Standards

31

32 Part I: Critical Database Concepts

or an Oracle application to be built and used rapidly and effectively, users and
developers must share a common language and a deep and common understanding
of both the business application and the Oracle tools. In the preceding chapters you
have seen the overall Oracle product descriptions and the installation/upgrade steps
involved. Now that the software is installed, you have the opportunity to build

applications that build on the shared business and data understanding among your technical
and business area staff members.

Historically, the systems analyst studied the business requirements and built an application to
meet those needs. The user was involved only in describing the business and, perhaps, in reviewing
the functionality of the application after it was completed.

With the new tools and approaches available, and especially with Oracle, applications can be
built that more closely match the needs and work habits of the business—but only if a common
understanding exists.

This book is aimed specifically at fostering this understanding, and at providing the means for
both user and developer to exploit Oracle’s full potential. The end user will know details about the
business that the developer will not comprehend. The developer will understand internal functions
and features of Oracle and the computer environment that will be too technically complex for the
end user. But these areas of exclusive expertise will be minor compared with what both end users
and developers can share in using Oracle. There is a remarkable opportunity here.

It is no secret that “business” people and “systems” people have been in conflict for decades.
Reasons for this include differences in knowledge, culture, professional interests, and goals, and
the alienation that simple physical separation between groups can often produce. To be fair, this
syndrome is not peculiar to data processing. The same thing occurs between people in accounting,
personnel, or senior management, as members of each group gather apart from other groups on a
separate floor or in a separate building or city. Relations between the individuals from one group
and another become formalized, strained, and abnormal. Artificial barriers and procedures that
stem from this isolationism become established, and these also contribute to the syndrome.

This is all very well, you say, and may be interesting to sociologists, but what does it have to
do with Oracle?

Because Oracle isn’t cloaked in arcane language that only systems professionals can
comprehend, it fundamentally changes the nature of the relationship between business and
systems people. Anybody can understand it. Anybody can use it. Information that previously
was trapped in computer systems until someone in systems created a new report and released
it now is accessible, instantly, to a business person, simply by typing an English query. This
changes the rules of the game.

Where Oracle is used, it has radically improved the understanding between the two camps,
has increased their knowledge of one another, and has even begun to normalize relations between
them. This has also produced superior applications and end results.

Since its first release, Oracle has been based on the easily understood relational model
(explained shortly), so nonprogrammers can readily understand what Oracle does and how
it does it. This makes it approachable and unimposing.

Some individuals neither accept nor understand this yet, nor do they realize just how vital it is
that the dated and artificial barriers between “users” and “systems” continue to fall. But the advent
of cooperative development will profoundly affect applications and their usefulness.

F

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 33

However, many application developers have fallen into an easy trap with Oracle: carrying
forward unhelpful methods from previous-generation system designs. There is a lot to unlearn.
Many of the techniques (and limitations) that were indispensable to a previous generation of
systems are not only unnecessary in designing with Oracle, they are positively counterproductive.
In the process of explaining Oracle, the burden of these old habits and approaches must be lifted.
Refreshing new possibilities are available.

Throughout this book, the intent will be to explain Oracle in a way that is clear and simple, in
terms that both users and developers can understand and share. Outdated or inappropriate design
and management techniques will be exposed and replaced.

The Cooperative Approach
The Oracle database is an object-relational database management system. A relational database is
an extremely simple way of thinking about and managing the data used in a business. It is nothing
more than a collection of tables of data. We all encounter tables every day—weather reports, stock
charts, sports scores, and so on. These are all tables, with column headings and rows of information
simply presented. Even so, the relational approach can be sophisticated and powerful enough for
even the most complex of businesses. An object-relational database supports all the features of a
relational database while also supporting object-oriented concepts and features. You can use Oracle
as a relational database management system (RDBMS) or take advantage of its object-oriented
features.

Unfortunately, the very people who can benefit most from a relational database—the business
users—usually understand it the least. Application developers, who must build systems that these
users need to do their jobs, often find relational concepts difficult to explain in simple terms. A
common language is needed to make this cooperative approach work.

The first two parts of this book explain, in readily understandable terms, just what a relational
database is and how to use it effectively in business. It may seem that this discussion is for the
benefit of “users” only. An experienced relational application designer may be inclined to skip
these early chapters and simply use the book as a primary source Oracle reference. Although
much of this material may seem like elementary review, it is an opportunity for an application
designer to acquire a clear, consistent, and workable terminology with which to talk to users
about their needs and how these needs might be quickly met. If you are an application designer,
this discussion may also help you unlearn some unnecessary and probably unconscious design
habits. Many of these habits will be uncovered in the course of introducing the relational approach.
It is important to realize that even Oracle’s power can be diminished considerably by design
methods appropriate only to nonrelational development.

If you are an end user, understanding the basic ideas behind object-relational databases will
help you express your needs cogently to application developers and comprehend how those
needs can be met. An average person working in a business role can go from beginner to expert
in short order. With Oracle, you’ll have the power to get and use information, have hands-on
control over reports and data, and possess a clear-eyed understanding of what the application
does and how it does it. Oracle gives you, the user, the ability to control an application or query
facility expertly and know whether you are getting all the available flexibility and power.

You also will be able to unburden programmers of their least favorite task: writing new reports.
In large organizations, as much as 95 percent of all programming backlog is composed of new
report requests. Because you can write your own reports, in minutes instead of months, you will
be delighted to have the responsibility.

34 Part I: Critical Database Concepts

Everyone Has “Data”
A library keeps lists of members, books, and fines. The owner of a baseball-card collection keeps
track of players’ names, dates, averages, and card values. In any business, certain pieces of
information about customers, products, prices, financial status, and so on must be saved. These
pieces of information are called data.

Information philosophers like to say that data is just data until it is organized in a meaningful
way, at which point it becomes “information.” If this is true, then Oracle is also a means of easily
turning data into information. Oracle will sort through and manipulate data to reveal pieces of
knowledge hidden there—such as totals, buying trends, or other relationships—that are as yet
undiscovered. You will learn how to make these discoveries. The main point here is that you
have data, and you do three basic things with it: acquire it, store it, and retrieve it.

Once you’ve achieved the basics, you can make computations with data, move it from one
place to another, or modify it. This is called processing, and, fundamentally, it involves the same
three steps that affect how information is organized.

You could do all this with a cigar box, pencil, and paper, but as the volume of data increases,
your tools tend to change. You may use a file cabinet, calculators, pencils, and paper. Although at
some point it makes sense to make the leap to computers, your tasks remain the same.

A relational database management system (RDBMS) such as Oracle gives you a way of doing
these tasks in an understandable and reasonably uncomplicated way. Oracle basically does three
things, as shown in Figure 4-1:

Lets you put data into it

Keeps the data

Lets you get the data out and work with it

Oracle supports this in/keep/out approach and provides clever tools that allow you
considerable sophistication in how the data is captured, edited, modified, and put in; how
you keep it securely; and how you get it out to manipulate and report on it.

■

■

■

FIGURE 4-1 Shows how simple the process is

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 35

The Familiar Language of Oracle
The information stored in Oracle is kept in tables—much like the weather table from a daily
newspaper, shown in Figure 4-2.

This table has four columns: City, Temperature, Humidity, and Condition. It also has a row for
each city from Athens to Sydney. Last, it has a table name: WEATHER.

These are the three major characteristics of most tables you’ll see in print: columns, rows, and
a name. The same is true in a relational database. Anyone can understand the words and the ideas
they represent, because the words used to describe the parts of a table in an Oracle database are
the same words used in everyday conversation. The words have no special, unusual, or esoteric
meanings. What you see is what you get.

Tables of Information
Oracle stores information in tables, an example of which is shown in Figure 4-3. Each of these
tables has one or more columns. The column headings—such as City, Temperature, Humidity,
and Condition in Figure 4-3—describe the kind of information kept in the column. The information
is stored row after row (city after city). Each unique set of data, such as the temperature, humidity,
and condition for the city of Manchester, gets its own row.

Oracle avoids specialized, academic terminology in order to make the product more
approachable. In research papers on relational theory, a column may be called an “attribute,”
a row may be called a “tuple” (rhymes with “couple”), and a table may be called an “entity.”
For an end user, however, these terms are confusing. More than anything, they are an unnecessary
renaming of things for which there are already commonly understood names in our shared everyday
language. Oracle takes advantage of this shared language, and developers can too. It is imperative
to recognize the wall of mistrust and misunderstanding that the use of unnecessary technical jargon
produces. Like Oracle, this book will stick with “tables,” “columns,” and “rows.”

Structured Query Language
Oracle was the first company to release a product that used the English-based Structured Query
Language, or SQL. This language allows end users to extract information themselves, without
using a systems group for every little report.

Oracle’s query language has structure, just as English or any other language has structure. It
has rules of grammar and syntax, but they are basically the normal rules of careful English speech
and can be readily understood.

FIGURE 4-2 A weather table from a newspaper

WEATHER
City Temperature Humidity Condition
Athens....... 97 89 Sunny

Chicago...... 66 88 Rain

Lima......... 45 79 Rain

Manchester... 66 98 Fog

Paris........ 81 62 Cloudy

Sparta....... 74 63 Cloudy

Sydney....... 69 99 Sunny

36 Part I: Critical Database Concepts

SQL, pronounced either “sequel” or “S-Q-L,” is an astonishingly capable tool, as you will see.
Using it does not require any programming experience.

Here’s an example of how you might use SQL. If someone asked you to select from the
preceding WEATHER table the city where the humidity is 89, you would quickly respond “Athens.” If
you were asked to select cities where the temperature is 66, you would respond “Chicago and
Manchester.”

Oracle is able to answer these same questions nearly as easily as you are, and in response
to simple queries very much like the ones you were just asked. The keywords used in a query to
Oracle are select, from, where, and order by. They are clues to Oracle to help it understand your
request and respond with the correct answer.

A Simple Oracle Query
If Oracle had the example WEATHER table in its database, your first query (with a semicolon to
tell Oracle to execute the command) would be simply this:

select City from WEATHER where Humidity = 89 ;

Oracle would respond as follows:

City

ATHENS

Your second query would be this:

select City from WEATHER where Temperature = 66 ;

For this query, Oracle would respond with the following:

City

MANCHESTER
CHICAGO

FIGURE 4-3 A WEATHER table from Oracle

WEATHER
City

Temperature

Humidity

Condition

ATHENS 97 89 SUNNY

CHICAGO 66 88 RAIN

LIMA 45 79 RAIN

MANCHESTER 66 98 FOG

PARIS 81 62 CLOUDY

SPARTA 74 63 CLOUDY

SYDNEY 69 99 SUNNY

A column

Table name

A row

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 37

As you can see, each of these queries uses the keywords select, from, and where. What about
order by? Suppose you wanted to see all the cities listed in order by temperature. You’d simply
type this:

select City, Temperature from WEATHER
 order by Temperature ;

and Oracle would instantly respond with this:

City Temperature
----------- -----------
LIMA 45
MANCHESTER 66
CHICAGO 66
SYDNEY 69
SPARTA 74
PARIS 81
ATHENS 97

Oracle has quickly reordered your table by temperature. (This table lists lowest temperatures
first; in the next chapter, you’ll learn how to specify whether you want low numbers or high
numbers first.)

There are many other questions you can ask with Oracle’s query facility, but these examples
show how easy it is to obtain the information you need from an Oracle database in the form that
will be most useful to you. You can build complicated requests from simple pieces of information,
but the method used to do this will always be understandable. For instance, you can combine the
where and order by keywords, both simple by themselves, to tell Oracle to select those cities
where the temperature is greater than 80, and show them in order by increasing temperature. You
would type this:

select City, Temperature from WEATHER
 where Temperature > 80
 order by Temperature ;

and Oracle would instantly respond with this:

City Temperature
----------- -----------
PARIS 81
ATHENS 97

Or, to be even more specific, you could request cities where the temperature is greater than
80 and the humidity is less than 70:

select City, Temperature, Humidity from WEATHER
 where Temperature > 80
 and Humidity < 70
 order by Temperature ;

and Oracle would respond with this:

City Temperature Humidity
----------- ----------- --------
PARIS 81 62

38 Part I: Critical Database Concepts

Why It Is Called “Relational”
Notice that the WEATHER table lists cities from several countries, and some countries have more
than one city listed. Suppose you need to know in which country a particular city is located. You
could create a separate LOCATION table of cities and their countries, as shown in Figure 4-4.

For any city in the WEATHER table, you can simply look at the LOCATION table, find the name
in the City column, look over to the Country column in the same row, and see the country’s name.

These are two completely separate and independent tables. Each contains its own information
in columns and rows. The tables have one significant thing in common: the City column. For
each city name in the WEATHER table, there is an identical city name in the LOCATION table.

For instance, what are the current temperature, humidity, and condition in an Australian city?
Look at the two tables, figure it out, and then resume reading this.

How did you solve it? You found just one AUSTRALIA entry, under the Country column, in
the LOCATION table. Next to it, in the City column of the same row, was the name of the city,
SYDNEY. You took this name, SYDNEY, and then looked for it in the City column of the
WEATHER table. When you found it, you moved across the row and found the Temperature,
Humidity, and Condition: 69, 99, and SUNNY.

Even though the tables are independent, you can easily see that they are related. The city
name in one table is related to the city name in the other (see Figure 4-5). This relationship is
the basis for the name relational database.

FIGURE 4-4 WEATHER and LOCATION tables

WEATHER

City

Temperature

Humidity

Condition

ATHENS 97 89 SUNNY

CHICAGO 66 88 RAIN

LIMA 45 79 RAIN

MANCHESTER 66 98 FOG

PARIS 81 62 CLOUDY

SPARTA 74 63 CLOUDY

SYDNEY 69 99 SUNNY

LOCATION

City

Country

ATHENS GREECE

CHICAGO UNITED STATES

CONAKRY GUINEA

LIMA PERU

MADRAS INDIA

MADRID SPAIN

MANCHESTER ENGLAND

MOSCOW RUSSIA

PARIS FRANCE

ROME ITALY

SHENYANG CHINA

SPARTA GREECE

SYDNEY AUSTRALIA

TOKYO JAPAN

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 39

This is the basic idea of a relational database (sometimes called a relational model). Data is
stored in tables. Tables have columns, rows, and names. Tables can be related to each other if
each has a column with a common type of information.

That’s it. It’s as simple as it seems.

Some Common, Everyday Examples
Once you understand the basic idea of relational databases, you’ll begin to see tables, rows, and
columns everywhere. Not that you didn’t see them before, but you probably didn’t think about
them in quite the same way. Many of the tables you are accustomed to seeing could be stored in
Oracle. They could be used to quickly answer questions that would take you quite some time to
answer using nearly any other method.

A typical stock market report in the paper might look like the one in Figure 4-6. This is a small
portion of a dense, alphabetical listing that fills several narrow columns on several pages in a
newspaper. Which stock traded the most shares? Which had the biggest percentage change in
its price, either positively or negatively? The answers to these questions can be obtained through
simple English queries in Oracle, which can find the answers much faster than you could by
searching the columns on the newspaper page.

FIGURE 4-5 The relationship between the WEATHER and LOCATION tables

WEATHER

City

Temperature

Humidity

Condition

ATHENS 97 89 SUNNY

CHICAGO 66 88 RAIN

LIMA 45 79 RAIN

MANCHESTER 66 98 FOG

PARIS 81 62 CLOUDY

SPARTA 74 63 CLOUDY

SYDNEY 69 99 SUNNY

LOCATION

City

Country

ATHENS GREECE

CHICAGO UNITED STATES

CONAKRY GUINEA

LIMA PERU

MADRAS INDIA

MADRID SPAIN

MANCHESTER ENGLAND

MOSCOW RUSSIA

PARIS FRANCE

ROME ITALY

SHENYANG CHINA

SPARTA GREECE

SYDNEY AUSTRALIA

TOKYO JAPANRelationship

40 Part I: Critical Database Concepts

Figure 4-7 is an index to a newspaper. What’s in section F? If you read the paper from front to
back, in what order would you read the articles? The answers to these questions are obtainable
via simple English queries in Oracle. You will learn how to do all these queries, and even build
the tables to store the information, in the course of using this reference.

Throughout this book, the examples use data and objects encountered frequently in business
and everyday life. Similar data to use for your exercises should be as easy to find as your nearest
bookshelf. You will learn how to enter and retrieve data in the pages ahead, using examples based
on these everyday data sources.

FIGURE 4-6 A stock market table

Close Close Shares
Company Yesterday Today Traded
Ad Specialty 31.75 31.75 18,333,876

Apple Cannery 33.75 36.50 25,787,229

AT Space 46.75 48.00 11,398,323

August Enterprises 15.00 15.00 12,221,711

Brandon Ellipsis 32.75 33.50 25,789,769

General Entropy 64.25 66.00 7,598,562

Geneva Rocketry 22.75 27.25 22,533,944

Hayward Antiseptic 104.25 106.00 3,358,561

IDK 95.00 95.25 9,443,523

India Cosmetics 30.75 30.75 8,134,878

Isaiah James Storage 13.25 13.75 22,112,171

KDK Airlines 80.00 85.25 7,481,566

Kentgen Biophysics 18.25 19.50 6,636,863

LaVay Cosmetics 21.50 22.00 3,341,542

Local Development 26.75 27.25 2,596,934

Maxtide 8.25 8.00 2,836,893

MBK Communications 43.25 41.00 10,022,980

Memory Graphics 15.50 14.25 4,557,992

Micro Token 77.00 76.50 25,205,667

Nancy Lee Features 13.50 14.25 14,222,692

Northern Boreal 26.75 28.00 1,348,323

Ockham Systems 21.50 22.00 7,052,990

Oscar Coal Drayage 87.00 88.50 25,798,992

Robert James Apparel 23.25 24.00 19,032,481

Soup Sensations 16.25 16.75 22,574,879

Wonder Labs 5.00 5.00 2,553,712

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 41

As with any new technology or new venture, it’s sensible to think through not only the
benefits and opportunities that are presented, but also the costs and risks. Combine a relational
database with a series of powerful and easy-to-use tools, as Oracle does, and the possibility of
being seduced into disaster by its simplicity becomes real. Add in object-oriented and web
capabilities, and the dangers increase. The following sections discuss some of the dangers that
both developers and users need to consider.

What Are the Risks?
The primary risk in developing relational database applications is that it is as easy as they say.
Understanding tables, columns, and rows isn’t difficult. The relationship between two tables is
conceptually simple. Even normalization, the process of analyzing the inherent or “normal”
relationships between the various elements of a company’s data, is fairly easy to learn.

Unfortunately, this often produces instant “experts,” full of confidence but with little experience
in building real, production-quality applications. For a tiny marketing database, or a home inventory
application, this doesn’t matter very much. The mistakes made will reveal themselves in time, the
lessons will be learned, and the errors will be avoided the next time around. In an important
application, however, this is a sure formula for disaster. This lack of experience is usually behind
the press’s stories of major project failures.

Older development methods are generally slower, primarily because the tasks of the older
methods—coding, submitting a job for compilation, linking, and testing—result in a slower pace.
The cycle, particularly on a mainframe, is often so tedious that programmers spend a good deal of
time “desk-checking” in order to avoid going through the delay of another full cycle because of
an error in the code.

FIGURE 4-7 A table based on sections of a newspaper

Feature Section Page
Births F 7

Bridge B 2

Business E 1

Classified F 8

Comics C 4

Doctor’s In F 6

Editorials A 12

Modern Life B 1

Movies B 4

National
News

A 1

Obituaries F 6

Sports D 1

Television B 7

Weather C 2

42 Part I: Critical Database Concepts

Fourth-generation tools seduce developers into rushing into production. Changes can be
made and implemented so quickly that testing is given short shrift. The elimination of virtually
all desk-checking compounds the problem. When the negative incentive (the long cycle) that
encouraged desk-checking disappeared, desk-checking went with it. The attitude of many seems
to be, “If the application isn’t quite right, we can fix it quickly. If the data gets corrupted, we can
patch it with a quick update. If it’s not fast enough, we can tune it on the fly. Let’s get it in ahead
of schedule and show the stuff we’re made of.”

The testing cycle in an important Oracle project should be longer and more thorough than in
a traditional project. This is true even if proper project controls are in place, and even if seasoned
project managers are guiding the project, because there will be less desk-checking and an inherent
overconfidence. This testing must check the correctness of data-entry screens and reports, of data
loads and updates, of data integrity and concurrence, and particularly of transaction and storage
volumes during peak loads.

Because it really is as easy as they say, application development with Oracle’s tools can be
breathtakingly rapid. But this automatically reduces the amount of testing done as a normal part
of development, and the planned testing and quality assurance must be consciously lengthened to
compensate. This is not usually foreseen by those new to either Oracle or fourth-generation tools,
but you must budget for it in your project plan.

The Importance of the New Vision
Many of us look forward to the day when we can simply type a “natural” language query in
English, and have the answer back, on our screen, in seconds.

We are closer to this goal than most of us realize. The limiting factor is no longer technology,
but rather the rigor of thought in our application designs. Oracle can straightforwardly build
English-based systems that are easily understood and exploited by unsophisticated users. The
potential is there, already available in Oracle’s database and tools, but only a few have
understood and used it.

Clarity and understandability should be the hallmarks of any Oracle application. Applications
can operate in English, be understood readily by end users who have no programming background,
and provide information based on a simple English query.

How? First of all, a major goal of the design effort must be to make the application easy to
understand and simple to use. If you err, it must always be in this direction, even if it means
consuming more CPU or disk space. The limitation of this approach is that you could make an
application exceptionally easy to use by creating overly complex programs that are nearly
impossible to maintain or enhance. This would be an equally bad mistake. However, all
things being equal, an end-user orientation should never be sacrificed for clever coding.

Changing Environments
Consider that the cost to run a computer, expressed as the cost per million instructions per second
(MIPS), has historically declined at the rate of 20 percent per year. Labor costs, on the other hand,
have risen steadily. This means that any work that can be shifted from human laborers to machines
may represent a cost savings.

Have we factored this incredible shift into our application designs? The answer is “somewhat,”
but terribly unevenly. The real progress has been in environments, such as the visionary work first
done at Xerox Palo Alto Research Center (PARC), and then on the Macintosh, and now in web-
based browsers and other graphical icon-based systems. These environments are much easier to
learn and understand than the older, character-based environments, and people who use them

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 43

can produce in minutes what previously took days. The improvement in some cases has been
so huge that we’ve entirely lost sight of how hard some tasks used to be.

Unfortunately, this concept of an accommodating and friendly environment hasn’t been
grasped by many application developers. Even when they work in these environments, they
continue old habits that are just no longer appropriate.

Codes, Abbreviations, and Naming Standards
The problem of old programming habits is most pronounced in codes, abbreviations, and naming
standards, which are almost completely ignored when the needs of end users are considered.
When these three issues are thought about at all, usually only the needs and conventions of the
systems groups are considered. This may seem like a dry and uninteresting problem to be forced
to think through, but it can make the difference between great success and grudging acceptance,
between an order-of-magnitude leap in productivity and a marginal gain, between interested,
effective users and bored, harried users who make continual demands on the developers.

Here’s what happened. Business records used to be kept in ledgers and journals. Each event
or transaction was written down, line by line, in English. As we developed applications, codes
were added to replace data values (such as “01” for “Accounts Receivable,” “02” for “Accounts
Payable,” and so on). Key-entry clerks would actually have to know or look up most of these
codes and type them in at the appropriately labeled fields on their screens. This is an extreme
example, but literally thousands of applications take exactly this approach and are every bit as
difficult to learn or understand.

This problem has been most pronounced in large, conventional mainframe systems
development. As relational databases are introduced into these groups, they are used simply
as replacements for older input/output methods such as Virtual Storage Access Method (VSAM)
and Information Management System (IMS). The power and features of the relational database
are virtually wasted when used in such a fashion.

Why Are Codes Used Instead of English?
Why use codes at all? Two primary justifications are usually offered:

A category has so many items in it that all of them can’t reasonably be represented or
remembered in English.

To save space in the computer.

The second point is an anachronism. Memory and permanent storage were once so expensive
and CPUs so slow (with less power than a modern hand-held calculator) that programmers had
to cram every piece of information into the smallest possible space. Numbers, character for
character, take half of the computer storage space of letters, and codes reduce the demands on
the machine even more.

Because machines were expensive, developers had to use codes for everything to make
anything work at all. It was a technical solution to an economic problem. For users, who had to
learn all sorts of meaningless codes, the demands were terrible. Machines were too slow and
too expensive to accommodate the humans, so the humans were trained to accommodate the
machines. It was a necessary evil.

This economic justification for codes vanished years ago. Computers are now fast enough and
cheap enough to accommodate the way people work, and use words that people understand. It’s
high time that they did so. Yet, without really thinking through the justifications, developers and
designers continue to use codes.

■

■

44 Part I: Critical Database Concepts

The first point—that of too many items per category—is more substantive, but much less
so than it first appears. One idea is that it takes less effort (and is therefore less expensive) for
someone to key in the numeric codes than actual text string values such as book titles. This
justification is untrue in Oracle. Not only is it more costly to train people to know the correct
customer, product, transaction, and other codes, and more expensive because of the cost of
mistakes (which are high with code-based systems), but using codes also means not using Oracle
fully; Oracle is able to take the first few characters of a title and fill in the rest of the name itself.
It can do the same thing with product names, transactions (a “b” will automatically fill in with
“buy,” an “s” with “sell”), and so on, throughout an application. It does this with very robust
pattern-matching capabilities.

The Benefit of User Feedback
There is an immediate additional benefit: Key-entry errors drop almost to zero because the users
get immediate feedback, in English, of the business information they’re entering. Digits don’t get
transposed; codes don’t get remembered incorrectly; and, in financial applications, money rarely
is lost in accounts due to entry errors, with significant savings.

Applications also become much more comprehensible. Screens and reports are transformed
from arcane arrays of numbers and codes into a readable and understandable format. The change
of application design from code-oriented to English-oriented has a profound and invigorating
effect on a company and its employees. For users who have been burdened by code manuals,
an English-based application produces a tremendous psychological release.

How to Reduce the Confusion
Another version of the “too many items per category” justification is that the number of products,
customers, or transaction types is just too great to differentiate each by name, or there are too
many items in a category that are identical or very similar (customers named “John Smith,” for
instance). A category can contain too many entries to make the options easy to remember or
differentiate, but more often this is evidence of an incomplete job of categorizing information:
Too many dissimilar things are crammed into too broad a category. Developing an application
with a strong English-based (or French, German, Spanish, and so on) orientation, as opposed to
code-based, requires time spent with users and developers—taking apart the information about
the business, understanding its natural relationships and categories, and then carefully constructing
a database and naming scheme that simply and accurately reflect these discoveries.

There are three basic steps to doing this:

 1. Normalize the data.

 2. Choose English names for the tables and columns.

 3. Choose English words for the data.

Each of these steps will be explained in order. The goal is to design an application in which
the data is sensibly organized, is stored in tables and columns whose names are familiar to the
user, and is described in familiar terms, not codes.

Normalization
Relations between countries, or between departments in a company, or between users and
developers, are usually the product of particular historical circumstances, which may define
current relations even though the circumstances have long since passed. The result of this can

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 45

be abnormal relations, or, in current parlance, dysfunctional relations. History and circumstance
often have the same effect on data—on how it is collected, organized, and reported. And data,
too, can become abnormal and dysfunctional.

Normalization is the process of putting things right, making them normal. The origin of the
term is norma, the Latin word for a carpenter’s square that’s used for ensuring a right angle. In
geometry, when a line is at a right angle to another line, it is said to be “normal” to it. In a
relational database, the term also has a specific mathematical meaning having to do with separating
elements of data (such as names, addresses, or skills) into affinity groups, and defining the normal,
or “right,” relationships between them.

The basic concepts of normalization are being introduced here so that users can contribute
to the design of an application they will be using, or better understand one that has already been
built. It would be a mistake, however, to think that this process is really only applicable to
designing a database or a computer application. Normalization results in deep insights into the
information used in a business and how the various elements of that information are related to
each other. This will prove educational in areas apart from databases and computers.

The Logical Model
An early step in the analysis process is the building of a logical model, which is simply a normalized
diagram of the data used by the business. Knowing why and how the data gets broken apart and
segregated is essential to understanding the model, and the model is essential to building an
application that will support the business for a long time, without requiring extraordinary support.

Normalization is usually discussed in terms of form: First, Second, and Third Normal Form are
the most common, with Third representing the most highly normalized state. There are Fourth and
Fifth normalization levels defined as well, but they are beyond the scope of this discussion.

Consider a bookshelf: For each book, you can store information about it—the title, publisher,
authors, and multiple categories or descriptive terms for the book. Assume that this book-level
data became the table design in Oracle. The table might be called BOOKSHELF, and the columns
might be Title, Publisher, Author1, Author2, Author3, and Category1, Category2, Category3. The
users of this table already have a problem: In the BOOKSHELF table, users are limited to listing
just three authors or categories for a single book.

What happens when the list of acceptable categories changes? Someone has to go through
every row in the BOOKSHELF table and correct all the old values. And what if one of the authors
changes his or her name? Again, all the related records must be changed. What will you do when
a fourth author contributes to a book?

These are not really computer or technical issues, even though they became apparent because
you were designing a database. They are much more basic issues of how to sensibly and logically
organize the information of a business. They are the issues that normalization addresses. This is
done with a step-by-step reorganization of the elements of the data into affinity groups, by
eliminating dysfunctional relationships and by ensuring normal relationships.

Normalizing the Data
Step one of the reorganization is to put the data into First Normal Form. This is done by moving
data into separate tables, where the data in each table is of a similar type, and giving each table
a primary key—a unique label or identifier. This eliminates repeating groups of data, such as the
authors on the bookshelf.

Instead of having only three authors allowed per book, each author’s data is placed in a
separate table, with a row per name and description. This eliminates the need for a variable
number of authors in the BOOKSHELF table and is a better design than limiting the BOOKSHELF
table to just three authors.

46 Part I: Critical Database Concepts

Next, you define the primary key to each table: What will uniquely identify and allow you
to extract one row of information? For simplicity’s sake, assume the titles and authors’ names are
unique, so AuthorName is the primary key to the AUTHOR table.

You now have split BOOKSHELF into two tables: AUTHOR, with columns AuthorName (the
primary key) and Comments, and BOOKSHELF, with a primary key of Title, and with columns
Publisher, Category1, Category2, Category3, Rating, and RatingDescription. A third table,
BOOKSHELF_AUTHOR, provides the associations: Multiple authors can be listed for a single
book and an author can write multiple books—known as a many-to-many relationship. Figure 4-8
shows these relationships and primary keys.

The next step in the normalization process, Second Normal Form, entails taking out data
that’s only dependent on a part of the key. If there are attributes that do not depend on the
entire key, those attributes should be moved to a new table. In this case, RatingDescription is
not really dependent on Title—it’s based on the Rating column value, so it should be moved
to a separate table.

The final step, Third Normal Form, means getting rid of anything in the tables that doesn’t
depend solely on the primary key. In this example, the categories are interrelated; you would not
list a title as both Fiction and Nonfiction, and you would have different subcategories under the
Adult category than you would have under the Children category. Category information is
therefore moved to a separate table. Figure 4-9 shows the tables in Third Normal Form.

Anytime the data is in Third Normal Form, it is already automatically in Second and First
Normal Form. The whole process can therefore actually be accomplished less tediously than by
going from form to form. Simply arrange the data so that the columns in each table, other than
the primary key, are dependent only on the whole primary key. Third Normal Form is sometimes
described as “the key, the whole key, and nothing but the key.”

Navigating Through the Data
The bookshelf database is now in Third Normal Form. Figure 4-10 shows a sample of what these
tables might contain. It’s easy to see how these tables are related. You navigate from one to the
other to pull out information on a particular author, based on the keys to each table. The primary
key in each table is able to uniquely identify a single row. Choose Stephen Jay Gould, for instance,
and you can readily discover his record in the AUTHOR table, because AuthorName is the
primary key.

FIGURE 4-8 The BOOKSHELF, AUTHOR, and BOOKSHELF_AUTHOR

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 47

Look up Harper Lee in the AuthorName column of the BOOKSHELF_AUTHOR table and
you’ll see that she has published one novel, whose title is To Kill A Mockingbird. You can then
check the publisher, category, and rating for that book in the BOOKSHELF table. You can check
the RATING table for a description of the rating.

When you looked up To Kill A Mockingbird in the BOOKSHELF table, you were searching
by the primary key for the table. To find the author of that book, you could reverse your earlier
search path, looking through BOOKSHELF_AUTHOR for the records that have that value in the
Title column—the column Title is a foreign key in the BOOKSHELF_AUTHOR table. When the
primary key for BOOKSHELF appears in another table, as it does in the BOOKSHELF_AUTHOR
table, it is called a foreign key to that table.

These tables also show real-world characteristics: There are ratings and categories that are not
yet used by books on the bookshelf. Because the data is organized logically, you can keep a record
of potential categories, ratings, and authors even if none of the current books use those values.

This is a sensible and logical way to organize information, even if the “tables” are written in a
ledger book or on scraps of paper kept in cigar boxes. Of course, there is still some work to do to
turn this into a real database. For instance, AuthorName probably ought to be broken into FirstName
and LastName, and you might want to find a way to show which author is the primary author, or
if one is an editor rather than an author.

This whole process is called normalization. It really isn’t any trickier than this. Although some
other issues are involved in a good design, the basics of analyzing the “normal” relationships among
the various elements of data are just as simple and straightforward as they’ve just been explained.
It makes sense regardless of whether or not a relational database or a computer is involved at all.

One caution needs to be raised, however. Normalization is a part of the process of analysis.
It is not design. Design of a database application includes many other considerations, and it is a
fundamental mistake to believe that the normalized tables of the logical model are the “design”
for the actual database. This fundamental confusion of analysis and design contributes to the
stories in the press about the failure of major relational applications. These issues are addressed
for developers more fully later in this chapter.

FIGURE 4-9 BOOKSHELF and related tables

48 Part I: Critical Database Concepts

AUTHOR
AuthorName

Comments

DIETRICH BONHOEFFER GERMAN THEOLOGIAN, KILLED IN A WAR CAMP

ROBERT BRETALL KIERKEGAARD ANTHOLOGIST

ALEXANDRA DAY AUTHOR OF PICTURE BOOKS FOR CHILDREN

STEPHEN JAY GOULD SCIENCE COLUMNIST, HARVARD PROFESSOR

SOREN KIERKEGAARD DANISH PHILOSOPHER AND THEOLOGIAN

HARPER LEE AMERICAN NOVELIST, PUBLISHED ONLY ONE NOVEL

LUCY MAUD MONTGOMERY CANADIAN NOVELIST

JOHN ALLEN PAULOS MATHEMATICS PROFESSOR

J. RODALE ORGANIC GARDENING EXPERT

FIGURE 4-10 Sample data from the BOOKSHELF tables

CATEGORY
CategoryName

ParentCategory

SubCategory

ADULTREF ADULT REFERENCE

ADULTFIC ADULT FICTION

ADULTNF ADULT NONFICTION

CHILDRENPIC CHILDREN PICTURE BOOK

CHILDRENFIC CHILDREN FICTION

CHILDRENNF CHILDREN NONFICTION

BOOKSHELF_AUTHOR
Title

AuthorName

TO KILL A MOCKINGBIRD HARPER LEE

WONDERFUL LIFE STEPHEN JAY GOULD

INNUMERACY JOHN ALLEN PAULOS

KIERKEGAARD ANTHOLOGY ROBERT BRETALL

KIERKEGAARD ANTHOLOGY SOREN KIERKEGAARD

ANNE OF GREEN GABLES LUCY MAUD MONTGOMERY

GOOD DOG, CARL ALEXANDRA DAY

LETTERS AND PAPERS FROM PRISON DIETRICH BONHOEFFER

RATING
Rating

RatingDescription

1 ENTERTAINMENT

2 BACKGROUND INFORMATION

3 RECOMMENDED

4 STRONGLY RECOMMENDED

5 REQUIRED READING

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 49

English Names for Tables and Columns
Once the relationships between the various elements of the data in an application are understood
and the data elements are segregated appropriately, considerable thought must be devoted to
choosing names for the tables and columns into which the data will be placed. This is an area
given too little attention, even by those who should know better. Table and column names are
often developed without consulting end users and without rigorous review. Both of these failings
have serious consequences when it comes to actually using an application.

For example, consider the tables shown in Figure 4-10. The table and column names are
virtually all self-explanatory. An end user, even one new to relational ideas and SQL, would have
little difficulty understanding or even replicating a query such as this:

select Title, Publisher
 from BOOKSHELF
 order by Publisher;

Users understand this because the words are all familiar. There are no obscure or ill-defined
terms. When tables with many more columns in them must be defined, naming the columns can
be more difficult, but a few consistently enforced rules will help immensely. Consider some of the
difficulties commonly caused by a lack of naming conventions. What if you had chosen these
names instead?

BOOKSHELF B_A AUTHS CATEGORIES
------------- -------- ------------ --------------
title title anam cat
pub anam comms p_cat
cat s_cat
rat

The naming techniques in this table, as bizarre as they look, are unfortunately very common.
They represent tables and columns named by following the conventions (and lack of conventions)
used by several well-known vendors and developers.

Here are a few of the more obvious difficulties in the list of names:

Abbreviations are used without good reason. This makes remembering the “spelling” of
a table or column name virtually impossible. The names may as well be codes, because
the users will have to look them up.

■

BOOKSHELF
Title

Publisher

CategoryName

Rating

TO KILL A MOCKINGBIRD HARPERCOLLINS ADULTFIC 5

WONDERFUL LIFE W.W.NORTON & CO. ADULTNF 5

INNUMERACY VINTAGE BOOKS ADULTNF 4

KIERKEGAARD ANTHOLOGY PRINCETON UNIV PR ADULTREF 3

ANNE OF GREEN GABLES GRAMMERCY CHILDRENFIC 3

GOOD DOG, CARL LITTLE SIMON CHILDRENPIC 1

LETTERS AND PAPERS FROM PRISON SCRIBNER ADULTNF 4

FIGURE 4-10 Sample data from the BOOKSHELF tables (continued)

50 Part I: Critical Database Concepts

Abbreviations are inconsistent.

The purpose or meaning of a column or table is not apparent from the name. In addition
to abbreviations making the spelling of names difficult to remember, they obscure the
nature of the data that the column or table contains. What is P_cat? Comms?

Underscores are used inconsistently. Sometimes they are used to separate words in a
name, but other times they are not. How will anyone remember which name does or
doesn’t have an underscore?

Use of plurals is inconsistent. Is it CATEGORY or CATEGORIES? Comm or Comms?

Rules apparently used have immediate limitations. If the first letter of the table name is
to be used for a name column, as in Anam for a table whose table name starts with A,
what happens when a second table beginning with the letter A becomes necessary? Does
the name column in that table also get called Anam? If so, why isn’t the column in both
simply called Name?

These are only a few of the most obvious difficulties. Users subjected to poor naming of tables
and columns will not be able to simply type English queries. The queries won’t have the intuitive
and familiar “feel” that the BOOKSHELF table query has, and this will harm the acceptance and
usefulness of the application significantly.

Programmers used to be required to create names that were a maximum of six to eight
characters in length. As a result, names unavoidably were confused mixes of letters, numbers,
and cryptic abbreviations. Like so many other restrictions forced on users by older technology,
this one is just no longer applicable. Oracle allows table and column names up to 30 characters
long. This gives designers plenty of room to create full, unambiguous, and descriptive names.

The difficulties outlined here imply solutions, such as avoiding abbreviations and plurals,
and either eliminating underscores or using them consistently. These quick rules of thumb will
go a long way in solving the naming confusion so prevalent today. At the same time, naming
conventions need to be simple, easily understood, and easily remembered. In a sense, what is
called for is a normalization of names. In much the same way that data is analyzed logically,
segregated by purpose, and thereby normalized, the same sort of logical attention needs to be
given to naming standards. The job of building an application is improperly done without it.

English Words for the Data
Having raised the important issue of naming conventions for tables and columns, the next step is
to look at the data itself. After all, when the data from the tables is printed on a report, how self-
evident the data is will determine how understandable the report is. In the BOOKSHELF example,
Rating is a code value, and Category is a concatenation of multiple values. Is this an improvement?
If you asked another person about a book, would you want to hear that it was rated a 4 in AdultNF?
Why should a machine be permitted to be less clear?

Additionally, keeping the information in English makes writing and understanding queries
much simpler. The query should be as English-like as possible:

select Title, AuthorName
 from BOOKSHELF_AUTHOR;

■

■

■

■

■

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 51

Capitalization in Names and Data
Oracle makes it slightly easier to remember table and column names by ignoring whether you
type in capital letters, small letters, or a mixture of the two. It stores table and column names in its
internal data dictionary in uppercase. When you type a query, it instantly converts the table and
column names to uppercase, and then checks for them in the dictionary. Some other relational
systems are case sensitive. If users type a column name as “Ability,” but the database thinks it is
“ability” or “ABILITY” (depending on what it was told when the table was created), it will not
understand the query.

NOTE
You can force Oracle to create tables and columns with mixed-case
names, but doing so will make querying and working with the data
difficult. Use the default uppercase behavior.

The ability to create case-sensitive table names is promoted as a benefit because it allows
programmers to create many tables with, for instance, similar names. They can make a worker
table, a Worker table, a wORker table, and so on. These will all be separate tables. How is
anyone, including the programmer, supposed to remember the differences? This is a drawback,
not a benefit, and Oracle was wise not to fall into this trap.

A similar case can be made for data stored in a database. There are ways to find information
from the database regardless of whether the data is in uppercase or lowercase, but these methods
impose an unnecessary burden. With few exceptions, such as legal text or form-letter paragraphs,
it is much easier to store data in the database in uppercase. It makes queries easier and provides
a more consistent appearance on reports. When and if some of this data needs to be put into
lowercase, or mixed uppercase and lowercase (such as the name and address on a letter), then the
Oracle functions that perform the conversion can be invoked. It will be less trouble overall, and
less confusing, to store and report data in uppercase. You can interact with Oracle in ways that
make queries case insensitive, but it is generally simpler to develop applications with consistent
case choices for your data.

Looking back over this chapter, you’ll see that this practice was not followed. Rather, it was
delayed until the subject could be introduced and put in its proper context. From here on, with
the exception of one or two tables and a few isolated instances, data in the database will be in
uppercase.

Normalizing Names
Several query tools have come on the market whose purpose is to let you make queries using
common English words instead of odd conglomerations. These products work by building a
logical map between the common English words and the hard-to-remember, non-English column
names, table names, and codes. The mapping takes careful thought, but once completed, it makes
the user’s interaction with the application easy. But why not put the care in at the beginning? Why
create a need for yet another layer, another product, and more work, when much of the confusion
can be avoided simply by naming things better the first time around?

For performance reasons, it may be that some of an application’s data must still be stored in
a coded fashion within the computer’s database. These codes should not be exposed to users,
during either data entry or retrieval, and Oracle allows them to be easily hidden.

52 Part I: Critical Database Concepts

The instant that data entry requires codes, key-entry errors increase. When reports contain
codes instead of English, errors of interpretation begin. And when users need to create new or ad
hoc reports, their ability to do so quickly and accurately is severely impaired both by codes and
by not being able to remember strange column and table names.

Oracle gives users the power to see and work with English throughout the entire application.
It is a waste of Oracle’s power to ignore this opportunity, and it will without question produce a
less understandable and less productive application. Developers should seize the opportunity.
Users should demand it. Both will benefit immeasurably.

Good Design Has a Human Touch
At this point, if you are new to Oracle you may want to go right into working with Oracle and
the SQL language. That is covered in the next chapter; the remainder of this chapter focuses on
performance, naming, and design considerations. You can refer back to this section later when
you are ready to design and implement an application.

This section looks at a method of approaching a development project that takes into account
the real business tasks your end users have to accomplish. This distinguishes this method from
the more common data orientation of many developers and development methodologies. Data
normalization and CASE (Computer Aided Software Engineering) technologies have become so
much the center of attention with relational application development that a focus on the data and
the issues of referential integrity, keys, normalization, and table diagrams has become almost an
obsession. These issues are so often confused with design—and even believed to be design—that
the reminder that they are analysis is often met with surprise.

Normalization is analysis, not design. And it is only a part of the analysis necessary to understand
a business and build a useful application. The goal of application development, after all, is to help
the business run more successfully by improving the speed and efficiency with which business
tasks are done and by making the environment in which people work as meaningful and supportive
as possible. Give people control over their information, and intuitive, straightforward access to it,
and they will respond gratefully and productively. Assign the control to a remote group, cloud the
information in codes and user-hostile interfaces, and they will be unhappy and unproductive.

The methods outlined in this section are not intended to be a rigorous elucidation of the
process, and the tools you use and are familiar with for data structures or flows are probably
sufficient for the task. The purpose here is to disclose an approach that is effective in creating
responsive, appropriate, and accommodating applications.

Understanding the Application Tasks
One of the often-neglected steps in building software is understanding the end user’s job—the tasks
that computer automation is intended to support. Occasionally, this is because the application
itself is quite specialized; more often, it is because the approach to design tends to be data oriented.
Frequently, these are the major questions asked in the analysis:

What data should be captured?

How should the data be processed?

How should the data be reported?

These questions expand into a series of subquestions, and they include issues such as input
forms, codes, screen layouts, computations, postings, corrections, audit trails, retention, storage

■

■

■

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 53

volumes, processing cycles, report formatting, distribution, and maintenance. These are all vitally
important areas. One difficulty, however, is that they all focus solely on data.

People use data, but they do tasks. One might argue that although this may be true of professional
workers, key-entry clerks really only transfer data from an input form to a keyboard; their tasks are
very data oriented. This is a fair portrayal of these jobs today. But is this a consequence of the real job
that needs to get done, or is it a symptom of the design of the computer application? Using humans
as input devices, particularly for data that is voluminous, consistent in format (as on forms), and in a
limited range of variability, is an expensive and antiquated, not to mention dehumanizing, method
of capturing data. Like the use of codes to accommodate machine limitations, it’s an idea whose
time has passed.

This may sound like so much philosophy, but it has practical import in the way application
design is done. People use data, but they do tasks. And they don’t do tasks through to completion
one at a time. They do several tasks that are subsets of or in intersection with each other, and they
do them all at once, in parallel.

When designers allow this idea to direct the analysis and creation of an application, rather
than focusing on the data orientation that has been historically dominant, the very nature of the
effort changes significantly. Why have windowing environments been so successful? Because they
allow a user to jump quickly among small tasks, keeping them all active without having to shut
down and exit one in order to begin another. The windowing environment comes closer to mapping
the way people really think and work than the old “one thing at a time” approach ever did. This
lesson should not be lost. It should be built upon.

Understanding the application tasks means going far beyond identifying the data elements,
normalizing them, and creating screens, processing programs, and reports. It means really
understanding what the users do and what their tasks are, and designing the application to be
responsive to those tasks, not just to capture the data associated with them. In fact, when the
orientation is toward the data, the resulting design will inevitably distort the users’ tasks rather
than support them.

How do you design an application that is responsive to tasks rather than data? The biggest
hurdle is simply understanding that focusing on tasks is necessary. This allows you to approach
the analysis of the business from a fresh perspective.

The first step in the analysis process is to understand the tasks. For which tasks do the
members of this group really need to use computers? What is the real service or product
produced? This seems like a fundamental and even simplistic first question, but you’ll find that a
surprising number of business people are quite unclear about the answer. An amazing number of
businesses, from healthcare to banking, from shipping to manufacturing, used to think they were
in the data processing business. After all, they input data, process it, and report it, don’t they? This
delusion is yet another symptom of the data orientation our systems designs have had that has led
dozens of companies to attempt to market their imagined “real” product, data processing, with
disastrous consequences for most of them.

Hence the importance of learning about a business application: You have to keep an open
mind, and may often have to challenge pet notions about what the business is in order to learn
what it really is. This is a healthy, if sometimes difficult, process.

And, just as it is essential that business people become literate users of SQL and understand
the basics of the relational model, so it is important that application designers really understand
the service or product being delivered, and the tasks necessary to make that happen. A project
team that includes end users who have been introduced to the essentials of SQL and the relational
approach, such as by reading this book, and designers who are sensitive to end users’ needs
and understand the value of a task-oriented, readable application environment, will turn out

54 Part I: Critical Database Concepts

extraordinarily good systems. The members of such a project team check, support, and enhance
each other’s efforts.

One approach to this process is to develop two converging documents: a task document and
a data document. It is in the process of preparing the task document that the deep understanding
of the application comes about. The data document will help implement the vision and ensure
that the details and rules are all accounted for, but the task document defines the vision of what
the business is.

Outline of Tasks
The task document is a joint effort of the business users and the application designers. It lists the
tasks associated with the business from the top down. It begins with a basic description of the
business. This should be a simple declarative sentence of three to ten words, in the active voice,
without commas and with a minimum of adjectives:

We sell insurance.

It should not be:

Amalgamated Diversified is a leading international supplier of financial resources, training,
information processing, transaction capture and distribution, communications, customer
support, and industry direction in the field of shared risk funding for health care maintenance,
property preservation, and automobile liability.

There is a tremendous temptation to cram every little detail about a business and its dreams
about itself into this first sentence. Don’t do it. The effort of trimming the descriptive excesses
down to a simple sentence focuses the mind wonderfully. If you can’t get the business down to
ten words, you haven’t understood it yet.

But, as an application designer, creating this sentence isn’t your task alone; it is a joint effort
with the business user, and it initiates the task documentation process. It provides you with the
opportunity to begin serious questioning about what the business does and how it does it. This is
a valuable process for the business itself, quite independent of the fact that an application is being
built. You will encounter numerous tasks and subtasks, procedures, and rules that will prove to be
meaningless or of marginal use. Typically, these are artifacts of either a previous problem, long
since solved, or of information or reporting requests from managers long since departed.

Some wags have suggested that the way to deal with too many reports being created, whether
manually or by computer, is to simply stop producing them and see if anyone notices. This is a
humorous notion, but the seed of truth it contains needs to be a part of the task documentation
process. In fact, it proved quite useful in Y2K remediation efforts—many programs and reports
didn’t have to be fixed, simply because they were no longer used!

Your approach to the joint effort of documenting tasks allows you to ask skeptical questions
and look at (and reevaluate the usefulness of) what may be mere artifacts. Be aware, however, that
you need to proceed with the frank acknowledgment that you, as a designer, cannot understand
the business as thoroughly as the user does. There is an important line between seizing the
opportunity of an application development project to rationalize what tasks are done and why, and
possibly offending the users by presuming to understand the “real” business better than they do.

Ask the user to describe a task in detail and explain to you the reason for each step. If the
reason is a weak one, such as “We’ve always done it this way,” or “I think they use this upstairs
for something,” red flags should go up. Say that you don’t understand, and ask again for an
explanation. If the response is still unsatisfactory, put the task and your question on a separate list

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 55

for resolution. Some of these will be answered simply by someone who knows the subject better,
others will require talking to senior management, and many tasks will end up eliminated because
they are no longer needed. One of the evidences of a good analysis process is the improvement
of existing procedures, independent of, and generally long before, the implementation of a new
computer application.

General Format of the Task Document
This is the general format for the task document:

Summary sentence describing the business (three to ten words)

Summary sentences describing and numbering the major tasks of the business (short
sentences, short words)

Additional levels of task detail, as needed, within each of the major tasks

By all means, follow the summary sentence for every level with a short, descriptive paragraph,
if you want, but don’t use this as an excuse to avoid the effort of making the summary sentence
clear and crisp. Major tasks are typically numbered 1.0, 2.0, 3.0, and so on, and are sometimes
referred to as zero-level tasks. The levels below each of these are numbered using additional dots,
as in 3.1 and 3.1.14. Each major task is taken down to the level where it is a collection of atomic
tasks—tasks for which no subtask is meaningful in itself and that, once started, is either taken to
completion or dropped entirely. Atomic tasks are never left half-finished.

Writing a check is an atomic task; filling in the dollar amount is not. Answering the telephone
as a customer service representative is not an atomic task; answering the phone and fulfilling the
customer’s request is atomic. Atomic tasks must be meaningful and must complete an action.

The level at which a task is atomic will vary by task. The task represented by 3.1.14 may be
atomic yet still have several additional sublevels. The task 3.2 may be atomic, or 3.1.16.4 may
be. What is important is not the numbering scheme (which is nothing more than a method for
outlining a hierarchy of tasks) but the decomposition to the atomic level. The atomic tasks are
the fundamental building blocks of the business. Two tasks can still be atomic if one occasionally
depends upon the other, but only if each can and does get completed independently. If two tasks
always depend upon each other, they are not atomic. The real atomic task includes them both.

In most businesses, you will quickly discover that many tasks do not fit neatly into just one of
the major (zero-level) tasks, but seem to span two or more, and work in a network or “dotted line”
fashion. This is nearly always evidence of improper definition of the major tasks or incomplete
atomization of the lower tasks. The goal is to turn each task into a conceptual “object,” with a
well-defined idea of what it does (its goal in life) and what resources (data, computation, thinking,
paper, pencil, and so on) it uses to accomplish its goal.

Insights Resulting from the Task Document
Several insights come out of the task document. First, because the task document is task oriented
rather than data oriented, it is likely to substantially change the way user screens are designed. It
will affect what data is captured, how it is presented, how help is implemented, and how users
switch from one task to another. The task orientation will help ensure that the most common
kinds of jumping between tasks will not require inordinate effort from the user.

Second, the categorization of major tasks will change as conflicts are discovered; this will
affect how both the designers and the business users understand the business.

■

■

■

56 Part I: Critical Database Concepts

Third, even the summary sentence itself will probably change. Rationalizing a business into
atomic task “objects” forces a clearing out of artifacts, misconceptions, and unneeded dependencies
that have long weighed down the business unnecessarily.

This is not a painless process, but the benefits in terms of the business’s self-understanding,
the cleanup of procedures, and the automation of the tasks will usually far exceed the emotional
costs and time spent. It helps immensely if there is general understanding going into the project
that uncomfortable questions will be asked, incorrect assumptions will be corrected, and step-by-
step adjustments will be made to the task document until it is completed.

Understanding the Data
In conjunction with the decomposition and description of the tasks, the resources required at
each step are described in the task document, especially in terms of the data required. This is
done on a task-by-task basis, and the data requirements are then included in the data document.
This is a conceptually different approach from the classical view of the data. You will not simply
take the forms and screens currently used by each task and record the elements they contain. The
flaw in this “piece of paper in a cigar box” approach lies in our tendency (even though we don’t
like to admit it) to accept anything printed on paper as necessary or true.

In looking at each task, you should determine what data is necessary to do the task, rather
than what data elements are on the form you use to do the task. By requiring that the definition of
the data needed come from the task rather than from any existing forms or screens, you force an
examination of the true purpose of the task and the real data requirements. If the person doing the
task doesn’t know the use to which data is put, the element goes on the list for resolution. An
amazing amount of garbage is eliminated by this process.

Once the current data elements have been identified, they must be carefully scrutinized.
Numeric and letter codes are always suspect. They disguise real information behind counterintuitive,
meaningless symbols. There are times and tasks for which codes are handy, easily remembered,
or made necessary by sheer volume. But, in your final design, these cases should be rare and
obvious. If they are not, you’ve lost your way.

In the scrutiny of existing data elements, codes should be set aside for special attention. In
each case, ask yourself whether the element should be a code. Its continued use as a code should
be viewed suspiciously. There must be good arguments and compelling reasons for perpetuating
the disguise. The process for converting codes back into English is fairly simple, but it’s a joint
effort. The codes are first listed by data element, along with their meanings. These are then
examined by users and designers, and short English versions of the meanings are proposed,
discussed, and tentatively approved.

In this same discussion, designers and end users should decide on names for the data elements.
These will become column names in the database, and will be regularly used in English queries,
so the names should be descriptive (avoiding abbreviations, other than those common to the
business) and singular. Because of the intimate relationship between the column name and the
data it contains, the two should be specified simultaneously. A thoughtful choice of a column
name will vastly simplify determining its new English contents.

Data elements that are not codes also must be rigorously examined. By this point, you have
good reason to believe that all the data elements you’ve identified are necessary to the business
tasks, but they are not necessarily well organized. What appears to be one data element in the
existing task may in fact be several elements mixed together that require separation. Names,

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 57

addresses, and phone numbers are very common examples of this, but every application has a
wealth of others.

First and last names were mixed together, for example, in the AUTHOR table. The AuthorName
column held both first and last names, even though the tables were in Third Normal Form. This
would be an extremely burdensome way to actually implement an application, in spite of the fact
that the normalization rules were technically met. To make the application practical and prepare
it for English queries, the AuthorName column needs to be decomposed into at least two new
columns, LastName and FirstName. This same categorization process is regularly needed in
rationalizing other data elements, and it’s often quite independent of normalization.

The degree of decomposition depends on how the particular data elements are likely to
be used. It is possible to go much too far and decompose categories that, though made up of
separable pieces, provide no additional value in their new state. Decomposition is application
dependent on an element-by-element basis. Once decomposition has been done, these new
elements, which will become columns, need to be thoughtfully named, and the data they will
contain needs to be scrutinized. Text data that will fall into a definable number of values should
be reviewed for naming. These column names and values, like those of the codes, are tentative.

The Atomic Data Models
Now the process of normalization begins, and with it the drawing of the atomic data models.
There are many good texts on the subject and a wide variety of analysis and design tools that can
speed the process, so this book doesn’t suggest any particular method, because recommending
one method may hinder rather than help.

Each atomic transaction should be modeled, and it should be labeled with the task number
to which it applies. Included in the model are table names, primary and foreign keys, and major
columns. Each normalized relationship should have a descriptive name, and estimated row counts
and transaction rates should appear with each table. Accompanying each model is an additional
sheet with all the columns and datatypes, their ranges of value, and the tentative names for the
tables, columns, and named values in the columns.

The Atomic Business Model
This data document is now combined with the task document. The combined document is a
business model. It’s reviewed jointly by the application designers and end users for accuracy
and completeness.

The Business Model
At this point, both the application designers and the end users should possess a clear vision of the
business, its tasks, and its data. Once the business model is corrected and approved, the process
of synthesizing the tasks and data models into an overall business model begins. This part of the
process sorts common data elements between tasks, completes final, large-scale normalization,
and resolves consistent, definitive names for all the parts.

This can be quite a large drawing for major applications, with supporting documentation that
includes the tasks, the data models (with corrected element names, based on the full model), and
a list of all the full-scale tables and their column names, datatypes, and contents. A final check of
the effort is made by tracing the data access paths of each transaction in the full business model to
determine that all the data the transaction requires is available for selection or insertion, and that
no tasks insert data with elements missing that are essential to the model’s referential integrity.

58 Part I: Critical Database Concepts

With the exception of the effort spent to properly name the various tables, columns, and
common values, virtually everything to this point has been analysis, not design. The aim has
been to promote understanding of the business and its components.

Data Entry
Screen design does not proceed from the business model. It is not focused on tables, but rather
on tasks, so screens are created that support the task orientation and the need to jump between
subtasks when necessary. In practical terms, this will often map readily to a primary table used
by the task, and to other tables that can be queried for values or updated as the primary table is
accessed.

But there will also be occasions when there simply is no main table, but instead a variety of
related tables, all of which will supply or receive data to support the task. These screens will look
and act quite differently from the typical table-oriented screens developed in many applications,
but they will significantly amplify the effectiveness of their users and their contribution to the
business. And that’s the whole purpose of this approach.

The interaction between the user and the machine is critical; the input and query screens
should consistently be task oriented and descriptive, in English. The use of icons and graphical
interfaces plays an important role as well. Screens must reflect the way work is actually done and
be built to respond in the language in which business is conducted.

Query and Reporting
If anything sets apart the relational approach, and SQL, from more traditional application
environments, it is the ability for end users to easily learn and execute ad hoc queries. These
are those reports and one-time queries that are outside of the basic set usually developed and
delivered along with the application code.

With Oracle’s SQL*Plus utility, a command line utility for creating and querying database
objects, end users are given unprecedented control over their own data. Both the users and
developers benefit from this ability: the users because they can build reports, analyze information,
modify their queries, and re-execute them, all in a matter of minutes, and the developers because
they are relieved of the undesirable requirement of creating new reports.

Users are granted the power to look into their data, analyze it, and respond with a speed and
thoroughness unimaginable just a few years ago. This leap in productivity is greatly extended if
the tables, columns, and data values are carefully crafted in English; it is greatly foreshortened if
bad naming conventions and meaningless codes and abbreviations are permitted to infect the
design. The time spent in the design process to name the objects consistently and descriptively
will pay off quickly for the users, and therefore for the business.

Some people, typically those who have not built major relational applications, fear that
turning query facilities over to end users will cripple the machine on which the facilities are used.
The fear is that users will write inefficient queries that will consume overwhelming numbers of
CPU cycles, slowing the machine and every other user. Experience shows that this generally is not
true. Users quickly learn which kinds of queries run fast, and which do not. Further, most business
intelligence and reporting tools available today can estimate the amount of time a query will take,
and restrict access—by user, time of day, or both—to queries that would consume a
disproportionate amount of resources. In practice, the demands users make on a machine only
occasionally get out of hand, but the benefits they derive far exceed the cost of the processing.
Virtually any time you can move effort from a person to a machine, you save money.

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 59

The real goal of design is to clarify and satisfy the needs of the business and business users.
If there is a bias, it must always be toward making the application easier to understand and use,
particularly at the expense of CPU or disk, but less so if the cost is an internal complexity so great
that maintenance and change become difficult and slow.

Toward Object Name Normalization
The basic approach to naming is to choose meaningful, memorable, and descriptive readable
names, avoiding abbreviations and codes, and using underscores either consistently or not at all.
In a large application, table, column, and data names will often be multiword, as in the case of
ReversedSuspenseAccount or Last_GL_Close_Date. The goal of thoughtful naming methods is
ease of use: The names must be easily remembered and must follow rules that are easily explained
and applied. In the pages ahead, a somewhat more rigorous approach to naming is presented,
with the ultimate goal of developing a formal process of object name normalization.

Level-Name Integrity
In a relational database system, the hierarchy of objects ranges from the database, to the table
owners, to the tables, to the columns, to the data values. In very large systems, there may even
be multiple databases, and these may be distributed within locations. For the sake of brevity, the
higher levels will be ignored for now, but what is said will apply to them as well.

Each level in this hierarchy is defined within the level above it, and each level should be
given names appropriate to its own level and should not incorporate names from outside its
own level. For example, a table cannot have two columns called Name, and the account named
George cannot own two tables named AUTHOR.

There is no requirement that each of George’s tables have a name that is unique throughout
the entire database. Other owners may have AUTHOR tables as well. Even if George is granted
access to them, there is no confusion, because he can identify each table uniquely by prefixing its
owner’s name to the table name, as in Dietrich.AUTHOR. It would not be logically consistent to
incorporate George’s owner name into the name of each of his tables, as in GEOAUTHOR,
GEOBOOKSHELF, and so on. This confuses and complicates the table name by placing part
of its parent’s name in its own, in effect a violation of level-name integrity.

Brevity should never be favored over clarity. Including pieces of table names in column
names is a bad technique, because it violates the logical idea of levels and the level-name
integrity that this requires. It is also confusing, requiring users to look up column names virtually
every time they want to write a query. Object names must be unique within their parent, but no
incorporation of names from outside an object’s own level should be permitted.

The support for abstract datatypes in Oracle strengthens your ability to create consistent
names for attributes. If you create a datatype called ADDRESS_TY, it will have the same attributes
each time it is used. Each of the attributes will have a consistent name, datatype, and length,
making their implementation more consistent across the enterprise. However, using abstract
datatypes in this manner requires that you do both of the following:

Properly define the datatypes at the start so that you can avoid the need to modify the
datatype later.

Support the syntax requirements of abstract datatypes.

■

■

60 Part I: Critical Database Concepts

Foreign Keys
The one area of difficulty with using brief column names is the occasional appearance of a
foreign key in a table in which another column has the same name that the foreign key column
has in its home table. One possible long-term solution is to allow the use of the full foreign key
name, including the table name of its home table, as a column name in the local table (such as
BOOKSHELF.Title as a column name).

The practical need to solve the same-name column problem requires one of the following
actions:

Invent a name that incorporates the source table of the foreign key in its name without
using the dot (using an underscore, for instance).

Invent a name that incorporates an abbreviation of the source table of the foreign key
in its name.

Invent a name different from its name in its source table.

Change the name of the conflicting column.

None of these is particularly attractive, but if you come across the same-name dilemma,
you’ll need to take one of these actions.

Singular Names
One area of great inconsistency and confusion is the question of whether objects should have
singular or plural names. Should it be the AUTHOR table or the AUTHORS table? Should it be
the Name column or the Names column?

There are two helpful ways to think about this issue. First, consider some columns common
to nearly every database: Name, Address, City, State, and Zip. Other than the first column, does it
ever occur to anyone to make these names plural? It is nearly self-evident when considering these
names that they describe the contents of a single row, a record. Even though relational databases
are “set oriented,” clearly the fundamental unit of a set is a row, and it is the content of that row
that is well-described by singular column names. When designing a data-entry screen to capture
a person’s name and address, should it look like this?

Names: ___

Addresses: ___

Cities: ____________________________ States __ Zips _____-____

Or will you make these column names singular on the screen because you’re capturing one
name and address at a time, but tell the users that when they write queries they must all be
converted to plural? It is simply more intuitive and straightforward to restrict column names to
singular.

If all objects are named consistently, neither you nor a user has to try to remember the rules
for what is plural and what isn’t. The benefit of this should be obvious. Suppose we decide that all
objects will henceforth be plural. We now have “s” or “es” on the end of virtually every object,
perhaps even on the end of each word in a long multiword object name. Of what possible benefit
is it to key all these extra letters all the time? Is it easier to use? Is it easier to understand? Is it
easier to remember? Obviously, it is none of these.

■

■

■

■

Chapter 4: Planning Oracle Applications—Approaches, Risks, and Standards 61

Therefore, the best solution is this: All object names are always singular. The sole exception to
this rule is any widely accepted term already commonly used in the business, such as “sales.”

Brevity
As mentioned earlier, clarity should never be sacrificed for brevity, but given two equally meaningful,
memorable, and descriptive names, always choose the shorter. During application development,
propose alternative column and table names such as these to a group of users and developers and get
their input on choosing the clearest name. How do you build lists of alternatives? Use a thesaurus
and a dictionary. On a project team dedicated to developing superior, productive applications, every
team member should be given a thesaurus and a dictionary as basic equipment, and then should
be reminded over and over again of the importance of careful object naming.

Object Name Thesaurus
Ultimately, relational databases should include an object name thesaurus, just as they include
a data dictionary. This thesaurus should enforce the company’s naming standards and ensure
consistency of name choice and abbreviation (where used).

Such standards may require the use of underscores in object naming to make the parsing of
the name into component parts a straightforward task. This also helps enforce the consistent use
of underscores, rather than the scattered, inconsistent usage within an application that
underscores frequently receive now.

If you work directly with a government agency or large firm, that organization may already
have object-naming standards. The object-naming standards of large organizations have over the
years radiated into the rest of the commercial marketplace, and they may form the basis for the
naming standards used at your company. For example, those standards may provide the direction
to choose between “Corporation” and “Firm.” If they do not, you should develop your naming
standards to be consistent, both with those base standards and with the guidelines put forth in this
chapter.

Intelligent Keys and Column Values
Intelligent keys are so named because they contain nontrivial combinations of information. The
term is misleading in the extreme because it implies something positive or worthwhile. A more
meaningful term might be overloaded keys. General ledger and product codes often fall into this
category and contain all the difficulties associated with other codes, and more. Further, the
difficulties found in overloaded keys also apply to non-key columns that are packed with more
than one piece of meaningful data.

Typical of an overloaded key or column value is this description: “The first character is the
region code. The next four characters are the catalog number. The final digit is the cost center
code, unless this is an imported part, in which case an I is tagged onto the end of the number,
or unless it is a high-volume item, such as screws, in which case only three digits are used for
catalog number, and the region code is HD.”

Eliminating overloaded key and column values is essential in good relational design. The
dependencies built on pieces of these keys (usually foreign keys into other tables) are all at risk
if the structure is maintained. Unfortunately, many application areas have overloaded keys that
have been used for years and are deeply embedded in the company’s tasks. Some of them were
created during earlier efforts at automation, using databases that could not support multiple key
columns for composite keys. Others came about through historical accretion, by forcing a short
code, usually numeric, to mean more and to cover more cases than it was ever intended to at the

62 Part I: Critical Database Concepts

beginning. Eliminating the existing overloaded keys may have practical ramifications that make it
impossible to do immediately. This makes building a new, relational application more difficult.

The solution to this problem is to create a new set of keys, both primary and foreign, that
properly normalizes the data; then, make sure that people can access tables only through these
new keys. The overloaded key is then kept as an additional, and unique, table column. Access to
it is still possible using historical methods (matching the overloaded key in a query, for instance),
but the newly structured keys are promoted as the preferred method of access. Over time, with
proper training, users will gravitate to the new keys. Eventually, the overloaded keys (and other
overloaded column values) can simply be NULLed out or dropped from the table.

Failing to eliminate overloaded keys and values makes extracting information from the
database, validating the values, ensuring data integrity, and modifying the structure all extremely
difficult and costly.

The Commandments
All the major issues in designing for productivity have now been discussed. It probably is
worthwhile to sum these up in a single place—thus “The Commandments” (or perhaps “The
Suggestions”). Their presentation does not assume that you need to be told what to do, but rather
that you are capable of making rational judgments and can benefit from the experience of others
facing the same challenges. The purpose here is not to describe the development cycle, which
you probably understand better than you want to, but rather to bias that development with an
orientation that will radically change how the application will look, feel, and be used. Careful
attention to these ideas can dramatically improve the productivity and happiness of an
application’s users.

The ten commandments of humane design:

 1. Include users. Put them on the project team and teach them the relational model and SQL.

 2. Name tables, columns, keys, and data jointly with the users. Develop an application
thesaurus to ensure name consistency.

 3. Use English words that are meaningful, memorable, descriptive, short, and singular. Use
underscores consistently or not at all.

 4. Don’t mix levels in naming.

 5. Avoid codes and abbreviations.

 6. Use meaningful keys where possible.

 7. Decompose overloaded keys.

 8. Analyze and design from the tasks, not just the data. Remember that normalization is not
design.

 9. Move tasks from users to the machine. It is profitable to spend cycles and storage to gain
ease of use.

 10. Don’t be seduced by development speed. Take time and care in analyses, design, testing,
and tuning.

There’s a reason why this chapter precedes the ones on the commands and functions—if you
have a poor design, your application will suffer no matter what commands you use. Plan for
functionality, plan for performance, plan for recoverability, plan for security, and plan for
availability. Plan for success.

PART
II

SQL and SQL*Plus

This page intentionally left blank

CHAPTER
5

The Basic Parts of
Speech in SQL

65

66 Part II: SQL and SQL*Plus

ith the Structured Query Language (SQL), you tell Oracle which information you
want it to select, insert, update, or delete. In fact, these four verbs are the primary
words you will use to give Oracle instructions. You can use an additional
command, merge, to perform insert and update operations with a single command.
As described in later chapters, these basic commands support flashback version

queries and other advanced features.

In Part I, you saw what is meant by “relational,” how tables are organized into columns and
rows, and how to instruct Oracle to select certain columns from a table and show you the
information in them, row by row. In this and the following chapters, you will learn how to do
this more completely for the different datatypes supported by Oracle. In this part, you will learn
how to interact with SQL*Plus, a powerful Oracle product that can take your instructions for
Oracle, check them for correctness, submit them to Oracle, and then modify or reformat the
response Oracle gives, based on orders or directions you’ve set in place.

It may be a little confusing at first to understand the difference between what SQL*Plus is
doing and what Oracle is doing, especially because the error messages that Oracle produces are
simply passed on to you by SQL*Plus, but you will see as you work through this book where the
differences lie. As you get started, just think of SQL*Plus as a coworker—an assistant who follows
your instructions and helps you do your work more quickly. You interact with this coworker by
typing on your keyboard.

You may follow the examples in this and subsequent chapters by typing the commands
shown. Your Oracle and SQL*Plus programs should respond just as they do in these examples.
However, you do need to make certain that the tables used in this book have been loaded into
your copy of Oracle.

You can understand what is described in this book without actually typing it in yourself; for
example, you can use the commands shown with your own tables. It will probably be clearer and
easier, though, if you have the same tables loaded into Oracle as the ones used here and practice
using the same queries. Visit www.OraclePressBooks.com for downloadable files. Assuming that
you have loaded the demo tables into an Oracle database, you can connect to SQL*Plus and
begin working by typing this:

sqlplus

(If you want to run SQL*Plus from your desktop client machine, select the SQL Plus program
option from the Application Development menu option under the Oracle software menu option.)
This starts SQL*Plus. (Note that you don’t type the * that is in the middle of the official product
name, and the asterisk doesn’t appear in the program name, either.) Because Oracle is careful to
guard who can access the data it stores, it requires that you enter an ID and password to connect
to it. Oracle will display a copyright message and then ask for your username and password. Log
into your database using the account and password you created to hold the sample tables (such
as practice/practice). If you provide a valid username and password, SQL*Plus will announce that
you’re connected to Oracle and then will display this prompt:

SQL>

You are now in SQL*Plus, and it awaits your instructions.

W

www.OraclePressBooks.com

Chapter 5: The Basic Parts of Speech in SQL 67

NOTE
Many application development environments provide direct SQL
access to Oracle databases. The SQL commands shown in this chapter
will work from within those tools, but the commands specific to
SQL*Plus (such as describe) will not.

If the command fails, there are several potential reasons: Oracle is not in your path, you are
not authorized to use SQL*Plus, or Oracle hasn’t been installed properly on your computer. If you
get the message

ERROR: ORA-1017: invalid username/password; logon denied

either you’ve entered the username or password incorrectly or your username has not yet been
set up properly on your copy of Oracle. After three unsuccessful attempts to enter a username
and password that Oracle recognizes, SQL*Plus will terminate the attempt to log on, showing
this message:

unable to CONNECT to ORACLE after 3 attempts, exiting SQL*Plus

If you get this message, contact your company’s database administrator. Assuming everything
is in order, and the SQL> prompt has appeared, you may now begin working with SQL*Plus.

When you want to quit working and leave SQL*Plus, type this:

quit

or

exit

Style
First, some comments on style. SQL*Plus doesn’t care whether the SQL commands you type are
in uppercase or lowercase. For example, the command

SeLeCt feaTURE, section, PAGE FROM newsPaPeR;

will produce exactly the same result as this one:

select Feature, Section, Page from NEWSPAPER;

Case matters only when SQL*Plus or Oracle is checking an alphanumeric value for equality.
If you tell Oracle to find a row where Section = 'f', and Section is really equal to 'F', Oracle
won’t find it (because f and F are not identical). Aside from this usage, case is completely
irrelevant. (Incidentally, 'F', as used here, is called a literal, meaning that you want Section to
be tested literally against the letter F, not a column named F. The single quote marks enclosing
the letter tell Oracle that this is a literal and not a column name.)

As a matter of style, this book follows certain conventions about case to make the text easier
to read:

select, from, where, order by, having, and group by will always be lowercase and
boldface in the body of the text.

■

68 Part II: SQL and SQL*Plus

SQL*Plus commands also will be lowercase and boldface (for example, column, set,
save, ttitle, and so on).

IN, BETWEEN, UPPER, and other SQL operators and functions will be uppercase and
boldface.

Column names will be mixed uppercase and lowercase without boldface (for example,
Feature, EastWest, Longitude, and so on).

Table names will be uppercase without boldface (for example, NEWSPAPER, WEATHER,
LOCATION, and so on).

You may want to follow similar conventions in creating your own queries, or your company
already may have standards it would like you to use. You may even choose to invent your own.
Regardless, the goal of any such standards should always be to make your work simple to read
and understand.

Creating the NEWSPAPER Table
The examples in this book are based on the tables created by the scripts located on the CD.
Each table is created via the create table command, which specifies the names of the columns
in the table, as well as the characteristics of those columns. Here is the create table command
for the NEWSPAPER table, which is used in many of the examples in this chapter:

create table NEWSPAPER (
Feature VARCHAR2(15) not null,
Section CHAR(1),
Page NUMBER
);

In later chapters in this book, you’ll see how to interpret all the clauses of this command. For
now, you can read it as, “Create a table called NEWSPAPER. It will have three columns, named
Feature (a variable-length character column), Section (a fixed-length character column), and Page
(a numeric column). The values in the Feature column can be up to 15 characters long, and every
row must have a value for Feature. Section values will all be one character long.”

In later chapters, you’ll see how to extend this simple command to add constraints, indexes,
and storage clauses. For now, the NEWSPAPER table will be kept simple so that the examples can
focus on SQL.

Using SQL to Select Data from Tables
Figure 5-1 shows a table of features from a local newspaper. If this were an Oracle table, rather
than just paper and ink on the front of the local paper, SQL*Plus would display it for you if you
typed this:

select Feature, Section, Page from NEWSPAPER;

FEATURE S PAGE
--------------- - ----------
National News A 1
Sports D 1
Editorials A 12

■

■

■

■

Chapter 5: The Basic Parts of Speech in SQL 69

Business E 1
Weather C 2
Television B 7
Births F 7
Classified F 8
Modern Life B 1
Comics C 4
Movies B 4
Bridge B 2
Obituaries F 6
Doctor Is In F 6

14 rows selected.

NOTE
Depending on your configuration, the listing may have a page break
in it. If that happens, use the set pagesize command to increase the
size of each displayed page of results. See the Alphabetical Reference
for details on this command.

What’s different between the table you created and the one shown in the output in Figure
5-1? Both tables have the same information, but the format differs and the order of rows may be
different. For example, the column headings differ slightly. In fact, they even differ slightly from
the columns you just asked for in the select statement.

FIGURE 5-1 A NEWSPAPER table

Feature Section Page

Births F 7

Bridge B 2

Business E 1

Classified F 8

Comic C 4

Doctor Is In F 6

Editorials A 12

Modern Life B 1

Movies B 4

National News A 1

Obituaries F 6

Sports D 1

Television B 7

Weather C 2

70 Part II: SQL and SQL*Plus

Notice that the column named Section shows up as just the letter S. Also, although you used
uppercase and lowercase letters to type the column headings in the command

select Feature, Section, Page from NEWSPAPER;

the column headings came back with all the letters in uppercase.
These changes are the result of the assumptions SQL*Plus makes about how information

should be presented. You can change these assumptions, and you probably will, but until you
give SQL*Plus different orders, this is how it changes what you input:

It changes all the column headings to uppercase.

It allows columns to be only as wide as a column is defined to be in Oracle.

It squeezes out any spaces if the column heading is a function. (This will be
demonstrated in Chapter 7.)

The first point is obvious. The column names you used were shifted to uppercase. The second
point is not obvious. How are the columns defined? To find out, ask Oracle. Simply tell SQL*Plus
to describe the table, as shown here:

describe NEWSPAPER

Name Null? Type
------------------------------- -------- ------------
FEATURE NOT NULL VARCHAR2(15)
SECTION CHAR(1)
PAGE NUMBER

This display is a descriptive table that lists the columns and their definitions for the NEWSPAPER
table; the describe command works for any table. Note that the details in this description match
the create table command given earlier in this chapter.

The first column tells the names of the columns in the table being described.
The second column (Null?) is really a rule about the column named to its left. When the

NEWSPAPER table was created, the NOT NULL rule instructed Oracle not to allow any user to
add a new row to the table if he or she left the Feature column empty (NULL means empty). Of
course, in a table such as NEWSPAPER, it probably would have been worthwhile to use the same
rule for all three columns. What good is it to know the title of a feature without also knowing
what section it’s in and what page it’s on? But, for the sake of this example, only Feature was
created with the rule that it could not be NULL.

Because Section and Page have nothing in the Null? column, they are allowed to be empty in
any row of the NEWSPAPER table.

The third column (Type) tells the basic nature of the individual columns. Feature is a VARCHAR2
(variable-length character) column that can be up to 15 characters (letters, numbers, symbols, or
spaces) long.

Section is a character column as well, but it is only one character long. The creator of the
table knew that newspaper sections in the local paper are only a single letter, so the column was
defined to be only as wide as it needed to be. It was defined using the CHAR datatype, which is
used for fixed-length character strings. When SQL*Plus went to display the results of your query

select Feature, Section, Page from NEWSPAPER;

■

■

■

Chapter 5: The Basic Parts of Speech in SQL 71

it knew from Oracle that Section was a maximum of only one character. It assumed that you did
not want to use up more space than this, so it displayed a column just one character wide and
used as much of the column name as it could—in this case, just the letter S.

The third column in the NEWSPAPER table is Page, which is simply a number. Notice that the
Page column shows up as ten spaces wide, even though no pages use more than two digits—
numbers usually are not defined as having a maximum width, so SQL*Plus assumes a maximum
just to get started.

You also may have noticed that the heading for the only column composed solely of numbers,
Page, was right-justified—that is, it sits over on the right side of the column, whereas the headings
for columns that contain characters sit over on the left. This is standard alignment for column
headings in SQL*Plus. As with other column features, you’ll see in Chapter 6 how to change
alignment as needed.

Finally, SQL*Plus tells you how many rows it found in Oracle’s NEWSPAPER table. (Notice
the “14 rows selected” notation at the bottom of the display.) This is called feedback. You can
make SQL*Plus stop giving feedback by setting the feedback option, as shown here:

set feedback off

Alternatively, you can set a minimum number of rows for feedback to work:

set feedback 25

This last example tells Oracle that you don’t want to know how many rows have been displayed
until there have been at least 25. Unless you tell SQL*Plus differently, feedback is set to 6.

The set command is a SQL*Plus command, which means that it is an instruction telling
SQL*Plus how to act. There are many SQL*Plus options, such as feedback, that you can set.
Several of these will be shown and used in this chapter and in the chapters to follow. For a
complete list, look up set in the Alphabetical Reference section of this book.

The set command has a counterpart named show that allows you to see what instructions
you’ve given to SQL*Plus. For instance, you can check the setting of feedback by typing

show feedback

SQL*Plus will respond with the following:

FEEDBACK ON for 25 or more rows

The width used to display numbers also is changed by the set command. You check it by
typing

show numwidth

SQL*Plus will reply as shown here:

numwidth 10

Because 10 is a wide width for displaying page numbers that never contain more than two
digits, shrink the display by typing

set numwidth 5

72 Part II: SQL and SQL*Plus

However, this means that all number columns will be five digits wide. If you anticipate having
numbers with more than five digits, you must use a number higher than 5. Individual columns in
the display also can be set independently. This will be covered in Chapter 6.

If numwidth is at least 7, Oracle will display the number in exponential format

set numwidth 6

select 123456789123456789 num from DUAL;

 NUM

######

set numwidth 7

/

 NUM

1.2E+17

select, from, where, and order by
You will use four primary keywords in SQL when selecting information from an Oracle table:
select, from, where, and order by. You will use select and from in every Oracle query you do.

The select keyword tells Oracle which columns you want, and from tells Oracle the name(s)
of the table(s) those columns are in. The NEWSPAPER table example showed how these keywords
are used. In the first line that you entered, a comma follows each column name except the last.
You’ll notice that a correctly typed SQL query reads pretty much like an English sentence. A query
in SQL*Plus usually ends with a semicolon (sometimes called the SQL terminator). The where
keyword tells Oracle what qualifiers you’d like to put on the information it is selecting. For
example, if you input

select Feature, Section, Page from NEWSPAPER
 where Section = 'F';

FEATURE S PAGE
--------------- - -----
Births F 7
Classified F 8
Obituaries F 6
Doctor Is In F 6

Oracle checks each row in the NEWSPAPER table before sending the row back to you. It skips
over those without the single letter F in their Section column. It returns those where the Section
entry is 'F', and SQL*Plus displays them to you.

To tell Oracle that you want the information it returns sorted in the order you specify, use order
by. You can be as elaborate as you like about the order you request. Consider these examples:

Chapter 5: The Basic Parts of Speech in SQL 73

select Feature, Section, Page from NEWSPAPER
 where Section = 'F'
 order by Feature;

FEATURE S PAGE
--------------- - -----
Births F 7
Classified F 8
Doctor Is In F 6
Obituaries F 6

They are nearly reversed when ordered by page, as shown here:

select Feature, Section, Page from NEWSPAPER
 where Section = 'F'
 order by Page;

FEATURE S PAGE
--------------- - -----
Obituaries F 6
Doctor Is In F 6
Births F 7
Classified F 8

In the next example, Oracle first puts the features in order by page (see the previous listing to
observe the order they are in when they are ordered only by page). It then puts them in further
order by feature, listing Doctor Is In ahead of Obituaries.

select Feature, Section, Page from NEWSPAPER
 where Section = 'F'
 order by Page, Feature;

FEATURE S PAGE
--------------- - -----
Doctor Is In F 6
Obituaries F 6
Births F 7
Classified F 8

Using order by also can reverse the normal order, like this:

select Feature, Section, Page from NEWSPAPER
 where Section = 'F'
 order by Page desc, Feature;

FEATURE S PAGE
--------------- - -----
Classified F 8
Births F 7
Doctor Is In F 6
Obituaries F 6

74 Part II: SQL and SQL*Plus

The desc keyword stands for descending. Because it followed the word Page in the order by
line, it put the page numbers in descending order. It would have the same effect on the Feature
column if it followed the word Feature in the order by line.

Notice that each of these keywords—select, from, where, and order by—has its own way
of structuring the words that follow it. The groups of words including these keywords are often
called clauses, as shown in Figure 5-2.

Logic and Value
Just as the order by clause can have several parts, so can the where clause, but with a significantly
greater degree of sophistication. You control the extent to which you use where through the
careful use of logical instructions to Oracle on what you expect it to return to you. These instructions
are expressed using mathematical symbols called logical operators. These are explained shortly,
and they also are listed in the Alphabetical Reference section of this book.

The following is a simple example in which the values in the Page column are tested to see if
any equals 6. Every row where this is true is returned to you. Any row in which Page is not equal
to 6 is skipped (in other words, those rows for which Page = 6 is false).

select Feature, Section, Page
 from NEWSPAPER
 where Page = 6;

FEATURE S PAGE
--------------- - -----
Obituaries F 6
Doctor Is In F 6

The equal sign is called a logical operator, because it operates by making a logical test that
compares the values on either side of it—in this case, the value of Page and the value 6—to see
if they are equal.

In this example, no quotes are placed around the value being checked because the column
the value is compared to (the Page column) is defined as a NUMBER datatype. Number values do
not require quotes around them during comparisons.

Single-Value Tests
You can use one of several logical operators to test against a single value, as shown in the next
section, “Logical Tests Against a Single Value.” Take a few examples from any of the expressions
listed in this section. They all work similarly and can be combined at will, although they must
follow certain rules about how they’ll act together.

FIGURE 5-2 Clauses

Select Feature, Section, Page <--select clause

from NEWSPAPER <--from clause

where Section = 'F' <--where clause

Chapter 5: The Basic Parts of Speech in SQL 75

Logical Tests Against a Single Value
All these operators work with letters or numbers, and with columns or literals.

Equal, Greater Than, Less Than, Not Equal

Page= 6 Page is equal to 6.

Page> 6 Page is greater than 6.

Page>= 6 Page is greater than or equal to 6.

Page< 6 Page is less than 6.

Page<= 6 Page is less than or equal to 6.

Page!= 6 Page is not equal to 6.

Page^= 6 Page is not equal to 6.

Page<> 6 Page is not equal to 6.

Because some keyboards lack an exclamation mark (!) or a caret (^), Oracle allows three
ways of typing the not equal operator. The final alternative, <>, qualifies as a not equal operator
because it permits only numbers less than 6 (in this example) or greater than 6, but not 6 itself.

LIKE

Feature LIKE 'Mo%' Feature begins with the letters Mo.

Feature LIKE '_ _ I%' Feature has an I in the third position.

Feature LIKE '%o%o%' Feature has two o’s in it.

LIKE performs pattern matching. An underline character (_) represents exactly one character.
A percent sign (%) represents any number of characters, including zero characters.

IS NULL, IS NOT NULL

Precipitation IS NULL Precipitation is unknown.

Precipitation IS NOT NULL Precipitation is known.

NULL tests to see if data exists in a column for a row. If the column is completely empty, it is
said to be “null.” The word IS must be used with NULL and NOT NULL; equal, greater-than, and
less-than signs do not work with NULL and NOT NULL.

Equal, Greater Than, Less Than, Not Equal
Logical tests can compare values, both for equality and for relative value. Here, a simple test is
made for all sections equal to 'B':

select Feature, Section, Page
 from NEWSPAPER
 where Section = 'B';

FEATURE S PAGE
--------------- - -----
Television B 7
Modern Life B 1
Movies B 4
Bridge B 2

76 Part II: SQL and SQL*Plus

The following is the test for all pages greater than 4:

select Feature, Section, Page
 from NEWSPAPER
 where Page > 4;

FEATURE S PAGE
--------------- - -----
Editorials A 12
Television B 7
Births F 7
Classified F 8
Obituaries F 6
Doctor Is In F 6

The following is the test for sections greater than 'B' (this means later in the alphabet than the
letter B):

select Feature, Section, Page
 from NEWSPAPER
 where Section > 'B';

FEATURE S PAGE
--------------- - -----
Sports D 1
Business E 1
Weather C 2
Births F 7
Classified F 8
Comics C 4
Obituaries F 6
Doctor Is In F 6

Just as a test can be made for greater than, so can a test be made for less than, as shown here
(all page numbers less than 8):

select Feature, Section, Page
 from NEWSPAPER
 where Page < 8;

FEATURE S PAGE
--------------- - ----------
National News A 1
Sports D 1
Business E 1
Weather C 2
Television B 7
Births F 7
Modern Life B 1
Comics C 4
Movies B 4
Bridge B 2
Obituaries F 6
Doctor Is In F 6

Chapter 5: The Basic Parts of Speech in SQL 77

The opposite of the test for equality is the not equal test, as given here:

select Feature, Section, Page
 from NEWSPAPER
 where Page <> 1;

FEATURE S PAGE
--------------- - ----------
Editorials A 12
Weather C 2
Television B 7
Births F 7
Classified F 8
Comics C 4
Movies B 4
Bridge B 2
Obituaries F 6
Doctor Is In F 6

NOTE
Be careful when using the greater-than and less-than operators against
numbers that are stored in character datatype columns. All values in
VARCHAR2 and CHAR columns will be treated as characters during
comparisons. Therefore, numbers that are stored in those types of
columns will be compared as if they were character strings, not
numbers. If the column’s datatype is NUMBER, then 12 is greater than
9. If it is a character column, then 9 is greater than 12, because the
character ‘9’ is greater than the character ‘1’.

LIKE
One of the most powerful features of SQL is a marvelous pattern-matching operator called LIKE,
which is able to search through the rows of a database column for values that look like a pattern
you describe. It uses two special characters to denote which kind of matching to do: a percent
sign, called a wildcard, and an underline, called a position marker. To look for all the features
that begin with the letters Mo, use the following:

select Feature, Section, Page from NEWSPAPER
 where Feature LIKE 'Mo%';

FEATURE S PAGE
--------------- - ----------
Modern Life B 1
Movies B 4

The percent sign (%) means anything is acceptable here: one character, a hundred characters,
or no characters. If the first letters are Mo, LIKE will find the feature. If the query had used 'MO%'
as its search condition instead, then no rows would have been returned, due to Oracle’s case-
sensitivity in data values.

If you want to find those features that have the letter i in the third position of their titles, and
you don’t care which two characters precede the i or what set of characters follows, using two

78 Part II: SQL and SQL*Plus

underscores (_ _) specifies that any character in those two positions is acceptable. Position three
must have a lowercase i, and the percent sign after that says anything is okay.

select Feature, Section, Page from NEWSPAPER
 where Feature LIKE '__i%';

FEATURE S PAGE
--------------- - ----------
Editorials A 12
Bridge B 2
Obituaries F 6

Multiple percent signs also can be used. To find those words with two lowercase o’s anywhere
in the Feature title, three percent signs are used, as shown here:

select Feature, Section, Page from NEWSPAPER
 where Feature LIKE '%o%o%';

FEATURE S PAGE
--------------- - ----------
Doctor Is In F 6

For the sake of comparison, the following is the same query, but it is looking for two i’s:

select Feature, Section, Page from NEWSPAPER
 where Feature LIKE '%i%i%';

FEATURE S PAGE
--------------- - ----------
Editorials A 12
Television B 7
Classified F 8
Obituaries F 6

This pattern-matching feature can play an important role in making an application friendlier
by simplifying searches for names, products, addresses, and other partially remembered items. In
Chapter 8, you will see how to use advanced regular expression searches available as of Oracle
Database 10g.

NULL and NOT NULL
The NEWSPAPER table has no columns in it that are NULL, even though the describe you did on
it showed that they are allowed. The following query on the COMFORT table contains, among
other data, the precipitation for San Francisco, California, and Keene, New Hampshire, for four
sample dates during 2003:

select City, SampleDate, Precipitation
 from COMFORT;

CITY SAMPLEDAT PRECIPITATION
------------- --------- -------------
SAN FRANCISCO 21-MAR-03 .5
SAN FRANCISCO 22-JUN-03 .1

Chapter 5: The Basic Parts of Speech in SQL 79

SAN FRANCISCO 23-SEP-03 .1
SAN FRANCISCO 22-DEC-03 2.3
KEENE 21-MAR-03 4.4
KEENE 22-JUN-03 1.3
KEENE 23-SEP-03
KEENE 22-DEC-03 3.9

You can find out the city and dates on which precipitation was not measured with this query:

select City, SampleDate, Precipitation
 from COMFORT
 where Precipitation IS NULL;

CITY SAMPLEDAT PRECIPITATION
------------- --------- -------------
KEENE 23-SEP-03

IS NULL essentially instructs Oracle to identify columns in which the data is missing. You
don’t know for that day whether the value should be 0, 1, or 5 inches. Because it is unknown,
the value in the column is not set to 0; it stays empty. By using NOT, you also can find those
cities and dates for which data exists, with this query:

select City, SampleDate, Precipitation
 from COMFORT
 where Precipitation IS NOT NULL;

CITY SAMPLEDAT PRECIPITATION
------------- --------- -------------
SAN FRANCISCO 21-MAR-03 .5
SAN FRANCISCO 22-JUN-03 .1
SAN FRANCISCO 23-SEP-03 .1
SAN FRANCISCO 22-DEC-03 2.3
KEENE 21-MAR-03 4.4
KEENE 22-JUN-03 1.3
KEENE 22-DEC-03 3.9

Oracle lets you use the relational operators (=, !=, and so on) with NULL, but this kind of
comparison will not return meaningful results. Use IS or IS NOT for comparing values to NULL.

Simple Tests Against a List of Values
If there are logical operators that test against a single value, are there others that will test against
many values, such as a list? The following tables show just such a group of operators.

Logical tests with numbers:

Page IN (1,2,3) Page is in the list (1,2,3)

Page NOT IN (1,2,3) Page is not in the list (1,2,3)

Page BETWEEN 6 AND 10 Page is equal to 6, 10, or anything in between

Page NOT BETWEEN 6 AND 10 Page is below 6 or above 10

80 Part II: SQL and SQL*Plus

With letters (or characters):

Section IN ('A','C','F') Section is in the list ('A','C','F')

Section NOT IN ('A','C','F')) Section is not in the list ('A','C','F')

Section BETWEEN 'B' AND 'D' Section is equal to 'B', 'D', or anything
in between (alphabetically)

Section NOT BETWEEN 'B' AND 'D' Section is below 'B' or above 'D' (alphabetically)

Here are a few examples of how these logical operators are used:

select Feature, Section, Page
 from NEWSPAPER
 where Section IN ('A','B','F');

FEATURE S PAGE
--------------- - ----------
National News A 1
Editorials A 12
Television B 7
Births F 7
Classified F 8
Modern Life B 1
Movies B 4
Bridge B 2
Obituaries F 6
Doctor Is In F 6

select Feature, Section, Page
 from NEWSPAPER
 where Section NOT IN ('A','B','F');

FEATURE S PAGE
--------------- - ----------
Sports D 1
Business E 1
Weather C 2
Comics C 4

select Feature, Section, Page
 from NEWSPAPER
 where Page BETWEEN 7 and 10;

FEATURE S PAGE
--------------- - ----------
Television B 7
Births F 7
Classified F 8

These logical tests also can be combined, as in this case:

Chapter 5: The Basic Parts of Speech in SQL 81

select Feature, Section, Page
 from NEWSPAPER
 where Section = 'F'
 AND Page > 7;

FEATURE S PAGE
--------------- - ----------
Classified F 8

The AND command has been used to combine two logical expressions and requires any row
Oracle examines to pass both tests; both Section = 'F' and Page > 7 must be true for a row to be
returned to you. Alternatively, OR can be used, which will return rows to you if either logical
expression turns out to be true:

select Feature, Section, Page
 from NEWSPAPER
 where Section = 'F'
 OR Page > 7;

FEATURE S PAGE
--------------- - -----
Editorials A 12
Births F 7
Classified F 8
Obituaries F 6
Doctor Is In F 6

There are some sections here that qualify even though they are not equal to 'F' because their
page is greater than 7, and there are others whose page is less than or equal to 7 but whose
section is equal to 'F'.

Finally, choose those features in Section F between pages 7 and 10 with this query:

select Feature, Section, Page
 from NEWSPAPER
 where Section = 'F'
 and Page BETWEEN 7 AND 10;

FEATURE S PAGE
--------------- - -----
Births F 7
Classified F 8

There are a few additional many-value operators whose use is more complex; they will be
covered in Chapter 9. They also can be found, along with those just discussed, in the Alphabetical
Reference section of this book.

Combining Logic
Both AND and OR follow the commonsense meanings of the words. They can be combined in a
virtually unlimited number of ways, but you must use care, because ANDs and ORs get convoluted
very easily.

82 Part II: SQL and SQL*Plus

Suppose you want to find the features in the paper that the editors tend to bury, those that are
placed somewhere past page 2 of section A or B. You might try this:

select Feature, Section, Page
 from NEWSPAPER
 where Section = 'A'
 or Section = 'B'
 and Page > 2;

FEATURE S PAGE
--------------- - -----
National News A 1
Editorials A 12
Television B 7
Movies B 4

Note that the result you got back from Oracle is not what you wanted. Somehow, page 1
of section A was included. Why is this happening? Is there a way to get Oracle to answer the
question correctly? Although both AND and OR are logical connectors, AND is stronger. It binds
the logical expressions on either side of it more strongly than OR does (technically, AND is said
to have higher precedence), which means the where clause

where Section = 'A'
 or Section = 'B'
 and Page > 2;

is interpreted to read, “where Section = 'A', or where Section = 'B' and Page > 2.” If you look at
the failed example just given, you’ll see how this interpretation affected the result. The AND is
always acted on first.

You can break this bonding by using parentheses that enclose those expressions you want to
be interpreted together. Parentheses override the normal precedence:

select Feature, Section, Page
 from NEWSPAPER
 where Page > 2
 and (Section = 'A' or Section = 'B');

FEATURE S PAGE
------------------ - ----
Editorials A 12
Television B 7
Movies B 4

The result is exactly what you wanted in the first place. Note that although you can type this
with the sections listed first, the result is identical because the parentheses tell Oracle what to
interpret together. Compare this to the different results caused by changing the order in the first
example, where parentheses were not used.

Another Use for where: Subqueries
What if the logical operators in the earlier sections, “Logical Tests Against a Single Value” and
“Logical Tests Against a List of Values,” could be used not just with a single literal value (such as

Chapter 5: The Basic Parts of Speech in SQL 83

'F') or a typed list of values (such as 4,2,7 or 'A','C','F'), but with values brought back by an
Oracle query? In fact, this is a powerful feature of SQL.

Imagine that you are the author of the “Doctor Is In” feature, and each newspaper that
publishes your column sends along a copy of the table of contents that includes your piece. Of
course, each editor rates your importance a little differently, and places you in a section he or she
deems suited to your feature. Without knowing ahead of time where your feature is, or with what
other features you are placed, how could you write a query to find out where a particular local
paper places you? You might do this:

select Section from NEWSPAPER
 where Feature = 'Doctor Is In';

S
-
F

The result is 'F'. Knowing this, you could do this query:

select FEATURE from NEWSPAPER
 where Section = 'F';

FEATURE

Births
Classified
Obituaries
Doctor Is In

You’re in there with births, deaths, and classified ads. Could the two separate queries have
been combined into one? Yes, as shown here:

select FEATURE from NEWSPAPER
 where Section = (select Section from NEWSPAPER
 where Feature = 'Doctor Is In');

FEATURE

Births
Classified
Obituaries
Doctor Is In

Single Values from a Subquery
In effect, the select in parentheses (called a subquery) brought back a single value, F. The
main query then treated this value as if it were a literal 'F', as was used in the previous query.
Remember that the equal sign is a single-value test. It can’t work with lists, so if your subquery
returned more than one row, you’d get an error message like this:

select * from NEWSPAPER
 where Section = (select Section from NEWSPAPER
 where Page = 1);

84 Part II: SQL and SQL*Plus

where Section = (select Section from NEWSPAPER
 *
ERROR at line 2:
ORA-01427: single-row subquery returns more than one row

All the logical operators that test single values can work with subqueries, as long as the
subquery returns a single row. For instance, you can ask for all the features in the paper where
the section is less than (that is, earlier in the alphabet) the section that carries your column. The
asterisk in this select shows a shorthand way to request all the columns in a table without listing
them individually. They will be displayed in the order in which they were created in the table.

select * from NEWSPAPER
 where Section < (select Section from NEWSPAPER
 where Feature = 'Doctor Is In');

FEATURE S PAGE
--------------- - -----
National News A 1
Sports D 1
Editorials A 12
Business E 1
Weather C 2
Television B 7
Modern Life B 1
Comics C 4
Movies B 4
Bridge B 2

10 rows selected.

Ten other features rank ahead of your medical advice in this local paper.

Lists of Values from a Subquery
Just as the single-value logical operators can be used on a subquery, so can the many-value
operators. If a subquery returns one or more rows, the value in the column for each row will be
stacked up in a list. For example, suppose you want to know the cities and countries where it is
cloudy. You could have a table of complete weather information for all cities, and a LOCATION
table for all cities and their countries, as shown here:

select City, Country from LOCATION;

CITY COUNTRY
-------------------------- ---------------------------
ATHENS GREECE
CHICAGO UNITED STATES
CONAKRY GUINEA
LIMA PERU
MADRAS INDIA
MANCHESTER ENGLAND
MOSCOW RUSSIA

Chapter 5: The Basic Parts of Speech in SQL 85

PARIS FRANCE
SHENYANG CHINA
ROME ITALY
TOKYO JAPAN
SYDNEY AUSTRALIA
SPARTA GREECE
MADRID SPAIN

select City, Condition from WEATHER;

CITY CONDITION
----------- -----------
LIMA RAIN
PARIS CLOUDY
MANCHESTER FOG
ATHENS SUNNY
CHICAGO RAIN
SYDNEY SUNNY
SPARTA CLOUDY

First, you’d discover which cities were cloudy:

select City from WEATHER
 where Condition = 'CLOUDY';

CITY

PARIS
SPARTA

Then, you would build a list including those cities and use it to query the LOCATION table:

select City, Country from LOCATION
 where City IN ('PARIS', 'SPARTA');

CITY COUNTRY
-------------------------- ---------------------------
PARIS FRANCE
SPARTA GREECE

The same task can be accomplished by a subquery, where the select in parentheses builds
a list of cities that are tested by the IN operator, as shown here:

select City, Country from LOCATION
 where City IN (select City from WEATHER
 where Condition = 'CLOUDY');

CITY COUNTRY
-------------------------- ---------------------------
PARIS FRANCE
SPARTA GREECE

86 Part II: SQL and SQL*Plus

The other many-value operators work similarly. The fundamental task is to build a subquery
that produces a list that can be logically tested. The following are some relevant points:

The subquery must either have only one column or compare its selected columns to
multiple columns in parentheses in the main query (covered in Chapter 13).

The subquery must be enclosed in parentheses.

Subqueries that produce only one row can be used with either single- or many-value
operators.

Subqueries that produce more than one row can be used only with many-value
operators.

Combining Tables
If you’ve normalized your data, you’ll probably need to combine two or more tables to get all the
information you want.

Suppose you are the oracle at Delphi. The Athenians come to ask about the forces of nature
that might affect the expected attack by the Spartans, as well as the direction from which they are
likely to appear:

select City, Condition, Temperature from WEATHER;

CITY CONDITION TEMPERATURE
----------- ----------- -----------
LIMA RAIN 45
PARIS CLOUDY 81
MANCHESTER FOG 66
ATHENS SUNNY 97
CHICAGO RAIN 66
SYDNEY SUNNY 69
SPARTA CLOUDY 74

You realize your geography is rusty, so you query the LOCATION table:

select City, Longitude, EastWest, Latitude, NorthSouth
 from LOCATION;

CITY LONGITUDE E LATITUDE N
------------------------- --------- - -------- -
ATHENS 23.43 E 37.58 N
CHICAGO 87.38 W 41.53 N
CONAKRY 13.43 W 9.31 N
LIMA 77.03 W 12.03 S
MADRAS 80.17 E 13.05 N
MANCHESTER 2.15 W 53.3 N
MOSCOW 37.35 E 55.45 N
PARIS 2.2 E 48.52 N
SHENYANG 123.27 E 41.48 N
ROME 12.29 E 41.54 N
TOKYO 139.46 E 35.42 N

■

■

■

■

Chapter 5: The Basic Parts of Speech in SQL 87

SYDNEY 151.13 E 33.52 S
SPARTA 22.27 E 37.05 N
MADRID 3.41 W 40.24 N

This is much more than you need, and it doesn’t have any weather information. Yet these two
tables, WEATHER and LOCATION, have a column in common: City. You can therefore put the
information from the two tables together by joining them. You merely use the where clause to tell
Oracle what the two tables have in common:

select WEATHER.City, Condition, Temperature, Latitude,
 NorthSouth, Longitude, EastWest
 from WEATHER, LOCATION
 where WEATHER.City = LOCATION.City;

CITY CONDITION TEMPERATURE LATITUDE N LONGITUDE E
----------- ----------- ----------- -------- - --------- -
ATHENS SUNNY 97 37.58 N 23.43 E
CHICAGO RAIN 66 41.53 N 87.38 W
LIMA RAIN 45 12.03 S 77.03 W
MANCHESTER FOG 66 53.3 N 2.15 W
PARIS CLOUDY 81 48.52 N 2.2 E
SYDNEY SUNNY 69 33.52 S 151.13 E
SPARTA CLOUDY 74 37.05 N 22.27 E

Notice that the only rows in this combined table are those where the same city is in both tables.
The where clause is still executing your logic, as it did earlier in the case of the NEWSPAPER table.
The logic you gave described the relationship between the two tables. It says, “Select those rows
in the WEATHER table and the LOCATION table where the cities are equal.” If a city is only in
one table, it would have nothing to be equal to in the other table. The notation used in the select
statement is TABLE.ColumnName—in this case, WEATHER.City.

The select clause has chosen those columns from the two tables that you’d like to see
displayed; any columns in either table that you did not ask for are simply ignored. If the first
line had simply said

select City, Condition, Temperature, Latitude

then Oracle would not have known to which city you were referring. Oracle would tell you that
the column name City was ambiguous. The correct wording in the select clause is WEATHER.City
or LOCATION.City. In this example, it won’t make a bit of difference which of these alternatives is
used, but you will encounter cases where the choice of identically named columns from two or
more tables will contain very different data.

The where clause also requires the names of the tables to accompany the identical column
name by which the tables are combined: “where weather dot city equals location dot city” (that
is, where the City column in the WEATHER table equals the City column in the LOCATION table).

Consider that the combination of the two tables looks like a single table with seven columns
and seven rows. Everything that you excluded is gone. There is no Humidity column here, even
though it is a part of the WEATHER table. There is no Country column here, even though it is a part
of the LOCATION table. And of the 14 cities in the LOCATION table, only those that are in the
WEATHER table are included in this table. Your where clause didn’t allow the others to be selected.

A table that is built from columns in one or more tables is sometimes called a projection
table, or a result table.

88 Part II: SQL and SQL*Plus

Creating a View
There is even more here than meets the eye. Not only does this look like a new table, but you
can give it a name and treat it like one. This is called “creating a view.” A view provides a way
of hiding the logic that created the joined table just displayed. It works this way:

create view INVASION AS
select WEATHER.City, Condition, Temperature, Latitude,
 NorthSouth, Longitude, EastWest
 from WEATHER, LOCATION
 where WEATHER.City = LOCATION.City;

View created.

Now you can act as if INVASION were a real table with its own rows and columns. You can
even ask Oracle to describe it to you:

describe INVASION

Name Null? Type
------------------------------- -------- ------------
CITY VARCHAR2(11)
CONDITION VARCHAR2(9)
TEMPERATURE NUMBER
LATITUDE NUMBER
NORTHSOUTH CHAR(1)
LONGITUDE NUMBER
EASTWEST CHAR(1)

You can query it, too (note that you will not have to specify which table the City columns
were from, because that logic is hidden inside the view):

select City, Condition, Temperature, Latitude, NorthSouth,
 Longitude, EastWest
 from INVASION;

CITY CONDITION TEMPERATURE LATITUDE N LONGITUDE E
----------- ----------- ----------- -------- - --------- -
ATHENS SUNNY 97 37.58 N 23.43 E
CHICAGO RAIN 66 41.53 N 87.38 W
LIMA RAIN 45 12.03 S 77.03 W
MANCHESTER FOG 66 53.3 N 2.15 W
PARIS CLOUDY 81 48.52 N 2.2 E
SYDNEY SUNNY 69 33.52 S 151.13 E
SPARTA CLOUDY 74 37.05 N 22.27 E

There will be some Oracle functions you won’t be able to use on a view that you can use on
a plain table, but they are few and mostly involve modifying rows and indexing tables, which will
be discussed in later chapters. For the most part, a view behaves and can be manipulated just like
any other table.

Chapter 5: The Basic Parts of Speech in SQL 89

NOTE
Views do not contain any data. Tables contain data. Although you can
create “materialized views” that contain data, they are truly tables, not
views.

Suppose now you realize that you don’t really need information about Chicago or other cities
outside of Greece, so you change the query. Will the following work?

select City, Condition, Temperature, Latitude, NorthSouth,
 Longitude, EastWest
 from INVASION
 where Country = 'GREECE';

SQL*Plus passes back this message from Oracle:

where Country = 'GREECE'
 *
ERROR at line 4:
ORA-00904: "COUNTRY": invalid identifier

Why? Because even though Country is a real column in one of the tables behind the view
called INVASION, it was not in the select clause when the view was created. It is as if it does not
exist. So, you must go back to the create view statement and include only the country of Greece
there:

create or replace view INVASION as
select WEATHER.City, Condition, Temperature, Latitude,
 NorthSouth, Longitude, EastWest
 from WEATHER, LOCATION
 where WEATHER.City = LOCATION.City
 and Country = 'GREECE';

View created.

Using the create or replace view command allows you to create a new version of a view
without first dropping the old one. This command will make it easier to administer users’
privileges to access the view, as will be described in Chapter 19.

The logic of the where clause has now been expanded to include both joining two tables, and
a single-value test on a column in one of those tables. Now, query Oracle. You’ll get this response:

select City, Condition, Temperature, Latitude, NorthSouth,
 Longitude, EastWest
 from INVASION;

CITY CONDITION TEMPERATURE LATITUDE N LONGITUDE E
----------- ----------- ----------- -------- - --------- -
ATHENS SUNNY 97 37.58 N 23.43 E
SPARTA CLOUDY 74 37.05 N 22.27 E

90 Part II: SQL and SQL*Plus

This allows you to warn the Athenians that the Spartans are likely to appear from the southwest
but will be overheated and tired from their march. With a little trigonometry, you could even
make Oracle calculate how far they will have marched.

Expanding the View
The power of views to hide or even modify data can be used for a variety of useful purposes. Very
complex reports can be built up by the creation of a series of simple views, and specific individuals
or groups can be restricted to seeing only certain pieces of the whole table.

In fact, any qualifications you can put into a query can become part of a view. You could, for
instance, let supervisors looking at a payroll table see only their own salaries and those of the
people working for them, or you could restrict operating divisions in a company to seeing only
their own financial results, even though the table actually contains results for all divisions. Most
importantly, views are not snapshots of the data at a certain point in the past. They are dynamic
and always reflect the data in the underlying tables. The instant data in a table is changed, any
views created with that table change as well.

For example, you may create a view that restricts values based on column values. As shown
here, a query that restricts the LOCATION table on the Country column could be used to limit the
rows that are visible via the view:

create or replace view PERU_LOCATIONS as
select * from LOCATION
 where Country = 'PERU';

A user querying PERU_LOCATIONS would not be able to see any rows from any country
other than Peru.

The queries used to define views may also reference pseudo-columns. A pseudo-column is a
“column” that returns a value when it is selected, but is not an actual column in a table. The User
pseudo-column, when selected, will always return the Oracle username that executed the query.
So, if a column in the table contains usernames, those values can be compared against the User
pseudo-column to restrict its rows, as shown in the following listing. In this example, the NAME
table is queried. If the value of its Name column is the same as the name of the user entering the
query, then rows will be returned.

create or replace view RESTRICTED_NAMES as
select * from NAME
 where Name = User;

This type of view is very useful when users require access to selected rows in a table. It
prevents them from seeing any rows that do not match their Oracle username.

Views are powerful tools. There will be more to come on the subject of views in Chapter 17.
The where clause can be used to join two tables based on a common column. The resulting

set of data can be turned into a view (with its own name), which can be treated as if it were a
regular table itself. The power of a view is in its ability to limit or change the way data is seen by
a user, even though the underlying tables themselves are not affected.

CHAPTER
6

Basic SQL*Plus Reports
and Commands

91

92 Part II: SQL and SQL*Plus

QL*Plus is usually thought of as a tool to manipulate data and perform ad hoc
queries against the database; it can also function as an interactive report writer. It
uses SQL to get information from the Oracle database, and it lets you create reports
by giving you easy control over titles, column headings, subtotals and totals,
reformatting of numbers and text, and much more. It also can be used to change

the database through the insert, update, merge, and delete commands in SQL. SQL*Plus can
even be used as a code generator, where a series of commands in SQL*Plus can dynamically
build a program and then execute it.

In most production applications, more-advanced report writers are used—such as Web-based
parameter-driven reports. SQL*Plus is most commonly used for simple queries and printed
reports. Getting SQL*Plus to format information in reports according to your tastes and needs
requires only a handful of commands—keywords that instruct SQL*Plus how to behave. These
are listed in Table 6-1. Detailed explanations, examples, and additional features of each of these
commands are given in the Alphabetical Reference section of this book.

In this chapter, you will see a basic report that was written using SQL*Plus, along with an
explanation of the features used to create it. If building a report seems a bit daunting at first, don’t
worry. Once you try the steps, you’ll find them simple to understand, and they will soon become
familiar.

You can write SQL*Plus reports while working interactively with SQL*Plus—that is, you can
type commands about page headings, column titles, formatting, breaks, totals, and so on, and
then execute a SQL query, and SQL*Plus will immediately produce the report formatted to your
specifications. For quick answers to simple questions that aren’t likely to recur, this is a fine
approach. More common, however, are complex reports that need to be produced periodically
and that you’ll want to print rather than just view on the screen. Unfortunately, when you quit
SQL*Plus, it promptly forgets every instruction you’ve given it. If you were restricted to using
SQL*Plus only in this interactive way, then running the same report at a later time would require
typing everything all over again.

The alternative is very straightforward. You simply type the commands, line by line, into a file.
SQL*Plus can then read this file as if it were a script, and execute your commands just as if you
were typing them. In effect, you create a report program, but you do it without a programmer or a
compiler. You create this file using any of the popular editor programs available, or even (given
certain restrictions) a word processor.

The editor is not a part of Oracle. Editors come in hundreds of varieties, and every company
or person seems to have a favorite. Oracle realized this and decided to let you choose which
editor program to use, rather than packaging a program with Oracle and forcing you to use it.
When you’re ready to use your editor program, you suspend SQL*Plus, jump over to the editor
program, create or change your SQL*Plus report program (also called a start file), and then jump
back to SQL*Plus, right at the spot you left, and run the report (see Figure 6-1).

SQL*Plus also has a built-in editor of its own, sometimes called the command line editor,
that allows you to quickly modify a SQL query without leaving SQL*Plus. The editor’s use will
be covered later in this chapter.

S

Chapter 6: Basic SQL*Plus Reports and Commands 93

TABLE 6-1 Basic SQL* Plus Commands

Command Definition

remark Tells SQL*Plus that the words to follow are to be treated as comments,
not instructions.

set headsep The heading separator identifies the single character that tells
SQL*Plus to split a title into two or more lines.

ttitle Sets the top title for each page of a report.

btitle Sets the bottom title for each page of a report.

column Gives SQL*Plus a variety of instructions on the heading, format, and
treatment of a column.

break on Tells SQL*Plus where to put spaces between sections of a report, or
where to break for subtotals and totals.

compute sum Makes SQL*Plus calculate subtotals.

set linesize Sets the maximum number of characters allowed on any line of the
report.

set pagesize Sets the maximum number of lines per page.

set newpage Sets the number of blank lines between pages.

spool Moves a report you would normally see displayed on the screen into
a file, so you can print it.

/* */ Marks the beginning and ending of a comment within a SQL entry.
Similar to remark.

-- Marks the beginning of an inline comment within a SQL entry. Treats
everything from the mark to the end of the line as a comment. Similar
to remark.

set pause Makes the screen display stop between pages of display.

save Saves the SQL query you’re creating into the file of your choice.

host Sends any command to the host operating system.

start or @ Tells SQL*Plus to follow (execute) the instructions you’ve saved
in a file.

edit Pops you out of SQL*Plus and into an editor of your choice.

define _editor Tells SQL*Plus the name of the editor of your choice.

exit or quit Terminates SQL*Plus.

94 Part II: SQL and SQL*Plus

Building a Simple Report
Figure 6-2 provides a quick-and-easy report showing the dates books were checked out and
returned during a three-month time period.

remark
The first line of Figure 6-3, at Circle 1, is documentation about the start file itself. Documentation
lines begin with

rem

which stands for remark. SQL*Plus ignores anything on a line that begins with rem, thus allowing
you to add comments, documentation, and explanations to any start file you create. It is always a
good idea to place remarks at the top of a start file, giving the filename, its creator and date of
creation, the name of anyone who has modified it, the date of modification, what was modified,
and an explanation of the purpose of the file. This will prove invaluable later on, as you develop
more complex reports or when dozens of reports begin to accumulate.

FIGURE 6-1 Report-creation process

1

Chapter 6: Basic SQL*Plus Reports and Commands 95

Thu Apr 04 page 1

 Checkout Log for 1/1/02-3/31/02

 Days
NAME TITLE CHECKOUTD RETURNEDD Out
-------------------- -------------------- --------- --------- -------
DORAH TALBOT EITHER/OR 02-JAN-02 10-JAN-02 8.00
 POLAR EXPRESS 01-FEB-02 15-FEB-02 14.00
 GOOD DOG, CARL 01-FEB-02 15-FEB-02 14.00
 MY LEDGER 15-FEB-02 03-MAR-02 16.00
******************** -------
avg 13.00

EMILY TALBOT ANNE OF GREEN GABLES 02-JAN-02 20-JAN-02 18.00
 MIDNIGHT MAGIC 20-JAN-02 03-FEB-02 14.00
 HARRY POTTER AND THE 03-FEB-02 14-FEB-02 11.00
 GOBLET OF FIRE
******************** -------
avg 14.33

FRED FULLER JOHN ADAMS 01-FEB-02 01-MAR-02 28.00
 TRUMAN 01-MAR-02 20-MAR-02 19.00
******************** -------
avg 23.50

GERHARDT KENTGEN WONDERFUL LIFE 02-JAN-02 02-FEB-02 31.00
 MIDNIGHT MAGIC 05-FEB-02 10-FEB-02 5.00
 THE MISMEASURE OF 13-FEB-02 05-MAR-02 20.00
 MAN
******************** -------
avg 18.67

JED HOPKINS INNUMERACY 01-JAN-02 22-JAN-02 21.00
 TO KILL A 15-FEB-02 01-MAR-02 14.00
 MOCKINGBIRD
******************** -------
avg 17.50

PAT LAVAY THE SHIPPING NEWS 02-JAN-02 12-JAN-02 10.00
 THE MISMEASURE OF 12-JAN-02 12-FEB-02 31.00
 MAN
******************** -------
avg 20.50

ROLAND BRANDT THE SHIPPING NEWS 12-JAN-02 12-MAR-02 59.00
 THE DISCOVERERS 12-JAN-02 01-MAR-02 48.00
 WEST WITH THE NIGHT 12-JAN-02 01-MAR-02 48.00
******************** -------
avg 51.67

avg 22.58

 from the Bookshelf

FIGURE 6-2 Bookshelf checkout report output

96 Part II: SQL and SQL*Plus

rem Bookshelf activity report

set headsep !

ttitle 'Checkout Log for 1/1/02-3/31/02'
btitle 'from the Bookshelf'

column Name format a20
column Title format a20 word_wrapped
column DaysOut format 999.99
column DaysOut heading 'Days!Out'

break on Name skip 1 on report
compute avg of DaysOut on Name
compute avg of DaysOut on report

set linesize 80
set pagesize 60
set newpage 0
set feedback off

spool activity.lst

select Name, Title, CheckoutDate, ReturnedDate,
 ReturnedDate-CheckoutDate as DaysOut /*Count Days*/
 from BOOKSHELF_CHECKOUT
 order by Name, CheckoutDate;

spool off

FIGURE 6-3 The activity .sql file

11

1

2

10

12

3

4

5
6

7

8
9

SQL*Plus and SQL
The select statement toward the bottom of Figure 6-3, beginning with the word “select” and
ending with the semicolon (;), is Structured Query Language—the language you use to talk
to the Oracle database. Every other command on the page is a SQL*Plus command, used to
format the results of a SQL query into a report.

The SQL*Plus start command causes SQL*Plus to read the file activity.sql and execute the
instructions you’ve placed in it. Reviewing this start file will show you the basic SQL*Plus
instructions you can use to produce reports or change the way SQL*Plus interacts with you.
Depending on your experience, this may seem formidable or elementary. It is made up of a
series of simple instructions to SQL*Plus.

Figure 6-3 shows the SQL*Plus start file that produced this report (in this case, named
activity.sql). To run this report program in SQL*Plus, type the following:

start activity.sql

Chapter 6: Basic SQL*Plus Reports and Commands 97

set headsep
The punctuation that follows set headsep (for heading separator) at Circle 2 in Figure 6-3 tells
SQL*Plus how you will indicate where you want to break a page title or a column heading that
runs longer than one line. When you first activate SQL*Plus, the default headsep character is the
vertical bar (|), but if you want to use vertical bars in your titles, you may find it simpler to use a
different headsep character. The heading separator command only works for the column command,
not as part of a select statement.

set headsep !

CAUTION
Choosing a character that may otherwise appear in a title or column
heading will cause unexpected splitting.

ttitle and btitle
The line

ttitle 'Checkout Log for 1/1/02-3/31/02'

at Circle 3 in Figure 6-3 instructs SQL*Plus to put this “top title” at the top of each page of the
report. The title you choose must be enclosed in single quotation marks. The line

btitle 'from the Bookshelf'

works similarly to ttitle, except that it goes at the bottom of each page (as the b indicates), and it
also must be in single quotation marks. Because single quotes are used to enclose the entire title,
an apostrophe (the same character on your keyboard) would trick SQL*Plus into believing the title
had ended.

NOTE
Put two single quotation marks right next to each other when you
want to print an apostrophe or a single quotation mark. Because both
SQL and SQL*Plus rely on single quotation marks to enclose strings
of characters, this technique is used throughout SQL and SQL*Plus
whenever an apostrophe needs to be printed or displayed.

When using ttitle this way, SQL*Plus will always center the title you choose based on the
linesize you set (linesize will be discussed later in the chapter), and it will always place the
weekday, month, and the day of the month on which the report was run in the upper-left corner
and the page number in the upper-right corner.

You can use the repheader and repfooter commands to create headers and footers for reports.
See the Alphabetical Reference section of this book for descriptions of repheader and repfooter.

column
column allows you to change the heading and format of any column in a select statement. Look
at the report shown earlier in Figure 6-2. The fifth column, Days Out, is not a column in the
database, and it’s called DaysOut in the query shown in Figure 6-3. The line

column DaysOut heading 'Days!Out'

2

3

98 Part II: SQL and SQL*Plus

relabels the column and gives it a new heading. This heading breaks into two lines because it has
the headsep character (!) embedded in it. The line

column Name format a20

at Circle 4 sets the width for the Name column’s display at 20. The a tells SQL*Plus that this is an
alphabetic column, as opposed to a numeric column. The width can be set to virtually any value,
irrespective of how the column is defined in the database.

The Name column is defined as 25 characters wide, so it’s possible that some names will
have more than 20 characters. If you did nothing else in defining this column on the report, any
name more than 20 characters long would wrap onto the next line. Looking at Figure 6-2 again,
you can see that four of the titles have wrapped; the Title column is defined as VARCHAR2(100)
but is formatted as a20 (see Circle 5).

Instead of using the word_wrapped format, you could choose truncated, eliminating the
display of any characters that exceed the specified format length for the column.

Circle 6 in Figure 6-3 shows an example of formatting a number:

column DaysOut format 999.99

This defines a column with room for five digits and a decimal point. If you count the spaces in
the report for the DaysOut column, you’ll see seven spaces. Just looking at the column command
might lead you to believe the column would be six spaces wide, but this would leave no room
for a minus sign if the number were negative, so an extra space on the left is always provided for
numbers.

Circle 7 in Figure 6-3 refers to a column that didn’t appear in the table when we had
SQL*Plus describe it:

column DaysOut heading 'Days!Out'

What is DaysOut? Look at the select statement at the bottom of Figure 6-3. DaysOut appears
in the following line:

ReturnedDate-CheckoutDate as DaysOut /*Count Days*/

This tells SQL to perform date arithmetic—count the number of days between two dates—and
give the computation a simpler column name. As a consequence, SQL*Plus sees a column named
DaysOut, and all its formatting and other commands will act as if it were a real column in the
table. The column command for DaysOut is an example. “DaysOut” is referred to as a column
alias—another name to use when referring to a column.

break on
Look at Circle 8 in Figure 6-3. Note on the report in Figure 6-2 how the checkout records for each
name are grouped together. This effect was produced by the line

break on Name skip 1 on report

as well as by the line

order by Name, CheckoutDate;

in the select statement near the end of the start file.

4

5

6

7

8

Chapter 6: Basic SQL*Plus Reports and Commands 99

SQL*Plus looks at each row as it is brought back from Oracle and keeps track of the value
in Name. For the first four rows, this value is DORAH TALBOT, so SQL*Plus displays the rows it
has gotten. On the fifth row, Name changes to EMILY TALBOT. SQL*Plus remembers your break
instructions, which tell it that when Name changes, it should break away from the normal display
of row after row, and skip one line. You’ll notice one line between the Name sections on the
report. Unless the names were collected together because of the order by clause, it wouldn’t
make sense for break on to skip one line every time Name changed. This is why the break on
command and the order by clause must be coordinated.

You also may notice that the name DORAH TALBOT is only printed on the first line of its section,
as are the rest of the names. This is done to eliminate the duplicate printing of each of these names
for every row in each section, which is visually unattractive. If you want, you can force SQL*Plus to
duplicate the name on each row of its section by altering the break on command to read

break on Name duplicate skip 1

The report output in Figure 6-2 shows an average for DaysOut for the entire report. To be able
to get a grand total for a report, add an additional break using the break on report command. Be
careful when adding breaks because they all need to be created by a single command; entering
two consecutive break on commands will cause the first command’s instructions to be replaced
by the second command. See Circle 8 for the break on command used for the report:

break on Name skip 1 on report

compute avg
The averages calculated for each section on the report were produced by the compute avg
command at Circle 9. This command always works in conjunction with the break on command,
and the totals computed will always be for the section specified by break on. It is probably wise
to consider these two related commands as a single unit:

break on Name skip 1 on report
compute avg of DaysOut on Name
compute avg of DaysOut on report

In other words, this tells SQL*Plus to compute the average of the DaysOut for each Name.
SQL*Plus will do this first for DORAH TALBOT, then for each successive name. Every time
SQL*Plus sees a new name, it calculates and prints an average for the previous DaysOut values.
compute avg also puts a row of asterisks below the column that break on is using, and it prints
“avg” underneath. For reports with many columns that need to be added, a separate compute avg
(or compute sum if you’re calculating sums) statement is used for each calculation. It also is
possible to have several different kinds of breaks on a large report (for Name, Title, and dates,
for example), along with coordinated compute avg commands.

You can use a break on command without a compute sum command, such as for organizing
your report into sections where no totals are needed (addresses with a break on City would be an
example), but the reverse is not true.

NOTE
Every compute avg command must have a break on command to
guide it, and the on portion of both commands must match (such as
on Name in the preceding example: break on Name skip 1 on report
and compute avg of DaysOut on Name).

9

100 Part II: SQL and SQL*Plus

The following are the basic rules:

Every break on must have a related order by.

Every compute avg must have a related break on.

This makes sense, of course, but it’s easy to forget one of the pieces. In addition to compute
avg, you can also use compute sum, compute count, compute max, or any other of Oracle’s
grouping functions on the set of records.

set linesize
The four commands at Circle 10 in Figure 6-3 control the gross dimensions of your report. The
command set linesize governs the maximum number of characters that will appear on a single
line. For letter-size paper, this number is usually around 70 or 80, unless your printer uses a very
compressed (narrow) character font.

If you put more columns of information in your SQL query than will fit into the linesize
you’ve allotted, SQL*Plus will wrap the additional columns down onto the next line and stack
columns under each other. You actually can use this to very good effect when a lot of data needs
to be presented.

SQL*Plus also uses linesize to determine where to center the ttitle, and where to place the
date and page number. Both the date and page number appear on the top line, and the distance
between the first letter of the date and the last digit of the page number will always equal the
linesize you set.

set pagesize
The set pagesize command sets the total number of lines SQL*Plus will place on each page,
including the ttitle, btitle, column headings, and any blank lines it prints. On letter- and
computer-size paper, this is usually 66 (six lines per inch times 11 inches [U.S.]). set pagesize is
coordinated with set newpage. The default pagesize is 14.

NOTE
set pagesize does not set the size of the body of the report (the number
of printed lines from the date down to the btitle); instead, it sets the
total length of the page, measured in lines.

set newpage
A better name for set newpage might have been “set blank lines,” because what it really does is
print blank lines before the top line (date, page number) of each page in your report. This is useful
both for adjusting the position of reports coming out on single pages on a laser printer and for
skipping over the perforations between the pages of continuous-form computer paper.

Therefore, if you type

set pagesize 66
set newpage 9

SQL*Plus produces a report starting with nine blank lines, followed by 57 lines of information
(counting from the date down to the btitle). If you increase the size of newpage, SQL*Plus puts
fewer rows of information on each page, but produces more pages altogether.

■

■

10

Chapter 6: Basic SQL*Plus Reports and Commands 101

That’s understandable, you say, but what has been done at Circle 10 on Figure 6-3?

set pagesize 60
set newpage 0

This is a strange size for a report page. Is SQL*Plus to put zero blank lines between pages? No.
Instead, the 0 after newpage switches on a special property: set newpage 0 produces a top-of-
form character (usually a hex 13) just before the date on each page. Most modern printers
respond to this by moving immediately to the top of the next page, where the printing of the
report will begin. The combination of set pagesize 60 and set newpage 0 produces a report
whose body of information is exactly 60 lines long and which has a top-of-form character at the
beginning of each page. This is a cleaner and simpler way to control page printing than jockeying
around with blank lines and lines per page. You can also use the set newpage none command,
which will result in no blank lines and no form feeds between report pages.

spool
In the early days of computers, most file storage was done on spools of either magnetic wire or
tape. Writing information into a file and spooling a file were virtually synonymous. The term has
survived, and spooling now generally refers to any process of moving information from one place
to another. In SQL*Plus,

spool activity.lst

tells SQL to take all the output from SQL*Plus and write it to the file named activity.lst. Once
you’ve told SQL*Plus to spool, it continues to do so until you tell it to stop, which you do by
exiting or by inputting the following:

spool off

This means, for instance, that you could type

spool work.fil

and then type a SQL query, such as

select Feature, Section, Page from NEWSPAPER
 where Section = 'F';

FEATURE S PAGE
--------------- - ----
Births F 7
Classified F 8
Obituaries F 6
Doctor Is In F 6

or a series of SQL*Plus commands, such as

set pagesize 60
column Section heading 'My Favorites'

or anything else. Whatever prompts SQL*Plus produces, whatever error messages you get,
whatever appears on the computer screen while spooling—it all ends up in the file work.fil.

11

102 Part II: SQL and SQL*Plus

Spooling doesn’t discriminate. It records everything that happens from the instant you use the spool
command until you use spool off, which brings us back to the report at Circle 11 of Figure 6-3:

spool activity.lst

This phrase is carefully placed as the command just before the select statement, and spool off
immediately follows. Had spool activity.lst appeared any earlier, the SQL*Plus commands you
were issuing would have ended up on the first page of your report file. Instead, they go into the
file activity.lst, which is what you see in Figure 6-2: the results of the SQL query, formatted
according to your instructions, and nothing more. You are now free to print the file, confident that
a clean report will show up on your printer.

This set of commands will print the SQL query on the first page of the output, followed by
the data starting on the second page. To not show the SQL query with the output, you can also
change the order of commands: Type in the SQL query but without the concluding semicolon.
Press ENTER twice, and the command will still be in SQL*Plus’s buffer, unexecuted. You can then
start spooling and execute the command:

(SQL command typed here)

spool activity.lst
/
spool off

You can append data to existing spool files. The default is (as in prior versions) to create a
new output file. You can now use the append or replace option of the spool command to either
append data to an existing file that matches the name you give, or replace that existing file with
your new output, respectively.

/* */
Circle 12 of Figure 6-3 shows how a comment can be embedded in a SQL statement. This is
different in method and use from the remark statement discussed earlier. remark (or rem) must
appear at the beginning of a line, and it works only for the single line on which it appears.
Furthermore, a multiple-line SQL statement is not permitted to have a remark within it. For
example, the following is wrong:

select Feature, Section, Page
rem this is just a comment
 from NEWSPAPER
 where Section = 'F';

This will not work, and you’ll get an error message. However, you can embed remarks in SQL
following the method shown at Circle 12, or like this:

select Feature, Section, Page
 /* this is just a comment */
 from NEWSPAPER
 where Section = 'F';

The secret lies in knowing that /* tells SQL*Plus a comment has begun. Everything it sees
from that point forward, even if it continues for many words and lines, is regarded as a comment,

12

Chapter 6: Basic SQL*Plus Reports and Commands 103

until SQL*Plus sees */, which tells it that the comment has ended. You can also use the characters
– – to begin a comment. The end of the line ends the comment. This kind of comment works just
like a single-line version of /* */, except that you use – – (two dashes) instead.

Some Clarification on Column Headings
It’s possible that the difference between the renaming that occurs in

ReturnedDate-CheckoutDate as DaysOut

and the new heading given the column Item in

column DaysOut heading 'Days!Out'

is not quite clear, particularly if you look at this command:

compute avg of DaysOut on Name

SQL*Plus commands are aware only of columns that actually appear in the select statement.
Every column command refers to a column in the select statement. Both break on and compute
refer only to columns in the select statement. The only reason a column command or a compute
command is aware of the column DaysOut is that it got its name in the select statement itself.
The renaming of “ReturnedDate-CheckoutDate” to “DaysOut” is something done by SQL, not
by SQL*Plus.

Other Features
It’s not terribly difficult to look at a start file and the report it produces and see how all the
formatting and computation was accomplished. It’s possible to begin by creating the start file,
typing into it each of the commands you expect to need, and then running it in SQL*Plus to
see if it is correct. But when you’re creating reports for the first time, it is often much simpler to
experiment interactively with SQL*Plus, adjusting column formats, the SQL query, the titles, and
the totals, until what you really want begins to take shape.

Command Line Editor
When you type a SQL statement, SQL*Plus remembers each line as you enter it, storing it in what
is called the SQL buffer (a fancy name for a computer scratchpad where your SQL statements are
kept). Suppose you’ve entered this query:

select Featuer, Section, Page
 from NEWSPAPER
 where Section = 'F';

SQL*Plus responds with the following:

select Featuer, Section, Page
 *
ERROR at line 1:
ORA-00904: "FEATUER": invalid identifier

104 Part II: SQL and SQL*Plus

You now realize you’ve misspelled “Feature.” You do not have to retype the entire query. The
command line editor is already present and waiting for instructions. First, ask it to list your query:

list

SQL*Plus immediately responds with this:

 1 select Featuer, Section, Page
 2 from NEWSPAPER
 3* where Section = 'F'

Notice that SQL*Plus shows all three lines and numbers them. It also places an asterisk next
to line 3, which means it is the line your editing commands are able to affect. But you want to
change line 1, so you type, and SQL*Plus lists, the following:

list 1
 1* select Featuer, Section, Page

Line 1 is displayed and is now the current line. You can change it by typing this:

change /Featuer/Feature

 1* select Feature, Section, Page

You can use c in place of change.
You can check the whole query again with either list or just the letter l:

list

 1 select Feature, Section, Page
 2 from NEWSPAPER
 3* where Section = 'F'

If you believe this is correct, enter a single slash after the prompt. This slash has nothing to do
with the change command or the editor. Instead, it tells SQL*Plus to execute the SQL in the buffer:

/

FEATURE S PAGE
--------------- - ----
Births F 7
Classified F 8
Obituaries F 6
Doctor Is In F 6

The change command requires that you mark the start and end of the text to be changed with
a slash (/) or some other character. The line

c $Featuer$Feature

would have worked just as well. SQL*Plus looks at the first character after the word “change” and
assumes that is the character you’ve chosen to use to mark the start and end of the incorrect text
(these markers are usually called delimiters). You can also delete the current line, as shown here:

Chapter 6: Basic SQL*Plus Reports and Commands 105

list

 1 select Feature, Section, Page
 2 from NEWSPAPER
 3* where Section = 'F'

del

list

 1 select Feature, Section, Page
 2 from NEWSPAPER

del will delete just what is on the current line. You can pass the del command a range of line
numbers, to delete multiple lines at once, by specifying the first and last line numbers for the
range of lines to delete. To delete lines 3 through 7, use del 3 7. Note this has a space before the
number of the first line to delete (3) and another space before the number of the last line to delete
(7). If you leave out the space between the 3 and the 7, SQL*Plus will try to delete line 37. To
delete from line 2 to the end of the buffer, use del 2 LAST. You can use the same kind of syntax
with the list command; for example, list 3 7 will list the lines 3 through 7. See the entries for the
del and list commands in the Alphabetical Reference for the full syntax options.

The word “delete” (spelled out) will erase all the lines and put the word “delete” as line 1.
This will only cause problems, so avoid typing the whole word “delete.” If your goal is to clear
out the select statement completely, type this:

clear buffer

If you’d like to append something to the current line, you can use the append command (or
just the letter a):

list 1

 1* select Feature, Section, Page

a "WhereItIs"

 1* select Feature, Section, Page "WhereItIs"

append places its text right up against the end of the current line, with no spaces in between.
To put a space in, as was done here, type two spaces between the word append and the text.

You may also input a whole new line after the current line, as shown here:

list

 1 select Feature, Section, Page "WhereItIs"
 2* from NEWSPAPER

input where Section = 'A'

list

 1 select Feature, Section, Page "WhereItIs"

106 Part II: SQL and SQL*Plus

 2 from NEWSPAPER
 3* where Section = 'A'

Then you can set the column heading for the WhereItIs column:

column WhereItIs heading "Where It Is"

And then you can run the query:

/

FEATURE S Where It Is
--------------- - -----------
National News A 1
Editorials A 12

To review, the command line editor can list the SQL statement you’ve typed, change or delete
the current line (marked by the asterisk), append something onto the end of the current line, or
input an entire line after the current line. Once your corrections are made, the SQL statement will
execute if you type a slash at the SQL> prompt. Each of these commands can be abbreviated to
its own first letter, except del, which must be exactly the three letters del.

The command line editor can edit only your SQL statement. It cannot edit SQL*Plus commands.
If you’ve typed column Name format a18, for instance, and want to change it to column Name
format a20, you must retype the whole thing (this is in the SQL*Plus interactive mode—if you’ve
got the commands in a file, you obviously can change them with your own editor). Also note that
in interactive mode, once you’ve started to type a SQL statement, you must complete it before
you can enter any additional SQL*Plus commands, such as column formats or ttitle. As soon as
SQL*Plus sees the word select, it assumes everything to follow is part of the select statement until
it sees either a semicolon (;) at the end of the last SQL statement line or a slash (/) at the beginning
of the line after the last SQL statement line.

Either of these is correct:

select * from LEDGER;

select * from LEDGER
/

This, however, is not:

select * from LEDGER/

set pause
During the development of a new report or when using SQL*Plus for quick queries of the
database, it’s usually helpful to set the linesize at 79 or 80, the pagesize at 24 (the default is 14),
and newpage at 1. You accompany this with two related commands, as shown here:

set pause 'More. . .'
set pause on

The effect of this combination is to produce exactly one full screen of information for each
page of the report that is produced, and to pause at each page for viewing (“More. . .” will appear

Chapter 6: Basic SQL*Plus Reports and Commands 107

in the lower-left corner) until you press ENTER. After the various column headings and titles are
worked out, the pagesize can be readjusted for a page of paper, and the pause eliminated with this:

set pause off

save
If the changes you want to make to your SQL statement are extensive, or if you simply want to
work in your own editor, save the SQL you’ve created so far, in interactive mode, by writing the
SQL to a file, like this:

save fred.sql

SQL*Plus responds with

Created file fred.sql

Your SQL (but not any column, ttitle, or other SQL*Plus commands) is now in a file named
fred.sql (or a name of your choice), which you can edit using your own editor.

If the file already exists, you must use the replace option (abbreviated rep) of the save
command to save the new query in a file with that name. For this example, the syntax would be

save fred.sql rep

Alternatively, you could append to the fred.sql file with the command save fred.sql app.

store
You can use the store command to save your current SQL*Plus environment settings to a file. The
following will create a file called my_settings.sql and will store the settings in that file:

store set my_settings.sql create

If the my_settings.sql file already exists, you can use the replace option instead of create,
replacing the old file with the new settings. You could also use the append option to append the
new settings to an existing file.

Editing
Everyone has a favorite editor. Word processing programs can be used with SQL*Plus, but only if
you save the files created in them in ASCII format (see your word processor manual for details on
how to do this). Editors are just programs themselves. They are normally invoked simply by typing
their name at the operating system prompt. On UNIX, it usually looks something like this:

> vi fred.sql

In this example, vi is your editor’s name, and fred.sql represents the file you want to edit (the
start file described previously was used here only as an example—you would enter the real name
of whatever file you want to edit). Other kinds of computers won’t necessarily have the > prompt,
but they will have something equivalent. If you can invoke an editor this way on your computer,
it is nearly certain you can do the same from within SQL*Plus, except that you don’t type the
name of your editor, but rather the word edit:

SQL> edit fred.sql

108 Part II: SQL and SQL*Plus

You should first tell SQL*Plus your editor’s name. You do this while in SQL*Plus by defining
the editor, like this:

define _editor = "vi"

(That’s an underscore before the e in editor.) SQL*Plus will then remember the name of your
editor (until you quit SQL*Plus) and allow you to use it anytime you want. See the sidebar “Using
login.sql to Define the Editor” for directions on making this happen automatically.

host
In the unlikely event that none of the editing commands described in the preceding section work,
but you do have an editor you’d like to use, you can invoke it by typing this:

host vi fred.sql

host tells SQL*Plus that this is a command to simply hand back to the operating system for
execution. It’s the equivalent of typing vi fred.sql at the operating system prompt. Incidentally, this
same host command can be used to execute almost any operating system command from within
SQL*Plus, including dir, copy, move, erase, cls, and others.

Using login.sql to Define the Editor
If you’d like SQL*Plus to define your editor automatically, put the define _editor command
in a file named login.sql. This is a special filename that SQL*Plus always looks for
whenever it starts up. If it finds login.sql, it executes any commands in the file as if you had
entered them by hand. It looks first at the directory you are in when you type SQLPLUS.

You can put virtually any command in login.sql that you can use in SQL*Plus, including
both SQL*Plus commands and SQL statements; all of them will be executed before
SQL*Plus gives you the SQL prompt. This can be a convenient way to set up your own
individual SQL*Plus environment, with all the basic layouts the way you prefer them.
Here’s an example of a typical login.sql file:

prompt Login.sql loaded.
set feedback off
set sqlprompt 'What now, boss? '
set sqlnumber off
set numwidth 5
set pagesize 24
set linesize 79
define _editor="vi"

As of Oracle Database 10g, Oracle provides three new predefined environment
variables: _DATE, _PRIVILEGE ('AS SYSDBA', 'AS SYSOPER', or blank), and _USER (same
value as show user returns).

Another file, named glogin.sql, is used to establish default SQL*Plus settings for all users
of a database. This file, usually stored in the administrative directory for SQL*Plus, is useful
in enforcing column and environment settings for multiple users. As of Oracle 11g,
SQL*Plus settings previously stored in glogin.sql are now embedded in the executable.

The meaning of each of these commands can be found in the Alphabetical Reference
section of this book.

Chapter 6: Basic SQL*Plus Reports and Commands 109

Adding SQL*Plus Commands
Once you’ve saved a SQL statement into a file, such as fred.sql, you can add to the file any
SQL*Plus commands you want. Essentially, you can build this file in a similar fashion to activity
.sql in Figure 6-3. When you’ve finished working on it, you can exit your editor and be returned
to SQL*Plus.

start
Once you are back in SQL*Plus, test your editing work by executing the file you’ve just edited:

start fred.sql

All the SQL*Plus and SQL commands in that file will execute, line by line, just as if you’d
entered each one of them by hand. If you’ve included a spool and a spool off command in the
file, you can use your editor to view the results of your work. This is just what was shown in
Figure 6-2—the product of starting activity.sql and spooling its results into activity.lst.

To develop a report, use steps like these, in cycles:

 1. Use SQL*Plus to build a SQL query interactively. When it appears close to being
satisfactory, save it under a name such as test.sql. (The extension .sql is usually reserved
for start files, scripts that will execute to produce a report.)

 2. Edit the file test.sql using a favorite editor. Add column, break, compute, set, and spool
commands to the file. You usually spool to a file with the extension .lst, such as test.lst.
Exit the editor.

 3. Back in SQL*Plus, the file test.sql is started. Its results fly past on the screen, but also go
into the file test.lst. The editor examines this file.

 4. Incorporate any necessary changes into test.sql and run it again.

 5. Continue this process until the report is correct and polished.

Checking the SQL*Plus Environment
You saw earlier that the command line editor can’t change SQL*Plus commands, because it can
affect only SQL statements—those lines stored in the SQL buffer. You also saw that you can save
SQL statements and store environment settings into files, where they can be modified using your
own editor.

If you’d like to check how a particular column is defined, type

column DaysOut

without anything following the column name. SQL*Plus will then list all the instructions you’ve
given about that column, as shown here:

COLUMN DaysOut ON
HEADING 'Days!Out' headsep '!'
FORMAT 999.99

If you type just the word column, without any column name following it, then all the columns will
be listed. You will see all the columns Oracle sets up by default, plus the ones that you’ve defined:

COLUMN Title ON
FORMAT a20

110 Part II: SQL and SQL*Plus

word_wrap

COLUMN DaysOut ON
HEADING 'Days!Out' headsep '!'
FORMAT 999.99

COLUMN Name ON
FORMAT a20

ttitle, btitle, break, and compute are displayed simply by typing their names, with nothing
following. SQL*Plus answers back immediately with the current definitions. The first line in each
of the next examples is what you type; the following lines show SQL*Plus’s replies:

ttitle
ttitle ON and is the following 31 characters:
Checkout Log for 1/1/02-3/31/02

btitle
btitle ON and is the following 18 characters:
from the Bookshelf

break
break on report nodup
 on Name skip 1 nodup

compute
COMPUTE avg LABEL 'avg' OF DaysOut ON Name
COMPUTE avg LABEL 'avg' OF DaysOut ON report

Looking at those settings (also called parameters) that follow the set command requires the
use of the word show:

show headsep
headsep "!" (hex 21)

show linesize
linesize 80

show pagesize
pagesize 60

show newpage
newpage 0

See the Alphabetical Reference section of this book under set and show for a complete list of
parameters.

The ttitle and btitle settings can be disabled by using the btitle off and ttitle off commands.
The following listing shows these commands (note that SQL*Plus does not reply to the commands):

ttitle off

btitle off

Chapter 6: Basic SQL*Plus Reports and Commands 111

The settings for columns, breaks, and computes can be disabled via the clear columns, clear
breaks, and clear computes commands. The first line in each example in the following listing is
what you type; the lines that follow show how SQL*Plus replies:

clear columns
columns cleared

clear breaks
breaks cleared

clear computes
computes cleared

Building Blocks
This has been a fairly dense chapter, particularly if SQL*Plus is new to you; yet on reflection,
you’ll probably agree that what was introduced here is not really difficult. If Figure 6-3 looked
daunting when you began the chapter, look at it again now. Is there any line on it that you don’t
understand, or don’t have a sense for what is being done and why? You could, if you wanted,
simply copy this file (activity.sql) into another file with a different name and then begin to modify
it to suit your own tastes and to query against your own tables. The structure of any reports you
produce will, after all, be very similar.

There is a lot going on in activity.sql, but it is made up of simple building blocks. This will be
the approach used throughout the book. Oracle provides building blocks, and lots of them, but
each separate block is understandable and useful.

In the previous chapters, you learned how to select data out of the database, choosing certain
columns and ignoring others, choosing certain rows based on logical restrictions you set up, and
combining two tables to give you information not available from either one on its own.

In this chapter, you learned how to give orders that SQL*Plus can follow in formatting and
producing the pages and headings of polished reports.

In the next several chapters, you’ll change and format your data, row by row. Your expertise
and confidence should grow chapter by chapter. By the end of Part II of this book, you should be
able to produce very sophisticated reports in short order, to the considerable benefit of your
company and yourself.

SQL*Plus is not the only way to interact with the Oracle database, but it is common to all
Oracle environments. The concepts shown in this chapter—building the SQL commands and
formatting their results—are common concepts in all development environments for Oracle
databases.

This page intentionally left blank

CHAPTER
7

Getting Text Information
and Changing It

113

114 Part II: SQL and SQL*Plus

his chapter introduces string functions, which are software tools that allow you to
manipulate a string of letters or other characters. To quickly reference individual
functions, look them up by name in the Alphabetical Reference section of this book.
This chapter focuses on the manipulation of text strings; to perform word searches
(including word stem expansions and fuzzy matches), you should use Oracle Text,

as described in Chapter 27.

Functions in Oracle work in one of two ways. Some functions create new objects from old
ones; they produce a result that is a modification of the original information, such as turning
lowercase characters into uppercase. Other functions produce a result that tells you something
about the information, such as how many characters are in a word or sentence.

NOTE
If you are using PL/SQL, you can create your own functions with the
create function statement.

Datatypes
Just as people can be classified into different types based on certain characteristics (shy, outgoing,
smart, silly, and so forth), different kinds of data can be classified into datatypes based on certain
characteristics.

Datatypes in Oracle include NUMBER, CHAR (short for CHARACTER), DATE, TIMESTAMP,
VARCHAR2, LONG, RAW, LONG RAW, BLOB, CLOB, and BFILE. The first several are probably
obvious. The rest are special datatypes that you’ll encounter later. A full explanation of each of
these can be found by name or under “Datatypes” in the Alphabetical Reference section of this
book. Each datatype is covered in detail in the chapters ahead. As with people, some of the
“types” overlap, and some are fairly rare.

If the information is of the character (VARCHAR2 or CHAR) type—a mixture of letters,
punctuation marks, numbers, and spaces (also called alphanumeric)—you’ll need string functions
to modify or inform you about it. Oracle’s SQL provides quite a few such tools.

What Is a String?
A string is a simple concept: a bunch of things in a line, such as houses, popcorn, pearls,
numbers, or characters in a sentence.

Strings are frequently encountered in managing information. Names are strings of characters,
as in Juan L’Heureaux. Phone numbers are strings of numbers, dashes, and sometimes parentheses,
as in (415) 555-2676. Even a pure number, such as 5443702, can be considered as either a number
or a string of characters.

NOTE
Datatypes that are restricted to pure numbers (plus a decimal point
and minus sign, if needed) are called NUMBER, and they are not
usually referred to as strings. A number can be used in certain ways
that a string cannot, and vice versa.

Strings that can include any mixture of letters, numbers, spaces, and other symbols (such as
punctuation marks and special characters) are called character strings, or just character for short.

There are two main string datatypes in Oracle. CHAR strings are always a fixed length. If you
set a value to a string with a length less than that of a CHAR column, Oracle automatically pads

T

Chapter 7: Getting Text Information and Changing It 115

the string with blanks. When you compare CHAR strings, Oracle compares the strings by padding
them out to equal lengths with blanks. This means that if you compare “character” with
“character” in CHAR columns, Oracle considers the strings to be the same. The VARCHAR2
datatype is a variable-length string. The VARCHAR datatype is synonymous with VARCHAR2,
but this may change in future versions of Oracle, so you should avoid using VARCHAR. Use
CHAR for fixed-length character string fields and VARCHAR2 for all other character string fields.

The simple Oracle string functions, explained in this chapter, are shown in Table 7-1.

TABLE 7-1 Oracle String Functions

Function Name Use

| | Glues or concatenates two strings together. The | symbol is called a vertical bar
or pipe.

ASCII Returns the decimal representation in the database character set of the first
character of the string.

CHR Returns the character having the binary equivalent to the string in either the
database character set or the national character set.

CONCAT Concatenates two strings together (same as | |).

INITCAP Initial capital. Capitalizes the first letter of a word or series of words.

INSTR Finds the location of a character in a string.

LENGTH Tells the length of a string.

LOWER Converts every letter in a string to lowercase.

LPAD Left pad. Makes a string a certain length by adding a certain set of characters to
the left.

LTRIM Left trim. Trims all the occurrences of any one of a set of characters off the left
side of a string.

NLS_INITCAP Initcap based on the National Language Support (NLS) value.

NLS_LOWER Lower based on the NLS value.

NLS_UPPER Upper based on the NLS value.

NLSSORT Sort based on the national language selected.

REGEXP_INSTR, REGEXP_REPLACE,
REGEXP_COUNT, REGEXP_LIKE,
and REGEXP_SUBSTR

INSTR, REPLACE, COUNT, LIKE, and SUBSTR for regular expressions.

RPAD Right pad. Makes a string a certain length by adding a certain set of characters
to the right.

RTRIM Right trim. Trims all the occurrences of any one of a set of characters off the
right side of a string.

SOUNDEX Finds words that sound like the example specified.

SUBSTR Substring. Clips out a piece of a string.

TREAT Changes the declared type of an expression.

TRIM Trims all occurrences of any one of a set of characters off either or both sides of
a string.

UPPER Converts every letter in a string into uppercase.

116 Part II: SQL and SQL*Plus

Notation
Functions are shown with this kind of notation throughout the book:FUNCTION(string [,option])

The function itself will be in uppercase. The thing it affects (usually a string) will be shown in
lowercase italics. Any time the word string appears, it represents either a literal string of characters
or the name of a character column in a table. When you actually use a string function, any literal
must be in single quotes; any column name must appear without single quotes.

Every function has only one pair of parentheses. The value that function works on, as well as
additional information you can pass to the function, goes between the parentheses.

Some functions have options, parts that are not always required that you can use to make the
function work as you want. Options are always shown in square brackets: []. See the discussion
on LPAD and RPAD in the following section for an example of how options are used.

A simple example of how the LOWER function is printed follows:

LOWER(string)

The word “LOWER” with the two parentheses is the function itself, so it is shown here in
uppercase; string stands for the actual string of characters to be converted to lowercase, and it’s
shown in lowercase italics. Therefore,

LOWER('CAMP DOUGLAS')

would produce

camp douglas

The string 'CAMP DOUGLAS' is a literal, meaning that it is literally the string of characters
that the function LOWER is to work on. Oracle uses single quotation marks to denote the
beginning and end of any literal string. The string in LOWER also could have been the name
of a column from a table, in which case the function would have operated on the contents of the
column for every row brought back by a select statement. For example,

select City, LOWER(City), LOWER('City') from WEATHER;

would produce this result:

CITY LOWER(CITY) LOWE
----------- ----------- ----
LIMA lima city
PARIS paris city
MANCHESTER manchester city
ATHENS athens city
CHICAGO chicago city
SYDNEY sydney city
SPARTA sparta city

At the top of the second column, in the LOWER function, CITY is not inside single quotation
marks. This tells Oracle that it is a column name, not a literal.

In the third column’s LOWER function, 'CITY' is inside single quotation marks. This means
you literally want the function LOWER to work on the word “CITY” (that is, the string of letters
C-I-T-Y), not the column by the same name.

Chapter 7: Getting Text Information and Changing It 117

Concatenation (||)
The following notation tells Oracle to concatenate, or stick together, two strings:

string || string

The strings, of course, can be either column names or literals. Here’s an example:

select City||Country from LOCATION;

CITY || COUNTRY
--
ATHENSGREECE
CHICAGOUNITED STATES
CONAKRYGUINEA
LIMAPERU
MADRASINDIA
MANCHESTERENGLAND
MOSCOWRUSSIA
PARISFRANCE
SHENYANGCHINA
ROMEITALY
TOKYOJAPAN
SYDNEYAUSTRALIA
SPARTAGREECE
MADRIDSPAIN

Here, the cities vary in width from 4 to 12 characters. The countries push right up against
them. This is just how the concatenate function is supposed to work: It glues columns or strings
together with no spaces in between.

This isn’t very easy to read, of course. To make this a little more readable, you could list cities
and countries with a comma and a space between them. You’d simply concatenate the City and
Country columns with a literal string of a comma and a space, like this:

select City ||', '||Country from LOCATION;

CITY ||','||COUNTRY
--
ATHENS, GREECE
CHICAGO, UNITED STATES
CONAKRY, GUINEA
LIMA, PERU
MADRAS, INDIA
MANCHESTER, ENGLAND
MOSCOW, RUSSIA
PARIS, FRANCE
SHENYANG, CHINA
ROME, ITALY
TOKYO, JAPAN
SYDNEY, AUSTRALIA
SPARTA, GREECE
MADRID, SPAIN

Notice the column title. See Chapter 6 for a review of column titles.

118 Part II: SQL and SQL*Plus

You could also use the CONCAT function to concatenate strings. For example, the query

select CONCAT(City, Country) from LOCATION;

is equivalent to

select City||Country from LOCATION;

How to Cut and Paste Strings
In this section, you learn about a series of functions that often confuse users: LPAD, RPAD,
LTRIM, RTRIM, TRIM, LENGTH, SUBSTR, and INSTR. These all serve a common purpose:
they allow you to cut and paste.

Each of these functions does some part of cutting and pasting. For example, LENGTH tells you
how many characters are in a string. SUBSTR lets you clip out and use a substring—a portion of a
string—starting at one position in the string and continuing for a given length. INSTR lets you find
the location of a group of characters within another string. LPAD and RPAD allow you to easily
concatenate spaces or other characters on the left or right side of a string. LTRIM and RTRIM
clip characters off the ends of strings, and TRIM can clip characters from both ends at once.
Most interesting is that all of these functions can be used in combination with each other, as
you’ll soon see.

RPAD and LPAD
RPAD and LPAD are very similar functions. RPAD allows you to “pad” the right side of a column
with any set of characters. The character set can be almost anything: spaces, periods, commas,
letters or numbers, caret signs (^), or even exclamation marks (!). LPAD does the same thing as
RPAD, but to the left side.

Here are the formats for RPAD and LPAD:

RPAD(string,length [,'set'])

LPAD(string,length [,'set'])

Here, string is the name of a CHAR or VARCHAR2 column from the database (or a literal string),
length is the total number of characters long that the result should be (in other words, its width),
and set is the set of characters that do the padding. The set must be enclosed in single quotation
marks. The square brackets mean that the set (and the comma that precedes it) is optional. If you
leave this off, the function will automatically pad with spaces. This is sometimes called the default;
that is, if you don’t tell the function which set of characters to use, it will use spaces by default.

Many users produce tables with dots to help guide the eye from one side of the page to the
other. Here’s how RPAD does this. In this example, the values are padded to a length of 35:

select RPAD(City,35,'.'), Temperature from WEATHER;

RPAD(CITY,35,'.') TEMPERATURE
----------------------------------- -----------
LIMA............................... 45
PARIS.............................. 81
MANCHESTER......................... 66

Chapter 7: Getting Text Information and Changing It 119

ATHENS............................. 97
CHICAGO............................ 66
SYDNEY............................. 69
SPARTA............................. 74

Notice what happened here. RPAD took each city, from Lima through Sparta, and concatenated
dots on the right of it, adding just enough for each city so that the result (City plus dots) is exactly
35 characters long. The concatenate function (||) could not have done this. It would have added
the same number of dots to every city, leaving a ragged edge on the right.

LPAD does the same sort of thing, but on the left. Suppose you want to reformat cities and
temperatures so that the cities are right-justified (that is, they all align at the right). For this example,
the padded length is 11:

select LPAD(City,11), Temperature from WEATHER;

LPAD(CITY,1 TEMPERATURE
----------- -----------
 LIMA 45
 PARIS 81
 MANCHESTER 66
 ATHENS 97
 CHICAGO 66
 SYDNEY 69
 SPARTA 74

LTRIM, RTRIM, and TRIM
LTRIM and RTRIM are like hedge trimmers. They trim off unwanted characters from the left and
right ends of strings. For example, suppose you have a MAGAZINE table with a column in it that
contains the titles of magazine articles, but the titles were entered by different people. Some people
always put the titles in quotes, whereas others simply entered the words; some used periods, others
didn’t; some started titles with “The,” whereas others did not. How do you trim these?

select Title from MAGAZINE;

TITLE

THE BARBERS WHO SHAVE THEMSELVES.
"HUNTING THOREAU IN NEW HAMPSHIRE"
THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
"INTERCONTINENTAL RELATIONS."

Here are the formats for RTRIM and LTRIM:

RTRIM(string [,'set'])

LTRIM(string [,'set'])

Here, string is the name of the column from the database (or a literal string), and set is the collection
of characters you want to trim off. If no set of characters is specified, the functions trim off spaces.

120 Part II: SQL and SQL*Plus

You can trim off more than one character at a time; to do so, simply make a list (a string) of
the characters you want removed. First, let’s get rid of the quotes and periods on the right, as
shown here:

select RTRIM(Title,'."') from MAGAZINE

Set of characters
being trimmed

The preceding produces this:

RTRIM(TITLE,'."')

THE BARBERS WHO SHAVE THEMSELVES
"HUNTING THOREAU IN NEW HAMPSHIRE
THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
"INTERCONTINENTAL RELATIONS

RTRIM removed both the double quotation marks and the periods from the right side of
each of these titles. The set of characters you want to remove can be as long as you want. Oracle
will check and recheck the right side of each title until every character in your string has been
removed—that is, until it runs into the first character in the string that is not in your set.

Combining Two Functions
Now what? You can use the LTRIM function to get rid of the quotes on the left. The Title column is
buried in the middle of the RTRIM function. In this section, you learn how to combine functions.

You know that when you ran the select statement

select Title from MAGAZINE;

the result you got back was the content of the Title column, as shown next:

THE BARBERS WHO SHAVE THEMSELVES.
"HUNTING THOREAU IN NEW HAMPSHIRE"
THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
"INTERCONTINENTAL RELATIONS."

Remember that the purpose of

RTRIM(Title,'."')

is to take each of these strings and remove the quotes on the right side, effectively producing a
result that is a new column whose contents are shown here:

THE BARBERS WHO SHAVE THEMSELVES
"HUNTING THOREAU IN NEW HAMPSHIRE
THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
"INTERCONTINENTAL RELATIONS

Chapter 7: Getting Text Information and Changing It 121

Therefore, if you pretend that RTRIM(Title,'."') is simply a column name itself, you can
substitute it for string in the following:

LTRIM(string,'set')

So you simply type your select statement to look like this:

select LTRIM(RTRIM(Title,'."'),'"') from MAGAZINE;

Taking this apart for clarity, you see the following:

Column you’re trimming (the string)

select LTRIM(RTRIM(Title,'."'),'"') from MAGAZINE

LTRIM function

Is this how you want it? And what is the result of this combined function?

LTRIM(RTRIM(TITLE,'."'),'"')

THE BARBERS WHO SHAVE THEMSELVES
HUNTING THOREAU IN NEW HAMPSHIRE
THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
INTERCONTINENTAL RELATIONS

Your titles are now cleaned up.
Looking at a combination of functions the first (or the thousandth) time can be confusing, even

for an experienced query user. It’s difficult to assess which commas and parentheses go with which
functions, particularly when a query you’ve written isn’t working correctly; discovering where a
comma is missing, or which parenthesis isn’t properly matched with another, can be a real adventure.

One simple solution to this is to break functions onto separate lines, at least until they’re all
working the way you want. SQLPLUS doesn’t care at all where you break a SQL statement, as
long as it’s not in the middle of a word or a literal string. To better visualize how this RTRIM and
LTRIM combination works, you could type it like this:

select LTRIM(
 RTRIM(Title,'."')
 ,'"')
 from MAGAZINE;

This makes what you are trying to do obvious, and it will work even if it is typed on four separate
lines with lots of spaces. SQLPLUS simply ignores extra spaces.

Suppose now you decide to trim off THE from the front of two of the titles, as well as the
space that follows it (and, of course, the double quote you removed before). You might do this:

select LTRIM(RTRIM(Title,'."'),'"THE ')
 from MAGAZINE;

122 Part II: SQL and SQL*Plus

which produces the following:

LTRIM(RTRIM(TITLE,'."'),'"THE')

BARBERS WHO SHAVE THEMSELVES
UNTING THOREAU IN NEW HAMPSHIRE
NIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
INTERCONTINENTAL RELATIONS

What happened? The second and third row got trimmed more than expected. Why? Because
LTRIM was busy looking for and trimming off anything that was a double quote, a T, an H, an E,
or a space. It was not looking for the word THE. It was looking for the letters in it, and LTRIM
didn’t quit the first time it saw any of the letters it was looking for. It quit when it saw a character
that wasn’t in its set.

What it trimmed: What is left behind:

THE BARBERS WHO SHAVE THEMSELVES
"H UNTING THOREAU IN NEW HAMPSHIRE
THE ETH NIC NEIGHBORHHOOD
 RELATIONAL DESIGN AND ENTHALPY
" INTERCONTINENTAL RELATIONS

NOT in the set '"THE'

In the set '"THE'

In other words, all of the following and many other combinations of the letters will have the
same effect when used as the set of an LTRIM or RTRIM:

'"THE'
'HET"'
'E"TH'
'H"TE'
'ET"H'

The order of the letters of the set has no effect on how the function works. Note, however, that the
case of the letters is important. Oracle will check the case of both the letters in the set and in the
string. It will remove only those with an exact match.

LTRIM and RTRIM are designed to remove any characters in a set from the left or right of a
string. They’re not intended to remove words. To do that requires clever use of INSTR, SUBSTR,
and even DECODE, which you will learn about in Chapter 16.

The previous example makes one point clear: It’s better to make certain that data gets cleaned
up or edited before it is stored in the database. It would have been a lot less trouble if the
individuals typing these magazine article titles had simply avoided the use of quotes, periods,
and the word THE.

Using the TRIM Function
The preceding example showed how to combine two functions—a useful skill when dealing with
string manipulation. If you are trimming the exact same data from both the beginning and the end
of the string, you can use the TRIM function in place of an LTRIM/RTRIM combination.

Chapter 7: Getting Text Information and Changing It 123

TRIM uses a unique syntax. The following example shows the use of the TRIM function with
its associated from clause within the function. In this example, the double quotes are removed
from the beginning and the end of the magazine article titles. Because the double quote is a
character string, it is placed inside two single quotes:

select TRIM('"' from Title) from MAGAZINE;

TRIM('"'FROMTITLE)

THE BARBERS WHO SHAVE THEMSELVES.
HUNTING THOREAU IN NEW HAMPSHIRE
THE ETHNIC NEIGHBORHOOD
RELATIONAL DESIGN AND ENTHALPY
INTERCONTINENTAL RELATIONS.

The quotes have been removed from the beginning and ending of the strings. If you just
want to trim one end of the strings, you could use the leading or trailing clause, as shown in
the following listing:

select TRIM(leading '"' from Title) from MAGAZINE;
select TRIM(trailing '"' from Title) from MAGAZINE;

Using leading makes TRIM act like LTRIM; trailing makes it act like RTRIM. The most powerful
use of TRIM is its ability to act on both ends of the string at once, thus simplifying the code you
have to write—provided the same characters are being removed from both ends of the string.

Adding One More Function
Suppose that you decide to RPAD your trimmed-up titles with dashes and carets, perhaps also
asking for a magazine name and page number. Your query would look like this:

select Name, RPAD(LTRIM(RTRIM(Title,'"'),'."'),47,'-^'), Page
 from MAGAZINE;

NAME RPAD(LTRIM(RTRIM(TITLE,'"'),'."'),47,'-^') PAGE
---------------- -- -----
BERTRAND MONTHLY THE BARBERS WHO SHAVE THEMSELVES-^-^-^-^-^ 70
LIVE FREE OR DIE HUNTING THOREAU IN NEW HAMPSHIRE-^-^-^-^-^ 320
PSYCHOLOGICA THE ETHNIC NEIGHBORHOOD-^-^-^-^-^-^-^-^-^- 246
FADED ISSUES RELATIONAL DESIGN AND ENTHALPY-^-^-^-^-^-^ 279
ENTROPY WIT INTERCONTINENTAL RELATIONS-^-^-^-^-^-^-^-^ 20

Each function has parentheses that enclose the column it is going to affect, so the real trick in
understanding combined functions in select statements is to read from the outside to the inside on
both the left and right, watching (and even counting) the pairs of parentheses.

LOWER, UPPER, and INITCAP
These three related and very simple functions often are used together. LOWER takes any string
or column and converts any letters in it to lowercase. UPPER does the opposite, converting any
letters to uppercase. INITCAP takes the initial letter of every word in a string or column and
converts just those letters to uppercase.

124 Part II: SQL and SQL*Plus

Here are the formats for these functions:

LOWER(string)
UPPER(string)
INITCAP(string)

Returning to the WEATHER table, recall that each city is stored in uppercase letters, like this:

LIMA
PARIS
ATHENS
CHICAGO
MANCHESTER
SYDNEY
SPARTA

Therefore,

select City, UPPER(City), LOWER(City), INITCAP(LOWER(City))
 from WEATHER;

produces this:

City UPPER(CITY) LOWER(CITY) INITCAP(LOW
----------- ----------- ----------- -----------
LIMA LIMA lima Lima
PARIS PARIS paris Paris
MANCHESTER MANCHESTER manchester Manchester
ATHENS ATHENS athens Athens
CHICAGO CHICAGO chicago Chicago
SYDNEY SYDNEY sydney Sydney
SPARTA SPARTA sparta Sparta

Look carefully at what is produced in each column, and at the functions that produced it in
the SQL statement. The fourth column shows how you can apply INITCAP to LOWER(City) and
have it appear with normal capitalization, even though it is stored as uppercase.

Another example is the Name column as stored in a MAGAZINE table:

NAME

BERTRAND MONTHLY
LIVE FREE OR DIE
PSYCHOLOGICA
FADED ISSUES
ENTROPY WIT

This is then retrieved with the combined INITCAP and LOWER functions, as shown here:

select INITCAP(LOWER(Name)) from MAGAZINE;

INITCAP(LOWER(NA

Bertrand Monthly
Live Free Or Die

Chapter 7: Getting Text Information and Changing It 125

Psychologica
Faded Issues
Entropy Wit

And here it’s applied to the Name, cleaned-up Title, and Page columns (note that you’ll also
rename the columns):

select INITCAP(LOWER(Name)) AS Name,
 INITCAP(LOWER(RTRIM(LTRIM(Title,'"'),'."'))) AS Title,
 Page
 from Magazine;

NAME TITLE PAGE
---------------- ------------------------------------- -----
Bertrand Monthly The Barbers Who Shave Themselves 70
Live Free Or Die Hunting Thoreau In New Hampshire 320
Psychologica The Ethnic Neighborhood 246
Faded Issues Relational Design And Enthalpy 279
Entropy Wit Intercontinental Relations 20

LENGTH
This one is easy. LENGTH tells you how long a string is—how many characters it has in it,
including letters, spaces, and anything else. Here is the format for LENGTH:

LENGTH(string)

And here’s an example:

select Name, LENGTH(Name) from MAGAZINE;

NAME LENGTH(NAME)
---------------- ------------
BERTRAND MONTHLY 16
LIVE FREE OR DIE 16
PSYCHOLOGICA 12
FADED ISSUES 12
ENTROPY WIT 11

This isn’t normally useful by itself, but it can be used as part of another function, for calculating
how much space you’ll need on a report, or as part of a where or an order by clause.

NOTE
You cannot perform functions such as LENGTH on a column that uses
a LONG datatype.

SUBSTR
You can use the SUBSTR function to clip out a piece of a string. Here is the format for SUBSTR:

SUBSTR(string,start [,count])

126 Part II: SQL and SQL*Plus

This tells SQL to clip out a subsection of string, beginning at position start and continuing for
count characters. If you don’t specify count, SUBSTR will clip beginning at start and continuing to
the end of the string. For example,

select SUBSTR(Name,6,4) from MAGAZINE;

gives you this:

SUBS

AND
FREE
OLOG
 ISS
PY W

You can see how the function works. It clipped out the piece of the magazine name starting in
position 6 (counting from the left) and including a total of four characters.

A more practical use might be in separating out phone numbers from a personal address
book. For example, assume that you have an ADDRESS table that contains, among other things,
last names, first names, and phone numbers, as shown here:

select LastName, FirstName, Phone from ADDRESS;

LASTNAME FIRSTNAME PHONE
------------------------- ------------------------- ------------
BAILEY WILLIAM 213-555-0223
ADAMS JACK 415-555-7530
SEP FELICIA 214-555-8383
DE MEDICI LEFTY 312-555-1166
DEMIURGE FRANK 707-555-8900
CASEY WILLIS 312-555-1414
ZACK JACK 415-555-6842
YARROW MARY 415-555-2178
WERSCHKY ARNY 415-555-7387
BRANT GLEN 415-555-7512
EDGAR THEODORE 415-555-6252
HARDIN HUGGY 617-555-0125
HILD PHIL 603-555-2242
LOEBEL FRANK 202-555-1414
MOORE MARY 718-555-1638
SZEP FELICIA 214-555-8383
ZIMMERMAN FRED 503-555-7491

Suppose you want just those phone numbers in the 415 area code. One solution would be to
have a separate column called AreaCode. Thoughtful planning about tables and columns will
eliminate a good deal of fooling around later with reformatting. However, in this instance, area
codes and phone numbers are combined in a single column, so a way must be found to separate
out the numbers in the 415 area code.

select LastName, FirstName, Phone from ADDRESS
 where Phone like '415-%';

Chapter 7: Getting Text Information and Changing It 127

LASTNAME FIRSTNAME PHONE
------------------------- ------------------------- ------------
ADAMS JACK 415-555-7530
ZACK JACK 415-555-6842
YARROW MARY 415-555-2178
WERSCHKY ARNY 415-555-7387
BRANT GLEN 415-555-7512
EDGAR THEODORE 415-555-6252

Next, because you do not want to dial your own area code when calling friends in the 415
area code, you can eliminate this from the result by using another SUBSTR:

select LastName, FirstName, SUBSTR(Phone,5) from ADDRESS
 where Phone like '415-%';

LASTNAME FIRSTNAME SUBSTR(P
------------------------- ------------------------- --------
ADAMS JACK 555-7530
ZACK JACK 555-6842
YARROW MARY 555-2178
WERSCHKY ARNY 555-7387
BRANT GLEN 555-7512
EDGAR THEODORE 555-6252

Notice that the default version of SUBSTR was used here. SUBSTR(Phone,5) tells SQL to clip
out the substring of the phone number, starting at position 5 and going to the end of the string.
Doing this eliminates the area code.

Of course,

SUBSTR(Phone,5)

has exactly the same effect as the following:

SUBSTR(Phone,5,8)

You can combine this with the column-renaming techniques discussed in Chapter 6 to
produce a quick listing of local friends’ phone numbers, as shown here:

select LastName ||', '||FirstName AS Name,
 SUBSTR(Phone,5) AS Phone
 from ADDRESS
 where Phone like '415-%';

NAME PHONE
-- --------
ADAMS, JACK 555-7530
ZACK, JACK 555-6842
YARROW, MARY 555-2178
WERSCHKY, ARNY 555-7387
BRANT, GLEN 555-7512
EDGAR, THEODORE 555-6252

128 Part II: SQL and SQL*Plus

To produce a dotted line following the name, add the RPAD function:

select RPAD(LastName ||', '||FirstName,25,'.') AS Name,
 SUBSTR(Phone,5) AS Phone
 from ADDRESS
 where Phone like '415-%';

NAME PHONE
------------------------- --------
ADAMS, JACK.............. 555-7530
ZACK, JACK............... 555-6842
YARROW, MARY............. 555-2178
WERSCHKY, ARNY........... 555-7387
BRANT, GLEN.............. 555-7512
EDGAR, THEODORE.......... 555-6252

The use of negative numbers in the SUBSTR function also works. Normally, the position value
you specify for the starting position is relative to the start of the string. When you use a negative
number for the position value, it is relative to the end of the string. For example,

SUBSTR(Phone,-4)

would use the fourth position from the end of the Phone column’s value as its starting point.
Because no length parameter is specified in this example, the remainder of the string will be
returned.

NOTE
Use this feature only for VARCHAR2 datatype columns. Do not use it
with columns that use the CHAR datatype. CHAR columns are fixed-
length columns, so their values are padded with spaces to extend
them to the full length of the column. Using a negative number for the
SUBSTR position value in a CHAR column will determine the starting
position relative to the end of the column, not the end of the string.

The following example shows the result of a negative number in the SUBSTR function when it
is used on a VARCHAR2 column:

select SUBSTR(Phone,-4)
 from ADDRESS
 where Phone like '415-5%';

SUBS

7530
6842
2178
7387
7512
6252

Chapter 7: Getting Text Information and Changing It 129

The count value of the SUBSTR function must always be positive or unspecified. Using a
negative count will return a NULL result.

INSTR
The INSTR function allows for simple or sophisticated searching through a string for a set of
characters, not unlike LTRIM and RTRIM, except that INSTR doesn’t clip anything off. It simply
tells you where in the string it found what you were searching for. This is similar to the LIKE
logical operator described in Chapter 5, except that LIKE can only be used in a where or having
clause, and INSTR can be used anywhere except in the from clause. Of course, LIKE can be used
for complex pattern searches that would be quite difficult, if even possible, using INSTR. Here is
the format for INSTR:

INSTR(string,set [,start [,occurrence]])

INSTR searches in the string for a certain set of characters. It has two options, one within the
other. The first option is the default: It will look for the set starting at position 1. If you specify the
location to start, it will skip over all the characters up to that point and begin its search there.

The second option is occurrence. A set of characters may occur more than once in a string,
and you may really be interested only in whether something occurs more than once. By default,
INSTR will look for the first occurrence of the set. By adding the option occurrence and making it
equal to 3, for example, you can force INSTR to skip over the first two occurrences of the set and
give the location of the third.

Some examples will make all this simpler to grasp. Recall the table of magazine articles. Here
is a list of their authors:

select Author from MAGAZINE;

AUTHOR

BONHOEFFER, DIETRICH
CHESTERTON, G.K.
RUTH, GEORGE HERMAN
WHITEHEAD, ALFRED
CROOKES, WILLIAM

To find the location of the first occurrence of the letter O, INSTR is used without its options
and with set as 'O' (note the single quotation marks, since this is a literal), as shown in the
following listing:

select Author, INSTR(Author,'O') from MAGAZINE;

AUTHOR INSTR(AUTHOR,'O')
------------------------- -----------------
BONHOEFFER, DIETRICH 2
CHESTERTON, G.K. 9
RUTH, GEORGE HERMAN 9
WHITEHEAD, ALFRED 0
CROOKES, WILLIAM 3

130 Part II: SQL and SQL*Plus

This is, of course, the same as the following:

select Author, INSTR(Author,'O',1,1) from MAGAZINE;

If INSTR had looked for the second occurrence of the letter O, it would have found

select Author, INSTR(Author,'O',1,2) from MAGAZINE;

AUTHOR INSTR(AUTHOR,'O',1,2)
------------------------- ---------------------
BONHOEFFER, DIETRICH 5
CHESTERTON, G.K. 0
RUTH, GEORGE HERMAN 0
WHITEHEAD, ALFRED 0
CROOKES, WILLIAM 4

INSTR found the second O in Bonhoeffer’s name, at position 5, and in Crookes’ name,
at position 4. Chesterton has only one O, so for him, Ruth, and Whitehead, the result is zero,
meaning no success—no second O was found.

To tell INSTR to look for the second occurrence, you also must tell it where to start looking
(in this case, position 1). The default value of start is 1, which means that’s what it uses if you
don’t specify anything, but the occurrence option requires a start, so you have to specify both.

If set is not just one character but several, INSTR gives the location of the first letter of the set,
as shown here:

select Author, INSTR(Author,'WILLIAM') from MAGAZINE;

AUTHOR INSTR(AUTHOR,'WILLIAM')
------------------------- -----------------------
BONHOEFFER, DIETRICH 0
CHESTERTON, G.K. 0
RUTH, GEORGE HERMAN 0
WHITEHEAD, ALFRED 0
CROOKES, WILLIAM 10

This has many useful applications, such as in the MAGAZINE table, for instance:

select Author, INSTR(Author,',') from MAGAZINE;

AUTHOR INSTR(AUTHOR,',')
------------------------- -----------------
BONHOEFFER, DIETRICH 11
CHESTERTON, G.K. 11
RUTH, GEORGE HERMAN 5
WHITEHEAD, ALFRED 10
CROOKES, WILLIAM 8

Here, INSTR searched the strings of author names for a comma and then reported back the
position in each string where it found one.

Suppose you want to reformat the names of the authors from the formal “last name/comma/
first name” approach, and present them as they are normally spoken, as shown here:

Chapter 7: Getting Text Information and Changing It 131

To do this using INSTR and SUBSTR, find the location of the comma, and use this location to
tell SUBSTR where to clip. Taking this step by step, you must first find the comma as we did in the
preceding listing.

Two SUBSTRs will be needed—one that clips out the author’s last name up to the position
before the comma, and one that clips out the author’s first name from two positions after the
comma through to the end.

First, look at the one that clips from position 1 to just before the comma:

select Author, SUBSTR(Author,1,INSTR(Author,',')-1)
 from MAGAZINE;

AUTHOR SUBSTR(AUTHOR,1,INSTR(AUT
------------------------- -------------------------
BONHOEFFER, DIETRICH BONHOEFFER
CHESTERTON, G.K. CHESTERTON
RUTH, GEORGE HERMAN RUTH
WHITEHEAD, ALFRED WHITEHEAD
CROOKES, WILLIAM CROOKES

Next, look at the one that clips from two positions past the comma to the end of the string:

select Author, SUBSTR(Author,INSTR(Author,',')+2) from MAGAZINE;

AUTHOR SUBSTR(AUTHOR,INSTR(AUTHO
------------------------- -------------------------
BONHOEFFER, DIETRICH DIETRICH
CHESTERTON, G.K. G.K.
RUTH, GEORGE HERMAN GEORGE HERMAN
WHITEHEAD, ALFRED ALFRED
CROOKES, WILLIAM WILLIAM

Look at the combination of these two, with the concatenate function putting a space between
them, and a quick renaming of the column to ByFirstName:

column ByFirstName heading "By First Name"

select Author, SUBSTR(Author,INSTR(Author,',')+2)
 ||' '||
 SUBSTR(Author,1,INSTR(Author,',')-1)
 AS ByFirstName
 from MAGAZINE;

BONHOEFFER, DIETRICH

DIETRICH BONHOEFFER

132 Part II: SQL and SQL*Plus

AUTHOR By First Name
------------------------- ------------------------
BONHOEFFER, DIETRICH DIETRICH BONHOEFFER
CHESTERTON, G.K. G.K. CHESTERTON
RUTH, GEORGE HERMAN GEORGE HERMAN RUTH
WHITEHEAD, ALFRED ALFRED WHITEHEAD
CROOKES, WILLIAM WILLIAM CROOKES

It is daunting to look at a SQL statement like this one, but it was built using simple logic, and
it can be broken down the same way. Bonhoeffer can provide the example. The first part looks
like this:

SUBSTR(Author,INSTR(Author,',')+2)

This tells SQL to get the SUBSTR of Author starting two positions to the right of the comma and
going to the end. This will clip out DIETRICH—the author’s first name.

The beginning of the author’s first name is found by locating the comma at the end of his last
name (INSTR does this) and then sliding over two steps to the right (where his first name begins).

The following illustration shows how the INSTR function (plus 2) serves as the start for the
SUBSTR function:

SUBSTR(Author, INSTR(Author,',') +2)

 BONHOEFFER, DIETRICH

Add 2 to it to
move to the
beginning of the
author‘s first name

Find the
location of
the comma

Here is the second part of the combined statement:

||' '||

This, of course, simply tells SQL to concatenate a space in the middle.
Here is the third part of the combined statement:

SUBSTR(Author,1,INSTR(Author,',')-1)

This tells SQL to clip out the portion of the author’s name starting at position 1 and ending one
position before the comma, which results in the author’s last name:

SUBSTR(Author, 1, INSTR(Author,',') -1)

BONHOEFFER, DIETRICH

Subtract 1 from it to
move to the end of
the author’s last name

Chapter 7: Getting Text Information and Changing It 133

The fourth part simply assigns a column alias:

AS ByFirstName

It was only possible to accomplish this transposition because each Author record in the
MAGAZINE table followed the same formatting conventions. In each record, the last name was
always the first word in the string and was immediately followed by a comma. This allowed you
to use the INSTR function to search for the comma. Once the comma’s position was known, you
could determine which part of the string was the last name, and the rest of the string was treated
as the first name.

This is not often the case. Names are difficult to force into standard formats. Last names may
include prefixes (such as von in von Hagel) or suffixes (such as Jr., Sr., and III). Using the previous
example’s SQL, the name Richards, Jr., Bob would have been transformed into Jr., Bob Richards.

Because of the lack of a standard formatting for names, many applications store the first and
last names separately. Titles (such as MD) are usually stored in yet another column. A second
option when storing such data is to force it into a single format and use SUBSTR and INSTR to
manipulate that data when needed.

ASCII and CHR
The ASCII and CHR functions are seldom used during ad hoc queries. CHR converts numeric
values to their ASCII character string equivalents:

select CHR(70)||CHR(83)||CHR(79)||CHR(85)||CHR(71)
 as ChrValues
 from DUAL;

CHRVA

FSOUG

Oracle translated CHR(70) to an F, CHR(83) to an S, and so on, based on the database’s
character set.

The ASCII function performs the reverse operation—but if you pass it a string, only the first
character of the string will be acted upon:

select ASCII('FSOUG') from DUAL;

ASCII('FSOUG')

 70

To see each ASCII value, you can use the DUMP function.

select DUMP('FSOUG') from DUAL;

DUMP('FSOUG')

Typ=96 Len=5: 70,83,79,85,71

134 Part II: SQL and SQL*Plus

Using order by and where with String Functions
String functions can be used in a where clause, as shown here:

select City
 from WEATHER
 where LENGTH(City) < 7;

CITY

LIMA
PARIS
ATHENS
SYDNEY
SPARTA

They can also be used in an order by clause, as shown here:

select City
 from WEATHER
 order by LENGTH(City);

CITY

LIMA
PARIS
ATHENS
SYDNEY
SPARTA
CHICAGO
MANCHESTER

These are simple examples; much more complex clauses could be used. For example, you
could find all the authors with more than one O in their names by using INSTR in the where
clause:

select Author from MAGAZINE
 where INSTR(Author,'O',1,2) > 0;

AUTHOR

BONHOEFFER, DIETRICH
CROOKES, WILLIAM

This works by finding a second occurrence of the letter O in the author names. The > 0 is a
logical technique: Recall that functions generally produce two different kinds of results—one that
creates new objects, and the other that tells you something about existing objects.

The INSTR function tells something about a string, specifically the position of the set it has
been asked to find. Here, it is asked to locate the second O in the Author string. Its result will be a
number that’s greater than zero for those names with at least two O’s, and zero for those with one

Chapter 7: Getting Text Information and Changing It 135

or less (when INSTR doesn’t find something, its result is a zero). So, a simple test for a result
greater than zero checks for the success of the INSTR search for a second O.

The where clause using INSTR produces the same result as this:

where Author LIKE '%O%O%'

Remember that the percent sign (%) is a wildcard, meaning it takes the place of anything, so
the like clause here tells SQL to look for two O’s with anything before, between, or after them.
This is probably easier to understand than the previous example of INSTR.

There are often several ways to produce the same result in Oracle. Some will be easier to
understand, some will work more quickly, some will be more appropriate in certain situations,
and some simply will be a matter of personal style.

SOUNDEX
One string function is used almost exclusively in a where clause: SOUNDEX. It has the unusual
ability to find words that sound like other words, virtually regardless of how either is spelled. This
is especially useful when you’re not certain how a word or name is really spelled. Here is the
format for SOUNDEX:

SOUNDEX(string)

And here are a few of examples of its use:

SOUNDEX('menncestr');

CITY TEMPERATURE CONDITION
----------- ----------- ---------
MANCHESTER 66 FOG

select Author from MAGAZINE
 where SOUNDEX(Author) = SOUNDEX('Banheffer');

AUTHOR

BONHOEFFER, DIETRICH

SOUNDEX compares the sound of the entry in the selected column with the sound of the word
in single quotation marks, and it looks for a close match. SOUNDEX makes certain assumptions
about how letters and combinations of letters are usually pronounced in English, and the two
words being compared must begin with the same letter. SOUNDEX will not always find the word
you’re searching for or have misspelled, but it can help.

It is not necessary that one of the two SOUNDEXs in the where clause have a literal in it.
SOUNDEX could be used to compare the data in two columns to find those that sound alike.

One useful purpose for this function is cleaning up mailing lists. Many lists have duplicate entries
with slight differences in the spelling or format of the customers’ names. By using SOUNDEX to
list all the names that sound alike, many of these duplicates can be discovered and eliminated.

Let’s apply this to the ADDRESS table:

select LastName, FirstName, Phone
 from ADDRESS;

136 Part II: SQL and SQL*Plus

LASTNAME FIRSTNAME PHONE
------------------------- ------------------------- ------------
BAILEY WILLIAM 213-555-0223
ADAMS JACK 415-555-7530
SEP FELICIA 214-555-8383
DE MEDICI LEFTY 312-555-1166
DEMIURGE FRANK 707-555-8900
CASEY WILLIS 312-555-1414
ZACK JACK 415-555-6842
YARROW MARY 415-555-2178
WERSCHKY ARNY 415-555-7387
BRANT GLEN 415-555-7512
EDGAR THEODORE 415-555-6252
HARDIN HUGGY 617-555-0125
HILD PHIL 603-555-2242
LOEBEL FRANK 202-555-1414
MOORE MARY 718-555-1638
SZEP FELICIA 214-555-8383
ZIMMERMAN FRED 503-555-7491

To find duplicates, you must force Oracle to compare each last name in the table to all the
others in the same table.

Join the ADDRESS table to itself by creating an alias for the table, calling it first a and then b.
Now it is as if there are two tables, a and b, with the common column LastName.

In the where clause, eliminate any row in which the last name in the result set from table a
matches the last name in the result set from table b. This prevents a last name from matching to
itself.

Those that sound alike are then selected:

select a.LastName, a.FirstName, a.Phone
 from ADDRESS a, ADDRESS b
 where SOUNDEX(a.LastName)=SOUNDEX(b.LastName);

LASTNAME FIRSTNAME PHONE
------------------------- ------------------------- ------------
SZEP FELICIA 214-555-8383
SEP FELICIA 214-555-8383

You can also perform SOUNDEX searches on individual words within a text entry. For
examples of this and other complex text searches, see Chapter 27.

National Language Support
Oracle doesn’t have to use English characters; it can represent data in any language through its
implementation of National Language Support and its NCHAR and NVARCHAR2 datatypes. By
using characters made up of longer pieces of information than ordinary characters, Oracle can
represent Japanese and other such strings. See NLSSORT, NLS_INITCAP, NLS_LOWER, and NLS_
UPPER in the Alphabetical Reference section of this book. In addition to the SUBSTR function,
Oracle supports SUBSTRB (using bytes instead of characters), SUBSTRC (using Unicode complete
characters), SUBSTR2 (using UCS2 codepoints), and SUBSTR4 (using UCS4 codepoints).

Chapter 7: Getting Text Information and Changing It 137

Regular Expression Support
The string functions INSTR, REPLACE, and SUBSTR have been extended to support regular
expressions. Chapter 8 is devoted to the coverage of these advanced text-search features.

Review
Data comes in several types, primarily DATE, NUMBER, and character. Character data is basically
a string of letters, numbers, or other symbols, and is often called a character string, or just a string.
These strings can be changed or described by string functions. Oracle features two types of character
datatypes: variable-length strings (the VARCHAR2 datatype) and fixed-length strings (the CHAR
datatype). Values in CHAR columns are padded with spaces to the full column length if they are
shorter than the defined length of the column.

Functions such as RPAD, LPAD, LTRIM, RTRIM, TRIM, LOWER, UPPER, INITCAP, and
SUBSTR actually change the contents of a string before displaying it to you.

Functions such as LENGTH, INSTR, and SOUNDEX describe the characteristics of a string,
such as how long it is, where in it a certain character is located, or what it sounds like.

All these functions can be used alone or in combination to select and present information
from an Oracle database. This is a straightforward process, built up from simple logical steps that
can be combined to accomplish very sophisticated tasks.

This page intentionally left blank

CHAPTER
8

Searching for Regular
Expressions

139

140 Part II: SQL and SQL *Plus

he SUBSTR, INSTR, LIKE, REPLACE, and COUNT functions have been enhanced
and extended to support searches for regular expressions. Regular expressions
support a wide array of standardized controls and checks—for example, matching
values a specific number of times, searches for punctuation characters, or searches
for digits. You can use these new functions to perform advanced searches against

strings. The new functions are named REGEXP_SUBSTR, REGEXP_INSTR, REGEXP_LIKE,
REGEXP_REPLACE, and REGEXP_COUNT.

Users who have previously used the UNIX grep command to search for regular expressions in
text files may already be familiar with the concepts and search techniques involved.

Search Strings
Let’s start with an example. Phone numbers in the ADDRESS table are in the format 123-456-
7890. To select all the exchanges (the middle set of numbers), you can select for any string within
the phone number that starts and ends with a hyphen (-) character.

Within the REGEXP_SUBSTR function, we need to tell Oracle where to start the string. In this
case, we are looking for ‘-’. The regular expression to search for begins thus:

select REGEXP_SUBSTR('123-456-7890', '-

We now need to tell Oracle to continue until it finds another ‘-’ character in the string. To do
this, use the ‘[^’ operator, a bracket expression that says that the acceptable values match any
character except for the expressions represented in the list. The command now looks like this:

select REGEXP_SUBSTR('123-456-7890', '-[^-]+')
 "REGEXP_SUBSTR"
 from DUAL;

REGE

-456

This command tells Oracle to look for ‘-’, followed by one or more characters that are not ‘-’,
followed by ‘-’. Note that if you add an extra ‘-’ at the end of the regular expression, you get the
trailing ‘-’ as part of the returned string:

select REGEXP_SUBSTR('123-456-7890', '-[^-]+-')
 "REGEXP_SUBSTR"
 from DUAL;

REGEX

-456-

Most users (and developers) are not going to be comfortable typing in strings such as

'-[^-]+'

T

Chapter 8: Searching for Regular Expressions 141

without training and practice. But as you use the REGEXP_ functions, you can quickly see how
much more functionality they give you. Consider that to generate the same result as the preceding
using only SUBSTR and INSTR, and assuming that the length of the string between the ‘-’
characters is not known, you would need to execute this query:

select SUBSTR('123-456-7890',
 INSTR('123-456-7890', '-',1,1),
 INSTR('123-456-7890', '-',1,2)-
 INSTR('123-456-7890', '-',1,1))
 from DUAL;

By comparison, the REGEXP_SUBSTR function is much more concise. As you will see in the
examples later in this chapter, the regular expression searches enable you to encode complex
search patterns within a single function call.

Table 8-1 shows the regular expression operators and their descriptions. Understanding the
operators involved is critical for effective use of the regular expression search capabilities.

Let’s apply some of these operators and character classes, starting with a simple search. First,
search for a colon:

select REGEXP_SUBSTR
 ('MY LEDGER: Debits, Credits, and Invoices 1940',
 ':') "REGEXP_SUBSTR"
 from DUAL;

R
-
:

Now, replace that search with a search for a punctuation character, using the [:punct:]
character class:

select REGEXP_SUBSTR
 ('MY LEDGER: Debits, Credits, and Invoices 1940',
 '[:punct:]') "REGEXP_SUBSTR"
 from DUAL;

R
-
:

Beginning from that point in the string, search from there to the next comma encountered:

select REGEXP_SUBSTR
 ('MY LEDGER: Debits, Credits, and Invoices 1940',
 '[:punct:][^,]+,') "REGEXP_SUBSTR"
 from DUAL;

REGEXP_SU

: Debits,

142 Part II: SQL and SQL *Plus

Operator Description

\ a The backslash character can have four different meanings, depending on
the context. It can stand for itself, quote the next character, introduce an
operator, or do nothing.

* Matches zero or more occurrences.

+ Matches one or more occurrences.

? Matches zero or one occurrence.

| Alternation operator for specifying alternative matches.

^ b Matches the beginning-of-line character.

$ b Matches the end-of-line character.

. c Matches any character in the supported character set except NULL.

[] d Bracket expression for specifying a matching list that should match
any one of the expressions represented in the list. A nonmatching list
expression begins with a caret (^) and specifies a list that matches any
character except for the expressions represented in the list.

() Grouping expression, treated as a single subexpression.

{m} Matches exactly m times.

{m,} Matches at least m times.

{m,n} Matches at least m times but no more than n times.

\n e The backreference expression (n is a digit between 1 and 9) matches the
nth subexpression enclosed between parentheses and preceding \n.

[..] f Specifies one collation element and can be a multicharacter element (for
example, [.ch.] in Spanish).

[: :] g Specifies character classes (for example, [:alpha:]). It matches any
character within the character class.

[==] h Specifies equivalence classes. For example, [=a=] matches all characters
having base letter 'a'.

Notes on the POSIX operators and Oracle enhancements:

a. The backslash operator can be used to make the character following it normal if it is an operator. For example, '*' is
interpreted as the asterisk string literal.

b. The characters '^' and '$' are the POSIX anchoring operators. By default, they match only the beginning or end of an
entire string. Oracle lets you specify '^' and '$' to match the start or end of any line anywhere within the source string.
This, in turn, lets you treat the source string as multiple lines.

c. In the POSIX standard, the “match any character” operator (.) is defined to match any English character except NULL
and the newline character. In the Oracle implementation, the '.' operator can match any character in the database
character set, including the newline character.

TABLE 8-1 Regular Expression Operators

Chapter 8: Searching for Regular Expressions 143

d. In the POSIX standard, a range in a regular expression includes all collation elements between the start and end
points of the range in the linguistic definition of the current locale. Therefore, ranges in regular expressions are
linguistic ranges rather than byte values ranges, and the semantics of the range expression are independent of character
set. Oracle implements this independence by interpreting range expressions according to the linguistic definition
determined by the NLS_SORT initialization parameter.

e. The backreference expression '\n' matches the same string of characters as was matched by the nth subexpression. The
character n must be a digit from 1 to 9, designating the nth subexpression, numbered from left to right. The expression is
invalid if the source string contains fewer than n subexpressions preceding the \n. For example, the regular expression
^(.*)\1$ matches a line consisting of two adjacent appearances of the same string. Oracle supports the backreference
expression in the regular expression pattern and the replacement string of the REGEXP_REPLACE function.

f. A collating element is a unit of collation and is equal to one character in most cases, but may comprise two or more
characters in some languages. Historically, regular expression syntax does not support ranges containing multicharacter
collation elements, such as the range 'a' through 'ch'. The POSIX standard introduces the collation element delimiter
'[..]', which lets you delimit multicharacter collection elements such as '[a-[.ch.]]'. The collation elements supported
by Oracle are determined by the setting of the NLS_SORT initialization parameter. The collation element is valid only
inside the bracketed expression.

g. In English regular expressions, range expressions often indicate a character class. For example, ‘[a-z]’ indicates any
lowercase character. This convention is not useful in multilingual environments where the first and last character of a
given character class may not be the same in all languages. The POSIX standard introduces the portable character class
syntax '[::]'.

In addition to the operators, Oracle supports the following character classes based on character class definitions in NLS
classification data:

Character Class Syntax Meaning

[:alnum:] All alphanumeric characters

[:alpha:] All alphabetic characters

[:blank:] All blank space characters

[:cntrl:] All control characters (nonprinting)

[:digit:] All numeric digits

[:graph:] All [:punct:], [:upper:], [:lower:], and [:digit:] characters

[:lower:] All lowercase alphabetic characters

[:print:] All printable characters

[:punct:] All punctuation characters

[:space:] All space characters (nonprinting)

[:upper:] All uppercase alphabetic characters

[:xdigit:] All valid hexadecimal characters

This character class syntax lets you make better use of NLS character definitions to write flexible regular expressions.
These character classes are valid only inside the bracketed expression.

h. Oracle supports the equivalence classes through the POSIX '[==]' syntax. A base letter and all of its accented versions
constitute an equivalence class. For example, the equivalence class ‘[=a=]’ matches ä and â. The equivalence classes
are valid only inside the bracketed expression.

Note this restriction on equivalence classes: Composed and decomposed versions of the same equivalence class do not
match. For example, 'ä' does not match ‘a’ followed by an umlaut.

TABLE 8-1 Regular Expression Operators (continued)

144 Part II: SQL and SQL *Plus

You can use the [:digit:] character class to find the numbers in the string:

select REGEXP_SUBSTR
 ('MY LEDGER: Debits, Credits, and Invoices 1940',
 '[[:digit:]]+') "REGEXP_SUBSTR"
 from DUAL;

REGE

1940

As shown in this example, you can use the character classes to consolidate searches for
multiple values. When you’re working with search strings—particularly if you do not have prior
experience with regular expressions—begin with the simplest version possible and then increase
in complexity.

REGEXP_SUBSTR
The REGEXP_SUBSTR function, as shown in the preceding examples, uses regular expressions to
specify the beginning and ending points of the returned string. The syntax for REGEXP_SUBSTR is
shown in the following listing. REGEXP_SUBSTR returns the string as VARCHAR2 or CLOB data
in the same character set as the source_string.

REGEXP_SUBSTR(source_string, pattern
 [, position
 [, occurrence
 [, match_parameter]
]
]
)

The examples thus far in this chapter have focused on the pattern variable—the regular
expression. The regular expression can contain up to 512 bytes. As shown in the syntax, you can
also specify parameters related to the position, occurrence, and match_parameter conditions.

The position variable tells REGEXP_SUBSTR where to start searching within the source_string.
The default position value is 1 (the first character). The occurrence variable is an integer
indicating which occurrence of pattern in source_string Oracle should search for. The default
occurrence value is 1. The position and occurrence variables are not available in the standard
SUBSTR function. These represent significant extensions to the standard SUBSTR functionality.

You can use the match_parameter variable to further customize the search. match_parameter
is a text literal that lets you change the default matching behavior of the function. Its possible
values are as follows:

'i' Used for case-insensitive matching.

'c' Used for case-sensitive matching.

'n' Allows the period (.), which is a wildcard (see Table 8-1), to match the newline
character. If you omit this parameter, the period does not match the newline character.

■

■

■

Chapter 8: Searching for Regular Expressions 145

'm' Treats the source string as multiple lines. Oracle interprets ^ and $ as the start and
end, respectively, of any line anywhere in the source string, rather than only at the start or
end of the entire source string. If you omit this parameter, Oracle treats the source string
as a single line.

If you specify multiple contradictory values for match_parameter, Oracle uses the last value.
For example, if you specify ‘ic’, Oracle will use case-sensitive matching. If you specify a character
other than those shown here, Oracle will return an error.

If you omit match_parameter, the following happen:

The default case sensitivity is determined by the value of the NLS_SORT parameter.

A period (.) does not match the newline character.

The source string is treated as a single line.

Here is the REGEXP_SUBSTR search performed with case-insensitive matching:

select REGEXP_SUBSTR
 ('MY LEDGER: Debits, Credits, and Invoices 1940',
 'my' ,1,1, 'i') "REGEXP_SUBSTR"
 from DUAL;

RE
--
MY

Now, change that to perform a case-sensitive search:

select REGEXP_SUBSTR
 ('MY LEDGER: Debits, Credits, and Invoices 1940',
 'my' ,1,1,'c') "REGEXP_SUBSTR"
 from DUAL;

RE
--

Nothing is returned due to the case mismatch. By default, searches are case sensitive.
You can use the pattern and occurrence parameters the same as you use them in INSTR. In

the following example, the second digit is returned:

select REGEXP_SUBSTR
 ('MY LEDGER: Debits, Credits, and Invoices 1940',
 '[[:digit:]]' ,1,2) "REGEXP_SUBSTR"
 from DUAL;

R
-
9

Writing the same query using SUBSTR and INSTR (and assuming the two digits may not be
consecutive) would be much more complex.

■

■

■

■

146 Part II: SQL and SQL *Plus

REGEXP_INSTR
The REGEXP_INSTR function uses regular expressions to return the beginning or ending point of
the search pattern. The syntax for REGEXP_INSTR is shown in the following listing. REGEXP_
INSTR returns an integer indicating the position of the beginning or ending of the search pattern,
or a 0 if no match is found.

REGEXP_INSTR (source_string, pattern
 [, position
 [, occurrence
 [, return_option
 [, match_parameter]
]
]
]
)

The REGEXP_SUBSTR function, shown in the preceding section, performs some of the
capabilities normally associated with INSTR. REGEXP_INSTR adds a unique feature that makes
it an important addition to your SQL toolset. Like REGEXP_SUBSTR, it has the variables pattern,
position (starting position), occurrence, and match_parameter ; see the prior section for a
description of those variables. The new capability introduced here, return_option, allows you
to tell Oracle what to return in relation to the occurrence of the pattern:

If return_option is 0, Oracle returns the position of the first character of the occurrence.
This is the default, and it’s the same as the behavior of INSTR.

If return_option is 1, Oracle returns the position of the character following the
occurrence.

For example, the following query returns the location of the first digit found in the string:

select REGEXP_INSTR
 ('MY LEDGER: Debits, Credits, and Invoices 1940',
 '[[:digit:]]') "REGEXP_INSTR"
 from DUAL;

REGEXP_INSTR

 42

What is the next position after the first digit of that string?

select REGEXP_INSTR
 ('MY LEDGER: Debits, Credits, and Invoices 1940',
 '[[:digit:]]',1,1,1) "REGEXP_INSTR"
 from DUAL;

REGEXP_INSTR

 43

■

■

Chapter 8: Searching for Regular Expressions 147

Even for searches that do not have complex patterns, you may decide to use REGEXP_INSTR
in place of INSTR in order to simplify the math and logic involved in your queries that combine
INSTR and SUBSTR capabilities. Be sure to carefully consider the case-sensitivity settings you
specify via the match_parameter setting.

REGEXP_LIKE
In addition to the regular expression functions shown in previous listings, you can use the
REGEXP_LIKE function. REGEXP_LIKE supports the use of regular expressions within where
clauses. For example, which phone numbers start with ‘415’?

select LastName
 from ADDRESS
 where REGEXP_LIKE (Phone,'415+');

LASTNAME

ADAMS
ZACK
YARROW
WERSCHKY
BRANT
EDGAR

The format for REGEXP_LIKE is

REGEXP_LIKE(source_string, pattern
 [match_parameter]
)

Within the pattern, you can use all the search features shown earlier in this chapter—
including the character class definitions—as part of a REGEXP_LIKE search. This capability
makes it simple to perform very complex searches.

For example, how can you tell if a column value contains a numeric digit?

select LastName
 from ADDRESS
 where REGEXP_LIKE (Phone, '[[:digit:]]');

If a TO_NUMBER function fails because a punctuation mark is found in the value, you can
display the rows that caused it to fail:

select LastName
 from ADDRESS
 where REGEXP_LIKE (Phone, '[[:punct:]]');

REPLACE and REGEXP_REPLACE
The REPLACE function replaces one value in a string with another. For example, you can replace
each occurrence of a letter with a matching number. The format for REPLACE is

REPLACE (char, search_string [,replace_string])

148 Part II: SQL and SQL *Plus

If you do not specify a value for the replace_string variable, the search_string value, when
found, is removed. The input can be any of the character datatypes—CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, or NCLOB. Here’s an example:

REPLACE('GEORGE', 'GE', 'EG') = EGOREG
REPLACE('GEORGE', 'GE', NULL) = OR

If the length of the search string is nonzero, you can tell how many times a string was found
in the search string. First, you calculate the original string length:

LENGTH('GEORGE')

Then you calculate the length of the string after the search string values are removed:

LENGTH(REPLACE('GEORGE', 'GE', NULL))

Then you divide the difference by the length of the search string to find out how many
occurrences of the search string were replaced:

select (LENGTH('GEORGE')
 - LENGTH(REPLACE('GEORGE', 'GE', NULL)))
 /
 LENGTH('GE') AS Counter
from DUAL;

COUNTER

 2

The REGEXP_REPLACE function extends the capabilities of the REPLACE function in several
ways. It supports the use of regular expressions in the search pattern, and it also supports the
variables described earlier in this chapter—position, occurrence, and match_parameter. You can
thus choose to replace only certain matched values, or make the matching case insensitive. The
syntax for the REGEXP_REPLACE function is shown in the following listing:

REGEXP_REPLACE(source_string, pattern
 [, replace_string
 [, position
 [, occurrence
 [, match_parameter]
]
]
]
)

With the exception of replace_string, all these variables have been described in the earlier
parts of this chapter. The replace_string variable tells Oracle what to use to replace the part of
the source_string that matched the pattern. The occurrence variable is a nonnegative integer that
specifies the occurrence of the operation: If it is 0, all occurrences of the match are replaced; if
you specify a positive integer, Oracle replaces the nth occurrence.

Let’s consider the Phone column of the ADDRESS table. First, we will look for numbers that
are in the format ###-###-####. In that format, there are three digits followed by another set of

Chapter 8: Searching for Regular Expressions 149

three digits and then a set of four digits, separated by ‘-’ characters. We can find the rows that
match those criteria by looking for those sets of digits within a REGEXP_SUBSTR function call:

select REGEXP_SUBSTR (Phone,
 '([[:digit:]]{3})-([[:digit:]]{3})-([[:digit:]]{4})'
) "REGEXP_SUBSTR"
 from ADDRESS;

REGEXP_SUBST

213-555-0223
415-555-7530
214-555-8383
312-555-1166
707-555-8900
312-555-1414
415-555-6842
415-555-2178
415-555-7387
415-555-7512
415-555-6252
617-555-0125
603-555-2242
202-555-1414
718-555-1638
214-555-8383
503-555-7491

Now, use REGEXP_REPLACE to put parentheses around the first three digits while leaving out
the first ‘-’ character found. To do this, we will refer to that first set of data as \1, the second as \2,
and the third as \3.

select REGEXP_REPLACE (Phone,
 '([[:digit:]]{3})-([[:digit:]]{3})-([[:digit:]]{4})'
 , '(\1) \2-\3'
) "REGEXP_REPLACE"
 from ADDRESS;

REGEXP_REPLACE
--
(213) 555-0223
(415) 555-7530
(214) 555-8383
(312) 555-1166
(707) 555-8900
(312) 555-1414
(415) 555-6842
(415) 555-2178
(415) 555-7387
(415) 555-7512
(415) 555-6252

150 Part II: SQL and SQL *Plus

(617) 555-0125
(603) 555-2242
(202) 555-1414
(718) 555-1638
(214) 555-8383
(503) 555-7491

The output shows the result of the REGEXP_REPLACE function call—the area codes are
enclosed within parentheses and the first ‘-’ has been eliminated.

To show how the occurrence variable works, the following REGEXP_REPLACE function call
replaces with a period the second ‘5’ found in a phone number:

select REGEXP_REPLACE (Phone,
 '5', '.',
 1, 2
) "REGEXP_REPLACE"
 from ADDRESS;

REGEXP_REPLACE
--
213-5.5-0223
415-.55-7530
214-5.5-8383
312-5.5-1166
707-5.5-8900
312-5.5-1414
415-.55-6842
415-.55-2178
415-.55-7387
415-.55-7512
415-.55-6252
617-5.5-0125
603-5.5-2242
202-5.5-1414
718-5.5-1638
214-5.5-8383
503-.55-7491

You can modify that query further to exclude the first three digits as possible matches (set the
starting position to 4) and replace the fourth occurrence instead:

select REGEXP_REPLACE (Phone,
 '5', '.',
 4, 4
) "REGEXP_REPLACE"
 from ADDRESS;

REGEXP_REPLACE
--
213-555-0223
415-555-7.30
214-555-8383
312-555-1166

Chapter 8: Searching for Regular Expressions 151

707-555-8900
312-555-1414
415-555-6842
415-555-2178
415-555-7387
415-555-7.12
415-555-62.2
617-555-012.
603-555-2242
202-555-1414
718-555-1638
214-555-8383
503-555-7491

You can limit the rows returned by using REGEXP_INSTR in a where clause. In this case, only
those rows that have at least four instances of ‘5’ in them (beginning at the fourth character) will
be displayed. Because this search pattern is not complex, you could use INSTR here instead:

select REGEXP_REPLACE (Phone,
 '5', '.',
 4, 4
) "REGEXP_REPLACE"
 from ADDRESS
 where REGEXP_INSTR(Phone, '5',4,4) > 0;

REGEXP_REPLACE
--
415-555-7.30
415-555-7.12
415-555-62.2
617-555-012.

You can use the ability to search for alternate values to combine multiple search criteria in a
single query. The following replaces either a 5 or a 2; occurrences of both ‘5’ and ‘2’ count toward
the occurrence count:

select REGEXP_REPLACE (Phone,
 '(5|2)', '.',
 4, 4
) "REGEXP_REPLACE"
 from ADDRESS
 where REGEXP_INSTR(Phone, '(5|2)',4,4) > 0;

REGEXP_REPLACE
--
213-555-0.23
415-555-7.30
415-555-684.
415-555-.178
415-555-7.12
415-555-6.52
617-555-01.5
603-555-.242

152 Part II: SQL and SQL *Plus

The ‘|’ character shown in this example is an alternation operator, so matches of either of the
values specified will return a row. See Table 8-1 for additional operators supported within your
regular expressions.

REGEXP_COUNT
As of Oracle 11g, you can use the REGEXP_COUNT function. REGEXP_COUNT returns the
number of occurrences of a pattern found in the source string, complementing REGEXP_INSTR.
Note that whereas COUNT is a set function that operates on groups of rows, REGEXP_COUNT
is a single-row function that evaluates each row separately.

The syntax for REGEXP_COUNT is

REGEXP_COUNT (source_char, pattern [, position [, match_param]])

REGEXP_COUNT returns the number of occurrences of pattern in the source_char string. If no
match is found, the function returns 0. The position variable tells Oracle where within the source
string to start the search. Each occurrence of the pattern following the starting position increments
the count.

The match_param variable supports the following values:

'i' Specifies case-insensitive matching.

'c' Specifies case-sensitive matching.

'n' Allows the period (.), which is the match-any-character character, to match the
newline character. If you omit this parameter, the period does not match the newline
character.

'm' Treats the source string as multiple lines. Oracle interprets the caret (^) and dollar
sign ($) as the start and end, respectively, of any line anywhere in the source string, rather
than only at the start or end of the entire source string. If you omit this parameter, Oracle
treats the source string as a single line.

'x' Ignores whitespace characters. By default, whitespace characters match themselves.

If you specify multiple contradictory values, Oracle uses the last value.
The LENGTH example from earlier in this chapter can be modified to use REGEXP_COUNT.

Instead of the syntax

select (LENGTH('GEORGE')
 - LENGTH(REPLACE('GEORGE', 'GE', NULL)))
 /
 LENGTH('GE') AS Counter
from DUAL;

COUNTER

 2

you could use the following syntax and get the same result:

select REGEXP_COUNT('GEORGE','GE',1,'i')
from DUAL;

■

■

■

■

■

Chapter 8: Searching for Regular Expressions 153

As a side benefit, you would be able to take advantage of case-insensitive searches, so that
query could also be written as follows:

select REGEXP_COUNT('GEORGE','ge',1,'i')
from DUAL;

Your use of the REGEXP_SUBSTR, REGEXP_INSTR, REGEXP_LIKE, REGEXP_REPLACE, and
REGEXP_COUNT functions is limited only by your ability to develop regular expressions that
reflect your needs. As shown in the examples in this chapter, you can use these functions to
modify the display of existing data, to find complex patterns, and to return strings within patterns.

This page intentionally left blank

CHAPTER
9

Playing the Numbers

155

156 Part II: SQL and SQL *Plus

irtually everything we do, particularly in business, is measured, explained, and
often guided by numbers. Although Oracle cannot correct our obsession with
numbers and the illusion of control they often give us, it will facilitate capable and
thorough analysis of the information in a database. Good mathematical analysis of
familiar numbers will often show trends and facts that were initially not apparent.

The Three Classes of Number Functions
Oracle functions deal with three classes of numbers: single values, groups of values, and lists of
values. As with string functions (discussed in Chapters 7 and 8), some of these functions change
the values they are applied to, whereas others merely report information about the values. The
classes are distinguished as detailed in the following paragraphs.

A single value is one number, such as these:

A literal number, such as 544.3702

A variable in SQL*Plus or PL/SQL

One number from one column and one row of the database

Oracle single-value functions usually change these values through a calculation.
A group of values is all the numbers in one column from a series of rows, such as the closing

stock price for all the rows of stocks in the stock market table from Chapter 4. Oracle group-value
functions tell you something about the whole group, such as average stock price, but not about
the individual members of the group.

A list of values is a series of numbers that can include the following:

Literal numbers, such as 1, 7.3, 22, and 86

Variables in SQL*Plus or PL/SQL

Columns, such as OpeningPrice, ClosingPrice, Bid, and Ask

Oracle list functions choose one member of a list of values.
In the Alphabetical Reference section of this book, you will see these functions listed by class

(numeric functions, list functions, aggregate functions, and analytic functions), with a description
of each function and its usage

Notation
Functions will be shown with this kind of notation:

FUNCTION(value [,option])

The function itself will be uppercase. Values and options will be shown in lowercase italics.
Whenever the word value appears this way, it represents one of the following: a literal number,
the name of a number column in a table, the result of a calculation, or a variable. Because Oracle
does not allow numbers to be used as column names, a literal number should not appear in single
quotation marks (as a literal string would be in a string function). Column names also must not
have single quotation marks.

Every function has only one pair of parentheses. The value that function works on, as well as
additional information you can pass to the function, goes between the parentheses.

■

■

■

■

■

■

V

Chapter 9: Playing the Numbers 157

Some functions have options—parts that are not required to make the function work but that
can give you more control if you choose to use them. Options are always shown in square
brackets: []. The necessary parts of a function always come before the optional parts.

Single-Value Functions
Most single-value functions are pretty straightforward. This section gives short examples of the
major functions, and it shows both the results of the functions and how they correspond to
columns, rows, and lists. After the examples, you’ll see how to combine these functions. The
syntax for all the functions is found in the Alphabetical Reference of this book.

A table named MATH was created to show the calculation effects of the many math functions.
It has only four rows and four columns, as shown here:

select Name, Above, Below, Empty from MATH;

NAME ABOVE BELOW EMPTY
------------ ------- ------- -----
WHOLE NUMBER 11 -22
LOW DECIMAL 33.33 -44.44
MID DECIMAL 55.5 -55.5
HIGH DECIMAL 66.666 -77.777

This table is useful because it has values with a variety of characteristics, which are spelled
out by the names of the rows. WHOLE NUMBER contains no decimal parts. LOW DECIMAL has
decimals that are less than .5, MID DECIMAL has decimals equal to .5, and HIGH DECIMAL
has decimals greater than .5. This range is particularly important when using the ROUND and
TRUNC (truncate) functions, and in understanding how they affect the value of a number.

To the right of the Name column are three other columns: Above, which contains only numbers
above zero (positive numbers); Below, which contains only numbers below zero; and Empty,
which is NULL.

NOTE
In Oracle, a number column may have no value in it at all. When
it is NULL, it is not zero; it is simply empty. This has important
implications in making computations, as you will see.

Not all the rows in this MATH table are needed to demonstrate how most math functions
work, so the examples primarily use the last row, HIGH DECIMAL. In addition, the SQL*Plus
column command has been used to explicitly show the precision of the calculation so that the
results of functions that affect a number’s precision can be clearly seen. To review the SQL and
SQL*Plus commands that produced the results that follow, see the script that accompanies the
create table commands for the sample tables.

Addition (+), Subtraction (–), Multiplication (*),
and Division (/)
The following query shows each of the four basic arithmetic functions, using Above and Below:

select Name, Above, Below, Empty,
 Above + Below AS Plus,

158 Part II: SQL and SQL *Plus

 Above - Below AS Subtr,
 Above * Below AS Times,
 Above / Below AS Divided
 from MATH
 where Name = 'HIGH DECIMAL';

NAME ABOVE BELOW EMPTY PLUS SUBTR TIMES DIVIDED
------------ ------ ------- ----- ------- ------- ---------- ----------
HIGH DECIMAL 66.666 -77.777 -11.111 144.443 -5185.0815 -.85714286

NULL
In the following example, the same four arithmetic operations are now done again, except instead
of using Above and Below, Above and Empty are used. Note that any arithmetic operation that
includes a NULL value has NULL as a result. The calculated columns (columns whose values are
the result of a calculation) Plus, Subtr, Times, and Divided are all empty.

select Name, Above, Below, Empty,
 Above + Empty AS Plus,
 Above - Empty AS Subtr,
 Above * Empty AS Times,
 Above / Empty AS Divided
 from MATH
 where Name = 'HIGH DECIMAL';

NAME ABOVE BELOW EMPTY PLUS SUBTR TIMES DIVIDED
------------- ------ -------- ------ ------- -------- ------- ---------
HIGH DECIMAL 66.666 -77.777

What you see here is evidence that a NULL value cannot be used in a calculation. NULL isn’t
the same as zero; think of NULL as a value that is unknown. For example, suppose you have a
table with the names of your friends and their ages, but the Age column for PAT SMITH is empty,
because you don’t know it. What’s the difference in your ages? It’s clearly not your age minus zero.
Your age minus an unknown age is also unknown, or NULL. You can’t fill in an answer because
you don’t have an answer. Because you can’t make the computation, the answer is NULL.

This is also the reason you cannot use NULL with an equal sign in a where clause (see
Chapter 5). It makes no sense to say x is unknown and y is unknown, therefore x and y are equal.
If Mrs. Wilkins’s and Mr. Adams’s ages are unknown, it doesn’t mean they’re the same age.

There also will be instances where NULL means a value is irrelevant, such as an apartment
number for a house. In some cases, the apartment number might be NULL because it is unknown
(even though it really exists), while in other cases it is NULL because there simply isn’t one. NULLs
will be explored in more detail later in this chapter, under “NULLs in Group-Value Functions.”

NVL: NULL-Value Substitution
The preceding section states the general case about NULLs—that NULL represents an unknown or
irrelevant value. In particular cases, however, although a value is unknown, you may be able to
make a reasonable guess. If you’re a package carrier, for instance, and 30 percent of the shippers
who call you for pickups can’t tell you the weight or volume of their packages, will you declare
it completely impossible to estimate how many cargo planes you’ll need tonight? Of course not.
You know from experience the average weight and volume of your packages, so you’d plug in

Chapter 9: Playing the Numbers 159

these numbers for those customers who didn’t supply you with the information. Here’s the
information as supplied by your clients:

select Client, Weight from SHIPPING;

CLIENT WEIGHT
------------- ------
JOHNSON TOOL 59
DAGG SOFTWARE 27
TULLY ANDOVER

This is what the NULL-value substitution (NVL) function does:

select Client, NVL(Weight,43) from SHIPPING;

CLIENT NVL(WEIGHT,43)
------------- --------------
JOHNSON TOOL 59
DAGG SOFTWARE 27
TULLY ANDOVER 43

Here, you know that the average package weight is 43 pounds, so you use the NVL function
to plug in 43 anytime a client’s package has an unknown weight—that is, where the value in the
column is NULL. In this case, TULLY ANDOVER didn’t know the weight of their package when
they called it in, but you can still total these package weights and have a fair estimate.

Here is the format for NVL:

NVL(value,substitute)

If value is NULL, this function is equal to substitute. If value is not NULL, this function is equal
to value. Note that substitute can be a literal number, another column, or a computation. If you
really were a package carrier with this problem, you could even have a table join in your select
statement where substitute was from a view that actually averaged the weight of all non-NULL
packages.

NVL is not restricted to numbers. It can be used with CHAR, VARCHAR2, DATE, and other
datatypes as well, but value and substitute must be the same datatype. Also, NVL is really useful
only in cases where the data is unknown, not where it’s irrelevant.

A companion function, NVL2, is slightly more complex. Its format is

NVL2 (expr1 , expr2 , expr3)

In NVL2, expr1 can never be returned; either expr2 or expr3 will be returned. If expr1 is not
NULL, NVL2 returns expr2. If expr1 is NULL, NVL2 returns expr3. The argument expr1 can have
any datatype. The arguments expr2 and expr3 can have any datatypes except LONG.

You can use the NANVL function for the BINARY_FLOAT and BINARY_DOUBLE datatypes.
NANVL takes two variables, and returns the second if the first is not a number.

ABS: Absolute Value
Absolute value is the measure of the magnitude of something. For instance, in a temperature change
or a stock index change, the magnitude of the change has meaning in itself, regardless of the
direction of the change (which is important in its own right). Absolute value is always a positive
number.

160 Part II: SQL and SQL *Plus

Here is the format for ABS:

ABS(value)

Note these examples:

ABS(146) = 146
ABS(-30) = 30

CEIL
CEIL (for ceiling) simply produces the smallest integer (or whole number) that is greater than or
equal to a specific value. Pay special attention to its effect on negative numbers.

The following shows the format for CEIL and some examples:

CEIL(value)

CEIL(2) = 2
CEIL(1.3) = 2
CEIL(-2) = -2
CEIL(-2.3) = -2

FLOOR
FLOOR returns the largest integer equal to or less than a specific value. Here is the format
for FLOOR and some examples:

FLOOR(value)

FLOOR(2) = 2
FLOOR(1.3) = 1
FLOOR(-2) = -2
FLOOR(-2.3) = -3

MOD
MOD (modulus) is a function primarily used in data processing for esoteric tasks such as “check
digits,” which help ensure the accurate transmission of a string of numbers. MOD divides a value
by a divisor and tells you the remainder. For example, MOD(23,6) = 5 means divide 23 by 6. The
answer is 3 with 5 left over, so 5 is the result of the modulus.

Here is the format for MOD:

MOD(value,divisor)

Both value and divisor can be any real number. The value of MOD is zero if divisor is zero or
negative. Note the following examples:

MOD(100,10) = 0
MOD(22,23) = 22
MOD(10,3) = 1
MOD(-30.23,7) = -2.23
MOD(4.1,.3) = .2

Chapter 9: Playing the Numbers 161

The second example shows what MOD does whenever the divisor is larger than the dividend
(the number being divided). It produces the dividend as a result. Also note this important case
where value is not an integer:

MOD(value,1) = 0

The preceding is a good test to see if a number is an integer.
You can use the REMAINDER function in a similar way. The MOD function is similar to

REMAINDER, but it uses FLOOR in its formula, whereas REMAINDER uses ROUND.

REMAINDER(4,3) = 1

POWER
POWER simply provides the ability to raise a value to a given positive exponent, as shown here:

POWER(value,exponent)

POWER(3,2) = 9
POWER(3,3) = 27
POWER(-77.777,2) = 6049.26173
POWER(3,1.086) = 3.29726371
POWER(64,.5) = 8

The exponent can be any real number.

SQRT: Square Root
Oracle has a separate square root function that gives results equivalent to POWER(value,.5):

SQRT(value)

SQRT(64) = 8
SQRT(66.666) = 8.16492498
SQRT(4) = 2

The square root of a negative number is an imaginary number. Oracle doesn’t support
imaginary numbers, so it returns an error if you attempt to find the square root of a negative
number.

EXP, LN, and LOG
The EXP, LN, and LOG functions are rarely used in business calculations but are quite common
in scientific and technical work. EXP is e (2.71828183…) raised to the specified power; LN is the
“natural,” or base e, logarithm of a value. The first two functions are reciprocals of one another;
LN(EXP(i)) = value. The LOG function takes a base and a positive value. LN(value) is the same as
LOG(2.71828183,value).

EXP(value)

EXP(3) = 20.0855369
EXP(5) = 148.413159

162 Part II: SQL and SQL *Plus

LN(value)

LN(3) = 1.09861229
LN(20.0855369) = 3

LOG(value)

LOG(EXP(1),3) = 1.09861229
LOG(10,100) = 2

ROUND and TRUNC
ROUND and TRUNC are two related single-value functions. TRUNC truncates, or chops off, digits
of precision from a number; ROUND rounds numbers to a given number of digits of precision.

Here are the formats for ROUND and TRUNC:

ROUND(value,precision)
TRUNC(value,precision)

There are some properties worth paying close attention to here. First, look at this simple
example of a select from the MATH table. Two digits of precision are called for (counting toward
the right from the decimal point).

select Name, Above, Below,
 ROUND(Above,2),
 ROUND(Below,2),
 TRUNC(Above,2),
 TRUNC(Below,2)
 from MATH;

 ROUND ROUND TRUNC TRUNC
NAME ABOVE BELOW (ABOVE,2) (BELOW,2) (ABOVE,2) (BELOW,2)
------------ ------- ------- --------- --------- --------- ---------
WHOLE NUMBER 11 -22 11 -22 11 -22
LOW DECIMAL 33.33 -44.44 33.33 -44.44 33.33 -44.44
MID DECIMAL 55.5 -55.5 55.5 -55.5 55.5 -55.5
HIGH DECIMAL 66.666 -77.777 66.67 -77.78 66.66 -77.77

Only the bottom row is affected, because only it has three digits beyond the decimal point.
Both the positive and negative numbers in the bottom row were rounded or truncated: 66.666
was rounded to a higher number (66.67), but –77.777 was rounded to a lower (more negative)
number (–77.78). When rounding is done to zero digits, this is the result:

select Name, Above, Below,
 ROUND(Above,0),
 ROUND(Below,0),
 TRUNC(Above,0),
 TRUNC(Below,0)
 from MATH;

Chapter 9: Playing the Numbers 163

 ROUND ROUND TRUNC TRUNC
NAME ABOVE BELOW (ABOVE,0) (BELOW,0) (ABOVE,0) (BELOW,0)
------------ ------- ------- --------- --------- --------- ---------
WHOLE NUMBER 11 -22 11 -22 11 -22
LOW DECIMAL 33.33 -44.44 33 -44 33 -44
MID DECIMAL 55.5 -55.5 56 -56 55 -55
HIGH DECIMAL 66.666 -77.777 67 -78 66 -77

Note that the decimal value of .5 was rounded up when 55.5 went to 56. This follows the
most common American rounding convention (some rounding conventions round up only if a
number is larger than .5). Compare these results with CEIL and FLOOR. They have significant
differences:

ROUND(55.5) = 56 ROUND(-55.5) = -56
TRUNC(55.5) = 55 TRUNC(-55.5) = -55
CEIL(55.5) = 56 CEIL(-55.5) = -55
FLOOR(55.5) = 55 FLOOR(-55.5) = -56

Finally, note that both ROUND and TRUNC can work with negative precision, moving to the
left of the decimal point:

select Name, Above, Below,
 ROUND(Above,-1),
 ROUND(Below,-1),
 TRUNC(Above,-1),
 TRUNC(Below,-1)
 from MATH;

 ROUND ROUND TRUNC TRUNC
NAME ABOVE BELOW (ABOVE,-1) (BELOW,-1)(ABOVE,-1) (BELOW,-1)
------------ ------ ------- ---------- ---------- --------- ----------
WHOLE NUMBER 11 -22 10 -20 10 -20
LOW DECIMAL 33.33 -44.44 30 -40 30 -40
MID DECIMAL 55.5 -55.5 60 -60 50 -50
HIGH DECIMAL 66.666 -77.777 70 -80 60 -70

Rounding with a negative number can be useful when producing such things as economic
reports, where populations or dollar sums need to be rounded up to the millions, billions, or
trillions.

SIGN
SIGN is the flip side of absolute value. Whereas ABS tells you the magnitude of a value but not its
sign, SIGN tells you the sign of a value but not its magnitude.

Here is the format for SIGN:

SIGN(value)

Examples: SIGN(146) = 1 Compare to: ABS(146) = 146
 SIGN(-30) = -1 ABS(-30) = 30

164 Part II: SQL and SQL *Plus

The SIGN of 0 is 0:

SIGN(0)=0

The SIGN function is often used in conjunction with the DECODE function. DECODE will be
described in Chapter 16.

SIN, SINH, COS, COSH, TAN, TANH, ACOS,
ATAN, ATAN2, and ASIN
The trigonometric functions sine, cosine, and tangent are scientific and technical functions not
used much in business. SIN, COS, and TAN give you the standard trigonometric function values
for an angle expressed in radians (degrees multiplied by pi divided by 180). SINH, COSH, and
TANH give you the hyperbolic functions for an angle.

SIN(value)

SIN(30*3.141592655/180) = .5

COSH(value)

COSH(0) = 1

The ASIN, ACOS, and ATAN functions return the arc sine, arc cosine, and arc tangent values
(in radians) of the values provided. ATAN2 returns the arc tangent of two values. Input values are
unbounded; outputs are expressed in radians.

Aggregate Functions
Aggregate or “group-value” functions are those statistical functions such as SUM, AVG, COUNT,
and the like that tell you something about a group of values taken as a whole: the average age
of all the friends in the table, for instance, or the oldest member of the group, or the youngest, or
the number of members in the group, and more. Even when one of these functions is supplying
information about a single row—such as the oldest person—it is still information that is defined
by the row’s relation to the group.

You can use a wide array of advanced statistical functions against your data—including
regression testing and sampling. In the following discussions, you will see descriptions of the
most commonly used group-value functions; for the others, see the Alphabetical Reference.

NULLs in Group-Value Functions
Group-value functions treat NULL values differently than single-value functions do. Group
functions ignore NULL values and calculate a result in spite of them.

Take AVG as an example. Suppose you have a list of 100 friends and their ages. If you picked
20 of them at random and averaged their ages, how different would the result be than if you picked
a different list of 20, also at random, and averaged it, or if you averaged all 100? In fact, the
averages of these three groups would be very close. What this means is that AVG is somewhat
insensitive to missing records, even when the missing data represents a high percentage of the
total number of records available.

Chapter 9: Playing the Numbers 165

NOTE
AVG is not immune to missing data, and there can be cases where it
will be significantly off (such as when missing data is not randomly
distributed), but these cases will be less common.

The relative insensitivity of AVG to missing data needs to be contrasted with, for instance,
SUM. How close to correct is the SUM of the ages of only 20 friends to the SUM of all 100
friends? Not close at all. So if you had a table of friends, but only 20 out of 100 supplied their age,
and 80 out of 100 had NULL for their age, which one would be a more reliable statistic about the
whole group and less sensitive to the absence of data—the AVG age of those 20 friends, or the
SUM of them? Note that this is an entirely different issue than whether it is possible to estimate
the sum of all 100 based on only 20 (in fact, it is precisely the AVG of the 20, times 100). The
point is, if you don’t know how many rows are NULL, you can use the following to provide a
fairly reasonable result:

select AVG(Age) from BIRTHDAY;

You cannot get a reasonable result from this, however:

select SUM(Age) from BIRTHDAY;

This same test of whether or not results are reasonable defines how the other group functions
respond to NULLs. STDDEV and VARIANCE are measures of central tendency; they, too, are
relatively insensitive to missing data. (These will be shown in “STDDEV and VARIANCE,” later
in this chapter.)

MAX and MIN measure the extremes of your data. They can fluctuate wildly while AVG stays
relatively constant: If you add a 100-year-old man to a group of 99 people who are 50 years old,
the average age only goes up to 50.5—but the maximum age has doubled. Add a newborn baby,
and the average goes back to 50, but the minimum age is now 0. It’s clear that missing or unknown
NULL values can profoundly affect MAX, MIN, and SUM, so be cautious when using them,
particularly if a significant percentage of the data is NULL.

Is it possible to create functions that also take into account how sparse the data is and how
many values are NULL, compared to how many have real values, and make good guesses about
MAX, MIN, and SUM? Yes, but such functions would be statistical projections, which must make
explicit their assumptions about a particular set of data. This is not an appropriate task for a
general-purpose group function. Some statisticians would argue that these functions should return
NULL if they encounter any NULLs because returning any value can be misleading. Oracle returns
something rather than nothing, but leaves it up to you to decide whether the result is reasonable.

COUNT is a special case. It can go either way with NULL values, but it always returns a
number; it will never evaluate to NULL. The format and usage for COUNT will be shown shortly,
but to simply contrast it with the other group functions, it will count all the non-NULL rows of a
column, or it will count all the rows. In other words, if asked to count the ages of 100 friends,
COUNT will return a value of 20 (because only 20 of the 100 gave their age). If asked to count
the rows in the table of friends without specifying a column, it will return 100. An example of
these differences is given in “DISTINCT in Group Functions,” later in this chapter.

Examples of Single- and Group-Value Functions
Neither the group-value functions nor the single-value functions are particularly difficult to
understand, but a practical overview of how each function works is helpful in fleshing out
some of the options and consequences of their use.

166 Part II: SQL and SQL *Plus

The COMFORT table in these examples contains basic temperature data, by city, at noon and
midnight on each of four sample days in one year: the equinoxes (about March 21 and September
23) and the solstices (about June 22 and December 22). You ought to be able to characterize
cities based on their temperatures on these days in one year.

For the sake of these examples, this table has only eight rows: the data from the four dates in
2003 for San Francisco, California and Keene, New Hampshire. You can use Oracle’s number
functions to analyze these cities, their average temperature, the volatility of the temperature, and
so on, for 2003. With more years and data on more cities, an analysis of temperature patterns and
variability throughout the century could be made.

The table looks like this:

describe COMFORT

Name Null? Type
------------------------------- -------- ------------
CITY NOT NULL VARCHAR2(13)
SAMPLEDATE NOT NULL DATE
NOON NUMBER(3,1)
MIDNIGHT NUMBER(3,1)
PRECIPITATION NUMBER

It contains this temperature data:

select City, SampleDate, Noon, Midnight from COMFORT;

CITY SAMPLEDAT NOON MIDNIGHT
------------- --------- ---- --------
SAN FRANCISCO 21-MAR-03 62.5 42.3
SAN FRANCISCO 22-JUN-03 51.1 71.9
SAN FRANCISCO 23-SEP-03 61.5
SAN FRANCISCO 22-DEC-03 52.6 39.8
KEENE 21-MAR-03 39.9 -1.2
KEENE 22-JUN-03 85.1 66.7
KEENE 23-SEP-03 99.8 82.6
KEENE 22-DEC-03 -7.2 -1.2

AVG, COUNT, MAX, MIN, and SUM
Due to a power failure, the noon temperature in San Francisco on September 23 did not get
recorded. The consequences of this can be seen in the following query:

select AVG(Noon), COUNT(Noon), MAX(Noon), MIN(Noon), SUM(Noon)
 from COMFORT
 where City = 'SAN FRANCISCO';

AVG(NOON) COUNT(NOON) MAX(NOON) MIN(NOON) SUM(NOON)
--------- ----------- --------- --------- ---------
 55.4 3 62.5 51.1 166.2

AVG(Noon) is the average of the three temperatures that are known. COUNT(Noon) is the
count of how many rows there are in the Noon column that are not NULL. MAX and MIN are

Chapter 9: Playing the Numbers 167

self-evident. SUM(Noon) is the sum of only three dates because of the NULL for September 23.
Note that

SUM(NOON)

 166.2

is by no coincidence exactly three times AVG(Noon).

Combining Group-Value and Single-Value Functions
Suppose you would like to know how much the temperature changes in the course of a day.
This is a measure of volatility. Your first attempt to answer the question might be to subtract the
temperature at midnight from the temperature at noon:

select City, SampleDate, Noon-Midnight
 from COMFORT
 where City = 'KEENE';

CITY SAMPLEDAT NOON-MIDNIGHT
------------- --------- -------------
KEENE 21-MAR-03 41.1
KEENE 22-JUN-03 18.4
KEENE 23-SEP-03 17.2
KEENE 22-DEC-03 -6

With only four rows to consider in this table, you can quickly convert (or ignore) the pesky
minus sign. Volatility in temperature is really a magnitude—which means it asks by how much
the temperature changed. It doesn’t include a sign, so –6 isn’t really correct. If this goes uncorrected
and is included in a further calculation, such as the average change in a year, the answer you get
will be absolutely wrong, as shown here:

select AVG(Noon-Midnight)
 from COMFORT
 where City = 'KEENE';

AVG(NOON-MIDNIGHT)

 17.675

The correct answer requires an absolute value, as shown next.

select AVG(ABS(Noon-Midnight))
 from COMFORT
 where City = 'KEENE';

AVG(ABS(NOON-MIDNIGHT))

 20.675

Combining functions this way follows the same technique given in Chapter 7 in the section
on string functions. An entire function such as

ABS(Noon-Midnight)

168 Part II: SQL and SQL *Plus

is simply plugged into another function as its value, like this:

AVG(value)

which produces

AVG(ABS(Noon-Midnight))

This shows both single-value and group-value functions at work. You see that you can place
single-value functions inside group-value functions. The single-value functions will calculate a
result for every row, and the group-value functions will view that result as if it were the actual
value for the row. Single-value functions can be combined (nested inside each other) almost
without limit. Group-value functions can contain single-value functions in place of their value.
They can, in fact, contain many single-value functions in place of their value.

What about combining group functions? First of all, it doesn’t make any sense to nest them
this way:

select SUM(AVG(Noon)) from COMFORT;

The preceding will produce this error:

ERROR at line 1:
ORA-00978: nested group function without GROUP BY

Besides, if it actually worked, it would produce exactly the same result as

AVG(Noon)

because the result of AVG(Noon) is just a single value. The SUM of a single value is just the single
value, so it is not meaningful to nest group functions. The exception to this rule is in the use of
group by in the select statement, the absence of which is why Oracle produced the error message
here. This is covered in Chapter 12.

It can be meaningful to add, subtract, multiply, or divide the results of two or more group
functions. For example,

select MAX(Noon) - MIN(Noon)
 from COMFORT
 where City = 'SAN FRANCISCO';

MAX(NOON)-MIN(NOON)

 11.4

gives the range of the temperatures in a year. In fact, a quick comparison of San Francisco and
Keene could be done with just a bit more effort:

select City, AVG(Noon), MAX(Noon), MIN(Noon),
 MAX(Noon) - MIN(Noon) AS Swing
 from COMFORT
 group by City;

CITY AVG(NOON) MAX(NOON) MIN(NOON) SWING
------------- --------- --------- --------- -----
KEENE 54.4 99.8 -7.2 107
SAN FRANCISCO 55.4 62.5 51.1 11.4

Chapter 9: Playing the Numbers 169

This query is a good example of discovering information in your data: The average
temperatures in the two cities are nearly identical, but the huge temperature swing in Keene,
compared to San Francisco, says a lot about the yearly temperature volatility of the two cities,
and the relative effort required to dress (or to heat and cool a home) in one city compared to
the other. The group by clause will be explained in detail in Chapter 12. Briefly, in this example
it forced the group functions to work not on the total table, but on the subgroups of temperatures
by city.

STDDEV and VARIANCE
Standard deviation and variance have their common statistical meanings, and they use the same
format as all group functions:

select MAX(Noon), AVG(Noon), MIN(Noon), STDDEV(Noon),
 VARIANCE(Noon)
 from COMFORT
 where City = 'KEENE';

MAX(NOON) AVG(NOON) MIN(NOON) STDDEV(NOON) VARIANCE(NOON)
--------- --------- --------- ------------ --------------
 99.8 54.4 -7.2 48.3337701 2336.15333

See the Alphabetical Reference for the syntax for the statistical functions.

DISTINCT in Group Functions
All group-value functions have a DISTINCT versus ALL option. COUNT provides a good example
of how this works.

Here is the format for COUNT (note that | means “or”):

COUNT([DISTINCT | ALL] value)

Here is an example:

select COUNT(DISTINCT City), COUNT(City), COUNT(*)
 from COMFORT;

COUNT(DISTINCTCITY) COUNT(CITY) COUNT(*)
------------------- ----------- --------
 2 8 8

This query shows a couple of interesting results. First, DISTINCT forces COUNT to count only
the number of unique city names. If asked to count the DISTINCT midnight temperatures, it would
return 7, because two of the eight temperatures were the same. When COUNT is used on City but
not forced to look at DISTINCT cities, it finds 8.

This also shows that COUNT can work on a character column. It’s not making a computation
on the values in the column, as SUM or AVG must; it is merely counting how many rows have a
value in the specified column.

COUNT has another unique property: value can be an asterisk, meaning that COUNT tells
you how many rows are in the table, regardless of whether any specific columns are NULL. It will
count a row even if all its fields are NULL.

170 Part II: SQL and SQL *Plus

The other group functions do not share COUNT’s ability to use an asterisk, nor its ability to use
a character column for value (although MAX and MIN can). They do all share its use of DISTINCT,
which forces each of them to operate only on unique values. A table with values such as

select FirstName, Age from BIRTHDAY;

FIRSTNAME AGE
--------------- ----
GEORGE 42
ROBERT 52
NANCY 42
VICTORIA 42
FRANK 42

would produce this result:

select AVG(DISTINCT Age) AS Average,
 SUM(DISTINCT Age) AS Total
 from BIRTHDAY;

AVERAGE TOTAL
------- ------
 47 94

which, if you wanted to know the average age of your friends, is not the right answer. The use of
DISTINCT other than in COUNT is likely to be extremely rare, except perhaps in some statistical
calculations. MAX and MIN produce the same result with or without DISTINCT.

The alternative option to DISTINCT is ALL, which is the default. ALL tells SQL to check every
row, even if the value is a duplicate of the value in another row. You do not need to type ALL; if
you don’t type DISTINCT, ALL is used automatically.

List Functions
Unlike the group-value functions, which work on a group of rows, the list functions work on
a group of columns, either actual or calculated values, within a single row. In other words, list
functions compare the values of each of several columns and pick either the greatest or least of
the list. Consider the COMFORT table, shown here:

select City, SampleDate, Noon, Midnight from COMFORT;

CITY SAMPLEDAT NOON MIDNIGHT
------------- --------- ---- --------
SAN FRANCISCO 21-MAR-03 62.5 42.3
SAN FRANCISCO 22-JUN-03 51.1 71.9
SAN FRANCISCO 23-SEP-03 61.5
SAN FRANCISCO 22-DEC-03 52.6 39.8
KEENE 21-MAR-03 39.9 -1.2
KEENE 22-JUN-03 85.1 66.7
KEENE 23-SEP-03 99.8 82.6
KEENE 22-DEC-03 -7.2 -1.2

Now compare this query result with the following one. Note especially June and September
in San Francisco, and December in Keene:

Chapter 9: Playing the Numbers 171

select City, SampleDate, GREATEST(Midnight,Noon) AS High,
 LEAST(Midnight,Noon) AS Low
 from COMFORT;

CITY SAMPLEDAT HIGH LOW
------------- --------- ---- ----
SAN FRANCISCO 21-MAR-03 62.5 42.3
SAN FRANCISCO 22-JUN-03 71.9 51.1
SAN FRANCISCO 23-SEP-03
SAN FRANCISCO 22-DEC-03 52.6 39.8
KEENE 21-MAR-03 39.9 -1.2
KEENE 22-JUN-03 85.1 66.7
KEENE 23-SEP-03 99.8 82.6
KEENE 22-DEC-03 -1.2 -7.2

September in San Francisco has a NULL result because GREATEST and LEAST couldn’t
legitimately compare an actual midnight temperature with an unknown noon temperature.
In the other two instances, the midnight temperature was actually higher than the noon
temperature.

Here are the formats for GREATEST and LEAST:

GREATEST(value1,value2,value3. . .)
LEAST(value1,value2,value3. . .)

Both GREATEST and LEAST can be used with many values, and the values can be columns,
literal numbers, calculations, or combinations of other columns. GREATEST and LEAST can also
be used with character columns. For example, they can choose the names that fall last
(GREATEST) or first (LEAST) in alphabetical order:

Isaiah
 LEAST('Bob','George','Andrew','Isaiah') = Andrew

You can use the COALESCE function to evaluate multiple values for non-NULL values. Given
a string of values, COALESCE will return the first non-NULL value encountered; if all are NULL,
then a NULL result will be returned.

In the COMFORT table, there is a NULL value for Noon for one of the San Francisco
measurements. The following query returns

select COALESCE(Noon, Midnight) from COMFORT
 where City = 'SAN FRANCISCO';

COALESCE(NOON,MIDNIGHT)

 62.5
 51.1
 61.5
 52.6

In the first two records of the output, the value displayed is the Noon value. In the third record,
Noon is NULL, so Midnight is returned instead. Oracle’s DECODE and CASE functions provide
similar functionality, as described in Chapter 16.

172 Part II: SQL and SQL *Plus

Finding Rows with MAX or MIN
Which city had the highest temperature ever recorded, and on what date? The answer is easy
with just eight rows to look at, but what if you have data from every city in the country and for
every day of every year for the last 50 years? Assume for now that the highest temperature for the
year occurred closer to noon than midnight. The following won’t work:

select City, SampleDate, MAX(Noon)
 from COMFORT;

Oracle flags the City column and gives this error message:

select City, SampleDate, MAX(Noon)
 *
ERROR at line 1:
ORA-00937: not a single-group group function

This error message is a bit opaque. It means that Oracle has detected a flaw in the logic of the
question. Asking for columns means you want individual rows to appear; asking for MAX, a group
function, means you want a group result for all rows. These are two different kinds of requests.
The first asks for a set of rows, but the second requests just one computed row, so there is a
conflict. Here is how to construct the query:

select City, SampleDate, Noon
 from COMFORT
 where Noon = (select MAX(Noon) from COMFORT);

CITY SAMPLEDAT NOON
------------ ---------- -----
KEENE 23-SEP-03 99.8

This only produces one row. You might think, therefore, that the combination of a request for
the City and SampleDate columns, along with the MAX of Noon, is not so contradictory as was
just implied. But what if you’d asked for the minimum temperature instead?

select City, SampleDate, Midnight
 from COMFORT
 where Midnight = (select MIN(Midnight) from COMFORT);

CITY SAMPLEDAT MIDNIGHT
------------- --------- --------
KEENE 21-MAR-03 -1.2
KEENE 22-DEC-03 -1.2

Two rows! More than one satisfied the MIN request, so there is a conflict in trying to combine
a regular column request with a group function.

It is also possible to use two subqueries, each with a group-value function in it (or two
subqueries, where one does and the other doesn’t have a group function). Suppose you want
to know the highest and lowest noon temperatures for the year:

select City, SampleDate, Noon
 from COMFORT
 where Noon = (select MAX(Noon) from COMFORT)
 or Noon = (select MIN(Noon) from COMFORT);

Chapter 9: Playing the Numbers 173

CITY SAMPLEDAT NOON
------------- --------- -----
KEENE 23-SEP-03 99.8
KEENE 22-DEC-03 -7.2

Precedence and Parentheses
When more than one arithmetic or logical operator is used in a single calculation, which one
is executed first, and does it matter what order they are in? Consider the following query of the
DUAL table (a one-column, one-row table provided by Oracle):

select 2/2/4 from DUAL;

2/2/4

 .25

When parentheses are introduced, although the numbers and the operation (division) stay the
same, the answer changes considerably:

select 2/(2/4) from DUAL;

2/(2/4)

 4

The reason for this is precedence. Precedence defines the order in which mathematical
computations are made, not just in Oracle but in mathematics in general. The rules are simple:
Operations within parentheses have the highest precedence, then multiplication and division,
then addition and subtraction. When an equation is computed, any calculations inside
parentheses are made first. Multiplication and division are next. Finally, any addition and
subtraction are completed. When operations of equal precedence are to be performed, they
are executed from left to right. Here are a few examples:

2*4/2*3 = 12 (the same as ((2*4)/2)*3)
(2*4)/(2*3) = 1.333
4-2*5 = -6 (the same as 4 - (2*5))
(4-2)*5 = 10

AND and OR also obey precedence rules, with AND having the higher precedence. Observe
the effect of the AND as well as the left-to-right order in these two queries:

select * from NEWSPAPER
 where Section = 'B' AND Page = 1 OR Page = 2;

FEATURE S PAGE
--------------- - -----
Weather C 2
Modern Life B 1
Bridge B 2

3 rows selected.

select * from NEWSPAPER
 where Page = 1 OR Page = 2 AND Section = 'B';

174 Part II: SQL and SQL *Plus

FEATURE S PAGE
--------------- - -----
National News A 1
Sports D 1
Business E 1
Modern Life B 1
Bridge B 2

5 rows selected.

If what you really want is page 1 or 2 in Section B, then parentheses are needed to overcome
the precedence of the AND. Parentheses override any other operations.

select * from NEWSPAPER
 where Section = 'B' AND (Page = 1 OR Page = 2);

FEATURE S PAGE
--------------- - -----
Modern Life B 1
Bridge B 2

2 rows selected.

The truth is that even experienced programmers and mathematicians have trouble remembering
what will execute first when they write a query or an equation. It is always wise to make explicit
the order you want Oracle to follow. Use parentheses whenever there could be the slightest risk of
confusion.

Review
Single-value functions work on values in a row-by-row fashion. List functions compare columns
and choose just one, again in a row-by-row fashion. Single-value functions almost always change
the value of the column they are applied to. This doesn’t mean, of course, that they have modified
the database from which the value was drawn, but they do make a calculation with that value,
and the result is different from the original value.

List functions don’t change values in this way, but rather they simply choose (or report) the
GREATEST or LEAST of a series of values in a row. Both single-value and list functions will not
produce a result if they encounter a value that is NULL.

Both single-value and list functions can be used anywhere an expression can be used, such as
in the select and where clauses.

The group-value functions tell something about a whole group of numbers—all of the rows in
a set. The group-value functions tell you the average of those numbers, or the largest of them, or
how many there are, or the standard deviation of the values, and so on. Group functions ignore
NULL values, and this fact must be kept firmly in mind when reporting about groups of values;
otherwise, there is considerable risk of misunderstanding the data.

Group-value functions also can report information on subgroups within a table, or they can
be used to create a summary view of information from one or more tables. Chapter 12 gives
details on these additional features.

Finally, mathematical and logical precedence affect the order in which queries are evaluated,
and this can have a dramatic effect on query results. Get into the habit of using parentheses to
make the order you want both explicit and easy to understand.

CHAPTER
10

Dates: Then, Now,
and the Difference

175

176 Part II: SQL and SQL *Plus

ne of Oracle’s strengths is its ability to store and calculate dates, and the number
of seconds, minutes, hours, days, months, and years between dates. In addition
to basic date functions, Oracle supports a wide array of time zone–conversion
functions. It also has the ability to format dates in virtually any manner you can
conceive of, from the simple 01-MAY-08, to May 1st in the 782nd Year of the Reign

of Louis IX. You probably won’t use many of these date-formatting and computing functions, but
the most basic ones will prove to be very important.

Date Arithmetic
DATE is an Oracle datatype, just as VARCHAR2 and NUMBER are, and it has its own unique
properties. The DATE datatype is stored in a special internal Oracle format that includes not just
the month, day, and year, but also the hour, minute, and second. The benefit of all this detail
should be obvious. If you have, for instance, a customer help desk, for each call that is logged
in, Oracle can automatically store the date and time of the call in a single DATE column. You
can format the DATE column on a report to show just the date, or the date and the hour, or the
century, date, hour, and minute, or the date, hour, minute, and second. You can use the
TIMESTAMP datatype to store fractional seconds. See the “Using the TIMESTAMP Datatypes”
section later in this chapter for details.

SQL*Plus and SQL recognize columns that are of the DATE datatype, and they understand
that instructions to do arithmetic with them call for date arithmetic, not regular math. Adding 1 to
a date, for instance, will give you another date—the next day. Subtracting one date from another
will give you a number—the count of days between the two dates.

However, because Oracle dates can include hours, minutes, and seconds, doing date arithmetic
can prove to be tricky because Oracle could tell you, for example, that the difference between
today and tomorrow is .516 days! (This will be explained later in this chapter.)

SYSDATE, CURRENT_DATE, and SYSTIMESTAMP
Oracle taps into the computer’s operating system for the current date and time. It makes these
available to you through a special function called SYSDATE. Think of SYSDATE as a function
whose result is always the current date and time, and it can be used anywhere any other Oracle
function can be used. You also can regard it as a hidden column or pseudo-column that is in
every table. Here, SYSDATE shows today’s date:

select SysDate from DUAL;

SYSDATE

28-FEB-08

NOTE
DUAL is a small but useful Oracle table created for testing functions
or doing quick calculations. Later in this chapter, the sidebar “The
DUAL Table for Quick Tests and Calculations” describes DUAL.

A second function, CURRENT_DATE, reports the system date in the session’s time zone (you
can set the time zone within your local session, which may differ from the database’s time zone).

O

Chapter 10: Dates: Then, Now, and the Difference 177

select Current_Date from DUAL;

CURRENT_D

28-FEB-08

Another function, SYSTIMESTAMP, reports the system date in the TIMESTAMP datatype
format:

select SysTimeStamp from DUAL;

SYSTIMESTAMP

28-FEB-08 04.49.31.718000 PM -05:00

See the “Using the TIMESTAMP Datatypes” section later in this chapter for details on the
TIMESTAMP datatype and the time zone format and functions. The following sections focus on
the use of the DATE datatype, because DATE will satisfy most date-processing requirements.

The Difference Between Two Dates
HOLIDAY is a table of some secular holidays in the United States during 2004:

select Holiday, ActualDate, CelebratedDate from HOLIDAY;

HOLIDAY ACTUALDAT CELEBRATE
------------------------- --------- ---------
NEW YEARS DAY 01-JAN-04 01-JAN-04
MARTIN LUTHER KING, JR. 15-JAN-04 19-JAN-04
LINCOLNS BIRTHDAY 12-FEB-04 16-FEB-04
WASHINGTONS BIRTHDAY 22-FEB-04 16-FEB-04
FAST DAY, NEW HAMPSHIRE 22-FEB-04 22-FEB-04
MEMORIAL DAY 30-MAY-04 31-MAY-04
INDEPENDENCE DAY 04-JUL-04 04-JUL-04
LABOR DAY 06-SEP-04 06-SEP-04
COLUMBUS DAY 12-OCT-04 11-OCT-04
THANKSGIVING 25-NOV-04 25-NOV-04

Which holidays are not celebrated on the actual date of their anniversary during 2004? This
can be easily answered by subtracting CelebratedDate from ActualDate. If the answer is not zero,
there is a difference between the two dates:

select Holiday, ActualDate, CelebratedDate
 from Holiday
 where CelebratedDate - ActualDate != 0;

HOLIDAY ACTUALDAT CELEBRATE
------------------------- --------- ---------
MARTIN LUTHER KING, JR. 15-JAN-04 19-JAN-04
LINCOLNS BIRTHDAY 12-FEB-04 16-FEB-04
WASHINGTONS BIRTHDAY 22-FEB-04 16-FEB-04
MEMORIAL DAY 30-MAY-04 31-MAY-04
COLUMBUS DAY 12-OCT-04 11-OCT-04

178 Part II: SQL and SQL *Plus

Adding Months
If February 22 is “Fast Day” in New Hampshire, perhaps six months later could be celebrated as
“Feast Day.” If so, what would the date be? Simply use the ADD_MONTHS function, adding a
count of six months, as shown here:

column FeastDay heading "Feast Day"

select ADD_MONTHS(CelebratedDate,6) AS FeastDay
 from HOLIDAY
 where Holiday like 'FAST%';

Feast Day

22-AUG-04

Subtracting Months
If picnic area reservations have to be made at least six months before Columbus Day, what’s
the last day you can make them? Take the CelebratedDate for Columbus Day and use ADD_
MONTHS, adding a negative count of six months (this is the same as subtracting months). This
will tell you the date six months before Columbus Day. Then subtract one day.

The DUAL Table for Quick Tests and Calculations
DUAL is a tiny table Oracle provides with only one row and one column in it:

describe DUAL

Name Null? Type
------------------------------ ----------- -------------
DUMMY VARCHAR(1)

Because Oracle’s many functions work on both columns and literals, using DUAL lets
you see some functioning using just literals. In these examples, the select statement doesn’t
care which columns are in the table, and a single row is sufficient to demonstrate a point.
For example, suppose you want to quickly calculate POWER(4,3)—that is, four “cubed”:

select POWER(4,3) from DUAL;

POWER(4,3)

 64

The actual column in DUAL is irrelevant. This means that you can experiment with date
formatting and arithmetic using the DUAL table and the date functions in order to understand
how they work. Then, those functions can be applied to actual dates in real tables.

Chapter 10: Dates: Then, Now, and the Difference 179

column LastDay heading "Last Day"

select ADD_MONTHS(CelebratedDate,-6) - 1 AS LastDay
 from HOLIDAY
 where Holiday = 'COLUMBUS DAY';

Last Day

10-APR-04

GREATEST and LEAST
Which comes first for each of the holidays that were moved to fall on Mondays, the actual or
the celebrated date? The LEAST function chooses the earliest date from a list of dates, whether
columns or literals; GREATEST, on the other hand, chooses the latest date. These GREATEST
and LEAST functions are exactly the same ones used with numbers and character strings:

select Holiday, LEAST(ActualDate, CelebratedDate) AS First,
 ActualDate, CelebratedDate
 from HOLIDAY
 where ActualDate - CelebratedDate != 0;

HOLIDAY FIRST ACTUALDAT CELEBRATE
------------------------- --------- --------- ---------
MARTIN LUTHER KING, JR. 15-JAN-04 15-JAN-04 19-JAN-04
LINCOLNS BIRTHDAY 12-FEB-04 12-FEB-04 16-FEB-04
WASHINGTONS BIRTHDAY 16-FEB-04 22-FEB-04 16-FEB-04
MEMORIAL DAY 30-MAY-04 30-MAY-04 31-MAY-04
COLUMBUS DAY 11-OCT-04 12-OCT-04 11-OCT-04

Here, LEAST worked just fine, because it operated on DATE columns from a table. What
about literals?

select LEAST('20-JAN-04','20-DEC-04') from DUAL;

LEAST('20

20-DEC-04

In this case, the first 3 characters (20-) are the same; the fourth character of each string is used
as the basis for the comparison, and D comes before J in the alphabet.

It did not know to treat them as dates. The TO_DATE function converts these literals into an
internal DATE format Oracle can use for its date-oriented functions:

select LEAST(TO_DATE('20-JAN-04'), TO_DATE('20-DEC-04'))
 from DUAL;

LEAST(TO_

20-JAN-04

180 Part II: SQL and SQL *Plus

NEXT_DAY
NEXT_DAY computes the date of the next named day of the week (that is, Sunday, Monday, Tuesday,
Wednesday, Thursday, Friday, or Saturday) after the given date. For example, suppose payday is
always the first Friday after the 15th of the month. The table PAYDAY contains only the pay cycle
dates, each one being the 15th of the month, with one row for each month of the year 2004:

select CycleDate from PAYDAY;

CYCLEDATE

15-JAN-04
15-FEB-04
15-MAR-04
15-APR-04
15-MAY-04
15-JUN-04
15-JUL-04
15-AUG-04
15-SEP-04
15-OCT-04

A Warning about GREATEST and LEAST
Unlike many other Oracle functions and logical operators, the GREATEST and LEAST
functions will not evaluate literal strings that are in date format as dates. The dates are
treated as strings:

select Holiday, CelebratedDate
 from HOLIDAY
 where CelebratedDate = LEAST('19-JAN-04', '06-SEP-04');

HOLIDAY CELEBRATE
---------------------- ---------
LABOR DAY 06-SEP-04

This is quite wrong, almost as if you’d said GREATEST instead of LEAST. December 20,
2004 is not earlier than January 20, 2004. Why did this happen? Because LEAST treated
these literals as strings.

In order for LEAST and GREATEST to work properly, the function TO_DATE must be
applied to the literal strings:

select Holiday, CelebratedDate
 from HOLIDAY
 where CelebratedDate = LEAST(TO_DATE('19-JAN-04'),
 TO_DATE('06-SEP-04'));

HOLIDAY CELEBRATE
-------------------------- ---------
MARTIN LUTHER KING, JR. 19-JAN-04

Chapter 10: Dates: Then, Now, and the Difference 181

15-NOV-04
15-DEC-04

What will be the actual payment dates?

column Payday heading "Pay Day"

select NEXT_DAY(CycleDate,'FRIDAY') AS Payday
 from PAYDAY;

Pay Day

16-JAN-04
20-FEB-04
19-MAR-04
16-APR-04
21-MAY-04
18-JUN-04
16-JUL-04
20-AUG-04
17-SEP-04
22-OCT-04
19-NOV-04
17-DEC-04

This is nearly correct, except for October, because NEXT_DAY is the date of the next Friday
after the cycle date. Because October 15, 2004, is a Friday, this (wrongly) gives the following
Friday instead. The correct version is as follows:

column Payday heading "Pay Day"

select NEXT_DAY(CycleDate-1,'FRIDAY') AS PayDay
 from PAYDAY;

NEXT_DAY is really a “greater than” kind of function. It asks for the next date greater than the
given date that falls on a specific day of the week. To catch those cycle dates that are already on
Friday, subtract one from the cycle date. This makes every cycle date appear one day earlier to
NEXT_DAY. The paydays are then always the correct Friday.

LAST_DAY
LAST_DAY produces the date of the last day of the month. Suppose that commissions and
bonuses are always paid on the last day of the month. What were those dates in 2004?

column EndMonth heading "End Month"

select LAST_DAY(CycleDate) AS EndMonth
 from PAYDAY;

End Month

31-JAN-04

182 Part II: SQL and SQL *Plus

29-FEB-04
31-MAR-04
30-APR-04
31-MAY-04
30-JUN-04
31-JUL-04
31-AUG-04
30-SEP-04
31-OCT-04
30-NOV-04
31-DEC-04

MONTHS_BETWEEN Two Dates
You recently came across a file containing the birthdates of a group of friends. You load the
information into a table called BIRTHDAY and display it:

select FirstName, LastName, BirthDate from BIRTHDAY;

FIRSTNAME LASTNAME BIRTHDATE
--------------- --------------- ---------
GEORGE SAND 12-MAY-46
ROBERT JAMES 23-AUG-37
NANCY LEE 02-FEB-47
VICTORIA LYNN 20-MAY-49
FRANK PILOT 11-NOV-42

To calculate each person’s age, compute the months between today’s date and their birth dates,
and divide by 12 to get the years. The division will print the age with a decimal component.
Because most people over the age of 7 don’t report their age using portions of years, apply a
FLOOR function to the computation.

select FirstName, LastName, BirthDate,
 FLOOR(
 MONTHS_BETWEEN(SysDate,BirthDate)/12
) AS Age
 from BIRTHDAY;

FIRSTNAME LASTNAME BIRTHDATE AGE
--------------- --------------- --------- -------
GEORGE SAND 12-MAY-46 61
ROBERT JAMES 23-AUG-37 70
NANCY LEE 02-FEB-47 61
VICTORIA LYNN 20-MAY-49 58
FRANK PILOT 11-NOV-42 65

Combining Date Functions
You are hired on February 28, 2008, at a great new job, with a starting salary that is lower than
you had hoped, but with a promise of a review the first of the month after six months have
passed. If the current date is February 28, 2008, when is your review date?

Chapter 10: Dates: Then, Now, and the Difference 183

select SysDate AS Today,
 LAST_DAY(ADD_MONTHS(SysDate,6)) + 1 Review
 from DUAL;

TODAY REVIEW
--------- ---------
28-FEB-08 01-SEP-08

ADD_MONTHS takes the SysDate and adds six months to it. LAST_DAY takes this result and
figures the last day of that month. You then add 1 to the date to get the first day of the next month.
How many days until that review? You simply subtract today’s date from it. Note the use of
parentheses to ensure the proper order of the calculation:

select (LAST_DAY(ADD_MONTHS(SysDate,6))+ 1)-SysDate Wait
 from DUAL;

 WAIT

 186

ROUND and TRUNC in Date Calculations
Assume that this is today’s SysDate:

SYSDATE

28-FEB-08

In the beginning of the chapter, it was noted that Oracle could subtract one date from another,
such as tomorrow minus today, and come up with an answer other than a whole number. Let’s
look at it:

select TO_DATE('29-FEB-08') - SysDate from DUAL;

TO_DATE('29-FEB-08')-SYSDATE

 .516

The reason for the fractional number of days between today and tomorrow is that Oracle
keeps hours, minutes, and seconds with its dates, and SysDate is always current, up to the
second. It is obviously less than a full day until tomorrow.

To simplify some of the difficulties you might encounter using fractions of days, Oracle makes
a couple of assumptions about dates:

A date entered as a literal, such as '29-FEB-08', is given a default time of 12 A.M.
(midnight) at the beginning of that day.

A date entered through SQL*Plus, unless a time is specifically assigned to it, is set to
12 A.M. (midnight) at the beginning of that day.

■

■

184 Part II: SQL and SQL *Plus

SysDate always includes both the date and the time, unless you intentionally round it
off. Using the ROUND function on any date sets it to 12 A.M. for that day if the time is
before exactly noon, and to 12 A.M. the next day if it is after noon. The TRUNC function
acts similarly, except that it sets the time to 12 A.M. for any time up to and including one
second before midnight.

To get the rounded number of days between today and tomorrow, use this:

select TO_DATE('29-FEB-08') - ROUND(SysDate) from DUAL;

TO_DATE('29-FEB-08')-ROUND(SYSDATE)

 1

If the current time is after noon, the rounded difference will be 0 days.
ROUND, without a 'format' (see “Date Functions” in the Alphabetical Reference), always

rounds a date to 12 A.M. of the closest day. If dates that you will be working with contain times
other than noon, either use ROUND or accept possible fractional results in your calculations.
TRUNC works similarly, but it sets the time to 12 A.M. of the current day.

TO_DATE and TO_CHAR Formatting
TO_DATE and TO_CHAR are alike insofar as they both have powerful formatting capabilities.
They are opposite insofar as TO_DATE converts a character string or a number into an Oracle
date, whereas TO_CHAR converts an Oracle date into a character string. The formats for these
two functions are as follows:

TO_CHAR(date[,'format'[,'NLSparameters']])

TO_DATE(string[,'format'[,'NLSparameters']])

date must be a column defined as a DATE datatype in Oracle. It cannot be a string, even if
it is in the most common date format of DD-MON-YY. The only way to use a string where date
appears in the TO_CHAR function is to enclose it within a TO_DATE function.

string is a literal string, a literal number, or a database column containing a string or a number.
In every case but one, the format of string must correspond to that described by format. Only if a
string is in the default format can format be left out. The default starts out as "DD-MON-YY", but
you can change this with

alter session set NLS_DATE_FORMAT = "DD/MON/YYYY";

for a given SQL session or with the NLS_DATE_FORMAT init.ora parameter.
format is a collection of many options that can be combined in virtually an infinite number

of ways. (See the “Date Formats” entry in the Alphabetical Reference.) Once you understand the
basic method of using the options, putting them into practice is simple.

NLSparameters is a string that sets the NLS_DATE_LANGUAGE option to a specific language,
as opposed to using the language for the current SQL session. You shouldn’t need to use this
option often. Oracle will return day and month names in the language set for the session with
alter session.

■

Chapter 10: Dates: Then, Now, and the Difference 185

NOTE
In many cases, you can use the EXTRACT function in place of TO_
CHAR. See the “Using the EXTRACT Function” section later in this
chapter for examples.

TO_CHAR will be used as an example of how the options work. Defining a column format for
the TO_CHAR function results is the first task, because without it, TO_CHAR will produce a
column heading in SQL*Plus nearly 100 characters wide. By renaming the column (so its heading
is intelligible) and setting its format to 30 characters, a practical display is produced:

column Formatted format a30 word_wrapped
select BirthDate,
 TO_CHAR(BirthDate,'MM/DD/YY') AS Formatted
 from BIRTHDAY
 where FirstName = 'VICTORIA';

BIRTHDATE FORMATTED
--------- ------------------------------
20-MAY-49 05/20/49

BirthDate shows the default Oracle date format: DD-MON-YY (day of the month, dash, three-
letter abbreviation for the month, dash, the last two digits of the year). The TO_CHAR function in
the select statement is nearly self-evident. MM, DD, and YY in the TO_CHAR statement are key
symbols to Oracle in formatting the date. The slashes (/) are just punctuation, and Oracle will
accept a wide variety of punctuation.

select BirthDate, TO_CHAR(BirthDate,'YYMM>DD') Formatted
 from BIRTHDAY
 where FirstName = 'VICTORIA';

BIRTHDATE FORMATTED
--------- ------------------------------
20-MAY-49 4905>20

In addition to standard punctuation, Oracle allows you to insert text into the format. This is
done by enclosing the desired text in double quotation marks:

select BirthDate,
 TO_CHAR(BirthDate,'Month, DDth "in, um,"
 YyyY') AS Formatted
 from BIRTHDAY ;

BIRTHDATE FORMATTED
--------- ------------------------------
12-MAY-46 May , 12TH in, um,
 1946
23-AUG-37 August , 23RD in, um,
 1937
02-FEB-47 February , 02ND in, um,
 1947

186 Part II: SQL and SQL *Plus

20-MAY-49 May , 20TH in, um,
 1949
11-NOV-42 November , 11TH in, um,
 1942

Several consequences of the format are worth observing here. The full word “Month” told
Oracle to use the full name of the month in the display. Because it was typed with the first letter
in uppercase and the remainder in lowercase, each month in the result was formatted the same
way. The options for month are as follows:

Format Result

Month August

Month August

Mon Aug

Mon Aug

The day of the month is produced by the DD in the format. A suffix of th on DD tells Oracle
to use ordinal suffixes, such as “TH,” “RD,” and “ND” with the number. In this instance, the
suffixes are also case sensitive, but their case is set by the DD, not the th:

Format Result

DDth or DDTH 11TH

Ddth or DdTH 11Th

Ddth or ddTH 11th

This same approach holds true for all numbers in the format, including century, year, quarter,
month, week, day of the month (DD), Julian day, hours, minutes, and seconds.

The words between double quotation marks are simply inserted where they are found. Spaces
between any of these format requests are reproduced in the result (look at the three spaces before
the word “in” in the preceding example). YyyY is included simply to show that case is irrelevant
unless a suffix such as Th is being used. For simplicity’s sake, consider this format request:

select BirthDate, TO_CHAR(BirthDate,'Month, ddth, YyyY')
 AS Formatted
 from BIRTHDAY;

BIRTHDATE FORMATTED
--------- ------------------------------
12-MAY-46 May , 12th, 1946
23-AUG-37 August , 23rd, 1937
02-FEB-47 February , 02nd, 1947
20-MAY-49 May , 20th, 1949
11-NOV-42 November , 11th, 1942

This is a reasonably normal format. The days are all aligned, which makes comparing the
rows easy. This is the default alignment, and Oracle accomplishes it by padding the month names
on the right with spaces up to a width of nine spaces. There will be circumstances when it is more
important for a date to be formatted normally, such as at the top of a letter. The spaces between

Chapter 10: Dates: Then, Now, and the Difference 187

the month and the comma would look odd. To eliminate the spaces, fm is used as a prefix for the
words “month” and “day”:

Format Result

Month, ddth August , 20th

fmMonth, ddth August, 20th

Day, ddth Monday , 20th

fmDay, ddth Monday, 20th

This is illustrated in the following example:

select BirthDate, TO_CHAR(BirthDate,'fmMonth, ddth, YyyY')
 AS Formatted
 from BIRTHDAY;

BIRTHDATE FORMATTED
--------- ------------------------------
12-MAY-46 May, 12th, 1946
23-AUG-37 August, 23rd, 1937
02-FEB-47 February, 2nd, 1947
20-MAY-49 May, 20th, 1949
11-NOV-42 November, 11th, 1942

By combining all these format controls and adding hours and minutes, you can produce a
birth announcement:

select FirstName, BirthDate, TO_CHAR(BirthDate,
'"Baby Girl on" fmMonth ddth, YYYY, "at" HH:MI "in the Morning"')
 AS Formatted
 from BIRTHDAY
 where FirstName = 'VICTORIA';

FIRSTNAME BIRTHDATE FORMATTED
--------------- --------- ------------------------------
VICTORIA 20-MAY-49 Baby Girl on May 20th, 1949,
 at 3:27 in the Morning

Suppose that after looking at this, you decide you’d rather spell out the date. Do this with the
sp control:

select FirstName, BirthDate, TO_CHAR(BirthDate,
'"Baby Girl on the" Ddsp "of" fmMonth, YYYY, "at" HH:MI')
 AS Formatted
 from BIRTHDAY
 where FirstName = 'VICTORIA';

FIRSTNAME BIRTHDATE FORMATTED
--------------- --------- ------------------------------
VICTORIA 20-MAY-49 Baby Girl on the Twenty of
 May, 1949, at 3:27

188 Part II: SQL and SQL *Plus

Well, 20 was spelled out, but it still doesn’t look right. Add the th suffix to sp:

select FirstName, BirthDate, TO_CHAR(BirthDate,
'"Baby Girl on the" Ddspth "of" fmMonth, YYYY, "at" HH:MI')
 AS Formatted
 from BIRTHDAY
 where FirstName = 'VICTORIA';

FIRSTNAME BIRTHDATE FORMATTED
--------------- --------- ------------------------------
VICTORIA 20-MAY-49 Baby Girl on the Twentieth of
 May, 1949, at 3:27

But was it 3:27 A.M. or 3:27 P.M.? These could be added inside double quotation marks, but
then the result would always say “A.M.” or “P.M.,” regardless of the actual time of the day (because
double quotation marks enclose a literal). Instead, Oracle lets you add either “A.M.” or “P.M.” after
the time, but not in double quotation marks. Oracle then interprets this as a request to display
whether it is A.M. or P.M. Note how the select has this formatting control entered as P.M., but the
result shows A.M., because the birth occurred in the morning:

select FirstName, BirthDate, TO_CHAR(BirthDate,
'"Baby Girl on the" Ddspth "of" fmMonth, YYYY, "at" HH:MI P.M.')
 AS Formatted
 from BIRTHDAY
 where FirstName = 'VICTORIA';

FIRSTNAME BIRTHDATE FORMATTED
--------------- --------- ------------------------------
VICTORIA 20-MAY-49 Baby Girl on the Twentieth of
 May, 1949, at 3:27 A.M.

Consult the entry “Date Formats,” in the Alphabetical Reference, for a list of all the possible
date options. How would you construct a date format for the 782nd Year of the Reign of Louis IX?
Use date arithmetic to alter the year from A.D. to A.L. (Louis’s reign began in 1226, so subtract
1,226 years from the current year) and then simply format the result using TO_CHAR.

The Most Common TO_CHAR Error
Always check the date formats when using the TO_CHAR function. The most common error is
to interchange the “MM” (Month) format and the “MI” (Minutes) format when formatting the time
portion of a date.

For example, to view the current time, use the TO_CHAR function to query the time portion
of SysDate:

select TO_CHAR(SysDate,'HH:MI:SS') Now
 from DUAL;

NOW

05:11:48

Chapter 10: Dates: Then, Now, and the Difference 189

This example is correct because it uses “MI” to show the minutes. However, users often select
“MM” instead—partly because they are also selecting two other pairs of double letters, “HH” and
“SS.” Selecting “MM” will return the month, not the minutes:

select TO_CHAR(SysDate,'HH:MM:SS') NowWrong
 from DUAL;

NOWWRONG

05:02:48

This time is incorrect, because the month was selected in the minutes place. Because Oracle
is so flexible and has so many different supported date formats, it does not prevent you from
making this error.

NEW_TIME: Switching Time Zones
The NEW_TIME function tells you the time and date of a date column or literal date in other time
zones. Here is the format for NEW_TIME:

NEW_TIME(date,'this','other')

date is the date (and time) in this time zone. this will be replaced by a three-letter abbreviation
for the current time zone. other will be replaced by a three-letter abbreviation of the other time
zone for which you’d like to know the time and date. (See the “Date Functions” entry in the
Alphabetical Reference.) To compare just the date, without showing the time, of Victoria’s birth
between Eastern standard time and Hawaiian standard time, use this:

select BirthDate, NEW_TIME(BirthDate,'EST','HST')
 from BIRTHDAY
 where FirstName = 'VICTORIA';

BIRTHDATE NEW_TIME(
--------- ---------
20-MAY-49 19-MAY-49

But how could Victoria have been born on two different days? Because every date stored in
Oracle also contains a time, it is simple enough using TO_CHAR and NEW_TIME to discover
both the date and the time differences between the two zones. This will answer the question:

select TO_CHAR(BirthDate,'fmMonth Ddth, YYYY "at" HH:MI AM') AS Birth,
 TO_CHAR(NEW_TIME(BirthDate,'EST','HST'),
 'fmMonth ddth, YYYY "at" HH:MI AM') AS Birth
 from BIRTHDAY
 where FirstName = 'VICTORIA';

BIRTH BIRTH
------------------------------ ------------------------------
May 20th, 1949 at 3:27 AM May 19th, 1949 at 10:27 PM

190 Part II: SQL and SQL *Plus

TO_DATE Calculations
TO_DATE follows the same formatting conventions as TO_CHAR, with some restrictions. The
purpose of TO_DATE is to turn a literal string, such as MAY 20, 1949, into an Oracle date format.
This allows the date to be used in date calculations.

Here is the format for TO_DATE:

TO_DATE(string[,'format'])

To put the string 28-FEB-08 into Oracle date format, use this:

select TO_DATE('28-FEB-08','DD-MON-YY') from DUAL;

TO_DATE('

28-FEB-08

Note, however, that the 28-FEB-08 format is already in the default format in which Oracle
displays and accepts dates. When a literal string has a date in this format, the format in TO_DATE
can be left out, with exactly the same result:

select TO_DATE('28-FEB-08') from DUAL;

TO_DATE('

28-FEB-08

Note that the punctuation is ignored. Even if your default date format is 28/FEB/08, the query
will still work, but it will return data in the format 28/FEB/08.

But what century is the date in? Is it 1908 or 2008? If you do not specify the full four-digit
value for the year, then you are relying on the database to default to the proper century value.

If the string is in a familiar format, but not the default Oracle format of DD-MON-YY, TO_
DATE fails:

select TO_DATE('02/28/08') from DUAL;

select TO_DATE('02/28/08') from DUAL;
 *
ERROR at line 1:
ORA-01843: not a valid month

When the format matches the literal string, the string is successfully converted to a date and is
then displayed in the default date format:

select TO_DATE('02/28/08','MM/DD/YY') from DUAL;

TO_DATE('

28-FEB-08

Suppose you need to know the day of the week of March 17. The TO_CHAR function will not
work, even with the literal string in the proper format, because TO_CHAR requires a date (see its
format at the very beginning of the “TO_DATE and TO_CHAR Formatting” section):

Chapter 10: Dates: Then, Now, and the Difference 191

select TO_CHAR('17-MAR-08','Day') from DUAL;

ERROR at line 1:
ORA-01722: invalid number

The message is somewhat misleading, but the point is that the query fails. You could use the
EXTRACT function, but this query will also work if you first convert the string to a date. Do this by
combining the two functions TO_CHAR and TO_DATE:

select TO_CHAR(TO_DATE('17-MAR-08'), 'Day') from DUAL;

TO_CHAR(T

Monday

TO_DATE can also accept numbers, without single quotation marks, instead of strings, as long
as they are formatted consistently. Here is an example:

select TO_DATE(11051946,'MMDDYYYY') from DUAL;

TO_DATE(1

05-NOV-46

The punctuation in the format is ignored, but the number must follow the order of the format
controls. The number itself must not have punctuation.

How complex can the format control be in TO_DATE? Suppose you simply reversed the TO_
CHAR select statement shown earlier, put its result into the string portion of TO_DATE, and kept
its format the same as TO_CHAR:

select TO_DATE('Baby Girl on the Twentieth of May, 1949,
 at 3:27 A.M.',
 '"Baby Girl on the" Ddspth "of" fmMonth, YYYY,
 "at" HH:MI P.M.')
 AS Formatted
 from BIRTHDAY
 where FirstName = 'VICTORIA';

ERROR at line 1:
ORA-01858: a non-numeric character was found
 where a numeric was expected

This failed. As it turns out, only a limited number of the format controls can be used. Here are
the restrictions on format that govern TO_DATE:

No literal strings are allowed, such as "Baby Girl on the".

Days cannot be spelled out. They must be numbers.

Punctuation is permitted.

fm is not necessary. If used, it is ignored.

If Month is used, the month in the string must be spelled out. If Mon is used, the month
must be a three-letter abbreviation. Uppercase and lowercase are ignored.

■

■

■

■

■

192 Part II: SQL and SQL *Plus

Dates in where Clauses
Early in this chapter, you saw an example of date arithmetic used in a where clause:

select Holiday, ActualDate, CelebratedDate
 from Holiday
 where CelebratedDate - ActualDate != 0;

HOLIDAY ACTUALDAT CELEBRATE
------------------------- --------- ---------
MARTIN LUTHER KING, JR. 15-JAN-04 19-JAN-04
LINCOLNS BIRTHDAY 12-FEB-04 16-FEB-04
WASHINGTONS BIRTHDAY 22-FEB-04 16-FEB-04
MEMORIAL DAY 30-MAY-04 31-MAY-04
COLUMBUS DAY 12-OCT-04 11-OCT-04

Dates can be used with other Oracle logical operators as well, with some warnings and
restrictions. The BETWEEN operator will do date arithmetic if the column preceding it is a date,
even if the test dates are literal strings:

select Holiday, CelebratedDate
 from HOLIDAY
 where CelebratedDate BETWEEN
 '01-JAN-04' and '22-FEB-04';

HOLIDAY CELEBRATE
------------------------- ---------
NEW YEARS DAY 01-JAN-04
MARTIN LUTHER KING, JR. 19-JAN-04
LINCOLNS BIRTHDAY 16-FEB-04
WASHINGTONS BIRTHDAY 16-FEB-04
FAST DAY, NEW HAMPSHIRE 22-FEB-04

The logical operator IN works as well with literal strings:

select Holiday, CelebratedDate
 from HOLIDAY
 where CelebratedDate IN ('01-JAN-04', '22-FEB-04');

HOLIDAY CELEBRATE
------------------------- ---------
NEW YEARS DAY 01-JAN-04
FAST DAY, NEW HAMPSHIRE 22-FEB-04

If you cannot rely on 2000 being the default century value, you can use the TO_DATE
function to specify the century values for the dates within the IN operator:

select Holiday, CelebratedDate
 from HOLIDAY
 where CelebratedDate IN
 (TO_DATE('01-JAN-2004','DD-MON-YYYY'),
 TO_DATE('22-FEB-2004','DD-MON-YYYY'));

Chapter 10: Dates: Then, Now, and the Difference 193

HOLIDAY CELEBRATE
------------------------- ---------
NEW YEARS DAY 01-JAN-04
FAST DAY, NEW HAMPSHIRE 22-FEB-04

LEAST and GREATEST do not work, because they assume the literal strings are strings, not
dates. Refer to the sidebar “A Warning about GREATEST and LEAST,” earlier in this chapter, for
an explanation of LEAST and GREATEST.

Dealing with Multiple Centuries
If your applications use only two-digit values for years, you may encounter problems related to
the year 2000. If you only specify two digits of a year (such as “98” for “1998”), you are relying
on the database to specify the century value (the “19”) when the record is inserted. If you are
putting in dates prior to the year 2000 (for example, birth dates), you may encounter problems
with the century values assigned to your data.

In Oracle, all date values have century values. If you only specify the last two digits of the
year value, Oracle will, by default, use the current century as the century value when it inserts a
record. For example, the following listing shows an insert into the BIRTHDAY table:

insert into BIRTHDAY
(FirstName, LastName, BirthDate)
values
('ALICIA', 'ANN', '21-NOV-39');

In the preceding example, no century value is specified for the BirthDate column, and no age
is specified. If you use the TO_CHAR function on the BirthDate column, you can see the full birth
date Oracle inserted—it defaulted to the current century:

select TO_CHAR(BirthDate,'DD-MON-YYYY') AS Bday
 from BIRTHDAY
 where FirstName = 'ALICIA'
 and LastName = 'ANN';

BDAY

21-NOV-2039

For dates that can properly default to the current century, using the default does not present
a problem. Alicia’s BirthDate value is 21-NOV-2039—wrong by 100 years! Wherever you insert
date values, you should specify the full four-digit year value.

If you are going to support dates from multiple centuries, consider using the “RR” date format
instead of “YY.” The “RR” format for years will pick the century value based on the year. Therefore,
years in the first half of the century will have “20” for a century whereas year values in the last
half of the century will have “19” for a century value. The use of the “RR” date format can be
specified at the database level or the SQL statement level (such as during insert operations).

194 Part II: SQL and SQL *Plus

Using the EXTRACT Function
You can use the EXTRACT function in place of the TO_CHAR function when you are selecting
portions of date values—such as just the month or day from a date. The EXTRACT function’s
syntax is

EXTRACT
({ { YEAR
 | MONTH
 | DAY
 | HOUR
 | MINUTE
 | SECOND
 }
 | { TIMEZONE_HOUR
 | TIMEZONE_MINUTE
 }
 | { TIMEZONE_REGION
 | TIMEZONE_ABBR
 }
 }
 FROM { datetime_value_expression | interval_value_expression }
)

For instance, to extract the month in which Victoria was born, you could execute the
following:

select BirthDate,
 EXTRACT(Month from BirthDate) AS Month
 from BIRTHDAY
 where FirstName = 'VICTORIA';

BIRTHDATE MONTH
--------- ----------
20-MAY-49 5

For more complex extractions, you will need to use TO_CHAR, but EXTRACT can support
many common date value queries.

Using the TIMESTAMP Datatypes
The DATE datatype stores the date and time to the second; TIMESTAMP datatypes store the date
to the billionth of a second.

The base datatype for timestamp values is called TIMESTAMP. Like DATE, it stores the year,
month, day, hour, minute, and second. It also includes a fractional_seconds_precision setting that
determines the number of digits in the fractional part of the seconds field. By default, the precision
is 6; valid values are 0 to 9.

In the following example, a table is created with the TIMESTAMP datatype, and it’s populated
via the SYSTIMESTAMP function:

Chapter 10: Dates: Then, Now, and the Difference 195

create table X1
(tscol TIMESTAMP(5));

insert into X1 values (SYSTIMESTAMP);

Now select that value from the table:

select * from X1;

TSCOL

28-FEB-08 05.27.32.71800 PM

The output shows the second the row was inserted, down to five places after the decimal.
The SYSTIMESTAMP function returns data in the form of the TIMESTAMP (fractional_seconds_

precision) WITH TIME ZONE datatype. The exact same row, inserted into a column that is defined
with the TIMESTAMP(5) WITH TIME ZONE datatype, returns the data in the following format:

create table X2
(tscol TIMESTAMP(5) WITH TIME ZONE);

insert into X2 values (SYSTIMESTAMP);

select * from X2;

TSCOL

28-FEB-08 05.29.11.64000 PM –05:00

In this output, the time zone is displayed as an offset of Coordinated Universal Time (UTC).
The database is presently set to a time zone that is five hours prior to UTC.

Oracle also supports the TIMESTAMP (fractional_seconds_ precision) WITH LOCAL TIME
ZONE datatype, which is similar to TIMESTAMP WITH TIME ZONE. It differs in that the data is
normalized to the database time zone when it is stored in the database, and during retrievals the
users see data in the session time zone.

In addition to the TIMESTAMP datatypes, Oracle also supports two interval datatypes:
INTERVAL YEAR (year_precision) TO MONTH and INTERVAL DAY (day_precision) TO SECOND
(fractional_seconds_precision). INTERVAL YEAR TO MONTH stores a period of time in years and
months, where the precision is the number of digits in the YEAR field (ranging from 0 to 9, with the
default being 2). The INTERVAL DAY TO SECOND datatype stores a period of time in days, hours,
minutes, and seconds; the precision for the day and seconds accepts values from 0 to 9. The
INTERVAL datatypes are mostly used during statistical analysis and data mining.

This page intentionally left blank

CHAPTER
11

Conversion and
Transformation Functions

197

198 Part II: SQL and SQL*Plus

his chapter looks at functions that convert, or transform, one datatype into another.
Four major datatypes and their associated functions have been covered thus far:

CHAR (fixed-length character strings) and VARCHAR2 (variable-length character strings)
include any letter of the alphabet, any number, and any of the symbols on the keyboard.
Character literals must be enclosed in single quotation marks:

'Sault Ste. Marie!'

NUMBER includes just the digits 0 through 9, a decimal point, and a minus sign, if
necessary. NUMBER literals are not enclosed in quotation marks:

246.320

Numbers can also be displayed in floating-point format:

2.4632E+2

DATE is a special type that includes information about the date and time. It has a
default format of DD-MON-YY (dependent on the setting of the NLS_DATE_FORMAT
parameter), but can be displayed in many ways using the TO_CHAR function, as you
saw in Chapter 10. DATE literals must be enclosed in single quotation marks:

'26-AUG-81'

Each of these datatypes has a group of functions designed especially to manipulate data of its
own type, as shown in Chapters 7, 8, 9, and 10. String functions are used with character columns
or literals, arithmetic functions are used with NUMBER columns or literals, and DATE functions
are used with DATE columns or literals. Most group and miscellaneous functions work with any
of these types. Some of these functions change the object they affect (whether CHAR,
VARCHAR2, NUMBER, or DATE), whereas others report information about the object.

In one sense, most of the functions studied so far have been transformation functions, meaning
they changed their objects. However, the functions covered in this chapter change their objects in
an unusual way: They transform them from one datatype into another, or they make a profound
transformation of the data in them. Table 11-1 describes these functions.

■

■

■

T

TABLE 11-1 Conversion Functions

Function Name Definition

ASCIISTR Translates a string in any character set and returns an ASCII string in the
database character set.

BIN_TO_NUM Converts a binary value to its numerical equivalent.

CAST CASTs one built-in or collection type to another; commonly used with
nested tables and varying arrays.

CHARTOROWID Changes a character string to act like an internal Oracle row identifier, or
ROWID.

Chapter 11: Conversion and Transformation Functions 199

Function Name Definition

COMPOSE Translates a string in any datatype to a Unicode string in its fully
normalized form in the same character set as the input.

CONVERT CONVERTs a character string from one national language character set to
another. The returned format is VARCHAR2.

DECOMPOSE Translates a string in any datatype to a Unicode string after canonical
decomposition in the same character set as the input.

HEXTORAW Changes a character string of hex numbers into binary.

NUMTODSINTERVAL Converts a NUMBER to an INTERVAL DAY TO SECOND literal.

NUMTOYMINTERVAL Converts a NUMBER to an INTERVAL YEAR TO MONTH literal.

RAWTOHEX Changes a string of binary numbers to a character string of hex numbers.

RAWTONHEX Converts RAW to an NVARCHAR2 character value containing its
hexadecimal equivalent.

ROWIDTOCHAR Changes an internal Oracle row identifier, or ROWID, to a character string.

ROWIDTONCHAR Converts a ROWID value to an NVARCHAR2 datatype.

SCN_TO_TIMESTAMP Converts a system change number to an approximate timestamp.

TIMESTAMP_TO_SCN Converts a timestamp to an approximate system change number.

TO_BINARY_DOUBLE Returns a double-precision floating-point number.

TO_BINARY_FLOAT Returns a single-precision floating-point number.

TO_CHAR Converts a NUMBER or DATE to a character string.

TO_CLOB Converts NCLOB values in a LOB column or other character strings to
CLOB values.

TO_DATE Converts a NUMBER, CHAR, or VARCHAR2 to a DATE (an Oracle
datatype).

TO_DSINTERVAL Converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype to an INTERVAL DAY TO SECOND type.

TO_LOB Converts a LONG to a LOB as part of an insert as select.

TO_MULTI_BYTE Converts the single-byte characters in a character string to multibyte
characters.

TO_NCHAR Converts a character string, NUMBER, or DATE from the database
character set to the national character set.

TO_NCLOB Converts CLOB values in a LOB column or other character strings to
NCLOB values.

TO_NUMBER Converts a CHAR or VARCHAR2 to a number.

TO_SINGLE_BYTE Converts the multibyte characters in a CHAR or VARCHAR2 to single
bytes.

TO_TIMESTAMP Converts a character string to a value of TIMESTAMP datatype.

TABLE 11-1 Conversion Functions (continued)

200 Part II: SQL and SQL*Plus

Elementary Conversion Functions
Although Table 11-1 lists many conversion functions, the most commonly used are the following
three, whose purpose is to convert one datatype into another:

TO_CHAR Transforms a DATE or NUMBER into a character string.

TO_DATE Transforms a NUMBER, CHAR, or VARCHAR2 into a DATE. For working
with timestamps, you can use TO_TIMESTAMP or TO_TIMESTAMP_TZ.

TO_NUMBER Transforms a CHAR or VARCHAR2 into a NUMBER.

Why are these transformations important? TO_DATE is obviously necessary to accomplish
date arithmetic. TO_CHAR allows you to manipulate a number as if it were a string, using string
functions. TO_NUMBER allows you to use a string that happens to contain only numbers as if it
were a number; by using it, you can add, subtract, multiply, divide, and so on.

This means that if you stored a nine-digit ZIP code as a number, you could transform it into a
string and then use SUBSTR and concatenation to add a dash (such as when printing addresses on
envelopes):

select SUBSTR(TO_CHAR(948033515),1,5)||'-'||
 SUBSTR(TO_CHAR(948033515),6) AS Zip
 from DUAL;

ZIP

94803-3515

Here, the TO_CHAR function transforms the pure number 948033515 (notice that it has no
single quotation marks around it, as a CHAR or VARCHAR2 string must) into a character string.
SUBSTR then clips out positions 1 to 5 of this string, producing 94803. A dash is concatenated
on the right end of this string, and then another TO_CHAR creates another string, which another
SUBSTR clips out from position 6 to the end. The second string, 3515, is concatenated after the
dash. The whole rebuilt string is relabeled Zip, and Oracle displays it: 94803-3515. This TO_
CHAR function lets you use string-manipulation functions on numbers (and dates) as if they
were actually strings. Handy? Yes. But watch this:

■

■

■

Function Name Definition

TO_TIMESTAMP_TZ Converts a character string to a value of TIMESTAMP WITH TIME ZONE
datatype.

TO_YMINTERVAL Converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype to an INTERVAL YEAR TO MONTH type.

TRANSLATE…USING TRANSLATEs characters in a string into different characters.

UNISTR Converts a string into Unicode in the database Unicode character set.

TABLE 11-1 Conversion Functions (continued)

Chapter 11: Conversion and Transformation Functions 201

select SUBSTR(948033515,1,5)||'-'||
 SUBSTR(948033515,6) AS Zip
 from DUAL;

ZIP

94803-3515

This shouldn’t work, because 948033515 is a NUMBER, not a character string. Yet, the string
function SUBSTR clearly worked anyway. Would it work with an actual NUMBER database column?
Here’s a table with Zip as a NUMBER:

describe ADDRESS

Name Null? Type
------------------------------- -------- ------------
LASTNAME VARCHAR2(25)
FIRSTNAME VARCHAR2(25)
STREET VARCHAR2(50)
CITY VARCHAR2(25)
STATE CHAR(2)
ZIP NUMBER
PHONE VARCHAR2(12)
EXT VARCHAR2(5)

Select just the ZIP code for all the Marys in the table:

select SUBSTR(Zip,1,5)||'-'||
 SUBSTR(Zip,6) AS Zip
 from ADDRESS
 where FirstName = 'MARY';

ZIP

94941-4302
60126-2460

SUBSTR works here just as well as it does with strings, even though Zip is a NUMBER column
from the ADDRESS table. Will other string functions also work?

select Zip, RTRIM(Zip,20)
 from ADDRESS
 where FirstName = 'MARY';

 ZIP RTRIM(ZIP,20)
---------- --
 949414302 9494143
 601262460 60126246

The column on the left demonstrates that Zip is a NUMBER; it is even right-justified, as
numbers are by default. But the RTRIM column is left-justified, just as strings are, and it has

202 Part II: SQL and SQL*Plus

removed zeros and twos from the right side of the ZIP codes. Something else is peculiar here.
Recall from Chapter 7 the format for RTRIM, shown here:

RTRIM(string [,'set'])

The set to be removed from the string is enclosed within single quotation marks, yet in this next
example, there are no quotation marks:

RTRIM(Zip,20)

So what is going on?

Automatic Conversion of Datatypes
Oracle is automatically converting these numbers, both Zip and 20, into strings, almost as if they
both had TO_CHAR functions in front of them. In fact, with a few clear exceptions, Oracle will
automatically transform any datatype into any other datatype, based on the function that is going
to affect it. If it’s a string function, Oracle will convert a NUMBER or a DATE instantly into a string,
and the string function will work. If it’s a DATE function and the column or literal is a string in the
format DD-MON-YY, Oracle will convert it into a DATE. If the function is arithmetic and the column
or literal is a character string, Oracle will convert it into a NUMBER and do the calculation.

Will this always work? No. For Oracle to automatically convert one datatype into another, the
first datatype must already “look” like the datatype it is being converted to. The basic guidelines
are as follows:

Any NUMBER or DATE can be converted to a character string. Any string function can
be used on a NUMBER or DATE column. Literal NUMBERs do not have to be enclosed
in single quotation marks when used in a string function; literal DATEs do.

A CHAR or VARCHAR2 value will be converted to a NUMBER if it contains only
NUMBERs, a decimal point, or a minus sign on the left.

A CHAR or VARCHAR2 value will be converted to a DATE only if it is in the default date
format (usually DD-MON-YY). This is true for all functions except GREATEST and LEAST,
which will treat the value as a string, and it’s true for BETWEEN only if the column to the
left after the word BETWEEN is a DATE. Otherwise, TO_DATE must be used, with the
proper format.

These guidelines may be confusing, so favor the use of TO_DATE and other conversion
functions to make sure the values are treated properly. The following examples should help to
clarify the guidelines. The following are the effects of several randomly chosen string functions on
NUMBERs and DATEs:

select INITCAP(LOWER(SysDate)) from DUAL;

INITCAP(LOWER(SYSDATE))

28-Feb-08

Note that the INITCAP function put the first letter of “Feb” into uppercase even though “Feb”
was buried in the middle of the string “28-FEB-08.” This is a feature of INITCAP that is not

■

■

■

Chapter 11: Conversion and Transformation Functions 203

confined to dates, although it is illustrated here for the first time. It works because the following
works:

select INITCAP('this-is_a.test,of:punctuation;for+initcap')
 from DUAL;

INITCAP('THIS-IS_A.TEST,OF:PUNCTUATION;FO

This-Is_A.Test,Of:Punctuation;For+Initcap

INITCAP puts the first letter of every word into uppercase. It determines the beginning of a
word based on its being preceded by any character other than a letter. You can also cut and paste
dates using string functions, just as if they were strings:

select SUBSTR(SysDate,4,3) from DUAL;

SUB

FEB

NOTE
You can also use the TO_CHAR or EXTRACT function to return the
month value from a date.

Here, a DATE is left-padded with 9s for a total length of 20:

select LPAD(SysDate,20,'9') from DUAL;

LPAD(SYSDATE,20,'9')

9999999999928-FEB-08

LPAD, or any other string function, also can be used on NUMBERs, whether literal (as shown
here) or as a column:

select LPAD(9,20,0) from DUAL;

LPAD(9,20,0)

00000000000000000009

These examples show how string functions treat both NUMBERs and DATEs as if they were
character strings. The result of the function (what you see displayed) is itself a character string.
In this next example, a string (note the single quotation marks) is treated as a NUMBER by the
NUMBER function FLOOR:

select FLOOR('-323.78') from DUAL;

FLOOR('-323.78')

 -324

204 Part II: SQL and SQL*Plus

Here, two literal character strings are converted to DATEs for the DATE function MONTHS_
BETWEEN. This works only because the literal strings are in the default date format DD-MON-YY:

select MONTHS_BETWEEN('16-MAY-04','01-NOV-04') from DUAL;

MONTHS_BETWEEN('16-MAY-04','01-NOV-04')

 -5.516129

One of the guidelines says that a DATE will not be converted to a NUMBER. Yet, here is an
example of addition and subtraction with a DATE. Does this violate the guideline?

select SysDate, SysDate + 1, SysDate - 1 from DUAL;

SYSDATE SYSDATE+1 SYSDATE-1
--------- --------- ---------
28-FEB-08 29-FEB-08 27-FEB-08

It does not, because the addition and subtraction is date arithmetic, not regular arithmetic.
Date arithmetic (covered in Chapter 10) works only with addition and subtraction, and only with
DATEs. Most functions will automatically convert a character string in default date format into a
DATE. An exception is this attempt at date addition with a literal:

select '28-FEB-08' + 1 from DUAL;

ERROR: ORA-01722: invalid number

Date arithmetic, even with actual DATE datatypes, works only with addition and subtraction.
Any other arithmetic function attempted with a date will fail. Dates are not converted to numbers,
as this attempt to divide a date by 2 illustrates:

select SysDate / 2 from DUAL;
 *
ERROR at line 1:
ORA-00932: inconsistent datatypes: expected NUMBER got DATE

Finally, a NUMBER will never be automatically converted to a DATE, because a pure number
cannot be in the default format for a DATE, which is DD-MON-YY:

select NEXT_DAY(022808,'FRIDAY') from DUAL;
 *
ERROR at line 1:
ORA-00932: inconsistent data types: expected DATE got NUMBER

To use a NUMBER in a DATE function, TO_DATE is required.

A Warning About Automatic Conversion
The issue of whether it is a good practice to allow SQL to do automatic conversion of datatypes
has arguments on either side. On one hand, this practice considerably simplifies and reduces
the functions necessary to make a select statement work. On the other hand, if your assumption
about what will be in the column is wrong (for example, you assume a particular character
column will always have a number in it, meaning you can use it in a calculation), then, at some

Chapter 11: Conversion and Transformation Functions 205

point, a query will stop working, Oracle will produce an error, and time will have to be spent
trying to find the problem. Further, another person reading your select statement may be confused
by what appear to be inappropriate functions at work on characters or numbers. Using TO_
NUMBER makes it clear that a numeric value is always expected, even if the column uses the
VARCHAR2 datatype. You will still get an error if the TO_NUMBER function encounters a non-
numeric value in the column.

The biggest problem with implicit conversions is that an index on the column will not be used
if conversion takes place. If you have a column such as ID or Order_Num as a VARCHAR2 column
and you then create a PL/SQL procedure to access the data and pass a number in the procedure,
the underlying index on ID or Order_Num does not get used. Thus, performance suffers.

A simple rule of thumb might be that it is best to use functions where the risk is low, such as
string-manipulation functions on numbers, rather than arithmetic functions on strings. For your
benefit and that of others using your work, always put a note near the select statement signaling
the use of automatic type conversion.

Specialized Conversion Functions
As shown earlier in Table 11-1, Oracle includes several specialized conversion functions. If you
expect to use SQL*Plus and Oracle simply to produce reports, you probably won’t ever need any
of these functions. On the other hand, if you plan to use SQL*Plus to update the database, if you
expect to build Oracle applications, or if you are using National Language Support, this information
will eventually prove valuable. The functions can be found, by name, in the Alphabetical Reference
section of this book.

NOTE
The CAST function is used with nested tables and varying arrays;
see Chapter 39 for details. The DECODE function is covered in
Chapter 16.

The conversion functions generally take a single value as input and return a single converted
value as output. For example, the BIN_TO_NUM function converts binary values to decimal
numeric values. Its input value is a list of the digits of a binary value, separated by commas and
treated as a single input string:

select BIN_TO_NUM(1,1,0,1) from DUAL;

BIN_TO_NUM(1,1,0,1)

 13

select BIN_TO_NUM(1,1,1,0) from DUAL;

BIN_TO_NUM(1,1,1,0)

 14

NOTE
You can use the TO_BINARY_DOUBLE and TO_BINARY_FLOAT
functions to convert values into double- and single-precision floating-
point numbers, respectively.

206 Part II: SQL and SQL*Plus

When working with flashback operations (see Chapters 29 and 30), you can convert
system change numbers (SCNs) to timestamp values via the SCN_TO_TIMESTAMP function;
TIMESTAMP_TO_SCN returns the SCN for a particular timestamp.

Transformation Functions
Although in one sense any function that changes its object could be called a transformation
function, there are two unusual functions that you can use in many interesting ways to control
your output based on your input, instead of simply transforming it. These functions are
TRANSLATE and DECODE.

TRANSLATE
TRANSLATE is a simple function that does an orderly character-by-character substitution in a
string. This is the format for TRANSLATE:

TRANSLATE(string,if,then)

TRANSLATE looks at each character in string and then checks if to see whether that character
is there. If it is, it notes the position in if where it found the character and then looks at the same
position in then. TRANSLATE substitutes whichever character it finds there for the character in
string. Normally, the function is written on a single line, like this:

select TRANSLATE(7671234,234567890,'BCDEFGHIJ')
 from DUAL;

TRANSLA

GFG1BCD

But it might be easier to understand if it’s simply broken onto two lines (SQL doesn’t care, of
course):

select TRANSLATE(7671234,234567890,
 'BCDEFGHIJ')
 from DUAL;

TRANSLA

GFG1BCD

When TRANSLATE sees a 7 in string, it looks for a 7 in if and translates it to the character
in the same position in then (in this case, an uppercase G). If the character is not in if, it is not
translated (observe what TRANSLATE did with the 1).

TRANSLATE is technically a string function, but, as you can see, it will do automatic data
conversion and work with a mix of strings and numbers. The following is an example of a very
simple code cipher, where every letter in the alphabet is shifted one position. Many years ago,
spies used such character-substitution methods to encode messages before sending them. The
recipient simply reversed the process. Do you remember the smooth-talking computer, HAL, in
the movie 2001: A Space Odyssey? If you TRANSLATE HAL’s name with a one-character shift
in the alphabet, you get this:

Chapter 11: Conversion and Transformation Functions 207

select TRANSLATE('HAL','ABCDEFGHIJKLMNOPQRSTUVWXYZ',
 'BCDEFGHIJKLMNOPQRSTUVWXYZA') AS Who
 from DUAL;

WHO

IBM

See the discussion of the REGEXP_REPLACE function in Chapter 8 for details on the string
manipulation possible with regular expressions.

DECODE
If TRANSLATE is a character-by-character substitution, DECODE can be considered a value-by-
value substitution. For every value it sees in a field, DECODE checks for a match in a series of if-
then tests. DECODE is an incredibly powerful function, with a broad range of areas where it can
be useful. Chapter 16 is devoted entirely to the advanced use of DECODE and CASE.

This is the format for DECODE:

DECODE(value,if1,then1,if2,then2,if3,then3, . . . ,else)

Only three if-then combinations are illustrated here, but there is no practical limit. To see how
this function works, recall the NEWSPAPER table you saw in earlier chapters:

select * from NEWSPAPER;

FEATURE S PAGE
--------------- - ----------
National News A 1
Sports D 1
Editorials A 12
Business E 1
Weather C 2
Television B 7
Births F 7
Classified F 8
Modern Life B 1
Comics C 4
Movies B 4
Bridge B 2
Obituaries F 6
Doctor Is In F 6

In the next example, the page number is decoded. If the page number is 1, then the words
“Front Page” are substituted. If the page number is anything else, the words “Turn to” are
concatenated with the page number. This illustrates that else can be a function, a literal, or
another column.

select Feature, Section,
 DECODE(Page,'1','Front Page','Turn to '||Page)
 from NEWSPAPER;

208 Part II: SQL and SQL*Plus

FEATURE S DECODE(PAGE,'1','FRONTPAGE','TURNTO'||PAGE)
--------------- - --
National News A Front Page
Sports D Front Page
Editorials A Turn to 12
Business E Front Page
Weather C Turn to 2
Television B Turn to 7
Births F Turn to 7
Classified F Turn to 8
Modern Life B Front Page
Comics C Turn to 4
Movies B Turn to 4
Bridge B Turn to 2
Obituaries F Turn to 6
Doctor Is In F Turn to 6

There are some restrictions on the datatypes in the list of if and then clauses, which will be
covered in Chapter 16.

Review
Most functions in Oracle, although they are intended for a specific datatype such as CHAR,
VARCHAR2, NUMBER, or DATE, will actually work with other datatypes as well. They do this by
performing an automatic type conversion. With a few logical exceptions, and the hope of future
compatibility, they will do this as long as the data to be converted “looks” like the datatype
required by the function.

Character functions will convert any NUMBER or DATE. NUMBER functions will convert a
CHAR or VARCHAR2 if it contains the digits 0 through 9, a decimal point, or a minus sign on the
left. NUMBER functions will not convert DATEs. DATE functions will convert character strings if
they are in the format DD-MON-YY. However, they will not convert NUMBERs.

Two functions, TRANSLATE and DECODE, will fundamentally change the data they act on.
TRANSLATE will do a character substitution according to any pattern you specify, and DECODE
will do a value substitution for any pattern you specify.

CHAPTER
12

Grouping Things Together

209

210 Part II: SQL and SQL *Plus

p to this point, you’ve seen how SQL can select rows of information from database
tables, how the where clause can limit the number of rows being returned to only
those that meet certain rules that you define, and how the rows returned can be
sorted in ascending or descending sequence using order by. You’ve also seen how
the values in columns can be modified by character, NUMBER, and DATE functions,

and how group functions can tell you something about the whole set of rows.

Beyond the group functions you’ve seen, there are also two group clauses: having and group
by. These are parallel to the where and order by clauses, except that they act on groups, not on
individual rows. These clauses can provide very powerful insights into your data.

The Use of group by and having
If you want to generate a count of titles on the bookshelf, categorized by the type of book, you
would write a query like this:

select CategoryName, COUNT(*)
 from BOOKSHELF
 group by CategoryName;

and Oracle would respond with the following:

CATEGORYNAME COUNT(*)
-------------------- ----------
ADULTFIC 6
ADULTNF 10
ADULTREF 6
CHILDRENFIC 5
CHILDRENNF 1
CHILDRENPIC 3

Notice the mix of a column name, CategoryName, and the group function COUNT in the
select clause. This mix is possible only because CategoryName is referenced in the group by
clause. If it were not there, the opaque message first encountered in Chapter 9 would have
resulted in this:

select CategoryName, COUNT(*) from BOOKSHELF;

select CategoryName, COUNT(*) from BOOKSHELF
 *
ERROR at line 1:
ORA-00937: not a single-group group function

This result occurs because the group functions, such as SUM and COUNT, are designed
to tell you something about a group of rows, not the individual rows of the table. The error is
avoided by using CategoryName in the group by clause, which forces the COUNT function
to count all the rows grouped within each CategoryName.

The having clause works very much like a where clause, except that its logic is only related
to the results of group functions, as opposed to columns or expressions for individual rows, which
can still be selected by a where clause. Here, the rows in the previous example are further
restricted to just those where there are more than five books in a category:

U

Chapter 12: Grouping Things Together 211

select CategoryName, COUNT(*)
 from BOOKSHELF
 group by CategoryName
having COUNT(*) > 5;

CATEGORYNAME COUNT(*)
-------------------- ----------
ADULTFIC 6
ADULTNF 10
ADULTREF 6

To determine the average rating by category, you can use the AVG function, as shown in the
following listing:

select CategoryName, COUNT(*), AVG(Rating)
 from BOOKSHELF
 group by CategoryName;

CATEGORYNAME COUNT(*) AVG(RATING)
-------------------- ---------- -----------
ADULTFIC 6 3.66666667
ADULTNF 10 4.2
ADULTREF 6 3.16666667
CHILDRENFIC 5 2.8
CHILDRENNF 1 3
CHILDRENPIC 3 1

Rating is a character column, defined as a VARCHAR2, but it contains numeric values, so
Oracle can perform numeric functions on it (see Chapter 11). What is the overall average rating?

select AVG(Rating) from BOOKSHELF;

AVG(RATING)

 3.32258065

In this case, there is no group by clause because the entire set of rows in the BOOKSHELF
table is treated as the group. Now you can use this result as part of a larger query: What
categories have average ratings that are greater than the average rating of all books?

select CategoryName, COUNT(*), AVG(Rating)
 from BOOKSHELF
 group by CategoryName
having AVG(Rating) >
 (select AVG(Rating) from BOOKSHELF);

CATEGORYNAME COUNT(*) AVG(RATING)
-------------------- ---------- -----------
ADULTFIC 6 3.66666667
ADULTNF 10 4.2

Looking back at the earlier listings, this result is correct—only two of the groups have average
rating values greater than the overall average.

212 Part II: SQL and SQL *Plus

Although the results are sorted by the CategoryName column, the purpose of group by is not
to produce a desired sequence but rather to collect “like” things together. The order they appear
in is a byproduct of how group by works; group by is not meant to be used to change the sorting
order.

Adding an order by
The solution for creating an alternative order for display is the addition of an order by clause
following the having clause. For example, you could add the following:

order by CategoryName desc

This would reverse the order of the list:

select CategoryName, COUNT(*)
 from BOOKSHELF
 group by CategoryName
 order by CategoryName desc;

CATEGORYNAME COUNT(*)
-------------------- ----------
CHILDRENPIC 3
CHILDRENNF 1
CHILDRENFIC 5
ADULTREF 6
ADULTNF 10
ADULTFIC 6

Or, you could use this instead:

order by COUNT(*) desc

Here’s the result:

CATEGORYNAME COUNT(*)
-------------------- ----------
ADULTNF 10
ADULTFIC 6
ADULTREF 6
CHILDRENFIC 5
CHILDRENPIC 3
CHILDRENNF 1

Although you can use the column alias as part of the order by clause, you can’t use it as part
of the having clause. Giving COUNT(*) an alias of “Counter” and attempting to use having
Counter > 1 as a clause in this query will result in an “invalid column name” error:

select CategoryName, COUNT(*) as Counter
 from BOOKSHELF
 group by CategoryName
having Counter > 1
 order by COUNT(*) desc;

Chapter 12: Grouping Things Together 213

having Counter > 1
 *
ERROR at line 4:
ORA-00904: "COUNTER": invalid identifier

Order of Execution
The previous query has quite a collection of competing clauses! Here are the rules Oracle uses to
execute each of them, and the order in which execution takes place:

 1. Choose rows based on the where clause.

 2. Group those rows together based on the group by clause.

 3. Calculate the results of the group functions for each group.

 4. Choose and eliminate groups based on the having clause.

 5. Order the groups based on the results of the group functions in the order by clause. The
order by clause must use either a group function or a column specified in the group by
clause.

The order of execution is important because it has a direct impact on the performance of your
queries. In general, the more records that can be eliminated via where clauses, the faster the
query will execute. This performance benefit is due to the reduction in the number of rows that
must be processed during the group by operation.

If a query is written to use a having clause to eliminate groups, you should check to see if the
having condition can be rewritten as a where clause. In many cases, this rewrite won’t be
possible. It is usually only available when the having clause is used to eliminate groups based on
the grouping columns.

For example, suppose you have this query:

select CategoryName, COUNT(*), AVG(Rating)
 from BOOKSHELF
 where Rating > 1
 group by CategoryName
having CategoryName like 'A%'
 order by COUNT(*) desc;

CATEGORYNAME COUNT(*) AVG(RATING)
-------------------- ---------- -----------
ADULTNF 10 4.2
ADULTFIC 6 3.66666667
ADULTREF 6 3.16666667

The order of execution would be as follows:

 1. Eliminate rows based on

where Rating > 1

 2. Group the remaining rows based on

group by CategoryName

214 Part II: SQL and SQL *Plus

 3. For each CategoryName, calculate the

COUNT(*)

 4. Eliminate groups based on

having CategoryName like 'A%'

 5. Order the remaining groups.

This query will run faster if the groups eliminated in Step 4 can be eliminated as rows in Step
1. If they are eliminated at Step 1, fewer rows will be grouped (Step 2), fewer calculations will be
performed (Step 3), and no groups will be eliminated (Step 4). Thus, each of these steps in the
execution will run faster.

Because the having condition in this example is not based on a calculated column, it is easily
changed into a where condition:

select CategoryName, COUNT(*), AVG(Rating)
 from BOOKSHELF
 where Rating > 1
 and CategoryName like 'A%'
 group by CategoryName
 order by COUNT(*) desc;

In the modified version, fewer rows will be grouped, resulting in a performance savings. As
the number of rows in your tables increases, the performance savings from early row elimination
can grow dramatically.

This may seem like a trivial tuning example because the table has few rows in it. But even
such a small query can have a significant impact in a production application. There are many
examples of production applications whose performance is severely impacted by high volumes
of executions of seemingly small queries. When those small queries are executed thousands or
millions of times per day, they become the most resource-intensive queries in the database.
When planning the SQL access paths for your application, tune even the small queries.

Views of Groups
In Chapter 5, a view called INVASION, which joined together the WEATHER and LOCATION
tables, was created for the oracle at Delphi. This view appeared to be a table in its own right,
with columns and rows, but each of its rows contained columns that actually came from two
separate tables.

The same process of creating a view can be used with groups. The difference is that each row
will contain information about a group of rows—a kind of subtotal table. For example, consider
this group query:

select CategoryName, COUNT(*)
 from BOOKSHELF
 group by CategoryName;

You can create a view based on this query, and you can then query the view:

create or replace view CATEGORY_COUNT as

Chapter 12: Grouping Things Together 215

select CategoryName, COUNT(*) AS Counter
 from BOOKSHELF
 group by CategoryName;

desc CATEGORY_COUNT

Name Null? Type
------------------------------------ -------- ------------
CATEGORYNAME VARCHAR2(20)
COUNTER NUMBER

select * from CATEGORY_COUNT;

CATEGORYNAME COUNTER
-------------------- ----------
ADULTFIC 6
ADULTNF 10
ADULTREF 6
CHILDRENFIC 5
CHILDRENNF 1
CHILDRENPIC 3

NOTE
Because the COUNT(*) column is a function, you have to give it a
column alias (in this case, Counter) when using the query as the basis
for a view.

Renaming Columns with Aliases
Notice the name Counter in the select clause. The AS Counter clause renames the column it
follows. The new names are called aliases, because they are used to disguise the real names of
the underlying columns (which are complicated because they have functions).

When you query the view, you can (and must) now use the new column names:

select CategoryName, Counter from CATEGORY_COUNT;

“Counter” is referred to as a column alias—another name to use when referring to a column.
In the description of the view, and in the query, there is no evidence of the grouping function
performed—just the Counter column name. It is as if the view CATEGORY_COUNT were a real
table with rows of monthly sums. Why?

Oracle automatically takes a single word, without quotes, and uses it to rename the column
the word follows. When it does this, Oracle forces the word—the alias—into uppercase, regardless
of how it was typed. You can see evidence of this by comparing the column names in the create
view and the describe commands. When creating a view, never put double quotes around your
column aliases. Always leave aliases in create view statements without quotes. This will cause
them to be stored in uppercase, which is required for Oracle to find them. See the sidebar
“Aliases in View Creation” for a warning on aliases.

216 Part II: SQL and SQL *Plus

You now have Category counts collected in a view. A total for the entire bookshelf could also
be created, using BOOKCOUNT as both the view name and the column alias for COUNT(*):

create or replace view BOOKCOUNT as
select COUNT(*) BOOKCOUNT
 from BOOKSHELF;

View created.

If you query the view, you’ll discover it has only one record:

select BOOKCOUNT
 from BOOKCOUNT;

BOOKCOUNT

 31

As new rows are added and committed to the BOOKSHELF table, the BOOKCOUNT and
CATEGORY_COUNT views will reflect the changes to the counts.

The Power of Views of Groups
Now you’ll see the real power of a relational database. You’ve created a view with the count by
Category and a second view displaying the count for the entire table. These views can now be
joined together, just as the tables were in Chapter 5, to reveal information never before apparent.
For instance, what percentage of the books are in each category?

select CategoryName, Counter, (Counter/BookCount)*100 as Percent
 from CATEGORY_COUNT, BOOKCOUNT
 order by CategoryName;

CATEGORYNAME COUNTER PERCENT
-------------------- ---------- ----------
ADULTFIC 6 19.3548387
ADULTNF 10 32.2580645
ADULTREF 6 19.3548387
CHILDRENFIC 5 16.1290323
CHILDRENNF 1 3.22580645
CHILDRENPIC 3 9.67741935

Aliases in View Creation
Internally, Oracle works with all column and table names in uppercase. This is how they
are stored in its data dictionary, and this is how it always expects them to be. When aliases
are typed to create a view, they should always be naked—without quotation marks around
them. Putting double quotation marks around an alias can force the column name stored
internally by Oracle to be in mixed case. If you do this, Oracle will not be able to find the
column when you execute a select unless you enclose the column name within quotes
during all your queries.

Never use double quotation marks in creating aliases for a view.

Chapter 12: Grouping Things Together 217

In this query, two views are listed in the from clause, but they are not joined in a where
clause. Why not? In this particular case, no where clause is necessary because one of the views,
BOOKCOUNT, will only return one row (as shown in the previous listing). The one row in
BOOKCOUNT is joined to each row in CATEGORY_COUNT, yielding one row of output for
each row in CATEGORY_COUNT. The same results could have been obtained by directly joining
the BOOKSHELF table with the BOOKCOUNT view, but as you can see, the query is more
complicated and difficult to understand—and as the number of groups expands, the query will
grow even more cumbersome:

select CategoryName, COUNT(*),
 (COUNT(*)/MAX(BookCount))*100 as Percent
 from BOOKSHELF, BOOKCOUNT
 group by CategoryName
 order by CategoryName;

Notice the percentage calculation:

 (COUNT(*)/MAX(BookCount))*100 as Percent

Because this result is part of a grouping function, each of the values must be grouped. Therefore,
an initial attempt such as this would fail because BookCount is not grouped:

 (COUNT(*)/BookCount)*100 as Percent

Because there is only one row in the BOOKCOUNT view, you can perform a MAX function on it
to return that single row, grouped by itself.

To create queries that compare one grouping of rows with another grouping of rows, at least
one of the groupings must be a view or an “inline view” created in the from clause of the query.
Beyond this technical restriction, however, it is just simpler and easier to understand doing the
queries with views. Compare the last two examples, and the difference in clarity is apparent.
Views hide complexity.

To use the inline view method, put the view’s text within the from clause and give its columns
aliases there:

select CategoryName, Counter, (Counter/BookCount)*100 as Percent
 from CATEGORY_COUNT,
 (select COUNT(*) as BookCount from BOOKSHELF)
 order by CategoryName;

In this example, the BOOKCOUNT view has been removed from the from clause and replaced
by its base query. In that query, the BookCount alias is given to the result of a COUNT(*) performed
against the BOOKSHELF table. In the main query, that BookCount alias is then used as part of a
calculation. Using this coding method, there is no need to create the BOOKCOUNT view. Be
careful when working with multiple grouping levels within the same query—creating views
commonly helps to simplify the creation and maintenance of the code.

Using order by in Views
From a strictly theoretical perspective, there is no reason to have an order by clause stored in a
view—you can issue an order by clause when you query the view. Oracle supports the order by
clause within views, as shown here:

create view BOOKSHELF_SORTED

218 Part II: SQL and SQL *Plus

as select * from BOOKSHELF
order by Title;

Having the data sorted in the view may simplify your application development. For example,
if your code steps through a set of records, having those records presorted may make your
processing and error checking simpler. In your application development, you will know that the
data will always be returned to you in an ordered fashion. The following query selects the Title
values, using the RowNum pseudo-column to limit the output to nine records:

select Title from BOOKSHELF_SORTED
 where Rownum < 10;

TITLE

ANNE OF GREEN GABLES
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EITHER/OR
EMMA WHO SAVED MY LIFE
GOOD DOG, CARL
GOSPEL
HARRY POTTER AND THE GOBLET OF FIRE

The BOOKSHELF_SORTED view is doing more work than just querying from the BOOKSHELF
table—it is performing a sorting operation to return the rows in a particular order. If you do not
need the rows returned in that order, you are asking the database to do work that does not benefit
your application.

The views also give you more power to use the many different character, NUMBER, and DATE
datatypes at will, without worrying about things such as months appearing in alphabetical order.

Logic in the having Clause
In the having clause, the choice of the group function and the column on which it operates might
bear no relation to the columns or group functions in the select clause:

select CategoryName, COUNT(*),
 (COUNT(*)/MAX(BookCount))*100 as Percent
 from BOOKSHELF, BOOKCOUNT
 group by CategoryName
having Avg(Rating) > 4
 order by CategoryName;

CATEGORYNAME COUNT(*) PERCENT
-------------------- ---------- ----------
ADULTNF 10 32.2580645

Here, the having clause selected only those categories (the group by collected all the rows into
groups by CategoryName) with an average rating greater than 4. All other groups are eliminated.
For the group that met that criterion, the percentage of the total count was calculated.

The having clause is very effective for determining which rows in a table have duplicate values
in specific columns. For example, if you are trying to establish a new unique index on a column

Chapter 12: Grouping Things Together 219

(or set of columns) in a table, and the index creation fails due to uniqueness problems with the
data, you can easily determine which rows caused the problem.

First, select the columns you want to be unique, followed by a COUNT(*) column. Group by
the columns you want to be unique, and use the having clause to return only those groups having
COUNT(*)>1. The only records returned will be duplicates. The following query shows this check
being performed for the AuthorName column of the AUTHOR table:

select AuthorName, COUNT(*)
 from AUTHOR
 group by AuthorName
having COUNT(*)>1
 order by AuthorName;

no rows selected

Which books have more than one author? Select the titles from BOOKSHELF_AUTHOR for
which the group (by Title) has more than one member:

column Title format a40

select Title, COUNT(*)
from BOOKSHELF_AUTHOR
group by Title
having COUNT(*)>1;

TITLE COUNT(*)
-- ----------
COMPLETE POEMS OF JOHN KEATS 2
JOURNALS OF LEWIS AND CLARK 4
KIERKEGAARD ANTHOLOGY 2
RUNAWAY BUNNY 2

Who are those ten authors? You could create a view based on this query, or try it as an
inline view:

column Title format a40
column AuthorName format a30

select Title, AuthorName
from BOOKSHELF_AUTHOR,
 (select Title as GroupedTitle, COUNT(*) as TitleCounter
 from BOOKSHELF_AUTHOR
 group by Title
 having COUNT(*) > 1)
where Title = GroupedTitle
order by Title, AuthorName;

TITLE AUTHORNAME
-- ---------------------
COMPLETE POEMS OF JOHN KEATS JOHN BARNARD
COMPLETE POEMS OF JOHN KEATS JOHN KEATS
JOURNALS OF LEWIS AND CLARK BERNARD DE VOTO

220 Part II: SQL and SQL *Plus

JOURNALS OF LEWIS AND CLARK MERIWETHER LEWIS
JOURNALS OF LEWIS AND CLARK STEPHEN AMBROSE
JOURNALS OF LEWIS AND CLARK WILLIAM CLARK
KIERKEGAARD ANTHOLOGY ROBERT BRETALL
KIERKEGAARD ANTHOLOGY SOREN KIERKEGAARD
RUNAWAY BUNNY CLEMENT HURD
RUNAWAY BUNNY MARGARET WISE BROWN

This query may look complicated (and using a view would make it simpler to read), but it is
based on the concepts covered in this chapter: An inline view performs a group by function and
uses a having clause to return only those titles with multiple authors. Those titles are then used as
the basis of a query against the BOOKSHELF_AUTHOR table. In a single query, the BOOKSHELF_
AUTHOR table is queried for grouped data and individual row data.

Using order by with Columns and Group Functions
The order by clause is executed after the where, group by, and having clauses. It can employ
group functions, or columns from the group by, or a combination. If it uses a group function, that
function operates on the groups, and then the order by sorts the results of the function in order. If
the order by uses a column from the group by, it sorts the rows that are returned based on that
column. Group functions and single columns (so long as the column is in the group by) can be
combined in the order by.

In the order by clause, you can specify a group function and the column it affects even
though they have nothing at all to do with the group functions or columns in the select, group by,
or having clause. On the other hand, if you specify a column in the order by clause that is not
part of a group function, it must be in the group by clause. Let’s take the last example and modify
the order by clause:

order by TitleCounter desc, Title, AuthorName

The titles and authors will now be ordered based on the number of authors (with the greatest
number first), then by Title and AuthorName:

TITLE AUTHORNAME
-- ----------------------
JOURNALS OF LEWIS AND CLARK BERNARD DE VOTO
JOURNALS OF LEWIS AND CLARK MERIWETHER LEWIS
JOURNALS OF LEWIS AND CLARK STEPHEN AMBROSE
JOURNALS OF LEWIS AND CLARK WILLIAM CLARK
COMPLETE POEMS OF JOHN KEATS JOHN BARNARD
COMPLETE POEMS OF JOHN KEATS JOHN KEATS
KIERKEGAARD ANTHOLOGY ROBERT BRETALL
KIERKEGAARD ANTHOLOGY SOREN KIERKEGAARD
RUNAWAY BUNNY CLEMENT HURD
RUNAWAY BUNNY MARGARET WISE BROWN

Join Columns
As explained in Chapter 5, joining two tables together requires that they have a relationship
defined by a common column. This is also true in joining views, or tables and views. The only
exception is when one of the tables or views has just a single row, as the BOOKCOUNT table

Chapter 12: Grouping Things Together 221

does. In this case, SQL joins the single row to every row in the other table or view, and no
reference to the joining columns needs to be made in the where clause of the query.

Any attempt to join two tables that both have more than one row without specifying the
joined columns in the where clause will produce what’s known as a Cartesian product, usually a
giant result where every row in one table is joined with every row in the other table. A small 80-
row table joined to a small 100-row table in this way would produce 8,000 rows in your display,
and few of them would be at all meaningful.

More Grouping Possibilities
In addition to the operations shown in this chapter, you can perform complex groupings of rows—
creating crosstab reports, following hierarchies within the data, and more. Those groupings, and
the related functions and clauses (such as connect by, ROLLUP, GROUPING, and CUBE), are
described in Chapter 14.

As you work with groupings within your application-development environment, you will
generally find that using views makes the writing of complex queries simpler. You can use views
to represent logical groupings of rows that are helpful to end users writing reports, while leaving
the underlying table structures unchanged. This benefits the users—the data is presented in a
format they understand—while allowing you to preserve the integrity of your database design.

This page intentionally left blank

CHAPTER
13

When One Query
Depends upon Another

223

224 Part II: SQL and SQL*Plus

his chapter and Chapter 14 introduce concepts that are more difficult than we’ve
previously seen. Although many of these concepts are rarely used in the normal
course of running queries or producing reports, there will be occasions that call for
the techniques taught in these chapters. If they seem too challenging as you study
them, read on anyway. The odds are good that by the time you need these

methods, you’ll be able to use them.

Advanced Subqueries
You’ve encountered subqueries—those select statements that are part of a where clause in a
preceding select statement—in earlier chapters. Subqueries also can be used in insert, update,
and delete statements. This use will be covered in Chapter 15.

Often, a subquery will provide an alternative approach to a query. For example, suppose you
want to know what categories of books have been checked out. The following three-way join
provides this information:

select distinct C.ParentCategory, C.SubCategory
 from CATEGORY C, BOOKSHELF B, BOOKSHELF_CHECKOUT BC
 where C.CategoryName = B.CategoryName
 and B.Title = BC.Title;

PARENTCA SUBCATEGORY
-------- --------------------
ADULT FICTION
ADULT NONFICTION
ADULT REFERENCE
CHILDREN FICTION
CHILDREN PICTURE BOOK

Three tables are joined in the same way that two tables are. The common columns are set
equal to each other in the where clause, as shown in the preceding listing. To join three tables
together, you must join two of them to a third. In this example, the CATEGORY table is joined to
the BOOKSHELF table, and the result of that join is joined to the BOOKSHELF_CHECKOUT table.
The distinct clause tells Oracle to return only the distinct combinations of ParentCategory and
SubCategory.

NOTE
Not every table is joined to every other table. In fact, the number of
links between the tables is usually one less than the number of tables
being joined.

Once the tables are joined, as shown in the first two lines of the where clause, you can
determine the count of checkouts by parent category and subcategory.

Correlated Subqueries
Is there another way to perform multitable joins? Recall that a where clause can contain a subquery
select. Subquery selects can be nested—that is, a where clause in a subquery also can contain a
where clause with a subquery, which can contain a where clause with a subquery—on down for

T

Chapter 13: When One Query Depends upon Another 225

more levels than you are ever likely to need. The following shows three selects, each connected
to another through a where clause:

select distinct C.ParentCategory, C.SubCategory
 from CATEGORY C
 where CategoryName in
 (select CategoryName from BOOKSHELF
 where Title in
 (select Title from BOOKSHELF_CHECKOUT)
);

PARENTCA SUBCATEGORY
-------- --------------------
ADULT FICTION
ADULT NONFICTION
ADULT REFERENCE
CHILDREN FICTION
CHILDREN PICTURE BOOK

This query selects any categories containing books that have been checked out. It does this
simply by requesting a book whose title is in the BOOKSHELF table and whose checkout record
is in the BOOKSHELF_CHECKOUT table. In a subquery, Oracle assumes the columns to be from
the first select statement, the one that contains the subquery in its where clause. This is called a
nested subquery, because for every CategoryName in the main (outer) query, the CategoryName
may be correlated in the second where clause.

Said differently, a subquery may refer to a column in a table used in its main query (the query
that has the subquery in its where clause). Consider the following query:

select Title from BOOKSHELF_AUTHOR
 where Title in
 (select Title from BOOKSHELF
 where AuthorName = 'STEPHEN JAY GOULD');

TITLE

WONDERFUL LIFE
THE MISMEASURE OF MAN

Why does this query work? Taken on its own, the subquery would fail:

select Title from BOOKSHELF
 where AuthorName = 'STEPHEN JAY GOULD';

where AuthorName = 'STEPHEN JAY GOULD'
 *
ERROR at line 2:
ORA-00904: "AUTHORNAME": invalid identifier

When executed as a subquery, it is correlated to the parent query—you can reference columns
of the first select in the subquery. You’ll see additional examples of correlated subqueries in this
chapter and the chapters that follow.

226 Part II: SQL and SQL*Plus

Coordinating Logical Tests
If a reader is looking for more books in a particular category, what authors should he or she read?
Suppose that Fred Fuller, who has checked out two biographies, asks for recommendations. Who
else should you recommend?

select distinct AuthorName from BOOKSHELF_AUTHOR
 where Title in
 (select Title from BOOKSHELF
 where CategoryName in
 (select distinct CategoryName from BOOKSHELF
 where Title in
 (select Title
 from BOOKSHELF_CHECKOUT bc
 where BC.Name = 'FRED FULLER')));

This may look a bit daunting at first, but it’s easy to follow if you talk through the code. Start
at the innermost query: Get a list of the titles that Fred Fuller has checked out. For those titles, go
to the BOOKSHELF table and get a list of the distinct CategoryName values those books are
assigned to. Now go to BOOKSHELF a second time and get all the titles in those categories. For
those titles, go to the BOOKSHELF_AUTHOR table and generate the list of authors. Here are the
results:

AUTHORNAME

BERNARD DE VOTO
BERYL MARKHAM
DANIEL BOORSTIN
DAVID MCCULLOUGH
DIETRICH BONHOEFFER
G. B. TALBOT
JOHN ALLEN PAULOS
MERIWETHER LEWIS
STEPHEN AMBROSE
STEPHEN JAY GOULD
WILLIAM CLARK

Fred is asking for recommendations for new authors, so let’s exclude the ones he’s already
read. To see who Fred has read, simply query the BOOKSHELF_CHECKOUT and BOOKSHELF_
AUTHOR tables:

select distinct AuthorName
 from BOOKSHELF_AUTHOR ba, BOOKSHELF_CHECKOUT bc
 where ba.Title = bc.Title
 and bc.Name = 'FRED FULLER';

AUTHORNAME

DAVID MCCULLOUGH

Now let’s exclude that author from the list we’re going to provide. We’ll do that by adding an
extra and clause to the query:

Chapter 13: When One Query Depends upon Another 227

select distinct AuthorName from BOOKSHELF_AUTHOR
 where Title in
 (select Title from BOOKSHELF
 where CategoryName in
 (select distinct CategoryName from BOOKSHELF
 where Title in
 (select Title
 from BOOKSHELF_CHECKOUT bc
 where BC.Name = 'FRED FULLER')))
 and AuthorName not in
 (select AuthorName
 from BOOKSHELF_AUTHOR ba, BOOKSHELF_CHECKOUT bc
 where ba.Title = bc.Title
 and bc.Name = 'FRED FULLER');

AUTHORNAME

BERNARD DE VOTO
BERYL MARKHAM
DANIEL BOORSTIN
DIETRICH BONHOEFFER
G. B. TALBOT
JOHN ALLEN PAULOS
MERIWETHER LEWIS
STEPHEN AMBROSE
STEPHEN JAY GOULD
WILLIAM CLARK

This and is a part of the main query, even though it follows the subquery. Also note that some of
the tables are queried at multiple points within the script; each of those queries is treated as a
separate access of the table.

Using EXISTS and Its Correlated Subquery
EXISTS is a test for existence. It is placed the way IN might be placed with a subquery, but it
differs in that it is a logical test for the return of rows from a query, not for the rows themselves.

How many authors have written more than one book on the bookshelf?

select AuthorName, COUNT(*)
 from BOOKSHELF_AUTHOR
 group by AuthorName
having COUNT(*) > 1;

AUTHORNAME COUNT(*)
------------------------------ ----------
DAVID MCCULLOUGH 2
DIETRICH BONHOEFFER 2
E. B. WHITE 2
SOREN KIERKEGAARD 2
STEPHEN JAY GOULD 2
W. P. KINSELLA 2
WILTON BARNHARDT 2

228 Part II: SQL and SQL*Plus

Attempting to find both AuthorName and Title fails, however, because the group by made
necessary by the COUNT(*) is on the primary key of the BOOKSHELF_AUTHOR table (AuthorName,
Title). Because each primary key, by definition, uniquely identifies only one row, the count of
titles for that one row can never be greater than 1, so the having clause always tests false—it
doesn’t find any rows:

select AuthorName, Title, COUNT(*)
 from BOOKSHELF_AUTHOR
 group by AuthorName, Title
having COUNT(*) > 1;

no rows selected.

EXISTS provides a solution. The following subquery asks, for each AuthorName selected in
the outer query, whether an AuthorName exists in the BOOKSHELF_AUTHOR table with a count
of Titles greater than one. If the answer for a given name is yes, the EXISTS test is true, and the
outer query selects an AuthorName and Title. The author names are correlated by the “BA” alias
given to the first BOOKSHELF_AUTHOR table.

column AuthorName format a25
column Title format a30

select AuthorName, Title
 from BOOKSHELF_AUTHOR BA
 where EXISTS
 (select 'x'
 from BOOKSHELF_AUTHOR BA2
 where BA.AuthorName = BA2.AuthorName
 group by BA2.AuthorName
 having COUNT(BA2.Title) > 1)
order by AuthorName, Title;

AUTHORNAME TITLE
------------------------- ------------------------------
DAVID MCCULLOUGH JOHN ADAMS
DAVID MCCULLOUGH TRUMAN
DIETRICH BONHOEFFER LETTERS AND PAPERS FROM PRISON
DIETRICH BONHOEFFER THE COST OF DISCIPLESHIP
E. B. WHITE CHARLOTTE'S WEB
E. B. WHITE TRUMPET OF THE SWAN
SOREN KIERKEGAARD EITHER/OR
SOREN KIERKEGAARD KIERKEGAARD ANTHOLOGY
STEPHEN JAY GOULD THE MISMEASURE OF MAN
STEPHEN JAY GOULD WONDERFUL LIFE
W. P. KINSELLA BOX SOCIALS
W. P. KINSELLA SHOELESS JOE
WILTON BARNHARDT EMMA WHO SAVED MY LIFE
WILTON BARNHARDT GOSPEL

The two queries are correlated—note that the subquery references the BA.AuthorName
column even though that column is in the outer query, not the subquery. Within the subquery, the
BA2 alias is not required but helps make the code easier to maintain.

Chapter 13: When One Query Depends upon Another 229

This same query could have been built using IN and a test on the column name. No
correlated subquery is necessary here:

select AuthorName, Title
 from BOOKSHELF_AUTHOR BA
 where AuthorName in
 (select AuthorName
 from BOOKSHELF_AUTHOR
 group by AuthorName
 having COUNT(Title) > 1)
 order by AuthorName, Title;

Outer Joins
The syntax for outer joins has changed considerably since Oracle9i. In the following examples,
you will see both the Oracle9i syntax and the pre-Oracle9i syntax. The pre-Oracle9i syntax is still
supported in Oracle9i, but its use should be discontinued. New development should use the new
syntax. The newer syntax complies with ANSI SQL standards, whereas the old syntax does not.
The old syntax is discussed here because many third-party tools continue to use it.

Pre-Oracle9i Syntax for Outer Joins
What books were checked out during the time period tracked in the BOOKSHELF_CHECKOUT
table?

column Title format a40

select distinct Title
 from BOOKSHELF_CHECKOUT;

TITLE
--
ANNE OF GREEN GABLES
EITHER/OR
GOOD DOG, CARL
HARRY POTTER AND THE GOBLET OF FIRE
INNUMERACY
JOHN ADAMS
MIDNIGHT MAGIC
MY LEDGER
POLAR EXPRESS
THE DISCOVERERS
THE MISMEASURE OF MAN
THE SHIPPING NEWS
TO KILL A MOCKINGBIRD
TRUMAN
WEST WITH THE NIGHT
WONDERFUL LIFE

230 Part II: SQL and SQL*Plus

That’s a correct report, but it doesn’t show the 0 counts—the books that were not checked out.
If you need to see the inventory of all books along with the checkout list, you’ll need to join
BOOKSHELF_CHECKOUT to BOOKSHELF:

select distinct B.Title
 from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
where BC.Title = B.Title;

But that query will return the exact same records—the only rows in BOOKSHELF that can
meet the join criteria are those that have been checked out. To list the rest of the books, you’ll
need to use an outer join—telling Oracle to return a row even if the join does not produce a
match. Two versions of the outer join syntax are fully supported in Oracle. Pre-Oracle9i, the
syntax for an outer join uses (+) on the side of the join that will be returning additional rows. In
this case, that’s BOOKSHELF_CHECKOUT. The following query shows the maximum number of
days each book was checked out:

select B.Title, MAX(BC.ReturnedDate - BC.CheckoutDate)
 "Most Days Out"
 from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
 where BC.Title (+) = B.Title
 group by B.Title;

TITLE Most Days Out
-- -------------
ANNE OF GREEN GABLES 18
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EITHER/OR 8
EMMA WHO SAVED MY LIFE
GOOD DOG, CARL 14
GOSPEL
HARRY POTTER AND THE GOBLET OF FIRE 11
INNUMERACY 21
JOHN ADAMS 28
JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRISON
MIDNIGHT MAGIC 14
MY LEDGER 16
POLAR EXPRESS 14
PREACHING TO HEAD AND HEART
RUNAWAY BUNNY
SHOELESS JOE
THE COST OF DISCIPLESHIP
THE DISCOVERERS 48
THE GOOD BOOK
THE MISMEASURE OF MAN 31
THE SHIPPING NEWS 59
TO KILL A MOCKINGBIRD 14
TRUMAN 19
TRUMPET OF THE SWAN

Chapter 13: When One Query Depends upon Another 231

UNDER THE EYE OF THE CLOCK
WEST WITH THE NIGHT 48
WONDERFUL LIFE 31

All the titles in BOOKSHELF are returned, even those that do not meet the join criteria. If you
display the BOOKSHELF_CHECKOUT.Title values instead, you will see that those values are
NULL. Think of (+), which must immediately follow the join column of the shorter table, as saying
“add an extra (NULL) row of BC.Title anytime there’s no match for B.Title.”

Current Syntax for Outer Joins
You can use the ANSI SQL standard syntax for outer joins. In the from clause, you can tell Oracle
to perform a left, right, or full outer join. Let’s start with the example from the last section:

select B.Title, MAX(BC.ReturnedDate - BC.CheckoutDate)
 "Most Days Out"
 from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
 where BC.Title (+) = B.Title
 group by B.Title;

In this case, the BOOKSHELF_CHECKOUT table is having rows returned from it during the
join, even if no matches are found. This can be rewritten as follows:

select B.Title, MAX(BC.ReturnedDate - BC.CheckoutDate)
 "Most Days Out"
 from BOOKSHELF_CHECKOUT BC right outer join BOOKSHELF B
 on BC.Title = B.Title
 group by B.Title;

Note the use of the on clause as part of the outer join syntax. Note that

from BOOKSHELF_CHECKOUT BC right outer join BOOKSHELF B

is equivalent to

from BOOKSHELF B left outer join BOOKSHELF_CHECKOUT BC

You can replace the on clause with a using clause along with the name of the column the
tables have in common—do not qualify the column name with a table name or table alias.

select Title, MAX(BC.ReturnedDate - BC.CheckoutDate)
 "Most Days Out"
 from BOOKSHELF_CHECKOUT BC right outer join BOOKSHELF B
 using (Title)
 group by Title;

Note that you cannot specify a table alias for the columns listed in the using clause—even in
the group by and select clauses.

As with the older syntax, the side used as the driving table for the outer join makes a
difference; doing a left outer join will not return all the titles.

select B.Title, MAX(BC.ReturnedDate - BC.CheckoutDate)
 "Most Days Out"
 from BOOKSHELF_CHECKOUT BC left outer join BOOKSHELF B

232 Part II: SQL and SQL*Plus

 on BC.Title = B.Title
 group by B.Title;

TITLE Most Days Out
-- -------------
ANNE OF GREEN GABLES 18
EITHER/OR 8
GOOD DOG, CARL 14
HARRY POTTER AND THE GOBLET OF FIRE 11
INNUMERACY 21
JOHN ADAMS 28
MIDNIGHT MAGIC 14
MY LEDGER 16
POLAR EXPRESS 14
THE DISCOVERERS 48
THE MISMEASURE OF MAN 31
THE SHIPPING NEWS 59
TO KILL A MOCKINGBIRD 14
TRUMAN 19
WEST WITH THE NIGHT 48
WONDERFUL LIFE 31

16 rows selected.

A third option, full outer join, returns all rows from both tables. Rows that do not satisfy the
on condition return NULL values. In this example, there are no rows to satisfy this condition, so
the query returns the same 31 rows as the right outer join.

select B.Title, MAX(BC.ReturnedDate - BC.CheckoutDate)
 "Most Days Out"
 from BOOKSHELF_CHECKOUT BC full outer join BOOKSHELF B
 on BC.Title = B.Title
 group by B.Title;

Replacing NOT IN with an Outer Join
What books were not checked out? You could write a query like this:

select Title
 from BOOKSHELF
 where Title not in
 (select Title from BOOKSHELF_CHECKOUT)
 order by Title;

TITLE
--
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EMMA WHO SAVED MY LIFE
GOSPEL
JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY

Chapter 13: When One Query Depends upon Another 233

LETTERS AND PAPERS FROM PRISON
PREACHING TO HEAD AND HEART
RUNAWAY BUNNY
SHOELESS JOE
THE COST OF DISCIPLESHIP
THE GOOD BOOK
TRUMPET OF THE SWAN
UNDER THE EYE OF THE CLOCK

This is typically the way such a query would be written. For performance reasons, the
optimizer may internally transform that NOT IN to one of the following functionally identical
approaches. The next query uses an outer join and produces the same result.

select distinct B.Title
 from BOOKSHELF_CHECKOUT BC right outer join BOOKSHELF B
 on BC.Title = B.Title
 where BC.Title is NULL
 order by B.Title;

TITLE
--
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EMMA WHO SAVED MY LIFE
GOSPEL
JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRISON
PREACHING TO HEAD AND HEART
RUNAWAY BUNNY
SHOELESS JOE
THE COST OF DISCIPLESHIP
THE GOOD BOOK
TRUMPET OF THE SWAN
UNDER THE EYE OF THE CLOCK

Why does it work and give the same results as the NOT IN? The outer join between the two
tables ensures that all rows are available for the test, including those titles for which no checkout
records are listed in the BOOKSHELF_CHECKOUT table. The line

where BC.Title is NULL

produces only those titles that don’t appear in the BOOKSHELF_CHECKOUT table (and are
therefore returned as NULL titles by Oracle). The logic here is obscure, but it works. The best
way to use this technique is simply to follow the model.

Replacing NOT IN with NOT EXISTS
A more common way of performing this type of query requires using the NOT EXISTS clause.
NOT EXISTS is typically used to determine which values in one table do not have matching
values in another table. In usage, it is identical to the EXISTS clause; in the following example,
you’ll see the difference in the query logic and the records returned.

234 Part II: SQL and SQL*Plus

NOT EXISTS allows you to use a correlated subquery to eliminate from a table all records that
may successfully be joined to another table. For this example, that means you can eliminate from
the BOOKSHELF table all titles that are present in the Title column of the BOOKSHELF_CHECKOUT
table. The following query shows how this is done:

select B.Title
 from BOOKSHELF B
 where not exists
 (select 'x' from BOOKSHELF_CHECKOUT BC
 where BC.Title = B.Title)
 order by B.Title;

TITLE
--
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EMMA WHO SAVED MY LIFE
GOSPEL
JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRISON
PREACHING TO HEAD AND HEART
RUNAWAY BUNNY
SHOELESS JOE
THE COST OF DISCIPLESHIP
THE GOOD BOOK
TRUMPET OF THE SWAN
UNDER THE EYE OF THE CLOCK

This query shows the books that have not been checked out, as previously shown via the
NOT IN and outer join methods. How does this query work?

For each record in the BOOKSHELF table, the NOT EXISTS subquery is checked. If the join of
that record to the BOOKSHELF_CHECKOUT table returns a row, then the results of the subquery
EXIST. NOT EXISTS tells the query to reverse that return code; therefore, any row in BOOKSHELF
that can be successfully joined to BOOKSHELF_CHECKOUT will not be returned by the outer
query. The only rows left are the BOOKSHELF rows that do not have a matching row in
BOOKSHELF_CHECKOUT.

NOT EXISTS is a very efficient way to perform this type of query, especially when multiple
columns are used for the join and the join columns are indexed.

Natural and Inner Joins
You can use the natural keyword to indicate that a join should be performed based on all
columns that have the same name in the two tables being joined. For example, what titles in
BOOK_ORDER match those already in BOOKSHELF?

select Title
 from BOOK_ORDER natural join BOOKSHELF;

Chapter 13: When One Query Depends upon Another 235

TITLE
--
SHOELESS JOE
GOSPEL

The natural join returned the results as if you had typed in the following:

select BO.Title
 from BOOK_ORDER BO, BOOKSHELF
 where BO.Title = BOOKSHELF.Title
 and BO.Publisher = BOOKSHELF.Publisher
 and BO.CategoryName = BOOKSHELF.CategoryName;

The join was performed based on the columns the two tables had in common.
Inner joins are the default—they return the rows the two tables have in common, and are the

alternative to outer joins. Note that they support the on and using clauses, so you can specify your
join criteria as shown in the following listing:

select BO.Title
 from BOOK_ORDER BO inner join BOOKSHELF B
 on BO.Title = B.Title;

TITLE
--
GOSPEL
SHOELESS JOE

UNION, INTERSECT, and MINUS
Sometimes you need to combine information of a similar type from more than one table. A classic
example of this is merging two or more mailing lists prior to a mailing campaign. Depending on
the purpose of a particular mailing, you might want to send letters to any of these combinations of
people:

Everyone in both lists (while avoiding sending two letters to someone who happens to be
in both lists)

Only those people who are in both lists

Those people in only one of the lists

These three combinations of lists are known in Oracle as UNION, INTERSECT, and MINUS.
In the following examples, you will see how to use these three clauses to manage the results of
multiple queries. The examples will compare the books on hand (BOOKSHELF) with those on
order (BOOK_ORDER).

To see all the books, UNION the two tables. To reduce the size of the output, only the
BOOKSHELF entries from the first half of the alphabet are selected. The following select returns
14 rows:

select Title from BOOKSHELF
 where Title < 'M%';

■

■

■

236 Part II: SQL and SQL*Plus

And this select returns six rows:

select Title from BOOK_ORDER;

If we UNION them together, how many rows are returned?

select Title from BOOKSHELF
 where Title < 'M%'
union
select Title from BOOK_ORDER;

TITLE
--
ANNE OF GREEN GABLES
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EITHER/OR
EMMA WHO SAVED MY LIFE
GALILEO'S DAUGHTER
GOOD DOG, CARL
GOSPEL
HARRY POTTER AND THE GOBLET OF FIRE
INNUMERACY
JOHN ADAMS
JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRISON
LONGITUDE
ONCE REMOVED
SHOELESS JOE
SOMETHING SO STRONG

19 rows selected.

Where did the extra record go? The problem is that one of the Title values in BOOK_ORDER
is already in the BOOKSHELF table. To show the duplicates, use UNION ALL instead of UNION:

select Title from BOOKSHELF
 where Title < 'M%'
union all
select Title from BOOK_ORDER
 order by Title;

TITLE
--
ANNE OF GREEN GABLES
BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EITHER/OR
EMMA WHO SAVED MY LIFE
GALILEO'S DAUGHTER

Chapter 13: When One Query Depends upon Another 237

GOOD DOG, CARL
GOSPEL
GOSPEL
HARRY POTTER AND THE GOBLET OF FIRE
INNUMERACY
JOHN ADAMS
JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRISON
LONGITUDE
ONCE REMOVED
SHOELESS JOE
SOMETHING SO STRONG

20 rows selected.

The duplicate title is now listed twice.
In the following, the two lists of books are intersected. This list contains only those names that

are in both underlying tables (note that the restriction on Title < 'M%' has been eliminated for this
example):

select Title from BOOKSHELF
intersect
select Title from BOOK_ORDER
 order by Title;

TITLE
--
GOSPEL
SHOELESS JOE

Next, the list of new books (in BOOK_ORDER but not already in BOOKSHELF) is generated,
via the MINUS operator:

select Title from BOOK_ORDER
minus
select Title from BOOKSHELF
 order by Title;

TITLE
--
GALILEO'S DAUGHTER
LONGITUDE
ONCE REMOVED
SOMETHING SO STRONG

You could have also used MINUS to show which books had not been checked out:

select Title from BOOKSHELF
 minus
select Title from BOOKSHELF_CHECKOUT;

238 Part II: SQL and SQL*Plus

TITLE

BOX SOCIALS
CHARLOTTE'S WEB
COMPLETE POEMS OF JOHN KEATS
EMMA WHO SAVED MY LIFE
GOSPEL
JOURNALS OF LEWIS AND CLARK
KIERKEGAARD ANTHOLOGY
LETTERS AND PAPERS FROM PRISON
PREACHING TO HEAD AND HEART
RUNAWAY BUNNY
SHOELESS JOE
THE COST OF DISCIPLESHIP
THE GOOD BOOK
TRUMPET OF THE SWAN
UNDER THE EYE OF THE CLOCK

15 rows selected.

You’ve just learned the basics of UNION, INTERSECT, and MINUS. Now let’s go into detail.
In combining two tables, Oracle does not concern itself with column names on either side of the
combination operator—that is, Oracle will require that each select statement be valid and have
valid columns for its own table(s), but the column names in the first select statement do not have
to be the same as those in the second. Oracle does have these stipulations:

The select statements must have the same number of columns. If the two tables being
queried have differing numbers of columns selected, you can select strings in place of
columns to make the two queries’ column lists match.

The corresponding columns in the select statements must be the same datatype (they
needn’t be the same length).

When ordering the output, Oracle uses the column names from the first select statement in
giving the query results. Consequently, only column names from the first select statement can be
used in the order by.

You can use combination operators with two or more tables, but when you do, precedence
becomes an issue, especially if INTERSECT and MINUS appear. Use parentheses to force the
order you want.

IN Subqueries
Combination operators can be used in subqueries, but you must be careful with precedence. A
query of the form

select ColA from TABLE_A
 where ColA in
(select Col1 from TABLE_1)
 union
(select Col2 from TABLE_2);

■

■

Chapter 13: When One Query Depends upon Another 239

is poorly written and ambiguous. Which will be performed first, the union of the two queries
as part of a single where clause, or the in clause based on the query of TABLE_1, followed by
a union of that result with TABLE_2? Use parentheses to clarify your meaning and enforce the
proper precedence of operations. The in clause is always given a higher precedence than union,
unless you use parentheses to alter the way the query is executed. If you want the union to have
higher precedence, use parentheses:

select ColA from TABLE_A
 where ColA in
(select Col1 from TABLE_1
 union
 select Col2 from TABLE_2);

Restrictions on UNION, INTERSECT, and MINUS
Queries that use UNION, INTERSECT, or MINUS in their where clause must have the same
number and type of columns in their select list. Note that the equivalent IN construction does
not have that limitation.

The use of combination operators in place of IN, AND, and OR is a matter of personal style.
Most SQL users regard IN, AND, and OR as being clearer and easier to understand than combination
operators.

This page intentionally left blank

CHAPTER
14

Some Complex
Possibilities

241

242 Part II: SQL and SQL*Plus

his chapter continues the study of the more complex Oracle functions and features.
Of particular interest here is the creation of simple and group queries that can be
turned into views, the use of totals in calculations, and the creation of reports
showing tree structure. Like the techniques covered in Chapter 13, these techniques
are not essential for most reporting needs. If they look overly difficult, don’t be

frightened off. If you are new to Oracle and the use of its query facilities, it is enough to know
that these capabilities exist and you can turn to them if needed.

Complex Groupings
Views can build upon each other. In Chapter 12, you saw the concept of creating a view of a
grouping of rows from a table. As shown in Chapter 12, you can easily join views to other views
and tables to produce additional views to simplify the tasks of querying and reporting.

As your groupings grow more complex, you will find that views are invaluable to your coding
efforts; they simplify the representation of data at different grouping levels within your application.
They also make it easier to use the more advanced analytic functions available.

Consider the CATEGORY_COUNT view, first encountered in Chapter 12:

create or replace view CATEGORY_COUNT as
select CategoryName, COUNT(*) as Counter
 from BOOKSHELF
 group by CategoryName;

select * from CATEGORY_COUNT
 order by CategoryName;

CATEGORYNAME COUNTER
-------------------- ----------
ADULTFIC 6
ADULTNF 10
ADULTREF 6
CHILDRENFIC 5
CHILDRENNF 1
CHILDRENPIC 3

Let’s order the results by their Counter column values, with the highest first:

select * from CATEGORY_COUNT
 order by Counter desc;

CATEGORYNAME COUNTER
-------------------- ----------
ADULTNF 10
ADULTFIC 6
ADULTREF 6
CHILDRENFIC 5
CHILDRENPIC 3
CHILDRENNF 1

The output shows the ranking of the categories; the ADULTNF category ranks first in terms of
the number of books. Without displaying this list, you could determine where a different Counter

T

Chapter 14: Some Complex Possibilities 243

value would be in the rankings. To do this, we’ll use the RANK function. As shown in the
following listing, the RANK function takes a value as its input and has additional clauses—the
within group and order by clauses—that tell Oracle how to do the ranking. Where would a
Counter value of 3 rank?

select RANK(3) within group
(order by Counter desc)
 from CATEGORY_COUNT;

RANK(3)WITHINGROUP(ORDERBYCOUNTERDESC)

 5

A Counter value of 3 would be the fifth-highest Counter value. How about a Counter value of 8?

select RANK(8) within group
(order by Counter desc)
 from CATEGORY_COUNT;

RANK(8)WITHINGROUP(ORDERBYCOUNTERDESC)

 2

Adding those five books to the category would move it up to second place. From a percentile
perspective, what would the ranking for that category be?

select PERCENT_RANK(8) within group
(order by Counter desc)
 from CATEGORY_COUNT;

PERCENT_RANK(8)WITHINGROUP(ORDERBYCOUNTERDESC)
--
 .166666667

As expected, it would be in the top one-sixth of the categories.
With this technique of using both summary views and analytic functions, you can create

views and reports that include weighted average, effective yield, percentage of total, percentage
of subtotal, and many similar calculations. There is no effective limit to how many views can be
built on top of each other, although even the most complex calculations seldom require more
than three or four levels of views built upon views. Note that you can also create inline views in
the from clause, as shown in Chapter 12.

Using Temporary Tables
You can create a table that exists solely for your session or whose data persists for the duration
of your transaction. You can use temporary tables to support specialized rollups or specific
application-processing requirements.

To create a temporary table, use the create global temporary table command. When you
create a temporary table, you can specify whether it should last for the duration of your session
(via the on commit preserve rows clause) or whether its rows should be deleted when the
transaction completes (via the on commit delete rows clause).

244 Part II: SQL and SQL*Plus

Unlike a permanent table, a temporary table does not automatically allocate space when it is
created. Space will be dynamically allocated for the table as rows are inserted:

create global temporary table YEAR_ROLLUP (
 Year NUMBER(4),
 Month VARCHAR2(9),
 Counter NUMBER)
on commit preserve rows;

You can see the duration of your data in YEAR_ROLLUP by querying the Duration column
of USER_TABLES for this table. In this case, the value of Duration is SYS$SESSION. If on commit
delete rows had been specified instead, the Duration value would be SYS$TRANSACTION.

Now that the YEAR_ROLLUP table exists, you can populate it, such as via an insert as select
command with a complex query. You can then query the YEAR_ROLLUP table as part of a join
with other tables. You may find this method simpler to implement than the methods shown earlier.

Using ROLLUP, GROUPING, and CUBE
How can you perform grouping operations, such as totals, within a single SQL statement rather
than via SQL*Plus commands? You can use the ROLLUP and CUBE functions to enhance the
grouping actions performed within your queries. Let’s see how this enables us to manage the data
related to book returns. The book loaner program has become more popular, so the loan time is
now limited to 14 days, with a $0.20 fee per extra day. The following report shows the late
charges by person:

set headsep !
column Name format a20
column Title format a20 word_wrapped
column DaysOut format 999.99 heading 'Days!Out'
column DaysLate format 999.99 heading 'Days!Late'

break on Name skip 1 on report
compute sum of LateFee on Name
set linesize 80
set pagesize 60
set newpage 0

select Name, Title, ReturnedDate,
 ReturnedDate-CheckoutDate as DaysOut /*Count days*/,
 ReturnedDate-CheckoutDate -14 DaysLate,
 (ReturnedDate-CheckoutDate -14)*0.20 LateFee
 from BOOKSHELF_CHECKOUT
 where ReturnedDate-CheckoutDate > 14
 order by Name, CheckoutDate;

 Days Days
NAME TITLE RETURNEDD Out Late LATEFEE
-------------------- -------------------- --------- ------- ------- ----------
DORAH TALBOT MY LEDGER 03-MAR-02 16.00 2.00 .4
******************** ----------
sum .4

Chapter 14: Some Complex Possibilities 245

EMILY TALBOT ANNE OF GREEN GABLES 20-JAN-02 18.00 4.00 .8
******************** ----------
sum .8

FRED FULLER JOHN ADAMS 01-MAR-02 28.00 14.00 2.8
 TRUMAN 20-MAR-02 19.00 5.00 1
******************** ----------
sum 3.8

GERHARDT KENTGEN WONDERFUL LIFE 02-FEB-02 31.00 17.00 3.4
 THE MISMEASURE OF 05-MAR-02 20.00 6.00 1.2
 MAN
******************** ----------
sum 4.6

JED HOPKINS INNUMERACY 22-JAN-02 21.00 7.00 1.4
******************** ----------
sum 1.4

PAT LAVAY THE MISMEASURE OF 12-FEB-02 31.00 17.00 3.4
 MAN
******************** ----------
sum 3.4

ROLAND BRANDT THE SHIPPING NEWS 12-MAR-02 59.00 45.00 9
 THE DISCOVERERS 01-MAR-02 48.00 34.00 6.8
 WEST WITH THE NIGHT 01-MAR-02 48.00 34.00 6.8
******************** ----------
sum 22.6

We can eliminate the DaysOut display and focus on the late fees, showing the fees due on
each of the return dates:

clear compute
clear break
select ReturnedDate, Name,
 SUM((ReturnedDate-CheckoutDate -14)*0.20) LateFee
 from BOOKSHELF_CHECKOUT
 where ReturnedDate-CheckoutDate > 14
 group by ReturnedDate, Name
 order by ReturnedDate, Name;

RETURNEDD NAME LATEFEE
--------- -------------------- ----------
20-JAN-02 EMILY TALBOT .8
22-JAN-02 JED HOPKINS 1.4
02-FEB-02 GERHARDT KENTGEN 3.4
12-FEB-02 PAT LAVAY 3.4
01-MAR-02 FRED FULLER 2.8
01-MAR-02 ROLAND BRANDT 13.6
03-MAR-02 DORAH TALBOT .4

246 Part II: SQL and SQL*Plus

05-MAR-02 GERHARDT KENTGEN 1.2
12-MAR-02 ROLAND BRANDT 9
20-MAR-02 FRED FULLER 1

Then we can modify it further to group the late fees by month:

select TO_CHAR(ReturnedDate,'MONTH'), Name,
 SUM((ReturnedDate-CheckoutDate -14)*0.20) LateFee
 from BOOKSHELF_CHECKOUT
 where ReturnedDate-CheckoutDate > 14
 group by TO_CHAR(ReturnedDate,'MONTH'), Name;

TO_CHAR(R NAME LATEFEE
--------- -------------------- ----------
FEBRUARY PAT LAVAY 3.4
FEBRUARY GERHARDT KENTGEN 3.4
JANUARY JED HOPKINS 1.4
JANUARY EMILY TALBOT .8
MARCH FRED FULLER 3.8
MARCH DORAH TALBOT .4
MARCH ROLAND BRANDT 22.6
MARCH GERHARDT KENTGEN 1.2

Instead of simply grouping by Month and Name, you can use the ROLLUP function to generate
subtotals and totals. In the following example, the group by clause is modified to include a ROLLUP
function call. Notice the additional rows generated at the end of the result set and after each month:

select TO_CHAR(ReturnedDate,'MONTH'), Name,
 SUM((ReturnedDate-CheckoutDate -14)*0.20) LateFee
 from BOOKSHELF_CHECKOUT
 where ReturnedDate-CheckoutDate > 14
 group by ROLLUP(TO_CHAR(ReturnedDate,'MONTH'), Name);

TO_CHAR(R NAME LATEFEE
--------- -------------------- ----------
FEBRUARY PAT LAVAY 3.4
FEBRUARY GERHARDT KENTGEN 3.4
FEBRUARY 6.8
JANUARY JED HOPKINS 1.4
JANUARY EMILY TALBOT .8
JANUARY 2.2
MARCH FRED FULLER 3.8
MARCH DORAH TALBOT .4
MARCH ROLAND BRANDT 22.6
MARCH GERHARDT KENTGEN 1.2
MARCH 28
 37

For each month, Oracle has calculated the total late fee, and shows it with a NULL name value.
The output shows two separate charges of $3.40 in February, and a monthly total of $6.80. For the
quarter, the total of the late charges is $37.00. You could have calculated these via SQL*Plus
commands (see Chapter 6), but this method allows you to generate these sums via a single SQL
command regardless of the tool used to query the database.

Chapter 14: Some Complex Possibilities 247

Let’s refine the appearance of the report. You can use the GROUPING function to determine
whether the row is a total or subtotal (generated by ROLLUP) or corresponds to a NULL value in
the database. In the select clause, the Name column will be selected as follows:

select DECODE(GROUPING(Name),1, 'All names',Name),

The GROUPING function will return a value of 1 if the column’s value is generated by a
ROLLUP action. This query uses DECODE (discussed at length in Chapter 16) to evaluate the
result of the GROUPING function. If the GROUPING output is 1, the value was generated by the
ROLLUP function, and Oracle will print the phrase ‘All names’; otherwise, it will print the value
of the Name column. We will apply similar logic to the Date column. The full query is shown in
the following listing, along with its output:

select DECODE(GROUPING(TO_CHAR(ReturnedDate,'MONTH')),1,
 'All months',TO_CHAR(ReturnedDate,'MONTH')),
 DECODE(GROUPING(Name),1, 'All names',Name),
 SUM((ReturnedDate-CheckoutDate -14)*0.20) LateFee
 from BOOKSHELF_CHECKOUT
 where ReturnedDate-CheckoutDate > 14
 group by ROLLUP(TO_CHAR(ReturnedDate, 'MONTH'), Name);

DECODE(GRO DECODE(GROUPING(NAME),1,' LATEFEE
---------- ------------------------- ----------
FEBRUARY PAT LAVAY 3.4
FEBRUARY GERHARDT KENTGEN 3.4
FEBRUARY All names 6.8
JANUARY JED HOPKINS 1.4
JANUARY EMILY TALBOT .8
JANUARY All names 2.2
MARCH FRED FULLER 3.8
MARCH DORAH TALBOT .4
MARCH ROLAND BRANDT 22.6
MARCH GERHARDT KENTGEN 1.2
MARCH All names 28
All months All names 37

You can use the CUBE function to generate subtotals for all combinations of the values in the
group by clause. The following query uses the CUBE function to generate this information:

select DECODE(GROUPING(TO_CHAR(ReturnedDate,'MONTH')),1,
 'All months',TO_CHAR(ReturnedDate,'MONTH')),
 DECODE(GROUPING(Name),1, 'All names',Name),
 SUM((ReturnedDate-CheckoutDate -14)*0.20) LateFee
 from BOOKSHELF_CHECKOUT
 where ReturnedDate-CheckoutDate > 14
 group by CUBE(TO_CHAR(ReturnedDate,'MONTH'), Name);

DECODE(GRO DECODE(GROUPING(NAME),1,' LATEFEE
---------- ------------------------- ----------
All months All names 37
All months PAT LAVAY 3.4
All months FRED FULLER 3.8
All months JED HOPKINS 1.4

248 Part II: SQL and SQL*Plus

All months DORAH TALBOT .4
All months EMILY TALBOT .8
All months ROLAND BRANDT 22.6
All months GERHARDT KENTGEN 4.6
FEBRUARY All names 6.8
FEBRUARY PAT LAVAY 3.4
FEBRUARY GERHARDT KENTGEN 3.4
JANUARY All names 2.2
JANUARY JED HOPKINS 1.4
JANUARY EMILY TALBOT .8
MARCH All names 28
MARCH FRED FULLER 3.8
MARCH DORAH TALBOT .4
MARCH ROLAND BRANDT 22.6
MARCH GERHARDT KENTGEN 1.2

The CUBE function provided the summaries generated by the ROLLUP option, plus it shows
the sums by Name for the ‘All months’ category. Being able to perform these summaries in standard
SQL greatly enhances your ability to pick the best reporting tool for your users.

Family Trees and connect by
One of Oracle’s more interesting but little used or understood facilities is its connect by clause.
Put simply, this method is used to report, in order, the branches of a family tree. Such trees are
encountered often—the genealogy of human families, livestock, horses; corporate management,
company divisions, manufacturing; literature, ideas, evolution, scientific research, theory; and
even views built upon views.

The connect by clause provides a means to report on all of the family members in any of
these many trees. It lets you exclude branches or individual members of a family tree, and allows
you to travel through the tree either up or down, reporting on the family members encountered
during the trip.

The earliest ancestor in the tree is technically called the root node. In everyday English, this
would be called the trunk. Extending from the trunk are branches, which have other branches,
which have still other branches. The forks where one or more branches split away from a larger
branch are called nodes, and the very end of a branch is called a leaf, or a leaf node. Figure 14-1
shows a picture of such a tree.

The following is a table of cows and bulls born between January 1900 and October 1908. As
each offspring is born, it is entered as a row in the table, along with its sex, parents (the cow and
bull), and birth date. If you compare the cows and offspring in this table with Figure 14-1, you’ll
find they correspond. EVE has no recorded cow or bull parent because she was born on a different
farm, and ADAM and BANDIT are bulls brought in for breeding, again with no parents in the table.

column Cow format a6
column Bull format a6
column Offspring format a10
column Sex format a3

select * from BREEDING
 order by Birthdate;

Chapter 14: Some Complex Possibilities 249

OFFSPRING SEX COW BULL BIRTHDATE
---------- --- ------ ------ ---------
BETSY F EVE ADAM 02-JAN-00
POCO M EVE ADAM 15-JUL-00
GRETA F EVE BANDIT 12-MAR-01
MANDY F EVE POCO 22-AUG-02
CINDY F EVE POCO 09-FEB-03
NOVI F BETSY ADAM 30-MAR-03
GINNY F BETSY BANDIT 04-DEC-03
DUKE M MANDY BANDIT 24-JUL-04
TEDDI F BETSY BANDIT 12-AUG-05
SUZY F GINNY DUKE 03-APR-06
PAULA F MANDY POCO 21-DEC-06
RUTH F GINNY DUKE 25-DEC-06
DELLA F SUZY BANDIT 11-OCT-08
ADAM M
EVE F
BANDIT M

Next, a query is written to illustrate the family relationships visually. This is done using LPAD
and a special column, Level, that comes along with connect by. Level is a number, from 1 for EVE
to 5 for DELLA, that is really the generation. If EVE is the first generation of cattle, then DELLA is

FIGURE 14-1 Eve’s descendants

250 Part II: SQL and SQL*Plus

the fifth generation. Whenever the connect by clause is used, the Level column can be used in the
select statement to discover the generation of each row. Level is a pseudo-column like SysDate
and User. It’s not really a part of the table, but it is available under specific circumstances. The next
listing shows an example of using Level.

The results of this query are apparent in the following table, but why did the select statement
produce this? How does it work?

column Offspring format a30
select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
 Sex, Birthdate
 from BREEDING
 start with Offspring = 'EVE'
 connect by Cow = PRIOR Offspring;

COW BULL OFFSPRING S BIRTHDATE
---------- ---------- ------------------------------ - ---------
 EVE F
EVE ADAM BETSY F 02-JAN-00
BETSY BANDIT GINNY F 04-DEC-03
GINNY DUKE RUTH F 25-DEC-06
GINNY DUKE SUZY F 03-APR-06
SUZY BANDIT DELLA F 11-OCT-08
BETSY ADAM NOVI F 30-MAR-03
BETSY BANDIT TEDDI F 12-AUG-05
EVE POCO CINDY F 09-FEB-03
EVE BANDIT GRETA F 12-MAR-01
EVE POCO MANDY F 22-AUG-02
MANDY BANDIT DUKE M 24-JUL-04
MANDY POCO PAULA F 21-DEC-06
EVE ADAM POCO M 15-JUL-00

Note that this is really Figure 14-1 turned clockwise onto its side. EVE isn’t centered, but she
is the root node (trunk) of this tree. Her children are BETSY, CINDY, GRETA, MANDY, and POCO.
BETSY’s children are GINNY, NOVI, and TEDDI. GINNY’s children are RUTH and SUZY. And
SUZY’s child is DELLA. MANDY also has two children, DUKE and PAULA.

This tree started with EVE as the first “offspring.” If the SQL statement had said start with
MANDY, only MANDY, DUKE, and PAULA would have been selected. start with defines the
beginning of that portion of the tree that will be displayed, and it includes only branches
stretching out from the individual that start with specifies. start with acts just as its name implies.

The LPAD in the select statement is probably somewhat confusing. Recall from Chapter 7 the
format for LPAD:

LPAD(string,length [,'set'])

That is, take the specified string and left-pad it for the specified length with the specified set of
characters. If no set is specified, left-pad the string with blanks.

Compare this syntax to the LPAD in the select statement shown earlier:

LPAD(' ',6*(Level-1))

In this case, the string is a single character (a space, indicated by the literal space enclosed in single
quotation marks). Also, 6*(Level–1) is the length, and because the set is not specified, spaces will be

Chapter 14: Some Complex Possibilities 251

used. In other words, this tells SQL to take this string of one space and left-pad it to the number of
spaces determined by 6*(Level–1), a calculation made by first subtracting 1 from the Level and then
multiplying this result by 6. For EVE, the Level is 1, so 6*(1–1), or 0 spaces, is used. For BETSY, the
Level (her generation) is 2, so an LPAD of 6 is used. Thus, for each generation after the first, six
additional spaces will be concatenated to the left of the Offspring column. The effect is obvious in
the result just shown. The name of each Offspring is indented by left-padding with the number of
spaces corresponding to its Level or generation.

Why is this done, instead of simply applying the LPAD directly to Offspring? There are two
reasons. First, a direct LPAD on Offspring would cause the names of the offspring to be right-
justified. The names at each level would end up having their last letters lined up vertically.
Second, if Level–1 is equal to 0, as it is for EVE, the resulting LPAD of EVE will be 0 characters
wide, causing EVE to vanish:

select Cow, Bull, LPAD(Offspring,6*(Level-1),' ') AS Offspring,
 Sex, Birthdate from BREEDING
 start with Offspring = 'EVE'
connect by Cow = PRIOR Offspring;

COW BULL OFFSPRING S BIRTHDATE
---------- ---------- ------------------------------ - ---------
 F
EVE ADAM BETSY F 02-JAN-00
BETSY BANDIT GINNY F 04-DEC-03
GINNY DUKE RUTH F 25-DEC-06
GINNY DUKE SUZY F 03-APR-06
SUZY BANDIT DELLA F 11-OCT-08
BETSY ADAM NOVI F 30-MAR-03
BETSY BANDIT TEDDI F 12-AUG-05
EVE POCO CINDY F 09-FEB-03
EVE BANDIT GRETA F 12-MAR-01
EVE POCO MANDY F 22-AUG-02
MANDY BANDIT DUKE M 24-JUL-04
MANDY POCO PAULA F 21-DEC-06
EVE ADAM POCO M 15-JUL-00

Therefore, to get the proper spacing for each level, to ensure that EVE appears, and to make
the names line up vertically on the left, the LPAD should be used with the concatenation function,
and not directly on the Offspring column.

Now, how does connect by work? Look again at Figure 14-1. Starting with NOVI and
traveling downward, which cows are the offspring prior to NOVI? The first is BETSY, and the
offspring just prior to BETSY is EVE. Even though it is not instantly readable, the clause

connect by Cow = PRIOR Offspring

tells SQL to find the next row in which the value in the Cow column is equal to the value in the
Offspring column in the prior row. Look at the table and you’ll see that this is true.

Excluding Individuals and Branches
There are two methods of excluding cows from a report. One uses the normal where clause
technique, and the other uses the connect by clause itself. The difference is that the exclusion
using the connect by clause will exclude not just the cow mentioned, but all of its children as

252 Part II: SQL and SQL*Plus

well. If you use connect by to exclude BETSY, then NOVI, GINNY, TEDDI, SUZY, RUTH, and
DELLA all vanish. The connect by clause really tracks the tree structure. If BETSY had never been
born, none of her offspring would have been either. In this example, the and clause modifies the
connect by clause:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
 Sex, Birthdate
 from BREEDING
 start with Offspring = 'EVE'
connect by Cow = PRIOR Offspring
 and Offspring != 'BETSY';

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------
 EVE F
EVE POCO CINDY F 09-FEB-03
EVE BANDIT GRETA F 12-MAR-01
EVE POCO MANDY F 22-AUG-02
MANDY BANDIT DUKE M 24-JUL-04
MANDY POCO PAULA F 21-DEC-06
EVE ADAM POCO M 15-JUL-00

The where clause removes only the cow or cows it mentions. If BETSY dies, she is removed
from the chart, but her offspring are not. In fact, notice that BETSY is still there under the Cow
column as the mother of her children, NOVI, GINNY, and TEDDI:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
 Sex, Birthdate
 from BREEDING
 where Offspring != 'BETSY'
 start with Offspring = 'EVE'
connect by Cow = PRIOR Offspring;

COW BULL OFFSPRING S BIRTHDATE
---------- ---------- ------------------------------ - ---------
 EVE F
BETSY BANDIT GINNY F 04-DEC-03
GINNY DUKE RUTH F 25-DEC-06
GINNY DUKE SUZY F 03-APR-06
SUZY BANDIT DELLA F 11-OCT-08
BETSY ADAM NOVI F 30-MAR-03
BETSY BANDIT TEDDI F 12-AUG-05
EVE POCO CINDY F 09-FEB-03
EVE BANDIT GRETA F 12-MAR-01
EVE POCO MANDY F 22-AUG-02
MANDY BANDIT DUKE M 24-JUL-04
MANDY POCO PAULA F 21-DEC-06
EVE ADAM POCO M 15-JUL-00

The order in which the family tree is displayed when using connect by is basically level by
level, left to right, as shown in Figure 14-1, starting with the lowest level, Level 1.

Chapter 14: Some Complex Possibilities 253

Traveling Toward the Roots
Thus far, the direction of travel in reporting on the family tree has been from parents toward
children. Is it possible to start with a child, and move backward to parent, grandparent, great-
grandparent, and so on? To do so, the word prior is simply moved to the other side of the equal
sign. In the following examples, the Offspring is set equal to the prior Cow value; in the earlier
examples, the Cow was set equal to the prior Offspring value. The following traces DELLA’s ancestry:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
 Sex, Birthdate
 from BREEDING
 start with Offspring = 'DELLA'
connect by Offspring = PRIOR Cow;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------
SUZY BANDIT DELLA F 11-OCT-08
GINNY DUKE SUZY F 03-APR-06
BETSY BANDIT GINNY F 04-DEC-03
EVE ADAM BETSY F 02-JAN-00
 EVE F

This shows DELLA’s own roots, but it’s a bit confusing if compared to the previous displays. It
looks as if DELLA is the ancestor, and EVE the great-great-granddaughter. Adding an order by for
Birthdate helps, but EVE is still further to the right:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
 Sex, Birthdate
 from BREEDING
 start with Offspring = 'DELLA'
connect by Offspring = PRIOR Cow
 order by Birthdate;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------
EVE ADAM BETSY F 02-JAN-00
BETSY BANDIT GINNY F 04-DEC-03
GINNY DUKE SUZY F 03-APR-06
SUZY BANDIT DELLA F 11-OCT-08
 EVE F

The solution is simply to change the calculation in the LPAD:

select Cow, Bull, LPAD(' ',6*(5-Level))||Offspring Offspring,
 Sex, Birthdate
 from BREEDING
 start with Offspring = 'DELLA'
connect by Offspring = PRIOR Cow
 order by Birthdate;

254 Part II: SQL and SQL*Plus

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------
EVE ADAM BETSY F 02-JAN-00
BETSY BANDIT GINNY F 04-DEC-03
GINNY DUKE SUZY F 03-APR-06
SUZY BANDIT DELLA F 11-OCT-08
 EVE F

Finally, look how different this report is when the connect by tracks the parentage of the bull.
Here are ADAM’s offspring:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
 Sex, Birthdate
 from BREEDING
 start with Offspring = 'ADAM'
connect by PRIOR Offspring = Bull;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------
 ADAM M
EVE ADAM BETSY F 02-JAN-00
BETSY ADAM NOVI F 30-MAR-03
EVE ADAM POCO M 15-JUL-00
EVE POCO CINDY F 09-FEB-03
EVE POCO MANDY F 22-AUG-02
MANDY POCO PAULA F 21-DEC-06

ADAM and BANDIT were the original bulls at the initiation of the herd. To create a single tree
that reports both ADAM’s and BANDIT’s offspring, you would have to invent a “father” for the two
of them, which would be the root of the tree. One of the advantages that these alternative trees
have over the type of tree shown earlier is that many inheritance groups—from families to
projects to divisions within companies—can be accurately portrayed in more than one way:

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
 Sex, Birthdate
 from BREEDING
 start with Offspring = 'BANDIT'
connect by PRIOR Offspring = Bull;

COW BULL OFFSPRING SEX BIRTHDATE
------ ------ ------------------------------- --- ---------
 BANDIT M
SUZY BANDIT DELLA F 11-OCT-08
MANDY BANDIT DUKE M 24-JUL-04
GINNY DUKE RUTH F 25-DEC-06
GINNY DUKE SUZY F 03-APR-06
BETSY BANDIT GINNY F 04-DEC-03
EVE BANDIT GRETA F 12-MAR-01
BETSY BANDIT TEDDI F 12-AUG-05

Chapter 14: Some Complex Possibilities 255

The Basic Rules
Using connect by and start with to create tree like reports is not difficult, but certain basic rules
must be followed:

The order of the clauses when using connect by is as follows:

 1. select

 2. from

 3. where

 4. start with

 5. connect by

 6. order by

prior forces reporting to be from the root out toward the leaves (if the prior column is the
parent) or from a leaf toward the root (if the prior column is the child).

A where clause eliminates individuals from the tree, but not their descendants (or
ancestors, if prior is on the right side of the equal sign).

A qualification in the connect by (particularly a not equal) eliminates both an individual
and all of its descendants (or ancestors, depending on how you trace the tree).

connect by cannot be used with a table join in the where clause.

This particular set of commands is one that few people are likely to remember correctly.
However, with a basic understanding of trees and inheritance, you should be able to construct
a proper select statement to report on a tree just by referring to this chapter for correct syntax.

■

■

■

■

■

This page intentionally left blank

CHAPTER
15

Changing Data: insert,
update, merge, and delete

257

258 Part II: SQL and SQL*Plus

ntil now, virtually everything you’ve learned about Oracle, SQL, and SQL*Plus has
related to selecting data from tables in the database. This chapter shows how to
change the data in a table—how to insert new rows, update the values of columns
in rows, and delete rows entirely. Although these topics have not been covered
explicitly, nearly everything you already know about SQL, including datatypes,

calculations, string formatting, where clauses, and the like, can be used here, so there really isn’t
much new to learn. Oracle gives you a transparent, distributed database capability that inserts,
updates, and deletes data in remote databases as well (see Chapter 25). As you’ll see in this
chapter, Oracle allows you to combine these commands via multitable inserts and the merge
command (to perform inserts and updates in a single command).

insert
The SQL command insert lets you place a row of information directly into a table (or indirectly,
through a view). The COMFORT table tracks temperatures at noon and midnight as well as daily
precipitation, city by city, for four sample dates throughout the year:

describe COMFORT

Name Null? Type
--- -------- ------------
CITY NOT NULL VARCHAR2(13)
SAMPLEDATE NOT NULL DATE
NOON NUMBER(3,1)
MIDNIGHT NUMBER(3,1)
PRECIPITATION NUMBER

To add a new row to this table, use this:

insert into COMFORT
values ('WALPOLE', '21-MAR-03',
 56.7, 43.8, 0);

1 row created.

The word values must precede the list of data to be inserted. A character string must be in
single quotation marks. Numbers can stand by themselves. Each field is separated by commas,
and the fields must be in the same order as the columns are when the table is described.

A date must be in single quotation marks and in the default Oracle date format. To insert a
date not in your default format, use the TO_DATE function, with a formatting mask, as shown in
the following example:

insert into COMFORT
values ('WALPOLE', TO_DATE('06/22/2003','MM/DD/YYYY'),
 56.7, 43.8, 0);

1 row created.

Inserting a Time
Inserting dates without time values will produce a default time of midnight, the very beginning
of the day. If you want to insert a date with a time other than midnight, simply use the TO_DATE
function and include a time:

U

Chapter 15: Changing Data: insert, update, merge, and delete 259

insert into COMFORT
values ('WALPOLE', TO_DATE('06/22/2003 1:35',
 'MM/DD/YYYY HH24:MI'), 56.7, 43.8, 0);

1 row created.

NOTE
To store fractional seconds, you can use the TIMESTAMP and
TIMESTAMP WITH TIME ZONE datatypes, as described in Chapter 10.

Columns also can be inserted out of the order in which they appear when described, if you
first (before the word values) list the order the data is in. This doesn’t change the fundamental
order of the columns in the table. It simply allows you to list the data fields in a different order.
(See Part V for information on inserting data into user-defined datatypes.)

You also can “insert” a NULL. This simply means the column will be left empty for this row,
as shown in the following example:

insert into COMFORT
 (SampleDate, Precipitation, City, Noon, Midnight)
values ('23-SEP-03', NULL,
 'WALPOLE', 86.3, 72.1);

1 row created.

insert with select
You also can insert information that has been selected from a table. Here, a mix of columns
selected from the COMFORT table, together with literal values for SampleDate (22-DEC-03) and
City (WALPOLE), are inserted. Note the where clause in the select statement, which will retrieve
only one row. Had the select retrieved five rows, five new ones would have been inserted; if ten
rows had been retrieved, then ten new rows would have been inserted, and so on.

insert into COMFORT
 (SampleDate, Precipitation, City, Noon, Midnight)
select '22-DEC-03', Precipitation,
 'WALPOLE', Noon, Midnight
 from COMFORT
 where City = 'KEENE'
 and SampleDate = '22-DEC-03';

1 row created.

NOTE
You cannot use the insert into…select from syntax with LONG
datatypes unless you are using the TO_LOB function to insert the
LONG data into a LOB column.

Of course, you don’t need to simply insert the value in a selected column. You can modify the
column using any of the appropriate string, date, or number functions within the select statement.
The results of those functions are what will be inserted. You can attempt to insert a value in a
column that exceeds its width (for character datatypes) or its magnitude (for number datatypes).

260 Part II: SQL and SQL*Plus

You have to fit the value within the constraints you defined on your columns. These attempts will
produce a “value too large for column” or “mismatched datatype” error message. If you now
query the COMFORT table for the city of Walpole, the results will be the records you inserted:

select * from COMFORT
 where City = 'WALPOLE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
WALPOLE 21-MAR-03 56.7 43.8 0
WALPOLE 22-JUN-03 56.7 43.8 0
WALPOLE 22-JUN-03 56.7 43.8 0
WALPOLE 23-SEP-03 86.3 72.1
WALPOLE 22-DEC-03 -7.2 -1.2 3.9

5 rows selected.

Two records are shown for 22-JUN-03 because one of them has a time component. Use the
TO_CHAR function to see the time:

select City, SampleDate,
 TO_CHAR(SampleDate,'HH24:MI:SS') AS TimeofDay, Noon
 from COMFORT
 where City = 'WALPOLE';

CITY SAMPLEDAT TIMEOFDA NOON
------------- --------- -------- ----------
WALPOLE 21-MAR-03 00:00:00 56.7
WALPOLE 22-JUN-03 00:00:00 56.7
WALPOLE 22-JUN-03 01:35:00 56.7
WALPOLE 23-SEP-03 00:00:00 86.3
WALPOLE 22-DEC-03 00:00:00 -7.2

Using the APPEND Hint to Improve insert Performance
As you will see in Chapter 46, Oracle uses an optimizer to determine the most efficient way to
perform each SQL command. For insert statements, Oracle tries to insert each new record into
an existing block of data already allocated to the table. This execution plan optimizes the use of
space required to store the data. However, it may not provide adequate performance for an insert
with a select command that inserts multiple rows. You can amend the execution plan by using the
APPEND hint to improve the performance of large inserts. The APPEND hint will tell the database
to find the last block into which the table’s data has ever been inserted. The new records will be
inserted starting in the next block following the last previously used block. Furthermore, the inserted
data is written directly to the datafiles, bypassing the data block buffer cache. As a result, there is
much less space management work for the database to do during the insert. Therefore, the insert
may complete faster when the APPEND hint is used.

You specify the APPEND hint within the insert command. A hint looks like a comment—it
starts with /* and ends with */. The only difference is that the starting set of characters includes a
plus sign (+) before the name of the hint. The following example shows an insert command whose
data is appended to the table:

Chapter 15: Changing Data: insert, update, merge, and delete 261

insert /*+ APPEND */ into BOOKSHELF (Title)
select Title from BOOK_ORDER
 where Title not in (select Title from BOOKSHELF);

The records from the BOOK_ORDER table will be inserted into the BOOKSHELF table. Instead
of attempting to reuse space within the BOOKSHELF table, the new records will be placed at the
end of the table’s physical storage space.

Because the new records will not attempt to reuse available space that the table has already
used, the space requirements for the BOOKSHELF table may increase. In general, you should use
the APPEND hint only when inserting large volumes of data into tables with little reusable space.
The point at which appended records will be inserted is called the table’s high-water mark—and
the only way to reset the high-water mark is to truncate the table. Because truncate will delete all
records and cannot be rolled back, you should make sure you have a backup of the table’s data
prior to performing the truncate. See truncate in the Alphabetical Reference for further details.

rollback, commit, and autocommit
When you insert, update, or delete data from the database, you can reverse, or roll back, the work
you’ve done. This can be very important when an error is discovered. The process of committing
or rolling back work is controlled by two SQL*Plus commands: commit and rollback. Additionally,
SQL*Plus has the facility to automatically commit your work without your explicitly telling it to
do so. This is controlled by the autocommit feature of set. Like other set features, you can show
it, like this:

show autocommit

autocommit OFF

OFF is the default, and in almost all cases it’s the preferred mode. You can also specify a number
for the autocommit value; this value will determine the number of commands after which Oracle
will issue a commit. Having autocommit off means insert, update, and delete operations are not
made final until you commit them:

commit;

commit complete

Until you commit, only you can see how your work affects the tables. Anyone else with access
to these tables will continue to get the old information. You will see new information whenever
you select from the table. Your work is, in effect, in a “staging” area, which you interact with until
you commit. You can perform quite a large number of insert, update, and delete operations and
still undo the work (return the tables to the way they used to be) by issuing this command:

rollback;

rollback complete

However, the message “rollback complete” can be misleading. It means only that Oracle has
rolled back any work that hasn’t been committed. If you commit a series of transactions, either
explicitly with the word commit or implicitly by another action, the “rollback complete” message
won’t really mean anything.

262 Part II: SQL and SQL*Plus

Using savepoints
You can use savepoints to roll back portions of your current set of transactions. Consider the
following commands:

insert into COMFORT
values ('WALPOLE', '22-APR-03',50.1, 24.8, 0);

savepoint A;

insert into COMFORT
values ('WALPOLE', '27-MAY-03',63.7, 33.8, 0);

savepoint B;

insert into COMFORT
values ('WALPOLE', '07-AUG-03',83.0, 43.8, 0);

Now, select the data from COMFORT for Walpole:

select * from COMFORT
 where City = 'WALPOLE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
WALPOLE 21-MAR-03 56.7 43.8 0
WALPOLE 22-JUN-03 56.7 43.8 0
WALPOLE 22-JUN-03 56.7 43.8 0
WALPOLE 23-SEP-03 86.3 72.1
WALPOLE 22-DEC-03 -7.2 -1.2 3.9
WALPOLE 22-APR-03 50.1 24.8 0
WALPOLE 27-MAY-03 63.7 33.8 0
WALPOLE 07-AUG-03 83 43.8 0

The output shows the five former records plus the three new rows we’ve added. Now roll back
just the last insert:

rollback to savepoint B;

If you now query COMFORT, you’ll see that the last insert has been rolled back, but the
others are still there:

select * from COMFORT
 where City = 'WALPOLE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
WALPOLE 21-MAR-03 56.7 43.8 0
WALPOLE 22-JUN-03 56.7 43.8 0
WALPOLE 22-JUN-03 56.7 43.8 0
WALPOLE 23-SEP-03 86.3 72.1
WALPOLE 22-DEC-03 -7.2 -1.2 3.9
WALPOLE 22-APR-03 50.1 24.8 0
WALPOLE 27-MAY-03 63.7 33.8 0

Chapter 15: Changing Data: insert, update, merge, and delete 263

The last two records are still not committed; you need to execute a commit command or another
command to force a commit to occur. You can still roll back the second insert (to savepoint A) or
roll back all the inserts (via a rollback command).

Implicit commit
The actions that will force a commit to occur, even without your instructing it to, are quit, exit
(the equivalent of quit), and any Data Definition Language (DDL) command. Using any of these
commands forces a commit.

Auto rollback
If you’ve completed a series of insert, update, or delete operations but have not yet explicitly or
implicitly committed them, and you experience serious difficulties, such as a computer failure,
Oracle will automatically roll back any uncommitted work. If the machine or database goes
down, Oracle does the rollback as cleanup work the next time the database is brought back up.

Multitable Inserts
You can perform multiple inserts in a single command. You can perform all the inserts unconditionally
or you can specify conditions—using a when clause to tell Oracle how to manage the multiple
inserts. If you specify all, then all the when clauses will be evaluated; specifying first tells Oracle
to skip subsequent when clauses after it finds one that is true for the row being evaluated. You can
also use an else clause to tell Oracle what to do if none of the when clauses evaluates to true.

To illustrate this functionality, let’s create a new table with a slightly different structure than
COMFORT:

drop table COMFORT_TEST;
create table COMFORT_TEST (
City VARCHAR2(13) NOT NULL,
SampleDate DATE NOT NULL,
Measure VARCHAR2(10),
Value NUMBER(3,1)
);

COMFORT_TEST will have multiple records for each record in COMFORT—its Measure column
will have values such as 'Midnight', 'Noon', and 'Precip', allowing us to store a greater number of
measures for each city on each sample date.

Now populate COMFORT_TEST with data from COMFORT, unconditionally:

insert ALL
 into COMFORT_TEST (City, SampleDate, Measure, Value)
 values (City, SampleDate, 'NOON', Noon)
 into COMFORT_TEST (City, SampleDate, Measure, Value)
 values (City, SampleDate, 'MIDNIGHT', Midnight)
 into COMFORT_TEST (City, SampleDate, Measure, Value)
 values (City, SampleDate, 'PRECIP', Precipitation)
select City, SampleDate, Noon, Midnight, Precipitation
 from COMFORT
 where City = 'KEENE';

12 rows created.

264 Part II: SQL and SQL*Plus

This query tells Oracle to insert multiple rows for each row returned from the COMFORT table.
The query of COMFORT returns four rows. The first into clause inserts the Noon value, along
with a text string of 'NOON' in the Measure column. The second into clause inserts the Midnight
value, and the third inserts the Precipitation value, as shown in the query of COMFORT_TEST
following the insert:

select * from COMFORT_TEST;

CITY SAMPLEDAT MEASURE VALUE
------------- --------- ---------- ----------
KEENE 21-MAR-03 NOON 39.9
KEENE 22-JUN-03 NOON 85.1
KEENE 23-SEP-03 NOON 99.8
KEENE 22-DEC-03 NOON -7.2
KEENE 21-MAR-03 MIDNIGHT -1.2
KEENE 22-JUN-03 MIDNIGHT 66.7
KEENE 23-SEP-03 MIDNIGHT 82.6
KEENE 22-DEC-03 MIDNIGHT -1.2
KEENE 21-MAR-03 PRECIP 4.4
KEENE 22-JUN-03 PRECIP 1.3
KEENE 23-SEP-03 PRECIP
KEENE 22-DEC-03 PRECIP 3.9

12 rows selected.

What if you had used the first keyword instead of the all keyword? Unless you use when clauses,
you can’t use the first keyword. The following example shows the use of the when clause to restrict
which inserts are performed within the multi-insert command. For this example, the all keyword
is used:

delete from COMFORT_TEST;
commit;

insert ALL
 when Noon > 80 then
 into COMFORT_TEST (City, SampleDate, Measure, Value)
 values (City, SampleDate, 'NOON', Noon)
 when Midnight > 70 then
 into COMFORT_TEST (City, SampleDate, Measure, Value)
 values (City, SampleDate, 'MIDNIGHT', Midnight)
 when Precipitation is not null then
 into COMFORT_TEST (City, SampleDate, Measure, Value)
 values (City, SampleDate, 'PRECIP', Precipitation)
select City, SampleDate, Noon, Midnight, Precipitation
 from COMFORT
 where City = 'KEENE';

6 rows created.

What six rows were inserted? The two Noon values met this condition:

 when Noon > 80 then

Chapter 15: Changing Data: insert, update, merge, and delete 265

The one Midnight value met this condition:

 when Midnight > 70 then

And the three Precipitation values met this condition:

 when Precipitation is not null then

You can see the results in COMFORT_TEST:

select * from COMFORT_TEST;

CITY SAMPLEDAT MEASURE VALUE
------------- --------- ---------- ----------
KEENE 22-JUN-03 NOON 85.1
KEENE 23-SEP-03 NOON 99.8
KEENE 23-SEP-03 MIDNIGHT 82.6
KEENE 21-MAR-03 PRECIP 4.4
KEENE 22-JUN-03 PRECIP 1.3
KEENE 22-DEC-03 PRECIP 3.9

What if you had used first instead?

delete from COMFORT_TEST;
commit;

insert FIRST
 when Noon > 80 then
 into COMFORT_TEST (City, SampleDate, Measure, Value)
 values (City, SampleDate, 'NOON', Noon)
 when Midnight > 70 then
 into COMFORT_TEST (City, SampleDate, Measure, Value)
 values (City, SampleDate, 'MIDNIGHT', Midnight)
 when Precipitation is not null then
 into COMFORT_TEST (City, SampleDate, Measure, Value)
 values (City, SampleDate, 'PRECIP', Precipitation)
select City, SampleDate, Noon, Midnight, Precipitation
 from COMFORT
 where City = 'KEENE';

4 rows created.

In this case, four rows are inserted:

select * from COMFORT_TEST;

CITY SAMPLEDAT MEASURE VALUE
------------- --------- ---------- ----------
KEENE 21-MAR-03 PRECIP 4.4
KEENE 22-DEC-03 PRECIP 3.9
KEENE 22-JUN-03 NOON 85.1
KEENE 23-SEP-03 NOON 99.8

266 Part II: SQL and SQL*Plus

What happened to the MIDNIGHT value? Only one record passed the MIDNIGHT when clause:

 when Midnight > 70 then

This record also passed the NOON when clause:

 when Noon > 80 then

Therefore, its Noon value (99.8) was inserted. Because the first keyword was used, and the condition
that was evaluated first (Noon) was true, Oracle did not check the rest of the conditions for that
row. The same process happened to the PRECIP measures—the other non-NULL Precipitation
value was on the same record as the Noon reading of 85.1.

What if none of the conditions had been met? To show that option, let’s create a third table,
COMFORT2, with the same structure as COMFORT:

create table COMFORT2 (
City VARCHAR2(13) NOT NULL,
SampleDate DATE NOT NULL,
Noon NUMBER(3,1),
Midnight NUMBER(3,1),
Precipitation NUMBER
);

Now, we’ll execute an insert for all cities (using the first clause) along with an else clause
specifying that any rows that fail the conditions will be placed into the COMFORT2 table. For this
example, the when conditions are changed to limit the number of rows that pass the conditions:

delete from COMFORT_TEST;
delete from COMFORT2;
commit;

insert FIRST
 when Noon > 80 then
 into COMFORT_TEST (City, SampleDate, Measure, Value)
 values (City, SampleDate, 'NOON', Noon)
 when Midnight > 100 then
 into COMFORT_TEST (City, SampleDate, Measure, Value)
 values (City, SampleDate, 'MIDNIGHT', Midnight)
 when Precipitation > 100 then
 into COMFORT_TEST (City, SampleDate, Measure, Value)
 values (City, SampleDate, 'PRECIP', Precipitation)
 else
 into COMFORT2
select City, SampleDate, Noon, Midnight, Precipitation
 from COMFORT
where City = 'KEENE';

4 rows created.

The feedback tells you how many rows were created, but not which table they were created
in. The total reported is for all inserts combined. In this case, two records were inserted into
COMFORT_TEST and two were inserted into COMFORT2 because of the else condition:

select * from COMFORT_TEST;

Chapter 15: Changing Data: insert, update, merge, and delete 267

CITY SAMPLEDAT MEASURE VALUE
------------- --------- ---------- ----------
KEENE 22-JUN-03 NOON 85.1
KEENE 23-SEP-03 NOON 99.8

select * from COMFORT2;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-03 39.9 -1.2 4.4
KEENE 22-DEC-03 -7.2 -1.2 3.9

delete
Removing a row or rows from a table requires the delete command, as seen in the examples
in the last section. The where clause is essential to removing only the rows you intend. delete
without a where clause will empty the table completely. The following command deletes the
Walpole entries from the COMFORT table:

delete from COMFORT where City = 'WALPOLE';

Of course, a where clause in a delete, just as in an update or a select that is part of an insert, can
contain as much logic as any select statement, and may include subqueries, unions, intersects, and
so on. You can always roll back a bad insert, update, or delete, but you really should experiment with
select before actually making the change to the database, to make sure you are doing the right thing.

Now that you’ve just deleted the rows where City = 'WALPOLE', you can test the effect of that
delete with a simple query:

select * from COMFORT
 where City = 'WALPOLE';

no rows selected

Now roll back the delete and run the same query:

rollback;
Rollback complete

select * from COMFORT
 where City = 'WALPOLE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
WALPOLE 21-MAR-03 56.7 43.8 0
WALPOLE 22-JUN-03 56.7 43.8 0
WALPOLE 22-JUN-03 56.7 43.8 0
WALPOLE 23-SEP-03 86.3 72.1
WALPOLE 22-DEC-03 -7.2 -1.2 3.9
WALPOLE 22-APR-03 50.1 24.8 0
WALPOLE 27-MAY-03 63.7 33.8 0

7 rows selected.

268 Part II: SQL and SQL*Plus

This illustrates that recovery is possible, so long as a commit hasn’t occurred. If the changes have
been committed, you may be able to use flashback queries (see Chapter 29) to retrieve the data.

An additional command for deleting records, truncate, does not behave the same as delete.
Whereas delete allows you to commit or roll back the deletion, truncate automatically deletes all
records from the table. The action of the truncate command cannot be rolled back or committed;
the truncated records are unrecoverable. You cannot perform a flashback query to see data that
has been truncated. See the truncate command in the Alphabetical Reference for further details.

update
update requires setting specific values for each column you want to change, and specifying which
row or rows you want to affect by using a carefully constructed where clause:

update COMFORT set Precipitation = .5, Midnight = 73.1
 where City = 'KEENE'
 and SampleDate = '22-DEC-03';

1 row updated.

Here is the effect, shown in the 22-DEC-03 record:

select * from COMFORT
 where City = 'KEENE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-03 39.9 -1.2 4.4
KEENE 22-JUN-03 85.1 66.7 1.3
KEENE 23-SEP-03 99.8 82.6
KEENE 22-DEC-03 -7.2 73.1 .5

4 rows selected.

What if you later discover that the thermometer used in Keene consistently reports its
temperatures too high by one degree? You also can do calculations, string functions, and almost
any other legitimate function in setting a value for the update (just as you can for an insert, or in
the where clause of a delete). Here, each temperature in Keene is decreased by one degree:

update COMFORT set Midnight = Midnight - 1, Noon = Noon - 1
 where City = 'KEENE';

4 rows updated.

Here is the effect of the update:

select * from COMFORT
 where City = 'KEENE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-03 38.9 -2.2 4.4
KEENE 22-JUN-03 84.1 65.7 1.3

Chapter 15: Changing Data: insert, update, merge, and delete 269

KEENE 23-SEP-03 98.8 81.6
KEENE 22-DEC-03 -8.2 72.1 .5

NOTE
If your update violates the column definitions or constraints, it will
fail. In this case, setting Noon or Midnight to values of 100 or greater
will violate the numeric scale of the columns.

As with delete, the where clause is critical. Without one, every row in the table will be updated.
With an improperly constructed where clause, the wrong rows will be updated, often in ways that
are hard to discover or fix, especially if your work has been committed. Always set feedback on
when doing updates, and look at the feedback to be sure the number of rows updated is what you
expected it to be. Query the rows after you update to see if the expected change took place.

update with Embedded select
It is possible to set values in an update by embedding a select statement right in the middle of it. Note
that this select has its own where clause, picking out the temperature for the city of Manchester from
the WEATHER table, and the update has its own where clause to affect just the city of Keene on a
certain day:

update COMFORT set Midnight =
 (select Temperature
 from WEATHER
 where City = 'MANCHESTER')
 where City = 'KEENE'
 and SampleDate = '22-DEC-03';

1 row updated.

Here is the effect of the update:

select * from COMFORT
 where City = 'KEENE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-03 38.9 -2.2 4.4
KEENE 22-JUN-03 84.1 65.7 1.3
KEENE 23-SEP-03 98.8 81.6
KEENE 22-DEC-03 -8.2 66 .5

4 rows selected.

When using a subquery with an update, you must be certain that the subquery will return no
more than one record for each of the records to be updated; otherwise, the update will fail. See
Chapter 13 for details on correlated queries.

You also can use an embedded select to update multiple columns at once. The columns must
be in parentheses and separated by a comma, as shown here:

update COMFORT set (Noon, Midnight) =
 (select Humidity, Temperature
 from WEATHER

270 Part II: SQL and SQL*Plus

 where City = 'MANCHESTER')
 where City = 'KEENE'
 and SampleDate = '22-DEC-03';

1 row updated.

Here is the effect:

select * from COMFORT
 where City = 'KEENE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-03 38.9 -2.2 4.4
KEENE 22-JUN-03 84.1 65.7 1.3
KEENE 23-SEP-03 98.8 81.6
KEENE 22-DEC-03 98 66 .5

4 rows selected.

update with NULL
You also can update a table and set a column equal to NULL. This is the sole instance of using the
equal sign with NULL, instead of the word “is.” For example,

update COMFORT set Noon = NULL
 where City = 'KEENE'
 and SampleDate = '22-DEC-03';

1 row updated.

will set the noon temperature to NULL for Keene on December 22, 2003.

NOTE
The primary issues with insert, update, and delete are careful
construction of where clauses to affect (or insert) only the rows you
really want, and the normal use of SQL functions within these insert,
update, and delete operations. It is extremely important that you
exercise caution about committing work before you are certain it is
correct. These commands extend the power of Oracle well beyond
simple queries, and they allow direct manipulation of data.

Using the merge Command
You can use the merge command to perform insert and update operations into a single table in a
single command. Based on the conditions you specify, Oracle will take the source data—either a
table, view, or query—and update existing values if the conditions are met. If the conditions are
not met, the row will be inserted.

For example, we can change the rows in the COMFORT2 table created earlier in this chapter:

delete from COMFORT2;

insert into COMFORT2

Chapter 15: Changing Data: insert, update, merge, and delete 271

values ('KEENE', '21-MAR-03',55, -2.2, 4.4);
insert into COMFORT2
values ('KEENE', '22-DEC-03',55, 66, 0.5);
 insert into COMFORT2
values ('KEENE', '16-MAY-03', 55, 55, 1);
commit;

The data in COMFORT2 should now look like this:

select * from COMFORT2;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-03 55 -2.2 4.4
KEENE 22-DEC-03 55 66 .5
KEENE 16-MAY-03 55 55 1

The Keene data in COMFORT is

select * from COMFORT where City = 'KEENE';

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 21-MAR-03 38.9 -2.2 4.4
KEENE 22-JUN-03 84.1 65.7 1.3
KEENE 23-SEP-03 98.8 81.6
KEENE 22-DEC-03 66 .5

With COMFORT2 as the data source, we can now perform a merge on the COMFORT table.
For the rows that match (the 21-MAR-03 and 22-DEC-03 entries), we’ll update the Noon values
in COMFORT. The rows that exist only in COMFORT2 (the 16-MAY-03 row) will be inserted into
COMFORT. The following listing shows the command to use:

merge into COMFORT C1
using (select City, SampleDate, Noon, Midnight,
 Precipitation from COMFORT2) C2
 on (C1.City = C2.City and C1.SampleDate=C2.SampleDate)
 when matched then
 update set Noon = C2.Noon
 when not matched then
 insert (C1.City, C1.SampleDate, C1.Noon,
 C1.Midnight, C1.Precipitation)
 values (C2.City, C2.SampleDate, C2.Noon,
 C2.Midnight, C2.Precipitation);

3 rows merged.

The output tells you the number of rows processed from the source table, but does not tell
you how many rows were inserted or updated. You can see the changes by querying COMFORT
(note the Noon=55 records):

select * from COMFORT where City = 'KEENE';

272 Part II: SQL and SQL*Plus

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
KEENE 16-MAY-03 55 55 1
KEENE 21-MAR-03 55 -2.2 4.4
KEENE 22-JUN-03 84.1 65.7 1.3
KEENE 23-SEP-03 98.8 81.6
KEENE 22-DEC-03 55 66 .5

Take a look at the command to see how this was accomplished. In the first line, the target
table is named and given an alias of C1:

merge into COMFORT C1

In the next two lines, the using clause provides the source data for the merge, and the source
is given the alias C2:

using (select City, SampleDate, Noon, Midnight,
 Precipitation from COMFORT2) C2

The condition for the merge is then specified in the on clause. If the source data’s City and
SampleDate values match those in the target table, the data will be updated. The when matched
then clause, followed by an update command, tells Oracle what columns to update in the source
table:

 on (C1.City = C2.City and C1.SampleDate=C2.SampleDate)
 when matched then
 update set Noon = C2.Noon

If there is no match, the row should be inserted, as specified in the when not matched clause:

when not matched then
 insert (C1.City, C1.SampleDate, C1.Noon,
 C1.Midnight, C1.Precipitation)
 values (C2.City, C2.SampleDate, C2.Noon,
 C2.Midnight, C2.Precipitation);

You can use the merge command to simplify operations in which many rows are inserted and
updated from a single source. As with all update operations, you should be very careful to use the
appropriate where clauses in the using clause of your merge commands.

NOTE
You cannot update a column that is referenced in the on condition
clause.

In the merge command, you can specify either an update clause, an insert clause, or both.
To insert all the source rows into the table, you can use a constant filter predicate in the on

clause condition. An example of a constant filter predicate is on (0=1). Oracle recognizes such a
predicate and makes an unconditional insert of all source rows into the table. No join is performed
during the merge command if a constant filter predicate is provided.

Chapter 15: Changing Data: insert, update, merge, and delete 273

You can include a delete clause within the update portion of the merge command. The delete
clause (with its own where clause) can delete rows in the destination table that are updated by
the merge. The delete…where clause evaluates the updated value, not the original value in the
destination table. If a row of the destination table meets the delete…where condition but is not
included in the set of rows acted on by the merge (as defined by the on condition), then it is not
deleted. Here’s an example:

merge into COMFORT C1
using (select City, SampleDate, Noon, Midnight,
 Precipitation from COMFORT2) C2
 on (C1.City = C2.City and C1.SampleDate=C2.SampleDate)
 when matched then
 update set Noon = C2.Noon
 delete where (Precipitation is null)
 when not matched then
 insert (C1.City, C1.SampleDate, C1.Noon,
 C1.Midnight, C1.Precipitation)
 values (C2.City, C2.SampleDate, C2.Noon,
 C2.Midnight, C2.Precipitation);

Clearly, these commands can become very complex very quickly. In this example, we are
performing a conditional update and a conditional delete on the rows that are updated, along
with a conditional insert of other rows. You can incorporate very complex business logic into a
single command, substantially enhancing the capability of the standard insert, update, and delete
commands.

Handling Errors
By default, all rows in a single transaction either succeed or fail. If you insert a large volume of
rows in a single insert as select, an error in one row will force the whole insert to fail. You can
override this behavior via the use of an error log table, along with special syntax within your
commands to tell the database how to process the errors. Oracle will then automatically log the
entries that failed and the reasons why each row failed while the transaction itself will succeed.
In a sense this is a multitable insert—the rows that can be inserted are added to the targeted table
whereas the rows that fail are inserted into the error log table.

In order to use this approach, you must first create an error log table whose structure is based
on the table you will be updating. Oracle provides a procedure named CREATE_ERROR_LOG,
within the DBMS_ERRLOG package, that creates an error log for each table you specify. The
format for the CREATE_ERROR_LOG procedure is

DBMS_ERRLOG.CREATE_ERROR_LOG (
 dml_table_name IN VARCHAR2,
 err_log_table_name IN VARCHAR2 := NULL,
 err_log_table_owner IN VARCHAR2 := NULL,
 err_log_table_space IN VARCHAR2 := NULL,
 skip_unsupported IN BOOLEAN := FALSE);

274 Part II: SQL and SQL*Plus

The parameters for CREATE_ERROR_LOG are:

Parameter Description

dml_table_name The name of the table to base the error logging table on. The name
can be fully qualified (for example, BOOKSHELF or PRACTICE.
BOOKSHELF). If a name component is enclosed in double quotes,
it will not be uppercased.

err_log_table_name The name of the error logging table you will create. The default is the
first 25 characters in the name of the DML table prefixed with “ERR$_”
(such as ERR$_BOOKSHELF).

err_log_table_owner The name of the owner of the error logging table. You can specify the
owner in the dml_table_name parameter. Otherwise, the schema of the
current connected user is used.

err_log_table_space The tablespace the error logging table will be created in. If this parameter
is not specified, the default tablespace for the user owning the error
logging table will be used.

skip_unsupported When this parameter is set to TRUE, column types that are not supported
by error logging will be skipped over and not added to the error logging
table. When it is set to FALSE (the default), an unsupported column type
will cause the procedure to terminate.

For the BOOKSHELF table, you can create an error log table via the following command:

execute DBMS_ERRLOG.CREATE_ERROR_LOG('bookshelf','errlog');

When you insert rows into the BOOKSHELF table, you can use the log errors clause to
redirect errors:

insert into BOOKSHELF (Title, Publisher, CategoryName)
select * from BOOR_ORDER
log errors into errlog ('fromorder') reject limit 10;

You can use the reject limit clause to specify an upper limit for the number of errors that can
be logged before the insert command fails. The default reject limit is 0; you can set it to unlimited.

If errors are encountered during the insert, they will be written to the ERRLOG table. They
will be tagged with the value 'fromorder' as specified in the log errors clause shown in the listing.
In addition to the BOOKSHELF table columns, the ERRLOG table will have two additional columns:

ORA_ERR_MESG$ will contain the Oracle error message number and message text for
the error encountered.

ORA_ERR_TAG$ will include the tag specified in the into clause, as shown in the prior
listing.

There will be one entry in the ERRLOG table for each errant row, and the full row values will
be stored in the ERRLOG table.

■

■

Chapter 15: Changing Data: insert, update, merge, and delete 275

NOTE
The tag for the command can be a literal, a number, a bind variable,
or a function expression, such as TO_CHAR(SYSDATE).

If there are errors and the insert completes, Oracle will not return any error code. You will
need to check the error log table to determine whether any rows failed during the intended insert.

Commands will fail without invoking the error log capability for the following conditions:

Violated deferred constraints

Any direct-path insert or merge operation that raises a unique constraint or index violation

Any update or merge operation that raises a unique constraint or index violation

You cannot track errors in the error logging table for LONG, LOB, or object type columns.
However, the table that is the target of the DML operation can contain these types of columns.

■

■

■

This page intentionally left blank

CHAPTER
16

DECODE and CASE: if,
then, and else in SQL

277

278 Part II: SQL and SQL*Plus

he DECODE function is without doubt one of the most powerful in Oracle’s SQL.
It is one of several extensions Oracle added to the standard SQL language. This
chapter will explore a number of ways that DECODE can be used, including the
generation of “crosstab” reports. You can also use the CASE function and the
COALESCE function to execute complex logical tests within your SQL statements.

DECODE and CASE are often used to pivot data—that is, to turn rows of data into columns
of a report. In this chapter you will see how to use DECODE, CASE, and the PIVOT operator
(introduced in Oracle 11g) to generate crosstab reports.

if, then, else
In programming and logic, a common construction of a problem is in the pattern if, then, else. For
example, if this day is a Saturday, then Adah will play at home; if this day is a Sunday, then Adah
will go to her grandparents’ home; if this day is a holiday, then Adah will go over to Aunt Dora’s;
else Adah will go to school. In each case, “this day” was tested, and if it was one of a list of certain
days, then a certain result followed, or else (if it was none of those days) another result followed.
DECODE follows this kind of logic. Chapter 11 provided an introduction that demonstrated the
basic structure and usage of DECODE.

Here is DECODE’s format:

DECODE(value,if1,then1,if2,then2,if3,then3,. . . ,else)

Here, value represents any column in a table (regardless of datatype) or any result of a computation,
such as one date minus another, a SUBSTR of a character column, one number times another, and
so on. value is tested for each row. If value equals if1, then the result of the DECODE is then1; if
value equals if2, then the result of the DECODE is then2. This continues for virtually as many if-
then pairs as you can construct. If value equals none of the ifs, then the result of the DECODE is
else. Each of the ifs and thens as well as the else also can be a column or the result of a function
or computation. You can have up to 255 elements within the parentheses.

Let’s consider the checkout history for the bookshelf, as recorded in the BOOKSHELF_
CHECKOUT table:

column Name format a16
column Title format a24 word_wrapped
set pagesize 60

select * from BOOKSHELF_CHECKOUT;

NAME TITLE CHECKOUTD RETURNEDD
---------------- ------------------------ --------- ---------
JED HOPKINS INNUMERACY 01-JAN-02 22-JAN-02
GERHARDT KENTGEN WONDERFUL LIFE 02-JAN-02 02-FEB-02
DORAH TALBOT EITHER/OR 02-JAN-02 10-JAN-02
EMILY TALBOT ANNE OF GREEN GABLES 02-JAN-02 20-JAN-02
PAT LAVAY THE SHIPPING NEWS 02-JAN-02 12-JAN-02
ROLAND BRANDT THE SHIPPING NEWS 12-JAN-02 12-MAR-02
ROLAND BRANDT THE DISCOVERERS 12-JAN-02 01-MAR-02

T

Chapter 16: DECODE and CASE: if, then, and else in SQL 279

ROLAND BRANDT WEST WITH THE NIGHT 12-JAN-02 01-MAR-02
EMILY TALBOT MIDNIGHT MAGIC 20-JAN-02 03-FEB-02
EMILY TALBOT HARRY POTTER AND THE 03-FEB-02 14-FEB-02
 GOBLET OF FIRE
PAT LAVAY THE MISMEASURE OF MAN 12-JAN-02 12-FEB-02
DORAH TALBOT POLAR EXPRESS 01-FEB-02 15-FEB-02
DORAH TALBOT GOOD DOG, CARL 01-FEB-02 15-FEB-02
GERHARDT KENTGEN THE MISMEASURE OF MAN 13-FEB-02 05-MAR-02
FRED FULLER JOHN ADAMS 01-FEB-02 01-MAR-02
FRED FULLER TRUMAN 01-MAR-02 20-MAR-02
JED HOPKINS TO KILL A MOCKINGBIRD 15-FEB-02 01-MAR-02
DORAH TALBOT MY LEDGER 15-FEB-02 03-MAR-02
GERHARDT KENTGEN MIDNIGHT MAGIC 05-FEB-02 10-FEB-02

NOTE
Your output may contain an extra blank line due to word wrapping.
Extra blank lines are not shown here for readability.

As you look through the checkout list, you realize that some of the books were checked out
for a rather long time. You can order this list by the number of days checked out, to highlight the
readers who keep books for the longest time:

select Name, Title, ReturnedDate-CheckOutDate DaysOut
 from BOOKSHELF_CHECKOUT
 order by DaysOut desc;

NAME TITLE DAYSOUT
---------------- ------------------------ ----------
ROLAND BRANDT THE SHIPPING NEWS 59
ROLAND BRANDT THE DISCOVERERS 48
ROLAND BRANDT WEST WITH THE NIGHT 48
GERHARDT KENTGEN WONDERFUL LIFE 31
PAT LAVAY THE MISMEASURE OF MAN 31
FRED FULLER JOHN ADAMS 28
JED HOPKINS INNUMERACY 21
GERHARDT KENTGEN THE MISMEASURE OF MAN 20
FRED FULLER TRUMAN 19
EMILY TALBOT ANNE OF GREEN GABLES 18
DORAH TALBOT MY LEDGER 16
EMILY TALBOT MIDNIGHT MAGIC 14
DORAH TALBOT POLAR EXPRESS 14
DORAH TALBOT GOOD DOG, CARL 14
JED HOPKINS TO KILL A MOCKINGBIRD 14
EMILY TALBOT HARRY POTTER AND THE 11
 GOBLET OF FIRE
PAT LAVAY THE SHIPPING NEWS 10
DORAH TALBOT EITHER/OR 8
GERHARDT KENTGEN MIDNIGHT MAGIC 5

280 Part II: SQL and SQL*Plus

But is it specific readers who are the issue, or is it that there are certain categories of books
that take longer to read? Multiple variables are involved, and looking at them in isolation may
lead to incorrect decisions. What is the average number of days out for the books in each category?

select B.CategoryName,
 MIN(BC.ReturnedDate-BC.CheckOutDate) MinOut,
 MAX(BC.ReturnedDate-BC.CheckOutDate) MaxOut,
 AVG(BC.ReturnedDate-BC.CheckOutDate) AvgOut
 from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
 where BC.Title = B.Title
 group by B.CategoryName
 order by B.CategoryName;

CATEGORYNAME MINOUT MAXOUT AVGOUT
-------------------- ---------- ---------- ----------
ADULTFIC 10 59 27.6666667
ADULTNF 16 48 29.1111111
ADULTREF 8 8 8
CHILDRENFIC 5 18 12
CHILDRENPIC 14 14 14

This is more useful, but it doesn’t factor in the impact of the different people checking out
books in these categories. To accomplish that, you could use an additional level of grouping, but
the results will be easier to use if you create a crosstab report. The following listing generates a
report that shows the minimum, maximum, and average days out by person, by category. This
query uses the DECODE function to perform the calculations. Three borrowers are used for the
purposes of this example.

column CategoryName format a11

select B.CategoryName,
 MAX(DECODE(BC.Name, 'FRED FULLER',
 BC.ReturnedDate-BC.CheckOutDate,NULL)) MaxFF,
 AVG(DECODE(BC.Name, 'FRED FULLER',
 BC.ReturnedDate-BC.CheckOutDate,NULL)) AvgFF,
 MAX(DECODE(BC.Name, 'DORAH TALBOT',
 BC.ReturnedDate-BC.CheckOutDate,NULL)) MaxDT,
 AVG(DECODE(BC.Name, 'DORAH TALBOT',
 BC.ReturnedDate-BC.CheckOutDate,NULL)) AvgDT,
 MAX(DECODE(BC.Name, 'GERHARDT KENTGEN',
 BC.ReturnedDate-BC.CheckOutDate,NULL)) MaxGK,
 AVG(DECODE(BC.Name, 'GERHARDT KENTGEN',
 BC.ReturnedDate-BC.CheckOutDate,NULL)) AvgGK
 from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
 where BC.Title = B.Title
 group by B.CategoryName
 order by B.CategoryName;

CATEGORYNAM MAXFF AVGFF MAXDT AVGDT MAXGK AVGGK
----------- ---------- ---------- ---------- ---------- ---------- ----------
ADULTFIC
ADULTNF 28 23.5 16 16 31 25.5

Chapter 16: DECODE and CASE: if, then, and else in SQL 281

ADULTREF 8 8
CHILDRENFIC 5 5
CHILDRENPIC 14 14

The output now shows the borrowers across the top—Fred Fuller’s maximum checkout time is
the MaxFF column, Dorah Talbot’s is the MaxDT column, and Gerhardt Kentgen’s is the MaxGK
column. The output shows that the AdultNF category has the longest average checkout time for
each of the borrowers shown, and that in Gerhardt Kentgen’s case it is significantly longer than
the average checkout time in the other category he checked out.

How was this report generated? In the query, the grouping is by CategoryName. The MaxFF
column query is shown here:

select B.CategoryName,
 MAX(DECODE(BC.Name, 'FRED FULLER',
 BC.ReturnedDate-BC.CheckOutDate,NULL)) MaxFF,

DECODE is performing an if-then check on the data: If the BC.Name column value in a row is
'FRED FULLER', then calculate the difference between the ReturnedDate and CheckOutDate; else,
return a NULL. That list of values is then evaluated and the maximum value is returned. A similar
set of operations returns the average checkout time for Fred Fuller:

 AVG(DECODE(BC.Name, 'FRED FULLER',
 BC.ReturnedDate-BC.CheckOutDate,NULL)) AvgFF,

Replacing Values via DECODE
In the last example, DECODE was used to return values conditionally, depending on the name
of the person who checked out a book. You can also use DECODE to replace values in a list. For
example, selecting the category names from BOOKSHELF yields the following:

select distinct CategoryName from BOOKSHELF
 order by CategoryName;

CATEGORYNAM

ADULTFIC
ADULTNF
ADULTREF
CHILDRENFIC
CHILDRENNF
CHILDRENPIC

To replace these names, you could join BOOKSHELF to CATEGORY and select ParentCategory
and SubCategory from the CATEGORY table. If the list of categories is static, you could avoid the
join to the CATEGORY table and perform the replacement via a DECODE function, as shown in the
following listing (note how DECODE supports multiple if-then combinations within a single call).

select distinct
 DECODE(CategoryName,'ADULTFIC','Adult Fiction',
 'ADULTNF','Adult Nonfiction',
 'ADULTREF','Adult Reference',
 'CHILDRENFIC','Children Fiction',
 'CHILDRENNF','Children Nonfiction',

282 Part II: SQL and SQL*Plus

 'CHILDRENPIC','Children Picturebook',
 CategoryName)
 from BOOKSHELF
 order by 1;

DECODE(CATEGORYNAME,

Adult Fiction
Adult Nonfiction
Adult Reference
Children Fiction
Children Nonfiction
Children Picturebook

In this case, the data is static; for volatile data, hard-coding the translations into the application
code would not be an acceptable programming practice. The technique shown here is useful for
transaction-processing systems in which you are trying to minimize the number of database calls
performed. In this example, there is no database access required to change 'ADULTNF' to 'Adult
Nonfiction'; the change occurs within the DECODE function call. Note that if any other categories
are found, the else condition in the DECODE function returns the original CategoryName column
value.

DECODE Within DECODE
You can place DECODE function calls within other DECODE function calls. Let’s say you want to
charge late fees, with different late-fee rates for different categories of books. Adult category books
may be kept later, but the penalty for late days will be higher.

Start with a basic flat rate charge of $0.20 per day for books checked out for more than 14 days:

column Name format a16
column Title format a20 word_wrapped
column DaysOut format 999.99 heading 'Days Out'
column DaysLate format 999.99 heading 'Days Late'
set pagesize 60
break on Name

select Name, Title, ReturnedDate,
 ReturnedDate-CheckoutDate as DaysOut /*Count days*/,
 ReturnedDate-CheckoutDate -14 DaysLate,
 (ReturnedDate-CheckoutDate -14)*0.20 LateFee
 from BOOKSHELF_CHECKOUT
where ReturnedDate-CheckoutDate > 14
 order by Name, CheckoutDate;

NAME TITLE RETURNEDD Days Out Days Late LATEFEE
---------------- -------------------- --------- -------- --------- ----------
DORAH TALBOT MY LEDGER 03-MAR-02 16.00 2.00 .4
EMILY TALBOT ANNE OF GREEN GABLES 20-JAN-02 18.00 4.00 .8
FRED FULLER JOHN ADAMS 01-MAR-02 28.00 14.00 2.8
 TRUMAN 20-MAR-02 19.00 5.00 1
GERHARDT KENTGEN WONDERFUL LIFE 02-FEB-02 31.00 17.00 3.4

Chapter 16: DECODE and CASE: if, then, and else in SQL 283

 THE MISMEASURE OF 05-MAR-02 20.00 6.00 1.2
 MAN
JED HOPKINS INNUMERACY 22-JAN-02 21.00 7.00 1.4
PAT LAVAY THE MISMEASURE OF 12-FEB-02 31.00 17.00 3.4
 MAN
ROLAND BRANDT THE DISCOVERERS 01-MAR-02 48.00 34.00 6.8
 THE SHIPPING NEWS 12-MAR-02 59.00 45.00 9
 WEST WITH THE NIGHT 01-MAR-02 48.00 34.00 6.8

For books in the Adult categories, increase the allowed days late to 21 days. This won’t change
the number of days out, but it will change the DaysLate column calculation. Because CategoryName
is not a column in BOOKSHELF_CHECKOUT, this modification also requires the addition of the
BOOKSHELF table to the from clause:

select BC.Name, BC.Title, BC.ReturnedDate,
 BC.ReturnedDate-BC.CheckoutDate as DaysOut /*Count days*/,
 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
 BC.ReturnedDate-BC.CheckoutDate -21,
 BC.ReturnedDate-BC.CheckoutDate -14) DaysLate,
 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
 (BC.ReturnedDate-BC.CheckoutDate -21)*0.30,
 (BC.ReturnedDate-BC.CheckoutDate -14)*0.20) LateFee
 from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
 where BC.Title = B.Title
 and BC.ReturnedDate-BC.CheckoutDate >
 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',21,14)
 order by BC.Name, BC.CheckoutDate;

NAME TITLE RETURNEDD Days Out Days Late LATEFEE
---------------- -------------------- --------- -------- --------- ----------
EMILY TALBOT ANNE OF GREEN GABLES 20-JAN-02 18.00 4.00 .8
FRED FULLER JOHN ADAMS 01-MAR-02 28.00 7.00 2.1
GERHARDT KENTGEN WONDERFUL LIFE 02-FEB-02 31.00 10.00 3
PAT LAVAY THE MISMEASURE OF 12-FEB-02 31.00 10.00 3
 MAN
ROLAND BRANDT THE DISCOVERERS 01-MAR-02 48.00 27.00 8.1
 WEST WITH THE NIGHT 01-MAR-02 48.00 27.00 8.1
 THE SHIPPING NEWS 12-MAR-02 59.00 38.00 11.4

In the select clause, the query logic for the DaysLate column is

 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
 BC.ReturnedDate-BC.CheckoutDate -21,
 BC.ReturnedDate-BC.CheckoutDate -14) DaysLate

In DECODE’s if-then-else format, this says, “If the first five characters of the CategoryName
column match the string 'ADULT', then subtract 21 from the number of days late; otherwise,
subtract 14 days.” The LateFee calculation uses similar logic. The where clause uses DECODE to
determine the limiting value for the rows returned—for ADULT category books, allow 21 days;
otherwise, allow 14:

 and BC.ReturnedDate-BC.CheckoutDate >
 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',21,14)

284 Part II: SQL and SQL*Plus

Now add an additional rule: For Adult fiction category books, the late fee will be double the
late fee for other Adult books. From the last query, the calculation for LateFee is

 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
 (BC.ReturnedDate-BC.CheckoutDate –21)*0.30,
 (BC.ReturnedDate-BC.CheckoutDate -14)*0.20) LateFee

The new rule requires an additional category check within the DECODE function already
performed. The new LateFee calculation is shown here:

 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
 DECODE(SUBSTR(CategoryName,6,3),'FIC',
 (BC.ReturnedDate-BC.CheckoutDate –21)*0.60,
 (BC.ReturnedDate-BC.CheckoutDate –21)*0.30),
 (BC.ReturnedDate-BC.CheckoutDate -14)*0.20) LateFee

Reading through the preceding listing, the first DECODE function tells Oracle that if the first
five letters of the CategoryName are 'ADULT', then perform the second DECODE function. The
second DECODE tells Oracle that if letters 6, 7, and 8 of the CategoryName are 'FIC', then the
late fee is $0.60 per day after the twenty-first day; otherwise, it is $0.30 per day after the twenty-
first day. At that point, the inner DECODE function completes. For the first DECODE function, the
else clause (for non-ADULT category books) then specifies the late-fee calculation. The query and
result are shown in the following listing; you can see the impact by comparing the LateFee column
for 'THE SHIPPING NEWS' in this report and the last report:

select BC.Name, BC.Title, BC.ReturnedDate,
 BC.ReturnedDate-BC.CheckoutDate as DaysOut /*Count days*/,
 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
 BC.ReturnedDate-BC.CheckoutDate -21,
 BC.ReturnedDate-BC.CheckoutDate -14) DaysLate,
 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
 DECODE(SUBSTR(CategoryName,6,3),'FIC',
 (BC.ReturnedDate-BC.CheckoutDate -21)*0.60,
 (BC.ReturnedDate-BC.CheckoutDate -21)*0.30),
 (BC.ReturnedDate-BC.CheckoutDate -14)*0.20) LateFee
 from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
 where BC.Title = B.Title
 and BC.ReturnedDate-BC.CheckoutDate >
 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',21,14)
 order by BC.Name, BC.CheckoutDate;

NAME TITLE RETURNEDD Days Out Days Late LATEFEE
---------------- -------------------- --------- -------- --------- ----------
EMILY TALBOT ANNE OF GREEN GABLES 20-JAN-02 18.00 4.00 .8
FRED FULLER JOHN ADAMS 01-MAR-02 28.00 7.00 2.1
GERHARDT KENTGEN WONDERFUL LIFE 02-FEB-02 31.00 10.00 3
PAT LAVAY THE MISMEASURE OF 12-FEB-02 31.00 10.00 3
 MAN
ROLAND BRANDT THE DISCOVERERS 01-MAR-02 48.00 27.00 8.1
 WEST WITH THE NIGHT 01-MAR-02 48.00 27.00 8.1
 THE SHIPPING NEWS 12-MAR-02 59.00 38.00 22.8

Chapter 16: DECODE and CASE: if, then, and else in SQL 285

You can nest DECODEs within other DECODEs to support complex logic within your data
processing. For example, you may choose to print one column if it has a non-NULL value, and
a second column if the first is NULL. With DECODE, that is a simple function call:

DECODE(Column1, NULL, Column2, Column1)

If Column1 is NULL, Column2 will be returned; otherwise, Column1’s non-NULL value will be
returned. You could also use NVL or the COALESCE and NULLIF functions to perform similar logic.

COALESCE will return the first non-NULL value encountered in a list of values. The preceding
DECODE example could be rewritten as

COALESCE(Column1, Column2)

NOTE
COALESCE can take more than two arguments, but NVL cannot.

Because COALESCE’s name does not clearly convey its usage, be sure to provide comments
within your code to explain the logical tests performed.

Greater Than and Less Than in DECODE
DECODE supports logic checks, but how do you do numeric comparisons in this format? The
simplest solution is often to use the SIGN function. SIGN returns a 1 if the number is positive, 0
if the number is 0, and –1 if the number is negative. Because SIGN operates on numbers, you can
evaluate any function that returns a number, including date arithmetic.

Let’s modify the LateFee business rule again. Using the same base calculation, we’ll modify
the outcome so that we will not collect late fees that are less than or equal to $4.00. Here is the
original LateFee calculation:

 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
 DECODE(SUBSTR(CategoryName,6,3),'FIC',
 (BC.ReturnedDate-BC.CheckoutDate –21)*0.60,
 (BC.ReturnedDate-BC.CheckoutDate –21)*0.30),
 (BC.ReturnedDate-BC.CheckoutDate -14)*0.20) LateFee

If that value is less than 4, we will return a 0; otherwise, we will return the calculated value.
To implement this requirement, subtract 4 from the LateFee value; if the result is positive (its SIGN
value is 1), return that result; otherwise, return a 0.

DECODE(SIGN(
 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
 DECODE(SUBSTR(CategoryName,6,3),'FIC',
 (BC.ReturnedDate-BC.CheckoutDate –21)*0.60,
 (BC.ReturnedDate-BC.CheckoutDate –21)*0.30),
 (BC.ReturnedDate-BC.CheckoutDate -14)*0.20) –4),
 1,
 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
 DECODE(SUBSTR(CategoryName,6,3),'FIC',
 (BC.ReturnedDate-BC.CheckoutDate –21)*0.60,
 (BC.ReturnedDate-BC.CheckoutDate –21)*0.30),
 (BC.ReturnedDate-BC.CheckoutDate -14)*0.20),
 0) LateFee

286 Part II: SQL and SQL*Plus

Building from a simple foundation, this series of DECODE function calls allows you to perform
very complex logic on the LateFee calculations. The first DECODE evaluates the SIGN of the next
DECODE function result when 4 is subtracted from it. If that number is positive, the calculated
late fee is returned; otherwise, a 0 is returned. The following listing shows this calculation and the
output that results:

select BC.Name, BC.Title, BC.ReturnedDate,
 BC.ReturnedDate-BC.CheckoutDate as DaysOut /*Count days*/,
 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
 BC.ReturnedDate-BC.CheckoutDate -21,
 BC.ReturnedDate-BC.CheckoutDate -14) DaysLate,
DECODE(SIGN(
 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
 DECODE(SUBSTR(CategoryName,6,3),'FIC',
 (BC.ReturnedDate-BC.CheckoutDate -21)*0.60,
 (BC.ReturnedDate-BC.CheckoutDate -21)*0.30),
 (BC.ReturnedDate-BC.CheckoutDate -14)*0.20) -4),
 1,
 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
 DECODE(SUBSTR(CategoryName,6,3),'FIC',
 (BC.ReturnedDate-BC.CheckoutDate -21)*0.60,
 (BC.ReturnedDate-BC.CheckoutDate -21)*0.30),
 (BC.ReturnedDate-BC.CheckoutDate -14)*0.20),
 0) LateFee
 from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
 where BC.Title = B.Title
 and BC.ReturnedDate-BC.CheckoutDate >
 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',21,14)
 order by BC.Name, BC.CheckoutDate;

NAME TITLE RETURNEDD Days Out Days Late LATEFEE
---------------- -------------------- --------- -------- --------- ----------
EMILY TALBOT ANNE OF GREEN GABLES 20-JAN-02 18.00 4.00 0
FRED FULLER JOHN ADAMS 01-MAR-02 28.00 7.00 0
GERHARDT KENTGEN WONDERFUL LIFE 02-FEB-02 31.00 10.00 0
PAT LAVAY THE MISMEASURE OF 12-FEB-02 31.00 10.00 0
 MAN
ROLAND BRANDT THE DISCOVERERS 01-MAR-02 48.00 27.00 8.1
 WEST WITH THE NIGHT 01-MAR-02 48.00 27.00 8.1
 THE SHIPPING NEWS 12-MAR-02 59.00 38.00 22.8

You can eliminate the display of the first four rows (with $0 late fees) by making a similar
modification to the where clause.

Using CASE
You can use the CASE function in place of DECODE. The CASE function uses the keywords when,
then, else, and end to indicate the logic path followed. In general, SQL using the CASE function is
wordier than the equivalent DECODE but may be easier to read and maintain.

Consider this simple DECODE example from earlier in this chapter:

Chapter 16: DECODE and CASE: if, then, and else in SQL 287

select distinct
 DECODE(CategoryName,'ADULTFIC','Adult Fiction',
 'ADULTNF','Adult Nonfiction',
 'ADULTREF','Adult Reference',
 'CHILDRENFIC','Children Fiction',
 'CHILDRENNF','Children Nonfiction',
 'CHILDRENPIC','Children Picturebook',
 CategoryName)
 from BOOKSHELF;

The equivalent CASE function is

select distinct
 CASE CategoryName
 when 'ADULTFIC' then 'Adult Fiction'
 when 'ADULTNF' then 'Adult Nonfiction'
 when 'ADULTREF' then 'Adult Reference'
 when 'CHILDRENFIC' then 'Children Fiction'
 when 'CHILDRENNF' then 'Children Nonfiction'
 when 'CHILDRENPIC' then 'Children Picturebook'
 else CategoryName
 end
 from BOOKSHELF
 order by 1;

CASECATEGORYNAMEWHEN

Adult Fiction
Adult Nonfiction
Adult Reference
Children Fiction
Children Nonfiction
Children Picturebook

CASE evaluates the first when clause and returns a match if the limiting condition is met. As
with DECODE, you can nest CASE function calls. How would you perform the LateFee column
calculations using CASE?

The DECODE function began by calculating a higher rate for ADULT category books:

 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
 (BC.ReturnedDate-BC.CheckoutDate –21)*0.30,
 (BC.ReturnedDate-BC.CheckoutDate -14)*0.20) LateFee

The CASE equivalent is

CASE SUBSTR(CategoryName,1,5)
 when 'ADULT' then (BC.ReturnedDate-BC.CheckoutDate –21)*0.30
 else (BC.ReturnedDate-BC.CheckoutDate -14)*0.20
end

The second rule (ADULTFIC books have doubled late fees) requires a nested CASE command:

CASE SUBSTR(CategoryName,1,5)
 when 'ADULT' then

288 Part II: SQL and SQL*Plus

 CASE SUBSTR(CategoryName,6,3)
 when 'FIC' then (BC.ReturnedDate-BC.CheckoutDate –21)*0.60
 else (BC.ReturnedDate-BC.CheckoutDate –21)*0.30
 end
 else (BC.ReturnedDate-BC.CheckoutDate -14)*0.20
end

This is more complex, but the logic is very easy to follow and will usually be simpler to maintain
than the equivalent DECODE clause. Now consider the final condition: If the calculated late fee is
less than or equal to $4, return a 0. Because we are using the CASE function, we do not need to use a
SIGN function—we can just use a “<” comparison as part of the command processing. The following
example shows how to add this check: An additional CASE function is added, and the inner CASE
function call is enclosed in parentheses. The result is compared to $4:

CASE when
 (CASE SUBSTR(CategoryName,1,5)
 when 'ADULT' then
 CASE SUBSTR(CategoryName,6,3)
 when 'FIC' then (BC.ReturnedDate-BC.CheckoutDate –21)*0.60
 else (BC.ReturnedDate-BC.CheckoutDate –21)*0.30
 end
 else (BC.ReturnedDate-BC.CheckoutDate -14)*0.20
 end)
 < 4 then 0

The else clause for this CASE function call is the same as the inner CASE execution—it calculates
the late fee:

else
 CASE SUBSTR(CategoryName,1,5)
 when 'ADULT' then
 CASE SUBSTR(CategoryName,6,3)
 when 'FIC' then (BC.ReturnedDate-BC.CheckoutDate –21)*0.60
 else (BC.ReturnedDate-BC.CheckoutDate –21)*0.30
 end
 else (BC.ReturnedDate-BC.CheckoutDate -14)*0.20
 end
end

The full query is shown in the following listing, along with its output:

column LateFee format 999.99

select BC.Name, BC.Title, BC.ReturnedDate,
 BC.ReturnedDate-BC.CheckoutDate as DaysOut /*Count days*/,
 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',
 BC.ReturnedDate-BC.CheckoutDate -21,
 BC.ReturnedDate-BC.CheckoutDate -14) DaysLate,
CASE when
 (CASE SUBSTR(CategoryName,1,5)
 when 'ADULT' then
 CASE SUBSTR(CategoryName,6,3)
 when 'FIC' then (BC.ReturnedDate-BC.CheckoutDate -21)*0.60

Chapter 16: DECODE and CASE: if, then, and else in SQL 289

 else (BC.ReturnedDate-BC.CheckoutDate -21)*0.30
 end
 else (BC.ReturnedDate-BC.CheckoutDate -14)*0.20
 end)
 < 4 then 0 else
 CASE SUBSTR(CategoryName,1,5)
 when 'ADULT' then
 CASE SUBSTR(CategoryName,6,3)
 when 'FIC' then (BC.ReturnedDate-BC.CheckoutDate -21)*0.60
 else (BC.ReturnedDate-BC.CheckoutDate -21)*0.30
 end
 else (BC.ReturnedDate-BC.CheckoutDate -14)*0.20
 end
end AS LateFee
 from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
 where BC.Title = B.Title
 and BC.ReturnedDate-BC.CheckoutDate >
 DECODE(SUBSTR(CategoryName,1,5), 'ADULT',21,14)
 order by BC.Name, BC.CheckoutDate;

NAME TITLE RETURNEDD Days Out Days Late LATEFEE
---------------- -------------------- --------- -------- --------- -------
EMILY TALBOT ANNE OF GREEN GABLES 20-JAN-02 18.00 4.00 .00
FRED FULLER JOHN ADAMS 01-MAR-02 28.00 7.00 .00
GERHARDT KENTGEN WONDERFUL LIFE 02-FEB-02 31.00 10.00 .00
PAT LAVAY THE MISMEASURE OF 12-FEB-02 31.00 10.00 .00
 MAN
ROLAND BRANDT THE DISCOVERERS 01-MAR-02 48.00 27.00 8.10
 WEST WITH THE NIGHT 01-MAR-02 48.00 27.00 8.10
 THE SHIPPING NEWS 12-MAR-02 59.00 38.00 22.80

Comparing the CASE version to the DECODE version earlier in this chapter, you can see that
the CASE command is six lines longer, but it’s simpler to read and maintain. CASE offers a powerful
alternative to DECODE—and both CASE and DECODE provide solid solutions when you need to
perform logic within your queries.

Using PIVOT
As of Oracle Database 11g, you can use the PIVOT and UNPIVOT operators to work with “crosstab”
data. In a crosstab report, rows of data are displayed in separate columns. For example, earlier in
this chapter values in rows of data (names) were used to populate columns of a report. In this query,
the second and third columns are the Fred Fuller columns, the fourth and fifth are the Dorah Talbot
columns, and so on. In the second column, the DECODE function checks to see if the Name column
value is 'FRED FULLER'. If it is, the calculation is performed; otherwise, a NULL is returned.

column CategoryName format a11

select B.CategoryName,
 MAX(DECODE(BC.Name, 'FRED FULLER',
 BC.ReturnedDate-BC.CheckOutDate,NULL)) MaxFF,
 AVG(DECODE(BC.Name, 'FRED FULLER',
 BC.ReturnedDate-BC.CheckOutDate,NULL)) AvgFF,

290 Part II: SQL and SQL*Plus

 MAX(DECODE(BC.Name, 'DORAH TALBOT',
 BC.ReturnedDate-BC.CheckOutDate,NULL)) MaxDT,
 AVG(DECODE(BC.Name, 'DORAH TALBOT',
 BC.ReturnedDate-BC.CheckOutDate,NULL)) AvgDT,
 MAX(DECODE(BC.Name, 'GERHARDT KENTGEN',
 BC.ReturnedDate-BC.CheckOutDate,NULL)) MaxGK,
 AVG(DECODE(BC.Name, 'GERHARDT KENTGEN',
 BC.ReturnedDate-BC.CheckOutDate,NULL)) AvgGK
 from BOOKSHELF_CHECKOUT BC, BOOKSHELF B
 where BC.Title = B.Title
 group by B.CategoryName
 order by B.CategoryName;

CATEGORYNAM MAXFF AVGFF MAXDT AVGDT MAXGK AVGGK
----------- ---------- ---------- ---------- ---------- ---------- ----------
ADULTFIC
ADULTNF 28 23.5 16 16 31 25.5
ADULTREF 8 8
CHILDRENFIC 5 5
CHILDRENPIC 14 14

In the output, the data has been pivoted—rows of entries (such as those that contain 'FRED
FULLER' in the Name column) have been transformed by the DECODE function so separate rows
(for separate names) are now displayed as separate columns. The following example further
illustrates the pivoting by eliminating the join to the BOOKSHELF table:

column CategoryName format a11

select MAX(DECODE(BC.Name, 'FRED FULLER',
 BC.ReturnedDate-BC.CheckOutDate,NULL)) MaxFred,
 MAX(DECODE(BC.Name, 'DORAH TALBOT',
 BC.ReturnedDate-BC.CheckOutDate,NULL)) MaxDorah
 from BOOKSHELF_CHECKOUT BC;

 MAXFRED MAXDORAH
---------- ----------
 28 16

The PIVOT operator simplifies the generation of this type of report.

select * from (
 select Name, ReturnedDate, CheckOutDate
 from BOOKSHELF_CHECKOUT BC
)
pivot
(
 MAX(ReturnedDate-CheckOutDate)
 for Name in ('FRED FULLER','DORAH TALBOT')
)
/

Chapter 16: DECODE and CASE: if, then, and else in SQL 291

'FRED FULLER' 'DORAH TALBOT'
------------- --------------
 28 16

The PIVOT query selects the data from the BOOKSHELF_CHECKOUT table and then pivots
it, using the limiting conditions in the for clause to determine which rows to evaluate. In this
case, it takes the rows for which the Name is 'FRED FULLER' and calculates the maximum
difference between the ReturnedDate and CheckOutDate for the first column, and uses the
'DORAH TALBOT' rows for the second column.

The two queries produce the identical results—the maximum time a book was checked out
for two different people, presented as separate columns in the report. The code for the PIVOT
operator is simpler to read, and simpler to manage. If, for example, you wanted to look at
additional people’s records, modifying the PIVOT code is simple—just add the names to the in
clause and new columns will appear in the output; in the DECODE version you will need to add
the code for each new column separately.

Along with a PIVOT operator, Oracle Database 11g also provides an UNPIVOT operator. As
you would expect, UNPIVOT performs the opposite function, turning columns into rows. Note
that UNPIVOT cannot always undo a PIVOT operation; for example, if the PIVOT operation
performs an aggregate function, you cannot use UNPIVOT to generate the detail rows that were
aggregated.

The following example (attributed to Lucas Jellema of Oracle) illustrates the use of the UNPIVOT
operator. In this example, five separate values are selected from the DUAL table—one for each
vowel in the alphabet. Each of those selections would normally be displayed as a separate column
(in this case, named V1, V2, V3, V4, and V5). The UNPIVOT operator then transforms those
columns into rows for the output.

select value
from
(
 (
 select
 'a' v1,
 'e' v2,
 'i' v3,
 'o' v4,
 'u' v5
 from DUAL
)
 unpivot
 (
 value
 for value_type in
 (v1,v2,v3,v4,v5)
)
)
/

292 Part II: SQL and SQL*Plus

The output for this query is shown in the following listing:

V
-
a
e
i
o
u

You can use the PIVOT and UNPIVOT operators to transform columns into rows and back
again, as shown in these examples. In combination with DECODE and CASE, these operators
provide powerful tools for the display and manipulation of data.

CHAPTER
17

Creating and Managing
Tables, Views, Indexes,

Clusters, and Sequences

293

294 Part II: SQL and SQL*Plus

ntil now, the emphasis of this book has been on using tables. This chapter looks
at creating, dropping, and changing tables, creating views, and using options such
as index-organized tables. You’ve seen numerous create table commands to this
point; this chapter will reinforce those examples and show how to use the latest
options. You will also see the commands for creating and managing views, indexes,

clusters, and sequences.

Creating a Table
Consider the TROUBLE table. This is similar to the COMFORT table discussed earlier in the book,
but it is used to track cities with unusual weather patterns.

describe TROUBLE

Name Null? Type
------------------------------- -------- ------------
CITY NOT NULL VARCHAR2(13)
SAMPLEDATE NOT NULL DATE
NOON NUMBER(3,1)
MIDNIGHT NUMBER(3,1)
PRECIPITATION NUMBER

The columns in the TROUBLE table represent three major datatypes in Oracle—VARCHAR2,
DATE, and NUMBER. Here is the SQL that created this Oracle table:

create table TROUBLE (
City VARCHAR2(13) NOT NULL,
SampleDate DATE NOT NULL,
Noon NUMBER(3,1),
Midnight NUMBER(3,1),
Precipitation NUMBER
);

These are the basic elements of this command:

The words create table

The name of the table

An opening parenthesis

Column definitions

A closing parenthesis

A SQL terminator

The individual column definitions are separated by commas. There is no comma after the last
column definition. The table and column names must start with a letter of the alphabet, but may
include letters, numbers, and underscores. Names may be 1 to 30 characters in length, must be

■

■

■

■

■

■

U

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 295

unique within the table, and cannot be an Oracle reserved word (see “Reserved Words” in the
Alphabetical Reference of this book).

If the names are not within double quotes, case does not matter in naming a table. There are
no options for DATE datatypes. Varying-length character datatypes must have their maximum
length specified. NUMBERs may be either high precision (up to 38 digits) or specified precision,
based on the maximum number of digits and the number of places allowed to the right of the
decimal (an Amount field for U.S. currency, for instance, would have only two decimal places).

NOTE
Do not enclose table and column names within double quotes;
otherwise, case will matter. This can be disastrous for your users
or developers.

See Part V of this book for additional create table options for object-relational features.

Character Width and NUMBER Precision
Specifying the maximum length for character (CHAR and VARCHAR2) columns and the precision
for NUMBER columns has consequences that must be considered during the design of the table.
Improper decisions can be corrected later, using the alter table command, but the process can be
difficult.

Deciding on a Proper Width
A character column that is not wide enough for the data you want to put in it will cause an insert
to fail and result in an error message:

ERROR at line 1:
ORA-12899: value too large for column "PRACTICE"."TROUBLE"."CITY"
(actual: 16, maximum: 13)

The maximum width for CHAR (fixed-length) columns is 2,000 characters. VARCHAR2
(varying-length character) columns can have up to 4,000 characters. In assigning width to a
column, allot enough space to allow for all future possibilities. A CHAR(15) for a city name, for
instance, is just going to get you in trouble later on. You’ll have to either alter the table or truncate
or distort the names of some cities.

NOTE
There is no penalty in Oracle for defining a wide VARCHAR2 column.
Oracle is clever enough not to store blank spaces at the end of
VARCHAR2 columns. The city name SAN FRANCISCO, for example,
will be stored in 13 spaces, even if you’ve defined the column as
VARCHAR2(50). And if a column has nothing in it (NULL), Oracle
will store nothing in the column, not even a blank space (it does store
a couple of bytes of internal database control information, but this is
unaffected by the size you specify for the column). The only effect that
choosing a higher number will have is in the default SQL*Plus column
formatting. SQL*Plus will create a default heading the same width as
the VARCHAR2 definition.

296 Part II: SQL and SQL*Plus

Choosing NUMBER Precision
A NUMBER column with incorrect precision will have one of two consequences. Oracle will
either reject the attempt to insert the row of data, or will drop some of the data’s precision. Here
are four rows of data about to be entered into Oracle:

insert into TROUBLE values
 ('PLEASANT LAKE','21-MAR-03',
 39.99, -1.31, 3.6);

insert into TROUBLE values
 ('PLEASANT LAKE','22-JUN-03',
 101.44, 86.2, 1.63);

insert into TROUBLE values
 ('PLEASANT LAKE','23-SEP-03',
 92.85, 79.6, 1.00003);

insert into TROUBLE values
 ('PLEASANT LAKE','22-DEC-03',
 -17.445, -10.4, 2.4);

These are the results of this attempt:

insert into TROUBLE values
 ('PLEASANT LAKE','21-MAR-03',
 39.99, -1.31, 3.6);

1 row created.

insert into TROUBLE values
 ('PLEASANT LAKE','22-JUN-03',
 101.44, 86.2, 1.63);
 *
ERROR at line 3:
ORA-01438: value larger than specified precision allows for this column

insert into TROUBLE values
 ('PLEASANT LAKE','23-SEP-03',
 92.85, 79.6, 1.00003);

1 row created.

insert into TROUBLE values
 ('PLEASANT LAKE','22-DEC-03',
 -17.445, -10.4, 2.4);

1 row created.

The first, third, and fourth rows were inserted, but the second insert failed because 101.44
exceeded the precision set in the create table statement, where Noon was defined as NUMBER(3,1).
The 3 here indicates the maximum number of digits Oracle will store. The 1 means that one of
those three digits is reserved for a position to the right of the decimal point. Therefore, 12.3 would
be a legitimate number, but 123.4 would not be.

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 297

Note that the error here is caused by the 101, not the .44, because NUMBER(3,1) leaves only
two positions available to the left of the decimal point. The .44 will not cause the “value larger than
specified precision” error. It would simply be rounded to one decimal place. This will be demonstrated
shortly, but first, let’s look at the results of a query of the four rows we’ve attempted to insert:

select * from TROUBLE;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- -------- -------- -------------
PLEASANT LAKE 21-MAR-03 40 -1.3 3.6
PLEASANT LAKE 23-SEP-03 92.9 79.6 1.00003
PLEASANT LAKE 22-DEC-03 -17.4 -10.4 2.4

The three rows were successfully inserted; only the problematic row is missing. Oracle never
inserted the single row for the insert statement that failed.

Rounding During Insertion
Suppose you correct the create table statement and increase the number of digits available for
Noon and Midnight, as shown here:

drop table TROUBLE;
create table TROUBLE (
City VARCHAR2(13) NOT NULL,
SampleDate DATE NOT NULL,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER
);

Now the four insert statements will all be successful. A query now will reveal this:

insert into TROUBLE values
 ('PLEASANT LAKE','21-MAR-03',
 39.99, -1.31, 3.6);

insert into TROUBLE values
 ('PLEASANT LAKE','22-JUN-03',
 101.44, 86.2, 1.63);

insert into TROUBLE values
 ('PLEASANT LAKE','23-SEP-03',
 92.85, 79.6, 1.00003);

insert into TROUBLE values
 ('PLEASANT LAKE','22-DEC-03',
 -17.445, -10.4, 2.4);

select * from TROUBLE;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- -------- -------- -------------
PLEASANT LAKE 21-MAR-03 40 -1.3 3.6
PLEASANT LAKE 22-JUN-03 101.4 86.2 1.63

298 Part II: SQL and SQL*Plus

PLEASANT LAKE 23-SEP-03 92.9 79.6 1.00003
PLEASANT LAKE 22-DEC-03 -17.4 -10.4 2.4

Look at the first insert statement. The value for Noon is 39.99. In the query, it is rounded to 40.
Midnight in the insert is –1.31. In the query it is –1.3. Oracle rounds the number based on the digit
just to the right of the allowed precision. Table 17-1 shows the effects of precision in several
examples. See Chapter 9 for examples of the ROUND function.

TABLE 17-1 Effect of Precision on inserts

Value in insert Statement Actual Value in Table

For precision of NUMBER(4,1)

123.4 123.4

123.44 123.4

123.45 123.5

123.445 123.4

1234.5 insert fails

For precision of NUMBER(4)

123.4 123

123.44 123

123.45 123

123.445 123

1234.5 1235

12345 insert fails

For precision of NUMBER(4,-1)

123.4 120

123.44 120

123.45 120

123.445 120

125 130

1234.5 1230

12345 insert fails

For precision of NUMBER

123.4 123.4

123.44 123.44

123.45 123.45

123.445 123.445

125 125

1234.5 1234.5

12345.6789012345678 12345.6789012345678

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 299

Constraints in create table
You can use the create table statement to enforce several different kinds of constraints on a table:
candidate keys, primary keys, foreign keys, and check conditions. A constraint clause can
constrain a single column or group of columns in a table. The point of these constraints is to get
Oracle to do most of the work in maintaining the integrity of your database. The more constraints
you add to a table definition, the less work you have to do in applications to maintain the data.
On the other hand, the more constraints there are in a table, the longer it takes to update the data.

You can specify constraints in one of two ways: as part of the column definition (known as
a column constraint) or at the end of the create table statement (known as a table constraint).
Clauses that constrain several columns must be table constraints.

The Candidate Key
A candidate key is a combination of one or more columns, the values of which uniquely identify
each row of a table. The following listing shows the creation of a UNIQUE constraint for the
TROUBLE table:

drop table TROUBLE;

create table TROUBLE (
City VARCHAR2(13) NOT NULL,
SampleDate DATE NOT NULL,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER,
constraint TROUBLE_UQ UNIQUE (City, SampleDate)
);

The key of this table is the combination of City and SampleDate. Notice that both columns
are also declared to be NOT NULL. This feature requires you to specify values for certain columns
in order for rows to be inserted. Clearly, temperature and precipitation information is not useful
without knowing where or when it was collected. This technique is common for columns that are
the primary key of a table, but it’s also useful if certain columns are critical for the row of data to
be meaningful. If NOT NULL isn’t specified, the column can have NULL values.

When you create a UNIQUE constraint, Oracle will create a unique index to enforce the
uniqueness of the values.

The Primary Key
The primary key of a table is one of the candidate keys that you give some special characteristics.
You can have only one primary key, and a primary key column cannot contain NULLs.

The following create table statement has the same effect as the previous one, except that you
can have several UNIQUE constraints but only one PRIMARY KEY constraint:

drop table TROUBLE;
create table TROUBLE (
City VARCHAR2(13),
SampleDate DATE,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER,
constraint TROUBLE_PK PRIMARY KEY (City, SampleDate)
);

300 Part II: SQL and SQL*Plus

For single-column primary or candidate keys, you can define the key on the column with a
column constraint instead of a table constraint:

create table AUTHOR
(AuthorName VARCHAR2(50) primary key,
Comments VARCHAR2(100));

In this case, the AuthorName column is the primary key, and Oracle will generate a name for
the PRIMARY KEY constraint. This is not recommended if you want to enforce a common naming
standard for keys, as discussed later in “Naming Constraints.”

Designating Index Tablespaces
UNIQUE and PRIMARY KEY constraints create indexes. Unless you tell Oracle differently, those
indexes will be placed in your default tablespace (tablespaces are described fully in Chapter 22).
To specify a different tablespace, use the using index tablespace clause of the create table command,
as shown in the following listing:

create table AUTHOR2
(AuthorName VARCHAR2(50),
Comments VARCHAR2(100),
constraint AUTHOR_PK primary key (AuthorName)
 using index tablespace USERS);

The index associated with the AUTHOR_PK primary key constraint will be placed in the USERS
tablespace. See Chapter 22 for details on the management of tablespaces.

NOTE
In most default installations, the USERS tablespace is created and is
the default tablespace.

The Foreign Key
A foreign key is a combination of columns with values based on the primary key values from another
table. A foreign key constraint, also known as a referential integrity constraint, specifies that the
values of the foreign key correspond to actual values of the primary key in the other table. In the
BOOKSHELF table, for example, the CategoryName column refers to values for the CategoryName
column in the CATEGORY table:

create table BOOKSHELF
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK foreign key (CategoryName)
references CATEGORY(CategoryName));

You can refer to a primary or unique key, even in the same table. However, you can’t refer to
a table in a remote database in the references clause. You can use the table form (which is used
earlier to create a PRIMARY KEY on the TROUBLE table) instead of the column form to specify
foreign keys with multiple columns.

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 301

Sometimes you may want to delete these dependent rows when you delete the row they
depend on. In the case of BOOKSHELF and CATEGORY, if you delete a CategoryName from
CATEGORY, you may want to make the matching BOOKSHELF CategoryName column values
NULL. In another case, you might want to delete the whole row. The clause on delete cascade
added to the references clause tells Oracle to delete the dependent row when you delete the
corresponding row in the parent table. This action automatically maintains referential integrity.
For more information on the clauses on delete cascade and references, consult “Integrity
Constraint” in the Alphabetical Reference of this book.

The CHECK Constraint
Many columns must have values that are within a certain range or that satisfy certain conditions.
With a CHECK constraint, you can specify an expression that must always be true for every row
in the table. For example, the RATING table stores the valid ratings; to limit the available values
beyond the limits enforced by the column definition, you can use a CHECK constraint, as shown
in the following listing:

create table RATING_WITH_CHECK
(Rating VARCHAR2(2) CHECK (Rating <= 9),
RatingDescription VARCHAR2(50));

A column-level CHECK constraint can’t refer to values in other rows; it can’t use the pseudo-
columns such as SysDate, User, CurrVal, NextVal, Level, and RowNum. You can use the table
constraint form (as opposed to the column constraint form) to refer to multiple columns in a
CHECK constraint.

Naming Constraints
You can name your constraints. If you use an effective naming scheme for your constraint names,
you will be better able to identify and manage the constraints. The name of a constraint should
identify the table it acts upon and the type of constraint it represents. For example, the primary
key on the TROUBLE table could be named TROUBLE_PK.

You can specify a name for a constraint when you create the constraint. If you do not specify
a name for the constraint, Oracle will generate a name. Most of Oracle’s generated constraint
names are of the form SYS_C###### (for example, SYS_C000145). Because the system-generated
constraint name does not tell you anything about the table or the constraint, you should name
your constraints.

In the following example, the PRIMARY KEY constraint is created, and named, as part of the
create table command for the TROUBLE table (notice the constraint clause):

create table TROUBLE (
City VARCHAR2(13),
SampleDate DATE,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER,
constraint TROUBLE_PK PRIMARY KEY (City, SampleDate)
);

The constraint clause of the create table command names the constraint (in this case,
TROUBLE_PK). You may use this constraint name later when enabling or disabling constraints.

302 Part II: SQL and SQL*Plus

Dropping Tables
Dropping tables is very simple. You use the words drop table and the table name, as shown here:

drop table TROUBLE;

You drop a table only when you no longer need it. In Oracle, the truncate command lets you
remove all the rows in the table and reclaim the space for other uses without removing the table
definition from the database.

As of Oracle Database 10g, dropped tables retain their space—they are accessed via the
“recycle bin.” To drop a table and remove it from the recycle bin at the same time, use the purge
clause of the drop table command:

drop table TROUBLE purge;

If the table has already been dropped, you can purge it from the recycle bin:

purge table TROUBLE;

You can purge all contents of your recycle bin:

purge recyclebin;

Truncating is also very simple:

truncate table TROUBLE;

Table truncated.

Truncating can’t be rolled back. If there are triggers that delete rows that depend on rows in
the table, truncating does not execute those triggers. You should be sure you really want to truncate
before doing it. You can choose to release the table’s storage (via the drop storage clause, the
default) or to retain it (via reuse storage).

Altering Tables
Table definitions can be altered in several ways: by adding a column to an existing table, by
changing a column’s definition, or by dropping a column. DBAs commonly alter tables in other
ways to manage space and memory usage. Adding a column is straightforward, and this process
is similar to creating a table. Suppose you decide to add two new columns to the TROUBLE table:
Condition, which you believe should be NOT NULL, and Wind, for the wind speed. The first
attempt starts by creating the table and populating it with a few records:

drop table TROUBLE;

create table TROUBLE (
City VARCHAR2(13),
SampleDate DATE,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER);

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 303

insert into TROUBLE values
 ('PLEASANT LAKE','21-MAR-03',
 39.99, -1.31, 3.6);

insert into TROUBLE values
 ('PLEASANT LAKE','22-JUN-03',
 101.44, 86.2, 1.63);

insert into TROUBLE values
 ('PLEASANT LAKE','23-SEP-03',
 92.85, 79.6, 1.00003);

insert into TROUBLE values
 ('PLEASANT LAKE','22-DEC-03',
 -17.445, -10.4, 2.4);

The first attempt at adding the new columns looks like this:

alter table TROUBLE add (
Condition VARCHAR2(9) NOT NULL,
Wind NUMBER(3)
);

alter table TROUBLE add (
 *
ERROR at line 1: ORA-01758: table must be empty to add
mandatory (NOT NULL) column

You get an error message because you cannot add a column defined as NOT NULL—when
you try to add it, the column won’t have anything in it. Each row in the table would have a new
empty column defined as NOT NULL.

Prior to Oracle 11g, the alter table command’s add clause works with a NOT NULL column
if the table is empty, but usually it is impractical to empty a table of all its rows just to add a NOT
NULL column.

The alternative is to first alter the table by adding the column without the NOT NULL restriction:

alter table TROUBLE add (
Condition VARCHAR2(9),
Wind NUMBER(3)
);

Table altered.

Then, you fill the column with data for every row (either with legitimate data or a placeholder
until legitimate data can be obtained):

update TROUBLE set Condition = 'SUNNY';

Finally, you alter the table again and modify the column definition to NOT NULL:

alter table TROUBLE modify (
Condition VARCHAR2(9) NOT NULL,

304 Part II: SQL and SQL*Plus

City VARCHAR2(17)
);

Table altered.

You can add NOT NULL columns to tables that already contain rows. To do so, you must
specify a default value for the new column. For very large tables this can present a problem,
because millions of rows may need to be updated to contain the new column value. Oracle 11g
automatically handles this in a way that avoids significant impacts to the users.

Let’s consider again an attempt to add just the Condition column to the TROUBLE table:

alter table TROUBLE add (Condition VARCHAR2(9) NOT NULL);

If TROUBLE already has rows, the Condition column can’t be added because the existing
rows would have NULL values for it. The solution is to add a DEFAULT constraint for the
Condition column:

alter table TROUBLE add (Condition VARCHAR2(9)
 default 'SUNNY' NOT NULL);

Oracle will now create the new column, but it will not update the existing rows. If a user
selects a row that has a null value in the Condition column, the default value will be returned.
Oracle’s approach solves two problems: It lets you add a NOT NULL column, and it avoids
having to update every existing row. In large tables, that can represent a significant savings in
terms of the space required to support the transaction size.

Note that the City column was also modified to enlarge it to 17 characters (just to show how
this is done). When the table is described, it shows this:

describe TROUBLE

Name Null? Type
------------------------------- -------- ------------
CITY VARCHAR2(17)
SAMPLEDATE DATE
NOON NUMBER(4,1)
MIDNIGHT NUMBER(4,1)
PRECIPITATION NUMBER
CONDITION NOT NULL VARCHAR2(9)
WIND NUMBER(3)

The table contains the following:

select * from TROUBLE;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION CONDITION WIND
--------------- --------- ------ -------- ------------- --------- ----
PLEASANT LAKE 21-MAR-03 40 -1.3 3.6 SUNNY
PLEASANT LAKE 22-JUN-03 101.4 86.2 1.63 SUNNY
PLEASANT LAKE 23-SEP-03 92.9 79.6 1.00003 SUNNY
PLEASANT LAKE 22-DEC-03 -17.4 -10.4 2.4 SUNNY

Here, you see the effect of the changes. City is now 17 characters wide instead of 13. Condition
has been added to the table as NOT NULL and is SUNNY (temporarily). Wind has been added
and is NULL.

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 305

To make a NOT NULL column nullable, use the alter table command with the NULL clause,
as follows:

alter table TROUBLE modify
(Condition NULL);

The Rules for Adding or Modifying a Column
These are the rules for modifying a column:

You can increase a character column’s width at any time.

You can increase the number of digits in a NUMBER column at any time.

You can increase or decrease the number of decimal places in a NUMBER column
at any time.

In addition, if a column is NULL for every row of the table, you can make any of these changes:

You can change the column’s datatype.

You can decrease a character column’s width.

You can decrease the number of digits in a NUMBER column.

You can only change the datatype of a column if the column is empty (NULL) in all rows of
the table.

There is one notable exception to the restrictions on datatype changes. Oracle supports the
changing of LONG datatype columns to the LOB datatype, even if there is data already in the
LONG column. The following listing illustrates this functionality:

create table LONGTEST
(Col1 NUMBER,
Longcol LONG);

Table created.

insert into LONGTEST values (1,'This is a LONG value');

1 row created.

alter table LONGTEST modify (Longcol CLOB);

Table altered.

desc LONGTEST

 Name Null? Type
 --- -------- --------
 COL1 NUMBER
 LONGCOL CLOB

select Longcol from LONGTEST;

■

■

■

■

■

■

306 Part II: SQL and SQL*Plus

LONGCOL

This is a LONG value

Creating Read-Only Tables
As of Oracle 11g, you can alter tables to be in read-only or read-write state. This allows you to
prevent insert, update, and delete operations at the table level (in prior releases this capability
exists at the tablespace level, or requires the use of views).

To make a table read-only, use the alter table command:

alter table LONGTEST read only;

Attempts to change the records within LONGTEST will result in an error. To return the table
to its prior state, use the read write clause of the alter table command, as shown here:

alter table LONGTEST read write;

To see the state of a table, query the Read_Only column of the USER_TABLES data dictionary
view.

While a table is in read-only mode, you can continue to perform DML operations against it.

Altering Actively Used Tables
When you issue the alter table command, Oracle attempts to acquire a DDL lock on the table.
If anyone else is accessing the table at that time, your command will fail—you need to have
exclusive access to the table while you are changing its structure. You may need to repeatedly
try to execute your command in order to acquire the lock you need.

As of Oracle 11g, you can use the DDL lock timeout options to work around this problem.
You can execute the alter session command to set a value for the ddl_lock_timeout parameter,
specifying the number of seconds during which Oracle should continually retry your command.
The retry attempts will continue until the command is successful or the timeout limit is reached,
whichever comes first.

To try your command for 60 seconds, issue the following command:

alter session set ddl_lock_timeout=60;

DBAs can enable this at the database level via the alter system command, as shown next:

alter system set ddl_lock_timeout=60;

Creating Virtual Columns
As of Oracle 11g, you can create virtual columns in tables rather than storing derived data. You
may have a virtual column that is based on other values in the same row (adding two columns
together, for instance). In prior versions, you would create a view that performs the function
necessary to create the column values. In Oracle 11g, you can specify the function as part of
the table definition, which allows you to index the virtual column and partition the table by it.

Consider the AUTHOR table:

create table AUTHOR
(AuthorName VARCHAR2(50) primary key,
Comments VARCHAR2(100));

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 307

When values are inserted into AUTHOR, they are inserted in uppercase:

insert into AUTHOR values
('DIETRICH BONHOEFFER', 'GERMAN THEOLOGIAN, KILLED IN A WAR CAMP');

insert into AUTHOR values
('ROBERT BRETALL','KIERKEGAARD ANTHOLOGIST');

You can create an additional mixed-case column using the generated always clause to tell
Oracle to create the virtual column:

create table AUTHOR2
(AuthorName VARCHAR2(50) primary key,
Comments VARCHAR2(100),
MixedName VARCHAR2(50)
 generated always as
 (initcap(AuthorName)) virtual
);

The code used to create the virtual column can be complex, including case statements and
other functions. Note that you do not have to create triggers or other mechanisms to populate the
column; Oracle maintains it as a virtual value for each row in the table. The value is not physically
stored with the table; it is generated when needed.

NOTE
Attempts to provide a value for the virtual column during inserts will
result in an error.

You can create an index on the virtual column as if it were a standard column in the table.
Additionally, you can partition the table based on this column (as described in the next chapter).

Dropping a Column
You can drop a column from a table. Dropping a column is more complicated than adding or
modifying a column because of the additional work that Oracle has to do. Just removing the
column from the list of columns in the table—so it doesn’t show up when you select * from the
table—is easy. It’s recovering the space that was actually taken up by the column values that is
more complex, and potentially very time-consuming for the database. For this reason, you can
drop a column immediately or you can mark it as “unused,” to be dropped at a later time. If the
column is dropped immediately, the action may impact performance. If the column is marked as
unused, there will be no impact on performance. The column can actually be dropped at a later
time when the database is less heavily used.

To drop a column, use either the set unused clause or the drop clause of the alter table
command. You cannot drop a pseudo-column, a column of a nested table, or a partition key
column.

In the following example, column Wind is dropped from the TROUBLE table:

alter table TROUBLE drop column Wind;

Alternatively, you can mark the Wind column as unused:

alter table TROUBLE set unused column Wind;

308 Part II: SQL and SQL*Plus

Marking a column as “unused” does not release the space previously used by the column,
until you drop the unused columns:

alter table TROUBLE drop unused columns;

You can query USER_UNUSED_COL_TABS, ALL_UNUSED_COL_TABS, and DBA_UNUSED_
COL_TABS to see all tables with columns marked as unused.

NOTE
Once you have marked a column as “unused,” you cannot access that
column.

You can drop multiple columns in a single command, as shown in the following listing:

alter table TROUBLE drop (Condition, Wind);

NOTE
When dropping multiple columns, you should not use the column
keyword of the alter table command; it causes a syntax error. The
multiple column names must be enclosed in parentheses, as shown in
the preceding listing.

If the dropped columns are part of primary keys or unique constraints, you will need to also
use the cascade constraints clause as part of your alter table command. If you drop a column that
belongs to a primary key, Oracle will drop both the column and the primary key index.

Creating a Table from a Table
Oracle lets you create a new table on-the-fly, based on a select statement on an existing table:

create table RAIN_TABLE as
select City, Precipitation
 from TROUBLE;

Table created.

NOTE
The create table … as select … command will not work if one of the
selected columns uses the LONG datatype.

When the new table is described, it reveals that it has “inherited” its column definitions from
the TROUBLE table. A table created in this fashion can include all columns, using an asterisk if
you like, or a subset of columns from another table. It also can include “invented” columns,
which are the product of functions or the combination of other columns, just as in a view. The
character column definitions will adjust to the size necessary to contain the data in the invented
columns. NUMBER columns that had specified precision in the source table but undergo
computation in inventing a new column, will simply be NUMBER columns, with no specified
precision, in the new table.

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 309

NOTE
The constraints on the source table, including NOT NULL constraints,
are not automatically created for the new table.

When the table RAIN is described, it shows its column definitions:

describe RAIN_TABLE

Name Null? Type
------------------------------- -------- ------------
CITY VARCHAR2(17)
PRECIPITATION NUMBER

When RAIN_TABLE is queried, it contains just the columns and data selected from the
TROUBLE table as it existed when RAIN_TABLE was created:

select * from RAIN_TABLE;

CITY PRECIPITATION
------------- -------------
PLEASANT LAKE 3.6
PLEASANT LAKE 1.63
PLEASANT LAKE 1.00003
PLEASANT LAKE 2.4

NOTE
If one of the columns in the query is generated via a formula, you
must specify a column alias that Oracle will use as the column name
during the table creation.

You also can use this technique to create a table with column definitions like those of the
source table, but with no rows in it, by building a where clause that will select no rows from
the old table:

create table RAIN_EMPTY as
select City, Precipitation
 from TROUBLE
 where 1=2;

Table created.

Querying this table will show there is nothing in it:

select * from RAIN_EMPTY;

no rows selected.

You can create a table based on a query without generating redo log entries (chronological
records of database actions used during database recoveries). Avoiding the generation of these
entries is accomplished by using the nologging keyword in the create table command. When the
redo log entries are circumvented in this way, the performance of the create table command will
improve because less work is being done; the larger the table, the greater the impact. However,

310 Part II: SQL and SQL*Plus

because the new table’s creation is not being written to the redo log files (which record the redo
log entries), the table will not be re-created if, following a database failure, those redo log files
are used to recover the database. Therefore, you should consider performing a backup of the
database soon after using the nologging option if you want to be able to recover the new table.

The following example shows how to use the nologging keyword during table creations based
on queries (by default, table creations based on queries generate redo log entries):

create table RAIN_NOLOG
nologging
as
select * from TROUBLE;

Table created.

Note that you can specify nologging at the partition level and at the LOB level (see Chapters
18 and 40). The use of nologging will improve the performance of the operations that load the
data in the table.

Creating an Index-Organized Table
An index-organized table keeps its data sorted according to the primary key column values for the
table. An index-organized table stores its data as if the entire table was stored in an index. Indexes
serve two main purposes:

To enforce uniqueness When a PRIMARY KEY or UNIQUE constraint is created, Oracle
creates an index to enforce the uniqueness of the indexed columns.

To improve performance When a query can use an index, the performance of the query
may dramatically improve. See Chapter 46 for details on the conditions under which a
query may use an index.

An index-organized table allows you to store its entire data in an index. A normal index only
stores the indexed columns; an index-organized table stores all its columns in the index.

To create an index-organized table, use the organization index clause of the create table
command, as shown in the following example:

create table TROUBLE_IOT (
City VARCHAR2(13),
SampleDate DATE,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER,
constraint TROUBLE_IOT_PK PRIMARY KEY (City, SampleDate))
organization index;

To create TROUBLE as an index-organized table, you must create a PRIMARY KEY constraint
on it.

An index-organized table is appropriate if you will always be accessing the TROUBLE data by
the City and SampleDate columns (in the where clauses of your queries). To minimize the amount
of active management of the index required, you should use an index-organized table only if the
table’s data is very static. If the table’s data changes frequently, you should use a regular table
with indexes as appropriate.

■

■

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 311

In general, an index-organized table is most effective when the primary key constitutes a large
part of the table’s columns. If the table contains many frequently accessed columns that are not
part of the primary key, the index-organized table will need to repeatedly access its overflow area.
Despite this drawback, you may choose to use index-organized tables to take advantage of a key
feature that is not available with standard tables: the ability to use the move online option of the
alter table command. You can use that option to move a table from one tablespace to another
while it is being accessed by insert, update, and delete operations. You cannot use the move
online option for partitioned index-organized tables. Partitioning is described in the next chapter.

Creating a View
Since you’ve already seen the techniques for creating a view in prior chapters, they will not be
reviewed extensively here. However, this section gives several additional points about views that
will prove useful.

If a view is based on a single underlying table, you can insert, update, or delete rows in the
view. This will actually insert, update, or delete rows in the underlying table. There are restrictions
on your ability to do this, although the restrictions are quite sensible:

You cannot insert if the underlying table has any NOT NULL columns that don’t appear
in the view.

You cannot insert or update if any one of the view’s columns referenced in the insert or
update contains functions or calculations.

You cannot insert, update, or delete if the view contains group by, distinct, or a
reference to the pseudo-column RowNum.

You can insert into a view based on multiple tables if Oracle can determine the proper rows
to insert. In a multitable view, Oracle determines which of the tables are key-preserved. If a view
contains enough columns from a table to identify the primary key for that table, the key is preserved
and Oracle may be able to insert rows into the table via the view.

Stability of a View
Remember that the results of querying a view are built instantly from a table (or tables) when you
execute the query. Until that moment, the view has no data of its own, as a table does. It is merely
a description (a SQL statement) of what information to pull out of other tables and how to organize
it. As a consequence, if a table is dropped, the validity of a view is destroyed. Attempting to query
a view where the underlying table has been dropped will produce an error message about the view.

NOTE
The sole exception to this rule is the use of materialized views. In
fact, a materialized view is actually a table that stores data one would
normally query via a view. Materialized views are described in detail
in Chapter 26.

In the following sequence, a view is created on an existing table, the table is dropped, and the
view then is queried.

First, the view is created:

create view RAIN_VIEW as
select City, Precipitation

■

■

■

312 Part II: SQL and SQL*Plus

 from TROUBLE;

View created.

The underlying table is dropped:

drop table TROUBLE;

Table dropped.

The view is queried:

select * from RAIN_VIEW;
 *
ERROR at line 1:
ORA-04063: view "PRACTICE.RAIN_VIEW" has errors

Similarly, a view is created using the asterisk in the view creation:

create or replace view RAIN_VIEW as
select * from TROUBLE;

View created.

But then the underlying table is altered:

alter table TROUBLE add (
Warning VARCHAR2(20)
);

Table altered.

Despite the change to the view’s base table, the view is still valid, but the Warning column is
not visible through it. After altering the table, replace the view to enable the Warning column to
be seen. To re-create a view while keeping in place all the privileges that have been granted for it,
use the create or replace view command, as shown in the following listing. This command will
replace the view text of an existing view with the new view text, while the old grants on the view
will not be affected.

create or replace view RAIN_VIEW as
select * from TROUBLE;

Using order by in Views
You can use an order by in a create view statement, as shown in the following listing based
on the re-created TROUBLE table (note that queries against this view may incur a performance
penalty because of the additional sort activity they perform):

create view TROUBLE_SORTED
 as select * from TROUBLE
 order by City, SampleDate;

View created.

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 313

select * from TROUBLE_SORTED;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ---------- ---------- -------------
PLEASANT LAKE 21-MAR-03 40 -1.3 3.6
PLEASANT LAKE 22-JUN-03 101.4 86.2 1.63
PLEASANT LAKE 23-SEP-03 92.9 79.6 1.00003
PLEASANT LAKE 22-DEC-03 -17.4 -10.4 2.4

Creating a Read-Only View
You can use the with read only clause of the create view command to prevent users from
manipulating records via the view. Consider the RAIN_VIEW view created in the previous section:

create or replace view RAIN_VIEW as
select * from TROUBLE;

If a user has the ability to delete records from the TROUBLE table, the user could delete the
TROUBLE records via the RAIN_VIEW view:

delete from RAIN_VIEW;

The user could also insert or update the records in the TROUBLE table by performing those
operations against the RAIN_VIEW view. If the view is based on a join of multiple tables, the
user’s ability to update the view’s records is limited; a view’s base tables cannot be updated
unless only one table is involved in the update and the updated table’s full primary key is
included in the view’s columns.

To prevent modifications to the base tables via a view, you can use the with read only clause
of the create view command. If you use the with read only clause when creating a view, users
will only be able to select records from the view. Users will be unable to manipulate the records
obtained from the view even if the view is based on a single table:

create or replace view RAIN_READ_ONLY as
select * from TROUBLE
 with read only;

You can also use INSTEAD OF triggers to manage the data-manipulation commands executed
against views. See Chapter 38 for details on INSTEAD OF triggers.

Indexes
An index is a simple concept. It is typically a listing of keywords accompanied by the location
of information on a subject. To find information on indexes, for instance, you look up the word
“indexes” in the index at the back of this book. It will give the number of the page you are reading
now. The word “indexes” is the key, and the page numbers given point you to the location of
discussions about indexes in this book.

Although you could find the information on indexes simply by reading through this book until
you encountered the page with the information on it, this would be slow and time-consuming.
Because the index at the back of the book is in alphabetical order, you can quickly go to the
appropriate spot in the index (without reading every entry) where “index” is found. If the word
is not common, this is quicker than reading through the book from front to back. These same

314 Part II: SQL and SQL*Plus

principles apply to Oracle indexes. For example, if you are searching for a particular book, you
can query with a limiting condition on the Title column:

select * from BOOKSHELF
 where Publisher = 'SCHOLASTIC';

If BOOKSHELF does not have an index on the Publisher column, Oracle has to read every
row in the table until it finds all publishers that match the where clause of your query. If the table
is small, that may not cause a performance problem. As the table grows in size, the time required
to return all the matching rows to the user may impact the performance of the application and the
business process it supports.

To speed the data retrieval, you can create an index on the Publisher column. Then, when
you execute the same query, Oracle first looks in the index, which is sorted, thus finding the
publisher named SCHOLASTIC very quickly (Oracle doesn’t read every entry, but jumps directly
within close vicinity of the name, much as you would in looking through the index of a book).
The index entry then gives Oracle the exact location in the table (and on disk) of the row(s) for
that publisher. The standard type of index in Oracle is called a B*-tree index, matching column
values to their related RowIDs.

Indexing an important column (one that’s likely to appear in a where clause) will generally
speed up Oracle’s response to a query. Indexing will likewise speed up queries where two tables
are joined, if the columns that are related (by the where clause) are indexed. These are the basics
of indexing; the rest of this section shows a number of additional features and issues related to
indexing that will affect how quickly it works. For the impact of indexes on the optimization of
your queries, see Chapter 46.

Creating an Index
You create an index via the create index command. When you designate a primary key or a unique
column during table creation or maintenance, Oracle will automatically create a unique index to
support that constraint. The full command syntax for create index is shown in the Alphabetical
Reference. Its most commonly used format is as follows:

create [bitmap | unique] index index
on table(column [,column]. . .) [reverse];

index must be a unique name and follow the naming conventions of Oracle columns. table is
simply the name of the table on which the index will be established, and column is the name of
the column being indexed.

Bitmap indexes allow you to create useful indexes on columns with very few distinct values;
see “Creating a Bitmap Index,” later in this chapter. The reverse keyword tells Oracle to reverse
the bytes of the indexed value, which may improve the I/O distribution during the insert of many
sequential data values.

You can establish a single index on multiple columns by listing the columns one after the
other, separated by commas. For the following examples, the BOOKSHELF_AUTHOR table was
created without a primary key:

create table BOOKSHELF_AUTHOR
(Title VARCHAR2(100),
AuthorName VARCHAR2(50),
constraint TitleFK Foreign key (Title) references BOOKSHELF(Title),
constraint AuthorNameFK Foreign key (AuthorName)
references AUTHOR(AuthorName));

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 315

Enforcing Uniqueness
Recall from Part I that a set of tables is said to be in Third Normal Form if all the columns in each
table’s rows are dependent only on the primary key. In the BOOKSHELF_AUTHOR table, the
primary key is the combination of the columns Title and AuthorName. In other tables, a primary
key might be an employee ID, a client ID, an account number, or, in a bank, a combination of
branch number and account number.

In each of these cases, the uniqueness of the primary key is critical. A bank with duplicate
account numbers, or a billing system with duplicate client IDs, would wreak havoc as transactions
were posted to accounts belonging to different people but having the same primary key (this is
why names usually are not commonly used as primary keys—there are too many duplicates). To
avoid this danger, have your database help prevent the creation of duplicate primary keys. Oracle
offers two facilities that help:

You can guarantee the uniqueness of a key through either indexing or constraints.

You can use the sequence generators (discussed later in this chapter).

Creating a Unique Index
You can create a unique index on the combination of Title and AuthorName in the BOOKSHELF_
AUTHOR table in one of three ways: by creating a primary key constraint, by creating a unique
constraint, or by creating a unique index. If you create a constraint, you will be able to create
foreign keys that refer to it. If you create the unique index first, you will still be able to create a
primary key on the table—Oracle will use the existing index as the primary key index.

The following listing shows the create index command for this multicolumn index:

create unique index BA$TITLE_AUTHOR
 on BOOKSHELF_AUTHOR(Title, AuthorName);

The primary key method is shown here:

alter table BOOKSHELF_AUTHOR
 add constraint BA_PK primary key (Title, AuthorName);

To create a unique constraint, just replace the primary key clause with unique. When you attempt
to create a unique index on a table that already has data in it, the command will fail if any duplicates
exist. If the create unique index statement succeeds, any future attempt to insert (or update) a row
that would create a duplicate key will fail and result in this error message:

ERROR at line 1:
ORA-00001: unique constraint (BOOKSHELF_AUTHOR.BA_PK) violated

When you create an index, it requires storage space. See “Placing an Index in the Database,”
later in this chapter, for details concerning the location of the created indexes.

Creating a Bitmap Index
To help tune queries that use nonselective columns in their limiting conditions, you can use
bitmap indexes. Bitmap indexes should only be used if the data is infrequently updated, because
they add to the cost of all data-manipulation transactions against the tables they index.

■

■

316 Part II: SQL and SQL*Plus

NOTE
Bitmap indexes should not be used for tables involved in online
transaction-processing applications due to the internal mechanisms
Oracle uses to maintain them. Restrict their usage to tables involved
in batch transactions.

Bitmap indexes are appropriate when nonselective columns are used as limiting conditions
in a query. For example, if there are very few distinct Rating values in a very large BOOKSHELF
table, you would not usually create a traditional B*-tree index on Rating, even if it is commonly
used in where clauses. However, Rating may be able to take advantage of a bitmap index.

Internally, a bitmap index maps the distinct values for the columns to each record. For this
example, assume there are five Rating values (1, 2, 3, 4, and 5) in a very large BOOKSHELF table.
Because there are five Rating values, there are five separate bitmap entries for the Rating bitmap
index. If the first five rows in the table have a Rating value of 1, and the next five have a Rating
value of 2, then the Rating bitmap entries would resemble those shown in the following listing:

Rating bitmaps:
 1: 1 1 1 1 1 0 0 0 0 0
 2: 0 0 0 0 0 1 1 1 1 1
 3: 0 0 0 0 0 0 0 0 0 0
 4: 0 0 0 0 0 0 0 0 0 0
 5: 0 0 0 0 0 0 0 0 0 0

In the preceding listing, each column of 0’s and 1’s represents a row in the BOOKSHELF table.
Because ten rows are considered, ten bitmap values are shown. Reading the bitmap for Rating,
the first five records have a Rating value of 1 (the “1” values), and the next five do not (the “0”
values). There is a separate bitmap entry for each possible value.

The Oracle optimizer can dynamically convert bitmap index entries to RowIDs during query
processing. This conversion capability allows the optimizer to use indexes on columns that have
many distinct values (via B*-tree indexes) and on those that have few distinct values (via bitmap
indexes).

To create a bitmap index, use the bitmap clause of the create index command, as shown in
the following listing. You should indicate its nature as a bitmap index within the index name so
that it will be easy to detect during tuning operations.

create bitmap index BOOKSHELF$BITMAP_RATING
 on BOOKSHELF(Rating);

If you choose to use bitmap indexes, you will need to weigh the performance benefit during
queries against the performance cost during data-manipulation commands. The more bitmap
indexes there are on a table, the greater the cost will be during each transaction. You should not
use bitmap indexes on a column that frequently has new values added to it. Each addition of a
new value to the Rating column will require that a corresponding new bitmap be created.

When to Create an Index
Indexes are most useful on larger tables, on columns that are likely to appear in where clauses
either as a simple equality, such as

where AuthorName = 'STEPHEN JAY GOULD'
 and Rating = '5'

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 317

or in joins, such as this:

where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title

In addition to supporting where clauses and joins, indexes also support order by clauses and
the MAX and MIN functions. In some circumstances, Oracle may choose to scan an index instead
of performing a full scan on the table. See Chapter 46 for details on the usage of indexes by the
optimizer.

Creating Invisible Indexes
The presence of a new index may alter how an existing application works. In most cases, this is
the intended behavior: You are creating the index in order to change the execution path chosen
by a query. The new index should be designed to support the known query execution paths, and
it will slow the performance of inserts and other DML operations. As of Oracle 11g, you can
introduce an index to your environment in stages, first creating it and then making it visible to
the optimizer.

After creating an index, you can tell the optimizer to not consider it when generating
execution plans via the alter index command:

alter index BA$TITLE_AUTHOR invisible;

With the index in an “invisible” state, you can now test your commands to determine exactly
how the index will impact your operations. The invisible index will only be used if you use an
INDEX hint (see Chapter 46) that explicitly names the index. The index will not be considered
by the optimizer for general usage while it is invisible. Select the Visibility column from the
USER_INDEXES data dictionary view to determine if an index has been set to be invisible to
the optimizer. Regardless of its visibility status, the index will continue to use space and impact
DML operations.

Variety in Indexed Columns
Traditional (B*-tree) indexes are most useful on columns with a significant amount of variety in
their data. For instance, a column that indicates whether a company is a current client with a Y
or N value would be a poor choice for a traditional index, and could actually slow down a query;
a bitmap index would be a much better choice for that example. A telephone number column
would be a good candidate for a B*-tree index. An area code column would be marginal, depending
on the distribution of unique area code values in the table.

In a multicolumn index, put the column likely to be accessed most often first. You can use
the optimizer’s skip-scan feature to use multicolumn indexes even if the leading column is not
mentioned in the query. See Chapter 46 for examples of index usage.

Small tables may be better left unindexed, except to enforce uniqueness in the primary key.
A small table is one that takes so few database blocks that Oracle can read all its data with one
physical read; beyond that, indexing will nearly always be productive. The number of blocks read
during a physical read is set via the DB_FILE_MULTIBLOCK_READ_COUNT initialization parameter.

Bitmap indexes present a viable indexing alternative for columns that have very few distinct
values. Bitmap indexes are commonly used for “flag” columns that are restricted to values such
as Y and N. Bitmap indexes are particularly effective when multiple bitmap indexes are used in
a query; the optimizer can quickly evaluate the bitmaps and determine which rows meet all the
criteria for which bitmap indexes are available.

318 Part II: SQL and SQL*Plus

How Many Indexes to Use on a Table
You can create many indexes on a single table, with many columns in each index. The tradeoff
for indexing too many columns is the lessened speed of inserting new rows: Every index also must
have a new entry made in it when an insert is done. If your table will be used primarily for queries,
the only cost of indexing as many columns as you can (that have variety and will be used in where
clauses, of course) is the extra disk space used. Strictly from a data-loading performance
perspective, it is better to have a small number of indexes with many columns than to have many
indexes with a small number of columns in each.

Except in cluster indexes (discussed later in this chapter), columns that are NULL will not appear
in an index. Indexes based on more than one column will have an entry if any of the columns are
not NULL. If all indexed columns are NULL for a given row, no entry will appear for this row in
the index.

Placing an Index in the Database
You can specify where the index to a table is placed by assigning it to a specific tablespace. As will
be described in detail in Chapter 22, a tablespace is a logical division of the database, corresponding
to one or more datafiles. Datafiles provide the physical storage for the database—sections of disk
where tables and indexes are stored. Databases have several tablespaces, each with its own name.
To enhance availability and management options, an index for a table should be placed in a
tablespace that is on a physically separate disk drive from its corresponding table.

To specify the tablespace in which to locate an index, the normal create index statement is
simply followed by the word tablespace and the tablespace name, as shown here:

create unique index BA$TITLE_AUTHOR
 on BOOKSHELF_AUTHOR(Title, AuthorName)
tablespace BA_INDEXES;

In this example, BA_INDEXES is the name given to a tablespace previously created by the
database administrator. The use of the tablespace option in a create index statement lets you
physically separate your tables from their associated indexes.

When you create a primary key or unique constraint, Oracle will automatically create an
index to enforce uniqueness. Unless you specify otherwise, that index will be created in the same
tablespace as the table that the constraint modifies, and it will use the default storage parameters
for that tablespace. Because that storage location is typically undesirable, you should take
advantage of the using index clause when creating primary key and unique constraints.

The using index clause allows you to specify the storage parameters and tablespace location
for an index created by a constraint. In the following example, a primary key is created on the
BOOKSHELF_AUTHOR table and is placed in the BA_INDEXES tablespace. This example
assumes that there is not an existing index on the specified columns.

alter table BOOKSHELF_AUTHOR
 add constraint BA_PK primary key (Title, AuthorName)
using index tablespace BA_INDEXES;

See “Integrity Constraint” in the Alphabetical Reference for further options for the using index
clause, and see create index in the Alphabetical Reference for performance-related index-creation
options.

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 319

Rebuilding an Index
Oracle provides a fast index rebuild capability that allows you to re-create an index without
having to drop the existing index. The currently available index is used as the data source for
the index, instead of the table’s being used as the data source. During the index rebuild, you
can change its storage parameters and tablespace assignment.

In the following example, the BA_PK index is rebuilt (via the rebuild clause). Its storage
parameters are changed to use an initial extent size of 8MB and a next extent size of 4MB, in
the BA_INDEXES tablespace.

alter index BA_PK rebuild
storage (initial 8M next 4M pctincrease 0)
tablespace BA_INDEXES;

NOTE
When the BA_PK index is rebuilt, there must be enough space for both
the old index and the new index to exist simultaneously. After
the new index has been created, the old index will be dropped.

When you create an index that is based on previously indexed columns, Oracle may be able
to use the existing indexes as data sources for the new index. The Oracle optimizer may use parts
of existing composite indexes as needed for queries, so you may not need to create many indexes
to support the most common queries.

You can rebuild indexes while they are being accessed via the rebuild online clause of the
alter index command.

Function-Based Indexes
You can create function-based indexes. Any query that performs a function on a column generally
does not use that column’s index. Therefore, this query could not use an index on the Title column:

'MY LEDGER';

However, this query could because it does not perform the UPPER function on the Title column:

select * from BOOKSHELF
 where Title = 'MY LEDGER';

You can create indexes that allow function-based accesses to be supported by index accesses.
Instead of creating an index on the column Title, you can create an index on the column expression
UPPER(Title), as shown in the following listing:

create index BOOKSHELF$UPPER_TITLE on
BOOKSHELF(UPPER(Title));

Although function-based indexes can be useful, be sure to consider the following questions
when creating them:

Can you restrict the functions that will be used on the column? If so, can you restrict all
functions from being performed on the column?

■

320 Part II: SQL and SQL*Plus

Do you have adequate storage space for the additional indexes?

When you drop the table, will you be dropping more indexes (and therefore more
extents) than before? How will that impact the time required to drop the table?

Function-based indexes are useful, but you should implement them sparingly. The more
indexes you create on a table, the longer all insert, update, and delete operations will take.

Clusters
Clustering is a method of storing tables that are intimately related and often joined together into
the same area on disk. For example, instead of the BOOKSHELF table being in one section of the
disk and the BOOKSHELF_AUTHOR table being somewhere else, their rows could be interleaved
together in a single area, called a cluster. The cluster key is the column or columns by which the
tables are usually joined in a query (for example, Title for the BOOKSHELF and BOOKSHELF_
AUTHOR tables). To cluster tables, you must own the tables you are going to cluster together.

The following is the basic format of the create cluster command:

create cluster cluster
(column datatype [,column datatype]. . .) [other options];

The cluster name follows the table-naming conventions, and column datatype is the name
and datatype you will use as the cluster key. The column name may be the same as one of the
columns of a table you will put in this cluster, or it may be any other valid name. Here’s an example:

create cluster BOOKandAUTHOR (Col1 VARCHAR2(100));

Cluster created.

This creates a cluster (a space is set aside, as it would be for a table) with nothing in it. The use
of Col1 for the cluster key is irrelevant; you’ll never use it again. However, its definition should
match the primary key of the table to be added. Next, tables are created to be included in this cluster:

create table BOOKSHELF
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK foreign key (CategoryName)
references CATEGORY(CategoryName)
)
cluster BOOKandAUTHOR (Title);

Prior to inserting rows into BOOKSHELF, you must create a cluster index:

create index BOOKandAUTHORndx
on cluster BOOKandAUTHOR;

Recall that the presence of a cluster clause here precludes the use of a tablespace or storage
clause. Note how this structure differs from a standard create table statement:

create table BOOKSHELF
(Title VARCHAR2(100) primary key,

■

■

Chapter 17: Creating and Managing Tables, Views, Indexes, Clusters, and Sequences 321

Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK foreign key (CategoryName)
references CATEGORY(CategoryName)
);

In the first create table statement, the cluster BOOKandAUTHOR (Title) clause follows the
closing parenthesis of the list of columns being created in the table. BOOKandAUTHOR is the name
of the cluster previously created. Title is the column in this table that will be stored in the cluster
key Col1. It is possible to have multiple cluster keys in the create cluster statement, and to have
multiple columns stored in those keys in the create table statement. Notice that nowhere does
either statement say explicitly that the Title column goes into the Col1 cluster key. The match-up
is done by position only: Col1 and Title were both the first objects mentioned in their respective
cluster statements. Multiple columns and cluster keys are matched first to first, second to second,
third to third, and so on. Now a second table is added to the cluster:

create table BOOKSHELF_AUTHOR
(Title VARCHAR2(100),
AuthorName VARCHAR2(50),
constraint TitleFK Foreign key (Title) references BOOKSHELF(Title),
constraint AuthorNameFK Foreign key (AuthorName)
references AUTHOR(AuthorName)
)
cluster BOOKandAUTHOR (Title);

When these two tables are clustered, each unique title is actually stored only once, in the cluster
key. To each title are attached the columns from both of these tables.

The data from both of these tables is actually stored in a single location, almost as if the
cluster were a big table containing data drawn from both of the tables that make it up.

An additional cluster option, a hash cluster, uses the cluster column values to determine the
physical location in which the row is stored. See the entry for the create cluster command in the
Alphabetical Reference.

Sequences
You can assign unique numbers, such as customer IDs, to columns in your database by using a
sequence; you don’t need to create a special table and code to keep track of the unique numbers
in use. This is done by using the create sequence command, as shown here:

create sequence CustomerID increment by 1 start with 1000;

This will create a sequence that can be accessed during insert and update commands (also
select, although this is rare). Typically, the unique sequence value is created with a statement like
the following:

insert into CUSTOMER_DEMO /*pseudocode example */
 (Name, Contact, ID)
values
 ('COLE CONSTRUCTION','VERONICA',CustomerID.NextVal);

322 Part II: SQL and SQL*Plus

The NextVal attached to CustomerID tells Oracle you want the next available sequence number
from the CustomerID sequence. This is guaranteed to be unique; Oracle will not give it to anyone
else. To use the same number more than once (such as in a series of inserts into related tables),
CurrVal is used instead of NextVal, after the first use. That is, using NextVal ensures that the sequence
table gets incremented and that you get a unique number, so you have to use NextVal first. Once
you’ve used NextVal, that number is stored in CurrVal for your use anywhere, until you use
NextVal again, at which point both NextVal and CurrVal change to the new sequence number.

If you use both NextVal and CurrVal in a single SQL statement, both will contain the value
retrieved by NextVal. Neither of these can be used in subqueries, as columns in the select clause
of a view, with DISTINCT, UNION, INTERSECT, or MINUS, or in the order by, group by, or
having clause of a select statement.

You can also cache sequence values in memory for faster access, and you can make the
sequence cycle back to its starting value once a maximum value is reached. In RAC environments,
Oracle recommends caching 20,000 sequence values per instance to avoid contention during
writes. For non-RAC environments, you should cache at least 1,000 values. Note that if you flush
the shared pool portion of the instance or you shutdown and restart the database, any cached
sequence values will be lost and there will be gaps in the sequence numbers stored in the database.
See create sequence in the Alphabetical Reference.

CHAPTER
18

Partitioning

323

324 Part II: SQL and SQL*Plus

s the number of rows in your tables grows, the management and performance
impacts will increase. Backups will take longer, recoveries will take longer, and
queries that span an entire table will take longer. You can mitigate the administrative
and performance issues for large tables by separating the rows of a single table into
multiple parts. Dividing a table’s data in this manner is called partitioning the table;

the table that is partitioned is called a partitioned table, and the parts are called partitions.
Partitioning is useful for very large tables. By splitting a large table’s rows across multiple

smaller partitions, you accomplish several important goals:

The performance of queries against the tables may improve because Oracle may have to
search only one partition (one part of the table) instead of the entire table to resolve a query.

The table may be easier to manage. Because the partitioned table’s data is stored in
multiple parts, it may be easier to load and delete data in the partitions than in the large
table.

Backup and recovery operations may perform better. Because the partitions are smaller
than the partitioned table, you may have more options for backing up and recovering the
partitions than you would have for a single large table.

The Oracle optimizer will know that the table has been partitioned; as shown later in this
chapter, you can also specify the partition to use as part of the from clause of your queries.

Creating a Partitioned Table
To create a partitioned table, you specify how to set up the partitions of the table’s data as part of
the create table command. Typically, tables are partitioned by ranges of values (known as range
partitioning).

Consider the BOOKSHELF table:

create table BOOKSHELF
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK foreign key (CategoryName)
references CATEGORY(CategoryName));

If you will be storing a large number of records in the BOOKSHELF table, you may want to
separate the rows across multiple partitions. To partition the table’s records, use the partition by
range clause of the create table command, as shown next. The ranges will determine the values
stored in each partition.

create table BOOKSHELF_RANGE_PART
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK2 foreign key (CategoryName)
references CATEGORY(CategoryName)
)
partition by range (CategoryName)

■

■

■

A

Chapter 18: Partitioning 325

 (partition PART1 values less than ('B')
 tablespace PART1_TS,
 partition PART2 values less than (MAXVALUE)
 tablespace PART2_TS);

The BOOKSHELF table will be partitioned based on the values in the CategoryName column:

partition by range (CategoryName)

For any Category values less than 'B' (the ADULT categories), the records will be stored in
the partition named PART1. The PART1 partition will be stored in the PART1_TS tablespace (see
Chapter 22 for details on tablespaces). Any other categories will be stored in the PART2 partition.
Note that in the PART2 partition definition, the range clause is

partition PART2 values less than (MAXVALUE)

You do not need to specify a maximum value for the last partition; the maxvalue keyword tells
Oracle to use the partition to store any data that could not be stored in the earlier partitions.

You can create multiple partitions, each with its own upper value defined. For each partition,
you only specify the maximum value for the range. The minimum value for the range is implicitly
determined by Oracle from the definition of the preceding partition.

In addition to range partitions, Oracle supports hash partitions. A hash partition determines the
physical placement of data by performing a hash function on the values of the partition key. In
range partitioning, consecutive values of the partition key are usually stored in the same partition.
In hash partitioning, consecutive values of the partition key are not generally stored in the same
partition. Hash partitioning distributes a set of records over a greater set of partitions than range
partitioning does, potentially decreasing the likelihood for I/O contention.

To create a hash partition, use the partition by hash clause in place of the partition by range
clause, as shown in the following listing:

create table BOOKSHELF_HASH_PART
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK_HASH foreign key (CategoryName)
references CATEGORY(CategoryName)
)
partition by hash (CategoryName)
partitions 16;

NOTE
Due to the way that the partition mapping is implemented in Oracle,
it is recommended that the number of partitions in the table be set to a
power of 2 (2, 4, 8, 16 for example) to get an even distribution of data.

You can name each partition and specify its tablespace, just as you would for range
partitioning, as shown here:

create table BOOKSHELF_HASH_PART
(Title VARCHAR2(100) primary key,

326 Part II: SQL and SQL*Plus

Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK_HASH foreign key (CategoryName)
references CATEGORY(CategoryName)
)
partition by hash (CategoryName)
partitions 2
store in (PART1_TS, PART2_TS);

Following the partition by hash (CategoryName) line, you have two choices for the format:

As shown in the preceding listing, you can specify the number of partitions and the
tablespaces to use:

partitions 2
store in (PART1_TS, PART2_TS);

 This method creates partitions with system-generated names in the format SYS_Pnnn. The
number of tablespaces specified in the store in clause does not have to equal the number
of partitions. If more partitions than tablespaces are specified, the partitions are assigned
to the tablespaces in a round-robin fashion.

You can specify named partitions:

partition by hash (CategoryName)
(partition PART1 tablespace PART1_TS,
 partition PART2 tablespace PART2_TS);

 In this method, each partition is given a name and a tablespace, with the option of using
an additional lob or varray storage clause (see Chapters 39 and 40). This method gives
you more control over the location of the partitions, with the added benefit of letting you
specify meaningful names for the partitions.

List Partitioning
You can use list partitions in place of range and hash partitioning. In list partitioning, you tell
Oracle all the possible values and designate the partitions into which the corresponding rows
should be inserted. The following example shows the BOOKSHELF entries list-partitioned by
CategoryName:

create table BOOKSHELF_LIST_PART
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK4 foreign key (CategoryName)
references CATEGORY(CategoryName)
)
partition by list (CategoryName)
 (partition PART1 values ('ADULTFIC', 'ADULTNF', 'ADULTREF')
 tablespace PART1_TS,
 partition PART2 values
 ('CHILDRENFIC', 'CHILDRENNF', 'CHILDRENPIC')
 tablespace PART2_TS);

■

■

Chapter 18: Partitioning 327

Addtionally, you can use the default keyword to create a list partition to handle category names
that are not listed. Add a partition using the following clause:

partition category_other values (DEFAULT)

and the values that do not match the CategoryName values specified in your other partition
definitions will be stored in this partition.

Creating Subpartitions
You can create subpartitions—that is, partitions of partitions. You can use subpartitions to combine
all types of partitions: range partitions, list partitions, and hash partitions. For example, you can
use hash partitions in combination with range partitions, creating hash partitions of the range
partitions. For very large tables, this composite partitioning may be an effective way of separating
the data into manageable and tunable divisions.

The following example range-partitions the BOOKSHELF table by the Title column, and it
hash-partitions the Title partitions by CategoryName values:

create table BOOKSHELF_RANGE_HASH_PART
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK3 foreign key (CategoryName)
references CATEGORY(CategoryName)
)
partition by range (Title)
subpartition by hash (CategoryName)
subpartitions 6
 (partition PART1 values less than ('M')
 tablespace PART1_TS,
 partition PART2 values less than (MAXVALUE)
 tablespace PART2_TS);

The BOOKSHELF table will be range-partitioned into two partitions, using the Title value
ranges specified for the named partitions. Each of those partitions will be hash-partitioned on
the CategoryName column.

Creating Range and Interval Partitions
Two significant enhancements to partitioning introduced in Oracle 11g are reference partitioning
and interval partitioning. Reference partitioning allows you to create a partition based on a column
that is not in the table being partitioned, but rather is a foreign key reference to a different table.
This can be useful for partitioning related tables in related ways, even if they do not share the
same columns.

For example, an INVOICE_HEADERS table may include an Invoice_Date column, tracking
the date on which an invoice was issued. The line items for invoices may be stored in an
INVOICE_LINE_ITEMS table—and from a normalization perspective it would not be appropriate
to store the Invoice_Date at the line item level. However, if the Invoice_Date column is not in the
INVOICE_LINE_ITEMS table, how can you partition INVOICE_LINE_ITEMS by the invoice date?

328 Part II: SQL and SQL*Plus

You can range-partition INVOICE_HEADERS by the Invoice_Date column on a monthly basis.
Suppose the INVOICE_LINE_ITEMS table does not have a DATE datatype column—but it has a
foreign key on the Invoice_Number column back to the INVOICE_HEADERS table. How can you
partition it?

In Oracle 11g, you can use a reference partition to solve this dilemma. The table creation for
the INVOICE_LINE_ITEMS table (assuming the INVOICE_HEADERS table already exists and is
partitioned) using a reference partition is shown in the following listing:

create table INVOICE_LINE_ITEMS
(
 InvoiceNum number not null,
 Line_id number not null,
 Sales_amt number,
 constraint fk_inv_01
 foreign key (InvoiceNum)
 references INVOICE_HEADERS
)
partition by reference (fk_inv_01);

When you create the INVOICE_LINE_ITEMS table, it will be partitioned by the same column
as is used to partition the INVOICE_HEADERS table, even if that column (Invoice_Date) is not in
the INVOICE_LINE_ITEMS table. The two will be partitioned in sync.

This may seem to be a minor advance, but it is highly significant for effective management of
data as it ages. As time goes by, you will need to be able to age related data from multiple tables
in a consistent fashion. You will need to be able to remove data without worrying that there are
dangling references that will invalidate referential integrity along the way. By using reference
partitions, you are unifying the ways in which the data is divided across multiple tables, and that
significantly eases the maintenance burden.

Another new partition type available with Oracle 11g is the interval partition. In interval
partitioning, you do not specify the specific range values for each partition; instead, you specify
the duration of the interval. That is, instead of specifying that partition 1 ends on January 31 and
partition 2 ends on February 29, you specify that each partition is one month long. When a new
row is inserted, Oracle will determine which partition to place the row in based on the interval
definition. If you have not created a partition for that month, the database will automatically
create a new one.

Use interval partitions with caution. You will need to perform the data value constraint checks
yourself prior to inserting the row—if you do not, you may end up with unwanted partitions that
were created simply because a data-entry person mistakenly entered “2098” for a year instead of
“2008.” The interval partitioned version of the INVOICE_HEADERS table is shown in the following
listing:

create table INVOICE_HEADERS
(
 InvoiceNum number,
 CustomerNum number,
 Invoice_Date date
)
partition by range (Invoice_Date)
interval (numtoyminterval(1,'MONTH'))
(

Chapter 18: Partitioning 329

 partition p0701 values
 less than (to_date('2007-02-01','yyyy-mm-dd'))
);

Note that if you rely on interval partitioning automatically creating your partitions for you,
your application developers cannot rely on consistent partition names because Oracle will create
a system-generated name for each partition it automatically creates.

Indexing Partitions
When you create a partitioned table, you should create an index on the table. The index may be
partitioned according to the same range values used to partition the table. In the following listing,
the create index command for the BOOKSHELF_LIST_PART (list-partitioned) table is shown. The
index partitions are placed in the PART1_NDX_TS and PART2_NDX_TS tablespaces.

create index BOOKSHELF__LIST_CATEGORY
 on BOOKSHELF_LIST_PART(CategoryName)
 local
 (partition PART1
 tablespace PART1_NDX_TS,
 partition PART2
 tablespace PART2_NDX_TS);

Notice the local keyword. In this create index command, no ranges are specified. Instead, the
local keyword tells Oracle to create a separate index for each partition of the BOOKSHELF_LIST_
PART table. Two partitions were created on BOOKSHELF_LIST_PART. This index will create two
separate index partitions—one for each table partition. Because there is one index per partition,
the index partitions are “local” to the partitions.

You can also create “global” indexes, as shown next. A global index may contain values from
multiple partitions.

create index BOOKSHELF_LIST_CATEGORY_G
on BOOKSHELF_LIST_PART(Publisher)
 global;

The global clause in this create index command allows you to create a nonpartitioned index
(as shown here) or to specify ranges for the index values that are different from the ranges for the
table partitions. Local indexes may be easier to manage than global indexes; however, global
indexes may perform uniqueness checks faster than local (partitioned) indexes perform them.

NOTE
You cannot create global indexes for hash partitions or subpartitions.

Managing Partitioned Tables
You can use the alter table command to add, drop, exchange, move, modify, rename, split, and
truncate partitions. These alter table command options allow you to alter the existing partition
structure, as may be required after a partitioned table has been used heavily. For example, the
distribution of the CategoryName values within the partitioned table may have changed, or the
maximum value may have increased. See the “ALTER TABLE” entry in the Alphabetical Reference
for information on these options.

330 Part II: SQL and SQL*Plus

During an insert into the partitioned table, Oracle uses the partitions’ definitions to determine
which partition the record should be inserted into. Thus, you can use a partitioned table as if it
were a single table, and rely on Oracle to manage the internal separation of the data.

One common use of partitions allows you to minimize downtime in applications. Assume
you have a table that is batch-loaded and partitioned by day. When a new day’s worth of data
comes in, you create a new table to store that data. Structure the new table to look like a partition
of the existing partitioned table. Load the data into the new table, then index it. This avoids the
performance penalties associated with having the index in place during the data load.

Next, analyze the new table. In the partitioned table, create a new partition for today’s data,
then use the alter table exchange partition command to exchange that empty partition for the newly
loaded table. By following this process you will be able to prevent the data load from adversely
impacting the user access to the partitioned table while you load, index, and analyze it.

CHAPTER
19

Basic Oracle Security

331

332 Part II: SQL and SQL*Plus

nformation is vital to success, but when damaged or in the wrong hands, it can
threaten success. Oracle provides extensive security features to safeguard your
information from both unauthorized viewing and intentional or inadvertent
damage. This security is provided by granting or revoking privileges on a person-
by-person and privilege-by-privilege basis, and is in addition to (and independent

of) any security your computer system already has. Oracle uses the create user, create role, and
grant commands to control data access.

In this chapter, you will see the basic security features available in Oracle. See Chapter 20 for
coverage of advanced Oracle security features such as virtual private databases.

Users, Roles, and Privileges
Every Oracle user has a name and password and owns any tables, views, and other resources that
he or she creates. An Oracle role is a set of privileges (or the type of access that each user needs,
depending on his or her status and responsibilities). You can grant or bestow specific privileges to
roles and then assign roles to the appropriate users. A user can also grant privileges directly to
other users.

Database system privileges let you execute specific sets of commands. The CREATE TABLE
privilege, for example, lets you create tables. The privilege GRANT ANY PRIVILEGE allows you to
grant any system privilege.

Database object privileges give you the ability to perform some operation on various objects. The
DELETE privilege, for example, lets you delete rows from tables and views. The SELECT privilege
allows you to query with a select from tables, views, sequences, and snapshots (materialized views).

See “Privilege” in the Alphabetical Reference at the end of this book for a complete list of
system and object privileges.

Creating a User
The Oracle system comes with many users already created, including SYSTEM and SYS. The SYS
user owns the core internal tables Oracle uses to manage the database; SYSTEM owns additional
tables and views. You can log onto the SYSTEM user to create other users because SYSTEM has
that privilege.

When installing Oracle, you (or a system administrator) first create a user for yourself. This is
the simplest format for the create user command:

create user user identified
 {by password | externally | globally as 'extnm'};

Many other account characteristics can be set via this command; see the create user
command in the Alphabetical Reference for details.

To connect your computer system’s userid and password into Oracle’s security so that only
one logon is required for host-based users, use externally instead of giving a password. A system
administrator (who has a great many privileges) may want the extra security of having a separate
password. Let’s call the system administrator Dora in the following examples:

create user Dora identified by avocado;

Dora’s account now exists and is secured by a password.

I

Chapter 19: Basic Oracle Security 333

You also can set up the user with specific tablespaces and quotas (limits) for space and
resource usage. See create user in the Alphabetical Reference and Chapters 17 and 22 for a
discussion of tablespaces and resources.

To change a password, use the alter user command:

alter user Dora identified by psyche;

Now Dora has the password “psyche” instead of “avocado.” However, Dora cannot log into her
account until she first has the CREATE SESSION system privilege:

grant CREATE SESSION to Dora;

You’ll see additional examples of system privilege grants later in this chapter.

Password Management
Passwords can expire, and accounts may be locked due to repeated failed attempts to connect.
When you change your password, a password history may be maintained to prevent reuse of
previous passwords.

The expiration characteristics of your account’s password are determined by the profile
assigned to your account. Profiles, which are created by the create profile command, are
managed by the DBA (database administrator, discussed later in the chapter). See the CREATE
PROFILE entry in the Alphabetical Reference for full details on the create profile command.

Relative to passwords and account access, profiles can enforce the following:

The “lifetime” of your password, which determines how frequently you must change it

The grace period following your password’s “expiration date” during which you can
change the password

The number of consecutive failed connect attempts allowed before the account is
automatically “locked”

The number of days the account will remain locked

The number of days that must pass before you can reuse a password

The number of password changes that must take place before you can reuse a password

Additional password management features allow the minimum length and complexity of
passwords to be enforced.

In addition to the alter user command, you can use the password command in SQL*Plus
to change your password. If you use the password command, your new password will not be
displayed on the screen as you type. Database administrators can change any user’s password
via the password command; other users can change only their own password.

When you enter the password command, you will be prompted for the old and new
passwords, as shown in the following listing:

connect dora/psyche
password
Changing password for dora
Old password:
New password:
Retype new password:

■

■

■

■

■

■

334 Part II: SQL and SQL*Plus

When the password has been successfully changed, you will receive the feedback:

Password changed

You can set another user’s password from a DBA account. Simply append the username to the
password command. You will not be asked for the old password:

password dora
Changing password for dora
New password:
Retype new password:

Enforcing Password Expiration
You can use profiles to manage the expiration, reuse, and complexity of passwords. You can limit
the lifetime of a password, and lock an account whose password is too old. You can also force a
password to be at least moderately complex, and lock any account that has repeated failed login
attempts.

For example, if you set the FAILED_LOGIN_ATTEMPTS resource of the user’s profile to 5,
then four consecutive failed login attempts will be allowed for the account; the fifth will cause
the account to be locked.

NOTE
If the correct password is supplied on the fifth attempt, the “failed
login attempt count” is reset to 0, allowing for five more consecutive
unsuccessful login attempts before the account is locked.

In the following listing, the LIMITED_PROFILE profile is created for use by the user JANE:

create profile LIMITED_PROFILE limit
FAILED_LOGIN_ATTEMPTS 5;

create user JANE identified by EYRE
profile LIMITED_PROFILE;

grant CREATE SESSION to JANE;

If there are five consecutive failed connection attempts to the JANE account, the account
will be automatically locked by Oracle. When you then use the correct password for the JANE
account, you will receive an error.

connect jane/eyre
ERROR:
ORA-28000: the account is locked

To unlock the account, use the account unlock clause of the alter user command (from a
DBA account), as shown in the following listing:

alter user JANE account unlock;

Following the unlocking of the account, connections to the JANE account will once again be
allowed. You can manually lock an account via the account lock clause of the alter user command.

alter user JANE account lock;

Chapter 19: Basic Oracle Security 335

NOTE
You can specify account lock as part of the create user command.

If an account becomes locked due to repeated connection failures, it will automatically
become unlocked when its profile’s PASSWORD_LOCK_TIME value is exceeded. For example, if
PASSWORD_LOCK_TIME is set to 1, the JANE account in the previous example would be locked
for one day, after which the account would be unlocked again.

You can establish a maximum lifetime for a password via the PASSWORD_LIFE_TIME
resource within profiles. For example, you could force users of the LIMITED_PROFILE profile to
change their passwords every 30 days:

alter profile LIMITED_PROFILE limit
PASSWORD_LIFE_TIME 30;

In this example, the alter profile command is used to modify the LIMITED_PROFILE profile.
The PASSWORD_LIFE_TIME value is set to 30, so each account that uses that profile will have its
password expire after 30 days. If your password has expired, you must change it the next time you
log in, unless the profile has a specified grace period for expired passwords. The grace period
parameter is called PASSWORD_GRACE_TIME. If the password is not changed within the grace
period, the account expires.

NOTE
If you are going to use the PASSWORD_LIFE_TIME parameter, you
need to give the users a way to change their passwords easily.

An “expired” account is different from a “locked” account. A locked account, as discussed
earlier in this section, may be automatically unlocked by the passage of time. An expired account,
however, requires manual intervention by the DBA to be reenabled.

NOTE
If you use the password expiration features, make sure the accounts
that own your applications have different profile settings; otherwise,
the accounts may become locked and the application may become
unusable.

To re-enable an expired account, execute the alter user command. In this example, the DBA
manually expires JANE’s password:

alter user jane password expire;

User altered.

Next, JANE attempts to connect to her account. When she provides her password, she is
immediately prompted for a new password for the account.

connect jane/eyre
ERROR:
ORA-28001: the password has expired

Changing password for jane
New password:
Retype new password:

336 Part II: SQL and SQL*Plus

Password changed
Connected.

You can also force users to change their passwords when they first access their accounts, via
the password expire clause of the create user command. The create user command does not,
however, allow you to set an expiration date for the new password set by the user; to do that,
you must use the PASSWORD_LIFE_TIME profile parameter shown in the previous examples.

To see the password expiration date of any account, query the Expiry_Date column of the
DBA_USERS data dictionary view. Users who want to see the password expiration date for their
accounts can query the Expiry_Date column of the USER_USERS data dictionary view (via either
SQL*Plus or a client-based query tool).

Enforcing Password Reuse Limitations
To prevent a password from being reused, you can use one of two profile parameters:
PASSWORD_REUSE_MAX or PASSWORD_REUSE_TIME. These two parameters are mutually
exclusive; if you set a value for one of them, the other must be set to UNLIMITED.

The PASSWORD_REUSE_TIME parameter specifies the number of days that must pass before
a password can be reused. For example, if you set PASSWORD_REUSE_TIME to 60, you cannot
reuse the same password within 60 days.

The PASSWORD_REUSE_MAX parameter specifies the number of password changes that must
occur before a password can be reused. If you attempt to reuse the password before the limit is
reached, Oracle will reject your password change.

For example, you can set PASSWORD_REUSE_MAX for the LIMITED_PROFILE profile created
earlier in this chapter:

alter profile LIMITED_PROFILE limit
PASSWORD_REUSE_MAX 3
PASSWORD_REUSE_TIME UNLIMITED;

If the user JANE now attempts to reuse a recent password, the password change attempt will
fail. For example, suppose she changes her password, as in the following line:

alter user JANE identified by austen;

And then she changes it again:

alter user JANE identified by whitley;

During her next password change, she attempts to reuse a recent password, and the attempt
fails:

alter user jane identified by austen;
alter user jane identified by austen
*
ERROR at line 1:
ORA-28007: the password cannot be reused

She cannot reuse any of her recent passwords; she will need to come up with a new password.

Standard Roles
At the beginning of this chapter, we created a user named Dora. Now that Dora has an account,
what can she do in Oracle? At this point, nothing—Dora has no system privileges other than
CREATE SESSION. In many cases, application users receive privileges via roles. You can group

Chapter 19: Basic Oracle Security 337

system privileges and object accesses into roles specific to your application users’ needs. You can
create your own roles for application access, and you can use Oracle’s default roles for some system
access requirements. The most important standard roles created during database creation are

CONNECT, RESOURCE, and DBA Provided for compatibility with previous versions of
Oracle database software.

DELETE_CATALOG_ROLE,
EXECUTE_CATALOG_ROLE,
SELECT_CATALOG_ROLE

These roles are provided for accessing data dictionary
views and packages.

EXP_FULL_DATABASE,
IMP_FULL_DATABASE

These roles are provided for convenience in using the
Import and Export utilities.

AQ_USER_ROLE,
AQ_ADMINISTRATOR_ROLE

These roles are needed for Oracle Advanced Queuing.

SNMPAGENT This role is used by the Enterprise Manager Intelligent Agent.

RECOVERY_CATALOG_OWNER This role is required for the creation of a recovery catalog
schema owner.

HS_ADMIN_ROLE This role is needed for support of Heterogeneous Services.

SCHEDULER_ADMIN This role allows the grantee to execute the DBMS_
SCHEDULER package’s procedures; should be restricted
to DBAs.

CONNECT, RESOURCE, and DBA are provided for backward compatibility and should no
longer be used. CONNECT gives users the ability to log in and perform basic functions. As of
Oracle 11g, users with CONNECT may no longer create tables, views, sequences, clusters,
synonyms, and database links. Users with RESOURCE can create their own tables, sequences,
procedures, triggers, datatypes, operators, indextypes, indexes, and clusters. Users with the
RESOURCE role also receive the UNLIMITED TABLESPACE system privilege, allowing them to
bypass quotas on all tablespaces. Users with the DBA role can perform database administration
functions, including creating and altering users, tablespaces, and objects.

In place of CONNECT, RESOURCE, and DBA, you should create your own roles that have
privileges to execute specific system privileges. In the following sections you will see how to grant
privileges to users and roles.

Format for the grant Command
Here is the general format for the grant command for system privileges (see the Alphabetical
Reference for the full syntax diagram):

grant {system privilege | role | all [privileges] }
 [, {system privilege | role | all [privileges] }. . .]
 to {user | role} [, {user | role}]. . .
 [identified by password]
 [with admin option]

You can grant any system privilege or role to another user, to another role, or to public. The
with admin option clause permits the grantee to bestow the privilege or role on other users or
roles. The all clause grants the user or role all privileges except the SELECT ANY DICTIONARY
system privilege.

The grantor can revoke a role from a user as well.

338 Part II: SQL and SQL*Plus

Revoking Privileges
Privileges granted can be taken away. The revoke command is similar to the grant command:

revoke {system privilege | role | all [privileges] }
 [, {system privilege | role | all [privileges] }. . .]
 from {user | role} [, {user | role}]. . .

An individual with the DBA role can revoke CONNECT, RESOURCE, DBA, or any other
privilege or role from anyone, including another DBA. This, of course, is dangerous, and is why
DBA privileges should be given neither lightly nor to more than a tiny minority who really need
them.

NOTE
Revoking everything from a given user does not eliminate that user
from Oracle, nor does it destroy any tables that user had created; it
simply prohibits that user’s access to them. Other users with access to
the tables will still have exactly the same access they’ve always had.

To remove a user and all the resources owned by that user, use the drop user command, like this:

drop user username [cascade];

The cascade option drops the user along with all the objects owned by the user, including
referential integrity constraints. The cascade option invalidates views, synonyms, stored procedures,
functions, or packages that refer to objects in the dropped user’s schema. If you don’t use the
cascade option and there are still objects owned by the user, Oracle does not drop the user and
instead returns an error message.

NOTE
See the Privileges entry in Part VIII, the Alphabetical Reference, for all
of the options for the grant command.

What Users Can Grant
A user can grant privileges on any object he or she owns. The database administrator can grant
any system privilege.

Suppose that user Dora owns the COMFORT table and is a database administrator. Create two
new users, Bob and Judy, with these privileges:

create user Judy identified by sarah;

User created.

grant CREATE SESSION to Judy;

Grant succeeded.

create user Bob identified by carolyn;

User created.

Chapter 19: Basic Oracle Security 339

grant CREATE SESSION, CREATE TABLE, CREATE VIEW,
CREATE SYNONYM to bob;

Grant succeeded.

alter user bob
default tablespace users
quota 5m on users;

User altered.

This sequence of commands gives both Judy and Bob the ability to connect to Oracle, and
gives Bob some extra capabilities. But can either do anything with Dora’s tables? Not without
explicit access.

To give others access to your tables, use a second form of the grant command:

grant { object privilege | all [privileges] }
 [(column [, column] . . .)]
 [, { object privilege | all [privileges] }
 [(column [, column] . . .)]] . . .
 on object to {user | role}
 [with grant option]
 [with hierarchy option];

The privileges a user can grant include these:

On the user’s tables, views, and materialized views:

FLASHBACK
INSERT
UPDATE (all or specific columns)
DELETE
SELECT

NOTE
The INSERT, UPDATE, and DELETE privileges can only be granted on
materialized views if they are updateable. See Chapter 26 for details
on the creation of materialized views.

On tables, you can also grant:

ALTER (table—all or specific columns)
DEBUG
REFERENCES
INDEX (columns in a table)
ON COMMIT REFRESH
QUERY REWRITE
ALL (of the items previously listed)

On procedures, functions, packages, abstract datatypes, libraries, indextypes, and
operators:

EXECUTE
DEBUG

■

■

■

340 Part II: SQL and SQL*Plus

On sequences:

SELECT
ALTER

On directories (for BFILE LOB datatypes and external tables):

READ
WRITE

On object types and views:

UNDER (for the ability to create subviews under a
 view, or subtypes under a type)

When you execute another user’s procedure or function, it is typically executed using the
privileges of its owner. This means you don’t need explicit access to the data the procedure or
function uses; you see only the result of the execution, not the underlying data. You can also
create stored procedures that execute under the privileges of the invoking user instead of the
procedure owner.

Dora gives Bob SELECT access to the COMFORT table:

grant select on COMFORT to Bob;

Grant succeeded.

The with grant option clause of the grant command allows the recipient of that grant to pass
along the privileges he or she has received to other users. If the user Dora grants privileges on her
tables to the user Bob using with grant option, Bob can make grants on Dora’s tables to other
users (Bob can only pass along those privileges—such as SELECT—that he has been granted). If
you intend to create views based on another user’s tables and grant access to those views to other
users, you first must be granted access with grant option to the base tables.

Moving to Another User with connect
To test the success of her grant, Dora connects to Bob’s username with the connect command.
This command may be used via one of the following methods:

By entering both the username and password on the same line as the command

By entering the command alone and then responding to prompts

By entering the command and username and responding to the prompt for the password

The latter two methods suppress the display of the password and are therefore inherently
more secure. The following listing shows a sample connection to the database:

connect Bob/carolyn

Connected.

Once connected, Dora selects from the table to which Bob has been given SELECT access.

■

■

■

■

■

■

Chapter 19: Basic Oracle Security 341

NOTE
Unless a synonym is used, the table name must be preceded by the
username of the table’s owner. Without this, Oracle will say the table
does not exist.

select * from Dora.COMFORT;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ----- -------- -------------
SAN FRANCISCO 21-MAR-03 62.5 42.3 .5
SAN FRANCISCO 22-JUN-03 51.1 71.9 .1
SAN FRANCISCO 23-SEP-03 61.5 .1
SAN FRANCISCO 22-DEC-03 52.6 39.8 2.3
KEENE 21-MAR-03 39.9 -1.2 4.4
KEENE 22-JUN-03 85.1 66.7 1.3
KEENE 23-SEP-03 99.8 82.6
KEENE 22-DEC-03 -7.2 -1.2 3.9

A view named COMFORT is created, which is simply a straight select from the table Dora
.COMFORT:

create view COMFORT as select * from Dora.COMFORT;

View created.

Selecting from this view will produce exactly the same results as selecting from Dora.COMFORT:

select * from COMFORT;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ----- -------- -------------
SAN FRANCISCO 21-MAR-03 62.5 42.3 .5
SAN FRANCISCO 22-JUN-03 51.1 71.9 .1
SAN FRANCISCO 23-SEP-03 61.5 .1
SAN FRANCISCO 22-DEC-03 52.6 39.8 2.3
KEENE 21-MAR-03 39.9 -1.2 4.4
KEENE 22-JUN-03 85.1 66.7 1.3
KEENE 23-SEP-03 99.8 82.6
KEENE 22-DEC-03 -7.2 -1.2 3.9

Now Dora returns to her own username and creates a view that selects only a part of the
COMFORT table:

connect Dora/psyche
Connected.

create view SOMECOMFORT as
select * from COMFORT
 where City = 'KEENE';

View created.

342 Part II: SQL and SQL*Plus

She then grants both SELECT and UPDATE privileges to Bob on this view, and revokes all
privileges from Bob (via the revoke command) for the whole COMFORT table:

grant select, update on SOMECOMFORT to Bob;

Grant succeeded.

revoke all on COMFORT from Bob;

Revoke succeeded.

Dora then reconnects to Bob’s username to test the effects of this change:

connect Bob/carolyn
Connected.

select * from COMFORT;
 *
ERROR at line 1:
ORA-04063: view "BOB.COMFORT" has errors

Attempting to select from his COMFORT view fails because the underlying table named
in Bob’s view was the Dora.COMFORT table. Not surprisingly, attempting to select from Dora
.COMFORT would produce exactly the same message. Next, an attempt to select from
Dora.SOMECOMFORT is made:

select * from Dora.SOMECOMFORT;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ----- -------- -------------
KEENE 21-MAR-03 39.9 -1.2 4.4
KEENE 22-JUN-03 85.1 66.7 1.3
KEENE 23-SEP-03 99.8 82.6
KEENE 22-DEC-03 -7.2 -1.2 3.9

This works perfectly well, even though direct access to the COMFORT table had been revoked,
because Dora gave Bob access to a portion of COMFORT through the SOMECOMFORT view. It
is just that portion of the table related to KEENE.

This shows a powerful security feature of Oracle: You can create a view using virtually any
restrictions you like or any computations in the columns, and then give access to the view, rather
than to the underlying tables, to other users. They will see only the information the view presents.
This can even be extended to be user specific. The “Security by User” section later in this chapter
gives complete details on this feature.

Now, the view LITTLECOMFORT is created under Bob’s username, on top of the view
SOMECOMFORT:

create view LITTLECOMFORT as select * from Dora.SOMECOMFORT;

View created.

And the row for September 23, 2003, is updated:

Chapter 19: Basic Oracle Security 343

update LITTLECOMFORT set Noon = 88
 where SampleDate = '23-SEP-03';

1 row updated.

When the view LITTLECOMFORT is queried, it shows the effect of the update:

select * from LITTLECOMFORT;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ----- -------- -------------
KEENE 21-MAR-03 39.9 -1.2 4.4
KEENE 22-JUN-03 85.1 66.7 1.3
KEENE 23-SEP-03 88 82.6
KEENE 22-DEC-03 -7.2 -1.2 3.9

A query of Dora.SOMECOMFORT would show the same results, as would a query of COMFORT
itself if Dora made it on her own username. The update was successful against the underlying
table, even though it went through two views (LITTLECOMFORT and SOMECOMFORT) to reach it.

NOTE
You need to grant users SELECT access to any table in which they can
update or delete records. This is in keeping with the evolving ANSI
standard and reflects the fact that a user who only has the UPDATE
or DELETE privilege on a table could use the database’s feedback
comments to discover information about the underlying data.

create synonym
An alternative method to creating a view that includes an entire table or view from another user is
to create a synonym:

create synonym BOBCOMFORT for Dora.SOMECOMFORT;

This synonym can be queried exactly like a view. See the create synonym command in the
Alphabetical Reference.

Using Ungranted Privileges
Let’s say an attempt is made to delete the row just updated:

delete from LITTLECOMFORT where SampleDate = '23-SEP-03';
 *
ERROR at line 1:
ORA-01031: insufficient privileges

Bob has not been given DELETE privileges by Dora, so the attempt fails.

Passing Privileges
Bob can grant authority for other users to access his tables, but he cannot bestow on other users
access to tables that don’t belong to him. Here, he attempts to give INSERT authority to Judy:

grant insert on Dora.SOMECOMFORT to Judy;

344 Part II: SQL and SQL*Plus

 *
ERROR at line 1:
ORA-01031: insufficient privileges

Because Bob does not have this authority, he fails to give it to Judy. Next, Bob tries to pass on
a privilege he does have, SELECT:

grant select on Dora.SOMECOMFORT to Judy;
 *
ERROR at line 1:
ORA-01031: insufficient privileges

He cannot grant this privilege, either, because the view SOMECOMFORT does not belong to
him. If he had been granted access to SOMECOMFORT with grant option, then the preceding
grant command would have succeeded. The view LITTLECOMFORT does belong to him, though,
so he can try to pass authority to that view on to Judy:

grant select on LITTLECOMFORT to Judy;

ERROR at line 1:
ORA-01720: grant option does not exist for 'DORA.SOMECOMFORT'

Because the LITTLECOMFORT view relies on one of Dora’s views, and Bob was not granted
SELECT with grant option on that view, Bob’s grant fails.

In addition, a new table, owned by Bob, is created and loaded with the current information
from his view LITTLECOMFORT:

create table NOCOMFORT as
select * from LITTLECOMFORT;

Table created.

The SELECT privilege on the NOCOMFORT table is granted to Judy:

grant select on NOCOMFORT to Judy;

Grant succeeded.

Queries are made from Judy’s account against the table for which Bob granted the SELECT
privilege to Judy:

connect Judy/sarah
select * from Bob.NOCOMFORT;

CITY SAMPLEDAT NOON MIDNIGHT PRECIPITATION
------------- --------- ----- -------- -------------
KEENE 21-MAR-03 39.9 -1.2 4.4
KEENE 22-JUN-03 85.1 66.7 1.3
KEENE 23-SEP-03 88 82.6
KEENE 22-DEC-03 -7.2 -1.2 3.9

This grant was successful. The NOCOMFORT table was created, and is owned, by Bob’s
username. He was able to successfully give access to this table.

Chapter 19: Basic Oracle Security 345

If Dora wants Bob to be able to pass on his privileges to others, she can add another clause to
the grant statement:

connect Dora/psyche
grant select, update on SOMECOMFORT to Bob with grant option;

Grant succeeded.

The with grant option clause enables Bob to pass on access to SOMECOMFORT to Judy through
his LITTLECOMFORT view. Note that attempts to access a table to which a user does not have the
SELECT privilege always result in the following message:

ERROR at line 1:
ORA-00942: table or view does not exist

This message appears (rather than a message about not having access privilege) so that a
person without permission to query a table doesn’t know that it even exists.

Creating a Role
In addition to the default roles shown earlier in this chapter, you can create your own roles within
Oracle. The roles you create can comprise table or system privileges or a combination of both. In
the following sections, you will see how to create and administer roles.

To create a role, you need to have the CREATE ROLE system privilege. The syntax for role
creation is shown in the following listing:

create role role_name
[not identified
|identified {by password | using [schema.]package
|externally | globally }];

When a role is first created, it has no privileges associated with it. Password options for roles
are discussed in “Adding a Password to a Role,” later in this chapter.

Two sample create role commands are shown in the following example:

create role CLERK;
create role MANAGER;

The first command creates a role called CLERK, which will be used in the examples in the
following sections of this chapter. The second command creates a role called MANAGER, which
will also be featured in those examples.

Granting Privileges to a Role
Once a role has been created, you may grant privileges to it. The syntax for the grant command is
the same for roles as it is for users. When granting privileges to roles, you use the role name in the
to clause of the grant command, as shown in the following listing:

grant select on COMFORT to CLERK;

As shown in this example, the role name takes the place of the username in the grant
command. The privilege to select from the COMFORT table will now be available to any user of
the CLERK role.

346 Part II: SQL and SQL*Plus

If you are a DBA, or have been granted the GRANT ANY PRIVILEGE system role, you may
grant system privileges—such as CREATE SESSION, CREATE SYNONYM, and CREATE VIEW—to
roles. These privileges will then be available to any user of your role.

The ability to log into the database is given via the CREATE SESSION system privilege. In the
following example, this privilege is granted to the CLERK role. This privilege is also granted to the
MANAGER role, along with the CREATE VIEW system privilege.

grant CREATE SESSION to CLERK;
grant CREATE SESSION, CREATE VIEW to MANAGER;

Granting a Role to Another Role
Roles can be granted to other roles. You can do this via the grant command, as shown in the
following example:

grant CLERK to MANAGER;

NOTE
You can’t have circular grants, so you cannot now grant MANAGER to
CLERK.

In this example, the CLERK role is granted to the MANAGER role. Even though you have not
directly granted any table privileges to the MANAGER role, it will now inherit any privileges that
have been granted to the CLERK role. Organizing roles in this way is a common design for
hierarchical organizations.

When granting a role to another role (or to a user, as in the following section), you may grant
the role using the with admin option clause, as shown in the following listing:

grant CLERK to MANAGER with admin option;

If the with admin option clause is used, the grantee has the authority to grant the role to other
users or roles. The grantee can also alter or drop the role.

Granting a Role to Users
Roles can be granted to users. When granted to users, roles can be thought of as named sets of
privileges. Instead of granting each privilege to each user, you grant the privileges to the role and
then grant the role to each user. This greatly simplifies the administrative tasks involved in the
management of privileges.

NOTE
Privileges that are granted to users via roles cannot be used as the
basis for views, procedures, functions, packages, or foreign keys.
When creating these types of database objects, you must rely on direct
grants of the necessary privileges.

You can grant a role to a user via the grant command, as shown in the following example:

grant CLERK to Bob;

The user Bob in this example will have all the privileges that were granted to the CLERK role
(CREATE SESSION and SELECT privileges on COMFORT).

Chapter 19: Basic Oracle Security 347

When granting a role to a user, you may grant the role using the with admin option clause, as
shown in the following listing:

grant MANAGER to Dora with admin option;

Dora now has the authority to grant the MANAGER role to other users or roles, or to alter or
drop the role.

Adding a Password to a Role
You can use the alter role command for only one purpose: to change the authority needed to
enable it. By default, roles do not have passwords associated with them. To enable security for
a role, use the identified keyword in the alter role command. There are two ways to implement
this security.

First, you can use the identified by clause of the alter role command to specify a password, as
shown in the following listing:

alter role MANAGER identified by cygnusxi;

Anytime a user tries to activate that role, the password will be required. If, however, that role
is set up as a default role for the user, no password will be required for that role when the user
logs in. See the upcoming “Enabling and Disabling Roles” section of this chapter for more details
on these topics.

Roles can be tied to operating system privileges as well. If this capability is available on your
operating system, you use the identified externally clause of the alter role command. When the
role is enabled, Oracle will check the operating system to verify your access. Altering a role to
use this security feature is shown in the following example:

alter role MANAGER identified externally;

In most UNIX systems, the verification process uses the /etc/group file. To use this file for any
operating system, the OS_ROLES database startup parameter in the init.ora file must be set to
TRUE.

The following example of this verification process is for a database instance called “Local” on
a UNIX system. The server’s /etc/group file may contain the following entry:

ora_local_manager_d:NONE:1:dora

This entry grants the MANAGER role to the account named Dora. The _d suffix indicates that
this role is to be granted by default when Dora logs in. An _a suffix would indicate that this role is
to be enabled with admin option. If this role were also the user’s default role, the suffix would be
_ad. If more than one user were granted this role, the additional usernames would be appended
to the /etc/group entry, as shown in the following listing:

ora_local_manager_d:NONE:1:dora,judy

If you use this option, roles in the database will be enabled via the operating system.

Removing a Password from a Role
To remove a password from a role, use the not identified clause of the alter role command, as
shown in the following listing. By default, roles do not have passwords.

alter role MANAGER not identified;

348 Part II: SQL and SQL*Plus

Enabling and Disabling Roles
When a user’s account is altered, a list of default roles for that user can be created via the default
role clause of the alter user command. The default action of this command sets all of a user’s
roles as default roles, enabling all of them every time the user logs in.

NOTE
The maximum number of roles a user can have enabled at any time is
set via the MAX_ENABLED_ROLES database initialization parameter.

The syntax for this portion of the alter user command is as follows:

alter user username
default role {[role1, role2]
[all | all except role1, role2][NONE]};

As shown by this syntax, a user can be altered to have, by default, specific roles enabled, all
roles enabled, all except specific roles enabled, or no roles enabled. For example, the following
alter user command will enable the CLERK role whenever Bob logs in:

alter user Bob
default role CLERK;

To enable a nondefault role, use the set role command, as shown in this example:

set role CLERK;

To see what roles are enabled within your current session, select from the SESSION_ROLES
data dictionary view. Query SESSION_PRIVS to see the currently enabled system privileges.

You may also use the all and all except clauses that were available in the alter user
command:

set role all;
set role all except CLERK;

If a role has a password associated with it, that password must be specified via an identified
by clause:

set role MANAGER identified by cygnusxi;

To disable a role in your session, use the set role none command, as shown in the following
listing. This will disable all roles in your current session. Once all the roles have been disabled,
reenable the ones you want.

set role none;

Because you may find it necessary to execute a set role none command from time to time,
you may want to grant the CREATE SESSION privilege to users directly rather than via roles.

Revoking Privileges from a Role
To revoke a privilege from a role, use the revoke command, described earlier in this chapter.
Specify the privilege, object name (if it is an object privilege), and role name, as shown in the
following example:

revoke SELECT on COMFORT from CLERK;

Chapter 19: Basic Oracle Security 349

Users of the CLERK role will then be unable to query the COMFORT table.

Dropping a Role
To drop a role, use the drop role command, as shown in the following example:

drop role MANAGER;
drop role CLERK;

The roles you specify, and their associated privileges, will be removed from the database
entirely. Grants and revokes of system and object privileges take effect immediately. Grants and
revokes of roles are only observed when a current user issues a set role command or a new user
session is started.

Granting UPDATE to Specific Columns
You may want to grant users the SELECT privilege to more columns than you want to grant them
the UPDATE privilege. Because SELECT columns can be restricted through a view, to further
restrict the columns that can be updated requires a special form of the user’s grant command.
Here is an example for two columns in the COMFORT table:

grant update (Noon, Midnight) on COMFORT to Judy;

Revoking Object Privileges
If object privileges can be granted, they can also be taken away. This is similar to the grant
command:

revoke { object privilege | all [privileges]}
 [(column [, column]. . .)]
[, { object privilege | all [privileges]}
 [(column [, column]. . .)]]. . .]
on object
from {user | role} [,{user | role}]
[cascade constraints] [force];

revoke all removes any of the privileges listed previously, from SELECT through INDEX;
revoking individual privileges will leave intact others that had also been granted. The with grant
option is revoked along with the privilege to which it was attached; the revoke then cascades so
users who received their access via the with grant option user also have their privileges revoked.

If a user defines referential integrity constraints on the object, Oracle drops these constraints if
you revoke privileges on the object using the cascade constraints option. The force option applies
to object types. The force option revokes the EXECUTE privilege on object types with table or
type dependencies; all dependent objects will be marked as invalid and the data in dependent
tables will become inaccessible until the necessary privilege is re-granted.

Security by User
Access to tables can be granted specifically, table by table and view by view, to each user or role.
There is, however, an additional technique that will simplify this process in some cases. Recall the
BOOKSHELF_CHECKOUT records:

select Name, SUBSTR(Title,1,30) from BOOKSHELF_CHECKOUT;

350 Part II: SQL and SQL*Plus

NAME SUBSTR(TITLE,1,30)
------------------------- ------------------------------
JED HOPKINS INNUMERACY
GERHARDT KENTGEN WONDERFUL LIFE
DORAH TALBOT EITHER/OR
EMILY TALBOT ANNE OF GREEN GABLES
PAT LAVAY THE SHIPPING NEWS
ROLAND BRANDT THE SHIPPING NEWS
ROLAND BRANDT THE DISCOVERERS
ROLAND BRANDT WEST WITH THE NIGHT
EMILY TALBOT MIDNIGHT MAGIC
EMILY TALBOT HARRY POTTER AND THE GOBLET OF
PAT LAVAY THE MISMEASURE OF MAN
DORAH TALBOT POLAR EXPRESS
DORAH TALBOT GOOD DOG, CARL
GERHARDT KENTGEN THE MISMEASURE OF MAN
FRED FULLER JOHN ADAMS
FRED FULLER TRUMAN
JED HOPKINS TO KILL A MOCKINGBIRD
DORAH TALBOT MY LEDGER
GERHARDT KENTGEN MIDNIGHT MAGIC

To enable each borrower to access this table, but restrict the access given to a view of only
each borrower’s own single row, you could create 19 separate views, each with a different name
in the where clause, and you could make separate grants to each of these views for each borrower.
Alternatively, you could create a view whose where clause contains User, the pseudo-column,
like this:

create or replace view MY_CHECKOUT as
select * from BOOKSHELF_CHECKOUT
 where SUBSTR(Name,1,INSTR(Name,' ')-1) = User;

The owner of the BOOKSHELF_CHECKOUT table can create this view and grant SELECT on it
to users. A user can then query the BOOKSHELF_CHECKOUT table through the MY_CHECKOUT
view. The where clause will find his or her username in the Name column (see the where clause)
and return just that user’s records.

In the following example, a user name Jed is created and granted access to the MY_CHECKOUT
view. Selecting from that view yields just those books checked out by him. This example assumes
that the schema owning the BOOKSHELF_CHECKOUT table is named PRACTICE and is a database
administrator:

create user jed identified by hop;

User created.

grant CREATE SESSION to jed;

Grant succeeded.

grant select on MY_CHECKOUT to jed;

Chapter 19: Basic Oracle Security 351

Grant succeeded.

connect jed/hop

Connected.

select * from Practice.MY_CHECKOUT;

NAME

TITLE

CHECKOUTD RETURNEDD
--------- ---------
JED HOPKINS
INNUMERACY
01-JAN-02 22-JAN-02

JED HOPKINS
TO KILL A MOCKINGBIRD
15-FEB-02 01-MAR-02

Whenever MY_CHECKOUT is queried, it will return records depending on the pseudo-
column User—the user of SQL*Plus at the moment the view is queried.

Granting Access to the Public
Rather than grant access to every worker, the grant command can be generalized to the public:

grant select on MY_CHECKOUT to public;

This gives everyone access, including users created after this grant was made. However, each
user will still have to access the table using the owner’s username as a prefix. To avoid this, a
DBA may create a public synonym (which creates a name accessible to all users that stands for
Practice.MY_CHECKOUT):

create public synonym MY_CHECKOUT for Practice.MY_CHECKOUT;

From this point forward, anyone can access MY_CHECKOUT without prefixing it with the
schema owner (Practice in this case). This approach gives tremendous flexibility for security.
Workers could see only their own salaries, for instance, in a table that contains salaries for
everyone. If, however, a user creates a table or view with the same name as a public synonym,
any future SQL statements by this user will act on this new table or view, and not on the one by
the same name to which the public has access.

NOTE
All these accesses—and all attempts at system-level operations, such
as logins—may be audited. See AUDIT in the Alphabetical Reference
for an introduction to Oracle’s security-auditing capabilities.

352 Part II: SQL and SQL*Plus

Granting Limited Resources
When granting resource quotas in an Oracle database, you use the quota parameter of the create
user or alter user command, as shown in the following listing. In this example, Bob is granted a
quota of 100MB in the USERS tablespace:

alter user Bob
quota 100M on USERS;

A user’s space quota may be set when the user is created, via the create user command.
If you want to remove limits on a user’s space quota, you can grant that user the UNLIMITED
TABLESPACE system privilege. See the create user and alter user commands in the Alphabetical
Reference for further details on these commands.

Profiles can also be used to enforce other resource limits, such as the amount of CPU time or
idle time a user’s requests to Oracle can take. A profile detailing these resource limits is created
and then assigned to one or more users. See the create profile and alter user command entries in
the Alphabetical Reference for full details.

PART
III

Beyond the Basics

This page intentionally left blank

CHAPTER
20

Advanced Security—
Virtual Private Databases

355

356 Part III: Beyond the Basics

n prior chapters, you have seen how to use views to enhance security by displaying
only the rows that meet specified criteria. In this chapter, you will see how to use a
Virtual Private Database (VPD) to provide that type of record-level security across
your application tables. In VPD, you attach security policies directly to tables,
views, and synonyms so there is no way for users to bypass your security settings.

In a VPD, any SQL used to access a table, view, or synonym protected by a VPD policy is
dynamically modified to include a limiting condition—a where clause or an and clause. The
modification occurs transparently, and the user sees only the data that passes the limiting condition
in the where clause. This fine-grained access allows a great deal of control over all accesses of
your application tables. VPD policies can be applied to select, insert, update, index, and delete
commands. You can create different security policies for each type of access—one for selects,
another for inserts, and so on.

VPD includes column-level VPD, in which security policies are applied only when a
particular column (or columns) is accessed. Oracle also supports column masking, in which
protected columns may be displayed with NULL values if their rows are returned. Additionally,
auditing has been enhanced so DBAs can perform fine-grained auditing of select, insert, update,
and delete commands.

NOTE
Implementing VPD requires the use of some advanced features—
procedures, triggers, and PL/SQL. These features are covered in Part IV
of this book. If you are not already familiar with those features, you
may wish to review Part IV before proceeding with the advanced
material in this chapter.

Initial Configuration
VPD allows you to customize the ways different users see the same table. To go through the full
example shown in this chapter, you will need access to a SYSDBA-privileged account.

VPD requires the use of a package named DBMS_RLS. From the SYSDBA-privileged account,
grant EXECUTE privilege on the DBMS_RLS package to all users. Also, create the users that will
be used during the examples: PRACTICE (which will own the tables), ADAMS, and BURLINGTON,
as shown in the following listing:

connect system/password as SYSDBA

grant execute on DBMS_RLS to public;

create user ADAMS identified by john7;
create user BURLINGTON identified by newj2;
grant CREATE SESSION to ADAMS, BURLINGTON;

From the SYSDBA-privileged account, create the PRACTICE user (if it does not already exist)
and give it the CREATE ANY CONTEXT and CREATE PUBLIC SYNONYM system privileges:

grant CREATE ANY CONTEXT, CREATE PUBLIC SYNONYM to PRACTICE;

Within the PRACTICE user, you should now create two tables: the STOCK_ACCOUNT table
and the STOCK_TRX table. The STOCK_ACCOUNT table contains one row for each account that

I

Chapter 20: Advanced Security—Virtual Private Databases 357

can perform stock trades. The STOCK_TRX table contains one row for each stock bought or sold
by that account holder.

connect practice/practice

create table STOCK_ACCOUNT
(Account NUMBER(10),
AccountLongName VARCHAR2(50));

insert into STOCK_ACCOUNT values (
1234, 'ADAMS');
insert into STOCK_ACCOUNT values (
7777, 'BURLINGTON');

create table STOCK_TRX (
Account NUMBER(10),
Symbol VARCHAR2(20),
Price NUMBER(6,2),
Quantity NUMBER(6),
Trx_Flag VARCHAR2(1));

insert into STOCK_TRX values (
 1234, 'ADSP', 31.75, 100, 'B');
insert into STOCK_TRX values (
 7777, 'ADSP', 31.50, 300, 'S');
insert into STOCK_TRX values (
 1234, 'ADSP', 31.55, 100, 'B');
insert into STOCK_TRX values (
 7777, 'OCKS', 21.75, 1000, 'B');
commit;

Once those tables are created, grant the ADAMS and BURLINGTON users access to them:

grant SELECT, INSERT on STOCK_TRX to ADAMS, BURLINGTON;
grant SELECT on STOCK_ACCOUNT to ADAMS, BURLINGTON;

You now have the application configuration set—the PRACTICE schema owns the data table
(STOCK_TRX) and has a table that you can use to map usernames to account numbers (STOCK_
ACCOUNT). With this configuration in place, you can create an application context, as described
in the next section.

Create an Application Context
The next step in the VPD configuration is to create an application context. The purpose of the
context is to define the rules you will use to separate users. The context will be part of each
session’s characteristics.

First, use the create context command to specify the name of the package you will use to set
the rules:

connect PRACTICE/PRACTICE

create context PRACTICE using PRACTICE.CONTEXT_PACKAGE;

358 Part III: Beyond the Basics

Next, create the package with that same name (CONTEXT_PACKAGE). See Chapter 35 for
details on the use of packages. The package consists of a single procedure call:

create or replace package CONTEXT_PACKAGE AS
 procedure SET_CONTEXT;
end;
/

Now that the package header has been created, you can create the package body. The
following listing shows the package body that will set the context for each session:

create or replace package body CONTEXT_PACKAGE is
 procedure Set_Context IS
 v_user VARCHAR2(30);
 v_id NUMBER;
 begin
 DBMS_SESSION.SET_CONTEXT('PRACTICE','SETUP','TRUE');
 v_user := SYS_CONTEXT('USERENV','SESSION_USER');
 begin
 select Account
 into v_id
 from STOCK_ACCOUNT
 where AccountLongName = v_user;
 DBMS_SESSION.SET_CONTEXT('PRACTICE','USER_ID', v_id);
 exception
 WHEN NO_DATA_FOUND then
 DBMS_SESSION.SET_CONTEXT('PRACTICE','USER_ID', 0);
 end;
 DBMS_SESSION.SET_CONTEXT('PRACTICE','SETUP','FALSE');
 end SET_CONTEXT;
end CONTEXT_PACKAGE;
/

The core of this package body is a single query:

 select Account
 into v_id
 from STOCK_ACCOUNT
 where AccountLongName = v_user;

The STOCK_ACCOUNT table will contain a row for each user (Adams, Burlington, and so on).
This query takes the name of the user who logged in and compares it to the AccountLongName
values in the STOCK_ACCOUNT table. If there is a match, then the Account value is returned. If
there is no match, then another part of the package returns a 0 as the account number. The Account
value is set as the User_ID variable for the session:

 DBMS_SESSION.SET_CONTEXT('PRACTICE','USER_ID', v_id);

You will be able to reference this context value in your programs, and VPD restrictions will be
based on the context setting.

Now that the package has been created, grant public access to it:

Chapter 20: Advanced Security—Virtual Private Databases 359

grant EXECUTE on PRACTICE.CONTEXT_PACKAGE to public;
create public synonym CONTEXT_PACKAGE for PRACTICE.CONTEXT_PACKAGE;

The rules for establishing the context for sessions are now ready to be activated, as described
in the next section.

Create a Logon Trigger
In order for the context to be set within each user’s session, you must create a trigger that will be
executed each time a user logs into the database (see Chapter 34 for full details on triggers).

rem NOTE: connect to a SYSDBA account before running this
rem
create or replace trigger PRACTICE.SET_SECURITY_CONTEXT
after logon on database
begin
 PRACTICE.CONTEXT_PACKAGE.SET_CONTEXT;
end;
/

Each time a user logs in, Oracle will execute the SET_CONTEXT procedure within the PRACTICE
user’s CONTEXT_PACKAGE package. That procedure will query the STOCK_ACCOUNT table and
see if there is a matching account name; if there is a match, then the session’s context will be altered
to reflect the Account value.

You should test the context setting before going past this point in the implementation of a
VPD. You can use the SYS_CONTEXT function to determine whether the configuration is working
properly, as shown in the following listing:

connect adams/john7

select SYS_CONTEXT('USERENV', 'SESSION_USER') Username,
 SYS_CONTEXT('PRACTICE', 'USER_ID') ID
from DUAL;

USERNAME
--
ID
--
ADAMS
1234

The SYS_CONTEXT function output shows the power of the VPD configuration. For each user
who logs in, Oracle will check the STOCK_ACCOUNT table and will use the matching Account
value to set a value for the session’s User_ID. In this case, Oracle looked up the ADAMS user in
the STOCK_ACCOUNT table, found its Account value (1234), and set its session’s User_ID variable
to that value. If you have that information, you can restrict access to rows in other tables based on
the Account data in the STOCK_ACCOUNT table. VPD allows you to restrict that access
automatically with no need to create views. Every time a user attempts to access a table,
access can be restricted regardless of the tool used.

360 Part III: Beyond the Basics

If you log in as a user not listed in the STOCK_ACCOUNT table (triggering a NO_DATA_
FOUND exception), your User_ID value will be 0, as the procedure dictates:

 WHEN NO_DATA_FOUND then
 DBMS_SESSION.SET_CONTEXT('PRACTICE','USER_ID', 0);

Create a Security Policy
At this point, the context and the logon triggers have been created. For the context package to
have an effect on the users’ interaction with the database, you need to create a security package
that acts on the output of the context package.

First, define the package header. In this example, there are two types of actions supported
against the STOCK_TRX table (inserts and selects), so two functions will be created within the
package:

connect PRACTICE/PRACTICE

create or replace package SECURITY_PACKAGE as
 function STOCK_TRX_INSERT_SECURITY(Owner VARCHAR2, Objname VARCHAR2)
 return VARCHAR2;
 function STOCK_TRX_SELECT_SECURITY(Owner VARCHAR2, Objname VARCHAR2)
 return VARCHAR2;
end SECURITY_PACKAGE;
/

Next, create the package body. Both functions follow the same pattern, geared toward
generating a predicate that will be applied every time a user queries the STOCK_TRX table. If the
session username is the owner of the table, then the predicate is NULL. For all other users, the
User_ID context variable is evaluated, and is passed as a limiting condition to any query. The
object of these functions is to generate a predicate such as where Account=1234 to be applied
each time the table is queried by a user.

create or replace package body SECURITY_PACKAGE is
 function STOCK_TRX_SELECT_SECURITY(Owner VARCHAR2, Objname VARCHAR2)
 return VARCHAR2 is
 Predicate VARCHAR2(2000);
 begin
 Predicate := '1=2';
 if (SYS_CONTEXT('USERENV','SESSION_USER') = 'PRACTICE') then
 Predicate := NULL;
 else
 Predicate := 'ACCOUNT = SYS_CONTEXT(''PRACTICE'',''USER_ID'')';
 end if;
 return Predicate;
 END STOCK_TRX_SELECT_SECURITY;

 function STOCK_TRX_INSERT_SECURITY(Owner VARCHAR2, Objname VARCHAR2)
 return VARCHAR2 is
 Predicate VARCHAR2(2000);
 begin
 Predicate := '1=2';
 if (SYS_CONTEXT('USERENV','SESSION_USER') = 'PRACTICE') then

Chapter 20: Advanced Security—Virtual Private Databases 361

 Predicate := NULL;
 else
 Predicate := 'ACCOUNT = SYS_CONTEXT(''PRACTICE'',''USER_ID'')';
 end if;
 return Predicate;
 end STOCK_TRX_INSERT_SECURITY;
end SECURITY_PACKAGE;
/

Since this package will be executed by all users who access the STOCK_TRX table, grant
users the privilege to execute it, and create a public synonym.

grant EXECUTE ON PRACTICE.SECURITY_PACKAGE to public;
create public synonym SECURITY_PACKAGE for PRACTICE.SECURITY_PACKAGE;

Apply the Security Policy to Tables
Now that the security package exists, you can relate it to tables. To add a policy to a table, use the
ADD_POLICY procedure of the DBMS_RLS package, as shown in the following listing:

begin
 DBMS_RLS.ADD_POLICY('PRACTICE', 'STOCK_TRX', 'STOCK_TRX_INSERT_POLICY',
 'PRACTICE', 'SECURITY_PACKAGE.STOCK_TRX_INSERT_SECURITY',
 'INSERT', TRUE);
 DBMS_RLS.ADD_POLICY('PRACTICE', 'STOCK_TRX', 'STOCK_TRX_SELECT_POLICY',
 'PRACTICE', 'SECURITY_PACKAGE.STOCK_TRX_SELECT_SECURITY',
 'SELECT');
end;
/

The ADD_POLICY procedure is executed two times. In the first execution, the STOCK_TRX_
INSERT_SECURITY function is specified for execution during attempts to insert rows into the
STOCK_TRX table. In the second execution, the STOCK_TRX_SELECT_SECURITY function is
applied to queries of the STOCK_TRX tables. You can have distinct rules for security for different
operations against the table. The variables passed to the ADD_POLICY procedure are the schema
name, table name, and policy name, the schema name and function name for the security function,
and the operation affected.

Test VPD
To see the results of the security policy, query the table. The STOCK_TRX table has four rows, two
from the ADAMS account (1234) and two from the BURLINGTON account (7777). Log in as one
of those users and query the table:

connect adams/john7

select * from PRACTICE.STOCK_TRX;

 ACCOUNT SYMBOL PRICE QUANTITY T
---------- -------------------- ---------- ---------- -
 1234 ADSP 31.75 100 B
 1234 ADSP 31.55 100 B

362 Part III: Beyond the Basics

Although the ADAMS user did not provide a where clause in his query, Oracle applied a
predicate to his query, limiting the results to rows with the Account value of 1234. What if the
BURLINGTON user attempts the same query?

connect burlington/newj2

select * from PRACTICE.STOCK_TRX;

 ACCOUNT SYMBOL PRICE QUANTITY T
---------- -------------------- ---------- ---------- -
 7777 ADSP 31.5 300 S
 7777 OCKS 21.75 1000 B

The BURLINGTON user only sees the rows with the Account value of 7777, based on his row
in the STOCK_ACCOUNT table.

NOTE
Because the STOCK_ACCOUNT table will be queried for each logon,
make sure the query to retrieve the user context data is properly tuned.

What about other users? If they are not in the STOCK_ACCOUNT table, they cannot retrieve
rows from the STOCK_TRX table:

connect system/manager

select * from PRACTICE.STOCK_TRX;

no rows selected

NOTE
Users who log in with the as sysdba clause will still be able to see all
rows of the table.

In addition to selects, inserts were limited by the security policy; a user can only insert rows
into STOCK_TRX if the Account value matches the user’s context settings. Attempts to insert other
rows fail:

connect PRACTICE/PRACTICE
grant INSERT on STOCK_TRX to ADAMS;

connect adams/john7

insert into PRACTICE.STOCK_TRX
values
(7777, 'ADSP',31.5,100, 'B');

ERROR at line 1:
ORAC-28115: policy with check option violation

The ORA-28115 error indicates that the user attempted to insert a row that the user would not
be able to select due to the VPD settings.

Chapter 20: Advanced Security—Virtual Private Databases 363

NOTE
You can establish several policies for the same table, view, or synonym.
All policies applied to a table are enforced with and syntax. If you
have three policies applied to the STOCK_TRX table, each one is
applied to the table.

How to Implement Column-Level VPD
You can implement VPD at the column level. If a column with secure data is referenced by a query,
you can use column-level VPD to apply a security policy or display the column with NULL values.
This approach is different from the row-based VPD shown in the prior examples; in column-level
VPD all rows may be displayed, but the columns may be shielded from the user. You can apply
column-level VPD to a table or a view.

To use column-level VPD, specify a value for the sec_relevant_cols input parameters for the
ADD_POLICY procedure of DBMS_RLS. When creating a policy, you can use the following
command:

begin
 DBMS_RLS.ADD_POLICY
 (object_schema=>'PRACTICE',
 object_name=>'STOCK_TRX',
 policy_name=>'STOCK_TRX_SELECT_POLICY',
 function_schema=>'PRACTICE',
 policy_function=>'SECURITY_PACKAGE.STOCK_TRX_SELECT_SECURITY',
 sec_relevant_cols=>'Price');
end;
/

By default, the rows will be returned based on the security policy function when the Price
column is referenced by a query. To use the column masking option, tell Oracle to return all rows
by setting the sec_relevant_cols_opt parameter to DBMS_RLS.ALL_ROWS, following the sec_
relevant_cols parameter setting.

When this version of the policy is used, all rows will be returned by the query. For the rows
that the user would not normally be able to see, the secure column (Price) will display NULL
values. The Price values will be displayed for rows that the user can normally see.

Column masking applies only to queries, not to DML operations. Note that your applications
must support the display of NULL values if you use column masking.

How to Disable VPD
To remove a VPD functionality, reverse the steps shown in this chapter: Remove the policy from
the table (via the DROP_POLICY procedure of the DBMS_RLS package), drop the logon trigger,
and optionally drop the other packages.

Table 20-1 lists the procedures within the DBMS_RLS package.
To drop a policy, execute the DROP_POLICY procedure. Its three input variables are the

schema name, the object name, and the policy. The following example drops the STOCK_TRX_
INSERT_POLICY:

DBMS_RLS.DROP_POLICY('PRACTICE', 'STOCK_TRX', 'STOCK_TRX_INSERT_POLICY');

364 Part III: Beyond the Basics

Similarly, you can drop the STOCK_TRX_SELECT_POLICY:

DBMS_RLS.DROP_POLICY('PRACTICE', 'STOCK_TRX', 'STOCK_TRX_SELECT_POLICY');

At this point, the policy will be dropped, but the login trigger will still be executing during
each login. Remember to drop the trigger (in this case, PRACTICE.SET_SECURITY_CONTEXT)
so the database does not perform unnecessary work.

You can drop the security context trigger as shown in the following listing.

connect / as sysdba

select owner, trigger_name from DBA_TRIGGERS
where triggering_event LIKE 'LOGON%';

OWNER TRIGGER_NAME
---------------- ------------------------------
PRACTICE SET_SECURITY_CONTEXT

drop trigger PRACTICE.SET_SECURITY_CONTEXT;

Trigger dropped.

If the VPD restrictions are no longer needed, you can then drop the packages that set the
application context.

Procedure Purpose

ADD_POLICY Add a policy to a table, view, or synonym.

DROP_POLICY Drop a policy from a table, view, or synonym.

REFRESH_POLICY Invalidate cursors associated with nonstatic policies.

ENABLE_POLICY Enable (or disable) a policy you previously added to a
table, view, or synonym.

CREATE_POLICY_GROUP Create a policy group.

ADD_GROUPED_POLICY Add a policy to the specified policy group.

ADD_POLICY_CONTEXT Add the context for the active application.

DELETE_POLICY_GROUP Drop a policy group.

DROP_GROUPED_POLICY Drop a policy that is a member of the specified group.

DROP_POLICY_CONTEXT Drop the context for the application.

ENABLE_GROUPED_POLICY Enable a policy within a group.

DISABLE_GROUPED_POLICY Disable a policy within a group.

REFRESH_GROUPED_POLICY Reparse the SQL statements associated with a refreshed
policy.

TABLE 20-1 DBMS_RLS Procedures

Chapter 20: Advanced Security—Virtual Private Databases 365

How to Use Policy Groups
As shown in Table 20-1, a number of the available procedures within DBMS_RLS deal with policy
groups. You can create policy groups, add policies to a policy group, and enable policies within
a group.

You can create groups that integrate policies affecting the same tables. If multiple applications
use the same tables, you can use groups to manage the table-level policies that should be enabled
during application usage. All policies in a policy group can be applied at application run time.

By default, all policies belong to the SYS_DEFAULT policy group. Policies in the SYS_DEFAULT
policy group will always be executed along with the policy group specified by the driving context.
You cannot drop the SYS_DEFAULT policy group.

To add a new policy group, use the CREATE_POLICY_GROUP procedure. The syntax is

DBMS_RLS.CREATE_POLICY_GROUP (
 object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_group VARCHAR2);

You can then add a policy to the group via the ADD_GROUPED_POLICY procedure. Its syntax is

DBMS_RLS.ADD_GROUPED_POLICY(
 object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_group VARCHAR2,
 policy_name VARCHAR2,
 function_schema VARCHAR2,
 policy_function VARCHAR2,
 statement_types VARCHAR2,
 update_check BOOLEAN,
 enabled BOOLEAN,
 static_policy IN BOOLEAN FALSE,
 policy_type IN BINARY_INTEGER NULL,
 long_predicate IN BOOLEAN FALSE,
 sec_relevant_cols IN VARCHAR2);

For example, you can create a policy group named TRXAUDIT, then add the STOCK_TRX_
SELECT_POLICY to it:

begin
DBMS_RLS.CREATE_POLICY_GROUP('PRACTICE','STOCK_TRX','TRXAUDIT');
DBMS_RLS.ADD_GROUPED_POLICY('PRACTICE','STOCK_TRX','TRXAUDIT',
'STOCK_TRX_SELECT_POLICY','PRACTICE', 'SECURITY_PACKAGE.STOCK_TRX_SELECT_SECURITY');
end;
/

When the database is accessed, the application initializes the driving context to specify the
policy group to use. In the create context command, specify the name of the procedure to use (in
the examples in this chapter, the context is set via PRACTICE.CONTEXT_PACKAGE).

create context PRACTICE using PRACTICE.CONTEXT_PACKAGE;

366 Part III: Beyond the Basics

PRACTICE.CONTEXT_PACKAGE executed the SET_CONTEXT procedure to set the
application context:

DBMS_SESSION.SET_CONTEXT('PRACTICE','SETUP','TRUE');

For policy groups, the third parameter passed to SET_CONTEXT will be the policy group
name. For the application to invoke a specific context group, rewrite CONTEXT_PACKAGE to
support a third input variable (policy group) and add that to the SET_CONTEXT execution:

DBMS_SESSION.SET_CONTEXT('PRACTICE','SETUP', policy_group);

Within your application, execute CONTEXT_PACKAGE and set the policy group value to
TRXAUDIT. When the user queries the STOCK_TRX table, the VPD restrictions in SYS_DEFAULT
and the TRXAUDIT policy group will then be applied.

You can remove a policy from a policy group via DROP_GROUPED_POLICY, disable it via
DISABLE_GROUPED_POLICY, or re-enable it via ENABLE_GROUPED_POLICY. Use DELETE_
POLICY_GROUP to drop the policy group entirely. See the Oracle Database Security Guide for
additional information on the procedures available within the DBMS_RLS package.

CHAPTER
21

Advanced Security:
Transparent Data

Encryption

367

368 Part III: Beyond the Basics

racle offers many advanced security features. Although some of them (such as VPD)
require modifications of database tables and triggers, others can be implemented
without changing any application code. This chapter introduces two of the
advanced security features: encryption of columns and encryption of tablespaces.

Transparent Data Encryption of Columns
As discussed in earlier chapters, Oracle offers a number of mechanisms for securing the data
within a database. You can use Transparent Data Encryption (TDE) to further ensure the integrity
of your data. TDE encrypts the data in the datafiles, undo logs, redo logs, and the buffer cache of
the system global area (SGA) in memory. You can select which columns of which tables will be
encrypted.

Using TDE provides an enhanced level of security for sensitive data without you having to
change anything about the application that uses the data. End users and application developers
will continue to access and store rows the same as they always have; the only change will be the
way those rows are physically stored at the operating system level. TDE is well suited for database
applications in which sensitive data elements must be encrypted due to regulatory or business
requirements.

TDE is a key-based encryption system. In order to use TDE, you will need to configure a
wallet for the database to use when it is first opened. The wallet file will have a password that
must be provided in order for the encrypted columns to be accessed. Thus, anyone who attempts
to copy your datafiles in an effort to duplicate your database will need the datafiles, the wallet
file, and the wallet password in order to access those columns. The wallet file can be stored on a
server apart from the database server (to further enhance security). If a user attempts to access an
encrypted column with the wallet closed, the database will respond with the following error:

ORA-28365: wallet is not open

Once the database is opened with the wallet password, anything stored in the designated
secured columns will be encrypted when it is written to the datafiles. Other columns will not be
affected.

Setup
To configure TDE, you will need full DBA access, including access to the “oracle” account on
the database server. The steps in this section assume you have full access to the account and all
related configuration files.

When logged into the oracle user account, make sure your TNS_ADMIN environment
variable is set and points to the directory containing the local sqlnet.ora file. Here’s an example:

export TNS_ADMIN=/var/opt/oracle

If a sqlnet.ora file does not exist in that location, create it. If a sqlnet.ora file does exist in that
location, add an entry for the ENCRYPTION_WALLET_LOCATION parameter value. Assuming the
instance is named CC1, the parameter value would resemble the following:

ENCRYPTION_WALLET_LOCATION=
 (SOURCE=
 (METHOD=file)
 (METHOD_DATA=
 (DIRECTORY=/opt/oracle/admin/CC1/wallet)))

O

Chapter 21: Advanced Security: Transparent Data Encryption 369

Note that you should use the actual value for the directory name, not a logical pointer such as
$ORACLE_BASE or $ORACLE_SID.

If you have not already done so, create the directory specified by the ENCRYPTION_WALLET_
LOCATION parameter value.

Now that the wallet directory is ready, you need to select the wallet password. The wallet and
its password are critical; you must have them in order to open the database and access the encrypted
column values.

NOTE
Be sure to keep careful records of the wallet passwords you use. In
the event of a disaster, you will need to have the wallet passwords
available at the disaster-recovery site.

If you are configuring a RAC (Real Application Cluster) database system, check which instance
runs on the server you are logged into. Be sure your ORACLE_SID environment variable is pointed
to the instance on your local server. Log into the instance:

sqlplus "sys@CC1 as sysdba"

To create a wallet file for the instance, issue the following command, putting in your wallet
password where shown:

alter system set encryption key
authenticated by "password";

When you execute the alter system command, Oracle will create a wallet file in the directory
specified by the EXCRYPTION_WALLET_LOCATION parameter value in your sqlnet.ora file.

Additional Setup for RAC Databases
If the instance is part of a RAC configuration (in which multiple instances access a single database),
you will now need to log into the other servers and repeat the first several steps: setting TNS_
ADMIN, putting the ENCRYPTION_WALLET_LOCATION entry in the sqlnet.ora file, and creating
the wallet directory. Instead of creating a new wallet file for the second server, you should copy
the wallet file from the first server to the second server (the following command should be entered
as one line):

scp node1:/opt/oracle/admin/CC1/wallet/ewallet.p12
node2:/opt/oracle/admin/CC1/wallet

Now log into the instance that is local to the second server:

sqlplus "sys@CC2 as sysdba"

Then issue the following command:

alter system set encryption wallet open
authenticated by password;

The configuration of the wallet file for the RAC instances will now be complete.

370 Part III: Beyond the Basics

NOTE
The wallet file should be backed up as part of your regular backup
procedures. In a RAC environment, you will have a separate copy
of the wallet file on each of the clustered servers, providing added
protection for the wallet.

Opening and Closing the Wallet
When you use TDE, you need to open and close the wallet when you open and close the database.

During startup, you must open the wallet—and if you are using a RAC configuration, you
must open the wallet on all instances of the RAC cluster.

To open the wallet, issue the following command with the database mounted but not open:

alter system set encryption wallet open
authenticated by password;

Before shutdown, you must close the wallet on both instances. Use the alter system
command to close the wallet in each instance:

alter system set encryption wallet close;

NOTE
If the database crashes for any reason, the wallet will be closed and
will have to be reopened on all instances of the database.

It is critical to remember that the wallet open and wallet close commands apply to an instance,
not a database. It is possible to have the wallet open on one instance while the wallet is closed on
other instances for the same database.

Encrypting and Decrypting Columns
To encrypt an existing column, use the encrypt option within the alter table command. In the
following listing, the Phone column of the ADDRESS table is encrypted:

alter table ADDRESS modify
(Phone encrypt no salt);

For an existing table, Oracle will dynamically encrypt the rows that already exist. Having
an index on the column will slow the encryption process. Note that encrypting a column will
substantially increase the size of the data stored in the table and in the index.

Updating the size of a column will cause row movement within the data blocks, and if every
row in a block is updated, row migration will occur, which in turn will cause very poor performance.
Tables will generally need to be reorganized using the ALTER TABLE MOVE command to remove
the row migration.

By default, transparent data encryption adds “salt” (a random string) to cleartext before
encrypting it, making the encryption more difficult to break. If you plan to index the encrypted
column, you must use no salt, as shown in the preceding listing. You can use the alter table
command to modify an existing encryption from salt to no salt, and from no salt to salt.

You can specify the encrypt option when creating a table, as shown in the following listing.

Chapter 21: Advanced Security: Transparent Data Encryption 371

create table ADDRESS (
LastName VARCHAR2(25),
FirstName VARCHAR2(25),
Street VARCHAR2(50),
City VARCHAR2(25),
State CHAR(2),
Zip NUMBER,
Phone VARCHAR2(12) encrypt no salt,
Ext VARCHAR2(5)
);

Because the specified column’s values will be encrypted, index range scans will no longer be
effective ways to retrieve that column’s data from the table. In general, the Oracle optimizer will
use indexes on the encrypted columns for exact matches, but range scans would be negatively
impacted by the encryption. For example, suppose you were to execute the following query:

select * from ADDRESS
where Phone like '415%';

If the Phone column is encrypted, you should expect the optimizer to bypass any index on the
Phone column during the execution of the query.

NOTE
The create index command for encrypted columns is the same as the
create index command for unencrypted columns.

You can encrypt a new column that is added via the alter table command, as shown in the
following listing:

alter table ADDRESS add
(MobilePhone encrypt no salt);

To decrypt a column, use the decrypt option within the alter table command, as shown in the
following listing:

alter table ADDRESS modify
(Phone decrypt);

NOTE
Each encrypted column will add between 32 and 48 bytes to the
length of each row in the table.

Encrypting a Tablespace
Instead of encrypting selected columns, you can encrypt an entire tablespace. Any object created
in the tablespace will be encrypted. Tablespace-level encryption is useful if you cannot perform
detailed analysis of the columns requiring encryption or if a majority of the columns will require
encryption.

372 Part III: Beyond the Basics

As noted in the previous section, column-level encryption prevents Oracle from using index
range scans during data retrieval. Tablespace-level encryption allows for index range scans on the
encrypted data, providing consistent performance for queries of ranges of values.

As with column-level TDE, the data in the designated tablespace is stored in encrypted format
on disk, whether it is in datafiles, undo logs, redo logs, or temporary tablespaces. In order to access the
data (or re-create the database), you will need the datafiles, the wallet file, and the wallet password.

Setup
To encrypt a tablespace, you must first set a tablespace master encryption key. The steps for creating
the tablespace master encryption key mirror the setup steps described earlier in this chapter for the
encryption of columns. Tablespace encryption uses the same wallet used by column-level TDE.

As with column-level TDE, you use your sqlnet.ora file to point to a location for the wallet
file. If a sqlnet.ora file does not exist in the TNS_ADMIN directory, create it. If a sqlnet.ora file
does exist in that location, add an entry for the ENCRYPTION_WALLET_LOCATION parameter
value. Assuming the instance is named CC1, the parameter value would resemble the following:

ENCRYPTION_WALLET_LOCATION=
 (SOURCE=
 (METHOD=file)
 (METHOD_DATA=
 (DIRECTORY=/opt/oracle/admin/CC1/wallet)))

NOTE
If you want to use tablespace encryption alongside features such
as hardware security modules (HSMs), you must set the tablespace
master encryption key before configuring the HSM.

You can then connect to the database as the SYS user and execute the command:

alter system set encryption key
authenticated by "password";

When you create a master encryption key for transparent data encryption, a master encryption
key for tablespace encryption also gets created. When you issue the alter system set encryption
key command, it re-creates the standard transparent data encryption master key if one already
exists, and creates a new tablespace master encryption key. If the tablespace master encryption
key already exists, a new key is not created.

Once the tablespace encryption key has been created, you must open the wallet. To open the
wallet, issue the following command with the database mounted but not open:

alter system set encryption wallet open
authenticated by password;

Creating an Encrypted Tablespace
Once you have created a tablespace master encryption key and have opened the wallet and the
database, you can create an encrypted tablespace. When using the create tablespace command,
you can specify the encryption algorithm and key length for the encryption. The encrypt keyword
in the default storage clause tells Oracle to encrypt the tablespace.

Chapter 21: Advanced Security: Transparent Data Encryption 373

The following listing shows the creation of an encrypted tablespace:

create tablespace ENCR_TSPACE
datafile '/u01/oradata/CC1/secure01.dbf'
size 200m
encryption using 'aes128'
default storage(encrypt);

In this example, the tablespace is encrypted using the AES algorithm, with a key length of 128
bits. See the create tablespace command entry in the Alphabetical Reference for the options. The
default encryption algorithm is AES128.

Any table you now create in the ENCR_TSPACE tablespace will be encrypted. Aside from
specifying the tablespace, you do not need to modify any of your application code to take advantage
of this feature. To see if your tablespaces are encrypted, query the Encrypted column of the DBA_
TABLESPACES data dictionary view.

You cannot encrypt an existing tablespace. If the objects you need to encrypt are already
stored within the database, use the move clause of the alter table command to move them to the
encrypted tablespace. If enough space is available, you may be able to use the create table as
select command to create a new encrypted table based on an existing unencrypted table.

Regardless of the approach you choose, wallet-based security provides an important tool for
securing your data without changing your application code. Additional security features available
for Oracle DBAs include encrypted backups and secure files. See the Oracle DBA Handbook for
further details on these and other DBA-focused security options.

This page intentionally left blank

CHAPTER
22

Working with Tablespaces

375

376 Part III: Beyond the Basics

n this chapter, you will see an overview of the use of tablespaces, along with the
commands needed to create and alter tablespaces. The commands needed to
create and maintain tablespaces require you to have database administrator
privileges. The creation and maintenance of tablespaces is described in greater
detail in Chapter 51. The goals of this chapter are to introduce the concepts,

review new features, and provide developers with the information needed to make informed
design decisions relative to their usage of tablespaces.

Tablespaces and the Structure of the Database
People who have worked with computers for any period of time are familiar with the concept of a
file; it’s a place on disk where information is stored, and it has a name. Its size is usually not fixed: If
you add information to the file, it can grow larger and take up more disk space, up to the maximum
available. This process is managed by the operating system, and often involves distributing the
information in the file over several smaller sections of the disk that are not physically near each
other. The operating system handles the logical connection of these smaller sections without your
being aware of it at all. To you, the file looks like a single whole.

Oracle uses files as a part of its organizational scheme, but its logical structure goes beyond
the concept of a file. A datafile is an operating system file used to store Oracle data. Each datafile
is assigned to a tablespace—a logical division within the database. Tablespaces commonly include
SYSTEM (for Oracle’s internal data dictionary), SYSAUX (for auxiliary internal objects), USERS (for
user objects), and others for application tables, indexes, and additional database structures.

The datafiles can have a fixed size or can be allowed to extend themselves automatically
when they are filled, up to a defined limit. To add more space to a tablespace, you can manually
extend your datafiles or add new datafiles. New rows can then be added to existing tables, and
those tables may then have rows in multiple datafiles.

Each table has a single area of disk space, called a segment, set aside for it in the tablespace.
Each segment, in turn, has an initial area of disk space, called the initial extent, set aside for it in
the tablespace. Once the segment has used up this space, the next extent, another single area of
disk space, is set aside for it. When it has used this up as well, yet another next extent is set aside.
This process continues with every table until the whole tablespace is full. At that point, someone
has to add a new file to the tablespace or extend the tablespace’s files before any more growth in
the tables can take place.

Every database also contains a SYSTEM tablespace, which contains the data dictionary as well
as the names and locations of all the tablespaces, tables, indexes, and clusters for this database. The
objects within the SYSTEM tablespace are owned by the SYS and SYSTEM users; no other users
should own objects in this tablespace because they may impact the rest of the database.

NOTE
You can rename a tablespace via the alter tablespace command.

Tablespace Contents
You can query the USER_TABLESPACES data dictionary view to see the tablespaces available in
the database. Tablespaces are created by privileged users, via the create tablespace command.
The simplest syntax is

create tablespace tablespace_name
datafile datafile_name filesize;

I

Chapter 22: Working with Tablespaces 377

Database administrators specify the tablespace space-allocation method when creating the
tablespace. The following example creates a tablespace whose initial space allocation is a single
100MB file, but that file can automatically extend itself as needed:

create tablespace USERS_2
datafile '/u01/oradata/users_2_01.dbf'
 size 100M autoextend on;

In this chapter, the focus is on the developer’s use of tablespaces. Database administrators
should see Chapter 51 and the Alphabetical Reference for the detailed commands and options
involved in creating tablespaces.

The Contents column of USER_TABLESPACES shows the type of objects supported in each
tablespace. The following shows a sample listing from an Oracle installation:

select Tablespace_Name, Contents from USER_TABLESPACES;

TABLESPACE_NAME CONTENTS
------------------------------ ---------
SYSTEM PERMANENT
UNDOTBS1 UNDO
SYSAUX PERMANENT
TEMP TEMPORARY
USERS PERMANENT

The SYSTEM, SYSAUX, and USERS tablespaces support permanent objects—tables, indexes,
and other user objects. The TEMP tablespace supports only temporary segments—segments created
and managed by Oracle to support sorting operations. The UNDOTBS1 tablespace supports undo
segment management (see Chapters 29 and 30).

When you create a table without specifying a tablespace, the table will be stored in your
default tablespace. You can see that setting via the USER_USERS data dictionary view:

select Default_Tablespace, Temporary_Tablespace
 from USER_USERS;

DEFAULT_TABLESPACE TEMPORARY_TABLESPACE
------------------------------ ------------------------------
USERS TEMP

In this example, the default tablespace is USERS and the temporary tablespace is TEMP. Those
settings can be changed via the alter user command.

Although USERS is your default tablespace, you may not have any quota on the tablespace.
To see how much space you have been granted in a tablespace, query USER_TS_QUOTAS, as
shown in the following listing:

select * from USER_TS_QUOTAS;

TABLESPACE_NAME BYTES MAX_BYTES BLOCKS MAX_BLOCKS
------------------ ---------- ---------- ---------- ----------
USERS 131072 -1 16 -1

In this case, the MAX_BYTES and MAX_BLOCKS values—the maximum space you can use—
are both –1. If the value is negative, you have unlimited quota in that tablespace. In this example,

378 Part III: Beyond the Basics

the user has only used 16 database blocks in 131,072 bytes. Because there are 1,024 bytes in a
kilobyte, the user has 128KB allocated in the USERS tablespace.

The space in tablespaces can be locally managed. As an alternative, the space management
can be dictionary managed (the space management records are maintained in the data dictionary).
In general, locally managed tablespaces are simpler to administer and should be strongly favored.
You can display the extent management setting via the Extent_Management column of USER_
TABLESPACES:

select Tablespace_Name, Extent_Management from USER_TABLESPACES;

TABLESPACE_NAME EXTENT_MAN
------------------------------ ----------
SYSTEM LOCAL
UNDOTBS1 LOCAL
SYSAUX LOCAL
TEMP LOCAL
USERS LOCAL

In a locally managed tablespace, the space map for the tablespace is maintained in the
headers of the tablespace’s datafiles. To see the datafiles allocated to a tablespace, database
administrators can query the DBA_DATA_FILES data dictionary view; there is no equivalent
view for nonprivileged users.

The default values for storage are operating system specific. You can query USER_TABLESPACES
to see the block size and the defaults for the initial extent size, next extent size, minimum number
of extents, maximum number of extents, and pctincrease settings for objects:

select Tablespace_Name,
 Block_Size,
 Initial_Extent,
 Next_Extent,
 Min_Extents,
 Max_Extents,
 Pct_Increase
 from USER_TABLESPACES;

To override the default settings, you can use the storage clause when creating a table or index.
See the entry for the storage clause in the Alphabetical Reference for the full syntax. In general,
you should work with the database administrators to establish appropriate defaults for the locally
managed tablespaces and then rely on that sizing for your objects. Unless there are objects with
extraordinary space requirements, you should avoid setting custom sizes for each of your tables
and indexes. If you do not specify a storage clause when you create an object, it will use the
default for its tablespace. If you do not specify a tablespace clause, the object will be stored in
your default tablespace.

You can query the free space in a tablespace via the USER_FREE_SPACE data dictionary view.
USER_FREE_SPACE will display one row for each contiguous free extent within a tablespace, as
well as its exact location and length.

RECYCLEBIN Space in Tablespaces
Dropped objects do not release their allocated space unless you specify the purge clause when
dropping them. By default, the objects maintain their space, allowing you to later recover them
via the flashback table to before drop command (see Chapter 30).

Chapter 22: Working with Tablespaces 379

The space currently used by dropped objects is recorded in each user’s RECYCLEBIN view (or,
for the DBA, the DBA_RECYCLEBIN view). You can see how many bytes you are presently using
in each tablespace, and you can use the purge command to purge old entries from the RECYCLEBIN.
Here’s an example:

select Space --number of blocks still allocated
 from RECYCLEBIN
where Ts_Name = 'USERS';

See the purge command in the Alphabetical Reference and Chapter 30 for further details.

Read-Only Tablespaces
DBAs can alter a tablespace via the alter tablespace command. Tablespaces may be altered to be
read-only:

alter tablespace USERS read only;

Or they can be changed from read-only to writable:

alter tablespace USERS read write;

The data in a read-only tablespace cannot be altered. Although nonprivileged users cannot
execute these commands, you should be aware of them because they may alter how you physically
store your data. If you can move the unchanging data to its own tablespace, you may be able to
designate the entire tablespace as read-only. Using read-only tablespaces may simplify backup
and recovery efforts.

NOTE
You can drop objects from read-only tablespaces.

The read-only status for tablespaces is displayed via the Status column of the USER_
TABLESPACES data dictionary view, as shown in the following example:

alter tablespace USERS read only;

Tablespace altered.

select Status from USER_TABLESPACES
 where Tablespace_Name = 'USERS';

STATUS

READ ONLY

alter tablespace USERS read write;

Tablespace altered.

select Status from USER_TABLESPACES
 where Tablespace_Name = 'USERS';

380 Part III: Beyond the Basics

STATUS

ONLINE

nologging Tablespaces
You can disable the creation of redo log entries for specific objects. By default, Oracle generates
log entries for all transactions. If you wish to bypass that functionality—for instance, if you are
loading data and you can completely re-create all the transactions—you can specify that the
loaded object or the tablespace be maintained in nologging mode.

You can see the current logging status for tablespaces by querying the Logging column of
USER_TABLESPACES.

NOTE
The nologging mode only takes effect when you initially create an
index or table, or when you use the APPEND hint. Otherwise, normal
DML activity is always logged.

Temporary Tablespaces
When you execute a command that performs a sorting or grouping operation, Oracle may create a
temporary segment to manage the data. The temporary segment is created in a temporary tablespace,
and the user executing the command does not have to manage that data. Oracle will dynamically
create the temporary segment and will release its space when the instance is shut down and
restarted. If there is not enough temporary space available and the temporary tablespace datafiles
cannot auto-extend, the command will fail. Each user in the database has an associated temporary
tablespace—there may be just one such tablespace for all users to share. A default temporary
tablespace is set at the database level so all new users will have the same temporary tablespace
unless a different one is specified during the create user or alter user command.

You can create multiple temporary tablespaces and group them. Assign the temporary
tablespaces to tablespace groups via the tablespace group clause of the create temporary tablespace
or alter tablespace command. You can then specify the group as a user’s default tablespace.
Tablespace groups can help to support parallel operations involving sorts.

Tablespaces for System-Managed Undo
You can use Automatic Undo Management (AUM) to place all undo data in a single tablespace.
When you create an undo tablespace, Oracle manages the storage, retention, and space utilization
for your rollback data via system-managed undo (SMU). When a retention time is set (in the
database’s initialization parameter file), Oracle will make a best effort to retain all committed
undo data in the database for the specified number of seconds. With that setting, any query taking
less than the retention time should not result in an error as long as the undo tablespace has been
sized properly. While the database is running, DBAs can change the UNDO_RETENTION
parameter value via the alter system command.

You can guarantee undo data is retained, even at the expense of current transactions in the
database. When you create the undo tablespace, specify retention guarantee as part of your
create database or create undo tablespace command. Use care with this setting, because it may
force transactions to fail in order to guarantee the retention of old undo data in the undo tablespace.

Chapter 22: Working with Tablespaces 381

Bigfile Tablespaces
You can use bigfile tablespaces to create tablespaces composed of very large files instead of many
smaller files. The traditional type of tablespace is referred to as a smallfile tablespace. The use of
bigfile tablespaces (supported only for locally managed tablespaces) significantly increases the
storage capacity of an Oracle database. Bigfiles can be 1024 times larger than smallfiles; given a
32KB database block size, bigfiles can expand the database to 8 exabytes.

Bigfile tablespaces are intended to be used with volume managers that stripe files across pools
of available storage devices. You can use ASM (see Chapter 51) to manage the distribution of bigfile
data across multiple devices.

The following shows the creation of a bigfile tablespace:

create bigfile tablespace BIGFILETBS
 datafile '/u01/oracle/data/BIGTBS01.DBF' size 50G;

NOTE
You can specify the size in kilobytes, megabytes, gigabytes, or
terabytes.

Encrypted Tablespaces
You can encrypt permanent tablespaces so the data is stored encrypted at rest. Data from an
encrypted tablespace is automatically encrypted when written elsewhere in the database during
transactions (such as the undo tablespace and the redo logs).

To encrypt a tablespace, you must be using the Transparent Data Encryption (TDE) feature of
Oracle, available as part of the advanced security options. TDE requires the use of a wallet for
security (so anyone attempting to open a copy of your database would need the database, the
wallet, and the password used to open the wallet). The wallet must be opened before you can use
the encrypted tablespace. The creation and maintenance of wallets and TDE is beyond the scope
of this book; for those environments in which TDE is implemented, the create tablespace command
should be modified to include the following two lines after the tablespace size is specified:

encryption
default storage (encrypt)

You can specify the type of encryption to implement (such as AES256). The default type of
encryption is AES128.

NOTE
You cannot encrypt an existing tablespace.

Supporting Flashback Database
You can use the flashback database command to revert an entire database to a prior point in time.
DBAs can configure tablespaces to be excluded from this option—the alter tablespace flashback
off command tells Oracle to exclude that tablespace’s transaction from the data written to the
flashback database area. See Chapter 30 for details on flashback database command usage.

382 Part III: Beyond the Basics

Transporting Tablespaces
A transportable tablespace is a tablespace that can be “unplugged” from one database and
“plugged into” another. To be transportable, a tablespace—or a set of tablespaces—must be self-
contained. The tablespace set cannot contain any objects that refer to objects in other tablespaces.
Therefore, if you transport a tablespace containing indexes, you must move the tablespace
containing the indexes’ base tables as part of the same transportable tablespace set. The better
you have organized and distributed your objects among tablespaces, the easier it is to generate
a self-contained set of tablespaces to transport.

To transport tablespaces, you need to generate a tablespace set, copy or move that tablespace
set to the new database, and plug the set into the new database. Because these are privileged
operations, you must have database administration privileges to execute them. As a developer,
you should be aware of this capability, because it can significantly reduce the time required to
migrate self-contained data among databases. For instance, you may create and populate a read-
only tablespace of historical data in a test environment and then transport it to a production
database, even across platforms. See Chapter 51 for details on transporting tablespaces.

Planning Your Tablespace Usage
With all these options, Oracle can support very complex environments. You can maintain a read-
only set of historical data tables alongside active transaction tables. You can place the most
actively used tables in datafiles that are located on the fastest disks. You can partition tables (see
Chapter 18) and store each partition in a separate tablespace. You can store related partitions
together—for example, you can store the current month’s partitions of multiple tables in the same
tablespace. With all these options available, you should establish a basic set of guidelines for your
tablespace architecture. This plan should be part of your early design efforts so you can take the
best advantage of the available features. The following guidelines should be a starting point for
your plan.

Separate Active and Static Tables
Tables actively used by transactions have space considerations that differ significantly from static
lookup tables. The static tables may never need to be altered or moved; the active tables may
need to be actively managed, moved, or reorganized. To simplify the management of the static
tables, isolate them in a dedicated tablespace. Within the most active tables, there may be further
divisions—some of them may be extremely critical to the performance of the application, and you
may decide to move them to yet another tablespace.

Taking this approach a step further, separate the active and static partitions of tables and
indexes. Ideally, this separation will allow you to focus your tuning efforts on the objects that
have the most direct impact on performance while eliminating the impact of other object usage
on the immediate environment.

Separate Indexes and Tables
Indexes may be managed separately from tables—you may create or drop indexes while the base
table stays unchanged. Because their space is managed separately, indexes should be stored in
dedicated tablespaces. You will then be able to create and rebuild indexes without worrying
about the impact of that operation on the space available to your tables.

Chapter 22: Working with Tablespaces 383

Separate Large and Small Objects
In general, small tables tend to be fairly static lookup tables—such as a list of countries, for example.
Oracle provides tuning options for small tables (such as caching) that are not appropriate for large
tables (which have their own set of tuning options). Because the administration of these types of
tables may be dissimilar, you should try to keep them separate. In general, separating active and
static tables will take care of this objective as well.

Separate Application Tables from Core Objects
The two sets of core objects to be aware of are the Oracle core objects and the enterprise objects.
Oracle’s core objects are stored in its default tablespaces—SYSTEM, SYSAUX, the temporary
tablespace, and the undo tablespace. Do not create any application objects in these tablespaces
or under any of the schemas provided by Oracle.

Within your application, you may have some objects that are core to the enterprise and could
be reused by multiple applications. Because these objects may need to be indexed and managed
to account for the needs of multiple applications, they should be maintained apart from the other
objects your application needs.

Grouping the objects in the database according to the categories described here may seem
fairly simplistic, but it is a critical part of successfully deploying an enterprise-scale database
application. The better you plan the distribution of I/O and space, the easier it will be to
implement, tune, and manage the application’s database structures. Furthermore, database
administrators can manage the tablespace separately—taking them offline, backing them up, or
isolating their I/O activity. In later chapters, you will see further details of other types of objects
(such as materialized views) as well as additional examples of the commands used to create and
alter tablespaces.

This page intentionally left blank

CHAPTER
23

Using SQL*Loader to
Load Data

385

386 Part III: Beyond the Basics

n the scripts provided for the practice tables, a large number of insert commands
are executed. In place of those inserts, you could create a file containing the data
to be loaded and then use Oracle’s SQL*Loader utility to load the data. This chapter
provides you with an overview of the use of SQL*Loader and its major capabilities.
Two additional data-movement utilities, Data Pump Export and Data Pump Import,

are covered in Chapter 24. SQL*Loader, Data Pump Export, and Data Pump Import are described
in great detail in the Oracle Database Utilities documentation provided with the standard Oracle
documentation set.

SQL*Loader loads data from external files into tables in the Oracle database. SQL*Loader
uses two primary files: the datafile, which contains the information to be loaded, and the control
file, which contains information on the format of the data, the records and fields within the file,
the order in which they are to be loaded, and even, when needed, the names of the multiple files
that will be used for data. You can combine the control file information into the datafile itself,
although the two are usually separated to make it easier to reuse the control file.

When executed, SQL*Loader will automatically create a log file and a “bad” file. The log file
records the status of the load, such as the number of rows processed and the number of rows
committed. The “bad” file will contain all the rows that were rejected during the load due to data
errors, such as nonunique values in primary key columns.

Within the control file, you can specify additional commands to govern the load criteria. If
these criteria are not met by a row, the row will be written to a “discard” file. The log, bad, and
discard files will by default have the extensions .log, .bad, and .dsc, respectively. Control files are
typically given the extension .ctl.

SQL*Loader is a powerful utility for loading data, for several reasons:

It is highly flexible, allowing you to manipulate the data as it is being loaded.

You can use SQL*Loader to break a single large data set into multiple sets of data during
commit processing, significantly reducing the size of the transactions processed by the
load.

You can use its Direct Path loading option to perform loads very quickly.

To start using SQL*Loader, you should first become familiar with the control file, as described
in the next section.

The Control File
The control file tells Oracle how to read and load the data. The control file tells SQL*Loader
where to find the source data for the load and the tables into which to load the data, along with
any other rules that must be applied during the load processing. These rules can include restrictions
for discards (similar to where clauses for queries) and instructions for combining multiple physical
rows in an input file into a single row during an insert. SQL*Loader will use the control file to
create the insert commands executed for the data load.

The control file is created at the operating-system level, using any text editor that enables you
to save plain text files. Within the control file, commands do not have to obey any rigid formatting
requirements, but standardizing your command syntax will make later maintenance of the control
file simpler.

The following listing shows a sample control file for loading data into the BOOKSHELF table:

■

■

■

I

Chapter 23: Using SQL*Loader to Load Data 387

LOAD DATA
INFILE 'bookshelf.dat'
INTO TABLE BOOKSHELF
(Title POSITION(01:100) CHAR,
 Publisher POSITION(101:120) CHAR,
 CategoryName POSITION(121:140) CHAR,
 Rating POSITION(141:142) CHAR)

In this example, data will be loaded from the file bookshelf.dat into the BOOKSHELF table. The
bookshelf.dat file will contain the data for all four of the BOOKSHELF columns, with whitespace
padding out the unused characters in those fields. Thus, the Publisher column value always
begins at space 101 in the file, even if the Title value is less than 100 characters. Although this
formatting makes the input file larger, it may simplify the loading process. No length needs to be
given for the fields, since the starting and ending positions within the input data stream effectively
give the field length.

The infile clause names the input file, and the into table clause specifies the table into which
the data will be loaded. Each of the columns is listed, along with the position where its data
resides in each physical record in the file. This format allows you to load data even if the source
data’s column order does not match the order of columns in your table.

To perform this load, the user executing the load must have INSERT privilege on the
BOOKSHELF table.

Loading Variable-Length Data
If the columns in your input file have variable lengths, you can use SQL*Loader commands to
tell Oracle how to determine when a value ends. In the following example, commas separate the
input values:

LOAD DATA
INFILE 'bookshelf.dat'
BADFILE '/user/load/bookshelf.bad'
TRUNCATE
INTO TABLE BOOKSHELF
FIELDS TERMINATED BY ","
(Title, Publisher, CategoryName, Rating)

NOTE
Be sure to select a delimiter that is not present within the values being
loaded. In this example, a comma is the delimiter, so any comma
present within any text string being loaded will be interpreted as an
end-of-field character.

The fields terminated by "," clause tells SQL*Loader that during the load, each column value will
be terminated by a comma. Thus, the input file does not have to be 142 characters wide for each
row, as was the case in the first load example. The lengths of the columns are not specified in the
control file, since they will be determined during the load.

In this example, the name of the bad file is specified by the badfile clause. In general, the
name of the bad file is only given when you want to redirect the file to a different directory.

This example also shows the use of the truncate clause within a control file. When this
control file is executed by SQL*Loader, the BOOKSHELF table will be truncated before the start

388 Part III: Beyond the Basics

of the load. Since truncate commands cannot be rolled back, you should use care when using
this option. In addition to truncate, you can use the following options:

append Adds rows to the table.

insert Adds rows to an empty table. If the table is not empty, the load will abort with an
error.

replace Empties the table and then adds the new rows. The user must have DELETE
privilege on the table.

Starting the Load
To execute the commands in the control file, you need to run SQL*Loader with the appropriate
parameters. SQL*Loader is started via the SQLLDR command at the operating-system prompt (in
UNIX, use sqlldr).

NOTE
The SQL*Loader executable may consist of the name SQLLDR
followed by a version number. Consult your platform-specific Oracle
documentation for the exact name.

When you execute SQLLDR, you need to specify the control file, username/password, and
other critical load information, as shown in Table 23-1.

Each load must have a control file, since none of the input parameters specify critical
information for the load—the input file and the table being loaded.

You can separate the arguments to SQLLDR with commas. Enter them with the keywords
(such as userid or log), followed by the parameter value. Keywords are always followed by an
equal sign (=) and the appropriate argument.

■

■

■

SQLLDR Keyword Description

Userid Username and password for the load, separated by a slash.

Control Name of the control file.

Data (or Datafile) Name of the datafile. The default is the name of the control file
with the extension .DAT.

Log Name of the log file.

Bad Name of the bad file.

Discard Name of the discard file.

Discardmax Maximum number of rows to discard before stopping the load.
The default is to allow all discards.

Skip Number of logical rows in the input file to skip before starting
to load data. Usually used during reloads from the same input
file following a partial load. The default is 0.

TABLE 23-1 SQL*Loader Options

Chapter 23: Using SQL*Loader to Load Data 389

SQLLDR Keyword Description

Load Number of logical rows to load. The default is all.

Errors Number of errors to allow. The default is 50.

Rows Number of rows to commit at a time. Use this parameter to
break up the transaction size during the load. The default for
conventional path loads is 64; the default for Direct Path loads
is all rows.

Bindsize Size of conventional path bind array, in bytes. The default is
operating-system–dependent.

Silent Suppress messages during the load.

Direct Use Direct Path loading. The default is FALSE.

Parfile Name of the parameter file that contains additional load
parameter specifications.

Parallel Perform parallel loading. The default is FALSE.

File File to allocate extents from (for parallel loading).

Skip_Unusable_Indexes Allows loads into tables that have indexes in unusable states.
The default is FALSE.

Skip_Index_Maintenance Stops index maintenance for Direct Path loads, leaving them in
unusable states. The default is FALSE.

Readsize Size of the read buffer; default is 1MB.

External_table Use external table for load; default is NOT_USED; other valid
values are GENERATE_ONLY and EXECUTE.

Columnarrayrows Number of rows for Direct Path column array; default is 5,000.

Streamsize Size in bytes of the Direct Path stream buffer; default is 256,000.

Multithreading A flag to indicate if multithreading should be used during a
direct path load.

Resumable A TRUE/FALSE flag to enable or disable resumable operations
for the current session; default is FALSE.

Resumable_name Text identifier for the resumable operation.

Resumable_timeout Wait time for resumable operation; default is 7200 seconds.

Date_Cache For Direct Path loads, Date_Cache enables the storing of the
results from text strings to DATE datatype format. Default is
enabled (for 1000 elements).

TABLE 23-1 SQL*Loader Options (continued)

If the userid keyword is omitted and no username/password is provided as the first argument,
you will be asked for it. If a slash is given after the equal sign, an externally identified account will
be used. You also can use an Oracle Net database specification string to log into a remote
database and load the data into it. For example, your command may start

sqlldr userid=usernm/mypass@dev

390 Part III: Beyond the Basics

The direct keyword, which invokes the Direct Path load option, is described in “Direct Path
Loading” later in this chapter.

The silent keyword tells SQLLDR to suppress certain informative data:

HEADER suppresses the SQL*LOADER header.

FEEDBACK suppresses the feedback at each commit point.

ERRORS suppresses the logging (in the log file) of each record that caused an Oracle
error, although the count is still logged.

DISCARDS suppresses the logging (in the log file) of each record that was discarded,
although the count is still logged.

PARTITIONS disables the writing of the per-partition statistics to the log file.

ALL suppresses all of the preceding.

If more than one of these is entered, separate each with a comma and enclose the list in
parentheses. For example, you can suppress the header and errors information via the following
keyword setting:

silent=(HEADER,ERRORS)

NOTE
Commands in the control file override any in the calling command
line.

Let’s load a sample set of data into the BOOKSHELF table, which has four columns (Title, Publisher,
CategoryName, and Rating). Create a plain text file named bookshelf.txt. The data to be loaded
should be the only two lines in the file:

Good Record,Some Publisher,ADULTNF,3
Another Title,Some Publisher,ADULTPIC,4

NOTE
Each line is ended by a carriage return. Even though the first line’s last
value is not as long as the column it is being loaded into, the row will
stop at the carriage return.

The data is separated by commas, and we don’t want to delete the data previously loaded
into BOOKSHELF, so the control file will look like this:

LOAD DATA
INFILE 'bookshelf.txt'
APPEND
INTO TABLE BOOKSHELF
FIELDS TERMINATED BY ","
(Title, Publisher, CategoryName, Rating)

Save that file as bookshelf.ctl, in the same directory as the input data file. Next, run SQLLDR and
tell it to use the control file. This example assumes that the BOOKSHELF table exists under the
PRACTICE schema:

■

■

■

■

■

■

Chapter 23: Using SQL*Loader to Load Data 391

sqlldr practice/practice control=bookshelf.ctl log=bookshelf.log

When the load completes, you should have one successfully loaded record and one failure. The
successfully loaded record will be in the BOOKSHELF table:

select Title
 from BOOKSHELF
 where Publisher like '%Publisher';

TITLE
--
Good Record

A file named bookshelf.bad will be created, and will contain one record:

Another Title,Some Publisher,ADULTPIC,4

Why was that record rejected? Check the log file, bookshelf.log, which will say, in part:

Record 2: Rejected - Error on table BOOKSHELF.
ORA-02291: integrity constraint (PRACTICE.CATFK) violated -
parent key not found

Table BOOKSHELF:
 1 Row successfully loaded.
 1 Row not loaded due to data errors.

Row 2, the “Another Title” row, was rejected because the value for the CategoryName column
violated the foreign key constraint—ADULTPIC is not listed as a category in the CATEGORY table.

Because the rows that failed are isolated into the bad file, you can use that file as the input for
a later load once the data has been corrected.

Logical and Physical Records
In Table 23-1, several of the keywords refer to “logical” rows. A logical row is a row that is
inserted into the database. Depending on the structure of the input file, multiple physical rows
may be combined to make a single logical row.

For example, the input file may look like this:

Good Record,Some Publisher,ADULTNF,3

in which case there would be a one-to-one relationship between that physical record and the
logical record it creates. But the datafile may look like this instead:

Good Record,
Some Publisher,
ADULTNF,
3

To combine the data, you need to specify continuation rules. In this case, the column values are
split one to a line, so there is a set number of physical records for each logical record. To combine
them, use the concatenate clause within the control file. In this case, you would specify concatenate 4
to create a single logical row from the four physical rows.

392 Part III: Beyond the Basics

The logic for creating a single logical record from multiple physical records can be much
more complex than a simple concatenation. You can use the continueif clause to specify the
conditions that cause logical records to be continued. You can further manipulate the input data
to create multiple logical records from a single physical record (via the use of multiple into table
clauses). See the control file syntax in the “SQLLDR” entry of the Alphabetical Reference in this
book, and the notes in the following section.

You can use SQL*Loader to generate multiple inserts from a single physical row (similar to
the multitable insert capability described in Chapter 15). For example, suppose the input data is
denormalized, with fields City and Rainfall, while the input data is in the format City, Rainfall1,
Rainfall2, Rainfall3. The control file would resemble the following (depending on the actual
physical stop and start positions of the data in the file):

into table RAINFALL
when City != ' '
(City POSITION(1:5) CHAR,
 Rainfall POSITION(6:10) INTEGER EXTERNAL) -- 1st row
--
into table RAINFALL
when City != ' '
(City POSITION(1:5) CHAR,
 Rainfall POSITION(11:16) INTEGER EXTERNAL) -- 2nd row
--
into table RAINFALL
when City != ' '
(City POSITION(1:5) CHAR,
 Rainfall POSITION(16:21) INTEGER EXTERNAL) -- 3rd row

Note that separate into table clauses operate on each physical row. In this example, they generate
separate rows in the RAINFALL table; they could also be used to insert rows into multiple tables.

Control File Syntax Notes
The full syntax for SQL*Loader control files is shown in the “SQLLDR” entry in the Alphabetical
Reference, so it is not repeated here.

Within the load clause, you can specify that the load is recoverable or unrecoverable. The
unrecoverable clause only applies to Direct Path loading, and is described in “Tuning Data
Loads” later in this chapter.

In addition to using the concatenate clause, you can use the continueif clause to control the
manner in which physical records are assembled into logical records. The this clause refers to the
current physical record, while the next clause refers to the next physical record. For example, you
could create a two-character continuation character at the start of each physical record. If that
record should be concatenated to the preceding record, set that value equal to '**'. You could
then use the continueif next (1:2)= '**' clause to create a single logical record from the multiple
physical records. The '**' continuation character will not be part of the merged record.

The syntax for the into table clause includes a when clause. The when clause, shown in the
following listing, serves as a filter applied to rows prior to their insertion into the table. For example,
you can specify

when Rating>'3'

Chapter 23: Using SQL*Loader to Load Data 393

to load only books with ratings greater than 3 into the table. Any row that does not pass the when
condition will be written to the discard file. Thus, the discard file contains rows that can be used
for later loads, but that did not pass the current set of when conditions. You can use multiple
when conditions, connected with and clauses.

Use the trailing nullcols clause if you are loading variable-length records for which the last
column does not always have a value. With this clause in effect, SQL*Loader will generate NULL
values for those columns.

As shown in an example earlier in this chapter, you can use the fields terminated by clause to
load variable-length data. Rather than being terminated by a character, the fields can be terminated
by whitespace or enclosed by characters or optionally enclosed by other characters.

For example, the following entry loads AuthorName values and sets the values to uppercase
during the insert. If the value is blank, a NULL is inserted:

AuthorName POSITION(10:34) CHAR TERMINATED BY WHITESPACE
 NULLIF AuthorName=BLANKS "UPPER(:AuthorName)"

When you load DATE datatype values, you can specify a date mask. For example, if you had a
column named ReturnDate and the incoming data is in the format Mon-DD-YYYY in the first 11
places of the record, you could specify the ReturnDate portion of the load as follows:

ReturnDate POSITION (1:11) DATE "Mon-DD-YYYY"

Within the into table clause, you can use the recnum keyword to assign a record number to each
logical record as it is read from the datafile, and that value will be inserted into the assigned
column of the table. The constant keyword allows you to assign a constant value to a column
during the load. For character columns, enclose the constant value within single quotes. If you use
the sysdate keyword, the selected column will be populated with the current system date and time.

CheckOutDate SYSDATE

If you use the sequence option, SQL*Loader will maintain a sequence of values during the load.
As records are processed, the sequence value will be increased by the increment you specify. If
the rows fail during insert (and are sent to the bad file), those sequence values will not be reused.
If you use the max keyword within the sequence option, the sequence values will use the current
maximum value of the column as the starting point for the sequence. The following listing shows
the use of the sequence option:

Seqnum_col SEQUENCE(MAX,1)

You can also specify the starting value and increment for a sequence to use when inserting.
The following example inserts values starting with a value of 100, incrementing by 2. If a row
is rejected during the insert, its sequence value is skipped.

Seqnum_col SEQUENCE(100,2)

If you store numbers in VARCHAR2 columns, avoid using the sequence option for those columns.
For example, if your table already contains the values 1 through 10 in a VARCHAR2 column, then
the maximum value within that column is 9—the greatest character string. Using that as the basis
for a sequence option will cause SQL*Loader to attempt to insert a record using 10 as the newly
created value—and that may conflict with the existing record. This behavior illustrates why
storing numbers in character columns is a poor practice in general.

394 Part III: Beyond the Basics

SQL*Loader control files can support complex logic and business rules. For example, your
input data for a column holding monetary values may have an implied decimal; 9990 would be
inserted as 99.90. In SQL*Loader, you could insert this by performing the calculation during the
data load:

money_amount position (20:28) external decimal(9) ":tax_amount/100"

See the “SQL*Loader Case Studies” of the Oracle Utilities Guide for additional SQL*Loader
examples and sample control files.

Managing Data Loads
Loading large data volumes is a batch operation. Batch operations should not be performed
concurrently with the small transactions prevalent in many database applications. If you have
many concurrent users executing small transactions against a table, you should schedule your
batch operations against that table to occur at a time when very few users are accessing the table.

Oracle maintains read consistency for users’ queries. If you execute the SQL*Loader job
against the table at the same time that other users are querying the table, Oracle will internally
maintain undo entries to enable those users to see their data as it existed when they first queried
the data. To minimize the amount of work Oracle must perform to maintain read consistency (and
to minimize the associated performance degradation caused by this overhead), schedule your
long-running data load jobs to be performed when few other actions are occurring in the database.
In particular, avoid contention with other accesses of the same table.

Design your data load processing to be easy to maintain and reuse. Establish guidelines for
the structure and format of the input datafiles. The more standardized the input data formats are,
the simpler it will be to reuse old control files for the data loads. For repeated scheduled loads
into the same table, your goal should be to reuse the same control file each time. Following each
load, you will need to review and move the log, bad, data, and discard files so they do not
accidentally get overwritten.

Within the control file, use comments to indicate any special processing functions being
performed. To create a comment within the control file, begin the line with two dashes, as shown
in the following example:

-- Limit the load to LA employees:
when Location='LA'

If you have properly commented your control file, you will increase the chance that it can be
reused during future loads. You will also simplify the maintenance of the data load process itself,
as described in the next section.

Repeating Data Loads
Data loads do not always work exactly as planned. Many variables are involved in a data load,
and not all of them will always be under your control. For example, the owner of the source data
may change its data formatting, invalidating part of your control file. Business rules may change,
forcing additional changes. Database structures and space availability may change, further
affecting your ability to load the data.

In an ideal case, a data load will either fully succeed or fully fail. However, in many cases, a
data load will partially succeed, making the recovery process more difficult. If some of the records

Chapter 23: Using SQL*Loader to Load Data 395

have been inserted into the table, then attempting to reinsert those records should result in a primary
key violation. If you are generating the primary key value during the insert (via the sequence option),
then those rows may not fail the second time—and will be inserted twice.

To determine where a load failed, use the log file. The log file will record the commit points
as well as the errors encountered. All of the rejected records should be in either the bad file or
the discard file. You can minimize the recovery effort by forcing the load to fail if many errors are
encountered. To force the load to abort before a large number of errors is encountered, use the
errors keyword of the SQLLDR command. You can also use the discardmax keyword to limit the
number of discarded records permitted before the load aborts.

If you set errors to 0, the first error will cause the load to fail. What if that load fails after 100
records have been inserted? You will have two options: Identify and delete the inserted records
and reapply the whole load, or skip the successfully inserted records. You can use the skip keyword
of SQLLDR to skip the first 100 records during its load processing. The load will then continue
with record 101 (which, we hope, has been fixed prior to the reload attempt). If you cannot
identify the rows that have just been loaded into the table, you will need to use the skip option
during the restart process.

The proper settings for errors and discardmax depend on the load. If you have full control
over the data load process, and the data is properly “cleaned” before being extracted to a load
file, you may have very little tolerance for errors and discards. On the other hand, if you do not
have control over the source for the input datafile, you need to set errors and discardmax high
enough to allow the load to complete. After the load has completed, you need to review the log
file, correct the data in the bad file, and reload the data using the original bad file as the new
input file. If rows have been incorrectly discarded, you need to do an additional load using the
original discard file as the new input file.

After modifying the errant CategoryName value, you can rerun the BOOKSHELF table load
example using the original bookshelf.dat file. During the reload, you have two options when
using the original input datafile.

Skip the first row by specifying skip=1 in the SQLLDR command line.

Attempt to load both rows, whereby the first row fails because it has already been loaded
(and thus causes a primary key violation).

Alternatively, you can use the bad file as the new input datafile and not worry about errors
and skipped rows.

Tuning Data Loads
In addition to running the data load processes at off-peak hours, you can take other steps to improve
the load performance. The following steps all impact your overall database environment and must
be coordinated with the database administrator. The tuning of a data load should not be allowed
to have a negative impact on the database or on the business processes it supports.

First, batch data loads may be timed to occur while the database is in NOARCHIVELOG mode.
While in NOARCHIVELOG mode, the database does not keep an archive of its online redo log
files prior to overwriting them. Eliminating the archiving process improves the performance of
transactions. Since the data is being loaded from a file, you can re-create the loaded data at a
later time by reloading the datafile rather than recovering it from an archived redo log file.

However, there are significant potential issues with disabling ARCHIVELOG mode. You will
not be able to perform a point-in-time recovery of the database unless archiving is enabled. If

■

■

396 Part III: Beyond the Basics

non-batch transactions are performed in the database, you will probably need to run the database
in ARCHIVELOG mode all the time, including during your loads. Furthermore, switching between
ARCHIVELOG and NOARCHIVELOG modes requires you to shut down the instance. If you switch
the instance to NOARCHIVELOG mode, perform your data load, and then switch the instance
back to ARCHIVELOG mode, you should perform a backup of the database (see Chapter 51)
immediately following the restart.

Instead of running the entire database in NOARCHIVELOG mode, you can disable archiving for
your data load process by using the unrecoverable keyword within SQL*Loader. The unrecoverable
option disables the writing of redo log entries for the transactions within the data load. You should
only use this option if you will be able to re-create the transactions from the input files during a
recovery. If you follow this strategy, you must have adequate space to store old input files in case
they are needed for future recoveries. The unrecoverable option is only available for Direct Path
loads, as described in the next section.

Rather than control the redo log activity at the load process level, you can control it at the
table or partition level. If you define an object as nologging, then block-level inserts performed by
SQL*Loader Direct Path loading and the insert /*+ APPEND */ command will not generate redo
log entries. The block-level inserts will require additional space, as they will not reuse existing
blocks below the table’s high-water mark.

If your operating environment has multiple processors, you can take advantage of the CPUs
by parallelizing the data load. The parallel option of SQLLDR, as described in the next section,
uses multiple concurrent data load processes to reduce the overall time required to load the data.

In addition to these approaches, you should work with your database administrator to make
sure the database environment and structures are properly tuned for data loads. Tuning efforts
should include the following:

Preallocate space for the table, to minimize dynamic extensions during the loads.

Allocate sufficient memory resources to the shared memory areas.

Streamline the data-writing process by creating multiple database writer (DBWR)
processes for the database.

Remove any unnecessary triggers during the data loads. If possible, disable or remove the
triggers prior to the load, and perform the trigger operations on the loaded data manually
after it has been loaded.

Remove or disable any unnecessary constraints on the table. You can use SQL*Loader to
dynamically disable and reenable constraints.

Remove any indexes on the tables. If the data has been properly cleaned prior to the data
load, then uniqueness checks and foreign key validations will not be necessary during
the loads. Dropping indexes prior to data loads significantly improves performance.

Pre-sort the data prior to loading. Sort the data based on the indexed columns to
minimize the time needed to create and update the indexes.

Direct Path Loading
SQL*Loader generates a large number of insert statements. To avoid the overhead associated with
using a large number of inserts, you may use the Direct Path option in SQL*Loader. The Direct
Path option creates preformatted data blocks and inserts those blocks into the table. As a result,

■

■

■

■

■

■

■

Chapter 23: Using SQL*Loader to Load Data 397

the performance of your load can dramatically improve. To use the Direct Path option, you must
not be performing any functions on the values being read from the input file.

Any indexes on the table being loaded will be placed into a temporary DIRECT LOAD state
(you can query the index status from USER_INDEXES). Oracle will move the old index values to
a temporary index it creates and manages. Once the load has completed, the old index values
will be merged with the new values to create the new index, and Oracle will drop the temporary
index it created. When the index is once again valid, its status will change to VALID. To minimize
the amount of space necessary for the temporary index, presort the data by the indexed columns.
The name of the index for which the data is presorted should be specified via a sorted indexes
clause in the control file.

NOTE
Triggers will not fire during direct path loads even if the triggers are
enabled.

To use the Direct Path option, specify

DIRECT=TRUE

as a keyword on the SQLLDR command line or include this option in the control file.
If you use the Direct Path option, you can use the unrecoverable keyword to improve your

data load performance. This instructs Oracle not to generate redo log entries for the load. If you
need to recover the database at a later point, you will need to reexecute the data load in order to
recover the table’s data. All conventional path loads are recoverable, and all Direct Path loads are
recoverable by default.

Direct Path loads are faster than conventional loads, and unrecoverable Direct Path loads are
faster still. Since performing unrecoverable loads impacts your recovery operations, you need to
weigh the costs of that impact against the performance benefit you will realize. If your hardware
environment has additional resources available during the load, you can use the parallel Direct
Path load option to divide the data load work among multiple processes. The parallel Direct Path
operations may complete the load job faster than a single Direct Path load.

Instead of using the parallel option, you could partition the table being loaded (see Chapter 18).
Since SQL*Loader allows you to load a single partition, you could execute multiple concurrent
SQL*Loader jobs to populate the separate partitions of a partitioned table. This method requires
more database administration work (to configure and manage the partitions), but it gives you
more flexibility in the parallelization and scheduling of the load jobs.

You can take advantage of multithreaded loading functionality for Direct Path loads to convert
column arrays to stream buffers and perform stream buffer loading in parallel. Use the streamsize
parameter and multithreading flag to enable this feature.

Direct Path loading may impact the space required for the table’s data. Since Direct Path
loading inserts blocks of data, it does not follow the usual methods for allocating space within
a table. The blocks are inserted at the end of the table, after its high-water mark, which is the
highest block into which the table’s data has ever been written. If you insert 100 blocks worth of
data into a table and then delete all of the rows, the high-water mark for the table will still be set
at 100. If you then perform a conventional SQL*Loader data load, the rows will be inserted into
the already allocated blocks. If you instead perform a Direct Path load, Oracle will insert new
blocks of data following block 100, potentially increasing the space allocation for the table. The
only way to lower the high-water mark for a table is to truncate it (which deletes all rows and
cannot be rolled back) or to drop and re-create it. You should work with your database
administrator to identify space issues prior to starting your load.

398 Part III: Beyond the Basics

NOTE
As shown earlier in this chapter, you can issue a truncate command as
part of the control file syntax. The table will be truncated prior to the
data’s being loaded.

Additional Features
In addition to features noted earlier in this chapter, SQL*Loader features support for Unicode and
expanded datatypes. SQL*Loader can load integer and zoned/packed decimal datatypes across
platforms with different byte ordering and accept EBCDIC-based zoned or packed decimal data
encoded in IBM format. SQL*Loader also offers support for loading XML columns, loading object
types with subtypes, and Unicode (UTF16 character set). SQL*Loader also provides native support
for the date, time, and interval-related datatypes (see Chapter 10).

If a SQL*Loader job fails, you may be able to resume it where it failed using the resumable,
resumable_name, and resumable_timeout options. For example, if the segment to which the
loader job was writing could not extend, you can disable the load job, fix the space allocation
problem, and resume the job. Your ability to perform these actions depends on the configuration
of the database; work with your DBA to make sure the resumable features are enabled and that
adequate undo history is maintained for your purposes.

You can access external files as if they are tables inside the database. This external table
feature, described in Chapter 28, allows you to potentially avoid loading large volumes of data
into the database. See Chapter 28 for implementation details.

CHAPTER
24

Using Data Pump
Export and Import

399

400 Part III: Beyond the Basics

ata Pump is a server-based data-extraction and import utility. Its features include
significant architectural and functional enhancements over the original Import and
Export utilities. Data Pump allows you to stop and restart jobs, see the status of
running jobs, and restrict the data that is exported and imported. As of Oracle 11g,
you can compress and encrypt the output data as it is being written, change it as it

is being written (via the REMAP_DATA option), and have partitions imported as standalone tables.

NOTE
Data Pump can use files generated via the original Export utility, but
the original Import utility cannot use the files generated from Data
Pump Export.

Data Pump runs as a server process, benefiting users in multiple ways. The client process that
starts the job can disconnect and later reattach to the job. Performance is enhanced (as compared
to Export/Import) because the data no longer has to be processed by a client program. Data Pump
extractions and loads can be parallelized, further enhancing performance.

In this chapter, you will see how to use Data Pump, along with descriptions and examples of
its major options.

Creating a Directory
Data Pump requires you to create directories for the datafiles and log files it will create and read.
Use the create directory command to create the directory pointer within Oracle to the external
directory you will use. Users who will access the Data Pump files must have the READ and
WRITE privileges on the directory.

NOTE
Before you start, verify that the external directory exists and that
the user who will be issuing the create directory command has the
CREATE ANY DIRECTORY system privilege.

The following example creates a directory named DTPUMP and grants READ and WRITE
access to the PRACTICE schema:

create directory dtpump as 'e:\dtpump';
grant read on directory DTPUMP to practice, system;
grant write on directory DTPUMP to practice, system;

The PRACTICE and SYSTEM schemas can now use the DTPUMP directory for Data Pump jobs.

Data Pump Export Options
Oracle provides a utility, expdp, that serves as the interface to Data Pump. If you have previous
experience with the Export utility, some of the options will be familiar. However, there are
significant features available only via Data Pump. Table 24-1 shows the command-line input
parameters for expdp when a job is created.

D

Chapter 24: Using Data Pump Export and Import 401

Parameter Description

ATTACH Connects a client session to a currently running Data Pump
Export job.

COMPRESSION Specifies which data to compress before writing the dump file set.
Accepted values are ALL, DATA_ONLY, METADATA_ONLY, or NONE.

CONTENT Filters what is exported: DATA_ONLY, METADATA_ONLY, or ALL.

DATA_OPTIONS Provides options for handling data during exports and imports. For
exports, the only valid value is XML_CLOBS, indicating XMLType
columns are to be exported in uncompressed CLOB format.

DIRECTORY Specifies the destination directory for the log file and the dump file set.

DUMPFILE Specifies the names and directories for dump files.

ENCRYPTION Specifies whether or not to encrypt data before writing it to the dump
file set. ALL enables encryption for all data and metadata in the
export operation. DATA_ONLY, ENCRYPTED_COLUMNS_ONLY,
METADATA_ONLY, and NONE are the other valid values.

ENCRYPTION_
ALGORITHM

Specifies which cryptographic algorithm should be used to perform
the encryption. Valid values are AES128, AES192, and AES256.

ENCRYPTION_MODE Specifies the type of security to use when encryption and decryption
are performed.

ENCRYPTION_PASSWORD Specifies a password for encrypting encrypted column data,
metadata, or table data in the export dumpfile. Note that all data in
the dumpfile will be encrypted.

ESTIMATE Determines the method used to estimate the dump file size (BLOCKS
or STATISTICS).

ESTIMATE_ONLY Y/N flag is used to instruct Data Pump whether the data should be
exported or just estimated.

EXCLUDE Specifies the criteria for excluding objects and data from being
exported.

FILESIZE Specifies the maximum file size of each export dump file.

FLASHBACK_SCN SCN for the database to flash back to during the export (see
Chapter 27).

FLASHBACK_TIME Timestamp for the database to flash back to during the export (see
Chapter 27).

FULL Tells Data Pump to export all data and metadata in a Full mode export.

HELP Displays a list of available commands and options.

INCLUDE Specifies the criteria for which objects and data will be exported.

JOB_NAME Specifies a name for the job; the default is system generated.

LOGFILE Name and optional directory name for the export log.

TABLE 24-1 Command-Line Input Parameters for expdp

402 Part III: Beyond the Basics

Parameter Description

NETWORK_LINK Specifies the source database link for a Data Pump job exporting a
remote database.

NOLOGFILE Y/N flag is used to suppress log file creation.

PARALLEL Sets the number of workers for the Data Pump Export job.

PARFILE Names the parameter file to use, if any.

QUERY Filters rows from tables during the export.

REMAP_DATA Names a remap function that is applied as the data is exported.
The transformed data is stored in the dumpfile. This approach is
commonly used for changing sensitive production when creating a
dumpfile that will be imported into a nonproduction database.

REUSE_DUMPFILES Specifies if existing dumpfiles should be overwritten. Default is N.

SAMPLE Specifies a percentage of the data blocks to be sampled and
unloaded from the source database.

SCHEMAS Names the schemas to be exported for a Schema mode export.

STATUS Displays detailed status of the Data Pump job.

TABLES Lists the tables and partitions to be exported for a Table mode export.

TABLESPACES Lists the tablespaces to be exported.

TRANSPORT_FULL_CHECK Specifies whether the tablespaces being exported should first be
verified as a self-contained set.

TRANSPORT_TABLESPACES Specifies a Transportable Tablespace mode export.

TRANSPORTABLE Specifies whether or not the transportable option should be used
during a table mode export (specified with the TABLES parameter)
to export metadata for specific tables, partitions, and subpartitions.
NEVER is the default; ALWAYS tells Data Pump to use the
transportable option.

VERSION Specifies the version of database objects to be created so the dump
file set can be compatible with earlier releases of Oracle. Options
are COMPATIBLE, LATEST, and database version numbers (not lower
than 10.0.0).

TABLE 24-1 Command-Line Input Parameters for expdp (continued)

As shown in Table 24-1, five modes of Data Pump exports are supported. Full exports extract
all the database’s data and metadata. Schema exports extract the data and metadata for specific
user schemas. Tablespace exports extract the data and metadata for tablespaces, and Table
exports extract data and metadata for tables and their partitions. Transportable Tablespace exports
extract metadata for specific tablespaces.

NOTE
You must have the EXP_FULL_DATABASE system privilege in order to
perform a Full export or a Transportable Tablespace export.

Chapter 24: Using Data Pump Export and Import 403

When you submit a job, Oracle will give the job a system-generated name. If you specify a
name for the job via the JOB_NAME parameter, you must be certain the job name will not conflict
with the name of any table or view in your schema. During Data Pump jobs, Oracle will create
and maintain a master table for the duration of the job. The master table will have the same name
as the Data Pump job, so its name cannot conflict with existing objects.

While a job is running, you can execute the commands listed in Table 24-2 via Data Pump’s
interface.

As the entries in Table 24-2 imply, you can change many features of a running Data Pump
Export job via the interactive command mode. If the dump area runs out of space, you can attach
to the job, add files, and restart the job at that point; there is no need to kill the job or reexecute it
from the start. You can display the job status at any time, either via the STATUS parameter or via
the USER_DATAPUMP_ JOBS and DBA_DATAPUMP_ JOBS data dictionary views or the
V$SESSION_LONGOPS view.

Starting a Data Pump Export Job
You can store your job parameters in a parameter file, referenced via the PARFILE parameter of
expdp. For example, you can create a file name dp1.par with the following entries:

DIRECTORY=dtpump
DUMPFILE=metadataonly.dmp
CONTENT=METADATA_ONLY

You can then start the Data Pump Export job:

expdp practice/practice PARFILE=dp1.par

Oracle will then pass the dp1.par entries to the Data Pump Export job. A Schema-type Data Pump
Export (the default type) will be executed, and the output (the metadata listings, but no data) will

Parameter Description

ADD_FILE Add dump files

CONTINUE_CLIENT Exit the interactive mode and enter logging mode

EXIT_CLIENT Exit the client session, but leave the server Data Pump Export job
running

FILESIZE Redefine the default size to be used for any subsequent dumpfiles

HELP Display online help for the import

KILL_ JOB Kill the current job and detach related client sessions

PARALLEL Alter the number of workers for the Data Pump Export job

START_ JOB Restart the attached job

STATUS Display a detailed status of the Data Pump job

STOP_ JOB Stop the job for later restart

TABLE 24-2 Parameters for Interactive Mode Data Pump Export

404 Part III: Beyond the Basics

be written to a file in the dtpump directory previously defined. When you execute the expdp
command, the output will be in the following format (there will be separate lines for each major
object type—tables, grants, indexes, and so on):

Starting "PRACTICE"."SYS_EXPORT_SCHEMA_01": practice/******** parfile=dp1.par
Processing object type SCHEMA_EXPORT/SE_PRE_SCHEMA_PROCOBJACT/PROCACT_SCHEMA
Processing object type SCHEMA_EXPORT/TYPE/TYPE_SPEC
Processing object type SCHEMA_EXPORT/TABLE/TABLE
Processing object type SCHEMA_EXPORT/TABLE/GRANT/OBJECT_GRANT
Processing object type SCHEMA_EXPORT/TABLE/INDEX/INDEX
Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Processing object type SCHEMA_EXPORT/TABLE/COMMENT
Processing object type SCHEMA_EXPORT/VIEW/VIEW
Processing object type SCHEMA_EXPORT/PACKAGE/PACKAGE_SPEC
Processing object type SCHEMA_EXPORT/PACKAGE/PACKAGE_BODY
Processing object type SCHEMA_EXPORT/PACKAGE/GRANT/OBJECT_GRANT
Processing object type SCHEMA_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT
Processing object type SCHEMA_EXPORT/SE_EV_TRIGGER/TRIGGER
Master table "PRACTICE"."SYS_EXPORT_SCHEMA_01" successfully loaded/unloaded
**
Dump file set for PRACTICE.SYS_EXPORT_SCHEMA_01 is:
 E:\DTPUMP\METADATAONLY.DMP
Job "PRACTICE"."SYS_EXPORT_SCHEMA_01" successfully completed at 17:30

The output file, as shown in the listing, is named metadataonly.dmp. The output dump file
contains XML entries for re-creating the structures for the Practice schema. During the export,
Data Pump created and used an external table named SYS_EXPORT_SCHEMA_01.

NOTE
Dump files will not overwrite previously existing dump files in the
same directory.

You can use multiple directories and dump files for a single Data Pump Export. Within the
DUMPFILE parameter setting, list the directory along with the filename, in this format:

DUMPFILE=directory1:file1.dmp,
 directory2:file2.dmp

Stopping and Restarting Running Jobs
After you have started a Data Pump Export job, you can close the client window you used to start
the job. Because it is server based, the export will continue to run. You can then attach to the job,
check its status, and alter it. For example, you can start the job via expdp:

expdp practice/practice PARFILE=dp1.par

Press CTRL-C to leave the log display, and Data Pump will return you to the Export prompt:

Export>

Exit to the operating system via the EXIT_CLIENT command:

Export> EXIT_CLIENT

Chapter 24: Using Data Pump Export and Import 405

You can then restart the client and attach to the currently running job under your schema:

expdp practice/practice attach

NOTE
This sample export finishes quickly, so the job may finish before you
reattach to it.

If you gave a name to your Data Pump Export job, specify the name as part of the ATTACH
parameter call. For example, if you had named the job PRACTICE_ JOB, attach to the job by name:

expdp practice/practice attach=PRACTICE_JOB

When you attach to a running job, Data Pump will display the status of the job—its basic
configuration parameters and its current status. You can then issue the CONTINUE_CLIENT
command to see the log entries as they are generated, or you can alter the running job:

Export> CONTINUE_CLIENT

You can stop a job via the STOP_ JOB option:

Export> STOP_JOB

With the job stopped, you can then add additional dump files in new directories, via the
ADD_FILE option. You can then restart the job:

Export> START_JOB

You can specify a log file location for the export log via the LOGFILE parameter. If you do not
specify a LOGFILE value, the log file will be written to the same directory as the dump file.

Exporting from Another Database
You can use the NETWORK_LINK parameter to export data from a different database. If you are
logged into the HQ database and you have a database link to a separate database, Data Pump
can use that link to connect to the database and extract its data.

NOTE
If the source database is read-only, the user on the source database
must have a locally managed tablespace assigned as the temporary
tablespace; otherwise, the job will fail.

In your parameter file (or on the expdp command line), set the NETWORK_LINK parameter
equal to the name of your database link. The Data Pump Export will write the data from the
remote database to the directory defined in your local database.

Using EXCLUDE, INCLUDE, and QUERY
You can exclude or include sets of tables from the Data Pump Export via the EXCLUDE and
INCLUDE options. You can exclude objects by type and by name. If an object is excluded, all
its dependent objects are also excluded. The format for the EXCLUDE option is

EXCLUDE=object_type[:name_clause] [, ...]

406 Part III: Beyond the Basics

NOTE
You cannot specify EXCLUDE if you specify CONTENT=DATA_ONLY.

For example, to exclude the PRACTICE schema from a full export, the format for the
EXCLUDE option would be

EXCLUDE=SCHEMA:"='PRACTICE'"

NOTE
You can specify more than one EXCLUDE option within the same
Data Pump Export job.

The EXCLUDE option in the preceding listing contains a limiting condition (='PRACTICE')
within a set of double quotes. The object_type variable can be any Oracle object type, including
grant, index, and table. The name_clause variable restricts the values returned. For example, to
exclude from the export all tables whose names begin with 'TEMP', you could specify the
following:

EXCLUDE=TABLE:"LIKE 'TEMP%'"

When you enter this at the command line, you may need to use escape characters so the quotation
marks and other special characters are properly passed to Oracle. Your expdp command will be in
the format

expdp practice/practice EXCLUDE=TABLE:\"LIKE \'TEMP%\'\"

NOTE
This example shows part of the syntax, not the full syntax for the
command.

If no name_clause value is provided, all objects of the specified type are excluded. To exclude all
indexes, for example, you would specify the following:

expdp practice/practice EXCLUDE=INDEX

For a listing of the objects you can filter, query the DATABASE_EXPORT_OBJECTS, SCHEMA_
EXPORT_OBJECTS, and TABLE_EXPORT_OBJECTS data dictionary views. If the object_type value
is CONSTRAINT, NOT NULL constraints will not be excluded. Additionally, constraints needed
for a table to be created successfully (such as primary key constraints for index-organized tables)
cannot be excluded. If the object_type value is USER, the user definitions are excluded, but the
objects within the user schemas will still be exported. Use the SCHEMA object_type, as shown in
the previous example, to exclude a user and all of the user’s objects. If the object_type value is
GRANT, all object grants and system privilege grants are excluded.

Chapter 24: Using Data Pump Export and Import 407

A second option, INCLUDE, is also available. When you use INCLUDE, only those objects
that pass the criteria are exported; all others are excluded. INCLUDE and EXCLUDE are mutually
exclusive. The format for INCLUDE is

INCLUDE = object_type[:name_clause] [, ...]

NOTE
You cannot specify INCLUDE if you specify CONTENT=DATA_ONLY.

For example, to export two tables and all procedures, your parameter file may include these
two lines:

INCLUDE=TABLE:"IN ('BOOKSHELF','BOOKSHELF_AUTHOR')"
INCLUDE=PROCEDURE

What rows will be exported for the objects that meet the EXCLUDE or INCLUDE criteria? By
default, all rows are exported for each table. You can use the QUERY option to limit the rows that
are returned. The format for the QUERY option is

QUERY = [schema.][table_name:] query_clause

If you do not specify values for the schema and table_name variables, the query<->_clause
will be applied to all the exported tables. Because query<->_clause will usually include specific
column names, you should be very careful when selecting the tables to include in the export.

You can specify a QUERY value for a single table, as shown in the following listing:

QUERY=BOOKSHELF:'"WHERE Rating > 2"'

As a result, the dump file will only contain rows that meet the QUERY criteria as well as the
INCLUDE or EXCLUDE criteria. You can also apply these restrictions during the subsequent Data
Pump Import, as described in the next section of this chapter.

Data Pump Import Options
To import a dump file exported via Data Pump Export, use Data Pump Import. As with the export
process, the import process runs as a server-based job you can manage as it executes. You can
interact with Data Pump Import via the command-line interface, a parameter file, and an interactive
interface. Table 24-3 lists the parameters for the command-line interface.

NOTE
The directory for the dump file and log file must already exist; see the
prior section on the create directory command.

As with Data Pump Export, five modes are supported: Full, Schema, Table, Tablespace, and
Transportable Tablespace. If no mode is specified, Oracle attempts to load the entire dump file.

408 Part III: Beyond the Basics

Parameter Description

ATTACH Attaches the client to a server session and places you in interactive
mode.

CONTENT Filters what is imported: ALL, DATA_ONLY, or METADATA_ONLY.

DATA_OPTIONS Provides options for how to handle certain types of data during
exports and imports. For import operations, the only valid option for
the DATA_OPTIONS parameter is SKIP_CONSTRAINT_ERRORS.

DIRECTORY Specifies the location of the dump file set and the destination
directory for the log and SQL files.

DUMPFILE Specifies the names and, optionally, the directories for the dump
file set.

ENCRYPTION_PASSWORD Specifies a password for accessing encrypted column data in the
dump file set.

ESTIMATE Determines the method used to estimate the dump file size
(BLOCKS or STATISTICS).

EXCLUDE Excludes objects and data from being imported.

FLASHBACK_SCN SCN for the database to flash back to during the import (see
Chapter 27).

FLASHBACK_TIME Timestamp for the database to flash back to during the import (see
Chapter 27).

FULL Y/N flag is used to specify that you want to import the full dump file.

HELP Displays online help for the import.

INCLUDE Specifies the criteria for objects to be imported.

JOB_NAME Specifies a name for the job; the default is system generated.

LOGFILE Name and optional directory name for the import log.

NETWORK_LINK Specifies the source database link for a Data Pump job importing a
remote database.

NOLOGFILE Y/N flag is used to suppress log file creation.

PARALLEL Sets the number of workers for the Data Pump Import job.

PARFILE Names the parameter file to use, if any.

PARTITION_OPTIONS Specifies how table partitions should be created during an import
operation. A value of DEPARTITION promotes each partition
or subpartition to a new table. A value of MERGE combines all
partitions and subpartitions into a new table.

QUERY Filters rows from tables during the import.

TABLE 24-3 Data Pump Import Command-Line Parameters

Chapter 24: Using Data Pump Export and Import 409

Parameter Description

REMAP_DATA Allows you to remap data as it is being inserted into a new database.
A common use is to regenerate primary keys to avoid conflict when
importing a table into a pre-existing table on the target database. The
same function can be applied to multiple columns being dumped.
This is useful when you want to guarantee consistency in remapping
both the child and parent column in a referential constraint.

REMAP_DATAFILE Changes the name of the source datafile to the target datafile in
create library, create tablespace, and create directory commands
during the import.

REMAP_SCHEMA Imports data exported from the source schema into the target schema.

REMAP_TABLESPACE Imports data exported from the source tablespace into the target
tablespace.

REUSE_DATAFILES Specifies whether existing datafiles should be reused by create
tablespace commands during Full mode imports.

SCHEMAS Names the schemas to be imported for a Schema mode import.

SKIP_UNUSABLE_INDEXES Y/N flag. If set to Y, the import does not load data into tables whose
indexes are set to the Index Unusable state.

SQLFILE Names the file to which the DDL for the import will be written. The
data and metadata will not be loaded into the target database.

STATUS Displays detailed status of the Data Pump job.

STREAMS_CONFIGURATION Y/N flag is used to specify whether Streams configuration
information should be imported.

TABLE_EXISTS_ACTION Instructs Import how to proceed if the table being imported already
exists. Values include SKIP, APPEND, TRUNCATE, and REPLACE.
The default is APPEND if CONTENT=DATA_ONLY; otherwise, the
default is SKIP.

TABLES Lists tables for a Table mode import.

TABLESPACES Lists tablespaces for a Tablespace mode import.

TRANSFORM Directs changes to the segment attributes or storage during import.

TRANSPORT_DATAFILES Lists the datafiles to be imported during a Transportable Tablespace
mode import.

TRANSPORT_FULL_CHECK Specifies whether the tablespaces being imported should first be
verified as a self-contained set.

TRANSPORT_TABLESPACES Lists the tablespaces to be imported during a Transportable
Tablespace mode import.

TABLE 24-3 Data Pump Import Command-Line Parameters (continued)

410 Part III: Beyond the Basics

Table 24-4 lists the parameters that are valid in the interactive mode of Data Pump Import.
Many of the Data Pump Import parameters are the same as those available for Data Pump

Export. In the following sections, you will see how to start an import job, along with descriptions
of the major options unique to Data Pump Import.

Starting a Data Pump Import Job
You can start a Data Pump Import job via the impdp executable provided with Oracle Database
11g. Use the command-line parameters to specify the import mode and the locations for all the
files. You can store the parameter values in a parameter file and then reference the file via the
PARFILE option.

In the first export example of this chapter, the parameter file named dp1.par contained the
following entries:

DIRECTORY=dtpump
DUMPFILE=metadataonly.dmp
CONTENT=METADATA_ONLY

Parameter Description

TRANSPORTABLE Specifies whether or not the transportable option should be used
when a table-mode import (specified with the TABLES parameter) is
performed.

VERSION Specifies the version of database objects to be created so the dump
file set can be compatible with earlier releases of Oracle. Options
are COMPATIBLE, LATEST, and database version numbers (not
lower than 10.0.0). Only valid for NETWORK_LINK and SQLFILE.

TABLE 24-3 Data Pump Import Command-Line Parameters (continued)

Parameter Description

CONTINUE_CLIENT Exit the interactive mode and enter logging mode. The job will be
restarted if idle.

EXIT_CLIENT Exit the client session, but leave the server Data Pump Import job
running.

HELP Display online help for the import.

KILL_ JOB Kill the current job and detach related client sessions.

PARALLEL Alter the number of workers for the Data Pump Import job.

START_ JOB Restart the attached job.

STATUS Display detailed status of the Data Pump job.

STOP_ JOB Stop the job for later restart.

TABLE 24-4 Interactive Parameters for Data Pump Import

Chapter 24: Using Data Pump Export and Import 411

The import will create the PRACTICE schema’s objects in a different schema. The REMAP_
SCHEMA option allows you to import objects into a different schema than was used for the
export. If you want to change the tablespace assignments for the objects at the same time, use
the REMAP_TABLESPACE option. The format for REMAP_SCHEMA is

REMAP_SCHEMA=source_schema:target_schema

Create a new user account to hold the objects:

create user Newpractice identified by newp;
grant CREATE SESSION to Newpractice;
grant CONNECT, RESOURCE to Newpractice;
grant CREATE TABLE to Newpractice;
grant CREATE INDEX to Newpractice;

You can now add the REMAP_SCHEMA line to the dp1.par parameter file:

DIRECTORY=dtpump
DUMPFILE=metadataonly.dmp
CONTENT=METADATA_ONLY
REMAP_SCHEMA=Practice:Newpractice

You can now start the import job. Because you are changing the owning schema for the data,
you must have the IMP_FULL_DATABASE system privilege. Data Pump Import jobs are started via
the impdp executable. The following listing shows the creation of a Data Pump Import job using
the dp1.par parameter file.

impdp system/passwd parfile=dp1.par

NOTE
All dump files must be specified at the time the job is started.

Oracle will then perform the import and display its progress. Because the NOLOGFILE option
was not specified, the log file for the import will be placed in the same directory as the dump file
and will be given the name import.log. You can verify the success of the import by logging into
the NEWPRACTICE schema. The NEWPRACTICE schema should have a copy of all the valid
objects that have previously been created in the PRACTICE schema.

What if a table being imported already existed? In this example, with the CONTENT option
set to METADATA_ONLY, the table would be skipped by default. If the CONTENT option was set
to DATA_ONLY, the new data would be appended to the existing table data. To alter this behavior,
use the TABLE_EXISTS_ACTION option. Valid values for TABLE_EXISTS_OPTION are SKIP,
APPEND, TRUNCATE, and REPLACE.

Stopping and Restarting Running Jobs
After you have started a Data Pump Import job, you can close the client window you used to start
the job. Because it is server based, the import will continue to run. You can then attach to the job,
check its status, and alter it:

impdp system/passwd PARFILE=dp1.par

Press CTRL-C to leave the log display, and Data Pump will return you to the Import prompt:

Import>

412 Part III: Beyond the Basics

Exit to the operating system via the EXIT_CLIENT command:

Import> EXIT_CLIENT

You can then restart the client and attach to the currently running job under your schema:

impdp system/passwd attach

If you gave a name to your Data Pump Import job, specify the name as part of the ATTACH
parameter call. When you attach to a running job, Data Pump will display the status of the job—
its basic configuration parameters and its current status. You can then issue the CONTINUE_CLIENT
command to see the log entries as they are generated, or you can alter the running job:

Import> CONTINUE_CLIENT

You can stop a job via the STOP_ JOB option:

Import> STOP_JOB

While the job is stopped, you can increase its parallelism via the PARALLEL option. You can
then restart the job:

Import> START_JOB

EXCLUDE, INCLUDE, and QUERY
Data Pump Import, like Data Pump Export, allows you to restrict the data processed via the use of
the EXCLUDE, INCLUDE, and QUERY options, as described earlier in this chapter. Because you
can use these options on both the export and the import, you can be very flexible in your imports.
For example, you may choose to export an entire table but only import part of it—the rows that
match your QUERY criteria. You could choose to export an entire schema but when recovering
the database via import include only the most necessary tables so the application downtime can
be minimized. EXCLUDE, INCLUDE, and QUERY provide powerful capabilities to developers
and database administrators during both export and import jobs.

Transforming Imported Objects
In addition to changing or selecting schemas, tablespaces, datafiles, and rows during the import,
you can change the segment attributes and storage requirements during import via the
TRANSFORM option. The format for TRANSFORM is

TRANSFORM = transform_name:value[:object_type]

The transform_name variable can have a value of SEGMENT_ATTRIBUTES or STORAGE. You
can use the value variable to include or exclude segment attributes (physical attributes, storage
attributes, tablespaces, and logging). The object_type variable is optional and, if specified, must
be either TABLE or INDEX.

For example, object storage requirements may change during an export/import—you may be
using the QUERY option to limit the rows imported, or you may be importing only the metadata
without the table data. To eliminate the exported storage clauses from the imported tables, add
the following to the parameter file:

TRANSFORM=STORAGE:n:table

Chapter 24: Using Data Pump Export and Import 413

To eliminate the exported tablespace and storage clauses from all tables and indexes, use the
following:

TRANSFORM=SEGMENT_ATTRIBUTES:n

When the objects are imported, they will be assigned to the user’s default tablespace and will
have used that tablespace’s default storage parameters.

Generating SQL
Instead of importing the data and objects, you can generate the SQL for the objects (not the data)
and store it in a file on your operating system. The file will be written to the directory and file
specified via the SQLFILE option. The SQLFILE option format is

SQLFILE=[directory_object:]file_name

NOTE
If you do not specify a value for the directory_object variable, the file
will be created in the dump file directory.

The following listing shows a sample parameter file for an import using the SQLFILE option.
Note that the CONTENT option is not specified. The output will be written to the dtpump
directory.

DIRECTORY=dtpump
DUMPFILE=metadataonly.dmp
SQLFILE=sql.txt

You can then run the import to populate the sql.txt file:

impdp practice/practice parfile=dp1.par

In the sql.txt file the import creates, you will see entries for each of the object types within the
schema. The format for the output file will be similar to the following listing, although the object
IDs and SCNs will be specific to your environment. For brevity, not all entries in the file are
shown here.

-- CONNECT PRACTICE
-- new object type path is: SCHEMA_EXPORT/
SE_PRE_SCHEMA_PROCOBJACT/PROCACT_SCHEMA

BEGIN
sys.dbms_logrep_imp.instantiate_schema(schema_name=>'PRACTICE',
export_db_name=>'ORCL', inst_scn=>'3377908');
COMMIT;
END;
/

-- new object type path is: SCHEMA_EXPORT/TYPE/TYPE_SPEC
CREATE TYPE "PRACTICE"."ADDRESS_TY"
 OID '48D49FA5EB6D447C8D4C1417D849D63A' as object
(Street VARCHAR2(50),

414 Part III: Beyond the Basics

 City VARCHAR2(25),
 State CHAR(2),
 Zip NUMBER);
/

CREATE TYPE "PRACTICE"."CUSTOMER_TY"
 OID '8C429A2DD41042228170643EF24BE75A' as object
(Customer_ID NUMBER,
 Name VARCHAR2(25),
 Street VARCHAR2(50),
 City VARCHAR2(25),
 State CHAR(2),
 Zip NUMBER);
/

CREATE TYPE "PRACTICE"."PERSON_TY"
 OID '76270312D764478FAFDD47BF4533A5F8' as object
(Name VARCHAR2(25),
 Address ADDRESS_TY);
/

-- new object type path is: SCHEMA_EXPORT/TABLE/TABLE
CREATE TABLE "PRACTICE"."CUSTOMER"
 ("CUSTOMER_ID" NUMBER,
 "NAME" VARCHAR2(25),
 "STREET" VARCHAR2(50),
 "CITY" VARCHAR2(25),
 "STATE" CHAR(2),
 "ZIP" NUMBER
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE "USERS" ;

CREATE TABLE "PRACTICE"."CUSTOMER_CALL"
 ("CUSTOMER_ID" NUMBER,
 "CALL_NUMBER" NUMBER,
 "CALL_DATE" DATE
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE "USERS" ;

CREATE TABLE "PRACTICE"."STOCK_TRX"
 ("ACCOUNT" NUMBER(10,0),
 "SYMBOL" VARCHAR2(20),
 "PRICE" NUMBER(6,2),
 "QUANTITY" NUMBER(6,0),
 "TRX_FLAG" VARCHAR2(1)
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645

Chapter 24: Using Data Pump Export and Import 415

PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE "USERS" ;

CREATE TABLE "PRACTICE"."STOCK_ACCOUNT"
 ("ACCOUNT" NUMBER(10,0),
 "ACCOUNTLONGNAME" VARCHAR2(50)
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE "USERS" ;

-- new object type path is: SCHEMA_EXPORT/TABLE/GRANT/OBJECT_GRANT
GRANT SELECT ON "PRACTICE"."STOCK_TRX" TO "ADAMS";
GRANT SELECT ON "PRACTICE"."STOCK_TRX" TO "BURLINGTON";
GRANT SELECT ON "PRACTICE"."STOCK_ACCOUNT" TO "ADAMS";
GRANT SELECT ON "PRACTICE"."STOCK_ACCOUNT" TO "BURLINGTON";
GRANT INSERT ON "PRACTICE"."STOCK_TRX" TO "ADAMS";

-- new object type path is: SCHEMA_EXPORT/TABLE/INDEX/INDEX
CREATE UNIQUE INDEX "PRACTICE"."CUSTOMER_PK" ON "PRACTICE"."CUSTOMER"
("CUSTOMER_ID")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
STORAGE(INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645
PCTINCREASE 0 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE "USERS" PARALLEL 1 ;

 ALTER INDEX "PRACTICE"."CUSTOMER_PK" NOPARALLEL;

The SQLFILE output is a plain text file, so you can edit the file, use it within SQL*Plus, or keep
it as documentation of your application’s database structures.

This page intentionally left blank

CHAPTER
25

Accessing Remote Data

417

418 Part III: Beyond the Basics

s your databases grow in size and number, you will very likely need to share data
among them. Sharing data requires a method of locating and accessing the data. In
Oracle, remote data accesses such as queries and updates are enabled through the
use of database links. As described in this chapter, database links allow users to
treat a group of distributed databases as if they were a single, integrated database.

In this chapter, you will also find information about direct connections to remote databases, such
as those used in client-server applications.

Database Links
Database links tell Oracle how to get from one database to another. If you will frequently use the
same connection to a remote database, a database link is appropriate.

How a Database Link Works
A database link requires Oracle Net (previously known as SQL*Net and Net8) to be running on
each of the machines (hosts) involved in the remote database access. Oracle Net is usually started
by the database administrator (DBA) or the system manager. A sample architecture for a remote
access using a database link is shown in Figure 25-1. This figure shows two hosts, each running
Oracle Net. There is a database on each of the hosts. A database link defines a connection from
the first database (named LOCAL, on the Branch host) to the second database (named REMOTE, on
the Headquarters host). The database link shown in Figure 25-1 is located in the LOCAL database.

To support communication between the two databases, the Oracle Net configuration must
include listener processes for the databases and service names for the databases. Oracle Net
configuration files include tnsnames.ora (for translating database service names to databases, hosts,
and ports) and listener.ora (for specifying the connection information for databases on the local host).

Database links specify the following connection information:

The communications protocol (such as TCP/IP) to use during the connection

The host on which the remote database resides

The name of the database on the remote host

The name of a valid account in the remote database (optional)

The password for that account (optional)

■

■

■

■

■

A

FIGURE 25-1 Sample architecture for database link

Chapter 25: Accessing Remote Data 419

When used, a database link actually logs in as a user in the remote database and the database
link remains open for your session until you either log out of your session or execute the alter
session close database link command. A database link can be private, owned by a single user, or
public, in which case all users in the LOCAL database can use the link.

Using a Database Link for Remote Queries
If you are a user in the LOCAL database shown in Figure 25-1, you can access objects in the
REMOTE database via a database link. To do this, simply append the database link name to the
name of any table or view that is accessible to the remote account. When appending the database
link name to a table or view name, you must precede the database link name with an @ sign.

For local tables, you reference the table name in the from clause:

select *
 from BOOKSHELF;

For remote tables, use a database link named REMOTE_CONNECT. In the from clause,
reference the table name followed by @REMOTE_CONNECT:

select *
 from BOOKSHELF@REMOTE_CONNECT;

NOTE
If your database initialization parameters specify GLOBAL_
NAMES=TRUE, then the database link name must be the same
as the name of the remote instance you are connecting to.

When the database link in the preceding query is used, Oracle will log into the database
specified by the database link, using the username and password provided by the link. It will then
query the BOOKSHELF table in that account and return the data to the user who initiated the query.
This is shown graphically in Figure 25-2. The REMOTE_CONNECT database link shown in Figure
25-2 is located in the LOCAL database.

As shown in Figure 25-2, logging into the LOCAL database and using the REMOTE_CONNECT
database link in your from clause returns the same results as logging in directly to the remote
database and executing the query without the database link. It makes the remote database seem local.

NOTE
The maximum number of database links that can be used in a single
session is set via the OPEN_LINKS parameter in the database’s
initialization parameter file.

FIGURE 25-2 Using a database link for a remote query

420 Part III: Beyond the Basics

Queries executed using database links do have some restrictions. You should avoid using
database links in queries that use the connect by, start with, and prior keywords. Some queries
using these keywords will work (for example, if prior is not used outside of the connect by clause,
and start with does not use a subquery), but most uses of tree-structured queries will fail when
using database links.

Using a Database Link for Synonyms and Views
You may create local synonyms and views that reference remote objects. To do this, reference the
database link name, preceded by an @ sign, wherever you refer to a remote table. The following
example shows how to do this for synonyms. The create synonym command in this example is
executed from an account in the LOCAL database.

create synonym BOOKSHELF_SYN
 for BOOKSHELF@REMOTE_CONNECT;

In this example, a synonym called BOOKSHELF_SYN is created for the BOOKSHELF table
accessed via the REMOTE_CONNECT database link. Every time this synonym is used in a from
clause of a query, the remote database will be queried. This is very similar to the remote queries
shown earlier; the only real change is that the database link is now defined as part of a local
object (in this case, a synonym).

What if the remote account that is accessed by the database link does not own the table being
referenced? In that event, any synonyms available to the remote account (either private or public)
can be used. If no such synonyms exist for a table that the remote account has been granted
access to, you must specify the table owner’s name in the query, as shown in the following example:

create synonym BOOKSHELF_SYN
 for Practice.BOOKSHELF@REMOTE_CONNECT;

In this example, the remote account used by the database link does not own the BOOKSHELF
table, nor does the remote account have a synonym called BOOKSHELF. It does, however, have
privileges on the BOOKSHELF table owned by the remote user Practice in the REMOTE database.
Therefore, the owner and table name are specified; both are interpreted in the REMOTE database.
The syntax for these queries and synonyms is almost the same as if everything were in the local
database; the only addition is the database link name.

To use a database link in a view, simply add it as a suffix to table names in the create view
command. The following example creates a view in the local database of a remote table using the
REMOTE_CONNECT database link:

create view LOCAL_BOOKSHELF_VIEW
as
select * from BOOKSHELF@REMOTE_CONNECT
 where Title > 'M';

The from clause in this example refers to BOOKSHELF@REMOTE_CONNECT. Therefore, the
base table for this view is not in the same database as the view. Also note that a where clause is
placed on the query, to limit the number of records returned by it for the view.

This view may now be treated the same as any other view in the local database. Access to this
view can be granted to other users, provided those users also have access to the REMOTE_CONNECT
database link.

Chapter 25: Accessing Remote Data 421

Using a Database Link for Remote Updates
The database link syntax for remote updates is the same as that for remote queries. Append the
name of the database link to the name of the table being updated. For example, to change the
Rating values for books in a remote BOOKSHELF table, you would execute the update command
shown in the following listing:

update BOOKSHELF@REMOTE_CONNECT
 set Rating = '5'
 where Title = 'INNUMERACY';

This update command will use the REMOTE_CONNECT database link to log into the remote
database. It will then update the BOOKSHELF table in that database, based on the set and where
conditions specified.

You can use subqueries in the set portion of the update command (refer to Chapter 15). The
from clause of such subqueries can reference either the local database or a remote database. To
refer to the remote database in a subquery, append the database link name to the table names in
the from clause of the subquery. An example of this is shown in the following listing:

update BOOKSHELF@REMOTE_CONNECT /*in remote database*/
 set Rating =
 (select Rating
 from BOOKSHELF@REMOTE_CONNECT /*in remote database*/
 where Title = 'WONDERFUL LIFE')
where Title = 'INNUMERACY';

NOTE
If you do not append the database link name to the table names in
the from clause of update subqueries, tables in the local database will
be used. This is true even if the table being updated is in a remote
database.

In this example, the remote BOOKSHELF table is updated based on the Rating value on the
remote BOOKSHELF table. If the database link is not used in the subquery, as in the following
example, then the BOOKSHELF table in the local database will be used instead. If this is
unintended, it will cause local data to be mixed into the remote database table. If you’re doing
this on purpose, be very careful.

update BOOKSHELF@REMOTE_CONNECT /*in remote database*/
 set Rating =
 (select Rating
 from BOOKSHELF /*in local database*/
 where Title = 'WONDERFUL LIFE')
where Title = 'INNUMERACY';

Syntax for Database Links
You can create a database link with the following command:

create [shared] [public] database link REMOTE_CONNECT
connect to {current_user | username
identified by password [authentication clause]}
using 'connect string';

422 Part III: Beyond the Basics

The specific syntax to use when creating a database link depends on two criteria:

The “public” or “private” status of the database link

The use of default or explicit logins for the remote database

These criteria and their associated syntax are described in turn in the following sections.

NOTE
To create a database link, you must have the CREATE DATABASE LINK
system privilege. The account to which you will be connecting in the
remote database must have the CREATE SESSION system privilege.

If the value of the GLOBAL_NAMES initialization parameter is TRUE, the database link must
have the same name as the database to which it connects. If the value of GLOBAL_NAMES is
FALSE and you have changed the global name of the database, you can specify the global name.

Public vs. Private Database Links
As mentioned earlier, a public database link is available to all users in a database. By contrast, a
private database link is only available to the user who created it. It is not possible for one user to
grant access on a private database link to another user. The database link must be either public
(available to all users) or private.

To specify a database link as public, use the public keyword in the create database link
command, as shown in the following example:

create public database link REMOTE_CONNECT
connect to username identified by password
 using 'connect string';

NOTE
To create a public database link, you must have the CREATE PUBLIC
DATABASE LINK system privilege. This privilege is included in the
DBA role in Oracle. The DBA role in Oracle exists only for backward
compatibility with earlier releases.

Default vs. Explicit Logins
In place of the connect to … identified by … clause, you can use connect to current_user when
creating a database link. If you use the current_user option, then when that link is used, it will
attempt to open a session in the remote database that has the same username and password as the
local database account. This is called a default login, because the username/password combination
will default to the combination in use in the local database.

The following listing shows an example of a public database link created with a default login
(the use of default logins is described further in “Using the User Pseudo-Column in Views,” later
in this chapter):

create public database link REMOTE_CONNECT
connect to current_user
 using 'HQ';

When this database link is used, it will attempt to log into the remote database identified by
the HQ service name using the current user’s username and password. If the current username is

■

■

Chapter 25: Accessing Remote Data 423

not valid in the remote database, or if the password is different, the login attempt will fail. This
failure will cause the SQL statement using the link to fail. Using default logins provides added
security because the password for the remote account is not stored in the local database, but it
makes account maintenance more complex. If you change an account’s password in the local
database, you will also need to change it to the same password in remote databases accessed via
database links, or the links may fail.

An explicit login specifies a username and password that the database link will use while
connecting to the remote database. No matter which local account uses the link, the same remote
account will be used. The following listing shows the creation of a database link with an explicit
login:

create public database link REMOTE_CONNECT
connect to WAREHOUSE identified by ACCESS339
 using 'HQ';

This example shows a common usage of explicit logins in database links. In the remote
database, a user named Warehouse was created and was given the password ACCESS339. The
Warehouse account can then be granted SELECT access to specific tables, solely for use by
database links. The REMOTE_CONNECT database link then provides access to the remote
Warehouse account for all local users.

Connect String Syntax
Oracle Net uses service names to identify remote connections. The connection details for these
service names are contained in files that are distributed to each host in the network. When a
service name is encountered, Oracle checks the local Oracle Net configuration file (called
tnsnames.ora) to determine which protocol, host name, and database name to use during the
connection. All the connection information is found in external files.

When using Oracle Net, you must know the name of the service that points to the remote
database. For example, if the service name HQ specifies the connection parameters for the
database you need, then HQ should be used as the connect string in the create database link
command. The following example shows a private database link, using a default login and an
Oracle Net service name:

create database link REMOTE_CONNECT
connect to current_user
 using 'HQ';

When this link is used, Oracle checks the tnsnames.ora file on the local host to determine
which database to connect to. When it attempts to log into that database, it uses the current user’s
username and password.

The tnsnames.ora files for a network of databases should be coordinated by the DBAs for
those databases. A simplified version of an entry in the tnsnames.ora file (for a network using the
TCP/IP protocol) is shown in the following listing:

HQ =(DESCRIPTION=
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL=TCP)
 (HOST=host1)
 (PORT=1521))
)
 (CONNECT DATA=

424 Part III: Beyond the Basics

 (SERVICE_NAME = HQ.host1)
)
)

In this listing, the HQ service name is mapped to a connect descriptor that tells the database
which protocol to use (TCP/IP) and which host (host1) and database (HQ) to connect to. The
“port” information refers to the port on the host that will be used for the connection; that data is
environment specific. Different protocols will have different keywords, but they all must convey
the same content.

Using Shared Database Links
If you use the Shared Server option for your database connections and your application will employ
many concurrent database link connections, you may benefit from using shared database links. A
shared database link uses shared server connections to support the database link connections. If
you have multiple concurrent database link accesses into a remote database, you can use shared
database links to reduce the number of server connections required.

To create a shared database link, use the shared keyword of the create database link
command. As shown in the following listing, you will also need to specify a schema and
password for the remote database:

create shared database link HR_LINK_SHARED
connect to current_user
authenticated by HR identified by puffin55556d
using 'hq';

The HR_LINK_SHARED database link uses the connected user’s username and password
when accessing the hq database, as specified via the connect to current_user clause. In order to
prevent unauthorized attempts to use the shared link, shared links require the authenticated by
clause. In this example, the account used for authentication is an application account, but you
can also use an empty schema for authentication. The authentication account must have the
CREATE SESSION system privilege. During usage of the HR_LINK_SHARED link, connection
attempts will include authentication against the HR link account.

If you change the password on the authentication account, you will need to drop and re-
create each database link that references it. To simplify maintenance, create an account that is
only used for the authentication of shared database link connections. The account should have
only the CREATE SESSION system privilege and should not have any privileges on any of the
application tables.

If your application uses database links infrequently, you should use traditional database links
without the shared clause. Without the shared clause, each database link connection requires a
separate connection to the remote database.

Using Synonyms for Location Transparency
Over the lifespan of an application, its data very likely will move from one database to another, or
from one host to another. Therefore, it will simplify application maintenance if the exact physical
location of a database object is shielded from the user (and the application).

The best way to implement such location transparency is through the use of synonyms.
Instead of writing applications (or SQL*Plus reports) that contain queries that specify a table’s
owner, such as

Chapter 25: Accessing Remote Data 425

select *
 from Practice.BOOKSHELF;

you should create a synonym for that table and then reference the synonym in the query, as
shown here:

create synonym BOOKSHELF
 for Practice.BOOKSHELF;

select *
 from BOOKSHELF;

The logic required to find the data has thus been moved out of your application and into the
database. Moving the table location logic to the database will be a benefit anytime you move the
table from one schema to another.

In addition to hiding the ownership of tables from an application, you can hide the data’s
physical location through the use of database links and synonyms. By using local synonyms for
remote tables, you move another layer of logic out of the application and into the database. For
example, the local synonym BOOKSHELF, as defined in the following listing, refers to a table that
is located in a different database, on a different host. If that table ever moves, only the link has to
be changed; the application code, which uses the synonym, will not change.

create synonym BOOKSHELF
 for BOOKSHELF@REMOTE_CONNECT;

If the remote account used by the database link is not the owner of the object being referenced,
you have two options. First, you can reference an available synonym in the remote database:

create synonym BOOKSHELF
 for BOOKSHELF@REMOTE_CONNECT;

Here, BOOKSHELF, in the remote account used by the database link, is a synonym for another
user’s BOOKSHELF table.

Second, you can include the remote owner’s name when creating the local synonym, as
shown in the following listing:

create synonym BOOKSHELF
 for Practice.BOOKSHELF@REMOTE_CONNECT;

These two examples will result in the same functionality for your queries, but there are
differences between them. The second example, which includes the owner name, is potentially
more difficult to maintain, because you are not using a synonym in the remote database and the
remote object may be moved at a later time, thus invalidating your local synonym.

Using the User Pseudo-Column in Views
The User pseudo-column is very useful when you are using remote data access methods. For
example, you may not want all remote users to see all records in a table. To solve this problem,
you must think of remote users as special users within your database. To enforce the data restriction,
you need to create a view that the remote accounts will access. But what can you use in the
where clause to properly restrict the records? The User pseudo-column, combined with properly
selected usernames, allows you to enforce this restriction.

426 Part III: Beyond the Basics

As you may recall from Chapter 17, queries used to define views may also reference pseudo-
columns. A pseudo-column is a “column” that returns a value when it is selected, but it is not an
actual column in a table. The User pseudo-column, when selected, always returns the Oracle
username that executed the query. So, if a column in the table contains usernames, those values
can be compared against the User pseudo-column to restrict its records, as shown in the following
example. In this example, the NAME table is queried. If the value of the first part of the Name
column is the same as the name of the user entering the query, records will be returned.

create view MY_CHECKOUT as
select * from BOOKSHELF_CHECKOUT
 where SUBSTR(Name,1,INSTR(Name,' ')-1) = User;

NOTE
We need to shift our point of view for this discussion. Because
the discussion concerns operations on the database that owns the
table being queried, that database will be referred to as the “local”
database, and the users from other databases will be referred to as
“remote” users.

When restricting remote access to the rows of your table, you should first consider which
columns would be the best to use for the restriction. There are usually logical divisions to the data
within a table, such as Department or Region. For each distinct division, create a separate user
account in your local database. For this example, let’s add a Region column to the BOOKSHELF
table. We will now be able to record the list of books from multiple distributed locations in a
single table:

alter table BOOKSHELF
add
(Region VARCHAR2(10));

Suppose you have four major regions represented in your BOOKSHELF table, and you have
created an Oracle account for each region. You could then set up each remote user’s database
link to use his or her specific user account in your local database. For this example, assume the
regions are called NORTH, EAST, SOUTH, and WEST. For each of the regions, a specific database
link would be created. For example, the members of the SOUTH department would use the
database link shown in the following listing:

create database link SOUTH_LINK
connect to SOUTH identified by PAW
 using 'HQ';

The database link shown in this example is a private database link with an explicit login to
the SOUTH account in the remote database.

When remote users query via their database links (such as SOUTH_LINK from the previous
example), they will be logged into the HQ database, with their Department name (such as
SOUTH) as their username. Therefore, the value of the User column for any table that the user
queries will be SOUTH.

Now create a view of your base table, comparing the User pseudo-column to the value of the
Department column in the view’s where clause:

Chapter 25: Accessing Remote Data 427

create or replace view RESTRICTED_BOOKSHELF
 as select *
 from BOOKSHELF
 where Region = User;

A user who connects via the SOUTH_LINK database link—and thus is logged in as the SOUTH
user—would only be able to see the BOOKSHELF records that have a Region value equal to
'SOUTH'. If users are accessing your table from a remote database, their logins are occurring
via database links—and you know the local accounts they are using because you set them up.

This type of restriction can also be performed in the remote database rather than in the
database where the table resides. Users in the remote database may create views within their
databases of the following form:

create or replace view SOUTH_BOOKSHELF
 as select *
 from BOOKSHELF@REMOTE_CONNECT
 where Region = 'SOUTH';

In this case, the Region restriction is still in force, but it is administered locally, and the Region
restriction is coded into the view’s query. Choosing between the two restriction options (local or
remote) is based on the number of accounts required for the desired restriction to be enforced.

To secure your production database, you should limit the privileges granted to the accounts
used by database links. Grant those privileges via roles, and use views (with the with read only
or with check option clause) to further limit the ability of those accounts to be used to make
unauthorized changes to the data.

As these examples show, there are very few hardware requirements for the Branch host. All it
has to support is the front-end tool and Oracle Net. A client machine, such as the Branch host, is
used primarily for presentation of the data via the database access tools. The server side, such as
the Headquarters host, is used to maintain the data and process the data access requests from users.

Regardless of the configuration you use and the configuration tools available, you need to tell
Oracle Net how to find the remote database. Work with your DBA to make sure the remote server
is properly configured to listen for new connection requests and to make sure the client machines
are properly configured to issue those requests.

This page intentionally left blank

CHAPTER
26

Using Materialized Views

429

430 Part III: Beyond the Basics

o improve the performance of an application, you can make local copies of remote
tables that use distributed data, or create summary tables based on group by
operations. Oracle provides materialized views to store copies of data or
aggregations. Materialized views can be used to replicate all or part of a single
table, or to replicate the result of a query against multiple tables; refreshes of the

replicated data can be done automatically by the database at time intervals that you specify.
In this chapter, you will see the general usage of materialized views, including their refresh
strategies, followed by a description of the optimization strategies available.

Functionality
Materialized views are copies (also known as replicas) of data, based upon queries. In its simplest
form, a materialized view can be thought of as a table created by a command such as the following:

create table LOCAL_BOOKSHELF
as
select * from BOOKSHELF@REMOTE_CONNECT;

In this example, a table named LOCAL_BOOKSHELF is created in the local database and is
populated with data from a remote database (defined by the database link named REMOTE_
CONNECT). Once the LOCAL_BOOKSHELF table is created, though, its data may immediately
become out of sync with the master table (BOOKSHELF@REMOTE_CONNECT). Also, LOCAL_
BOOKSHELF may be updated by local users, further complicating its synchronization with the
master table.

Despite these synchronization problems, there are benefits to replicating data in this way.
Creating local copies of remote data may improve the performance of distributed queries, particularly
if the master table’s data does not change frequently. You may also use the local table creation
process to restrict the rows returned, restrict the columns returned, or generate new columns
(such as by applying functions to selected values). This is a common strategy for decision-support
environments, in which complex queries are used to periodically “roll up” data into summary
tables for use during analyses.

Materialized views automate the data replication and refresh processes. When materialized
views are created, a refresh interval is established to schedule refreshes of replicated data. Local
updates can be prevented, and transaction-based refreshes can be used. Transaction-based
refreshes, available for many types of materialized views, send from the master database only
those rows that have changed for the materialized view. This capability, described later in this
chapter, may significantly improve the performance of your refreshes.

Required System Privileges
To create a materialized view, you must have the privileges needed to create the underlying objects
it will use. You must have the CREATE MATERIALIZED VIEW privilege, as well as the CREATE
TABLE or CREATE ANY TABLE system privilege. In addition, you must have either the UNLIMITED
TABLESPACE system privilege or a sufficient specified space quota in a local tablespace. To create
a refresh-on-commit materialized view, you must also have the ON COMMIT REFRESH system
privilege on any tables you do not own, or the ON COMMIT REFRESH system privilege.

Materialized views of remote tables require queries of remote tables; therefore, you must have
privileges to use a database link that accesses the remote database. The link you use can be either
public or private. If the database link is private, you need to have the CREATE DATABASE LINK
system privilege to create the database link. See Chapter 25 for further information on database links.

T

Chapter 26: Using Materialized Views 431

If you are creating materialized views to take advantage of the query rewrite feature (in which
the optimizer dynamically chooses to select data from the materialized view instead of the underlying
table), you must have the QUERY REWRITE privilege. If the tables are in another user’s schema,
you must have the GLOBAL QUERY REWRITE privilege. If the materialized view is created with
on commit refresh specified, you must have the ON COMMIT REFRESH system privilege or the
ON COMMIT REFRESH object privilege on each table outside your schema.

NOTE
As of Oracle 11g, queries that reference remote tables can support
query rewrite.

As of Oracle 11g, query rewrite has been enhanced to support queries containing inline
views. Prior to this release, queries containing inline views could rewrite only if there was an
exact text match with the inline views in the materialized views.

Required Table Privileges
When creating a materialized view, you can reference tables in a remote database via a database
link. The account that the database link uses in the remote database must have access to the tables
and views used by the database link. You cannot create a materialized view based on objects
owned by the user SYS.

Within the local database, you can grant SELECT privilege on a materialized view to other
local users. Since most materialized views are read-only (although they can be updatable), no
additional grants are necessary. If you create an updatable materialized view, you must grant users
UPDATE privilege on both the materialized view and the underlying local table it accesses.

Read-Only vs. Updatable
A read-only materialized view cannot pass data changes from itself back to its master table. An
updatable materialized view can send changes to its master table.

Although that may seem to be a simple distinction, the underlying differences between these
two types of materialized views are not simple. A read-only materialized view is implemented as
a create table as select command. When transactions occur, they occur only within the master
table; the transactions are optionally sent to the read-only materialized view. Thus, the method by
which the rows in the materialized view change is controlled—the materialized view’s rows only
change following a change to the materialized view’s master table.

In an updatable materialized view, there is less control over the method by which rows in the
materialized view are changed. Rows may be changed based on changes in the master table, or
rows may be changed directly by users of the materialized view. As a result, you need to send
records from the master table to the materialized view, and vice versa. Since multiple sources
of changes exist, multiple masters exist (referred to as a multimaster configuration).

During the transfer of records from the materialized view to master, you need to decide how you
will reconcile conflicts. For example, what if the record with ID=1 is deleted at the materialized view
site, while at the master site, a record is created in a separate table that references (via a foreign key)
the ID=1 record? You cannot delete the ID=1 record from the master site, since that record has a
“child” record that relates to it. You cannot insert the child record at the materialized view site, since
the parent (ID=1) record has been deleted. How do you plan to resolve such conflicts?

432 Part III: Beyond the Basics

Read-only materialized views let you avoid the need for conflict resolution by forcing all
transactions to occur in the controlled master table. This may limit your functionality, but it is an
appropriate solution for the vast majority of replication needs. If you need multimaster replication,
see the Advanced Replication Guide for guidelines and detailed implementation instructions.

create materialized view Syntax
The basic syntax for creating a materialized view is shown in the following listing. See the
Alphabetical Reference for the full command syntax. Following the command description,
examples are given that illustrate the creation of local replicas of remote data.

create materialized view [user.]name
[organization index iot_clause]
[{ { segment attributes clauses }
 | cluster cluster (column [, column] ...) }
 [{partitioning clause | parallel clause | build clause }]
 | on prebuilt table [{with | without} reduced precision]]
[using index
 [{ physical attributes clauses| tablespace clause }
 [physical attributes clauses| tablespace clause]
 | using no index]
[refresh clause]
[for update] [{disable | enable} query rewrite]
 as subquery;

The create materialized view command has four major sections. The first section is the
header, in which the materialized view is named (the first line in the listing):

create materialized view [user.]name

The materialized view will be created in your user account (schema) unless a different
username is specified in the header. In the second section, the storage parameters are set:

[organization index iot_clause]
[{ { segment attributes clauses }
 | cluster cluster (column [, column] ...) }
 [{partitioning clause | parallel clause | build clause }]
 | on prebuilt table [{with | without} reduced precision]]
[using index
 [{ physical attributes clauses| tablespace clause }
 [physical attributes clauses| tablespace clause]
 | using no index]

The storage parameters will be applied to a table that will be created in the local database.
For information about the available storage parameters, see the “Storage” entry in the Alphabetical
Reference. If the data has already been replicated to a local table, you can use the on prebuilt
table clause to tell Oracle to use that table as a materialized view.

NOTE
You can specify the storage parameters to be used for the index that is
automatically created on the materialized view.

Chapter 26: Using Materialized Views 433

In the third section, the refresh options are set:

[refresh clause]

The syntax for refresh clause is

{ refresh
 { { fast | complete | force }
 | on { demand | commit }
 | { start with | next } date
 | with { primary key | rowid }
 | using
 { default [master | local] rollback segment
 | [master | local] rollback segment rollback_segment
 }
 [default [master | local] rollback segment
 | [master | local] rollback segment rollback_segment
]...
 }
 [{ fast | complete | force }
 | on { demand | commit }
 | { start with | next } date
 | with { primary key | rowid }
 | using
 { default [master | local] rollback segment
 | [master | local] rollback segment rollback_segment
 }
 [default [master | local] rollback segment
 | [master | local] rollback segment rollback_segment
]...
]...
| never refresh
}

The refresh option specifies the mechanism Oracle should use when refreshing the materialized
view. The three options available are fast, complete, and force. Fast refreshes are only available
if Oracle can match rows in the materialized view directly to rows in the base table(s); they use
tables called materialized view logs to send specific rows from the master table to the materialized
view. Complete refreshes truncate the data and reexecute the materialized view’s base query to
repopulate it. The force option for refreshes tells Oracle to use a fast refresh if it is available;
otherwise, a complete refresh will be used. If you have created a simple materialized view but
want to use complete refreshes, specify refresh complete in your create materialized view
command. The refresh options are further described in “Refreshing Materialized Views,” later in
this chapter. Within this section of the create materialized view command, you also specify the
mechanism used to relate values in the materialized view to the master table—whether RowIDs
or primary key values should be used. By default, primary keys are used.

If the master query for the materialized view references a join or a single-table aggregate, you
can use the on commit option to control the replication of changes. If you use on commit, changes
will be sent from the master to the replica when the changes are committed on the master table. If
you specify on demand, the refresh will occur when you manually execute a refresh command.

434 Part III: Beyond the Basics

The fourth section of the create materialized view command is the query that the materialized
view will use:

[for update] [{disable | enable} query rewrite]
 as subquery

If you specify for update, the materialized view will be updatable; otherwise, it will be read-
only. Most materialized views are read-only replicas of the master data. If you use updatable
materialized views, you need to be concerned with issues such as two-way replication of changes
and the reconciliation of conflicting data changes. Updatable materialized views are an example
of multimaster replication; for full details on implementing a multimaster replication environment,
see the Advanced Replication Guide.

NOTE
The query that forms the basis of the materialized view should not use
the User or SysDate pseudo-columns.

The following example creates a read-only materialized view called LOCAL_BOOKSHELF
in a local database, based on a remote table named BOOKSHELF that is accessible via the
REMOTE_CONNECT database link. The materialized view is placed in the USERS tablespace.

create materialized view LOCAL_BOOKSHELF
tablespace USERS
refresh force
start with SysDate next SysDate+7
with primary key
as
select * from BOOKSHELF@REMOTE_CONNECT;

Oracle responds with

Materialized view created.

The command shown in the preceding example will create a read-only materialized view
called LOCAL_BOOKSHELF. Its underlying table will be created in a tablespace named USERS.
You can place materialized view logs in tablespaces apart from the materialized views they
support. The force refresh option is specified because no materialized view log exists on the base
table for the materialized view; Oracle will try to use a fast refresh but will use a complete refresh
until the materialized view log is created. The materialized view’s query specifies that the entire
BOOKSHELF table, with no modifications, is to be copied to the local database. As soon as the
LOCAL_BOOKSHELF materialized view is created, its underlying table will be populated with the
BOOKSHELF data. Thereafter, the materialized view will be refreshed every seven days. The storage
parameters that are not specified will use the default values for those parameters for the USERS
tablespace.

The following example creates a materialized view named LOCAL_CATEGORY_COUNT in
a local database, based on a remote table named BOOKSHELF in a database accessed via the
REMOTE_CONNECT database link.

create materialized view LOCAL_CATEGORY_COUNT
tablespace USERS
refresh force

Chapter 26: Using Materialized Views 435

start with SysDate next SysDate+7
 as
select CategoryName, COUNT(*) CountPerCat
 from BOOKSHELF@REMOTE_CONNECT
 group by CategoryName;

The query in the LOCAL_CATEGORY_COUNT materialized view counts the number of books
in each category in the remote BOOKSHELF table.

There are a few important points to note about the two examples shown in this section:

The group by query used in the LOCAL_CATEGORY_COUNT materialized view could
be performed in SQL*Plus against the LOCAL_BOOKSHELF materialized view. That is,
the group by operation can be performed outside of the materialized view.

Since LOCAL_CATEGORY_COUNT uses a group by clause, it is a complex materialized
view and may only be able to use complete refreshes. LOCAL_BOOKSHELF, as a simple
materialized view, can use fast refreshes.

The two materialized views shown in the preceding examples reference the same table. Since
one of the materialized views is a simple materialized view that replicates all columns and all
rows of the master table, the second materialized view may at first appear to be redundant.
However, sometimes the second, complex materialized view is the more useful of the two.

How can this be? First, remember that these materialized views are being used to service the
query needs of local users. If those users always perform group by operations in their queries, and
their grouping columns are fixed, then LOCAL_CATEGORY_COUNT may be more useful to them.
Second, if the transaction volume on the master BOOKSHELF table is very high, or the master
BOOKSHELF table is very small, there may not be a significant difference in the refresh times of
the fast and complete refreshes. The most appropriate materialized view is the one that is most
productive for your users.

Types of Materialized Views
The materialized views shown in the previous examples illustrated two types of materialized views.
In the first, the materialized view created a local copy of remote data, with no aggregations. In the
second, an aggregation was performed. Both of the base queries could be extended to include joins
of multiple tables. The key distinguishing factor is the use of aggregations in the second example.

A third type of materialized view is a nested materialized view—a materialized view whose
definition is based on another materialized view.

The type of materialized view will impact your ability to perform fast refreshes of the materialized
view. A fast refresh will refresh the materialized view with the rows that have changed in its base
table(s) since its last refresh. If you cannot perform a fast refresh, you will have to use a complete
refresh, which is usually more expensive in terms of time and resources. Fast refreshes require the
use of materialized view logs (shown later in this chapter) on all tables referenced in the materialized
view’s base query.

If the materialized view contains an aggregate, a fast refresh will be possible if the select list
contains all of the group by columns and there must be a COUNT(*) and COUNT(column_name)
on any aggregated columns.

If the materialized view contains only joins but no aggregates, fast refresh is available after
any insert, update, or delete to the base tables. The RowID columns from each table must be
present in the select list for the materialized view’s base query, and all of the referenced tables
must have materialized view logs.

■

■

436 Part III: Beyond the Basics

Because they send the incremental changes from the referenced tables to the materialized
view, fast refreshes usually represent the fastest way to update the data in your materialized views.

RowID vs. Primary Key–Based Materialized Views
You can base materialized views on primary key values of the master table instead of basing them
on the master table’s RowIDs. You should decide between these options based on several factors:

System stability If the master site is not stable, then you may need to perform database
recoveries involving the master table. When you use Oracle’s Data Pump Export and Import
utilities to perform recoveries, the RowID values of rows will change. If the system requires
frequent exports and imports, you should use primary key–based materialized views.

Size of materialized view log table Oracle allows you to store the changes to master
tables in separate tables called materialized view logs (described later in this chapter). If
the primary key consists of many columns, the materialized view log table for a primary
key–based materialized view may be considerably larger than the materialized view log
for a comparable RowID-based materialized view.

Referential integrity To use primary key–based materialized views, you must have
defined a primary key on the master table. If you cannot define a primary key on the
master table, then you must use RowID-based materialized views.

Using Prebuilt Tables
When you create a materialized view, you can specify build immediate to populate the materialized
view immediately or build deferred to populate the materialized view later (via a complete refresh).
If you need to carefully manage the transactions that initially populate the materialized view, you
can create a table that has the same structure as the materialized view and populate it. When the
table is fully loaded and properly indexed, use the on prebuilt table clause of the create materialized
view command. The table and the materialized view must have the same name, and the table must
have the same columns and datatypes as the materialized view (you can specify with reduced
precision to accommodate differences in precision). The table can contain additional, unmanaged
columns.

Once the table has been registered as a materialized view, you can maintain it via refreshes,
and the optimizer can use it in query rewrite operations. For query rewrite to work properly on a
prebuilt table, you must set the QUERY_REWRITE_INTEGRITY initialization parameter to STALE_
TOLERATED or TRUSTED.

Indexing Materialized View Tables
When you create a materialized view, Oracle creates a local base table containing the data that
satisfies the base query. Because that data has been replicated with a goal in mind (usually to
improve performance in the database or the network), it is important to follow through to that goal
after the materialized view has been created. Performance improvements for queries are usually
gained through the use of indexes. Columns that are frequently used in the where clauses of queries
should be indexed; if a set of columns is frequently accessed in queries, then a concatenated index
on that set of columns can be created. (See Chapter 46 for more information on the Oracle
optimizer.)

Oracle does not automatically create indexes for complex materialized views on columns
other than the primary key. You need to create these indexes manually. To create indexes on your

■

■

■

Chapter 26: Using Materialized Views 437

local base table, use the create index command (see the Alphabetical Reference). Do not create
any constraints on the materialized view’s local base table; Oracle will maintain the constraint-
based relationships on the master tables.

Since no indexes are created on the columns that users are likely to query from the
materialized view, you should create indexes on the materialized view’s local base table.

Using Materialized Views to Alter
Query Execution Paths
For a large database, a materialized view may offer several performance benefits. You can use
materialized views to influence the optimizer to change the execution paths for queries. This
feature, called query rewrite, enables the optimizer to use a materialized view in place of the
table queried by the materialized view, even if the materialized view is not named in the query.
For example, if you have a large SALES table, you may create a materialized view that sums the
SALES data by region. If a user queries the SALES table for the sum of the SALES data for a region,
Oracle can redirect that query to use your materialized view in place of the SALES table. As a
result, you can reduce the number of accesses against your largest tables, improving the system
performance. Further, since the data in the materialized view is already grouped by region,
summarization does not have to be performed at the time the query is issued.

NOTE
You must specify enable query rewrite in the materialized view
definition for the view to be used as part of a query rewrite operation.

To use the query rewrite capability effectively, you should create a dimension that defines the
hierarchies within the table’s data. To execute the create dimension command, you will need to
have been granted the CREATE DIMENSION system privilege. You can create a dimension that
supports the hierarchy between the COUNTRY and CONTINENT sample tables:

create dimension GEOGRAPHY
 level COUNTRY_ID is COUNTRY.Country
 level CONTINENT_id is CONTINENT.Continent
 hierarchy COUNTRY_ROLLUP (
 COUNTRY_ID child of
 CONTINENT_ID
 join key COUNTRY.Continent references CONTINENT_id);

To enable a materialized view for query rewrite, all of the master tables for the materialized
view must be in the materialized view’s schema, and you must have the QUERY REWRITE system
privilege. If the view and the tables are in separate schemas, you must have the GLOBAL QUERY
REWRITE system privilege. In general, you should create materialized views in the same schema
as the tables on which they are based; otherwise, you will need to manage the permissions and
grants required to create and maintain the materialized view.

You can enable or disable query rewrite at the SQL statement level via the REWRITE and
NOREWRITE hints. When using the REWRITE hint, you can specify materialized views for the
optimizer to consider.

NOTE
Query rewrite decisions are based on the costs of the different
execution paths, so your statistics should be kept up to date.

438 Part III: Beyond the Basics

For query rewrite to be possible, you must set the following initialization parameters:

OPTIMIZER_MODE = ALL_ROWS or FIRST_ROWS

QUERY_REWRITE_ENABLED = TRUE

QUERY_REWRITE_INTEGRITY = STALE_TOLERATED, TRUSTED, or ENFORCED

By default, QUERY_REWRITE_INTEGRITY is set to ENFORCED; in this mode all constraints
must be validated. The optimizer only uses fresh data from the materialized views and only uses
those relationships that are based on ENABLED VALIDATED primary, unique, or foreign key
constraints. In TRUSTED mode, the optimizer trusts that the data in the materialized view is fresh
and the relationships declared in dimensions and constraints are correct. In STALE_TOLERATED
mode, the optimizer uses materialized views that are valid but contain stale data, as well as those
that contain fresh data.

If you set QUERY_REWRITE_ENABLED to FORCE, the optimizer will rewrite queries to use
materialized views even when the estimated query cost of the original query is lower.

If query rewrite occurs, the explain plan for the query (see Chapter 46) will list the materialized
view as one of the objects accessed, along with an operation listed as “MAT_VIEW REWRITE
ACCESS.” You can use the DBMS_MVIEW.EXPLAIN_REWRITE procedure to see if rewrite is
possible for a query, and which materialized views would be involved. If the query cannot be
rewritten, the procedure will document the reasons.

EXPLAIN_REWRITE takes three input parameters—the query, a materialized view name, and a
statement identifier—and can store its output in a table. Oracle provides the create table command
for the output table in a script named utlxrw.sql in the /rdbms/admin directory under the Oracle
software home directory. The utlxrw.sql script creates a table named REWRITE_TABLE.

You can query the REWRITE_TABLE for the original cost, rewritten cost, and the optimizer’s
decision. The Message column will display the reasons for the optimizer’s decision.

See the Data Warehousing Guide for further details and constraints related to query rewrite.

Using DBMS_ADVISOR
You can use the SQL Access Advisor to generate recommendations for the creation and indexing
of materialized views. The SQL Access Advisor may recommend specific indexes (and types of
indexes) to improve the performance of joins and other queries. The SQL Access Advisor may
also generate recommendations for altering a materialized view so it supports query rewrite or
fast refreshes. You can execute the SQL Access Advisor from within Oracle Enterprise Manager or
via executions of the DBMS_ADVISOR package.

NOTE
For best results from the DBMS_ADVISOR package, you should
gather statistics about all tables, indexes, and join columns prior to
generating recommendations.

To use the SQL Access Advisor, either from Oracle Enterprise Manager or via DBMS_
ADVISOR, you follow four steps:

 1. Create a task.

 2. Define the workload.

■

■

■

Chapter 26: Using Materialized Views 439

 3. Generate recommendations.

 4. View and implement recommendations.

You can create a task in one of two ways: by executing the DBMS_ADVISOR.CREATE_TASK
procedure or by using the DBMS_ADVISOR.QUICK_TUNE procedure (as shown in the next
section).

The workload consists of one or more SQL statements plus the statistics and attributes that
relate to the statement. The workload may include all SQL statements for an application. The SQL
Access Advisor ranks the entries in the workload according to statistics and business importance.
The workload is created using the DBMS_ADVISOR.CREATE_SQLWKLD procedure. To associate
a workload with a parent Advisor task, use the DBMS_ADVISOR.ADD_SQLWKLD_REF procedure.
If a workload is not provided, the SQL Access Advisor can generate and use a hypothetical
workload based on the dimensions defined in your schema.

Once a task exists and a workload is associated with the task, you can generate recommendations
via the DBMS_ADVISOR.EXECUTE_TASK procedure. The SQL Access Advisor will consider the
workload and the system statistics and will attempt to generate recommendations for tuning the
application. You can see the recommendations by executing the DBMS_ADVISOR.GET_TASK_
SCRIPT function or via data dictionary views. Each recommendation can be viewed via USER_
ADVISOR_RECOMMENDATIONS (there are “ALL” and “DBA” versions of this view available, as
well). To relate recommendations to a SQL statement, you will need to use the USER_ADVISOR_
SQLA_WK_STMTS view and USER_ADVISOR_ACTIONS.

When you execute the GET_TASK_SCRIPT procedure, Oracle generates an executable SQL
file that will contain the commands needed to create, alter, or drop the recommended objects.
You should review the generated script prior to executing it, particularly noting the tablespace
specifications. In the following section you will see how to use the QUICK_TUNE procedure to
simplify the tuning advisor process for a single command.

To tune a single SQL statement, use the QUICK_TUNE procedure of the DBMS_ADVISOR
package. QUICK_TUNE has two input parameters—a task name and a SQL statement. Using
QUICK_TUNE shields the user from the steps involved in creating workloads and tasks via
DBMS_ADVISOR.

For example, the following procedure call evaluates a query:

execute DBMS_ADVISOR.QUICK_TUNE(DBMS_ADVISOR.SQLACCESS_ADVISOR, -
 'MV_TUNE','SELECT PUBLISHER FROM BOOKSHELF');

NOTE
The user executing this command needs the ADVISOR system
privilege.

The recommendation generated by QUICK_TUNE can be viewed via USER_ADVISOR_
ACTIONS, but it is easier to read if you use the DBMS_ADVISOR procedures to generate a script
file. The recommendation is that a materialized view be created to support the query. Since only
one SQL statement was provided, this recommendation is given in isolation and does not consider
any other aspects of the database or application.

You can use the CREATE_FILE procedure to automate the generation of a file containing the
scripts needed to implement the recommendations. First, create a directory object to hold the file:

create directory scripts as 'e:\scripts';
grant read on directory scripts to public;
grant write on directory scripts to public;

440 Part III: Beyond the Basics

Next, execute the CREATE_FILE procedure. It has three input variables: the script (generated
via GET_TASK_SCRIPT, to which you pass the name of the task), the output directory, and the
name of the file to be created:

execute DBMS_ADVISOR.CREATE_FILE(DBMS_ADVISOR.GET_TASK_SCRIPT('MV_TUNE'),-
'SCRIPTS','MV_TUNE.sql');

The MV_TUNE.sql file created by the CREATE_FILE procedure will contain commands similar
to those shown in the following listing. Depending on the specific version of Oracle, the
recommendations may differ.

Rem Username: PRACTICE
Rem Task: MV_TUNE
Rem

set feedback 1
set linesize 80
set trimspool on
set tab off
set pagesize 60

whenever sqlerror CONTINUE

CREATE MATERIALIZED VIEW "PRACTICE"."MV$$_021F0001"
 REFRESH FORCE WITH ROWID
 ENABLE QUERY REWRITE
 AS SELECT PRACTICE.BOOKSHELF.ROWID C1,
"PRACTICE"."BOOKSHELF"."PUBLISHER" M1
FROM PRACTICE.BOOKSHELF;

begin
 dbms_stats.gather_table_stats('"PRACTICE"',
'"MV$$_021F0001"',NULL,dbms_stats.auto_sample_size);
end;
/

whenever sqlerror EXIT SQL.SQLCODE

begin
dbms_advisor.mark_recommendation('MV_TUNE',1,'IMPLEMENTED');
end;
/

The MARK_RECOMMENDATION procedure allows you to annotate the recommendation so that
it can be skipped during subsequent script generations. Valid actions for MARK_RECOMMENDATION
include ACCEPT, IGNORE, IMPLEMENTED, and REJECT.

You can use the TUNE_MVIEW procedure of the DBMS_ADVISOR package to generate
recommendations for the reconfiguration of your materialized views. TUNE_MVIEW generates
two sets of output results—for the creation of new materialized views, and for the removal of
previously created materialized views. The end result should be a set of materialized views
that can be fast refreshed, replacing materialized views that cannot be fast refreshed.

Chapter 26: Using Materialized Views 441

You can view the TUNE_MVIEW output via the USER_TUNE_MVIEW data dictionary view, or
you can generate its scripts via the GET_TASK_SCRIPT and CREATE_FILE procedures shown in the
previous listings.

Refreshing Materialized Views
The data in a materialized view may be replicated either once (when the view is created) or at
intervals. The create materialized view command allows you to set the refresh interval, delegating
the responsibility for scheduling and performing the refreshes to the database. In the following
sections, you will see how to perform both manual and automatic refreshes.

What Kind of Refreshes Can Be Performed?
To see what kind of refresh and rewrite capabilities are possible for your materialized views, you
can query the MV_CAPABILITIES_TABLE table. The capabilities may change between versions, so
you should reevaluate your refresh capabilities following Oracle software upgrades. To create this
table, execute the utlxmv.sql script located in the /rdbms/admin directory under the Oracle software
home directory.

The columns of MV_CAPABILITIES_TABLE are

desc MV_CAPABILITIES_TABLE

 Name Null? Type
 --- -------- ----------------
 STATEMENT_ID VARCHAR2(30)
 MVOWNER VARCHAR2(30)
 MVNAME VARCHAR2(30)
 CAPABILITY_NAME VARCHAR2(30)
 POSSIBLE CHAR(1)
 RELATED_TEXT VARCHAR2(2000)
 RELATED_NUM NUMBER
 MSGNO NUMBER(38)
 MSGTXT VARCHAR2(2000)
 SEQ NUMBER

To populate the MV_CAPABILITIES_TABLE table, execute the DBMS_MVIEW.EXPLAIN_
MVIEW procedure, using the name of the materialized view as the input value as shown in the
following listing:

execute DBMS_MVIEW.EXPLAIN_MVIEW('local_category_count');

The utlxmv.sql script provides guidance on the interpretation of the column values, as shown
in the following listing:

CREATE TABLE MV_CAPABILITIES_TABLE
 (STATEMENT_ID VARCHAR(30), -- Client-supplied unique statement identifier
 MVOWNER VARCHAR(30), -- NULL for SELECT based EXPLAIN_MVIEW
 MVNAME VARCHAR(30), -- NULL for SELECT based EXPLAIN_MVIEW
 CAPABILITY_NAME VARCHAR(30), -- A descriptive name of the particular
 -- capability:
 -- REWRITE

442 Part III: Beyond the Basics

 -- Can do at least full text match
 -- rewrite
 -- REWRITE_PARTIAL_TEXT_MATCH
 -- Can do at least full and partial
 -- text match rewrite
 -- REWRITE_GENERAL
 -- Can do all forms of rewrite
 -- REFRESH
 -- Can do at least complete refresh
 -- REFRESH_FROM_LOG_AFTER_INSERT
 -- Can do fast refresh from an mv log
 -- or change capture table at least
 -- when update operations are
 -- restricted to INSERT
 -- REFRESH_FROM_LOG_AFTER_ANY
 -- can do fast refresh from an mv log
 -- or change capture table after any
 -- combination of updates
 -- PCT
 -- Can do Enhanced Update Tracking on
 -- the table named in the RELATED_NAME
 -- column. EUT is needed for fast
 -- refresh after partitioned
 -- maintenance operations on the table
 -- named in the RELATED_NAME column
 -- and to do non-stale tolerated
 -- rewrite when the mv is partially
 -- stale with respect to the table
 -- named in the RELATED_NAME column.
 -- EUT can also sometimes enable fast
 -- refresh of updates to the table
 -- named in the RELATED_NAME column
 -- when fast refresh from an mv log
 -- or change capture table is not
 -- possible.
 POSSIBLE CHARACTER(1), -- T = capability is possible
 -- F = capability is not possible
 RELATED_TEXT VARCHAR(2000),-- Owner.table.column, alias name, etc.
 -- related to this message. The
 -- specific meaning of this column
 -- depends on the MSGNO column. See
 -- the documentation for
 -- DBMS_MVIEW.EXPLAIN_MVIEW() for details
 RELATED_NUM NUMBER, -- When there is a numeric value
 -- associated with a row, it goes here.
 -- The specific meaning of this column
 -- depends on the MSGNO column. See
 -- the documentation for
 -- DBMS_MVIEW.EXPLAIN_MVIEW() for details
 MSGNO INTEGER, -- When available, QSM message #
 -- explaining why not possible or more

Chapter 26: Using Materialized Views 443

 -- details when enabled.
 MSGTXT VARCHAR(2000),-- Text associated with MSGNO.
 SEQ NUMBER); -- Useful in ORDER BY clause when
 -- selecting from this table.

Once the EXPLAIN_MVIEW procedure has been executed, you can query MV_CAPABILITIES_
TABLE to determine your options.

select Capability_Name, Msgtxt
 from MV_CAPABILITIES_TABLE
 where Msgtxt is not null;

For the LOCAL_BOOKSHELF materialized view, the query returns:

CAPABILITY_NAME

MSGTXT
--
PCT_TABLE
relation is not a partitioned table

REFRESH_FAST_AFTER_INSERT
the detail table does not have a materialized view log

REFRESH_FAST_AFTER_ONETAB_DML
see the reason why REFRESH_FAST_AFTER_INSERT is disabled

REFRESH_FAST_AFTER_ANY_DML
see the reason why REFRESH_FAST_AFTER_ONETAB_DML is disabled

REFRESH_FAST_PCT
PCT is not possible on any of the detail tables in the
materialized view

REWRITE_FULL_TEXT_MATCH
query rewrite is disabled on the materialized view

REWRITE_PARTIAL_TEXT_MATCH
query rewrite is disabled on the materialized view

REWRITE_GENERAL
query rewrite is disabled on the materialized view

REWRITE_PCT
general rewrite is not possible or PCT is not possible on
any of the detail tables

PCT_TABLE_REWRITE
relation is not a partitioned table

10 rows selected.

444 Part III: Beyond the Basics

Since the query rewrite clause was not specified during the creation of the materialized view,
the query rewrite capabilities are disabled for LOCAL_BOOKSHELF. Fast refresh capabilities are
not supported because the base table does not have a materialized view log. If you change your
materialized view or its base table, you should regenerate the data in MV_CAPABILITIES_TABLE
to see the new capabilities.

As shown in the preceding listing, the LOCAL_BOOKSHELF materialized view cannot use a
fast refresh because its base table does not have a materialized view log. There are other constraints
that will limit your ability to use fast refreshes:

The materialized view must not contain references to nonrepeating expressions such as
SysDate and RowNum.

The materialized view must not contain references to RAW or LONG RAW datatypes.

For materialized views based on joins, RowIDs from all tables in the from list must be
part of the select list.

If there are outer joins, all the joins must be connected by ands, the where clause must
have no selections, and unique constraints must exist on the join columns of the inner
join table.

For materialized views based on aggregates, the materialized view logs must contain all
columns from the referenced tables, must specify the rowid and including new values
clauses, and must specify the sequence clause.

See the Data Warehousing Guide for additional restrictions related to fast refreshes of
complex aggregates.

NOTE
You can specify an order by clause in the create materialized view
command. The order by clause will only affect the initial creation of
the materialized view; it will not affect any refresh.

Fast Refresh with CONSIDER FRESH
You may need to accumulate historical information in a materialized view, even though the
detailed information is no longer in the base tables. As of Oracle 11g, you can use the consider
fresh clause of the alter materialized view command to instruct the database that the contents
of the materialized view correctly reflect the base tables even if that is not the case.

For example, you may have a materialized view that summarizes data from a detail transactional
table. If you remove historical data from the transactional table, the materialized view should be
refreshed, because Oracle will know its data is stale. You can use the consider fresh clause to
change the status of the materialized view, enabling the materialized view to be used for query
rewrites. You can then continue to take advantage of query rewrite capabilities while scheduling
a refresh of the materialized view so it will accurately reflect the underlying data.

Automatic Refreshes
Consider the LOCAL_BOOKSHELF materialized view described earlier. Its refresh schedule settings,
defined by its create materialized view command, are shown in bold in the following listing:

create materialized view LOCAL_BOOKSHELF
 tablespace USERS

■

■

■

■

■

Chapter 26: Using Materialized Views 445

refresh force
start with SysDate next SysDate+7
with primary key
as
select * from BOOKSHELF@REMOTE_CONNECT;

The refresh schedule has three components. First, the type of refresh (fast, complete, never, or
force) is specified. Fast refreshes use materialized view logs (described later in this chapter) to send
changed rows from the master table to the materialized view. Complete refreshes delete all rows
from the materialized view and repopulate it. The force option for refreshes tells Oracle to use a
fast refresh if it is available; otherwise, a complete refresh will be used.

The start with clause tells the database when to perform the first replication from the master
table to the local base table. It must evaluate to a future point in time. If you do not specify a start
with time but specify a next value, Oracle will use the next clause to determine the start time. To
maintain control over your replication schedule, you should specify a value for the start with clause.

The next clause tells Oracle how long to wait between refreshes. Since it will be applied to a
different base time each time the materialized view is refreshed, the next clause specifies a date
expression instead of a fixed date. In the preceding example, the expression is

next SysDate+7

Every time the materialized view is refreshed, the next refresh will be scheduled for seven
days later. Although the refresh schedule in this example is fairly simple, you can use many of
Oracle’s date functions to customize a refresh schedule. For example, if you want to refresh every
Monday at noon, regardless of the current date, you can set the next clause to

NEXT_DAY(TRUNC(SysDate),'MONDAY')+12/24

This example will find the next Monday after the current system date; the time portion of that
date will be truncated, and 12 hours will be added to the date. (For information on date functions
in Oracle, see Chapter 10.)

For automatic materialized view refreshes to occur, you must have at least one background
snapshot refresh process running in your database. The refresh process periodically “wakes up”
and checks whether any materialized views in the database need to be refreshed. The number
of processes running in your database is determined by an initialization parameter called JOB_
QUEUE_PROCESSES. That parameter must be set (in your initialization parameter file) to a value
greater than 0; for most cases, a value of 1 should be sufficient. A coordinator process starts job
queue processes as needed.

If the database is not running the job queue processes, you need to use manual refresh
methods, described in the next section.

Manual Refreshes
In addition to the database’s automatic refreshes, you can perform manual refreshes of materialized
views. These override the normally scheduled refreshes; the new start with value will be based
on the time of your manual refresh.

To refresh a single materialized view, use DBMS_MVIEW.REFRESH. Its two main parameters
are the name of the materialized view to be refreshed and the method to use. For this method,
you can specify 'c' for a complete refresh, 'f' for fast refresh, 'p' for a fast refresh using Partition
Change Tracking (PCT), and '?' for force. For example:

execute DBMS_MVIEW.REFRESH('local_bookshelf','c');

446 Part III: Beyond the Basics

NOTE
Partition Change Tracking (PCT) occurs when partition maintenance
operations have been performed on the tables referenced by the
materialized view. In PCT, Oracle performs the refresh by recomputing
the rows in the materialized view affected by the changed partitions in
the detail tables, avoiding the need for a complete refresh.

If you are refreshing multiple materialized views via a single execution of DBMS_MVIEW
.REFRESH, list the names of all the materialized views in the first parameter, and their matching
refresh methods in the second parameter, as shown here:

execute DBMS_MVIEW.REFRESH('local_bookshelf,local_category_count','?c');

In this example, the materialized view named LOCAL_BOOKSHELF will be refreshed via a
force refresh, while the second materialized view will use a complete refresh.

You can use a separate procedure in the DBMS_MVIEW package to refresh all of the
materialized views that are scheduled to be automatically refreshed. This procedure, named
REFRESH_ALL, will refresh each materialized view separately. It does not accept any parameters.
The following listing shows an example of its execution:

execute DBMS_MVIEW.REFRESH_ALL_MVIEWS;

Since the materialized views will be refreshed via REFRESH_ALL consecutively, they are not
all refreshed at the same time. Therefore, a database or server failure during the execution of this
procedure may cause the local materialized views to be out of sync with each other. If that
happens, simply rerun this procedure after the database has been recovered. As an alternative,
you can create refresh groups, as described in the next section.

Another procedure within DBMS_MVIEWS, REFRESH_ALL_MVIEWS, refreshes all
materialized views that have the following properties:

The materialized view has not been refreshed since the most recent change to a master
table or master materialized view on which the materialized view depends.

The materialized view and all of the master tables or master materialized views on which
the materialized view depends are local.

The materialized view is in the view DBA_MVIEWS.

If you create nested materialized views, you can use the DBMS_MVIEW.REFRESH_
DEPENDENT procedure to ensure all materialized views within a tree are refreshed.

create materialized view log Syntax
A materialized view log is a table that records changes to the rows in the master table and the
materialized views’ replication history. The record of changed rows can then be used during
refreshes to send out to the materialized views only those rows that have changed in the master
table. Multiple materialized views based on the same table can use the same materialized view log.

The full syntax for the create materialized view log command is shown in the Alphabetical
Reference. The following listing shows part of the syntax; as you may note from its syntax, it has
all of the parameters normally associated with tables:

■

■

■

Chapter 26: Using Materialized Views 447

create materialized view log on [schema .] table
[{ physical_attributes_clause
 | tablespace tablespace
 | { logging | nologging }
 | { cache | nocache }
 }
 [physical_attributes_clause
 | tablespace tablespace
 | { logging | nologging }
 | { cache | nocache }
]...
]
[parallel_clause] [partitioning_clauses]
[with
 { object id | primary key | rowid | sequence | (column [, column]...) }
 [, { object id | primary key | rowid | sequence | (column [, column]...) }]
 ...]
[{ including | excluding } new values];

The create materialized view log command is executed in the master table’s database, usually
by the owner of the master table. Materialized view logs should not be created for tables that are
only involved in complex materialized views (since they wouldn’t be used). No name is specified
for the materialized view log.

A materialized view log for the BOOKSHELF table can be created via the following command,
executed from within the account that owns the table:

create materialized view log on BOOKSHELF
with sequence,ROWID
(Title, Publisher, CategoryName, Rating)
including new values;

The with sequence clause is needed to support the replication of mixed-DML operations
against multiple base tables.

Because materialized view logs may grow unpredictably over time in production databases,
you should consider storing their associated objects in tablespaces that are dedicated to
materialized view logs.

NOTE
As of Oracle 11g, the capture of changes in materialized view logs
can be disabled for an individual session while logging continues for
changes made by other sessions.

To create the materialized view log, you must have CREATE TABLE and CREATE TRIGGER
system privileges. If you are creating the materialized view log from a user account that does not
own the master table, you need to have CREATE ANY TABLE, COMMENT ANY TABLE, and
CREATE ANY TRIGGER system privileges as well as SELECT privilege on the materialized view
master table.

448 Part III: Beyond the Basics

Altering Materialized Views and Logs
You may alter the storage parameters, refresh option, and refresh schedule for existing materialized
views. If you are unsure of the current settings for a snapshot, check the USER_MVIEWS data
dictionary view.

The syntax for the alter materialized view command is shown in the Alphabetical Reference.
The command in the following listing alters the refresh option used by the LOCAL_BOOKSHELF
materialized view:

alter materialized view LOCAL_BOOKSHELF
refresh complete;

All future refreshes of LOCAL_BOOKSHELF will refresh the entire local base table.
To alter a materialized view, you must either own the materialized view or have the ALTER

ANY MATERIALIZED VIEW system privilege.
To alter a materialized view log, you must own the table, have ALTER privilege for the table,

or have the ALTER ANY TABLE system privilege.
If you created the materialized view log without the RowID or the sequence clauses, you can

add them after the fact via the alter materialized view command.

Dropping Materialized Views and Logs
To drop a materialized view, you must have the system privileges required to drop both the
materialized view and all of its related objects. You need to have DROP MATERIALIZED VIEW
if the object is in your schema, or the DROP ANY MATERIALIZED VIEW system privilege if the
materialized view is not in your schema.

The following command drops the LOCAL_CATEGORY_COUNT materialized view created
earlier in this chapter:

drop materialized view LOCAL_CATEGORY_COUNT;

NOTE
When you drop a materialized view that was created on a prebuilt
table, the table still exists but the materialized view is dropped.

Materialized view logs can be dropped via the drop materialized view log command. Once
the materialized view log is dropped from a master table, no fast refreshes can be performed for
simple materialized views based on that table. A materialized view log should be dropped when
no simple materialized views are based on the master table. The following command drops the
materialized view log that was created on the BOOKSHELF table earlier in this chapter:

drop materialized view log on BOOKSHELF;

To drop a materialized view log, you must have the ability to drop both the materialized view
log and its related objects. If you own the materialized view log, you must have the DROP TABLE
and DROP TRIGGER system privileges. If you do not own the materialized view log, you need the
DROP ANY TABLE and DROP ANY TRIGGER system privileges to execute this command.

CHAPTER
27

Using Oracle Text
for Text Searches

449

450 Part III: Beyond the Basics

s the amount of text in your database increases, so does the complexity of the text
queries performed against the database. Instead of just performing string matches,
you will need new text-search features—such as weighting the terms in a search of
multiple terms, or ranking the results of a text search.

You can use Oracle Text to perform text-based searches. Text-searching capabilities include
wildcard searching, “fuzzy matches,” relevance ranking, proximity searching, term weighting,
and word expansions. In this chapter, you’ll see how to configure and use Oracle Text.

Adding Text to the Database
You can add text to a database either by physically storing the text in a table or by storing pointers
to external files in the database. That is, for the books on the bookshelf, you can store reviews
either in the database or in external files. If you store the reviews in external files, then you store
the filenames in the database.

To store the reviews in the database, create the BOOK_REVIEW tables. In this chapter, you
will see examples of two types of indexes: CONTEXT and CTXCAT. To support these examples,
two separate tables will be created: BOOK_REVIEW_CONTEXT and BOOK_REVIEW_CTXCAT,
both loaded with the same data.

create table BOOK_REVIEW_CONTEXT
(Title VARCHAR2(100) primary key,
Reviewer VARCHAR2(25),
Review_Date DATE,
Review_Text VARCHAR2(4000));

insert into BOOK_REVIEW_CONTEXT values
('MY LEDGER', 'EMILY TALBOT', '01-MAY-02',
'A fascinating look into the transactions and finances of G. B. Talbot
and Dora Talbot as they managed a property in New Hampshire around 1900.
The stories come through the purchases – for medicine, doctor visits and
gravesites – for workers during harvests – for gifts at the general store
at Christmas. A great read. ');

create table BOOK_REVIEW_CTXCAT
(Title VARCHAR2(100) primary key,
Reviewer VARCHAR2(25),
Review_Date DATE,
Review_Text VARCHAR2(4000));

insert into BOOK_REVIEW_CTXCAT values
('MY LEDGER', 'EMILY TALBOT', '01-MAY-02',
'A fascinating look into the transactions and finances of G. B. Talbot
and Dora Talbot as they managed a property in New Hampshire around 1900.
The stories come through the purchases – for medicine, doctor visits and
gravesites – for workers during harvests – for gifts at the general store
at Christmas. A great read. ');

The Review_Text column of the BOOK_REVIEW tables is defined as having a VARCHAR2(4000)
datatype. For longer values, consider the use of CLOB datatypes. See Chapter 40 for details on
CLOB datatypes.

A

Chapter 27: Using Oracle Text for Text Searches 451

You can select the review text from the database:

set linesize 74

select Review_Text
 from BOOK_REVIEW_CONTEXT
 where Title = 'MY LEDGER';

REVIEW_TEXT

A fascinating look into the transactions and finances of G. B. Talbot
and Dora Talbot as they managed a property in New Hampshire around 1900.
The stories come through the purchases - for medicine, doctor visits and
gravesites - for workers during harvests - for gifts at the general store
at Christmas. A great read.

Text Queries and Text Indexes
Querying text is different from querying data because words have shades of meaning, relationships
to other words, and opposites. You may want to search for words that are near each other, or words
that are related to others. These queries would be extremely difficult if all you had available were
the standard relational operators. By extending SQL to include text indexes, Oracle Text permits
you to ask very complex questions about the text.

To use Oracle Text, you need to create a text index on the column in which the text is stored.
Text index is a slightly confusing term—it is actually a collection of tables and indexes that store
information about the text stored in the column.

In this chapter, you will see examples of both CONTEXT and CTXCAT text indexes. You can use
a third type of type index, CTXRULE, to build a content-based document classification application.
See the Oracle Text Application Developer’s Guide for details on the use of CTXRULE indexes.

NOTE
Before creating a text index on a table, you must create a primary key
for the table if one does not already exist.

You can create a text index via a special version of the create index command. For a CONTEXT
index, specify the Ctxsys.Context index type in the indextype clause, as shown in the following
listing:

create index Review_Context_Index
 on BOOK_REVIEW_CONTEXT(Review_Text)
indextype is ctxsys.context;

When the text index is created, Oracle creates a number of indexes and tables in your schema
to support your text queries. You can rebuild your text index via the alter index command, just as
you would for any other index.

You can use a CTXCAT index type in place of the CONTEXT index type:

create index Review_CtxCat_Index
 on BOOK_REVIEW_CTXCAT(Review_Text)
indextype is ctxsys.ctxcat;

452 Part III: Beyond the Basics

The CTXCAT index type supports the transactional synchronization of data between the base
table (BOOK_REVIEW_CTXCAT) and its text index. With CONTEXT indexes, you need to manually
tell Oracle to update the values in the text index after data changes in the base table. CTXCAT
index types do not generate “score” values during text queries (as CONTEXT indexes do), but the
query syntax is largely the same for the two types. The following sections illustrate the types of
text queries you can perform via Oracle Text.

Text Queries
Once a text index is created on the Review_Text column of the BOOK_REVIEW_CONTEXT table,
text-searching capabilities increase dramatically. You can now look for any book review that
contains the word “property”:

select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'property') >0;

NOTE
The matching row will be returned regardless of the case of the word
“property” within the text-indexed column.

The CONTAINS function takes two parameters—the column name and the search string—and
checks the text index for the Review_Text column. If the word “property” is found in the Review_
Text column’s text index, then a score greater than 0 is returned by the database, and the matching
Title value is returned. The score is an evaluation of how well the record being returned matches
the criteria specified in the CONTAINS function.

If you create a CTXCAT index, use the CATSEARCH function in place of CONTAINS.
CATSEARCH takes three parameters: the column name, the search string, and the name of the
index set. Index sets are described in the “Index Sets” section, later in this chapter. For this
example, there is no index set, so that parameter is set to NULL:

select Title
 from BOOK_REVIEW_CTXCAT
 where CATSEARCH(Review_Text, 'property', NULL) >0;

CATSEARCH does not compute a score but uses the >0 syntax, simplifying your migration
from CONTEXT indexes to CTXCAT indexes. CTXCAT indexes support the use of index sets,
described later in this chapter.

When a function such as CONTAINS or CATSEARCH is used in a query, the text portion of
the query is processed by Oracle Text. The remainder of the query is processed just like a regular
query within the database. The results of the text query processing and the regular query processing
are merged to return a single set of records to the user.

Available Text Query Expressions
Oracle Text would be rather limited if it allowed you to search only for exact matches of words.
Oracle Text offers a broad array of text-searching capabilities you can use to customize your
queries. Most of the text-searching capabilities are enabled via the CONTAINS and CATSEARCH
functions, which can appear only in the where clause of a select statement or subquery, never in
the where clauses of inserts, updates, or deletes.

Chapter 27: Using Oracle Text for Text Searches 453

The operators within CONTAINS allow you to perform the following text searches:

Exact matches of a word or phrase

Exact matches of multiple words, using Boolean logic to combine searches

Searches based on how close words are to each other in the text

Searches for words that share the same word “stem”

“Fuzzy” matches of words

Searches for words that sound like other words

CATSEARCH supports the exact-match search functions as well as the creation of index sets,
described later in this chapter. In the following sections, you will see examples of these types of
text searches, along with information about the operators you can use to customize text searches.

Searching for an Exact Match of a Word
The following query of the BOOK_REVIEW tables returns the title for all reviews including the
word “property”:

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'property')>0;

REM CATSEARCH method for CTXCAT indexes:
select Title
 from BOOK_REVIEW_CTXCAT
 where CATSEARCH(Review_Text, 'property', NULL)>0;

Within the function calls, the > sign is called a threshold operator. The preceding text search
can be translated to the following:

select all the Title column values
from the BOOK_REVIEW_CONTEXT table
where the score for the text search of the Review_Text column
for an exact match of the word 'property'
exceeds a threshold value of 0.

The threshold analysis compares the score—the internal score Oracle calculated when the text
search was performed—to the specified threshold value. Score values for individual searches
range from 0 to 10 for each occurrence of the search string within the text. For CONTEXT indexes,
you can display the score as part of your query.

To show the text-search score, use the SCORE function, which has a single parameter—a label
you assign to the score within the text search:

column Title format a30

select Title, SCORE(10)
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'property', 10)>0;

■

■

■

■

■

■

454 Part III: Beyond the Basics

TITLE SCORE(10)
------------------------------ ----------
MY LEDGER 3

In this listing, the CONTAINS function’s parameters are modified to include a label (10) for the
text-search operation performed. The SCORE function will display the score of the text search
associated with that label. The score is an internal calculation based on how well the indexed
text matches the search criteria.

For CONTEXT indexes, you can use the SCORE function in the select list (as shown in the
preceding query) or in a group by clause or an order by clause.

Searching for an Exact Match of Multiple Words
What if you want to search the text for multiple words? You can use Boolean logic (ANDs and
ORs) to combine the results of multiple text searches in a single query. You can also search for
multiple terms within the same function calls and let Oracle resolve the search results.

For example, if you wanted to search for reviews that have the words “property” and
“harvests” in the review text, you could enter the following query:

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'property AND harvests')>0;

REM CATSEARCH method for CTXCAT indexes:
select Title
 from BOOK_REVIEW_CTXCAT
 where CATSEARCH(Review_Text, 'property AND harvests', NULL)>0;

NOTE
This search does not look for the phrase “property and harvests” but
rather for two individual words anywhere in the searched text. You
will see the syntax for phrase searches in the next section.

Instead of using AND in the CONTEXT index query, you could have used an ampersand (&).
Before using this method in SQL*Plus, you should set define off so the & character will not be
seen as part of a variable name:

set define off

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'property & harvests')>0;

For the CTXCAT index, the word AND can be left out entirely:

REM CATSEARCH method for CTXCAT indexes:
select Title
 from BOOK_REVIEW_CTXCAT
 where CATSEARCH(Review_Text, 'property harvests', NULL)>0;

Chapter 27: Using Oracle Text for Text Searches 455

Using either the & character or the word AND denotes an AND operation—so the CONTAINS
function will return a row only if the review text includes both the words “property” and “harvests.”
Each search must pass the threshold criteria defined for the search scores. If you want to search
for more than two terms, just add them to the CONTAINS or CATSEARCH clause, as shown in the
following listing:

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'property AND harvests AND workers')>0;

REM CATSEARCH method for CTXCAT indexes:
select Title
 from BOOK_REVIEW_CTXCAT
 where CATSEARCH(Review_Text, 'property harvests workers', NULL)>0;

The query in this listing returns a row only if its search scores for “property,” “harvests,” and
“workers” are all greater than 0.

In addition to AND, you can use the OR operator—in which case a record is returned if either
of the search conditions meets the defined threshold. The symbol for OR in Oracle Text is a vertical
line (|), so the following two queries are processed identically:

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'property OR harvests')>0;

select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'property | harvests')>0;

When these queries are executed, a record is returned if either of the two separate searches (for
“property” and “harvests”) returns a score greater than 0.

REM CATSEARCH method for CTXCAT indexes:

select Title
 from BOOK_REVIEW_CTXCAT
 where CATSEARCH(Review_Text, 'property OR harvests', NULL)>0;

select Title
 from BOOK_REVIEW_CTXCAT
 where CATSEARCH(Review_Text, 'property | harvests', NULL)>0;

The ACCUM (accumulate) operator provides another method for combining searches. ACCUM
adds together the scores of the individual searches and compares the accumulated score to the
threshold value. The symbol for ACCUM is a comma (,). Therefore, the two queries shown in the
following listing are equivalent:

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT

456 Part III: Beyond the Basics

 where CONTAINS(Review_Text, 'property ACCUM harvests')>0;

select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'property , harvests')>0;

The ACCUM syntax is supported in CATSEARCH function calls but should not be used
because CATSEARCH does not calculate a score to compare to the threshold value.

You can also use Oracle Text to subtract the scores from multiple searches before comparing
the result to the threshold score. The MINUS operator in CONTAINS subtracts the score of the
second term’s search from the score of the first term’s search. The queries in the following listing
will determine the search score for “property” and subtract from it the search score for “house”
and then compare the difference to the threshold score.

In this example, the second search term (“house”) is not found in the indexed text. If the
second term is in the text (for example, “harvests”), then no rows will be returned.

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'property MINUS house')>0;

select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'property - house')>0;

You can use the symbol – in place of the MINUS operator, as shown in the preceding listing.
For CONTEXT indexes, the – operator reduces the score when comparing the overall search

score to the threshold value, but it does not eliminate the row from consideration. To eliminate
rows based on search terms in CONTEXT indexes, use the ~ character as the NOT operator.

For CTXCAT indexes, the symbol – has a different meaning than it does with CONTEXT indexes.
For CTXCAT indexes, – tells Oracle Text not to return the row if the search term after the – is
found (like ~ in CONTEXT indexes). If the second term is found, CATSEARCH will not return the
row. For CATSEARCH queries, you can replace – with the word NOT.

REM CATSEARCH method for CTXCAT indexes:

select Title
 from BOOK_REVIEW_CTXCAT
 where CATSEARCH(Review_Text, 'property - harvests', NULL)>0;

select Title
 from BOOK_REVIEW_CTXCAT
 where CATSEARCH(Review_Text, 'property NOT harvests', NULL)>0;

You can use parentheses to clarify the logic within your search criteria. If your search uses both
ANDs and ORs, you should use parentheses to clarify the way in which the rows are processed.
For example, the following query returns a row if the searched text contains either the word
“house” or both the words “workers” and “harvests”:

REM CONTAINS method for CONTEXT indexes:

Chapter 27: Using Oracle Text for Text Searches 457

select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'house OR (workers AND harvests)')>0;

CATSEARCH does not require the word AND between “workers” and “harvests”:

REM CATSEARCH method for CTXCAT indexes:
select Title
 from BOOK_REVIEW_CTXCAT
 where CATSEARCH(Review_Text, 'house | (workers harvests)', NULL)>0;

If you change the location of the parentheses, you change the logic of the text search. The
following query returns a row if the searched text contains either “house” or “workers” and also
contains the word “harvests”:

select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, '(house OR workers) AND harvests')>0;

When evaluating the scores of multiple searches against CONTEXT indexes, you can tell
Oracle Text to weigh the scores of some searches more heavily than others. For example, if you
want the search score for “harvests” to be doubled when compared to the threshold score, you
can use the asterisk symbol (*) to indicate the factor by which the search score should be multiplied.

The following query will double the search score for “harvests” when it is evaluated in an OR
condition:

select Title, SCORE(10)
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'harvests*2 OR property*1',10)>5;

Through the use of the AND, OR, ACCUM, and MINUS operators, you should be able to
search for any combination of word matches.

NOTE
The EQUIV operator treats two search terms as the same during search
scoring. EQUIV (which can be replaced with =) may be useful in
combination with the operators that compare search scores.

In the next section, you will see how to search for phrases.

Searching for an Exact Match of a Phrase
When searching for an exact match for a phrase, you specify the whole phrase as part of the
search string. If your phrase includes a reserved word (such as “and,” “or,” or “minus”), you need
to use the escape characters shown in this section so that the search is executed properly. If the
search phrase includes a reserved word within Oracle Text, then you must use curly braces ({}) to
enclose the text.

The following query searches for any title whose review entry includes the phrase “doctor visits.”

REM CONTAINS method for CONTEXT indexes:
select Title

458 Part III: Beyond the Basics

 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'doctor visits')>0;

REM CATSEARCH method for CTXCAT indexes:
select Title
 from BOOK_REVIEW_CTXCAT
 where CATSEARCH(Review_Text, 'doctor visits',NULL)>0;

The following query searches for the phrase “transactions and finances.” The word “and” is
enclosed in braces.

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'transactions {and} finances')>0;

REM CATSEARCH method for CTXCAT indexes:
select Title
 from BOOK_REVIEW_CTXCAT
 where CATSEARCH(Review_Text, 'transactions {and} finances',NULL)>0;

The query of 'transactions {and} finances' is different from a query of 'transactions and finances'.
The query of 'transactions {and} finances' returns a record only if the phrase “transactions and
finances” exists in the searched text. The query of 'transactions and finances' returns a record if
the search score for the word “transactions” and the search score for the word “finances” are both
above the threshold score (or in a CTXCAT index, if both are found).

You can enclose the entire phrase within curly braces, in which case any reserved words
within the phrase will be treated as part of the search criteria, as shown in the following example:

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, '{transactions and finances}')>0;

Searches for Words That Are Near Each Other
You can use the proximity search capability to perform a text search based on how close terms
are to each other within the searched document. A proximity search returns a high score for
words that are next to each other, and it returns a low score for words that are far apart. If the
words are next to each other, the proximity search returns a score of 100.

To use proximity searching against CONTEXT indexes, use the keyword NEAR, as shown in
the following example:

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'workers NEAR harvests')>0;

You can replace the NEAR operator with its equivalent symbol, the semicolon (;). The revised
query is shown in the following listing:

Chapter 27: Using Oracle Text for Text Searches 459

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'workers ; harvests')>0;

In CONTEXT index queries, you can specify the maximum number of words between the
search terms. For example, for words within ten words of each other, you may use a search string
of 'NEAR((workers, harvests),10)'.

You can use the phrase- and word-searching methods shown in this chapter to search for exact
matches of words and phrases, as well as to perform proximity searches of exact words and phrases.
Thus far, all the searches have used exact matches of the search terms as the basis for the search.
In the next four sections, you will see how to expand the search terms via four methods: wildcards,
word stems, fuzzy matches, and SOUNDEX searches.

Using Wildcards During Searches
In the previous examples in this chapter, the queries selected text values that exactly match the
criteria specified. For example, the search terms included “workers” but not “worker.” You can
use wildcards to expand the list of valid search terms used during your query.

Just as in regular text-string wildcard processing, two wildcards are available:

Character Description

% Percent sign; multiple-character wildcard

_ Underscore; single-character wildcard

The following query will search for all text matches for all words that start with the characters
“worker”:

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'worker%')>0;

The following query limits the expansion of the text string to exactly three characters. In place
of the % sign in the preceding query, three underscores (_ _ _) are used. Because the underscore
is a single-character wildcard, the text string cannot expand beyond three characters during the
search. For example, the word “workers” could be returned by the text search, but the word
“workplace” would be too long to be returned.

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'work___')>0;

You should use wildcards when you are certain of some of the characters within the search
string. If you are uncertain of the search string, you should use one of the methods described in
the following sections—word stems, fuzzy matches, or SOUNDEX matches.

460 Part III: Beyond the Basics

Searching for Words That Share the Same Stem
Rather than using wildcards, you can use stem-expansion capabilities to expand the list of text
strings. Given the “stem” of a word, Oracle will expand the list of words to search for to include
all words having the same stem. Sample expansions are shown here:

Stem Sample Expansions

play plays, played, playing, playful

works working, work, worked, workman, workplace

have had, has, haven’t, hasn’t

story stories

Because “works” and “work” have the same stem, a stem-expansion search using the word
“works” will return text containing the word “work.”

To use stem expansion within a query, you need to use the dollar sign ($) symbol. Within the
search string, the $ should immediately precede the word to be expanded.

The following listing shows the result of a query against BOOK_REVIEW_CONTEXT for all
reviews that contain a word sharing the stem of the word “manage”:

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, '$manage')>0;

When this query is executed, Oracle expands the word “$manage” to include all words with the
same stem and then performs the search. If a review contains one of the words with a stem of
“manage,” the record will be returned to the user.

The expansion of terms via word stems simplifies the querying process for the user. You no
longer need to know what form of a verb or noun was used when the text was entered—all forms
are used as the basis for the search. You do not need to specify specific text strings, as you do
when querying for exact matches or using wildcards. Instead, you specify a word, and Oracle
Text dynamically determines all the words that should be searched for, based on the word you
specified.

Searching for Fuzzy Matches
A fuzzy match expands the specified search term to include words that are spelled similarly but
that do not necessarily have the same word stem. Fuzzy matches are most helpful when the text
contains misspellings. The misspellings can be either in the searched text or in the search string
specified by the user during the query.

For example, “MY LEDGER” will not be returned by this query because its review does not
contain the word “hardest”:

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'hardest')>0;

It does, however, contain the word “harvest.” A fuzzy match will return reviews containing the word
“harvest,” even though “harvest” has a different word stem than the word used as the search term.

Chapter 27: Using Oracle Text for Text Searches 461

To use a fuzzy match, precede the search term with a question mark, with no space between
the question mark and the beginning of the search term. The following example illustrates the use
of the fuzzy match capability:

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, '?hardest')>0;

As an alternative, you can use the FUZZY operator, as shown here:

select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'fuzzy(hardest,60,100,w')>0;

For the FUZZY operator, the parameters are (in order) the term, the score, the number of
results, and the weight. These parameters are described in the following list:

term Used to specify the word on which to perform the FUZZY expansion. Oracle Text
expands term to include words only in the index. The word needs to be at least three
characters for the FUZZY operator to process it.

score Used to specify a similarity score. Terms in the expansion that score below this
number are discarded. Use a number between 1 and 80. The default is 60.

numresults Used to specify the maximum number of terms to use in the expansion of
term. Use a number between 1 and 5000. The default is 100.

weight Specify WEIGHT (or W) for the results to be weighted according to their
similarity scores. Specify NOWEIGHT (or N) for no weighting of results.

Searches for Words That Sound Like Other Words
Stem-expansion searches expand a search term to multiple terms based on the stem of the word.
Fuzzy matches expand a search term based on similar words in the text index. A third kind of
search-term expansion, SOUNDEX, expands search terms based on how the word sounds. The
SOUNDEX expansion method uses the same text-matching logic available via the SOUNDEX
function in SQL.

To use the SOUNDEX option, you must precede the search term with an exclamation mark (!).
During the search, Oracle evaluates the SOUNDEX values of the terms in the text index and
searches for all words that have the same SOUNDEX value.

As shown in the following query, you can search for all reviews that include the word “great,”
using a SOUNDEX match technique:

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, '!grate')>0;

The “MY LEDGER” review is returned because the words “grate” and “great” have the same
SOUNDEX value.

■

■

■

■

462 Part III: Beyond the Basics

You can also nest operators, allowing you to perform stem expansions on the terms returned
by a fuzzy match. In the following example, a fuzzy match is performed on the word “stir,” and
the terms returned from the fuzzy match are expanded using stem expansion:

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, '$?stir')>0;

The major search options for CONTAINS are summarized in Table 27-1. For a list of all supported
syntax (including thesaurus use, synonym expansion, and XML support), see the Oracle Text
Reference guide.

Operator Description

OR Returns a record if either search term has a score that exceeds the threshold.

| Same as OR.

AND Returns a record if both search terms have a score that exceeds the threshold.

& Same as AND.

ACCUM Returns a record if the sum of the search terms’ scores exceeds the threshold.

, Same as ACCUM.

MINUS Returns a record if the score of the first search minus the score of the second
search exceeds the threshold.

– Same as MINUS.

* Assigns different weights to the score of the searches.

NEAR The score will be based on how near the search terms are to each other in the
searched text.

; Same as NEAR.

NOT Excludes the row if the term after the NOT is found.

~ Same as NOT.

EQUIV Treats two terms (term1 equiv term2) as the same during search scoring.

= Same as EQUIV.

{} Encloses reserved words such as AND if they are part of the search term.

% Multiple-character wildcard.

_ Single-character wildcard.

$ Performs stem expansion of the search term prior to performing the search.

? Performs a fuzzy match of the search term prior to performing the search.

! Performs a SOUNDEX search.

() Specifies the order in which search criteria are evaluated.

TABLE 27-1 Major CONTAINS Options

Chapter 27: Using Oracle Text for Text Searches 463

The search options for CATSEARCH are summarized in Table 27-2. Table 27-2 does not list
the deprecated CONTAINS features, such as ACCUM, that are not documented as supported
features for CATSEARCH.

Using the ABOUT Operator
In Oracle Text, you can search on themes of documents. Thematic searching is integrated with
text-term searching. You can use the ABOUT operator to search for terms that have to do with the
theme of the document rather than the specific terms within the document. Here’s an example:

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'ABOUT(medicine)')>0;

REM CATSEARCH method for CTXCAT indexes:
select Title
 from BOOK_REVIEW_CTXCAT
 where CATSEARCH(Review_Text, 'ABOUT(medicine)', NULL)>0;

Index Synchronization
By default, when using CONTEXT indexes, you will have to manage the text index contents; the
text indexes will not be updated when the base table is updated. As soon as a Review_Text value
is updated, its text index is out of sync with the base table. To sync the index, execute the SYNC_
INDEX procedure of the CTX_DDL package, as shown in the following listing.

NOTE
Grant the PRACTICE user EXECUTE privilege on the CTX_DDL
package to support these maintenance activities.

execute CTX_DDL.SYNC_INDEX('REVIEW_CONTEXT_INDEX');

Operator Description

| Returns a record if either search term is found.

AND Returns a record if both search terms are found. This is the default action,
so (a b) is treated as (a AND b).

– If there are spaces around the hyphen, CATSEARCH returns rows that
contain the term preceding the hyphen (–) and do not contain the term
following it. A hyphen with no space is treated as a regular character.

NOT Same as –.

“ “ Encloses phrases.

() Specifies the order in which search criteria are evaluated.

* Wildcard character to match multiple characters. Can be at the end of the
term or in the middle of characters.

TABLE 27-2 CATSEARCH Options

464 Part III: Beyond the Basics

CONTEXT indexes can be maintained automatically, at commit time, or at specified intervals. As
part of the create index command for a CONTEXT index, you can use the sync clause:

 [[METADATA] SYNC (MANUAL | EVERY “interval” | ON COMMIT)]

Here’s an example:

drop index Review_Context_Index;

create index Review_Context_Index
 on BOOK_REVIEW_CONTEXT(Review_Text)
indextype is ctxsys.context
parameters ('sync (on commit)');

Index Sets
Historically, problems with queries of text indexes have occurred when other criteria are used
alongside text searches as part of the where clause. For example, are where clauses on nontext
columns applied before or after the text searches are completed, and how are the results properly
ordered? To improve the “mixed” query capability, you can use index sets. The indexes within the
index set may be on structured relational columns or on text columns.

To create an index set, use the CTX_DDL package to create the index set and add indexes to
it. When you create a text index, you can then specify the index set it belongs to. To execute this
example, you should first drop the REVIEW_CTXCAT_INDEX text index (created earlier in this
chapter) on the BOOK_REVIEW_CTXCAT table:

drop index REVIEW_CTXCAT_INDEX;

To create an index set named Reviews, use the CREATE_INDEX_SET procedure:

execute CTX_DDL.CREATE_INDEX_SET('Reviews');

You can now add indexes to the index set via the ADD_INDEX procedure. First, add a
standard, nontext index:

execute CTX_DDL.ADD_INDEX('Reviews', 'Reviewer');
execute CTX_DDL.ADD_INDEX('Reviews', 'Review_Date');

Now create a CTXCAT text index. Specify Ctxsys.Ctxcat as the index type, and list the index
set in the parameters clause:

create index REVIEW_CTXCAT_INDEX
 on BOOK_REVIEW_CTXCAT(Review_Text)
 indextype is CTXSYS.CTXCAT
parameters ('index set Reviews');

You can now order your results by the result of the combined index set search:

select * from BOOK_REVIEW_CTXCAT
 where CATSEARCH(Review_Text, 'great',
 'Reviewer=''EMILY TALBOT''
 order by Review_Date desc')>0;

Chapter 27: Using Oracle Text for Text Searches 465

To resolve this query, Oracle Text will use the index set, allowing you to order the results
properly. Note that there are two quotes around the string 'EMILY TALBOT' because this is a text
string search—it will be converted to a set of single quotes when the query is executed.

Index sets can contain up to 99 indexes on NUMBER, DATE, CHAR, and VARCHAR2 datatypes.
No column in an index set index can exceed 30 bytes (so in this example, the Title column cannot
be indexed as part of an index set). The indexed columns must not contain NULL values.

Oracle Text includes a tracing facility to help identify bottlenecks in indexing and querying.
Use the ADD_TRACE procedure of the CTX_OUTPUT package to enable the trace. The available
traces include the time spent on the different search components, the number of bytes read, and
the number of rows processed.

For more details on index sets, text index management, text application development, and
tracing, see Oracle Text Application Developer’s Guide and Oracle Text Reference, both provided
as part of the standard Oracle documentation set.

This page intentionally left blank

CHAPTER
28

Using External Tables

467

468 Part III: Beyond the Basics

ou can use the external table feature to access external files as if they were tables
inside the database. When you create an external table, you define its structure and
location within Oracle. When you query the table, Oracle reads the external table
and returns the results just as if the data had been stored within the database. But
because the data is outside the database, you do not have to be concerned about

the process for loading it into the database—a potentially significant benefit for data warehouses
and large databases.

External tables have limits—you cannot update or delete their rows from within Oracle,
and you cannot index them. Because they are part of the database application, you will have to
account for them as part of your backup and recovery processes. Despite these complications,
external tables can be a powerful addition to your database architecture plans. Additionally, you
can use external tables to unload data from tables to external files via the ORACLE_DATAPUMP
access driver.

Accessing the External Data
To access external files from within Oracle, you must first use the create directory command to
define a directory object pointing to the external files’ location. Users who will access the external
files must have the READ privilege on the directory.

NOTE
Before you start, verify that the external directory exists and that
the user who will be issuing the create directory command has the
CREATE ANY DIRECTORY system privilege.

The following example creates a directory named BOOK_DIR and grants READ and WRITE
access to the PRACTICE schema:

create directory BOOK_DIR as 'e:\oracle\external';
grant read on directory BOOK_DIR to practice;
grant write on directory BOOK_DIR to practice;

The PRACTICE user can now read files in the e:\oracle\external directory as if he or she were
inside the database. Because PRACTICE has also been granted WRITE privilege on that directory,
the PRACTICE user can create log, discard, and bad files within the directory—just as if that user
were executing the SQL*Loader utility (see Chapter 23).

The following listing generates two files for sample data—one from BOOKSHELF and one
from BOOKSHELF_AUTHOR. Note that the spool command cannot use the directory name
created via create directory; you need to specify the full operating-system directory name.

connect practice/practice

set pagesize 0 newpage 0 feedback off
select Title||'~'||Publisher||'~'||CategoryName||'~'||Rating||'~'
 from BOOKSHELF
 order by Title

spool e:\oracle\external\bookshelf_dump.lst
/
spool off

Y

Chapter 28: Using External Tables 469

select Title||'~'||AuthorName||'~'
 from BOOKSHELF_AUTHOR
 order by Title

spool e:\oracle\external\book_auth_dump.lst
/
spool off

In addition to the data, the output files will contain a single line at the top with “SQL> /” and
a final line that reads “SQL> spool off”. To simplify the examples, you should manually edit the
file at the operating system level to delete these extra lines before proceeding.

If another user is to access the data in the bookshelf_dump.lst and book_auth_dump.lst files,
you must grant that user READ privilege on the BOOK_DIR directory:

grant read on directory BOOK_DIR to another_user;

Also, the files themselves must be readable by the Oracle user at the operating system level.

Creating an External Table
Now that the external data is available and accessible, you can create a table structure that accesses
it. To do so, you need to use the organization external clause of the create table command. Within
that clause, you can specify the data structure much as you would for a SQL*Loader control file.
The following listing shows the creation of the BOOKSHELF_EXT table, based on the data in the
bookshelf.lst spool file created in the prior section:

set feedback on heading on newpage 1 pagesize 60

create table BOOKSHELF_EXT
(Title VARCHAR2(100),
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2)
)
organization external
(type ORACLE_LOADER
 default directory BOOK_DIR
 access parameters (records delimited by newline
 fields terminated by "~"
 (Title CHAR(100),
 Publisher CHAR(20),
 CategoryName CHAR(20),
 Rating CHAR(2)
))
 location ('bookshelf_dump.lst')
);

Oracle will respond with

Table created.

although no data will have been created inside the Oracle database.

470 Part III: Beyond the Basics

Similarly, you can create a table based on the book_auth_dump.lst spool file:

create table BOOKSHELF_AUTHOR_EXT
(Title VARCHAR2(100),
AuthorName VARCHAR2(50)
)
organization external
(type ORACLE_LOADER
 default directory BOOK_DIR
 access parameters (records delimited by newline
 fields terminated by "~"
 (Title CHAR(100),
 AuthorName CHAR(50)
))
 location ('book_auth_dump.lst')
);

NOTE
Oracle will perform only cursory validation when the external table
is created. You will not see most errors until you attempt to query the
table. The syntax for the access parameters is very specific, and minor
errors in the access definition—including the order of the clauses—
may prevent all the rows from being accessed.

You can verify the contents of the external tables by querying from them and comparing them
to the source tables, as shown in the following listing:

select Title from BOOKSHELF
 where CategoryName = 'CHILDRENPIC';

TITLE

GOOD DOG, CARL
POLAR EXPRESS
RUNAWAY BUNNY

3 rows selected.

select Title from BOOKSHELF_EXT
 where CategoryName = 'CHILDRENPIC';

TITLE

GOOD DOG, CARL
POLAR EXPRESS
RUNAWAY BUNNY

3 rows selected.

select COUNT(*) from BOOKSHELF_AUTHOR;

Chapter 28: Using External Tables 471

 COUNT(*)

 37

select COUNT(*) from BOOKSHELF_AUTHOR_EXT;

 COUNT(*)

 37

You can join the “internal” table BOOKSHELF_AUTHOR to its external counterpart,
BOOKSHELF_AUTHOR_EXT, to verify there are no rows missing or added:

select * from BOOKSHELF_AUTHOR BA
where not exists
(select 'x' from BOOKSHELF_AUTHOR_EXT BAE
 where BA.Title = BAE.Title
 and BA.AuthorName = BAE.AuthorName);

no rows selected

The BOOKSHELF_AUTHOR_EXT table points to the book_auth_dump.lst file. If you alter the
data in the file, the data in BOOKSHELF_AUTHOR_EXT will change. As illustrated here, you can
query external tables the same way you query standard tables—in joins, as part of views, and so
on. You can perform functions on the external table columns during queries just as you would for
standard tables.

You can query the USER_EXTERNAL_TABLES data dictionary view for information about your
external tables, including the default directory and access definitions:

desc USER_EXTERNAL_TABLES

 Name Null? Type
 --- -------- --------------
 TABLE_NAME NOT NULL VARCHAR2(30)
 TYPE_OWNER CHAR(3)
 TYPE_NAME NOT NULL VARCHAR2(30)
 DEFAULT_DIRECTORY_OWNER CHAR(3)
 DEFAULT_DIRECTORY_NAME NOT NULL VARCHAR2(30)
 REJECT_LIMIT VARCHAR2(40)
 ACCESS_TYPE VARCHAR2(7)
 ACCESS_PARAMETERS VARCHAR2(4000)
 PROPERTY VARCHAR2(10)

For example, the BOOKSHELF_AUTHOR_EXT table uses BOOK_DIR as its default directory,
as shown in the following listing:

set long 500

select Default_Directory_Name,
 Access_Parameters
 from USER_EXTERNAL_TABLES
 where Table_Name = 'BOOKSHELF_AUTHOR_EXT';

472 Part III: Beyond the Basics

DEFAULT_DIRECTORY_NAME

ACCESS_PARAMETERS
--
BOOK_DIR
records delimited by newline
 fields terminated by "~"
 (Title CHAR(100),
 AuthorName CHAR(50)
)

USER_EXTERNAL_TABLES does not show the name of the external file (or files) that the table
references. To see that information, query USER_EXTERNAL_LOCATIONS:

select * from USER_EXTERNAL_LOCATIONS;

TABLE_NAME

LOCATION

DIR DIRECTORY_NAME
--- ------------------------------
BOOKSHELF_EXT
bookshelf_dump.lst
SYS BOOK_DIR

BOOKSHELF_AUTHOR_EXT
book_auth_dump.lst
SYS BOOK_DIR

External Table Creation Options
Within the organization external clause are four main subclauses: type, default directory, access
parameters, and location. When you create an external table, you can use these clauses to
customize the way Oracle views the external data.

Type and Default Directory
The syntax for the type component is

 ([type access_driver_type] external_data_properties)
[reject limit { integer | unlimited }]

For external tables, the access driver is the API used to transform the external data. Use type
ORACLE_LOADER for your external tables—as shown in the examples earlier in this chapter—or
ORACLE_DATAPUMP if you are using Data Pump (see Chapter 24) or if you are loading the
external table when you create it. You must specify the ORACLE_DATAPUMP access driver if
you use the as subquery clause to unload data from one database and then reload it. The type
ORACLE_LOADER access driver is the default.

NOTE
Because the access driver is part of the Oracle software, only files
accessible by the database can be accessed as external tables. Files
the Oracle user cannot access cannot be used as external tables.

Chapter 28: Using External Tables 473

Following the type declaration, you can set a “reject limit” value. By default, no rows can be
rejected—any problem with any row will cause the select statement to return an error. Let’s
generate another copy of the BOOKSHELF data to a separate file, and this time leave in the extra
lines SQL*Plus inserts during the spool operation:

set pagesize 0 newpage 0 feedback off
select Title||'~'||Publisher||'~'||CategoryName||'~'||Rating||'~'
 from BOOKSHELF
 order by Title

spool e:\oracle\external\bookshelf_dump_2.lst
/
spool off

Now let’s create a new table that references this spool file, telling Oracle to skip the first
record (skip 1) and to allow one other error (reject limit 1). That will account for the “/” character
in the first line and “SQL> spool off” in the last line:

set feedback on heading on newpage 1 pagesize 60

create table BOOKSHELF_EXT_2
(Title VARCHAR2(100),
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2)
)
organization external
(type ORACLE_LOADER
 default directory BOOK_DIR
 access parameters (records delimited by newline
 skip 1
 fields terminated by
 "~"
 (Title CHAR(100),
 Publisher CHAR(20),
 CategoryName CHAR(20),
 Rating CHAR(2)
))
 location ('bookshelf_dump_2.lst')
)
reject limit 1
;

You can now verify the number of rows in the table:

set feedback on heading on newpage 1 pagesize 60
select COUNT(*) from BOOKSHELF_EXT_2;

 COUNT(*)

 31

The default directory clause specifies the directory object to be used for all datafiles that do
not specify another directory. If you use multiple external files located in multiple directories, you

474 Part III: Beyond the Basics

can name one of them as the default directory and specify the others by directory name in the
location clause. You must use directory object names (such as BOOK_DIR) in the location clause,
not the full directory path name.

Access Parameters
The access parameters clause tells Oracle how to map the rows in the file to rows in the table. Its
syntax is shown in the following illustration:

Within the access parameters clause, you first tell Oracle how to create a record—whether
its length is fixed or variable, and how rows are delimited. In the case of the BOOKSHELF_EXT
example, the records are delimited by newlines. If there were multiple rows on a single line, you
could use a character string as a separator between rows. Because the external data may come
from a non-Oracle database, Oracle supports multiple character sets and string sizes.

As with SQL*Loader, you can specify a when clause to limit which rows are selected. In the
following listing, the BOOKSHELF_EXT_3 table is created, with a when clause (shown in bold) to
limit it to only books in the CHILDRENPIC category.

create table BOOKSHELF_EXT_3
(Title VARCHAR2(100),

Chapter 28: Using External Tables 475

Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2)
)
organization external
(type ORACLE_LOADER
 default directory BOOK_DIR
 access parameters (records delimited by newline
 load when CategoryName = 'CHILDRENPIC'
 skip 1
 fields terminated by "~"
 (Title CHAR(100),
 Publisher CHAR(20),
 CategoryName CHAR(20),
 Rating CHAR(2)
))
 location ('bookshelf_dump_2.lst')
)
reject limit 1
;

You can see the result here:

select SUBSTR(Title, 1,30), CategoryName
 from BOOKSHELF_EXT_3;

SUBSTR(TITLE,1,30) CATEGORYNAME
------------------------------ --------------------
GOOD DOG, CARL CHILDRENPIC
POLAR EXPRESS CHILDRENPIC
RUNAWAY BUNNY CHILDRENPIC

3 rows selected.

BOOKSHELF_EXT_3 accesses the same file as BOOKSHELF_EXT_2, but it only shows the
records for the CHILDRENPIC category due to its load when clause.

As with SQL*Loader, you can create a log file, a bad file, and a discard file. Rows that fail
the load when condition will be written to the discard file. Rows that fail the access parameters
conditions will be written to the bad file, and the load details will be written to the log file. For
all three types of files, you can specify a directory object along with the filename so that you can
write the output to a directory other than your input datafile directory. You can specify nodiscardfile,
nobadfile, and nologfile to prevent these files from being created. Use directory object names
(such as BOOK_DIR in this chapter’s examples) when specifying locations for discard files, bad
files, and log files. If you don’t specify locations for log files, bad files, and discard files, Oracle
creates them in the default directory with system-generated names.

Within the access parameters clause, you also specify the field definitions and delimiters,
such as

 fields terminated by "~"
 (Title CHAR(100),
 Publisher CHAR(20),
 CategoryName CHAR(20),
 Rating CHAR(2))

476 Part III: Beyond the Basics

You can use the missing field values are null clause to set values for NULL column values,
but you must exercise caution when using this option. For example, the AUTHOR table has NULL
values in its Comments column. The external table creation for AUTHOR_EXT is shown in the
following listing:

set pagesize 0 newpage 0 feedback off
select AuthorName||'~'||Comments||'~'
 from AUTHOR
 order by AuthorName

spool e:\oracle\external\author_dump.lst
/
spool off

set feedback on heading on newpage 1 pagesize 60
create table AUTHOR_EXT
(AuthorName VARCHAR2(50),
 Comments VARCHAR2(100)
)
organization external
(type ORACLE_LOADER
 default directory BOOK_DIR
 access parameters (records delimited by newline
 skip 1
 fields terminated by "~"
 missing field values are null
 (AuthorName CHAR(50),
 Comments CHAR(100)
))
 location ('author_dump.lst')
)
reject limit 1
;

But this is not correct—if you select the AuthorName values from AUTHOR_EXT, you will see
that the values include the following:

select AuthorName from AUTHOR_EXT
 where AuthorName like 'S%';

AUTHORNAME
--
SOREN KIERKEGAARD
STEPHEN AMBROSE
STEPHEN JAY GOULD
SQL> spool off

4 rows selected.

Because of the missing field values are null clause, the “SQL> spool off” line at the end of
the listing was read as an AuthorName value, with a NULL Comments value. This highlights the

Chapter 28: Using External Tables 477

problem with coding exceptions into your loader definitions—you need to make sure you fully
understand the source data and the way the loader will treat it. In most cases, your data integrity
will be better served by forcing rows to fail (into bad files or discard files) and evaluating the
failed rows apart from your general loads.

See the SQL*Loader entry in the Alphabetical Reference for the full syntax available for the
access parameters clause.

Location
In the location clause, you specify the datafiles to use as the source data for the table. You can
name multiple files in the location clause if they all exist in directory objects the user has READ
privilege on. The following example combines two separate BOOKSHELF spool files to illustrate
the ability to combine multiple files into a single external table:

create table BOOKSHELF_EXT_4
(Title VARCHAR2(100),
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2)
)
organization external
(type ORACLE_LOADER
 default directory BOOK_DIR
 access parameters (records delimited by newline
 skip 1
 fields terminated by "~"
 (Title CHAR(100),
 Publisher CHAR(20),
 CategoryName CHAR(20),
 Rating CHAR(2)
))
 location ('bookshelf_dump_2.lst', 'bookshelf_dump.lst')
)
reject limit 1
;

The order of the files is important—skip 1 applies to the first file, not to the second file. The second
file, bookshelf_dump.lst, is the file that was previously edited to eliminate the nondata rows in its
first and last rows. The result, reflecting the rows in both, is shown in the following listing:

select COUNT(*) from BOOKSHELF_EXT_4;

 COUNT(*)

 62

Loading External Tables on Creation
You can create an external table that is populated via a create table as select command. When
you create the table, Oracle will perform the specified query and will create an external file with
the query results formatted based on the query. To load an external file, you will need to use the
ORACLE_DATAPUMP driver in place of ORACLE_LOADER.

478 Part III: Beyond the Basics

When you use the ORACLE_DATAPUMP driver, Oracle creates a dump file that contains the
table data. You can use that file as the basis for additional external tables. You cannot perform
additional inserts or updates on the external data via SQL once the table has been populated.

As of Oracle Database 11g, you can direct the data stored in the external file to be compressed
and encrypted during the table creation process. By default, both compression and encryption are
disabled.

The following listing shows the use of the ORACLE_DATAPUMP driver to populate a dump file:

create table BOOKSHELF_XT
organization external
 (
 type ORACLE_DATAPUMP
 default directory BOOK_DIR
 location ('BK_XT.DMP')
)
as select * from BOOKSHELF;

You can now use the BK_XT.DMP file as the source for another external table, or you can
query the BOOKSHELF_XT table directly.

To enable compression, modify the access parameters setting, as shown in the following
listing:

create table BOOKSHELF_XT
organization external
 (
 type ORACLE_DATAPUMP
 default directory BOOK_DIR
 access parameters (compression enabled)
 location ('BK_XT.DMP')
)
as select * from BOOKSHELF;

To encrypt the dump file as it is written, use the encryption option of the access parameters
clause, as shown in the following listing:

create table BOOKSHELF_XT
organization external
 (
 type ORACLE_DATAPUMP
 default directory BOOK_DIR
 access parameters (encryption enabled)
 location ('BK_XT.DMP')
)
as select * from BOOKSHELF;

Altering External Tables
You can alter external table definitions to change the way Oracle interprets the flat file. The
available options are detailed in the following subsections.

Chapter 28: Using External Tables 479

Access Parameters
You can change the access parameters without dropping and re-creating the external table
definition, thereby preserving grants, file definitions, and so on. For example, here’s how to
increase the number of records to skip in the BOOKSHELF_EXT_4 table:

alter table BOOKSHELF_EXT_4
access parameters (records delimited by newline
 skip 10
 fields terminated by "~"
 (Title CHAR(100),
 Publisher CHAR(20),
 CategoryName CHAR(20),
 Rating CHAR(2)
));

select COUNT(*) from BOOKSHELF_EXT_4;

 COUNT(*)

 53

Add Column
You can use the add column clause of the alter table command to add a column to the external
table, using the same syntax used for standard tables.

Default Directory
You can use the default directory clause of the alter table command to change the default directory
for the external files accessed by the table. The directory must be created via the create directory
command.

Drop Column
You can use the drop column clause of the alter table command to drop a column from the external
table, using the same syntax used for standard tables. The data in the file remains unchanged.

Location
You can change the files accessed by the external table via the location clause of the alter table
command. You may use this option to add new files to the list or to change the order in which the
external table accesses the files.

Modify Column
You can use the modify column clause of the alter table command to modify a column in the
external table, using the same syntax used for standard tables.

Parallel
You can use the parallel clause of the alter table command to change the degree of parallelism
for the external table, using the same syntax used for standard tables.

480 Part III: Beyond the Basics

Project Column
The project column clause of the alter table command tells the access driver how to validate
rows in subsequent queries. If you use the project column referenced option, the access driver
only processes the columns selected by the query. If you then query a different set of columns
from the external table, the results may be inconsistent with the first query’s results. If you use
the project column all option, the access driver processes all columns defined on the external
table, resulting in a consistent set of query results. The project column referenced option is the
default.

Reject Limit
You can use the reject limit clause of the alter table command to change the allowable number
of rejected rows for the external table. Here’s an example:

alter table BOOKSHELF_EXT_3
reject limit 5;

Rename To
You can use the rename to clause of the alter table command to change the name of the external
table, using the same syntax used for standard tables. Here’s an example:

alter table BOOKSHELF_EXT_3
rename to BE3;

Limitations, Benefits, and Potential Uses
of External Tables
External tables have limitations that may make them inappropriate for some online transaction-
processing applications. You cannot perform any update or delete operations on external tables.
The more dynamic the table is, the less appropriate external files may be. As shown in the
examples earlier in this chapter, you can change the files dynamically at the operating system
level. If your application generates inserts only, you may be able to write those inserted records
into an external file instead of a database table.

You cannot index external tables. The lack of indexes on external tables does not have to be a
negative factor in application performance. Queries of external tables complete very quickly, even
though a full table scan is required with each access. There is I/O involved, but modern I/O systems
use caching and RAID techniques to significantly reduce the performance penalty associated with
repeated full scans of the same file.

NOTE
To analyze external tables, use the DBMS_STATS package.
You cannot analyze external tables via the analyze
command.

You cannot specify constraints on an external table. Even creating a NOT NULL or foreign key
constraint fails:

Chapter 28: Using External Tables 481

alter table BOOKSHELF_EXT add constraint CATFK
foreign key (CategoryName) references CATEGORY(CategoryName);

foreign key (CategoryName) references CATEGORY(CategoryName)
*
ERROR at line 2:
ORA-30657: operation not supported on external organized table

Despite these limitations, external tables offer many useful features. You can join external
tables (to each other, or to standard tables). You can use hints to force the optimizer to choose
different join paths, and you can see the results in the query execution paths (see Chapter 46 for
details on hints and the Oracle optimizer).

As an alternative to data loading, external tables offer DBAs and application developers the
possibility of accessing data without supporting long-running load programs. Because the files can
be edited at the operating system level, you can quickly replace a table’s data without worrying
about outstanding transactions modifying the table. For example, you could use this capability to
create multiple external tables and create a union all view across them, creating a partition view
across multiple files. You can then manage each table’s data separately at the file system level,
replacing its contents as needed.

Because the external table can be queried, you can use the external table as the data source for
an insert as select command. During that operation, Oracle will attempt to load the external files
in parallel, potentially improving performance. To further improve performance of the insert as
select operation, you should use the APPEND hint to force block-level inserts. When you specify
the degree of parallelism for the insert as select operation, Oracle starts multiple ORACLE_LOADER
access drivers to process the data in parallel. To further enhance load performance, avoid using
variable-length fields, delimited fields, character set conversion, NULLIF, DEFAULTIF, and datatype
conversion operations. Turning off badfile (with nobadfile) eliminates the costs associated with the
file creation and the maintenance of the original row’s context.

During the insert as select, you can perform functions on the data as it is processed. You
can perform the functions either in the insert as select command syntax or in the external table
definition. This capability highlights an important benefit of external tables—you can centralize
the representation and processing requirements for your data, building translation routines into
your table definitions. There is no processing data stored in SQL*Loader control files or PL/SQL
routines; all the logic is built into the table definition, accessible via USER_EXTERNAL_TABLES.

During queries, external tables allow you to select specific data sets (via the load when
clause, as illustrated in this chapter). If you have multiple data sources for a data warehouse load,
you can choose which data will be made available even while the data is outside the database.
You can use this feature to maintain application availability during data loads. These loads can
occur in parallel if the external file has a FIXED file format.

The limited-access feature also allows you to enforce complex security rules concerning data
access. For example, you may keep sensitive data outside the database, in a secure directory. Users
with READ access to that directory would be able to use the external table and join it to other tables;
users without that access would be limited to the data inserted into the publicly accessible tables.
Highly secure data, or lightly accessed dynamic data, need not be inserted into the database until
it is needed, if at all.

If you use external tables in your database architecture, you must make sure your backup and
recovery plans account for those files as well as the rest of your database. If the external files change
more rapidly than the database files, you may need to back them up more frequently in order to
take advantage of Oracle’s full recovery capabilities.

This page intentionally left blank

CHAPTER
29

Using Flashback Queries

483

484 Part III: Beyond the Basics

s part of its read consistency model, Oracle displays data that has been committed to
the database. You can query data as it existed prior to a transaction being committed.
If you accidentally commit an errant update or delete, you can use this capability—
called a flashback query—to see the data as it existed prior to the commit. You can
use the results of the flashback query to restore the data.

To support flashback queries, your database should use system-managed undo to automate
management of rollback segments; see your DBA to determine if this feature is enabled in your
environment. The DBA must create an undo tablespace, enable Automatic Undo Management,
and establish an undo retention time window. Flashback queries can be executed against remote
databases.

Oracle will attempt to maintain enough undo information in the undo tablespace to support
flashback queries during the retention time period. The retention time setting and the amount of
space available in the undo tablespace can significantly impact your ability to successfully
execute a flashback query.

NOTE
Oracle uses undo to roll back transactions and support flashback
queries. Oracle uses redo (captured in the online redo log files) to
apply transactions during database recoveries.

Flashback queries are important tools during partial recovery efforts. In general, you should
not rely on flashback queries as part of your application design because of their dependence on
system elements outside of the application developer’s control (such as the number of transactions
during a time period and the size of the undo tablespace). Rather, you should treat them as an
option during critical periods of testing, support, and data recovery. For example, you could use
them to create copies of tables at multiple past points in time for use when reconstructing
changed data.

NOTE
To use some features of flashback queries, you must have the
EXECUTE privilege on the DBMS_FLASHBACK package. Most
users will not need privileges on this package.

Time-Based Flashback Example
The BOOK_ORDER table has six records, as shown in the following listing:

column Title format a30
select * from BOOK_ORDER;

TITLE PUBLISHER CATEGORYNAME
------------------------------ -------------------- ------------
SHOELESS JOE MARINER ADULTFIC
GOSPEL PICADOR ADULTFIC
SOMETHING SO STRONG PANDORAS ADULTNF
GALILEO'S DAUGHTER PENGUIN ADULTNF
LONGITUDE PENGUIN ADULTNF
ONCE REMOVED SANCTUARY PUB ADULTNF

6 rows selected.

A

Chapter 29: Using Flashback Queries 485

A shipment has arrived, and the old BOOK_ORDER records are deleted and then the deletion
is committed. Unfortunately, not all the books were in the shipment, so the delete is inappropriate:

delete from BOOK_ORDER;
commit;

How can you reconstruct the unreceived book records from the BOOK_ORDER table, since you
only have the received books in hand? You could perform a database recovery by using Data
Pump Import (see Chapter 24) to restore the table, or you could perform a physical database
recovery to recover the database to a point in time prior to the delete. However, with flashback
queries, you can avoid the need to perform these recovery operations.

First, let’s query the old data from the database. You can use the as of timestamp and as of scn
clauses of the select command to specify how far Oracle should flash back the data.

select COUNT(*) from BOOK_ORDER;

 COUNT(*)

 0

select COUNT(*) from BOOK_ORDER
 as of timestamp (SysDate – 5/1440);

 COUNT(*)

 6

When you execute a flashback query, only the state of the data is changed. The current
system time is used (as you can see by querying the SysDate value), and the current data
dictionary is used. If the structure of the table has changed, the query will fail.

Saving the Data
As shown in the BOOK_ORDER example, flashback queries are simple to implement, provided
the undo management of the database is properly configured and the undo information is available.
But how can you work with the flashback data?

The simplest method involves saving the data to a separate table. There are 1440 minutes in a
day, so “SysDate – 5/1440” will direct the database to a point in time five minutes ago. Note that
the query may return no rows if more than five minutes have passed since the commit.

create table BOOK_ORDER_OLD
as select * from BOOK_ORDER
 as of timestamp (SysDate – 5/1440);

Table created.

select COUNT(*) from BOOK_ORDER_OLD;

 COUNT(*)

 6

486 Part III: Beyond the Basics

You can verify that the data is correct:

column Title format a30

select * from BOOK_ORDER_OLD;

TITLE PUBLISHER CATEGORYNAME
------------------------------ -------------------- ------------
SHOELESS JOE MARINER ADULTFIC
GOSPEL PICADOR ADULTFIC
SOMETHING SO STRONG PANDORAS ADULTNF
GALILEO'S DAUGHTER PENGUIN ADULTNF
LONGITUDE PENGUIN ADULTNF
ONCE REMOVED SANCTUARY PUB ADULTNF

6 rows selected.

You can then work with that data to restore the missing data, perform selective updates, insert
only incorrectly deleted rows, or whatever other operation is needed.

The new table, BOOK_ORDER_OLD, has no indexes on it and no referential integrity constraints.
If you need to join it to other tables, you may need to create flashback copies of multiple tables in
order to maintain the referential integrity of the data. Also, note that each query is executed at a
different point in time—and the relative times used in the as of timestamp clause can therefore
lead to confusing or inconsistent results.

You can work directly with the old data—however, you are relying on the old data being
available for your transaction. It is generally safer to create a table and store the old data
temporarily as you work with it.

SCN-Based Flashback Example
When you perform time-based flashbacks, you are really doing SCN-based flashbacks; you’re just
relying on Oracle to find an SCN near the time you specified. If you know the exact SCN, you
can perform a flashback with a great degree of precision.

To begin an SCN-based flashback, you must first know the SCN of your transaction. To get the
latest change number, issue a commit and then use the as of scn clause of the select command.
You can find the current SCN by executing the GET_SYSTEM_CHANGE_NUMBER function of the
DBMS_FLASHBACK package prior to executing your transaction.

NOTE
Prior to executing the following example, you must have been granted
the EXECUTE privilege on the DBMS_FLASHBACK package.

The following example shows this process as part of a transaction against the BOOK_
ORDER_OLD table created and populated in the first part in this chapter. First, the current SCN is
assigned to a variable named SCN_FLASH and displayed via the SQL*Plus print command:

commit;

variable SCN_FLASH number;
execute :SCN_FLASH :=DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;

Chapter 29: Using Flashback Queries 487

PL/SQL procedure successfully completed.

print SCN_FLASH

 SCN_FLASH

 529732

Next, the delete command is issued and the result is committed:

delete from BOOK_ORDER_OLD;

6 rows deleted.

commit;

You can now query the flashback data. Although the SCN value is known, you can continue
to use the SCN_FLASH variable value if you are within the same session:

select COUNT(*) from BOOK_ORDER_OLD;

 COUNT(*)

 0

select COUNT(*) from BOOK_ORDER_OLD
 as of scn (:scn_flash);

 COUNT(*)

 6

You can now use the flashback data in BOOK_ORDER_OLD, accessed by the as of scn
clause, to populate it with its old values:

insert into BOOK_ORDER_OLD
select * from BOOK_ORDER_OLD
 as of scn (:scn_flash);

6 rows created.

commit;

NOTE
DDL operations that alter the structure of a table invalidate the
old undo data for the table, and flashback capabilities are limited
to the time since the DDL was executed. Space-related changes
(such as changing pctfree) do not invalidate the old undo data. See
Chapter 30 for details on the flashback table and flashback database
commands.

488 Part III: Beyond the Basics

What If the Flashback Query Fails?
If there is not enough space in the undo tablespace to maintain all the data needed for the
flashback query, the query will fail. Even if the DBA created a large undo tablespace, it is possible
for a series of large transactions to use all the space available. A portion of each failed query will
be written to the database’s alert log.

From the perspective of a user attempting to recover old data, you should attempt to recover
data that is as correct and timely as possible. Often, you may need to execute multiple flashback
queries to determine how far back you can successfully query the data, and then save the oldest
data you can access and the data closest to the point at which the problem occurred. Once the
oldest data is gone from the undo tablespace, you can no longer use flashback queries to retrieve it.

If it is not possible to flash back to data that is old enough for your needs, you will need to
perform some sort of database recovery—either flashing back the entire database or recovering
specific tables and tablespaces via traditional database recovery methods. If this problem happens
routinely, the undo retention time should be increased, the space allotted for the undo tablespace
should be increased, and the application usage should be examined to determine why questionable
transactions are occurring on a persistent basis.

What SCN Is Associated with Each Row?
You can see the most recent SCN associated with each row in the database.

Let’s start by repopulating our BOOK_ORDER table with the data that was restored to the
BOOK_ORDER_OLD table:

delete from BOOK_ORDER;

0 rows deleted.

insert into BOOK_ORDER
select * from BOOK_ORDER_OLD;

6 rows created.

commit;

Now, use the ORA_ROWSCN to see the SCN associated with each row:

select Title, ORA_ROWSCN from BOOK_ORDER;

TITLE ORA_ROWSCN
------------------------------ ----------
SHOELESS JOE 553531
GOSPEL 553531
SOMETHING SO STRONG 553531
GALILEO'S DAUGHTER 553531
LONGITUDE 553531
ONCE REMOVED 553531

All the rows were part of the same transaction, occurring at SCN 553531 (the SCN in your
database will differ from the one in this example). Now, wait for other transactions to occur in the
database and then insert a new row:

Chapter 29: Using Flashback Queries 489

insert into BOOK_ORDER
values ('INNUMERACY','VINTAGE BOOKS','ADULTNF');

1 row created.

commit;

Now that a new change has been committed, you can see the SCN associated with it:

select Title, ORA_ROWSCN from BOOK_ORDER;

TITLE ORA_ROWSCN
------------------------------ ----------
SHOELESS JOE 553531
GOSPEL 553531
SOMETHING SO STRONG 553531
GALILEO'S DAUGHTER 553531
LONGITUDE 553531
ONCE REMOVED 553531
INNUMERACY 553853

NOTE
The ORA_ROWSCN pseudocolumn value is not absolutely precise,
because Oracle tracks SCNs by transaction committed for the block in
which the row resides. A new transaction in the block may update the
ORA_ROWSCN values for all rows in the block.

What time does that SCN map to? You can use the SCN_TO_TIMESTAMP function to display
the date at which the change was made:

select SCN_TO_TIMESTAMP(555853) from DUAL;

SCN_TO_TIMESTAMP(555853)
--
20-FEB-04 03.11.28.000000000 PM

You can integrate the two queries to see the latest transaction times for each row:

select Title, SCN_TO_TIMESTAMP(ORA_ROWSCN)
 from BOOK_ORDER;

Flashback Version Queries
You can display the different versions of rows that existed during specified intervals. As with the
examples shown previously in this chapter, the changes are SCN dependent, so only those that
are committed will be displayed.

NOTE
Flashback version queries require that the DBA has set a nonzero
value for the UNDO_RETENTION initialization parameter. If the
UNDO_RETENTION value is too low, you may get an ORA-30052
error.

490 Part III: Beyond the Basics

To prepare for these examples, delete the old rows from BOOK_ORDER:

delete from BOOK_ORDER;

Next, repopulate BOOK_ORDER:

select SysTimeStamp from DUAL;

insert into BOOK_ORDER
select * from BOOK_ORDER_OLD;

select SysTimeStamp from DUAL;

Then, wait for a few minutes and update all rows:

select SysTimeStamp from DUAL;

update BOOK_ORDER set CategoryName = 'ADULTF';

select SysTimeStamp from DUAL;

To execute a flashback version query, use the versions between clause of the select
command. You can specify either the timestamp or the SCN. In this example, the format for the
timestamp clause is based on Oracle’s standard format (select SysTimeStamp from DUAL for the
current value):

select *
 from BOOK_ORDER
versions between timestamp
 to_timestamp('20—FEB-04 16.00.20','DD-MON-YY HH24.MI.SS')
 and
 to_timestamp('20—FEB-04 16.06.20','DD-MON-YY HH24.MI.SS') ;

When you execute the query, Oracle will return one row for each version of each row that
occurred between the start and end points you specify in the versions between clause. For the
rows that are returned, you can query additional pseudo-columns:

Pseudo-Column Description

VERSIONS_STARTSCN The SCN when the data first had the values reflected. If NULL,
then the row was created before the lower bound for the query.

VERSIONS_STARTTIME The timestamp when the data first had the values reflected. If NULL,
then the row was created before the lower bound for the query.

VERSIONS_ENDSCN The SCN when the row version expired. If NULL, then the row is
current or has been deleted.

VERSIONS_ENDTIME The timestamp when the row version expired. If NULL, then the
row is current or has been deleted.

VERSIONS_XID The identifier of the transaction that created the row version.

VERSIONS_OPERATION The operation that performed the transaction (I for insert, U for
update, D for delete).

Chapter 29: Using Flashback Queries 491

The following example shows the use of the flashback version query. The Versions_StartSCN
values are NULL for the current rows; the old rows have been updated. The timestamps will be
different on your platform.

select Title, Versions_StartSCN, Versions_Operation
 from BOOK_ORDER
versions between timestamp
 TO_TIMESTAMP('20—FEB-04 16.00.20','DD-MON-YY HH24.MI.SS')
 and
 TO_TIMESTAMP('20—FEB-04 16.06.20','DD-MON-YY HH24.MI.SS') ;

TITLE VERSIONS_STARTSCN V
------------------------------ ----------------- -
ONCE REMOVED 568127 U
LONGITUDE 568127 U
GALILEO'S DAUGHTER 568127 U
SOMETHING SO STRONG 568127 U
GOSPEL 568127 U
SHOELESS JOE 568127 U
SHOELESS JOE
GOSPEL
SOMETHING SO STRONG
GALILEO'S DAUGHTER
LONGITUDE
ONCE REMOVED

The versions between clause can be used in subqueries of DML and DDL commands.
You can use the FLASHBACK_TRANSACTION_QUERY data dictionary view to track changes

made by a particular transaction. For a given transaction, FLASHBACK_TRANSACTION_QUERY
shows the name of the user who executed it, the operation performed, the table to which the
transaction was applied, the start and end SCNs and timestamps, and the SQL needed to undo
the transaction.

Planning for Flashbacks
For DBAs, flashback queries may offer a means of performing partial recovery operations quickly.
If the data can be reconstructed via flashback queries, and if the data volume is not overwhelming,
you may be able to save the results of multiple flashback queries in separate tables. You could then
compare the data in the tables via the SQL options shown in prior chapters—correlated subqueries,
exists, not exists, minus, and so on. If you cannot avoid the need for a recovery operation, you
should be able to pinpoint the time period to be used for a time-based recovery operation.

As you will see in the next chapter, Oracle supports additional options—the flashback
database and flashback table commands.

For application developers and application administrators, flashback queries provide an
important tool for reconstructing data. Flashback queries may be particularly critical during
testing and support operations. Rather than making flashback queries part of your production
application design, you should use them as a fallback option for those support cases that cannot
be resolved before data is affected.

This page intentionally left blank

CHAPTER
30

Flashback—Tables
and Databases

493

494 Part III: Beyond the Basics

ou can use the flashback table and flashback database commands to simplify and
enhance your data-recovery efforts. The flashback table command automates the
process of restoring a full table to its prior state. The flashback database command
flashes back an entire database, and it requires modifications to the database status and
its logs. In the following sections, you will see details on implementing these options.

The flashback table Command
The flashback table command restores an earlier state of a table in the event of human or application
error. Oracle cannot restore a table to an earlier state across any DDL operations that change the
structure of the table.

NOTE
The database should be using Automatic Undo Management (AUM)
for flashback table to work. The ability to flash back to old data is
limited by the amount of undo retained in the undo tablespace and
the UNDO_RETENTION initialization parameter setting.

You cannot roll back a flashback table statement. However, you can issue another flashback
table statement and specify a time just prior to the current time.

NOTE
Record the current SCN before issuing a flashback table command.

Privileges Required
You must have either the FLASHBACK object privilege on the table or the FLASHBACK ANY TABLE
system privilege. You must also have SELECT, INSERT, DELETE, and ALTER object privileges on the
table. Row movement must be enabled for all tables in the flashback list. To flash back a table to
before a drop table operation, you only need the privileges necessary to drop the table.

Recovering Dropped Tables
Consider the AUTHOR table:

describe AUTHOR

Name Null? Type
------------------ -------- ----------------------------
AUTHORNAME NOT NULL VARCHAR2(50)
COMMENTS VARCHAR2(100)

Now, let’s drop the table:

drop table AUTHOR cascade constraints;

Table dropped.

How can the table be recovered? By default, a dropped table does not fully disappear. Its
blocks are still maintained in its tablespace, and it still counts against your space quota. You can
see the dropped objects by querying the RECYCLEBIN data dictionary view. Note that the format
for the Object_Name column may differ between versions.

Y

Chapter 30: Flashback —Tables and Databases 495

select * from RECYCLEBIN;

OBJECT_NAME ORIGINAL_NAME OPERATION
------------------------------ -------------------------------- ---------
TYPE TS_NAME CREATETIME
------------------------- ------------------------------ -------------------
DROPTIME DROPSCN PARTITION_NAME CAN CAN
------------------- ---------- -------------------------------- --- ---
 RELATED BASE_OBJECT PURGE_OBJECT SPACE
---------- ----------- ------------ ----------
BIN$yrMKlZaVMhfgNAgAIYowZA==$0 AUTHOR DROP
TABLE USERS 2004-02-23:16:10:58
2004-02-25:14:30:23 720519 YES YES
 48448 48448 48448 8

BIN$DBo9UChtZSbgQFeMiThArA==$0 SYS_C004828 DROP
INDEX USERS 2004-02-23:16:10:58
2004-02-25:14:30:23 720516 NO YES
 48448 48448 48449 8

RECYCLEBIN is a public synonym for the USER_RECYCLEBIN data dictionary view, showing the
recycle bin entries for the current user. DBAs can see all dropped objects via the DBA_RECYCLEBIN
data dictionary view.

As shown in the preceding listing, Oracle has dropped the AUTHOR table and its associated
primary key index. Although they have been dropped, they are still available for flashback. Note
that the recycle bin listings show the SCN for the drop command used to drop the base object.

For the objects in the recycle bin, the naming convention is BIN$unique_id$version, where
unique_id is a 26-character globally unique identifier for this object (which makes the recycle bin
name unique across all databases) and version is a version number assigned by the database.

You can use the flashback table to before drop command to recover the table from the
recycle bin:

flashback table AUTHOR to before drop;

Flashback complete.

The table has been restored, along with its rows, indexes, and statistics, as shown here:

select COUNT(*) from AUTHOR;

 COUNT(*)

 31

What happens if you drop the AUTHOR table, re-create it, then drop it again? The recycle bin
will contain both tables. Each entry in the recycle bin will be identified via its SCN and the
timestamp for the drop.

NOTE
The flashback table to before drop command does not recover
referential constraints.

496 Part III: Beyond the Basics

To purge old entries from the recycle bin, use the purge command. You can purge all your
dropped objects, all dropped objects in the database (if you are a DBA), all objects in a specific
tablespace, or all objects for a particular user in a specific tablespace. See the purge command in
the Alphabetical Reference for the full syntax and command options.

You can use the rename to clause of the flashback table command to rename the table as you
flash it back.

Enabling and Disabling the Recycle Bin
You can enable and disable the recycle bin with the RECYCLEBIN initialization parameter. By
default, this parameter is set to ON. When the recycle bin is disabled, dropped tables and their
dependent objects are not placed in the recycle bin; they are just dropped, and you must use
other means to recover them (such as recovering from backup).

You can disable the recycle bin at the system level:

alter system set recyclebin = off;

You can also do this at the session level:

alter session set recyclebin = off;

You can reenable it by setting those values to ON:

alter system set recyclebin = on;

Here’s how to do this at the session level:

alter session set recyclebin = on;

NOTE
Disabling the recycle bin does not purge or otherwise affect objects
already in the recycle bin.

Flashing Back to SCN or Timestamp
As shown in Chapter 29, you can save the results of a flashback query in a separate table while
the main table stays unaffected. You can also update the rows of a table based on the results of
a flashback query. You can use the flashback table command to transform a table into its prior
version—wiping out the changes that were made since the specified flashback point.

During a flashback table operation, Oracle acquires exclusive DML locks on all the tables
specified. The command is executed in a single transaction across all tables; if any of them fails,
the entire statement fails. You can flash back a table to a specific SCN or timestamp.

NOTE
flashback table to scn or to timestamp does not preserve RowIDs.

The following update command attempts to update the comment for the entry for Clement
Hurd. However, the where clause is not specified; all rows are updated with the same comment,
and the change is committed.

update AUTHOR
 set Comments = 'ILLUSTRATOR OF BOOKS FOR CHILDREN';

Chapter 30: Flashback —Tables and Databases 497

31 rows updated.

commit;

In this case, we know that almost the entire table has incorrect data, and we know the
transaction that was executed incorrectly. To recover the correct data, we can flash back the
database to a prior time and then apply any new commands needed to bring the data up to date.

First, let’s make sure we know the current SCN in case we need to return to this point:

commit;

variable SCN_FLASH number;
execute :SCN_FLASH :=DBMS_FLASHBACK.GET_SYSTEM_CHANGE_NUMBER;

PL/SQL procedure successfully completed.

print SCN_FLASH

 SCN_FLASH

 720880

Now, let’s flash back the table to a time just prior to the update. First, we must enable row
movement for the table:

alter table AUTHOR enable row movement;

Table altered.

We can then flash back the table:

flashback table AUTHOR to timestamp (systimestamp – 5/1440);

You can use the to scn clause if you wish to specify an SCN instead of a timestamp.

Indexes and Statistics
When a table is flashed back, its statistics are not flashed back. Indexes that exist on the table are
reverted and reflect the state of the table at the flashback point. Indexes dropped since the flashback
point are not restored. Indexes created since the flashback point will continue to exist and will be
updated to reflect the older data.

When recovered from the recycle bin, indexes will retain the names they had in the recycle
bin. You can return those indexes to their original names via the alter index … rename to …
command.

The flashback database Command
The flashback database command returns the database to a past time or SCN, providing a fast
alternative to performing incomplete database recovery. Following a flashback database operation,
in order to have write access to the flashed back database you must reopen it with an alter
database open resetlogs command. You must have the SYSDBA system privilege in order to
use the flashback database command.

498 Part III: Beyond the Basics

NOTE
The database must have been put in flashback mode with an alter
database flashback on command. The database must be mounted in
exclusive mode but not be open when that command is executed.

The syntax for the flashback database command is as follows:

flashback [standby] database [database]
{ to {scn | timestamp} expr
| to before {scn | timestamp } expr
}

You can use either the to scn or to timestamp clause to set the point to which the entire
database should be flashed back. You can flash back to before a critical point (such as a
transaction that produced an unintended consequence for multiple tables). Use the ORA_
ROWSCN pseudo-column to see the SCNs of transactions that most recently acted on rows.

To use flashback database, you must first alter the database while it is mounted but not open.
If you have not already done so, you will need to shut down your database and enable flashback
during the startup process:

startup mount exclusive;
alter database archivelog;
alter database flashback on;
alter database open;

NOTE
You must have enabled media recovery via the alter database
archivelog command prior to executing the alter database flashback
on command.

Two initialization parameter settings control how much flashback data is retained in the
database. The DB_FLASHBACK_RETENTION_TARGET initialization parameter sets the upper
limit (in minutes) for how far in time the database can be flashed back. The DB_RECOVERY_FILE_
DEST initialization parameter sets the size of the flash recovery area. Note that the flashback table
command uses the undo tablespace, whereas the flashback database command relies on flashback
logs stored in a flash recovery area.

The flash recovery area can contain control files, online redo logs, archived redo logs,
flashback logs, and RMAN backups. Files in the recovery area are either permanent or transient.
Permanent files are active files used by the database instance. All files that are not permanent are
transient. In general, Oracle Database eventually deletes transient files after they become obsolete
under the backup retention policy or have been backed up to tape.

Table 30-1 describes the files in the recovery area, the classification of each file as permanent
or temporary, and how database availability is affected.

You can determine how far back you can flash back the database by querying the
V$FLASHBACK_DATABASE_LOG view. The amount of flashback data retained in the database
is controlled by the initialization parameter and the size of the flash recovery area. The following
listing shows the available columns in V$FLASHBACK_DATABASE_LOG and sample contents:

Chapter 30: Flashback —Tables and Databases 499

desc V$FLASHBACK_DATABASE_LOG

Name Null? Type
--- -------- -------
OLDEST_FLASHBACK_SCN NUMBER
OLDEST_FLASHBACK_TIME DATE
RETENTION_TARGET NUMBER
FLASHBACK_SIZE NUMBER
ESTIMATED_FLASHBACK_SIZE NUMBER

select * from V$FLASHBACK_DATABASE_LOG;

OLDEST_FLASHBACK_SCN OLDEST_FL RETENTION_TARGET FLASHBACK_SIZE
-------------------- --------- ---------------- --------------
ESTIMATED_FLASHBACK_SIZE

 722689 25-FEB-04 1440 8192000
 0

Files Type Database Behavior When Flash Recovery Area Is
Inaccessible

Multiplexed copies
of the current
control file

Permanent The instance fails if the database cannot write to a
multiplexed copy of the control file stored in the
flash recovery area. Failure occurs even if accessible
multiplexed copies are located outside the recovery area.

Online redo
log files

Permanent Instance availability is not affected if a mirrored copy
of the online redo log exists in an accessible location
outside the flash recovery area. Otherwise, the instance
fails.

Archived redo
log files

Transient Instance availability is not affected if the log is archived
to an accessible location outside the flash recovery
area. Otherwise, the database eventually halts because
it cannot archive the online redo logs.

Foreign archived
redo log files

Transient Instance availability is not affected.

Image copies
of datafiles and
control files

Transient Instance availability is not affected.

Backup pieces Transient Instance availability is not affected.

Flashback logs Transient Instance availability is not affected because the
database automatically disables flashback database,
writes a message to the alert log, and continues with
database processing.

TABLE 30-1 Types of Files in the Flash Recovery Area

500 Part III: Beyond the Basics

You can verify the database’s flashback status by querying V$DATABASE; the Flashback_On
column will have a value of YES if the flashback has been enabled for the database.

select Current_SCN, Flashback_On from V$DATABASE;

CURRENT_SCN FLA
---------------- ---
 723649 YES

With the database open for over an hour, verify that the flashback data is available and then
flash it back—you will lose all transactions that occurred during that time:

shutdown;
startup mount exclusive;
flashback database to timestamp sysdate-1/24;

Note that the flashback database command requires that the database be mounted in
exclusive mode, which will affect its participation in any RAC clusters (see Chapter 50).

When you execute the flashback database command, Oracle checks to make sure all
required archived and online redo log files are available. If the logs are available, the online
datafiles are reverted to the time or SCN specified.

If there is not enough data online in the archive logs and the flashback area, you will need to
use traditional database recovery methods to recover the data. For example, you may need to use
a file system recovery method followed by rolling the data forward.

NOTE
Some database operations, such as dropping a tablespace or shrinking
a datafile, cannot be reversed with flashback database. In these
cases the flashback database window begins at the time immediately
following that operation.

Once the flashback has completed, you must open the database using the resetlogs option in
order to have write access to the database:

alter database open resetlogs;

To turn off the flashback database option, execute the alter database flashback off command
when the database is mounted but not open:

startup mount exclusive;
alter database flashback off;
alter database open;

As shown in this and the preceding chapter, you can use the flashback options to perform an
array of actions—recovering old data, reverting a table to its earlier data, maintaining a history of
changes on a row basis, and quickly restoring an entire database. All of these actions are greatly
simplified if the database has been configured to support Automatic Undo Management. Also,
note that the flashback database command requires modification of the database status. Although
these requirements can present additional burdens to DBAs, the benefits involved in terms of the
number of recoveries required and the speed with which those recoveries can be completed may
be dramatic.

CHAPTER
31

SQL Replay

501

502 Part III: Beyond the Basics

s of Oracle 11g, you can use “replay” features to capture the commands executed
in a database and then replay them elsewhere. The operations can be captured
from one database and replayed on another. You can use the capture and replay
features to perform diagnostic operations or to test applications under production
conditions.

Replay capabilities are particularly useful when evaluating the impacts of changes on multiuser
packaged applications for which you do not have direct access to all the code. Oracle will capture
the commands executed within the database regardless of their origin; the captured behavior is
independent of the originating program.

High-level Configuration
Replay consists of the following processes and components:

On the source database:

The workload-capture process logs the SQL executed within the database.

On the target database:

The workload-preprocessing step prepares the logs for execution.

Replay clients establish sessions in the database.

The workload-replay process executes the SQL in the new database via the replay clients.

As the workload is being replayed on the target database, you can analyze the database and
generate performance-tuning recommendations. In the following sections you will see how to
execute the workload capture and replay processes. First, though, you need to make sure your
systems are properly configured to support them, as described in the next section.

Isolation and Links
Before you start, you should configure the target database (where the captured replay will be
executed) to minimize its interaction with external files and objects. In the source database, you
should carefully examine the use of database links and external files prior to beginning the capture.
During the replay, Oracle will execute the captured commands from the source database in the
target database. If the target database has the same links and access as the source database, remote
objects may be manipulated based on the repeat of transactions in the target database.

If the remote databases are only used for data lookups, this may not present a problem. If the
remote databases are updated by the source database, the repeat of those transactions during the
replay in the target database may generate unwanted transactions in the remote database. For
example, if the source database contains a materialized view that performs a refresh during the
testing period and the same command is executed from a cloned testing database during the
replay execution, the results will most likely be undesirable. For the best control over the replay
environment, isolate it. Where possible, avoid the use of directory objects, URLs, UTL_FILE, and
programs that generate e-mail.

■

■

■

■

A

Chapter 31: SQL Replay 503

NOTE
For best results during the replay, you may also need to alter the
system time on the target system. Replay is therefore best suited for
uses in which the target system is a testing environment, rather than
generating the replay in a testing environment and then executing it
in a production database.

Before starting the capture on the source database, you should make sure there are no active
transactions within the database. If you have DBA privileges, you can accomplish this by terminating
any open and active sessions; alternatively, you can shut down and restart the database. You should
then capture the data as it exists in the source system (via a backup method such as Data Pump
Export/Import or RMAN). When the workload is replayed on the target system, you will want the data
environment to be virtually identical to the environment in the source database.

To further control the transactions allowed within the source system, you may elect to start it
in restricted mode. Because this will limit the sessions that can connect to the database during your
workload capture, you will need to determine if such restricted behavior is an accurate depiction
of standard usage for the application.

Creating a Workload Directory
The log file for the SQL workload will be written to a directory on the source server. To specify the
physical location for that directory, you must create a directory object within the database (a logical
pointer to the physical directory). Use the create directory command, as shown here, to create a
directory object:

create directory workload_dir as '/u01/workload';

You can now use the workload_dir directory as the destination for the SQL log files. Make sure
the file system you are pointing to has space available and is actively monitored for space usage.

Capturing the Workload
You can execute all the commands needed to create a directory and capture the workload via the
Oracle Enterprise Manager (OEM) console or stored procedure calls. In the examples in this chapter,
you will see the command-line entries needed to execute the commands because not all users
will have access to OEM.

The workload-capture process is controlled via the DBMS_WORKLOAD_CAPTURE package.
You can use DBMS_WORKLOAD_CAPTURE to control the filters used for the workload, start a
capture, stop a capture, and export AWR (Automated Workload Repository) data for the capture.

The functions and procedures within DBMS_WORKLOAD_CAPTURE are shown in Table 31-1.

Defining Filters
By default, the capture process captures all activity in the database. Filters allow you to capture a
specified subset of the workload. To add a filter, use the ADD_FILTER procedure.

504 Part III: Beyond the Basics

The format for ADD_FILTER is shown in the following listing:

DBMS_WORKLOAD_CAPTURE.ADD_FILTER (
 fname IN VARCHAR2 NOT NULL,
 fattribute IN VARCHAR2 NOT NULL,
 fvalue IN VARCHAR2 NOT NULL);

The fname variable is the name for the filter. The fattribute variable specifies the attribute to
which the filter needs to be applied. The possible values for fattribute are INSTANCE_NUMBER,
USER, MODULE, ACTION, PROGRAM, and SERVICE. You can then pass in the value for the
attribute via the fvalue variable, as shown next:

BEGIN
 DBMS_WORKLOAD_CAPTURE.ADD_FILTER (
 fname => 'user_practice',
 fattribute => 'USER',
 fvalue => 'PRACTICE');
END;
/

You can delete a filter by passing the filter name to the DELETE_FILTER procedure. The syntax
for the DELETE_FILTER procedure is shown in the following listing:

DBMS_WORKLOAD_CAPTURE.DELETE_FILTER (
 filter_name IN VARCHAR2(40) NOT NULL);

When you start the capture, you tell Oracle how to use the filter; it can either restrict the
capture to just values that meet the filter criteria or capture everything that does not meet the filter
criteria.

Subprogram Description

ADD_FILTER Add a filter.

DELETE_CAPTURE_INFO Delete rows in the DBA_WORKLOAD_CAPTURES and
DBA_WORKLOAD_FILTERS views.

DELETE_FILTER Delete a specified filter.

EXPORT_AWR Export the AWR snapshots associated with a given capture ID.

FINISH_CAPTURE Either finalize the workload capture or return the database to
normal operating mode.

GET_CAPTURE_INFO Retrieve all the information regarding a workload capture,
import the information into the DBA_WORKLOAD_CAPTURES
and DBA_WORKLOAD_FILTERS views, and return the
appropriate DBA_WORKLOAD_CAPTURES.ID.

IMPORT_AWR Import the AWR snapshots associated with a given capture ID.

REPORT Generate a report based on the workload capture.

START_CAPTURE Initiate the capture process.

TABLE 31-1 Functions and Procedures within DBMS_WORKLOAD_CAPTURE

Chapter 31: SQL Replay 505

Starting the Capture
To start a capture, execute the START_CAPTURE procedure. If you have not specified a filter, the
capture will apply to all commands executed in the database.

The syntax for START_CAPTURE is shown in the following listing:

DBMS_WORKLOAD_CAPTURE.START_CAPTURE (
 name IN VARCHAR2,
 dir IN VARCHAR2,
 duration IN NUMBER DEFAULT NULL,
 default_action IN VARCHAR2 DEFAULT 'INCLUDE',
 auto_unrestrict IN BOOLEAN DEFAULT TRUE);

The input parameters for START_CAPTURE are as follows:

The name parameter is the name you assign to the workload capture.

dir is the name of the directory object you created to store the workload-capture files.

The optional duration parameter allows you to specify the duration, in seconds, of the
capture. By default, the duration value is set to NULL, and the capture will continue until
it is explicitly ended via a FINISH_CAPTURE procedure call.

The default_action parameter tells the capture process how to use the filters. If it’s set
to INCLUDE (the default), all commands will be captured except those specified in the
filters. If it’s set to EXCLUDE, only the commands that pass the filters will be captured.

The auto_restrict parameter, when set to TRUE (the default), tells Oracle to start the
database in unrestricted mode upon the successful start of the capture.

BEGIN
 DBMS_WORKLOAD_CAPTURE.START_CAPTURE
 (name => 'practice_capture',
 dir => 'workload_dir',
 default_action => 'EXCLUDE');
END;
/

Oracle will then begin to capture the workload data executed in the database.
You can determine the capture ID assigned to the capture by executing the GET_CAPTURE_

INFO function, as shown next:

DBMS_WORKLOAD_CAPTURE.GET_CAPTURE_INFO
 dir IN VARCHAR2)
 RETURN NUMBER;

You will need to know the capture ID in order to export the AWR statistics at the end of the
capture.

Stopping the Capture
If you have not specified a duration, you must stop the capture manually. To stop the capture,
execute the FINISH_CAPTURE procedure, as shown here:

BEGIN

■

■

■

■

■

506 Part III: Beyond the Basics

 DBMS_WORKLOAD_CAPTURE.FINISH_CAPTURE ();
END;
/

Exporting AWR Data
To export the AWR data for the capture (for use in later analysis), execute the EXPORT_AWR
procedure:

DBMS_WORKLOAD_CAPTURE.EXPORT_AWR (
 capture_id IN NUMBER);

Processing the Workload
Now that the workload has been captured, you need to move all the captured workload logs to the
target system. As noted earlier, the target database should be separate from the production database
and should be as isolated as possible from the external structures accessed by the production
database. The target database should run the same version of Oracle as the source system.

The preprocessing step, in which the workload logs are transformed into replay files and
metadata is created, must be performed for every captured workload before it can be replayed.
If the target database is a RAC cluster, you can use one instance of the cluster for the replay
preprocessing.

You can initiate the preprocessing via OEM or via the DBMS_WORKLOAD_REPLAY package,
as shown in the following listing:

BEGIN
 DBMS_WORKLOAD_REPLAY.PROCESS_CAPTURE
 (capture_dir => 'workload_dir');
END;
/

The capture_dir variable value must be the name of a directory object within the database
that points to the physical directory where the workload logs are stored. Once the preprocessing
step has completed, you can replay the workload on the test database as described in the
following section.

Replaying the Workload
The workload files that have been preprocessed can be replayed against a target database. As
noted earlier in this chapter, the target database should contain a copy of the source database
objects and the source data. Where possible, the target database should be a clone of the
production system as it existed immediately prior to the start of the capture. The target database
should be isolated, with no access to the external objects used by the production database (such
as external files, database links, or the source tables for remote materialized views). You need to
be careful that the replay of transactions in the target database does not create invalid data in
other databases.

NOTE
Because some aspects of the workload replay may be time dependent
(such as the execution of time-based scheduled jobs, or the use of the
SYSDATE function), it is recommended that you reset the system time
on the test server prior to starting the replay.

Chapter 31: SQL Replay 507

The target database must have a directory object that points to the physical directory where
the workload files are stored. If the target database was used for the preprocessing step, that same
directory can be used for the replay. If such a directory does not exist, use the create directory
command to create one.

When the replay is executed, attempts to connect to the production database will be executed.
On the target server, these connections must be redirected to the target database. For example, if
the production server is accessed by the PROD service name, on the target server the PROD service
name must point to the target database.

Controlling and Starting the Replay Clients
The replay will be executed by replay clients. A replay client is a multithreaded program (named
wrc) whose threads each submits a workload from a captured session. The replay clients must
connect to the target database before the replay can begin; you must provide the username and
password for a DBA-privileged account (other than SYS) in the target database. The replay clients
must have access to the directory where the processed workload files are stored.

The replay client executable, wrc.exe, is in the /bin subdirectory under your Oracle software
home directory. The wrc syntax is

wrc [user/password[@server]] MODE=[value] [keyword=[value]]

NOTE
If you enter wrc with no parameters, Oracle will display a full list of
the available options for each parameter.

The user and password parameters tell the workload client how to connect to the target
database where the workload will be replayed. The server parameter specifies the name of the
server where the replay client is run. The mode parameter tells Oracle how to run the workload;
valid values are replay (the default), calibrate, and list_hosts. The keyword parameter tells Oracle
how to configure the clients.

Because a single replay client can initiate multiple database sessions, you do not need to start
one client per session. If you use the calibrate option for the mode parameter, as shown next, Oracle
will provide a recommendation for the number of clients to start:

wrc mode=calibrate replaydir=/u01/workload

The replaydir parameter specifies the physical directory where the processed replay files are
located. The wrc output will recommend the number of clients to start, along with the maximum
number of concurrent sessions involved.

To start the replay client, use the mode=replay option, as shown here:

wrc dbacct/pass@target mode=replay replaydir=/u01/workload

The replay client will remain active while the workload is replayed, and will terminate itself
when the replay has completed.

Initializing and Running the Replay
With the workload data processed and the replay clients configured, you can now begin to work
with the replay, via either OEM or the DBMS_WORKLOAD_REPLAY package. The available
procedures and functions for DBMS_WORKLOAD_REPLAY are shown in Table 31-2.

508 Part III: Beyond the Basics

The initialization step loads the metadata into the test system and prepares the database for
the replay to start. The syntax for INITIALIZE_REPLAY is shown here:

DBMS_WORKLOAD_REPLAY.INITIALIZE_REPLAY (
 replay_name IN VARCHAR2,
 replay_dir IN VARCHAR2);

The replay_dir parameter is the name of the directory object within the target database that
points to the physical directory where the processed workload files are stored.

Connection strings used within the captured workload may need to be remapped. When the
workload SQL attempts to connect to external databases (via connection strings within the captured
workload), you will either need to have those remote databases available, let the sessions connect
to the default host, or use the REMAP_CONNECTION procedure to specify how the connections
should be redirected. As noted earlier, you should ideally be working in an isolated environment,
and the default approach is to have those connections default to the target host.

With the workload initialized and the replay clients ready, you can now prepare and start the
replay. To prepare the replay, use the PREPARE_REPLAY procedure:

DBMS_WORKLOAD_REPLAY.PREPARE_REPLAY (
 synchronization IN BOOLEAN DEFAULT TRUE,
 connect_time_scale IN NUMBER DEFAULT 100,
 think_time_scale IN NUMBER DEFAULT 100,
 think_time_auto_correct IN BOOLEAN DEFAULT TRUE);

Subprogram Description

CALIBRATE Operate on a processed workload capture directory to estimate the
number of hosts and workload replay clients needed for the replay.

CANCEL_REPLAY Cancel the replay in progress.

DELETE_REPLAY_INFO Delete the rows in DBA_WORKLOAD_REPLAY that correspond to
the given workload replay ID.

EXPORT_AWR Export the AWR snapshots associated with a given replay ID.

GET_REPLAY_INFO Retrieve information about the workload capture and replay history.

IMPORT_AWR Import the AWR snapshots associated with a given replay ID.

INITIALIZE_REPLAY Initialize replay.

PREPARE_REPLAY Put the RDBMS in a special “Prepare” mode.

PROCESS_CAPTURE Process the workload capture.

REMAP_CONNECTION Remap the captured connection to a new one so that the user
sessions can connect to the database in a desired way during
workload replay.

REPORT Generate a report on the replay.

START_REPLAY Start the replay.

TABLE 31-2 DBMS_WORKLOAD_REPLAY Procedures and Functions

Chapter 31: SQL Replay 509

The synchronization parameter preserves the commit order within the replay when set to
TRUE. The connect_time_scale and think_time_scale parameters are percentages used to increase
or decrease the number of concurrent users during the workload replay. The think_time_auto_
correct parameter autocorrects the “think time” between calls when user calls take longer to
complete during the replay than during the initial capture. The autocorrection is necessary when
the target system performance does not match that of the source system.

If the connect_time_scale value is 10, the intervals between session connections during the
replay will be reduced to 10 percent of their original values. If the think_time_scale parameter is
set to 20, the “think time” between operations during the replay will be reduced to 20 percent of
its original value. If the think_time_scale parameter is set to 200%, the “think time” between
operations will be doubled during the replay.

To start the replay, use the START_REPLAY procedure, as shown in the following listing:

BEGIN
 DBMS_WORKLOAD_REPLAY.START_REPLAY ();
END;
/

To stop the replay, use the CANCEL_REPLAY procedure, as shown in the following listing:

BEGIN
 DBMS_WORKLOAD_REPLAY.CANCEL_REPLAY ();
END;
/

Exporting AWR Data
You can export the AWR data for the replay via the EXPORT_AWR procedure. Its sole parameter
is the replay_id, as shown in the following listing:

BEGIN
 DBMS_WORKLOAD_REPLAY.EXPORT_AWR (replay_id => 1);
END;
/

Any AWR snapshots corresponding to replay_id 1 will be exported. You can then compare the
AWR report for the replay execution to the AWR reports for the same workload in the production
environment to evaluate the performance differences and execution behavior changes across the
databases.

The replay can be executed multiple times, provided you first re-create the objects in the test
database and reset the system time each time. You can therefore use the replay tools to determine
the impact of parameter changes in the test environment prior to introducing them into the
production environment.

This page intentionally left blank

PART
IV

PL/SQL

This page intentionally left blank

CHAPTER
32

An Introduction to PL/SQL

513

514 Part IV: PL/SQL

L/SQL is Oracle’s procedural language (PL) superset of the Structured Query Language
(SQL). You can use PL/SQL to do such things as codify your business rules through
the creation of stored procedures and packages, trigger database events to occur,
and add programming logic to the execution of SQL commands.

The steps involved in the creation of triggers, stored procedures, and packages are described
in the following chapters in this part of this book. In this chapter, you will see the basic structures
and syntax used in PL/SQL.

PL/SQL Overview
PL/SQL code is grouped into structures called blocks. If you create a stored procedure or package,
you give the block of PL/SQL code a name; if the block of PL/SQL code is not given a name, it is
called an anonymous block. The examples in this chapter will feature anonymous blocks of PL/
SQL code; the following chapters in Part IV illustrate the creation of named blocks.

A block of PL/SQL code contains three sections:

Section Description

Declarations Defines and initializes the variables and cursors used in the block

Executable Commands Uses flow-control commands (such as if commands and loops) to
execute the commands and assign values to the declared variables

Exception Handling Provides customized handling of error conditions

Within a PL/SQL block, the first section is the Declarations section. Within the Declarations
section, you define the variables and cursors that the block will use. The Declarations section
starts with the keyword declare and ends when the Executable Commands section starts (as
indicated by the keyword begin). The Executable Commands section is followed by the Exception
Handling section; the exception keyword signals the start of the Exception Handling section. The
PL/SQL block is terminated by the end keyword.

The structure of a typical PL/SQL block is shown in the following listing:

declare
 <declarations section>
begin
 <executable commands>
 exception
 <exception handling>
end;

In the following sections of this chapter, you will see descriptions of each section of the
PL/SQL block.

Declarations Section
The Declarations section begins a PL/SQL block. The Declarations section starts with the declare
keyword, followed by a list of variable and cursor definitions. You can define variables to have
constant values, and variables can inherit datatypes from existing columns and query results, as
shown in the following examples.

P

Chapter 32: An Introduction to PL/SQL 515

In the following listing, the area of a circle is calculated. The result is stored in a table named
AREAS. The AREAS table has two columns to store radius and area values. The area of the circle
is calculated by squaring the value for the circle’s radius and multiplying that value by the
constant pi:

declare
 pi constant NUMBER(9,7) := 3.1415927;
 radius INTEGER(5);
 area NUMBER(14,2);
begin
 radius := 3;
 area := pi*power(radius,2);
 insert into AREAS values (radius, area);
end;
/

The end; line signals the end of the PL/SQL block; depending on the tool you use, you may
need to add a slash (/) to execute the PL/SQL block. When the PL/SQL block is executed, you will
receive the following response from Oracle:

PL/SQL procedure successfully completed.

To verify that the PL/SQL block completed correctly, you can select from the database the
rows that were inserted by the PL/SQL code. The query and results in the following listing show
the row the PL/SQL block created in the AREAS table:

select *
 from AREAS;

 RADIUS AREA
---------- ----------
 3 28.27

The output shows that a single row was inserted into the AREAS table by the PL/SQL block.
Only one row was created because only one Radius value was specified.

In the first section of the PL/SQL block, shown in the following listing, three variables are
declared. You must declare the variables that will be used in the Executable Commands section
of the PL/SQL block.

declare
 pi constant NUMBER(9,7) := 3.1415927;
 radius INTEGER(5);
 area NUMBER(14,2);

The first variable declared is pi, which is set to a constant value via the constant keyword.
Because it is declared as a constant, the value of the variable pi cannot be changed in the
Executable Commands section. The value is assigned via the := operator:

pi constant NUMBER(9,7) := 3.1415927;

You can also assign constant values via the default keyword:

pi NUMBER(9,7) DEFAULT 3.1415927;

516 Part IV: PL/SQL

The next two variables are defined but are not given default values:

radius INTEGER(5);
 area NUMBER(14,2);

You can assign an initial value to a variable in the Declarations section. To set an initial value
for a variable, simply follow its datatype specification with the value assignment, as shown in the
following listing:

radius INTEGER(5) := 3;

In the example, the datatypes include NUMBER and INTEGER. PL/SQL datatypes include all
the valid SQL datatypes as well as complex datatypes based on query structures. Table 32-1 lists
the supported PL/SQL datatypes.

In the following example, a cursor is declared to retrieve a record from the RADIUS_VALS
table. RADIUS_VALS is a table with one column, named Radius, that holds radius values to be
used in these examples. The cursor is declared in the Declarations section, and a variable named
rad_val is declared with a datatype based on the cursor’s results.

Scalar Datatypes

BINARY_DOUBLE FLOAT NUMBER SMALLINT

BINARY_FLOAT INT NUMERIC STRING

BINARY_INTEGER INTEGER NVARCHAR2 TIMESTAMP

BOOLEAN INTERVAL DAY
TO SECOND

PLS_INTEGER TIMESTAMP WITH LOCAL
TIME ZONE

CHAR INTERVAL YEAR
TO MONTH

POSITIVE TIMESTAMP WITH TIME
ZONE

CHARACTER LONG POSITIVEN UROWID

DATE LONG RAW RAW VARCHAR

DEC NATURAL REAL VARCHAR2

DECIMAL NATURALN ROWID

DOUBLE
PRECISION

NCHAR SIGNTYPE

Composite Types

RECORD TABLE VARRAY

Reference Types

REF CURSOR REF object_type

LOB Types

BFILE BLOB CLOB NCLOB

TABLE 32-1 PL/SQL Datatypes

Chapter 32: An Introduction to PL/SQL 517

NOTE
For this example, the table RADIUS_VALS contains a single row with
a Radius value of 3.

declare
 pi constant NUMBER(9,7) := 3.1415927;
 area NUMBER(14,2);
 cursor rad_cursor is
 select * from RADIUS_VALS;
 rad_val rad_cursor%ROWTYPE;
begin
 open rad_cursor;
 fetch rad_cursor into rad_val;
 area := pi*power(rad_val.radius,2);
 insert into AREAS values (rad_val.radius, area);
 close rad_cursor;
end;
/

In the first part of the Declarations section, the pi and area variables are defined, as they were
in the examples earlier in this chapter. The radius variable is not defined; instead, a cursor named
rad_cursor is defined. The cursor definition consists of a cursor name (rad_cursor) and a query
(select * from RADIUS_VALS;). A cursor holds the results of a query for processing by other
commands within the PL/SQL block:

declare
 pi constant NUMBER(9,7) := 3.1415927;
 area NUMBER(14,2);
 cursor rad_cursor is
 select * from RADIUS_VALS;

A final declaration creates a variable whose structure is anchored by the cursor’s result set:

rad_val rad_cursor%ROWTYPE;

The rad_val variable will be able to reference each column of the query’s result set. In this example,
the query only returns a single column, but if the table contained multiple columns, you would be
able to reference all of them via the rad_val variable.

In addition to the %ROWTYPE declaration, you can use the %TYPE declaration to inherit
datatype information. If you use the %ROWTYPE declaration, the variable inherits the column
and datatype information for all the columns in the cursor’s result set. If you use the %TYPE
declaration, the variable only inherits the definition of the column used to define it. You can
even base %TYPE definitions on cursors, as shown in the following example:

cursor rad_cursor is
 select * from RADIUS_VALS;
 rad_val rad_cursor%ROWTYPE;
 rad_val_radius rad_val.Radius%TYPE;

In the preceding listing, the rad_val variable inherits the datatypes of the result set of the rad_
cursor cursor. The rad_val_radius variable inherits the datatype of the Radius column within the
rad_val variable.

518 Part IV: PL/SQL

The advantage of datatype anchoring using %ROWTYPE and %TYPE definitions is that it
makes the datatype definitions in your PL/SQL code independent of the underlying data structures.
If the RADIUS_VALS Radius column is changed from a NUMBER(5) datatype to a NUMBER(4,2)
datatype, you do not need to modify your PL/SQL code; the datatype assigned to the associated
variables will be determined dynamically at runtime.

Executable Commands Section
In the Executable Commands section, you manipulate the variables and cursors declared in the
Declarations section of your PL/SQL block. The Executable Commands section always starts with the
keyword begin. In the following listing, the first PL/SQL block example from the Declarations section
is repeated: The area of a circle is calculated, and the results are inserted into the AREAS table:

declare
 pi constant NUMBER(9,7) := 3.1415927;
 radius INTEGER(5);
 area NUMBER(14,2);
begin
 radius := 3;
 area := pi*power(radius,2);
 insert into AREAS values (radius, area);
end;
/

In the preceding listing, the Executable Commands section is as follows:

begin
 radius := 3;
 area := pi*power(radius,2);
 insert into AREAS values (radius, area);
end;

Following the begin keyword, the PL/SQL block’s work begins. First, a value is assigned to the
radius variable, and the radius variable and the pi constant value are used to determine the value
of the area variable. The Radius and Area values are then inserted into the AREAS table.

The Executable Commands section of the PL/SQL block may contain commands that execute
the cursors declared in the Declarations section. In the following example (from the “Declarations
Section” section of this chapter), the Executable Commands section features several commands
that reference the rad_cursor cursor:

declare
 pi constant NUMBER(9,7) := 3.1415927;
 area NUMBER(14,2);
 cursor rad_cursor is
 select * from RADIUS_VALS;
 rad_val rad_cursor%ROWTYPE;
begin
 open rad_cursor;
 fetch rad_cursor into rad_val;
 area := pi*power(rad_val.radius,2);

Chapter 32: An Introduction to PL/SQL 519

 insert into AREAS values (rad_val.radius, area);
 close rad_cursor;
end;
/

In the first command involving the cursor, the open command is used:

open rad_cursor;

When the rad_cursor cursor is opened, the query declared for that cursor is executed and the
records to be returned are identified. Next, records are fetched from the cursor:

fetch rad_cursor into rad_val;

In the Declarations section, the rad_val variable is declared to anchor its datatypes to the
rad_cursor cursor:

cursor rad_cursor is
 select * from RADIUS_VALS;
 rad_val rad_cursor%ROWTYPE;

When you fetch a record from the cursor into the rad_val variable, you can still address each
column value selected via the cursor’s query. When the cursor’s data is no longer needed, you
can close the cursor, as shown in the following listing:

close rad_cursor;

The Executable Commands section may contain conditional logic, such as if commands and
loops. In the following sections, you will see examples of each of the major types of flow-control
operations permitted in PL/SQL. You can use the flow-control operations to alter the manner in
which the fetched records and executable commands are managed.

Conditional Logic
Within PL/SQL, you can use if, else, elsif, continue, and case commands to control the flow of
commands within the Executable Commands section. The formats of the if clauses are shown in
the following listing:

if <some condition>
 then <some command>
elsif <some condition>
 then <some command>
else <some command>
end if;

You can nest if conditions within each other, as shown in the following listing:

if <some condition>
 then
 if <some condition>
 then <some command>
 end if;
else <some command>
end if;

520 Part IV: PL/SQL

By nesting if conditions, you can quickly develop complex logic flows within your Executable
Commands section. When nesting if conditions, make sure you are not making the flow control
more complex than it needs to be; always check to see whether logical conditions can be
combined into simpler orders.

The “area of a circle” example used in the previous section will now be modified to include
conditional logic. In the following listing, the Executable Commands section of the PL/SQL block
has been modified to include if and then commands:

declare
 pi constant NUMBER(9,7) := 3.1415927;
 area NUMBER(14,2);
 cursor rad_cursor is
 select * from RADIUS_VALS;
 rad_val rad_cursor%ROWTYPE;
begin
 open rad_cursor;
 fetch rad_cursor into rad_val;
 area := pi*power(rad_val.radius,2);
 if area > 30
 then
 insert into AREAS values (rad_val.radius, area);
 end if;
 close rad_cursor;
end;
/

In the preceding listing, an if condition is used to control the flow of commands within the
Executable Commands section of the PL/SQL block. The flow-control commands are shown in
the following listing:

 if area > 30
 then
 insert into AREAS values (rad_val.radius, area);
 end if;

The flow-control commands in this example begin after the area variable’s value has been
determined. If the value is greater than 30, then a record will be inserted into the AREAS table;
if the value is less than 30, then no record will be inserted into the table. You can use this sort
of flow control to direct which of several SQL statements are to be executed, based on the
conditions in your if conditions.

The following listing shows the syntax for flow control involving SQL commands:

if area>30
 then <some command>
elsif area<10
 then <some command>
else <some command>
end if;

Following examples of the supported types of loops, you will see the use of case commands
for flow control.

Chapter 32: An Introduction to PL/SQL 521

Loops
You can use loops to process multiple records within a single PL/SQL block. PL/SQL supports
three types of loops:

Simple loops A loop that keeps repeating until an exit or exit when statement is reached
within the loop

FOR loops A loop that repeats a specified number of times

WHILE loops A loop that repeats while a condition is met

In the following sections, you will see examples of each type of loop. The loop examples use
as their starting point the PL/SQL blocks used previously in this chapter. You can use loops to
process multiple records from a cursor.

Simple Loops
In the following listing, a simple loop is used to generate multiple rows in the AREAS table. The
loop is started by the loop keyword, and the exit when clause determines when the loop should
be exited. An end loop clause identifies the end of the loop.

declare
 pi constant NUMBER(9,7) := 3.1415927;
 radius INTEGER(5);
 area NUMBER(14,2);
begin
 radius := 3;
 loop
 area := pi*power(radius,2);
 insert into AREAS values (radius, area);
 radius := radius+1;
 exit when area >100;
 end loop;
end;
/

The loop section of this example establishes the flow control for the commands in the Executable
Commands section of the PL/SQL block. The steps within the loop are described in the following
commented version of the loop commands:

loop
 /* Calculate the area, based on the radius value. */
 area := pi*power(radius,2);
 /* Insert the current values into the AREAS table. */
 insert into AREAS values (radius, area);
 /* Increment the radius value by 1. */
 radius := radius+1;
 /* Evaluate the last calculated area. If the value */
 /* exceeds 100, then exit. Otherwise, repeat the */
 /* loop using the new radius value. */
 exit when area >100;
 /* Signal the end of the loop. */
 end loop;

522 Part IV: PL/SQL

The loop should generate multiple entries in the AREAS table. The first record will be the
record generated by a Radius value of 3. Once an area value exceeds 100, no more records will
be inserted into the AREAS table.

Sample output following the execution of the PL/SQL block is shown in the following listing:

select *
 from AREAS
 order by Radius;

 RADIUS AREA
---------- ----------
 3 28.27
 4 50.27
 5 78.54
 6 113.1

Because the area value for a Radius value of 6 exceeds 100, no further Radius values are
processed and the PL/SQL block completes.

Simple Cursor Loops
You can use the attributes of a cursor—such as whether or not any rows are left to be fetched—as
the exit criteria for a loop. In the following example, a cursor is executed until no more rows are
returned by the query. To determine the status of the cursor, the cursor’s attributes are checked.
Cursors have four attributes you can use in your program:

%FOUND A record can be fetched from the cursor.

%NOTFOUND No more records can be fetched from the cursor.

%ISOPEN The cursor has been opened.

%ROWCOUNT The number of rows fetched from the cursor so far.

The %FOUND, %NOTFOUND, and %ISOPEN cursor attributes are Booleans; they are set to
either TRUE or FALSE. Because they are Boolean attributes, you can evaluate their settings without
explicitly matching them to values of TRUE or FALSE. For example, the following command will
cause an exit to occur when rad_cursor%NOTFOUND is TRUE:

exit when rad_cursor%NOTFOUND;

In the following listing, a simple loop is used to process multiple rows from a cursor:

declare
 pi constant NUMBER(9,7) := 3.1415927;
 area NUMBER(14,2);
 cursor rad_cursor is
 select * from RADIUS_VALS;
 rad_val rad_cursor%ROWTYPE;
begin
 open rad_cursor;
 loop
 fetch rad_cursor into rad_val;

Chapter 32: An Introduction to PL/SQL 523

 exit when rad_cursor%NOTFOUND;
 area := pi*power(rad_val.radius,2);
 insert into AREAS values (rad_val.radius, area);
 end loop;
 close rad_cursor;
end;
/

The loop section of the PL/SQL block uses values from the RADIUS_VALS table as its input.
Instead of basing the exit criteria on the Area value, the cursor’s %NOTFOUND attribute is checked.
If no more rows are found in the cursor, then %NOTFOUND will be TRUE—and, therefore, the
loop will be exited. The commented version of the loop is shown in the following listing:

loop
 /* Within the loop, fetch a record. */
 fetch rad_cursor into rad_val;
 /* If the fetch attempt reveals no more */
 /* records in the cursor, then exit the loop. */
 exit when rad_cursor%NOTFOUND;
 /* If the fetch attempt returned a record, */
 /* then process the Radius value and insert */
 /* a record into the AREAS table. */
 area := pi*power(rad_val.radius,2);
 insert into AREAS values (rad_val.radius, area);
 /* Signal the end of the loop. */
 end loop;

When the preceding PL/SQL block is executed, every record in the RADIUS_VALS table will
be processed by the loop. So far, the RADIUS_VALS table only contains one record—a Radius
value of 3.

NOTE
Prior to executing the PL/SQL block for this section, add two new
Radius values—4 and 10—to the RADIUS_VALS table.

The following listing shows the addition of the new records to the RADIUS_VALS table:

insert into RADIUS_VALS values (4);
insert into RADIUS_VALS values (10);
commit;

select *
 from RADIUS_VALS
 order by Radius;

 RADIUS

 3
 4
 10

524 Part IV: PL/SQL

Once the new records have been added to the RADIUS_VALS table, execute the PL/SQL
block shown earlier in this section. The output of the PL/SQL block is shown in the following
listing:

select *
 from AREAS
 order by Radius;

 RADIUS AREA
---------- ----------
 3 28.27
 4 50.27
 10 314.16

The query of the AREAS table shows that every record in the RADIUS_VALS table was fetched
from the cursor and processed. When there were no more records to process in the cursor, the
loop was exited and the PL/SQL block completed.

FOR Loops
A simple loop executes until an exit condition is met, whereas a FOR loop executes a specified
number of times. An example of a FOR loop is shown in the following listing. The FOR loop’s
start is indicated by the keyword for, followed by the criteria used to determine when the
processing is complete and the loop can be exited. Because the number of times the loop
is executed is set when the loop is begun, an exit command isn’t needed within the loop.

In the following example, the areas of circles are calculated based on Radius values ranging
from 1 through 7, inclusive.

delete from AREAS;

declare
 pi constant NUMBER(9,7) := 3.1415927;
 radius INTEGER(5);
 area NUMBER(14,2);
begin
 for radius in 1..7 loop
 area := pi*power(radius,2);
 insert into AREAS values (radius, area);
 end loop;
end;
/

The steps involved in processing the loop are shown in the following commented listing:

 /* Specify the criteria for the number of loop */
 /* executions. */
 for radius in 1..7 loop
 /* Calculate the area using the current Radius */
 /* value. */
 area := pi*power(radius,2);
 /* Insert the area and radius values into the AREAS */
 /* table. */
 insert into AREAS values (radius, area);
 /* Signal the end of the loop. */
 end loop;

Chapter 32: An Introduction to PL/SQL 525

Note that there is no line that says

radius := radius+1;

in the FOR loop. Because the specification of the loop specifies

for radius in 1..7 loop

the Radius values are already specified. For each value, all the commands within the loop are
executed (these commands can include other conditional logic, such as if conditions). Once the
loop has completed processing a Radius value, the limits on the for clause are checked, and
either the next Radius value is used or the loop execution is complete.

Sample output from the FOR loop execution is shown in the following listing:

select *
 from AREAS
 order by Radius;

 RADIUS AREA
---------- ----------
 1 3.14
 2 12.57
 3 28.27
 4 50.27
 5 78.54
 6 113.1
 7 153.94

7 rows selected.

Cursor FOR Loops
Whereas a FOR loop executes a specified number of times, a Cursor FOR loop uses the results of
a query to dynamically determine the number of times the loop is executed. In a Cursor FOR loop,
the opening, fetching, and closing of cursors is performed implicitly; you do not need to explicitly
specify these actions.

The following listing shows a Cursor FOR loop that queries the RADIUS_VALS table and
inserts records into the AREAS table:

delete from AREAS;

declare
 pi constant NUMBER(9,7) := 3.1415927;
 area NUMBER(14,2);
 cursor rad_cursor is
 select * from RADIUS_VALS;
begin
 for rad_val in rad_cursor
 loop
 area := pi*power(rad_val.radius,2);
 insert into AREAS values (rad_val.radius, area);
 end loop;
end;
/

526 Part IV: PL/SQL

In a Cursor FOR loop, there is no open or fetch command. The command

for rad_val in rad_cursor

implicitly opens the rad_cursor cursor and fetches a value into the rad_val variable. When
no more records are in the cursor, the loop is exited and the cursor is closed. In a Cursor
FOR loop, there is no need for a close command. Note that rad_val is not explicitly declared
in the block.

The loop portion of the PL/SQL block is shown in the following listing, with comments to
indicate the flow of control. The loop is controlled by the existence of a fetchable record in the
rad_cursor cursor. There is no need to check the cursor’s %NOTFOUND attribute—that is
automated via the Cursor FOR loop.

 /* If a record can be fetched from the cursor, */
 /* then fetch it into the rad_val variable. If */
 /* no rows can be fetched, then skip the loop. */
 for rad_val in rad_cursor
 /* Begin the loop commands. */
 loop
 /* Calculate the area based on the Radius value */
 /* and insert a record into the AREAS table. */
 area := pi*power(rad_val.radius,2);
 insert into AREAS values (rad_val.radius, area);
 /* Signal the end of the loop commands. */
 end loop;

Sample output is shown in the following listing; for this example, the RADIUS_VALS table has
three records, with Radius values of 3, 4, and 10:

select *
 from RADIUS_VALS
 order by Radius;

 RADIUS

 3
 4
 10

The execution of the PL/SQL block with the Cursor FOR loop will generate the following
records in the AREAS table:

select *
 from AREAS
 order by Radius;

 RADIUS AREA
---------- ----------
 3 28.27
 4 50.27
 10 314.16

Chapter 32: An Introduction to PL/SQL 527

WHILE Loops
A WHILE loop is processed until an exit condition is met. Instead of the exit condition being
specified via an exit command within the loop, the exit condition is specified in the while
command that initiates the loop.

In the following listing, a WHILE loop is created so that multiple Radius values will be
processed. If the current value of the Radius variable meets the while condition in the loop’s
specification, then the loop’s commands are processed. Once a Radius value fails the while
condition in the loop’s specification, the loop’s execution is terminated:

delete from AREAS;

declare
 pi constant NUMBER(9,7) := 3.1415927;
 radius INTEGER(5);
 area NUMBER(14,2);
begin
 radius := 3;
 while radius<=7
 loop
 area := pi*power(radius,2);
 insert into AREAS values (radius, area);
 radius := radius+1;
 end loop;
end;
/

The WHILE loop is similar in structure to the simple loop because it terminates based on
a variable’s value. The following listing shows the steps involved in the loop, with embedded
comments:

 /* Set an initial value for the Radius variable. */
 radius := 3;
 /* Establish the criteria for the termination of */
 /* the loop. If the condition is met, execute the */
 /* commands within the loop. If the condition is */
 /* not met, then terminate the loop. */
 while radius<=7
 /* Begin the commands to be executed. */
 loop
 /* Calculate the area based on the current */
 /* Radius value and insert a record in the */
 /* AREAS table. */
 area := pi*power(radius,2);
 insert into AREAS values (radius, area);
 /* Set a new value for the Radius variable. The */
 /* new value of Radius will be evaluated against */
 /* the termination criteria and the loop commands */
 /* will be executed for the new Radius value or */
 /* the loop will terminate. */
 radius := radius+1;
 /* Signal the end of the commands within the loop. */
 end loop;

528 Part IV: PL/SQL

When executed, the PL/SQL block in the previous listing will generate records in the AREAS
table. The output of the PL/SQL block is shown in the following listing:

select *
 from AREAS
 order by Radius;

 RADIUS AREA
---------- ----------
 3 28.27
 4 50.27
 5 78.54
 6 113.1
 7 153.94

Because of the value assigned to the Radius variable prior to the loop, the loop is forced to
execute at least once. You should verify that your variable assignments meet the conditions used
to limit the loop executions.

Using CONTINUE and CONTINUE WHEN Statements
You can use the continue statement within loops to exit the current iteration of the loop and
transfer control to the next iteration. For example, if you iterate through a set of counter values,
you can skip specific values without exiting the loop entirely. The two forms of the continue
statement are continue and continue when.

The following listing shows the use the continue statement. In this example, the loop starts
with a value of 1 for the first iteration. When the if clause is evaluated, any value less than 5
triggers the continue statement, and the next iteration of the loop begins.

declare
 pi constant NUMBER(9,7) := 3.1415927;
 radius INTEGER(5);
 area NUMBER(14,2);
begin
 radius := 1;
 loop
 if radius < 5 then
 continue;
 end if;
 area := pi*power(radius,2);
 insert into AREAS values (radius, area);
 radius := radius+1;
 exit when area >100;
 end loop;
end;
/
select *
 from AREAS
 order by Radius;

Chapter 32: An Introduction to PL/SQL 529

 RADIUS AREA
---------- ----------
 5 78.54
 6 113.1

You can use the continue when statement within loops. The when portion provides the
condition to be evaluated. If the condition is true, the current iteration of the loop will complete
and control will pass to the next iteration. The following listing shows the use of the continue
when statement.

declare
 pi constant NUMBER(9,7) := 3.1415927;
 radius INTEGER(5);
 area NUMBER(14,2);
begin
 radius := 1;
 loop
 continue when radius < 5;
 area := pi*power(radius,2);
 insert into AREAS values (radius, area);
 radius := radius+1;
 exit when area >100;
 end loop;
end;
/

You can use the continue statement to force the loop to only process even-numbered
iterations (for which mod(radius,2)=0) or any custom condition you want to apply.

CASE Statements
You can use case statements to control the branching logic within your PL/SQL blocks. For
example, you can use case statements to assign values conditionally or to transform values prior
to inserting them. In the following example, case expressions use the Radius values to determine
which rows to insert into the AREAS table:

declare
 pi constant NUMBER(9,7) := 3.1415927;
 area NUMBER(14,2);
 cursor rad_cursor is
 select * from RADIUS_VALS;
 rad_val rad_cursor%ROWTYPE;
begin
 open rad_cursor;
 loop
 fetch rad_cursor into rad_val;
 exit when rad_cursor%NOTFOUND;
 area := pi*power(rad_val.radius,2);
 case
 when rad_val.Radius = 3

530 Part IV: PL/SQL

 then
 insert into AREAS values (rad_val.radius, area);
 when rad_val.Radius = 4
 then
 insert into AREAS values (rad_val.radius, area);
 when rad_val.Radius = 10
 then
 insert into AREAS values (0, 0);
 else raise CASE_NOT_FOUND;
 end case;
 end loop;
 close rad_cursor;
end;
/

This block generates the following output. When the Radius value is 10, the case clause
inserts a row with the Radius and Area values both set to 0:

select * from AREAS;

 RADIUS AREA
---------- ----------
 3 28.27
 4 50.27
 0 0

The keyword case begins the clause:

 case
 when rad_val.Radius = 3
 then
 insert into AREAS values (rad_val.radius, area);

The when clauses are evaluated sequentially. The else keyword within the case clause works
similarly to the else keyword within an if-then clause. If you omit the else keyword, PL/SQL adds
the following implicit else clause:

else raise CASE_NOT_FOUND;

The end case clause ends the case clause. The case clause is commonly used to translate lists
of values to their descriptions, as in the case of the bookshelf category names. The following
listing shows how CategoryName values can be translated to other values as part of SQL
commands:

 case CategoryName
 when 'ADULTFIC' then 'Adult Fiction'
 when 'ADULTNF' then 'Adult Nonfiction'
 when 'ADULTREF' then 'Adult Reference'
 when 'CHILDRENFIC' then 'Children Fiction'
 when 'CHILDRENNF' then 'Children Nonfiction'
 when 'CHILDRENPIC' then 'Children Picturebook'
 else CategoryName
 end

See Chapter 16 for examples of the complex uses of case.

Chapter 32: An Introduction to PL/SQL 531

Exception Handling Section
When user-defined or system-related exceptions (errors) are encountered, the control of the PL/
SQL block shifts to the Exception Handling section. Within the Exception Handling section, the
when clause is used to evaluate which exception is to be “raised”—that is, executed.

If an exception is raised within the Executable Commands section of your PL/SQL block, the
flow of commands immediately leaves the Executable Commands section and searches the Exception
Handling section for an exception matching the error encountered. PL/SQL provides a set of
system-defined exceptions and allows you to add your own exceptions. Examples of user-defined
exceptions are shown in Chapters 34 and 35.

The Exception Handling section always begins with the keyword exception, and it precedes
the end command that terminates the Executable Commands section of the PL/SQL block. The
placement of the Exception Handling section within the PL/SQL block is shown in the following
listing:

declare
 <declarations section>
begin
 <executable commands>
 exception
 <exception handling>
end;

The Exception Handling section of a PL/SQL block is optional—none of the PL/SQL blocks
shown previously in this chapter included an Exception Handling section. However, the examples
shown in this chapter have been based on a very small set of known input values with very
limited processing performed.

In the following listing, the simple loop for calculating the area of a circle is shown, with two
modifications. A new variable named some_variable is declared in the Declarations section, and
a calculation to determine the variable’s value is created in the Executable Commands section.

declare
 pi constant NUMBER(9,7) := 3.1415927;
 radius INTEGER(5);
 area NUMBER(14,2);
 some_variable NUMBER(14,2);
begin
 radius := 3;
 loop
 some_variable := 1/(radius-4);
 area := pi*power(radius,2);
 insert into AREAS values (radius, area);
 radius := radius+1;
 exit when area >100;
 end loop;
end;
/

Because the calculation for some_variable involves division, you may encounter a situation
in which the calculation attempts to divide by zero—an error condition. The first time through
the loop, the radius variable (with an initial value of 3) is processed and a record is inserted into the

532 Part IV: PL/SQL

AREAS table. The second time through the loop, the radius variable has a value of 4—and the
calculation for some_variable encounters an error:

declare
*
ERROR at line 1:
ORA-01476: divisor is equal to zero
ORA-06512: at line 9

Because an error was encountered, the first row inserted into AREAS is rolled back, and the PL/SQL
block terminates.

You can modify the processing of the error condition by adding an Exception Handling
section to the PL/SQL block, as shown in the following listing:

delete from AREAS;

declare
 pi constant NUMBER(9,7) := 3.1415927;
 radius INTEGER(5);
 area NUMBER(14,2);
 some_variable NUMBER(14,2);
begin
 radius := 3;
 loop
 some_variable := 1/(radius-4);
 area := pi*power(radius,2);
 insert into AREAS values (radius, area);
 radius := radius+1;
 exit when area >100;
 end loop;
exception
 when ZERO_DIVIDE
 then insert into AREAS values (0,0);
end;
/

The Exception Handling section of the PL/SQL block is repeated in the following listing:

exception
 when ZERO_DIVIDE
 then insert into AREAS values (0,0);

When the PL/SQL block encounters an error, it scans the Exception Handling section for
the defined exceptions. In this case, it finds the ZERO_DIVIDE exception, which is one of the
system-defined exceptions available in PL/SQL. In addition to the system-defined exceptions and
user-defined exceptions, you can use the when others clause to address all exceptions not defined
within your Exception Handling section. The command within the Exception Handling section for
the matching exception is executed and a row is inserted into the AREAS table. The output of the
PL/SQL block is shown in the following listing:

select *
 from AREAS;

Chapter 32: An Introduction to PL/SQL 533

 RADIUS AREA
---------- ----------
 3 28.27
 0 0

The output shows that the first Radius value (3) was processed and that the exception was
encountered on the second pass through the loop.

NOTE
Once an exception is encountered, you cannot return to your normal
flow of command processing within the Executable Commands
section. If you need to maintain control within the Executable
Commands section, you should use if conditions to test for possible
exceptions before they are encountered by the program, or create a
nested block with its own local exception handling.

The available system-defined exceptions are listed in the “Exception” entry in the Alphabetical
Reference. Examples of user-defined exceptions are shown in Chapters 34 and 35.

See Chapter 37 for details on the use of dynamic PL/SQL, which allows for the dynamic
creation of the commands executed within the PL/SQL block.

PL/SQL supports complex queries that use the most recent features in Oracle’s SQL. For example,
flashback version queries (see Chapter 27) and regular expression functions (see Chapter 8) are
both supported within PL/SQL as of their introduction in Oracle Database 10g. See those chapters
for details on the new features; they can be introduced into your PL/SQL and may simplify and
enhance your processing capabilities.

This page intentionally left blank

CHAPTER
33

Online Application
Upgrades

535

536 Part IV: PL/SQL

s business needs change, the applications that support them need to change as
well. Oracle provides many ways to modify existing applications; you can use
features introduced with Oracle 11g to modify your applications while maintaining
the high availability demanded by application users.

In this chapter you see how to minimize the impact to your applications while supporting the
need for changes. A number of these approaches are described in other chapters as well.

Highly Available Databases
If an application depends on the database being available, the database architecture must support
high availability throughout its design. At the database level this involves choosing from among
many configuration options:

RAC databases, where multiple instances access a single shared database, can provide
transparent application failover in the event a node fails.

Replicated databases, where separate databases serve as the “master” site for the data,
provide full failover capability for both the database and the instance. Replicated
databases may add complexity to your design as you decide how to resolve data-level
conflicts among the separate databases.

Standby databases, where one database is the primary database and a separate database
serves as a secondary database, are available in case the primary fails.

These options all support high-availability requirements; the right choice for your environment
depends on your specific application requirements. When you’re evaluating high-availability
options, the evaluation criteria are usually based on disaster scenarios, the amount of lost data,
and the time required to recover. However, you should also consider the more mundane and
more common scenario: the need to make a change to an existing database table.

In the RAC solution, there is only one table to be changed because the separate instances
share the same database. Any action that creates a DDL lock on a table affects all instances.

In a replicated environment, the objects are usually kept closely in sync; any change to one
environment must be matched by the same change in the replica. Outages for DDL changes in
one database are typically accompanied by outages in the replica.

In a standby solution, the standby database can be an exact physical replica or it can be
a logical standby database, with different objects than the primary database. Because of this
architecture, you can use a standby database to implement rolling upgrades of your application
objects—first changing them in one environment and then in the second, without taking a significant
outage for your application. You will need to work closely with your DBAs to configure and manage
the standby environment to support this approach, but for applications that require high availability
while undergoing maintenance, this architecture provides a significant benefit.

Standby databases are supported via a technology called Oracle Data Guard. Although the
creation and configuration of Data Guard databases is a DBA task, developers should be aware
of the architecture and features involved. For example, standby databases can be started in read-
only mode to support users, then returned to standby mode. Changes to the primary database can
be automatically relayed from the primary database to the standby databases with a guarantee of
no data lost in the process. The standby database servers can be physically separate from the
primary server.

In the following sections you see how to configure an Oracle Data Guard environment,
followed by several Oracle features that minimize downtime during object changes.

■

■

■

A

Chapter 33: Online Application Upgrades 537

Oracle Data Guard Architecture
In a Data Guard implementation, a database running in ARCHIVELOG mode is designated as the
primary database for an application. One or more standby databases, accessible via Oracle Net,
provide for failover capabilities. Data Guard automatically transmits redo information to the standby
databases, where it is applied. As a result, the standby databases are transactionally consistent.
Depending on how you configure the redo application process, the standby databases may be
in sync with the primary database or may lag behind it.

The redo log data is transferred to the standby databases automatically as defined via your
initialization parameter settings. On the standby server, the redo log data is received and applied.

Physical vs. Logical Standby Databases
Two types of standby databases are supported: physical standbys and logical standbys. A physical
standby database has the same structures as the primary database. A logical standby database may
have different internal structures (such as additional indexes used for reporting). You synchronize
a logical standby database with the primary by transforming the redo data into SQL statements
that are executed against the standby database.

Physical and logical standby databases serve different purposes. A physical standby database
is a block-for-block copy of the primary database, so it can be used for database backups in place
of the primary database. During disaster recovery, the physical standby looks exactly like the
primary database it replaces.

A logical standby database, because it supports additional database structures, can more easily
be used to support specific reporting requirements that would otherwise burden the primary
database. Additionally, rolling upgrades of primary and standby databases can be performed with
minimal downtime when logical standbys are used. The type of standby to use depends on your
needs; many environments start out using physical standby databases for disaster recovery and then
add in other logical standby databases to support specific reporting and business requirements.

NOTE
The operating system and platform architecture on the primary and
standby locations must be identical. The directory structures and
operating system patch levels may differ, but you should minimize
the differences to simplify administration and failover processes. If the
standby is located on the same server as the primary, you must use
a different directory structure for the two databases, and they cannot
share an archive log directory.

Data Protection Modes
When you configure the primary and standby databases, you will need to determine the level of
data loss that is acceptable to the business. In the primary database, you will define the archive
log destination areas, at least one of which will refer to the remote site used by the standby
database. The ASYNC, SYNC, ARCH, LGWR, NOAFFIRM, and AFFIRM attributes of the LOG_
ARCHIVE_DEST_n parameter setting for the standby database will direct Oracle Data Guard to
select among several modes of operation:

In maximum protection (or “no data loss”) mode, at least one standby location must be
written to before a transaction commits in the primary database. The primary database
shuts down if the standby database’s log location is unavailable.

In maximum availability mode, at least one standby location must be written to before a
transaction commits in the primary database. If the standby location is not available, the

■

■

538 Part IV: PL/SQL

primary database does not shut down. When the fault is corrected, the redo generated
since the fault is transported and applied to the standby databases.

In maximum performance mode (the default), transactions can commit before their redo
information is sent to the standby locations. Commits in the primary database occur as
soon as writes to the local online redo logs complete.

Once you have decided the type of standby and the data protection mode for your
configuration, you can create your standby database.

Creating the Standby Database Configuration
You can use SQL*Plus, Oracle Enterprise Manager (OEM), or Data Guard–specific tools to configure
and administer Data Guard configurations. The parameters you set will depend on the configuration
you choose.

If the primary and standby databases are on the same server, you will need to set a value for
the DB_UNIQUE_NAME initialization parameter. Because the directory structures for the two
databases will be different, you must either manually rename files or define values for the DB_
FILE_NAME_CONVERT and LOG_FILE_NAME_CONVERT parameters in the standby database.
You must set up unique service names for the primary and standby databases via the SERVICE_
NAMES initialization parameter.

If the primary and standby databases are on separate servers, you can use the same directory
structures for each, avoiding the need for the filename conversion parameters. If you use a different
directory structure for the database files, you will need to define the values for the DB_FILE_
NAME_CONVERT and LOG_FILE_NAME_CONVERT parameters in the standby database.

In physical standby databases, all the redo comes from the primary database. When physical
standby databases are opened in read-only mode, no redo is generated. Oracle Data Guard does,
however, use archived redo log files to support the replication of the data and SQL commands
used to update the standby databases.

NOTE
For each standby database, you should create a standby redo log file
to store redo data received from the primary database.

Creating Logical Standby Databases
Logical standby databases follow many of the same steps used to create physical standby databases.
Because they rely on the reexecution of SQL commands, logical standby databases have greater
restrictions on their use. If any of your tables in the primary database use the following datatypes,
they will be skipped during the redo application process:

BFILE

ROWID

UROWID

User-defined datatypes

Object types

REFs

Varying arrays

■

■

■

■

■

■

■

■

Chapter 33: Online Application Upgrades 539

Nested tables

XMLtype

NOTE
Encrypted columns are not supported in a logical standby database.

Additionally, tables that use table compression and the schemas that are installed with the
Oracle software are skipped during redo application. The DBA_LOGSTDBY_UNSUPPORTED view
lists the objects that are not supported for logical standby databases. The DBA_LOGSTDBY_SKIP
view lists the schemas that will be skipped.

A logical standby database is not identical to the primary database. Each transaction that is
executed in the logical standby database must be the logical equivalent of the transaction that
was executed in the primary database. Therefore, you should make sure your tables have the
proper constraints on them—primary keys, unique constraints, check constraints, and foreign
keys—so the proper rows can be targeted for update in the logical standby database. You can
query DBA_LOGSTDBY_NOT_UNIQUE to list tables that lack primary keys or unique constraints
in the primary database.

Using real-time apply
By default, redo data is not applied to a standby database until the standby redo log file is archived.
When you use the real-time apply feature, redo data is applied to the standby database as it is
received, thus reducing the time lag between the databases and potentially shortening the time
required to fail over to the standby database.

To enable real-time apply in a physical standby database, execute the following command in
the standby database:

alter database recover managed standby database
using current logfile;

For a logical standby database, the command to use is

alter database start logical standby apply immediate;

The Recovery_Mode column of the V$ARCHIVE_DEST_STATUS view will have a value of
MANAGED REAL-TIME APPLY if real-time apply has been enabled.

As shown earlier in this chapter, you can enable the redo application on a physical standby
database via the command

alter database recover managed standby database
 disconnect from session;

The disconnect from session clause allows the command to run in the background after you
disconnect from your Oracle session. When you start a foreground session and issue the same
command without the disconnect from session clause, control is not returned to the command
prompt until the recovery is cancelled by another session. To stop the redo application in a
physical standby database—whether in a background session or a foreground session—use the
following command:

alter database recover managed standby database cancel;

■

■

540 Part IV: PL/SQL

For a logical standby database, the command to stop the log apply services is

alter database stop logical standby apply;

Managing Roles—Switchovers and Failovers
Each database that participates in a Data Guard configuration has a role—it is either a primary
database or a standby database. At some point, those roles may need to change. For example, if
there is a hardware failure on the primary database’s server, the primary database may fail over to
the standby database. Depending on your configuration choices, there may be some loss of data
during a failover.

A second type of role change is called a switchover. This occurs when the primary database
switches roles with a standby database, and the standby becomes the new primary database.
During a switchover, no data should be lost. Switchovers and failovers require manual intervention
by a database administrator.

Switchovers
Switchovers are planned role changes, usually to allow for maintenance activities to be performed
on the primary database server. A standby database is chosen to act as the new primary database,
the switchover occurs, and applications now write their data to the new primary database. At
some later point in time you can switch the databases back to their original roles.

NOTE
You can perform switchovers with either a logical standby database
or a physical standby database; the physical standby database is the
preferred option.

What if you have defined multiple standby databases? When one of the physical standby
databases becomes the new primary database, the other standby databases must be able to
receive their redo log data from the new primary database. In that configuration, you must define
the LOG_ARCHIVE_DEST_n parameters to allow those standby sites to receive data from the new
primary database location.

NOTE
Verify that the database that will become the new primary database is
running in ARCHIVELOG mode.

The following sections detail the steps required to perform a switchover to a standby database.
The standby database should be actively applying redo log data prior to the switchover, because
this will minimize the time required to complete the switchover.

Switchovers to Physical Standby Databases
Switchovers are initiated on the primary database and completed on the standby database. In this
section, you will see the steps for performing a switchover to a physical standby database.

Begin by verifying that the primary database is capable of performing a switchover. Query
V$DATABASE for the value of the Switchover_Status column:

select Switchover_Status from V$DATABASE;

Chapter 33: Online Application Upgrades 541

If the Switchover_Status column’s value is anything other than TO STANDBY, it is not possible
to perform the switchover (usually due to a configuration or hardware issue). If the column’s value
is SESSIONS ACTIVE, you should terminate active user sessions. Valid values for the Switchover_
Status column are shown in Table 33-1.

From within the primary database, you can initiate its transition to the physical standby
database role with the following command:

alter database commit to switchover to physical standby;

As part of executing this command, Oracle will back up the current primary database’s
controlfile to a trace file. At this point, you should shut down the primary database and mount it:

shutdown immediate;
startup mount;

The primary database is prepared for the switchover; you should now go to the physical
standby database that will serve as the new primary database.

In the physical standby database, check the switchover status in the V$DATABASE view;
its status should be TO PRIMARY (see Table 33-1). You can now switch the physical standby
database to the primary via the following command:

alter database commit to switchover to primary;

Switchover_Status Value Description

NOT ALLOWED The current database is not a primary database with standby
databases.

PREPARING DICTIONARY This logical standby database is sending its redo data to a
primary database and other standby databases to prepare for
the switchover.

PREPARING SWITCHOVER Used by logical standby configurations while redo data is
being accepted for the switchover.

RECOVERY NEEDED This standby database has not received the switchover request.

SESSIONS ACTIVE There are active SQL sessions in the primary database; they
must be disconnected before continuing.

SWITCHOVER PENDING Valid for standby databases in which the primary database
switchover request has been received but not processed.

SWITCHOVER LATENT The switchover did not complete and went back to the
primary database.

TO LOGICAL STANDBY This primary database has received a complete dictionary
from a logical standby database.

TO PRIMARY This standby database can switch over to a primary database.

TO STANDBY This primary database can switch over to a standby database.

TABLE 33-1 Switchover_Status Values

542 Part IV: PL/SQL

Shut down and start up the database, and it will complete its transition to the primary
database role. After the database starts, force a log switch via the alter system switch logfile
command and then start the redo apply services on the standby databases if they were not
already running in the background.

Switchovers to Logical Standby Databases
Switchovers are initiated on the primary database and completed on the standby database. In this
section, you will see the steps for performing a switchover to a logical standby database.

Begin by verifying that the primary database is capable of performing a switchover. Query
V$DATABASE for the value of the Switchover_Status column:

select Switchover_Status from V$DATABASE;

For the switchover to complete, the status must be either TO STANDBY, TO LOGICAL
STANDBY, or SESSIONS ACTIVE.

In the primary database, issue the following command to prepare the primary database for the
switchover:

alter database prepare to switchover to logical standby;

In the logical standby database, issue the following command:

alter database prepare to switchover to primary;

At this point, the logical standby database will begin transmitting its redo data to the current
primary database and to the other standby databases in the configuration. The redo data from the
logical standby database is sent but is not applied at this point.

In the primary database, you must now verify that the dictionary data was received from the
logical standby database. The Switchover_Status column value in V$DATABASE must read TO
LOGICAL STANDBY in the primary database before you can continue to the next step. When that
status value is shown in the primary database, switch the primary database to the logical standby role:

alter database commit to switchover to logical standby;

You do not need to shut down and restart the old primary database. You should now go back
to the original logical standby database and verify its Switchover_Status value in V$DATABASE (it
should be TO PRIMARY). You can then complete the switchover; in the original logical standby
database, issue the following command:

alter database commit to switchover to primary;

The original logical standby database is now the primary database. In the new primary
database, perform a log switch:

alter system archive log current;

In the new logical standby database (the old primary database), start the redo apply process:

alter database start logical standby apply;

The switchover is now complete.

Chapter 33: Online Application Upgrades 543

Making Low-Impact DDL Changes
If you only have one database available, you need to be careful when making changes to your
tables and indexes. When you create or modify an object, you must first acquire a DDL lock on
the object to prevent other types of access against the object. Because of this locking issue, you
will need to avoid changing objects while users are accessing them. Furthermore, changing an
object will invalidate the stored procedures that reference the object.

Although you should ideally make changes to objects at times when users are not accessing
them, your maintenance time windows may not be sufficiently large enough to support that
requirement. You should always plan for enough time to make the change, test the change, and
recompile any objects that the change impacts. In the following sections you will see methods
for making changes in ways that minimize the size of the maintenance window needed.

Creating Virtual Columns
As of Oracle 11g, you can create virtual columns in tables rather than storing derived data. You
may have a virtual column that is based on other values in the same row (adding two columns
together, for instance). In Oracle 11g, you can specify the function as part of the table definition,
which allows you to index the virtual column and partition the table by it.

From a change perspective, the benefit to this feature is that you can avoid creating physical
columns in the database. Rather than trying to add a column of derived data to a very large table,
you can create a virtual column—and the data will be available to the users even though you
have not executed a very time-consuming DDL command.

Consider the AUTHOR table:

create table AUTHOR
(AuthorName VARCHAR2(50) primary key,
Comments VARCHAR2(100));

When values are inserted into AUTHOR, they are inserted in uppercase:

insert into AUTHOR values
('DIETRICH BONHOEFFER', 'GERMAN THEOLOGIAN, KILLED IN A WAR CAMP');

insert into AUTHOR values
('ROBERT BRETALL','KIERKEGAARD ANTHOLOGIST');

You can create an additional mixed-case column using the generated always clause to tell
Oracle to create the virtual column:

create table AUTHOR2
(AuthorName VARCHAR2(50) primary key,
Comments VARCHAR2(100),
MixedName VARCHAR2(50)
 generated always as
 (initcap(AuthorName)) virtual
);

The code used to create the virtual column can be complex, including case statements and
other functions. Note that you do not have to create triggers or other mechanisms to populate the
column; Oracle maintains it as a virtual value for each row in the table. The value is not physically
stored with the table; it is generated when needed.

544 Part IV: PL/SQL

NOTE
Attempts to provide a value for the virtual column during inserts will
result in an error.

You can create an index on the virtual column as if it were a standard column in the table.
Additionally, you can partition the table based on this column (as described later in this chapter).

Altering Actively Used Tables
When you issue the alter table command, Oracle attempts to acquire a DDL lock on the table. If
anyone else is accessing the table at that time, your command will fail—you need to have exclusive
access to the table while you are changing its structure. You may need to try repeatedly to execute
your command in order to acquire the lock you need.

As of Oracle 11g, you can use the DDL lock timeout options to work around this problem.
You can execute the alter session command to set a value for the ddl-_lock_timeout parameter,
specifying the number of seconds during which Oracle should continually retry your command.
The retry attempts will continue until the command is successful or the timeout limit is reach,
whichever comes first.

To try your command for 60 seconds, issue the following command:

alter session set ddl_lock_timeout=60;

DBAs can enable this at the database level via the alter system command, as shown here:

alter system set ddl_lock_timeout=60;

Adding NOT NULL Columns
In Oracle 11g, you can add NOT NULL columns to tables that already contain rows. To do so,
you must specify a default value for the new column. For very large tables, this can present a
problem because millions of rows may need to be updated to contain the new column value.
Oracle 11g automatically handles this in a way that avoids significant impacts to the users.

Let’s consider again an attempt to add just the Condition column to the TROUBLE table:

alter table TROUBLE add (Condition VARCHAR2(9) NOT NULL);

If TROUBLE already has rows, the Condition column can’t be added because the existing
rows would have NULL values for it. The solution is to add a DEFAULT constraint for the
Condition column:

alter table TROUBLE add (Condition VARCHAR2(9)
 default 'SUNNY' NOT NULL);

Oracle will now create the new column, but it will not update the existing rows. If a user
selects a row that has a null value in the Condition column, the default value will be returned.
Oracle’s approach solves two problems: It lets you add a NOT NULL column, and it avoids
having to update every existing row. In large tables, that can represent a significant savings in
terms of the space required to support the transaction size.

Online Object Reorganizations
Several online options are available when moving an object online. For indexes, you can use the
alter index rebuild online clause to modify an index while its base table is being accessed. You
can use the alter index rebuild online command to move the partitions of an existing index.

Chapter 33: Online Application Upgrades 545

For index-organized tables, you can use the move online option of the alter table command.
For partitioned tables, you can move partitions via the partition clauses of the alter table

command.
You can perform online reorganizations of most types of tables via the DBMS_REDEFINITION

package. The DBMS_REDEFINITION approach creates a replica of your table and creates triggers
and logs to keep the replica in sync with the original table (as if it were a materialized view). The
movement of the table data can take place any time you want; you can execute manual refreshes
of the data in the replica. When you are ready to apply the change to your system, the FINISH_
REDEF_TABLE completes the redefinition process and the replica takes the place of the original
table. Note that the original table will still exist and will still have all its original data until you
manually drop it.

The redefinition process has five steps:

 1. Verify the table can be rebuilt online.

 2. Create an interim table and its indexes, grants, constraints, and triggers.

 3. Start the redefinition.

 4. Optionally sync the source/destination tables.

 5. Abort or finish the redefinition.

The following steps show the redefinition of the PRACTICE.EMP table from the USERS to the
USERS_DEST tablespace. In the process, we’ll also partition the EMP table on the fly.

Verify the Table Can Be Rebuilt Online
To verify the table can be rebuilt online, execute the CAN_REDEF_TABLE procedure, providing
the schema owner and table name as input:

execute DBMS_REDEFINITION.CAN_REDEF_TABLE('SCOTT','EMP');

If an error stack is reported, the first error listed will tell you what the problem is; later errors
concerning the DBMS_REDEFINITION package can be ignored.

Create the Interim Table
What do you want EMP to look like in the new tablespace? Create an interim table that will be
used during the redefinition process. To simplify matters, keep the column names and order the
same as the source EMP table.

create table EMP_DEST
(EMPNO NUMBER(4) PRIMARY KEY,
 ENAME VARCHAR2(10),
 JOB VARCHAR2(9),
 MGR NUMBER(4),
 HIREDATE DATE,
 SAL NUMBER(7,2),
 COMM NUMBER(7,2),
 DEPTNO NUMBER(2))
partition by range (DeptNo)
(partition PART1
 values less than ('30'),
 partition PART2
 values less than (MAXVALUE))
 tablespace USERS_DEST;

546 Part IV: PL/SQL

In this example, the EMP_DEST table will serve as the interim table during the redefinition.
Once the process is complete, EMP_DEST will replace the old EMP table—and the only indexes,
constraints, triggers, and grants available for EMP then will be those you create on EMP_DEST
now. You can optionally create the indexes, triggers, grants, and constraints after the redefinition
process completes, but creating them now avoids the need for DDL locks on active tables later.

You can execute the COPY_TABLE_DEPENDENTS procedure to create on the target (EMP_
DEST) all the indexes, triggers, constraints, privileges, and statistics that exist on the source. The
format for COPY_TABLE_DEPENDENTS is shown in the following listing:

DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS(
 uname IN VARCHAR2,
 orig_table IN VARCHAR2,
 int_table IN VARCHAR2,
 copy_indexes IN PLS_INTEGER := 1,
 copy_triggers IN BOOLEAN := TRUE,
 copy_constraints IN BOOLEAN := TRUE,
 copy_privileges IN BOOLEAN := TRUE,
 ignore_errors IN BOOLEAN := FALSE,
 num_errors OUT PLS_INTEGER,
 copy_statistics IN BOOLEAN := FALSE,
 copy_mvlog IN BOOLEAN := FALSE);

Start the Redefinition
The START_REDEF_TABLE procedure begins the redefinition. The EMP_DEST table will now be
populated with the committed data in the EMP table, so the time and undo requirements for this
step depend on the size of the EMP table. Pass the schema owner, old table name, and the interim
table name as parameters:

execute DBMS_REDEFINITION.START_REDEF_TABLE -
 ('SCOTT','EMP','EMP_DEST');

If EMP_DEST had a different column list than EMP, that column list would be passed as the
fourth parameter to the START_REDEF_TABLE procedure. Once this procedure has completed,
you can query EMP_DEST to verify its data contents.

Abort the Process (Optional)
If you need to abort the redefinition process at this point, use the ABORT_REDEF_TABLE
procedure, with the schema owner, source table, and interim table as input parameters:

execute DBMS_REDEFINITION.ABORT_REDEF_TABLE -
 ('SCOTT','EMP','EMP_DEST');

After aborting the redefinition, you should consider truncating the interim (EMP_DEST) table
as well.

Sync the Tables (Optional)
During the conclusion of the redefinition process, Oracle will sync the data between the source
and interim tables. To shorten the time required by that part of the process, you can sync the tables
prior to the final step. This optional step allows you to instantiate the latest production data in the
interim table, minimizing later impact on your online users.

Chapter 33: Online Application Upgrades 547

To sync the source and interim tables, use the SYNC_INTERIM_TABLE procedure, with the
schema owner, source table, and interim table as input parameters:

execute DBMS_REDEFINITION.SYNC_INTERIM_TABLE -
 ('SCOTT','EMP','EMP_DEST');

Finish the Redefinition Process
To complete the redefinition process, execute the FINISH_REDEF_TABLE procedure, as shown in
the following examples. The input parameters are the owner, source table, and interim table names.

execute DBMS_REDEFINITION.FINISH_REDEF_TABLE -
 ('SCOTT','EMP','EMP_DEST');

Verify the Redefinition
Because the EMP table should now be partitioned and moved to USERS_DEST, you can verify its
redefinition by querying DBA_TAB_PARTITIONS:

select Table_Name, Tablespace_Name, High_Value
 from DBA_TAB_PARTITIONS
 where Owner = 'SCOTT';

TABLE_NAME TABLESPACE_NAME HIGH_VALUE
------------ --------------- ----------
EMP USERS_DEST MAXVALUE
EMP USERS_DEST '30'

As shown in the preceding listing, the EMP table partitions both reside in the USERS_DEST
tablespace. At this point, you should verify that the foreign keys on EMP are enabled, that all
necessary grants are in place, that the indexes are all in place, and that all triggers are enabled.

Dropping a Column
You can use the table reorganization options to drop columns (because the source and target can
have different column definitions). As an alternative, you can mark columns to have an “unused”
state during regular usage, then drop them when a longer maintenance window is available.

For example, you can mark the Wind column as unused:

alter table TROUBLE set unused column Wind;

Marking a column as “unused” does not release the space previously used by the column
until you drop the unused columns:

alter table TROUBLE drop unused columns;

You can query USER_UNUSED_COL_TABS, ALL_UNUSED_COL_TABS, and DBA_UNUSED_
COL_TABS to see all tables with columns marked as unused.

NOTE
Once you have marked a column as “unused,” you cannot access that
column.

548 Part IV: PL/SQL

You can drop multiple columns in a single command, as shown in the following listing:

alter table TROUBLE drop (Condition, Wind);

NOTE
When dropping multiple columns, you should not use the column
keyword of the alter table command; it causes a syntax error. The
multiple column names must be enclosed in parentheses, as shown
in the preceding listing.

If the dropped columns are part of primary keys or unique constraints, you will need to also
use the cascade constraints clause as part of your alter table command. If you drop a column that
belongs to a primary key, Oracle will drop both the column and the primary key index.

CHAPTER
34

Triggers

549

550 Part IV: PL/SQL

 trigger defines an action the database should take when some database-related
event occurs. Triggers may be used to supplement declarative referential integrity,
to enforce complex business rules, or to audit changes to data. The code within a
trigger, called the trigger body, is made up of PL/SQL blocks (see Chapter 32).

The execution of triggers is transparent to the user. Triggers are executed by the database when
specific types of data manipulation commands are performed on specific tables. Such commands
may include inserts, updates, and deletes. Updates of specific columns may also be used as
triggering events. Triggering events may also include DDL commands and database events such
as shutdowns and logins.

Because of their flexibility, triggers may supplement referential integrity; they should not be
used to replace it. When enforcing the business rules in an application, you should first rely on
the declarative referential integrity available with Oracle; use triggers to enforce rules that cannot
be coded through referential integrity.

Required System Privileges
To create a trigger on a table, you must be able to alter that table. Therefore, you must either own
the table, or have the ALTER privilege for the table, or have the ALTER ANY TABLE system privilege.
In addition, you must have the CREATE TRIGGER system privilege; to create triggers in another
user’s schema you must have the CREATE ANY TRIGGER system privilege.

To alter a trigger, you must either own the trigger or have the ALTER ANY TRIGGER system
privilege. You may also enable or disable triggers by altering the tables they are based on, which
requires that you have either the ALTER privilege for that table or the ALTER ANY TABLE system
privilege. For information on altering triggers, see “Enabling and Disabling Triggers,” later in this
chapter.

To create a trigger on a database-level event, you must have the ADMINISTER DATABASE
TRIGGER system privilege.

Required Table Privileges
Triggers may reference tables other than the one that initiated the triggering event. For example, if you
use triggers to audit changes to data in the BOOKSHELF table, then you may insert a record into a
different table (say, BOOKSHELF_AUDIT) every time a record is changed in BOOKSHELF. To do this,
you need to have privileges to insert into BOOKSHELF_AUDIT (to perform the triggered transaction).

NOTE
The privileges needed for triggered transactions cannot come from
roles; they must be granted directly to the creator of the trigger.

Types of Triggers
A trigger’s type is defined by the type of triggering transaction and by the level at which the trigger
is executed. In the following sections, you will see descriptions of these classifications, along with
relevant restrictions.

Row-Level Triggers
Row-level triggers execute once for each row affected by a DML statement. For the BOOKSHELF
table auditing example described earlier, each row that is changed in the BOOKSHELF table may

A

Chapter 34: Triggers 551

be processed by the trigger. Row-level triggers are the most common type of trigger; they are often
used in data auditing applications. Row-level triggers are also useful for keeping distributed data
in sync. Materialized views, which use internal row-level triggers for this purpose, are described
in Chapter 26.

Row-level triggers are created using the for each row clause in the create trigger command.
The syntax for triggers is shown in “Trigger Syntax,” later in this chapter.

Statement-Level Triggers
Statement-level triggers execute once for each DML statement. For example, if a single insert
statement inserts 500 rows into the BOOKSHELF table, a statement-level trigger on that table
would only be executed once. Statement-level triggers therefore are not often used for data-
related activities; they are normally used to enforce additional security measures on the types
of actions that may be performed on a table.

Statement-level triggers are the default type of trigger created via the create trigger command.
The syntax for triggers is shown in “Trigger Syntax,” later in this chapter.

BEFORE and AFTER Triggers
Because triggers are executed by events, they may be set to occur immediately before or after
those events. Since the events that execute triggers include database DML statements, triggers
can be executed immediately before or after inserts, updates, and deletes. For database-level
events, additional restrictions apply; you cannot trigger an event to occur before a login or
startup takes place.

Within the trigger, you can reference the old and new values involved in the DML statement.
The access required for the old and new data may determine which type of trigger you need.
“Old” refers to the data as it existed prior to the DML statement; updates and deletes usually
reference old values. “New” values are the data values that the DML statement creates (such as
the columns in an inserted record).

If you need to set a column value in an inserted row via your trigger, then you need to use a
BEFORE INSERT trigger to access the “new” values. Using an AFTER INSERT trigger would not
allow you to set the inserted value, since the row will already have been inserted into the table.

Row-level AFTER triggers are frequently used in auditing applications, since they do not fire
until the row has been modified. The row’s successful modification implies that it has passed the
referential integrity constraints defined for that table.

INSTEAD OF Triggers
You can use INSTEAD OF triggers to tell Oracle what to do instead of performing the actions that
invoked the trigger. For example, you could use an INSTEAD OF trigger on a view to redirect
inserts into a table or to update multiple tables that are part of a view. You can use INSTEAD OF
triggers on either object views (see Chapter 38) or relational views.

For example, if a view involves a join of two tables, your ability to use the update command
on records in the view is limited. However, if you use an INSTEAD OF trigger, you can tell Oracle
how to update, delete, or insert records in the view’s underlying tables when a user attempts to
change values via the view. The code in the INSTEAD OF trigger is executed in place of the
insert, update, or delete command you enter.

NOTE
You can access or change LOB data within BEFORE and INSTEAD OF
triggers.

552 Part IV: PL/SQL

In this chapter, you will see how to implement basic triggers. INSTEAD OF triggers, which
were initially introduced to support object views, are described in Chapter 38.

Schema Triggers
You can create triggers on schema-level operations such as create table, alter table, drop table,
audit, rename, truncate, and revoke. You can even create a before ddl trigger. For the most
part, schema-level triggers provide two capabilities: preventing DDL operations and providing
additional security monitoring when DDL operations occur.

Database-Level Triggers
You can create triggers to be fired on database events, including errors, logins, logoffs, shutdowns,
and startups. You can use this type of trigger to automate database maintenance or auditing actions.
Virtual Private Databases, as described in Chapter 20, rely on database-level triggers to establish
session-context variable values.

Compound Triggers
As of Oracle 11g, you can combine multiple types of triggers in a single compound trigger. You
can use a compound trigger to perform calculations and processing that would not be possible if
the triggers were executed separately. For example, you may have an INSERT trigger that requires
a calculation of an average value from the table you are inserting rows into. Ordinarily that would
generate a “mutating table” error—the inserted row changes the table and therefore would change
the average value. You can use compound triggers to share variable values among various
triggered commands and avoid mutating table errors.

Trigger Syntax
The full syntax for the create trigger command is shown in the Alphabetical Reference section of
this book. The following listing contains an abbreviated version of the command syntax:

create [or replace] trigger [schema .] trigger
{ before | after | instead of }
{ dml_event_clause
| { ddl_event [or ddl_event]...
 | database_event [or database_event]...
 }
 on { [schema .] schema | database }
}
[when (condition)]
{ pl/sql_block | call_procedure_statement }

The syntax options available depend on the type of trigger in use. For example, a trigger on a
DML event will use the dml_event_clause, which follows this syntax:

{ delete | insert | update [of column [, column]...] }
[or { delete | insert | update [of column [, column]...] }]...
on { [schema .] table | [nested table nested_table_column of]
[schema .] view }
[referencing_clause] [for each row]

Chapter 34: Triggers 553

Clearly, there is a great deal of flexibility in the design of a trigger. The before and after
keywords indicate whether the trigger should be executed before or after the triggering event. If
the instead of clause is used, the trigger’s code will be executed instead of the event that caused
the trigger to be invoked. The delete, insert, and update keywords (the last of which may include
a column list) indicate the type of data manipulation that will constitute a triggering event. When
referring to the old and new values of columns, you can use the defaults (“old” and “new”) or you
can use the referencing clause to specify other names.

When the for each row clause is used, the trigger will be a row-level trigger; otherwise, it will
be a statement-level trigger. The when clause is used to further restrict when the trigger is executed.
The restrictions enforced in the when clause may include checks of old and new data values.

For example, suppose we want to track any changes to the Rating value in the BOOKSHELF
table whenever rating values are lowered. First, we’ll create a table that will store the audit records:

drop table BOOKSHELF_AUDIT;
create table BOOKSHELF_AUDIT
(Title VARCHAR2(100),
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Old_Rating VARCHAR2(2),
New_Rating VARCHAR2(2),
Audit_Date DATE);

The following row-level BEFORE UPDATE trigger will be executed only if the Rating value is
lowered. This example also illustrates the use of the new keyword, which refers to the new value
of the column, and the old keyword, which refers to the old value of the column.

create or replace trigger BOOKSHELF_BEF_UPD_ROW
before update on BOOKSHELF
for each row
when (new.Rating < old.Rating)
begin
 insert into BOOKSHELF_AUDIT
 (Title, Publisher, CategoryName,
 Old_Rating, New_Rating, Audit_Date)
 values
 (:old.Title, :old.Publisher, :old.CategoryName,
 :old.Rating, :new.Rating, Sysdate);
end;
/

Breaking this create trigger command into its components makes it easier to understand. First,
the trigger is named:

create or replace trigger BOOKSHELF_BEF_UPD_ROW

The name of the trigger contains the name of the table it acts upon and the type of trigger it is.
(See “Naming Triggers,” later in this chapter, for information on naming conventions.)

This trigger applies to the BOOKSHELF table; it will be executed before update transactions
have been committed to the database:

before update on BOOKSHELF

554 Part IV: PL/SQL

Because the for each row clause is used, the trigger will apply to each row changed by the
update statement. If this clause is not used, then the trigger will execute at the statement level.

for each row

The when clause adds further criteria to the triggering condition. The triggering event not only
must be an update of the BOOKSHELF table, but also must reflect a lowering of the Rating value:

when (new.Rating < old.Rating)

The PL/SQL code shown in the following listing is the trigger body. The commands shown here
are to be executed for every update of the BOOKSHELF table that passes the when condition. For
this to succeed, the BOOKSHELF_AUDIT table must exist, and the owner of the trigger must have
been granted privileges (directly, not via roles) on that table. This example inserts the old values
from the BOOKSHELF record into the BOOKSHELF_AUDIT table before the BOOKSHELF record
is updated.

begin
 insert into BOOKSHELF_AUDIT
 (Title, Publisher, CategoryName,
 Old_Rating, New_Rating, Audit_Date)
 values
 (:old.Title, :old.Publisher, :old.CategoryName,
 :old.Rating, :new.Rating, Sysdate);
end;

NOTE
When the new and old keywords are referenced in the PL/SQL block,
they are preceded by colons (:).

This example is typical of auditing triggers. The auditing activity is completely transparent to
the user who performs the update of the BOOKSHELF table. However, the transaction against the
BOOKSHELF table is dependent on the successful execution of the trigger.

Combining DML Trigger Types
Triggers for multiple insert, update, and delete commands on a table can be combined into a
single trigger, provided they are all at the same level (row level or statement level). The following
example shows a trigger that is executed whenever an insert or an update occurs. Several points
(shown in bold) should stand out in this example:

The update portion of the trigger occurs only when the Rating column’s value is updated.

An if clause is used within the PL/SQL block to determine which of the two commands
invoked the trigger.

The column to be changed is specified in the dml_event_clause instead of in the when
clause, as in prior examples.

drop trigger BOOKSHELF_BEF_UPD_ROW;

create or replace trigger BOOKSHELF_BEF_UPD_INS_ROW
before insert or update of Rating on BOOKSHELF
for each row

■

■

■

Chapter 34: Triggers 555

begin
 if INSERTING then
 insert into BOOKSHELF_AUDIT
 (Title, Publisher, CategoryName,
 New_Rating, Audit_Date)
 values
 (:new.Title, :new.Publisher, :new.CategoryName,
 :new.Rating, Sysdate);
 else -- if not inserting then we are updating the Rating
 insert into BOOKSHELF_AUDIT
 (Title, Publisher, CategoryName,
 Old_Rating, New_Rating, Audit_Date)
 values
 (:old.Title, :old.Publisher, :old.CategoryName,
 :old.Rating, :new.Rating, Sysdate);
 end if;
end;
/

Again, look at the trigger’s component parts. First, it is named and identified as a BEFORE
INSERT and BEFORE UPDATE (of Rating) trigger, executing for each row:

create or replace trigger BOOKSHELF_BEF_UPD_INS_ROW
before insert or update of Rating on BOOKSHELF
for each row

The trigger body then follows. In the first part of the trigger body, shown in the following
listing, the type of transaction is checked via an if clause. Valid transaction types are INSERTING,
DELETING, and UPDATING. In this case, the trigger checks to see if the record is being inserted
into the BOOKSHELF table. If it is, then the first part of the trigger body is executed. The INSERTING
portion of the trigger body inserts the new values of the record into the BOOKSHELF_AUDIT table.

begin
 if INSERTING then
 insert into BOOKSHELF_AUDIT
 (Title, Publisher, CategoryName,
 New_Rating, Audit_Date)
 values
 (:new.Title, :new.Publisher, :new.CategoryName,
 :new.Rating, Sysdate);

Other transaction types can then be checked. In this example, because the trigger executed,
the transaction must be either an insert or an update of the Rating column. Since the if clause in
the first half of the trigger body checks for inserts, and the trigger is only executed for inserts and
updates, the only conditions that should execute the second half of the trigger body are updates
of Rating. Therefore, no additional if clauses are necessary to determine the DML event type. This
portion of the trigger body is the same as in the previous example: Prior to being updated, the old
values in the row are written to the BOOKSHELF_AUDIT table.

else –- if not inserting then we are updating the Rating
 insert into BOOKSHELF_AUDIT
 (Title, Publisher, CategoryName,
 Old_Rating, New_Rating, Audit_Date)

556 Part IV: PL/SQL

 values
 (:old.Title, :old.Publisher, :old.CategoryName,
 :old.Rating, :new.Rating, Sysdate);

Combining trigger types in this manner may help you to coordinate trigger development among
multiple developers, since it consolidates all the database events that depend on a single table.

Setting Inserted Values
You may use triggers to set column values during inserts and updates. The previous examples in
this chapter set the BOOKSHELF_AUDIT.Audit_Date value to the result of the SYSDATE function.
You may also use updates to support different application needs, such as storing an uppercase
version of a value along with the mixed-case version entered by users. In that case, you may have
partially denormalized your table to include a column for the derived data. Storing this data in an
uppercase format (for this example, in the column UpperPerson) allows you to display data to the
users in its natural format while using the uppercase column during queries.

Because the uppercase version of the value is derived data, it may become out of sync with
the user-entered column. Unless your application supplies a value for the uppercase version
during inserts, that column’s value will be NULL when a new row is entered.

To avoid this synchronization problem, you can use a table-level trigger. Put a BEFORE
INSERT and a BEFORE UPDATE trigger on the table; they will act at the row level. As shown in
the following listing, this approach can set a new value for UpperName every time the Name
column’s value is changed in BOOKSHELF_CHECKOUT:

alter table BOOKSHELF_CHECKOUT add (UpperName VARCHAR2(25));

create or replace trigger BOOKSHELF_CHECKOUT_BUI_ROW
before insert or update of Name on BOOKSHELF_CHECKOUT
for each row
begin
 :new.UpperName := UPPER(:new.Name);
end;
/

In this example, the trigger body determines the value for UpperName by using the UPPER
function on the Name column. This trigger will be executed every time a row is inserted into
BOOKSHELF_CHECKOUT and every time the Name column is updated. The Name and
UpperName columns will thus be kept in sync.

Maintaining Duplicated Data
The method of setting values via triggers, shown in the preceding section, can be combined with
the remote data access methods described in Chapter 25. As with materialized views, you may
replicate all or some of the rows in a table.

For example, you may want to create and maintain a second copy of your application’s audit
log. By doing so, you safeguard against a single application’s erasing the audit log records created
by multiple applications. Duplicate audit logs are frequently used in security monitoring.

Consider the BOOKSHELF_AUDIT table used in the examples in this chapter. A second table,
BOOKSHELF_AUDIT_DUP, could be created, possibly in a remote database. For this example,
assume that a database link called AUDIT_LINK can be used to connect the user to the database
in which BOOKSHELF_AUDIT_DUP resides (refer to Chapter 25 for details on database links).

Chapter 34: Triggers 557

drop table BOOKSHELF_AUDIT_DUP;
create table BOOKSHELF_AUDIT_DUP
(Title VARCHAR2(100),
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Old_Rating VARCHAR2(2),
New_Rating VARCHAR2(2),
Audit_Date DATE);

To automate populating the BOOKSHELF_AUDIT_DUP table, the following trigger could be
placed on the BOOKSHELF_AUDIT table:

create or replace trigger BOOKSHELF_AUDIT_AFT_INS_ROW
after insert on BOOKSHELF_AUDIT
for each row
begin
 insert into BOOKSHELF_AUDIT_DUP@AUDIT_LINK
 (Title, Publisher, CategoryName,
 New_Rating, Audit_Date)
 values (:new.Title, :new.Publisher, :new.CategoryName,
 :new.New_Rating, :new.Audit_Date);
end;
/

As the trigger header shows, this trigger executes for each row that is inserted into the BOOKSHELF_
AUDIT table. It inserts a single record into the BOOKSHELF_AUDIT_DUP table in the database
defined by the AUDIT_LINK database link. AUDIT_LINK may point to a database located on a
remote server. If there is any problem with the remote insert initiated via the trigger, the local
insert will fail.

For asynchronous replication requirements, consider using materialized views instead (see
Chapter 26).

You can see the actions of these triggers by inserting a row into BOOKSHELF:

insert into BOOKSHELF
(Title, Publisher, CategoryName, Rating) values
('HARRY POTTER AND THE CHAMBER OF SECRETS',
'SCHOLASTIC','CHILDRENFIC','4');

1 row created.

select Title from BOOKSHELF_AUDIT;

TITLE

HARRY POTTER AND THE CHAMBER OF SECRETS

select Title from BOOKSHELF_AUDIT_DUP;

TITLE

HARRY POTTER AND THE CHAMBER OF SECRETS

558 Part IV: PL/SQL

Customizing Error Conditions
Within a single trigger, you may establish different error conditions. For each of the error conditions
you define, you may select an error message that appears when the error occurs. The error
numbers and messages that are displayed to the user are set via the RAISE_APPLICATION_ERROR
procedure, which may be called from within any trigger.

The following example shows a statement-level BEFORE DELETE trigger on the BOOKSHELF
table. When a user attempts to delete a record from the BOOKSHELF table, this trigger is executed
and checks two system conditions: that the day of the week is neither Saturday nor Sunday, and
that the Oracle username of the account performing the delete begins with the letters “LIB.” The
trigger’s components will be described following the listing.

create or replace trigger BOOKSHELF_BEF_DEL
before delete on BOOKSHELF
declare
 weekend_error EXCEPTION;
 not_library_user EXCEPTION;
begin
if TO_CHAR(SysDate,'DY') = 'SAT' or
 TO_CHAR(SysDate,'DY') = 'SUN' THEN
 RAISE weekend_error;
end if;
if SUBSTR(User,1,3) <> 'LIB' THEN
 RAISE not_library_user;
end if;
EXCEPTION
 WHEN weekend_error THEN
 RAISE_APPLICATION_ERROR (-20001,
 'Deletions not allowed on weekends');
 WHEN not_library_user THEN
 RAISE_APPLICATION_ERROR (-20002,
 'Deletions only allowed by Library users');
end;
/

The header of the trigger defines it as a statement-level BEFORE DELETE trigger:

create or replace trigger BOOKSHELF_BEF_DEL
before delete on BOOKSHELF

There are no when clauses in this trigger, so the trigger body is executed for all deletes.
The next portion of the trigger declares the names of the two exceptions that are defined

within this trigger:

declare
 weekend_error EXCEPTION;
 not_library_user EXCEPTION;

The first part of the trigger body contains an if clause that uses the TO_CHAR function on the
SYSDATE function. If the current day is either Saturday or Sunday, then the WEEKEND_ERROR
error condition is raised. This error condition, called an exception, must be defined within the
trigger body.

Chapter 34: Triggers 559

begin
if TO_CHAR(SysDate,'DY') = 'SAT' or 'SAT' or
 TO_CHAR(SysDate,'DY') = 'SUN' THEN
 RAISE weekend_error;
end if;

A second if clause checks the User pseudo-column to see if its first three letters are “LIB.” If
the username does not begin with “LIB,” then the NOT_LIBRARY_USER exception is raised. In
this example, the <> operator is used; this is equivalent to != (meaning “not equals”).

if SUBSTR(User,1,3) <> 'LIB' THEN
 RAISE not_library_user;
end if;

The final portion of the trigger body tells the trigger how to handle the exceptions. It begins
with the keyword exception, followed by a when clause for each of the exceptions. Each of the
exceptions in this trigger calls the RAISE_APPLICATION_ERROR procedure, which takes two
input parameters: the error number (which must be between –20001 and –20999), and the error
message to be displayed. In this example, two different error messages are defined, one for each
of the defined exceptions:

EXCEPTION
 WHEN weekend_error THEN
 RAISE_APPLICATION_ERROR (-20001,
 'Deletions not allowed on weekends');
 WHEN not_library_user THEN
 RAISE_APPLICATION_ERROR (-20002,
 'Deletions only allowed by Library users');

The use of the RAISE_APPLICATION_ERROR procedure gives you great flexibility in
managing the error conditions that may be encountered within your trigger. For a further
description of procedures, see Chapter 35.

NOTE
The exceptions will still be raised even if the delete operations find no
rows to delete.

When a non-“LIB” user attempts to delete a row from BOOKSHELF on a weekday, this is the
result:

delete from BOOKSHELF
where Title = 'MY LEDGER';

delete from BOOKSHELF
 *
ERROR at line 1:
ORA-20002: Deletions only allowed by Library users
ORA-06512: at "PRACTICE.BOOKSHELF_BEF_DEL", line 17
ORA-04088: error during execution of trigger 'PRACTICE.BOOKSHELF_BEF_DEL'

If you attempt to delete a row on a Saturday or Sunday, the ORA-20001 error is returned
instead. As soon as an exception is encountered, Oracle leaves the main executable commands
section of the trigger and processes the exception. You will only see the first exception encountered.

560 Part IV: PL/SQL

Calling Procedures Within Triggers
Rather than creating a large block of code within a trigger body, you can save the code as a stored
procedure and call the procedure from within the trigger, by using the call command. For example,
if you create an INSERT_BOOKSHELF_AUDIT_DUP procedure that inserts rows into BOOKSHELF_
AUDIT_DUP, you can call it from a trigger on the BOOKSHELF_AUDIT table, as shown in the
following listing:

create or replace trigger BOOKSHELF_AFT_INS_ROW
after insert on BOOKSHELF_AUDIT
for each row
begin
call INSERT_BOOKSHELF_AUDIT_DUP(:new.Title, :new.Publisher,
 :new.CategoryName, :new.Old_Rating, :new.New_Rating,
 :new.Audit_Date);
end;
/

Naming Triggers
The name of a trigger should clearly indicate the table it applies to, the DML commands that trigger
it, its before/after status, and whether it is a row-level or statement-level trigger. Since a trigger name
cannot exceed 30 characters in length, you need to use a standard set of abbreviations when naming.
In general, the trigger name should include as much of the table name as possible. Thus, when
creating a BEFORE UPDATE, row-level trigger on a table named BOOKSHELF_CHECKOUT, you
should not name the trigger BEFORE_UPDATE_ROW_LEVEL_BC. A better name would be
BOOKSHELF_CHECKOUT_BEF_UPD_ROW.

Creating DDL Event Triggers
You can create triggers that are executed when a DDL event occurs. If you are planning to use
this feature solely for security purposes, you should investigate using the audit command instead.
For example, you can use a DDL event trigger to execute the trigger code for create, alter, and
drop commands performed on a cluster, function, index, package, procedure, role, sequence,
synonym, table, tablespace, trigger, type, user, or view. If you use the on schema clause, the
trigger will execute for any new data dictionary objects created in your schema. The following
example will execute a procedure named INSERT_AUDIT_RECORD whenever objects are
created within your schema:

create or replace trigger CREATE_DB_OBJECT_AUDIT
after create on schema
begin
 call INSERT_AUDIT_RECORD (ora_dict_obj_name);
end;
/

As shown in this example, you can reference system attributes such as the object name. The
available attributes are listed in Table 34-1.

Chapter 34: Triggers 561

Attribute Type Description Example

ora_client_ip_address VARCHAR2 Returns the IP address
of the client in a
LOGON event when the
underlying protocol is
TCP/IP.

if (ora_sysevent = 'LOGON')
 then addr := ora_client_ip_
address;
end if;

ora_database_name VARCHAR2(50) Database name. Declare
 db_name VARCHAR2(50);
begin
 db_name := ora_database_name;
end;

ora_des_encrypted_password VARCHAR2 The DES encrypted
password of the user
being created or altered.

if (ora_dict_obj_type = 'USER')
 then insert into event_table
(ora_des_encrypted_password);
end if;

ora_dict_obj_name VARCHAR(30) Name of the dictionary
object on which
the DDL operation
occurred.

insert into event_table
('Changed object is ' || ora_
dict_obj_name');

ora_dict_obj_name_list(name_
list OUT ora_name_list_t)

BINARY_INTEGER Returns the list of object
names of objects being
modified in the event.

if (ora_sysevent = 'ASSOCIATE
STATISTICS')
 then number_modified := ora_
dict_obj_name_list (name_list);
end if;

ora_dict_obj_owner VARCHAR(30) Owner of the dictionary
object on which
the DDL operation
occurred.

insert into event_table ('object
owner is' || ora_dict_obj_
owner');

ora_dict_obj_owner_
list(owner_list OUT ora_
name_list_t)

BINARY_INTEGER Returns the list of object
owners of objects being
modified in the event.

if (ora_sysevent = 'ASSOCIATE
STATISTICS')
 then number_of_modified_
objects := ora_dict_obj_owner_
list(owner_list);
end if;

ora_dict_obj_type VARCHAR(20) Type of the dictionary
object on which
the DDL operation
occurred.

insert into event_table ('This
object is a ' || ora_dict_obj_
type);

ora_grantee(
 user_list
 OUT ora_name_list_t)

BINARY_INTEGER Returns the grantees of a
grant event in the OUT
parameter; returns the
number of grantees in
the return value.

if (ora_sysevent = 'GRANT') then
number_of_users := ora_
grantee(user_list);
end if;

ora_instance_num NUMBER Instance number. if (ora_instance_num = 1)
 then insert into event_table
('1');
end if;

ora_is_alter_column(column_
name IN VARCHAR2)

BOOLEAN Returns true if the
specified column is
altered.

if (ora_sysevent = 'ALTER' and
ora_dict_obj_type = 'TABLE')
 then alter_column := ora_is_
alter_column('FOO');
end if;

TABLE 34-1 System-Defined Event Attributes

562 Part IV: PL/SQL

Attribute Type Description Example

ora_is_creating_nested_table BOOLEAN Returns true if the
current event is creating
a nested table.

if (ora_sysevent = 'CREATE' and
ora_dict_obj_type = 'TABLE' and
ora_is_creating_nested_table)
 then insert into event_tab
values ('A nested table is
created');
end if;

ora_is_drop_column(column_
name IN VARCHAR2)

BOOLEAN Returns true if the
specified column is
dropped.

if (ora_sysevent = 'ALTER' and
ora_dict_obj_type = 'TABLE')
 then drop_column := ora_is_
drop_column('FOO');
end if;

ora_is_servererror BOOLEAN Returns true if given
error is on error stack,
FALSE otherwise.

if (ora_is_servererror(error_
number))
 then insert into event_table
('Server error!!');
end if;

ora_login_user VARCHAR2(30) Login username. select ora_login_user
from dual;

ora_partition_pos BINARY_INTEGER In an INSTEAD
OF trigger for CREATE
TABLE, the position
within the SQL text
where you could insert a
PARTITION clause.

 -- Retrieve ora_sql_txt into
-- sql_text variable first.

n := ora_partition_pos;
new_stmt :=
substr(sql_text, 1, n-1) ||
' ' || my_partition_clause ||
 ' ' || substr(sql_text, n));

ora_privilege_list(privilege_list
OUT ora_name_list_t)

BINARY_INTEGER Returns the list of
privileges being granted
by the grantee or the list
of privileges revoked
from the revokees in the
OUT parameter; returns
the number of privileges
in the return value.

if (ora_sysevent = 'GRANT' or
ora_sysevent = 'REVOKE')
 then number_of_privileges :=
ora_privilege_list(priv_list);
end if;

ora_revokee (user_list OUT
ora_name_list_t)

BINARY_INTEGER Returns the revokees of
a revoke event in the
OUT parameter; returns
the number of revokees
in the return value.

if (ora_sysevent = 'REVOKE')
then
number_of_users := ora_
revokee(user_list);

ora_server_error NUMBER Given a position (1 for
top of stack), it returns
the error number at that
position on error stack.

insert into event_table ('top
stack error ' || ora_server_
error(1));

ora_server_error_depth BINARY_INTEGER Returns the total number
of error messages on the
error stack.

n := ora_server_error_depth;
-- This value is used with
-- other functions such as
-- ora_server_error

ora_server_error_msg
(position in binary_integer)

VARCHAR2 Given a position (1 for
top of stack), it returns
the error message at that
position on error stack.

insert into event_table ('top
stack error message' || ora_
server_error_msg(1));

TABLE 34-1 System-Defined Event Attributes (continued)

Chapter 34: Triggers 563

Attribute Type Description Example

ora_server_error_num_params
(position in binary_integer)

BINARY_INTEGER Given a position (1
for top of stack), it
returns the number of
strings that have been
substituted into the error
message using a format
like “%s”.

n := ora_server_error_num_
params(1);

ora_server_error_param
(position in binary_integer,
param in binary_integer)

VARCHAR2 Given a position (1
for top of stack) and
a parameter number,
returns the matching
“%s”, “%d”, and so on
substitution value in the
error message.

-- E.g. the 2nd %s in a message
-- like "Expected %s, found %s"
param := ora_server_error_
param(1,2);

ora_sql_txt (sql_text outora_
name_list_t)

BINARY_INTEGER Returns the SQL text of
the triggering statement
in the OUT parameter.
If the statement is long,
it is broken up into
multiple PL/SQL table
elements. The function
return value specifies
how many elements are
in the PL/SQL table.

--...
-- Create table event_table
create table event_table (col
 VARCHAR2(2030));
--...
DECLARE
sql_text DBMS_STANDARD.ora_name_list_t;
n PLS_INTEGER;
v_stmt VARCHAR2(2000);
BEGIN
n := ora_sql_txt(sql_text);

FOR i IN 1..n LOOP
v_stmt := v_stmt || sql_text(i);
END LOOP;

INSERT INTO event_table VALUES ('text of
 triggering statement: ' || v_stmt);
END;

ora_sysevent VARCHAR2(20) System event firing the
trigger: Event name
is same as that in the
syntax.

Insert into event_table (ora_
sysevent);

ora_with_grant_option BOOLEAN Returns true if the
privileges are granted
with grant option.

If (ora_sysevent = 'GRANT' and
ora_with_grant_option = TRUE)
 then insert into event_table
('with grant option');
end if;

space_error_info(
error_number OUT NUMBER,
error_type OUT VARCHAR2,
object_owner OUT
VARCHAR2,
table_space_name OUT
VARCHAR2,
object_name OUT
VARCHAR2,
sub_object_name OUT
VARCHAR2)

BOOLEAN Returns true if the error
is related to an out-of-
space condition, and fills
in the OUT parameters
with information about
the object that caused
the error.

IF (space_error_info(eno,typ,owner,ts,obj,
 subobj) =TRUE)
then.put_line('The
object ' || run out of
space.');
 dbms_outputobj || ' owned by '
|| owner || ' has
end if;

TABLE 34-1 System-Defined Event Attributes (continued)

564 Part IV: PL/SQL

To protect the objects within a schema, you may want to create a trigger that is executed for
each attempted drop table command. That trigger will have to be a BEFORE DROP trigger:

create or replace trigger PREVENT_DROP
 before drop on Practice.schema
begin
 if ora_dict_obj_owner = 'PRACTICE'
 and ora_dict_obj_name like 'BOO%'
 and ora_dict_obj_type = 'TABLE'
 then
 RAISE_APPLICATION_ERROR (
 -20002, 'Operation not permitted.');
 end if;
end;
/

Note that the trigger references the event attributes within its if clauses. Attempting to drop a
table in the Practice schema whose name starts with BOO results in the following:

drop table BOOKSHELF_AUDIT_DUP;

drop table BOOKSHELF_AUDIT_DUP
*
ERROR at line 1:
ORA-00604: error occurred at recursive SQL level 1
ORA-20002: Operation not permitted.
ORA-06512: at line 6

You should verify if the intended drop operation completed successfully.
You can use the RAISE_APPLICATION_ERROR procedure to further customize the error

message displayed to the user.

Creating Database Event Triggers
Like DML events, database events can execute triggers. When a database event occurs (a shutdown,
startup, or error), you can execute a trigger that references the attributes of the event (as with DDL
events). You could use a database event trigger to perform system maintenance functions immediately
after each database startup.

For example, the following trigger pins packages on each database startup. Pinning packages
is an effective way of keeping large PL/SQL objects in the shared pool of memory, improving
performance, and enhancing database stability. This trigger, PIN_ON_STARTUP, will run each
time the database is started. You should create this trigger while connected as a user with
ADMINISTER DATABASE TRIGGER privilege.

rem while connected as a user with the
rem ADMINISTER DATABASE TRIGGER system privilege:

create or replace trigger PIN_ON_STARTUP
after startup on database
begin
 DBMS_SHARED_POOL.KEEP (
 'SYS.STANDARD', 'P');
end;
/

Chapter 34: Triggers 565

This example shows a simple trigger that will be executed immediately after a database startup. You
can modify the list of packages in the trigger body to include those most used by your applications.

Startup and shutdown triggers can access the ora_instance_num, ora_database_name, ora_
login_user, and ora_sysevent attributes listed in Table 34-1. See the Alphabetical Reference for the
full create trigger command syntax.

Creating Compound Triggers
As of Oracle 11g, you can create a trigger that has a section for each of the following timing points:
BEFORE statement, BEFORE each row, AFTER each row, and AFTER statement. The ability to
combine statement-level and row-level trigger commands allows you to perform complex commands
that share data at the statement and row level when performing processing. As a result, you can
avoid mutating table errors and can improve performance.

A compound trigger has a section for each of its component areas (before and after statements
and rows). All of those sections can access shared PL/SQL state information, such as variable values.
When the triggering statement completes, that state information is no longer available.

To create a compound trigger, use the COMPOUND TRIGGER clause of the create trigger
command, as shown in the following listing:

create or replace trigger BOOKSHELF_AUDIT_COMPOUND
after insert on BOOKSHELF_AUDIT
compound trigger
--declare and set variable values here
BEFORE STATEMENT IS
-- statement level commands
end BEFORE STATEMENT;
AFTER EACH ROW IS
begin
 insert into BOOKSHELF_AUDIT_DUP@AUDIT_LINK
 (Title, Publisher, CategoryName,
 New_Rating, Audit_Date)
 values (:new.Title, :new.Publisher, :new.CategoryName,
 :new.New_Rating, :new.Audit_Date);
end;
/

You can declare variables that will be shared across all components of the compound trigger.
For example, the BEFORE statement trigger could perform a query that calculates the average
value for a column. You could then pass that value (via the shared variables) to an AFTER EACH
ROW section of the same trigger.

NOTE
Compound triggers can only be triggered by DML statements.

To use a compound trigger, you must abide by the following restrictions:

The body of a compound trigger must be a compound trigger block.

A compound trigger must be a DML trigger.

A compound trigger must be defined on either a table or a view.

The declaration section cannot include PRAGMA AUTONOMOUS_TRANSACTION.

■

■

■

■

566 Part IV: PL/SQL

A compound trigger body cannot have an initialization block; therefore, it cannot have
an exception section. This is not a problem, because the BEFORE STATEMENT section
always executes exactly once before any other timing point section executes.

An exception that occurs in one section must be handled in that section. It cannot
transfer control to another section.

If a section includes a GOTO statement, the target of the GOTO statement must be in the
same section.

:OLD, :NEW, and :PARENT cannot appear in the declaration section, the BEFORE
STATEMENT section, or the AFTER STATEMENT section.

Only the BEFORE EACH ROW section can change the value of :NEW.

If, after the compound trigger fires, the triggering statement rolls back due to a DML
exception

 Local variables declared in the compound trigger sections are reinitialized, and any
values computed thus far are lost.

 Side effects from firing the compound trigger are not rolled back.

The firing order of compound triggers is not guaranteed. Their firing can be interleaved
with the firing of simple triggers.

If compound triggers are ordered using the FOLLOWS option, and if the target of FOLLOWS
does not contain the corresponding section as source code, the ordering is ignored.

Enabling and Disabling Triggers
Unlike declarative integrity constraints (such as NOT NULL and PRIMARY KEY), triggers do not
necessarily affect all rows in a table. They only affect operations of the specified type, and then
only while the trigger is enabled. Any data created prior to a trigger’s creation will not be affected
by the trigger.

By default, a trigger is enabled when it is created. However, there are situations in which you
may want to disable a trigger. The two most common reasons involve data loads. During large
data loads, you may want to disable triggers that would execute during the load. Disabling the
triggers during data loads may dramatically improve the performance of the load. After the data
has been loaded, you need to manually perform the data manipulation that the trigger would
have performed had it been enabled during the data load.

The second data load–related reason for disabling a trigger occurs when a data load fails and has
to be performed a second time. In such a case, it is likely that the data load partially succeeded—and
thus the trigger was executed for a portion of the records loaded. During a subsequent load, the same
records would be inserted. Thus, it is possible that the same trigger will be executed twice for the
same insert operation (when that insert operation occurs during both loads). Depending on the
nature of the operations and the triggers, this may not be desirable. If the trigger was enabled during
the failed load, then it may need to be disabled prior to the start of a second data-load process. After
the data has been loaded, you need to manually perform the data manipulation that the trigger would
have performed had it been enabled during the data load.

■

■

■

■

■

■

■

■

■

■

Chapter 34: Triggers 567

To enable a trigger, use the alter trigger command with the enable keyword. To use this
command, you must either own the table or have the ALTER ANY TRIGGER system privilege.
A sample alter trigger command is shown in the following listing:

alter trigger BOOKSHELF_BEF_UPD_INS_ROW enable;

A second method of enabling triggers uses the alter table command, with the enable all
triggers clause. You may not enable specific triggers with this command; you must use the alter
trigger command to do that. The following example shows the usage of the alter table command:

alter table BOOKSHELF enable all triggers;

To use the alter table command, you must either own the table or have the ALTER ANY TABLE
system privilege.

You can disable triggers using the same basic commands (requiring the same privileges) with
modifications to their clauses. For the alter trigger command, use the disable clause:

alter trigger BOOKSHELF_BEF_UPD_INS_ROW disable;

For the alter table command, use the disable all triggers clause:

alter table BOOKSHELF disable all triggers;

You can manually compile triggers. Use the alter trigger compile command to manually
compile existing triggers that have become invalid. Since triggers have dependencies, they can
become invalid if an object the trigger depends on changes. The alter trigger debug command
allows PL/SQL information to be generated during trigger recompilation.

Replacing Triggers
The status of a trigger is the only portion that can be altered. To alter a trigger’s body, the trigger
must be re-created or replaced. When replacing a trigger, use the create or replace trigger
command (refer to “Trigger Syntax” and the examples earlier in the chapter).

Dropping Triggers
Triggers may be dropped via the drop trigger command. To drop a trigger, you must either own
the trigger or have the DROP ANY TRIGGER system privilege. An example of this command is
shown in the following listing:

drop trigger BOOKSHELF_BEF_UPD_INS_ROW;

This page intentionally left blank

CHAPTER
35

Procedures, Functions,
and Packages

569

570 Part IV: PL/SQL

ophisticated business rules and application logic can be stored as procedures
within Oracle. Stored procedures—groups of SQL, PL/SQL, and Java statements—
enable you to move code that enforces business rules from your application to the
database. As a result, the code will be stored once for use by multiple applications.
Because Oracle supports stored procedures, the code within your applications can

become more consistent and easier to maintain.

NOTE
For details on Java and its use in stored procedures, see Chapters 42,
43, and 44. This chapter will focus on PL/SQL procedures.

You may group procedures and other PL/SQL commands into packages. In the following
sections, you will see implementation details and recommendations for packages, procedures,
and functions (procedures that can return values to the user).

You may experience performance gains when using procedures, for two reasons:

The processing of complex business rules may be performed within the database—and
therefore by the server. In client-server or three-tier applications, shifting complex
processing from the application (on the client) to the database (on the server) may
dramatically improve performance.

Because the procedural code is stored within the database and is fairly static, you may
also benefit from the reuse of the same queries within the database. The Shared SQL
Area in the System Global Area (SGA) will store the parsed versions of the executed
commands. Thus, the second time a procedure is executed, it may be able to take
advantage of the parsing that was previously performed, improving the performance
of the procedure’s execution.

In addition to these advantages, your application development efforts may also benefit.
Business rules that are consolidated within the database no longer need to be written into each
application, thus saving you time during application creation and simplifying the maintenance
process.

Required System Privileges
To create a procedural object, you must have the CREATE PROCEDURE system privilege. If
the procedural object will be in another user’s schema, then you must have the CREATE ANY
PROCEDURE system privilege.

Once a procedural object has been created, it may be executed. When a procedural object is
executed, it may rely on the table privileges of its owner or may rely on the privileges of the user
who is executing it. When the procedure is created using the definer’s rights, a user executing the
procedure does not need to be granted access to the tables that the procedure accesses. If a
procedure relies on the invoker’s rights, the user must have access to all of the database objects
accessed by the procedure. Unless stated otherwise, the examples in this chapter assume users
are executing procedures under the owner’s privileges.

To allow other users to execute your procedural object, grant them the EXECUTE privilege on
that object, as shown in the following example:

grant execute on MY_PROCEDURE to Dora;

■

■

S

Chapter 35: Procedures, Functions, and Packages 571

The user Dora will now be able to execute the procedure named MY_PROCEDURE. If you do not
grant the EXECUTE privilege to users, they must have the EXECUTE ANY PROCEDURE system
privilege in order to execute the procedure.

When executed, procedures usually have variables passed to them. For example, a procedure
that interacts with the BOOKSHELF table may accept as input a value for the Title column. In this
example, we will assume that the procedure creates a new record in the BOOKSHELF table when
a new book is received (from the list of books in the BOOK_ORDER table). This procedure can be
called from any application within the database (provided the user calling the procedure has been
granted the EXECUTE privilege for it).

The syntax used to execute a procedure depends on the environment from which the procedure
is called. From within SQL*Plus, a procedure can be executed by using the execute command,
followed by the procedure name. Any arguments to be passed to the procedure must be enclosed
in parentheses following the procedure name, as shown in the following example (which uses a
procedure called NEW_BOOK):

execute NEW_BOOK('ONCE REMOVED');

The command will execute the NEW_BOOK procedure, passing to it the value ONCE REMOVED.
From within another procedure, function, package, or trigger, the procedure can be called

without the execute command. If the NEW_BOOK procedure was called from a trigger on the
BOOK_ORDER table, the body of that trigger may include the following command:

NEW_BOOK(:new.Title);

The NEW_BOOK procedure will be executed using the new value of the Title column as its input.
(See Chapter 34 for further information on the use of old and new values within triggers.)

To execute a procedure owned by another user, you must either create a synonym for that
procedure or reference the owner’s name during the execution, as shown in the following listing:

execute Practice.NEW_BOOK('ONCE REMOVED');

The command will execute the NEW_BOOK procedure in the Practice schema.
Alternatively, a synonym for the procedure could be created by using the following command:

create synonym NEW_BOOK for Practice.NEW_BOOK;

The owner of that synonym would then no longer need to refer to the procedure’s owner to
execute the procedure. You could simply enter the command

execute NEW_BOOK('ONCE REMOVED');

and the synonym would point to the proper procedure.
When you execute remote procedures, the name of a database link must be specified (see

Chapter 25 for information on database links). The name of the database link must immediately
follow the procedure’s name and precede the variables, as shown in the following example:

execute NEW_BOOK@REMOTE_CONNECT('ONCE REMOVED');

The command uses the REMOTE_CONNECT database link to access a procedure called NEW_
BOOK in a remote database.

572 Part IV: PL/SQL

To make the location of the procedure transparent to the user, a synonym may be created for
the remote procedure, as shown in the following example:

create synonym NEW_BOOK
 for NEW_BOOK@REMOTE_CONNECT;

Once this synonym has been created, the user may refer to the remote procedure by using
the name of the synonym. Oracle assumes that all remote procedure calls involve updates in the
remote database.

Required Table Privileges
Procedural objects may reference tables. For the objects to execute properly, the owner of the
procedure, package, or function being executed must have privileges on the tables it uses. Unless
you are using invoker rights, the user who is executing the procedural object does not need
privileges on its underlying tables.

NOTE
The privileges needed for procedures, packages, and functions cannot
come from roles; they must be granted directly to the owner of the
procedure, package, or function.

Procedures vs. Functions
Procedures do not have to return a value to the caller. Functions can return a value to the caller,
and functions can be directly referenced in queries. This value is returned through the use of the
return keyword within the function. Examples of functions are shown in “create function Syntax,”
later in this chapter.

Procedures vs. Packages
Packages are groups of procedures, functions, variables, and SQL statements grouped together
into a single unit. To execute a procedure within a package, you must first list the package name,
and then list the procedure name, as shown in the following example:

execute BOOK_INVENTORY.NEW_BOOK('ONCE REMOVED');

Here, the NEW_BOOK procedure within the BOOK_INVENTORY package was executed.
Packages allow multiple procedures to use the same variables and cursors. Procedures within

packages may be either available to the public (as is the NEW_BOOK procedure in the prior example)
or private, in which case they are only accessible via commands from within the package (such
as calls from other procedures). Examples of packages are shown in “create package Syntax,” later
in this chapter.

Packages may also include commands that are to be executed each time the package is called,
regardless of the procedure or function called within the package. Thus, packages not only group
procedures but also give you the ability to execute commands that are not procedure specific. See
“create package Syntax,” later in this chapter, for an example of code that is executed each time a
package is called.

Chapter 35: Procedures, Functions, and Packages 573

create procedure Syntax
The full syntax for the create procedure command is shown in the Alphabetical Reference. The
brief syntax is

create [or replace] procedure [schema .] procedure
[(argument [in | out | in out] [nocopy] datatype
 [, argument [in | out | in out] [nocopy] datatype]...
)]
[authid { current_user | definer }]
{ is | as } { pl/sql_subprogram_body |
 language { java name 'string'| c [name name] library lib_name
}};

Both the header and the body of the procedure are created by this command.
The NEW_BOOK procedure is created by the command shown in the following listing:

create or replace procedure NEW_BOOK (aTitle IN VARCHAR2,
 aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2)
as
begin
 insert into BOOKSHELF (Title, Publisher, CategoryName, Rating)
 values (aTitle, aPublisher, aCategoryName, NULL);
 delete from BOOK_ORDER
 where Title = aTitle;
end;
/

The NEW_BOOK procedure will accept a book’s title, publisher, and category as its input. It can
be called from any application. It inserts a record into the BOOKSHELF table, with a NULL value
for the Rating column, and deletes the matching Title from the BOOK_ORDER table.

If a procedure already exists, you may replace it via the create or replace procedure command.
The benefit of using this command (instead of dropping and re-creating the old procedure) is that
the EXECUTE privilege grants previously made on the procedure will remain in place.

The IN qualifier is used for arguments for which values must be specified when calling the
procedure. In the NEW_BOOK example, the aTitle, aPublisher, and aCategoryName arguments
are declared as IN. The OUT qualifier signifies that the procedure passes a value back to the
caller through this argument. The IN OUT qualifier signifies that the argument is both an IN
and an OUT: A value must be specified for this argument when the procedure is called, and the
procedure will return a value to the caller via this argument. If no qualifier type is specified, then
the default value is IN.

In the create procedure syntax, authid refers to the type of authentication: definer rights (the
default) or invoker rights (the current_user). The nocopy keyword tells Oracle to pass the variable
value back to the user as quickly as possible.

By default, a procedure consists of a block of code written in PL/SQL (block refers to the code
that the procedure will execute when called). In the NEW_BOOK example, the block is as follows:

begin
 insert into BOOKSHELF (Title, Publisher, CategoryName, Rating)
 values (aTitle, aPublisher, aCategoryName, NULL);

574 Part IV: PL/SQL

 delete from BOOK_ORDER
 where Title = aTitle;
end;

The PL/SQL block shown is fairly simple, consisting of a single SQL statement. PL/SQL blocks
within procedures can include any DML statement; they cannot be used for DDL statements (such
as create view).

Alternatively, language refers to the language in which the code is written. For Java examples,
see Chapter 44.

The following listing shows the execution of the NEW_BOOK procedure, and the resulting
changes to the BOOK_ORDER and BOOKSHELF tables.

select Title from BOOK_ORDER;

TITLE
--
GALILEO'S DAUGHTER
GOSPEL
LONGITUDE
ONCE REMOVED
SHOELESS JOE
SOMETHING SO STRONG

execute NEW_BOOK('ONCE REMOVED','SANCTUARY PUB','ADULTNF');

PL/SQL procedure successfully completed.

select Title from BOOK_ORDER;

TITLE
--
GALILEO'S DAUGHTER
GOSPEL
LONGITUDE
SHOELESS JOE
SOMETHING SO STRONG

select * from BOOKSHELF
 where Title = 'ONCE REMOVED';

TITLE
--
PUBLISHER CATEGORYNAME RA
-------------------- -------------------- --
ONCE REMOVED
SANCTUARY PUB ADULTNF

Chapter 35: Procedures, Functions, and Packages 575

NOTE
You can make external C procedures and Java libraries available
within PL/SQL by creating external procedures. You will need to set up
an agent (named extproc by default) in the network configuration files.
If you need to reference external libraries, work with your database
administrator to configure the network environment, the agents that
are needed, and the creation of directories and libraries within the
database.

create function Syntax
The syntax for the create function command is more complicated than the syntax for the create
procedure command. At a high level, the syntax is

create [or replace] function [schema .] function
[(argument [in | out | in out] [nocopy] datatype
 [, argument [in | out | in out] [nocopy] datatype]...
)]
return datatype
[{ invoker_rights_clause | deterministic | parallel_enable_clause }
 [invoker_rights_clause | deterministic | parallel_enable_clause]...
]
{ { aggregate | pipelined } using [schema .] implementation_type
| [pipelined] { is | as } { pl/sql_function_body | call_spec }};

Both the header and the body of the function are created by this command.
The return keyword specifies the datatype of the function’s return value. This can be any valid

PL/SQL datatype (see Chapter 32). Every function must have a return clause, since the function
must, by definition, return a value to the calling environment.

The following example shows a function named OVERDUE_CHARGES, which returns the
overdue book charges by person, based on calculations against the BOOKSHELF_CHECKOUT
table. The input is the person’s name, while the output is the balance for that person.

create or replace function OVERDUE_CHARGES (aName IN VARCHAR2)
 return NUMBER
 is
 owed_amount NUMBER(10,2);
begin
 select SUM(((ReturnedDate-CheckoutDate) -14)*0.20)
 into owed_amount
 from BOOKSHELF_CHECKOUT
 where Name = aName;
 RETURN(owed_amount);
end;
/

First, the function is named and the input is specified:

create or replace function OVERDUE_CHARGES (aName IN VARCHAR2)

576 Part IV: PL/SQL

Next, we define the characteristics of the value to be returned. The definition of the variable
whose value will be returned has three parts: its datatype, its name, and its length. The datatype
in this example is set via the return NUMBER clause. The variable is then named owed_amount,
and is defined as a NUMBER(10,2). Thus, all three parts of the variable—its datatype, its name,
and its length—have been defined.

 return NUMBER
 is
 owed_amount NUMBER(10,2);

The PL/SQL block follows. In the SQL statement, the sum of all late charges ($0.20 per day
over 14 days) is calculated. The sum is selected into a variable called owed_amount (which we
previously defined). The RETURN(owed_amount) command line then returns the value in the
owed_amount variable to the calling program.

begin
 select SUM(((ReturnedDate-CheckoutDate) -14)*0.20)
 into owed_amount
 from BOOKSHELF_CHECKOUT
 where Name = aName;
 RETURN(owed_amount);
end;

If a function already exists, you may replace it via the create or replace function command. If
you use the or replace clause, any EXECUTE grants previously made on the function will remain
in place.

If the function is to be created in a different schema, you must have the CREATE ANY
PROCEDURE system privilege. If no schema is specified, the function will be created in your
schema. To create a function in your schema, you must have been granted the CREATE
PROCEDURE system privilege (which is part of the RESOURCE role). Having the privilege
to create procedures gives you the privilege to create functions and packages as well.

You can check the function by creating a variable and setting its value equal to the function’s
returned value:

variable owed number;
execute :owed := OVERDUE_CHARGES('FRED FULLER');

PL/SQL procedure successfully completed.

You can verify the results by printing the variable’s value:

print owed

 OWED

 3.8

Referencing Remote Tables in Procedures
Remote tables can be accessed by the SQL statements in procedures. A remote table can be
queried via a database link in the procedure, as shown in the following example. In this example,
the NEW_BOOK procedure inserts a record into the BOOKSHELF table in the database defined
by the REMOTE_CONNECT database link while deleting from a local copy of BOOK_ORDER.

Chapter 35: Procedures, Functions, and Packages 577

NOTE
The following example requires the existence of the REMOTE_
CONNECT database link, and a remote database containing the
referenced objects.

create or replace procedure NEW_BOOK (aTitle IN VARCHAR2,
 aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2)
as
begin
 insert into BOOKSHELF@REMOTE_CONNECT
 (Title, Publisher, CategoryName, Rating)
 values (aTitle, aPublisher, aCategoryName, NULL);
 delete from BOOK_ORDER
 where Title = aTitle;
end;
/

Procedures may also use local synonyms. For example, you may create a local synonym for a
remote table, as follows:

create synonym BOOKSHELF_REMOTE for BOOKSHELF@REMOTE_CONNECT;

You can then rewrite your procedure to remove the database link specifications:

create or replace procedure NEW_BOOK (aTitle IN VARCHAR2,
 aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2)
as
begin
 insert into BOOKSHELF_REMOTE
 (Title, Publisher, CategoryName, Rating)
 values (aTitle, aPublisher, aCategoryName, NULL);
 delete from BOOK_ORDER
 where Title = aTitle;
end;
/

Removing database link names from procedures allows you to remove the details of the
table’s physical location from the procedure. If the table changes location, only the synonym
will change, while the procedure will still be valid.

Debugging Procedures
The SQL*Plus show errors command displays all the errors associated with the most recently
created procedural object. This command checks the USER_ERRORS data dictionary view for the
errors associated with the most recent compilation attempt for that object. show errors displays
the line and column number for each error, as well as the text of the error message.

To view errors associated with previously created procedural objects, you may query USER_
ERRORS directly, as shown in the following listing. This example queries USER_ERRORS for error
messages encountered during the creation of the OVERDUE_CHARGES function shown earlier in
this chapter. If any errors were encountered, the lines in the code that resulted in the error conditions
would be returned by the query.

select Line, /*Line number of the error. */
 Position, /*Column number of the error.*/

578 Part IV: PL/SQL

 Text /*Text of the error message.*/
 from USER_ERRORS
 where Name = 'OVERDUE_CHARGES'
 and Type = 'FUNCTION'
 order by Sequence;

Valid values for the Type column are VIEW, PROCEDURE, PACKAGE, FUNCTION, and
PACKAGE BODY.

Two other data dictionary view levels—ALL and DBA—may also be used to retrieve information
about errors involving procedural objects. For information on these views, see Chapter 45.

NOTE
As of Oracle 11g, you can use the PL/SQL Hierarchical Profiler to
report the dynamic execution time by subprogram calls. Its output
displays the time for the PL/SQL steps apart from the SQL execution
time. The profile package, DBMS_HPROF, generates output for
each function call. See the package documentation for details on
the generation and interpretation of its output. See Chapter 37 for
guidance on the performance tuning of PL/SQL procedures.

In addition to the debugging information provided by the show errors command, you may
use the DBMS_OUTPUT package, one of a set of packages that is automatically installed when
you create an Oracle database.

To use DBMS_OUTPUT, you must issue the set serveroutput on command before executing
the procedural object you will be debugging.

DBMS_OUTPUT allows you to use three debugging functions within your package:

PUT Puts multiple outputs on the same line

PUT_LINE Puts each output on a separate line

NEW_LINE Used with PUT; signals the end of the current output line

PUT and PUT_LINE are used to generate the debugging information you want to display. For
example, if you are debugging a procedure that includes a loop (refer to Chapter 32), you may
want to track the changes in a variable with each pass through the loop. To track the variable’s
value, you may use a command similar to the one shown in the following listing. In this example,
the value of the Owed_Amount column is printed, prefixed by the literal string 'Owed:'.

DBMS_OUTPUT.PUT_LINE('Owed:'||Owed_Amount);

To use DBMS_OUTPUT, you should first issue the set serveroutput on command within your
session. You may also use PUT and PUT_LINE outside of loops, but such uses may be better
accomplished via the use of the return command in functions (refer to “create function Syntax,”
earlier in this chapter).

NOTE
For additional debugging capabilities, you can use the DBMS_
DEBUG procedure if you have the DEBUG CONNECT SESSION
system privilege. The DEBUG ANY PROCEDURE system privilege
is equivalent to having the DEBUG privilege for all objects in the
database.

Chapter 35: Procedures, Functions, and Packages 579

Creating Your Own Functions
Rather than just calling custom functions via execute commands, you may use them within SQL
expressions. This enables you to extend the functionality of SQL, customizing it to your needs.
Such functions can be used in the same manner as Oracle-provided functions such as SUBSTR
and TO_CHAR. Custom functions cannot be used in CHECK or DEFAULT constraints and cannot
manipulate any database values.

You can call either stand-alone functions (created via the create function command shown in
the previous sections) or functions declared in package specifications (to be covered in “create
package Syntax,” later in this chapter). Procedures are not directly callable from SQL, but may be
called by the functions you create.

For example, consider the OVERDUE_CHARGES function shown earlier in this chapter, which
calculated the total owed for overdue books. It had a single input variable—the person’s name.
However, to see the OVERDUE_CHARGES results for all of the book borrowers, you would normally
need to execute this procedure once for each record in the BOOKSHELF_CHECKOUT table.

You can improve the overdue charges calculation process. Consider the following query:

create view BOOK_BORROWERS
 as select distinct Name from BOOKSHELF_CHECKOUT;

select Name,
 OVERDUE_CHARGES(Name)
 from BOOK_BORROWERS;

Oracle returns the following output:

NAME OVERDUE_CHARGES(NAME)
------------------------- ---------------------
DORAH TALBOT -.8
EMILY TALBOT .2
FRED FULLER 3.8
GERHARDT KENTGEN 2.8
JED HOPKINS 1.4
PAT LAVAY 2.6
ROLAND BRANDT 22.6

7 rows selected.

This single query uses the custom OVERDUE_CHARGES function to calculate the overdue
charges for all book borrowers. It’s not quite correct—people are getting credit for books they
returned early. You can use the create or replace function command to add a where clause
to the function’s query:

create or replace function OVERDUE_CHARGES (aName IN VARCHAR2)
 return NUMBER
 is
 owed_amount NUMBER(10,2);
begin
 select SUM(((ReturnedDate-CheckoutDate) -14)*0.20)
 into owed_amount
 from BOOKSHELF_CHECKOUT
 where Name = aName

580 Part IV: PL/SQL

 and ReturnedDate-CheckoutDate > 14;
 RETURN(owed_amount);
end;
/

The corrected output is shown in the following listing:

select Name,
 OVERDUE_CHARGES(Name)
 from BOOK_BORROWERS;

NAME OVERDUE_CHARGES(NAME)
------------------------- ---------------------
DORAH TALBOT .4
EMILY TALBOT .8
FRED FULLER 3.8
GERHARDT KENTGEN 4.6
JED HOPKINS 1.4
PAT LAVAY 3.4
ROLAND BRANDT 22.6

The query selected each name from BOOK_BORROWERS; for each name, it executed the
OVERDUE_CHARGES function, which selected data from BOOKSHELF_CHECKOUT.

To take advantage of this feature, your functions must follow the same guidelines as Oracle’s
functions. Most notably, they must not update the database, and must contain only IN parameters.

Customizing Error Conditions
You may establish different error conditions within procedural objects (refer to Chapter 34 for
examples of customized error conditions within triggers). For each of the error conditions you
define, you may select an error message that will appear when the error occurs. The error numbers
and messages that are displayed to the user are set by you via the RAISE_APPLICATION_ERROR
procedure, which may be called from within any procedural object.

You can call RAISE_APPLICATION_ERROR from within procedures, packages, and functions.
It requires two inputs: the message number and the message text. You get to assign both the
message number and the text that will be displayed to the user. This is a very powerful addition
to the standard exceptions that are available in PL/SQL (see “Exception” in the Alphabetical
Reference).

The following example shows the OVERDUE_CHARGES function defined earlier in this
chapter. Now, however, it has an additional section (shown in bold). Titled EXCEPTION, this
section tells Oracle how to handle nonstandard processing. In this example, the NO_DATA_
FOUND exception’s standard message is overridden via the RAISE_APPLICATION_ERROR
procedure.

create or replace function OVERDUE_CHARGES (aName IN VARCHAR2)
 return NUMBER
 is
 owed_amount NUMBER(10,2);
begin
 select SUM(((ReturnedDate-CheckoutDate) -14)*0.20)
 into owed_amount

Chapter 35: Procedures, Functions, and Packages 581

 from BOOKSHELF_CHECKOUT
 where Name = aName
 and (ReturnedDate-CheckoutDate) > 14;
 RETURN(owed_amount);
 EXCEPTION
 when NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20100,
 'No books borrowed.');
end;
/

In the preceding example, the NO_DATA_FOUND exception was used. If you want to define
custom exceptions, you need to name the exception in a Declarations section of the procedure,
which immediately precedes the begin command. As shown in the following listing, this section
should include entries for each of the custom exceptions you have defined, listed as type EXCEPTION:

declare
some_custom_error EXCEPTION;

NOTE
If you are using the exceptions already defined within PL/SQL, you
do not need to list them in the Declarations section of the procedural
object. See “Exception” in the Alphabetical Reference for a list of the
predefined exceptions.

In the exception portion of the procedural object’s code, you tell the database how to handle
the exceptions. It begins with the keyword exception, followed by a when clause for each
exception. Each exception may call the RAISE_ APPLICATION_ERROR procedure, which takes
two input parameters: the error number (which must be between –20001 and –20999) and the
error message to be displayed. In the preceding example, only one exception was defined.
Multiple exceptions can be defined, as shown in the following listing; you may use the when
others clause to handle all nonspecified exceptions:

 EXCEPTION
 when NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20100,
 'No books borrowed.');
 when some_custom_error THEN
 RAISE_APPLICATION_ERROR (-20101,
 'Some custom error message.');

The use of the RAISE_APPLICATION_ERROR procedure gives you great flexibility in
managing the error conditions that may be encountered within procedural objects.

Naming Procedures and Functions
Procedures and functions should be named according to the business function they perform or
business rule they enforce. There should be no ambiguity about their purpose.

The NEW_BOOK procedure shown earlier should be renamed. NEW_BOOK performs a
business function—inserting records into BOOKSHELF and deleting them from BOOK_ORDER—
so its name should reflect that function. A better choice for the name would be RECEIVE_BOOK_
ORDER. Since it performs a function, a verb (in this case, “receive”) should describe what it does.

582 Part IV: PL/SQL

The name of the procedure should also include the name of the major table(s) it impacts. If the
tables are properly named, then the name of the table should be the direct object upon which
the verb acts (in this case, BOOK_ORDER or BOOKSHELF). For the sake of consistency, we will
continue to refer to the procedure as NEW_BOOK for the remainder of this chapter.

create package Syntax
When creating packages, the package specification and the package body are created separately.
Thus, there are two commands to use: create package for the package specification, and create
package body for the package body. Both of these commands require that you have the CREATE
PROCEDURE system privilege. If the package is to be created in a schema other than your own,
then you must have the CREATE ANY PROCEDURE system privilege.

Here is the syntax for creating package specifications:

create [or replace] package [user.] package
[authid {definer | current_user}]
{is | as}
 package specification;

A package specification consists of the list of functions, procedures, variables, constants,
cursors, and exceptions that will be available to users of the package.

A sample create package command is shown in the following listing. In this example, the
BOOK_MANAGEMENT package is created. The OVERDUE_CHARGES function and NEW_
BOOK procedure seen earlier in this chapter are included in the package.

create or replace package BOOK_MANAGEMENT
as
 function OVERDUE_CHARGES(aName IN VARCHAR2) return NUMBER;
 procedure NEW_BOOK (aTitle IN VARCHAR2,
 aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2);
end BOOK_MANAGEMENT;
/

NOTE
You may append the name of the procedural object to the end clause
to make it easier to coordinate the logic within your code.

A package body contains the blocks and specifications for all of the public objects listed in the
package specification. The package body may include objects that are not listed in the package
specification; such objects are said to be private and are not available to users of the package.
Private objects may only be called by other objects within the same package body. A package body
may also include code that is run every time the package is invoked, regardless of the part of the
package that is executed—see “create package Syntax,” later in this chapter, for an example.

The syntax for creating package bodies is

create [or replace] package body [user.] package body
{is | as}
 package body;

The name of the package body should be the same as the name of the package specification.

Chapter 35: Procedures, Functions, and Packages 583

Continuing the BOOK_MANAGEMENT example, its package body can be created via the
create package body command shown in the following example:

create or replace package body BOOK_MANAGEMENT
as
function OVERDUE_CHARGES (aName IN VARCHAR2)
 return NUMBER
 is
 owed_amount NUMBER(10,2);
begin
 select SUM(((ReturnedDate-CheckoutDate) -14)*0.20)
 into owed_amount
 from BOOKSHELF_CHECKOUT
 where Name = aName
 and (ReturnedDate-CheckoutDate) > 14;
 RETURN(owed_amount);
 EXCEPTION
 when NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20100,
 'No books borrowed.');
end OVERDUE_CHARGES;
procedure NEW_BOOK (aTitle IN VARCHAR2,
 aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2)
is
begin
 insert into BOOKSHELF
 (Title, Publisher, CategoryName, Rating)
 values (aTitle, aPublisher, aCategoryName, NULL);
 delete from BOOK_ORDER
 where Title = aTitle;
end NEW_BOOK;
end BOOK_MANAGEMENT;
/

The create or replace package body command shown in the preceding example combines
the create function command for the OVERDUE_CHARGES function with the create procedure
command for the NEW_BOOK procedure. The end clauses all have the names of their associated
objects appended to them (shown in bold in the prior listing).

Additional functions, procedures, exceptions, variables, cursors, and constants may be
defined within the package body, but they will not be available to the public unless they have
been declared within the package specification (via the create package command). If a user has
been granted the EXECUTE privilege on a package, then that user can access any of the public
objects that are declared in the package specification.

NOTE
You can hide the internals of your application code by using the
PL/SQL wrapper. The WRAP executable (found in the /bin directory
under the Oracle software home directory) takes an input filename as
its input and generates an output file containing the object code. You
cannot unwrap a package that has been wrapped.

584 Part IV: PL/SQL

Packages may include code that is to be run the first time a user executes a function or procedure
in the package within each session. In the following example, the BOOK_MANAGEMENT package
body is modified to include a SQL statement that records the current user’s username and the
timestamp for the first time a package component is executed within the session. Two new
variables must also be declared in the package body to record these values.

Since the two new variables are declared within the package body, they are not available to
the public. Within the package body, they are separated from the procedures and functions. The
package initialization code is shown in bold in the following listing:

create or replace package body BOOK_MANAGEMENT
as
User_Name VARCHAR2(30);
Entry_Date DATE;
function OVERDUE_CHARGES (aName IN VARCHAR2)
 return NUMBER
 is
 owed_amount NUMBER(10,2);
begin
 select SUM(((ReturnedDate-CheckoutDate) -14)*0.20)
 into owed_amount
 from BOOKSHELF_CHECKOUT
 where Name = aName
 and (ReturnedDate-CheckoutDate) > 14;
 RETURN(owed_amount);
 EXCEPTION
 when NO_DATA_FOUND THEN
 RAISE_APPLICATION_ERROR(-20100,
 'No books borrowed.');
end OVERDUE_CHARGES;
procedure NEW_BOOK (aTitle IN VARCHAR2,
 aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2)
is
begin
 insert into BOOKSHELF
 (Title, Publisher, CategoryName, Rating)
 values (aTitle, aPublisher, aCategoryName, NULL);
 delete from BOOK_ORDER
 where Title = aTitle;
end NEW_BOOK;
begin
 select User, SysDate
 into User_Name, Entry_Date
 from DUAL;
end BOOK_MANAGEMENT;
/

NOTE
The code that is to be run the first time that a component of the
package is executed is stored in its own PL/SQL block at the bottom
of the package body. It does not have its own end clause; it uses the
package body’s end clause.

Chapter 35: Procedures, Functions, and Packages 585

The first time a BOOK_MANAGEMENT package component is executed in the user’s session,
the User_Name and Entry_Date variables will be populated by the query shown in the previous
listing. These two variables can then be used by the functions and procedures within the package,
although in the interest of brevity this example does not use them.

To execute a procedure or function that is within a package, specify both the package name
and the name of the procedure or function in the execute command, as follows:

execute BOOK_MANAGEMENT.NEW_BOOK('SOMETHING SO STRONG','PANDORAS','ADULTNF');

Viewing Source Code for Procedural Objects
The source code for existing procedures, functions, packages, and package bodies can be queried
from the following data dictionary views:

USER_SOURCE For procedural objects owned by the user

ALL_SOURCE For procedural objects owned by the user or to which the user
has been granted access

DBA_SOURCE For all procedural objects in the database

Select information from the USER_SOURCE view via a query similar to the one shown in the
following listing. In this example, the Text column is selected, ordered by the Line number. The
Name of the object and the object Type are used to define which object’s source code is to be
displayed. The following example uses the NEW_BOOK procedure shown earlier in this chapter:

select Text
 from USER_SOURCE
 where Name = 'NEW_BOOK'
 and Type = 'PROCEDURE'
 order by Line;

TEXT

procedure NEW_BOOK (aTitle IN VARCHAR2,
 aPublisher IN VARCHAR2, aCategoryName IN VARCHAR2)
as
begin
 insert into BOOKSHELF (Title, Publisher, CategoryName, Rating)
 values (aTitle, aPublisher, aCategoryName, NULL);
 delete from BOOK_ORDER
 where Title = aTitle;
end;

As shown in this example, the USER_SOURCE view contains one record for each line of the
NEW_BOOK procedure. The sequence of the lines is maintained by the Line column; therefore,
the Line column should be used in the order by clause.

Valid values for the Type column are PROCEDURE, FUNCTION, PACKAGE, PACKAGE
BODY, JAVA SOURCE, TYPE, and TYPE BODY.

586 Part IV: PL/SQL

Compiling Procedures, Functions, and Packages
Oracle compiles procedural objects when they are created. However, procedural objects may
become invalid if the database objects they reference change. The next time the procedural
objects are executed, they will be recompiled by the database.

You can avoid this run-time compiling—and the performance degradation it may cause—by
explicitly recompiling the procedures, functions, and packages. To recompile a procedure, use
the alter procedure command, as shown in the following listing. The compile clause is the only
valid option for this command.

alter procedure NEW_BOOK compile;

To recompile a procedure, you must either own the procedure or have the ALTER ANY
PROCEDURE system privilege.

To recompile a function, use the alter function command, with the compile clause:

alter function OVERDUE_CHARGES compile;

To recompile a function, you must either own the function or have the ALTER ANY PROCEDURE
system privilege.

When recompiling packages, you may either recompile both the package specification and
the body or just recompile the package body. By default, both the package specification and the
package body are recompiled. You cannot use the alter function or alter procedure command to
recompile functions and procedures stored within a package.

If the source code for the procedures or functions within the package body has changed but
the package specification has not, you may want to recompile only the package body. In most
cases, it is appropriate to recompile both the specification and the package body.

The following is the syntax for the alter package command:

alter package [user.] package_name
compile [debug] [package | body | specification];

To recompile a package, use the preceding alter package command with the compile clause,
as follows:

alter package BOOK_MANAGEMENT compile;

To recompile a package, you must either own the package or have the ALTER ANY PROCEDURE
system privilege. Since neither PACKAGE nor BODY was specified in the preceding example, the
default of PACKAGE was used, resulting in the recompilation of both the package specification
and the package body.

Replacing Procedures, Functions, and Packages
Procedures, functions, and packages may be replaced via their respective create or replace
command. Using the or replace clause keeps in place any existing grants that have been made
for those objects. If you choose to drop and re-create procedural objects, you have to regrant any
EXECUTE privileges that were previously granted.

Chapter 35: Procedures, Functions, and Packages 587

Dropping Procedures, Functions, and Packages
To drop a procedure, use the drop procedure command, as follows:

drop procedure NEW_BOOK;

To drop a procedure, you must either own the procedure or have the DROP ANY PROCEDURE
system privilege.

To drop a function, use the drop function command, as follows:

drop function OVERDUE_CHARGES;

To drop a function, you must either own the function or have the DROP ANY PROCEDURE
system privilege.

To drop a package body, use the drop package command with the body clause, as follows:

drop package body BOOK_MANAGEMENT;

To drop a package body, you must either own the package or have the DROP ANY PROCEDURE
system privilege.

To drop a package (both the specification and the body), use the drop package command, as
follows:

drop package BOOK_MANAGEMENT;

To drop a package, you must either own the package or have the DROP ANY PROCEDURE
system privilege.

This page intentionally left blank

CHAPTER
36

Using Native Dynamic
SQL and DBMS_SQL

589

590 Part IV: PL/SQL

ou can use native dynamic SQL to create general-purpose procedures and to
execute DDL commands within PL/SQL. You can use dynamic SQL to execute
SQL commands that are built at run time rather than at program-creation time
within stored procedural objects (such as packages) and in anonymous PL/SQL
blocks. For example, you can create procedures that create tables, that take table

names as input parameters, or that take where clauses as input parameters.

Using EXECUTE IMMEDIATE
The script in the following example creates a procedure called ANYSTRING. The ANYSTRING
procedure has a single input variable: a SQL command. When you execute the ANYSTRING
procedure, you pass it the SQL command to execute; the SQL command may be either a DML
command (such as select or insert) or a DDL command (such as create table).

create or replace procedure ANYSTRING(String IN VARCHAR2) AS
BEGIN
 EXECUTE IMMEDIATE (String);
END;
/

You can execute the ANYSTRING procedure via the execute command, as shown in the
upcoming examples of DDL and DML commands. Note that the strings are not terminated with
semicolons.

NOTE
If you are going to run DDL commands through dynamic SQL, you
must have been granted the necessary system privileges explicitly—
not via roles. If you do not have the CREATE TABLE system privilege
explicitly granted to you, the following command will fail with an
“ORA-01031: insufficient privileges” error:

execute ANYSTRING('create table CD (Artist VARCHAR2(25),
 Title VARCHAR2(25)) ');

execute ANYSTRING('insert into CD values(''NEIL FINN'',
 ''TRY WHISTLING THIS'') ');

The first command in the preceding listing executes the following SQL command:

create table CD
(Artist VARCHAR2(25),
 Title VARCHAR2(25));

The second command in the listing inserts a record into the CD table:

insert into CD values ('NEIL FINN', 'TRY WHISTLING THIS');

If the SQL statements passed to ANYSTRING contain quotes, each quote should be replaced
with a set of two quotes, as shown in the preceding execution of ANYSTRING for the insert
command. After each command, you will receive the following response:

PL/SQL procedure successfully completed.

Y

Chapter 36: Using Native Dynamic SQL and DBMS_SQL 591

You can verify that the commands succeeded by querying the new table:

select * from CD;

ARTIST TITLE
------------------------- -------------------------
NEIL FINN TRY WHISTLING THIS

You can write native dynamic SQL for which the input parameters will be passed to the SQL
commands:

declare
 Symbol VARCHAR2(6) := 'WOND';
begin
 EXECUTE IMMEDIATE 'delete from STOCK where Symbol = :symbol'
 USING Symbol;
end;
/

The symbol variable is set equal to the value 'WOND', and that value is then passed to the delete
command via the using clause.

In the following listing, a procedure named DELETE_ROWS will delete all rows from the table
passed in as a variable. If a where_clause value is entered when the procedure is executed, it will
be dynamically appended to the delete command; otherwise, all rows will be deleted.

create or replace procedure DELETE_ROWS (
 Table_Name in VARCHAR2,
 Condition in VARCHAR2 default NULL) as
 Where_Clause VARCHAR2(100) := ' where ' || Condition;
begin
 if Condition is NULL then Where_Clause := NULL; end if;
 execute immediate 'delete from ' || Table_Name || Where_Clause;
end;
/

You can call the DELETE_ROWS procedure anytime you want to delete rows from a table.
You could call it within another procedure or within an application without having to grant
anyone access to perform delete commands directly within SQL*Plus. The following command
will delete all the rows in the DEPT table:

execute DELETE_ROWS('STOCK');

In addition to calling SQL statements, you can execute procedures and PL/SQL blocks via
native dynamic SQL.

Using Bind Variables
One of the benefits of native dynamic SQL is the ability to use bind variables in your code. For
example, consider this example from earlier in this chapter:

declare
 Symbol VARCHAR2(6) := 'WOND';
begin
 EXECUTE IMMEDIATE 'delete from STOCK where Symbol = :symbol'

592 Part IV: PL/SQL

 USING Symbol;
end;
/

In the preceding listing, :symbol is a bind variable. Successive values of symbol can be passed
in to the EXECUTE IMMEDIATE command. Because a bind variable is used, the command will
not have to be parsed repeatedly. If you monitor the database as the application is used, you will
see in V$SQL one entry for the command. If you had not used bind variables, you would see a
separate entry in V$SQL for each separate execution of the command. That is, instead of seeing

delete from STOCK where Symbol = :symbol

in the library cache, you would see one entry for each unique deletion, such as

delete from STOCK where Symbol = 'WOND'

and so on.
Each of these commands would be separately parsed, and each would be taking space in

memory. Failing to use bind variables may thus fill your shared pool with a large number of very
similar commands—a waste of the resources that the database is supposed to be exploiting and a
potential cause of performance problems. Database administrators can resolve a portion of this
problem by setting the CURSOR_SHARING initialization parameter to SIMILAR, but at its heart
this is a problem that should be solved by using a proper development approach.

When the query is run, bind arguments replace their corresponding placeholders in the string.
Each of the placeholders must be associated with a bind variable in the using clause or a returning
into clause. Bind variables can be numeric, character, or string literals.

The following example illustrates the use of bind variables within a dynamic update statement:

declare
 sql_stmt VARCHAR2(200);
 Symbol VARCHAR2(6) := 'ADSP';
 CloseToday NUMBER(6,2);
begin
sql_stmt := 'update STOCK set CloseToday = 32 WHERE Symbol = :1
 RETURNING CloseToday INTO :2';
 EXECUTE IMMEDIATE sql_stmt USING Symbol RETURNING INTO CloseToday;
end;
/

The returning into clause is only used in insert, update, and delete commands that have
a returning clause. For each value returned by the command, there must be a corresponding
variable in the returning into clause.

Using DBMS_SQL
Prior to Oracle9i, dynamic SQL required the use of the DBMS_SQL package. You can still use the
DBMS_SQL method, as shown in this section. Using DBMS_SQL may give you greater control
over the processing flow within the dynamic SQL, but it is generally more complicated to write
than the native dynamic SQL shown earlier in this chapter.

The script in the following example creates the DBMS_SQL version of the ANYSTRING
procedure shown earlier. The ANYSTRING procedure has a single input variable: a SQL
command. When you execute the ANYSTRING procedure, you pass it the SQL command to

Chapter 36: Using Native Dynamic SQL and DBMS_SQL 593

execute; the SQL command may be either a DML command (such as select or insert) or a DDL
command (such as create table).

create or replace procedure ANYSTRING(String IN VARCHAR2) AS
 Cursor_Name INTEGER;
 Ret INTEGER;
BEGIN
 Cursor_Name := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(Cursor_Name, String, dbms_sql.Native);
 Ret := DBMS_SQL.EXECUTE(Cursor_Name);
 DBMS_SQL.CLOSE_CURSOR(Cursor_Name);
END;
/

As with the earlier version, you can execute the ANYSTRING procedure via the execute
command, as shown in the following examples of DDL and DML commands:

execute ANYSTRING('drop table CD');

execute ANYSTRING('create table CD (Artist VARCHAR2(25),
 Title VARCHAR2(25))');

execute ANYSTRING('insert into CD values(''NEIL FINN'',
 ''TRY WHISTLING THIS'')');

If the SQL statements passed to ANYSTRING contain quotes, each quote should be replaced
with a set of two quotes, as shown in the preceding execution of ANYSTRING for the insert
command. After each command, you will receive the following response:

PL/SQL procedure successfully completed.

You can verify that the commands succeeded by querying the new table, as shown in the next
example.

select * from CD;

ARTIST TITLE
------------------------- -------------------------
NEIL FINN TRY WHISTLING THIS

In the following sections, you will see descriptions of the major functions and procedures
used within dynamic SQL statements.

OPEN_CURSOR
The OPEN_CURSOR function of the DBMS_SQL package opens a cursor and returns to your
program a cursor ID number. Thus, within the ANYSTRING procedure, the cursor_name variable
is defined as an INTEGER datatype:

Cursor_Name INTEGER;

Within the Executable Commands section, the cursor_name variable is set to the output of the
OPEN_CURSOR execution:

 Cursor_Name := DBMS_SQL.OPEN_CURSOR;

594 Part IV: PL/SQL

PARSE
Parsing a statement checks its syntax and associates the statement with the cursor. To parse a
statement, use the PARSE procedure of the DBMS_SQL package. For example, in the ANYSTRING
procedure, the following command parses the SQL command. PARSE takes three parameters: the
cursor ID, the command being parsed, and a language flag.

DBMS_SQL.PARSE(Cursor_Name, String, dbms_sql.Native);

The language flag specifies the behavior for the statement. The “Native” setting shown in this
example specifies behavior according to the current version of the database.

NOTE
DDL commands (such as create table) are executed when they are
parsed.

BIND_VARIABLE and BIND_ARRAY
If your dynamic SQL procedure performs data manipulation, you will need to use bind variables.
Any dynamic SQL command that inserts, updates, or deletes records needs to use either the
BIND_VARIABLE or BIND_ARRAY procedure within DBMS_SQL as part of its processing. You
must call one of these procedures to supply the value of a variable in your program to the
placeholder. When the SQL statement is then executed, Oracle uses the data that your program
has placed in the output and input, or bind, variables.

For example, the PARSE execution in the following listing parses a SQL command in which
one of the values is unknown—the value of the bind variable used in the procedure:

DBMS_SQL.PARSE(Cursor_Name, 'delete from CD where Artist > :artist',
 dbms_sql.Native);

Following the PARSE execution, you must bind the :artist bind variable to the artist_name
variable passed to the procedure. When a user executes the procedure, a value will be specified
for the artist_name variable. The BIND_VARIABLE procedure shown in the following listing will
bind the artist_name value to the :artist bind variable used by the command string being parsed:

DBMS_SQL.BIND_VARIABLE(Cursor_Name, ':artist', artist_name);

You can use dynamic SQL to execute a DML statement multiple times—each time with a
different bind variable. You can use the BIND_ARRAY procedure to bind an array of values, each
of which will be used as an input variable once per EXECUTE.

EXECUTE
To execute your dynamically created SQL statement, use the EXECUTE function of the DBMS_
SQL package. The following listing, from the ANYSTRING procedure, shows the use of the
EXECUTE function:

Ret := DBMS_SQL.EXECUTE(Cursor_Name);

When you use the EXECUTE function, you pass the cursor ID value (in this example, the
cursor_name variable) as input. The ret variable holds the output of the EXECUTE function,
which will be the number of rows processed (if the executed statement performs DML).

Chapter 36: Using Native Dynamic SQL and DBMS_SQL 595

DEFINE_COLUMN
If your cursor performs a query, you must execute the DEFINE_COLUMN function once for
each column being selected. If the column is defined with a LONG datatype, you must use the
DEFINE_COLUMN_LONG function in place of DEFINE_COLUMN. If you are selecting values
into a PL/SQL array, you must use DEFINE_ARRAY in place of DEFINE_COLUMN.

For example, consider the query parsed in the following command:

DBMS_SQL.PARSE(Cursor_Name,'select Artist, Title from CD',
 dbms_sql.Native);

Prior to executing the cursor, you must define the columns by their position in the query, as
shown in the following listing:

DBMS_SQL.DEFINE_COLUMN(Cursor_Name, 1, Artist, 25);
DBMS_SQL.DEFINE_COLUMN(Cursor_Name, 2, Title, 25);

Once you have defined the columns, you can use the EXECUTE function to execute the
cursor.

FETCH_ROWS, EXECUTE_AND_FETCH,
and COLUMN_VALUE
If your dynamic SQL command performs a query, you can call the FETCH_ROWS function to
retrieve the query’s rows. The EXECUTE_AND_FETCH function both executes and fetches rows.

For example, suppose there is a table called CD_COPY, with the same column definitions as
the CD table created earlier in this chapter. You can use dynamic SQL to select records from the
CD table and insert them into the CD_COPY table. For this example, the Get_CD_Cursor statement
will retrieve rows from the CD table, and the Insert_CD_Copy_Cursor statement will insert the
retrieved values into the CD_COPY table.

In this example, the Get_CD_Cursor cursor has already been parsed. The sample code
executes the FETCH_ROWS function. If the number of rows fetched is greater than zero, the
record will be processed.

if DBMS_SQL.FETCH_ROWS(Get_CD_Cursor)>0 then

For the fetched record, the COLUMN_VALUE procedure is executed once for each column
selected:

DBMS_SQL.COLUMN_VALUE(Get_CD_Cursor, 1, Artist);
DBMS_SQL.COLUMN_VALUE(Get_CD_Cursor, 2, Title);

Now that the queried values have been bound to variables, you can bind those values into
the cursor that inserts records into the CD_COPY table:

DBMS_SQL.BIND_VARIABLE(Insert_CD_Copy_Cursor, 'artist', Artist);
DBMS_SQL.BIND_VARIABLE(Insert_CD_Copy_Cursor, 'title', Title);

You can now execute the cursor that inserts values into the CD_COPY table:

Ret := DBMS_SQL.EXECUTE(Insert_CD_COPY_Cursor);

596 Part IV: PL/SQL

The ret variable will hold the number of rows inserted into the CD_COPY table. If you called
a procedure from within an anonymous PL/SQL block, execute the VARIABLE_VALUE function to
retrieve the values assigned to its output variables.

CLOSE_CURSOR
You can close an open cursor by executing the CLOSE_CURSOR procedure of the DBMS_SQL
package. The example in the following listing, from the ANYSTRING procedure, shows that the
CLOSE_CURSOR procedure uses the cursor ID value as its sole input parameter:

DBMS_SQL.CLOSE_CURSOR(Cursor_Name);

Closing a cursor frees the memory used by the cursor and reduces the number of concurrently
open cursors in your session.

Unless you need very detailed control over the steps involved in executing dynamic SQL, you
should use the EXECUTE IMMEDIATE approach shown earlier in this chapter. If you must use the
DBMS_SQL package approach, see the “PL/SQL Packages and Types Reference” in the Oracle
documentation for detailed descriptions of all of the DBMS_SQL package’s procedures and functions.

CHAPTER
37

PL/SQL Tuning

597

598 Part IV: PL/SQL

uning PL/SQL code involves several steps: tuning the SQL, tuning the procedural
steps within the code, and taking advantage of features. In this chapter you will see
how to approach tuning PL/SQL, how to use the profiling facilities available within
PL/SQL to isolate the causes of performance problems, and how to use PL/SQL
features such as the FORALL operator.

Tune the SQL
Given a PL/SQL procedure that is performing poorly, the first step is to look at the SQL within the
package. The time spent executing SQL usually accounts for the bulk of the execution time for a
procedure, so any improvements made to the SQL can have a significant impact on the performance
of the procedure. See Chapter 46 for details on tuning SQL statements.

Depending on the structure of your procedures, you may be unable to extract SQL that exactly
matches the queries executed. For example, the SQL commands may be assembled via dynamic
SQL or may use bind variables in the where clauses. In those cases, you will need to monitor the
programs to see exactly what SQL is being executed. You can monitor the programs via trace
utilities or via the dynamic performance views (including V$SQL) that show the SQL commands
executed by each session. SQL that performs a large number of physical reads (usually due to
missing indexes) or a large number of logical reads (due to inefficient processing or poor index
selections) can negatively impact the performance of any PL/SQL block that calls it.

If you can exactly replicate the SQL being executed, use the explain plan or set autotrace
commands described in Chapter 46 to determine the execution path chosen by the optimizer,
along with the anticipated cost.

Steps for Tuning the PL/SQL
Even if the SQL in your PL/SQL code is written efficiently, you may still be able to improve your
code. In writing PL/SQL code, you should follow these best practices:

1. Use the functions and procedures provided.
Avoid writing your own version of functions provided by Oracle. Use Oracle’s searching and
sorting routines instead of writing your own.

2. Take the shortcuts available.
Take advantage of the ways Oracle performs control logic evaluation. If you have multiple
conditions that control branching, Oracle will evaluate them in the order you provide. It will not
evaluate all of the conditions unless it needs to, so you may be able to order your conditions in a
manner that will allow Oracle to take shortcuts. If there are multiple conditions evaluated, such as

 if Salary > 1000 or Bonus>1000

put the most restrictive condition first; if the Salary value is greater than 1000, then the Bonus
value will not be evaluated. If one of the conditions performs a user-defined function call, such as

 if Salary > 1000 or range_balance(Bonus)>1000

then placing that condition second will limit the number of times it is called. Changing the order
of the conditions, as shown next, makes Oracle evaluate that function call every time the if clause
is executed:

 if range_balance(Bonus)>1000 or Salary > 1000

T

Chapter 37: PL/SQL Tuning 599

3. Avoid dynamic datatype conversions.
Avoid comparing variables that have different datatypes. The time spent on the datatype
conversions during each execution would be reclaimed if the datatypes were converted to a
consistent set prior to comparisons.

4. Size VARCHAR2 variables appropriately.
Developers have a tendency to size VARCHAR2 variables to be significantly larger than their
expected values. For example, you may have a standard that mandates creating variables as
VARCHAR2(200), even if the maximum length of the variable is less than 200. Oracle’s memory
allocation within PL/SQL contains a sizing algorithm that you should take into account when
creating large VARCHAR2 variables.

Oracle allocates memory differently depending on the size of the VARCHAR2 variable:

If the size is greater than or equal to 2000, PL/SQL dynamically allocates only enough
memory to handle the actual value.

If the size is less than 2000, PL/SQL allocates enough memory to hold the declared
length of the variable.

If you store a 500-byte value in two separate VARCHAR2 variables, what is the impact on the
memory usage? If the value is stored in a VARCHAR2(1000) variable, PL/SQL will allocate memory
for 1000 bytes. If the value is stored in a VARCHAR2(2000) variable, PL/SQL will allocate memory
for only the actual value, 500 bytes. Using the larger size for the variable reduces the allocated
size from 1000 to 500 bytes.

In the next sections of this chapter, you will see how to identify the lines in your code that are
incurring the highest execution times, and how to use PL/SQL options to tune bulk operations.

Use DBMS_PROFILER to Identify Problems
You can use the DBMS_PROFILER package to identify the lines in your code that take the most
time when executed. DBMS_PROFILER is available in earlier releases of Oracle, but it is not
always installed by default. If your database has been upgraded from an earlier release of Oracle,
you should check to see if DBMS_PROFILER has been installed. If it has not been installed, look
for the profload.sql script in the /rdbms/admin directory under your Oracle home directory.
Execute the profload.sql script when connected as SYS to create the packages needed for profiling.

Two additional scripts are provided by Oracle: proftab.sql and profrep.sql. Each person using
the profiler will need a set of tables in their schema to capture the profiling statistics. The profiling
tables should be created by executing the proftab.sql script in that user’s schema. The profrep.sql
script should be run in the same schema; it creates views you can use to display the profiling
statistics. Depending on the version of Oracle you are using, the profrep.sql script contents may
be integrated into the other scripts.

When using the profiler, you will need to know the line numbers in your code. Let’s start with
the simple loop example, which calculates areas and inserts rows into the AREAS table:

SQL> Declare
 2 Pi constant NUMBER(9,7) := 3.141593;
 3 Radius integer(5);
 4 Area number(14,2);
 5 Begin

■

■

600 Part IV: PL/SQL

 6 Radius :=3;
 7 Loop
 8 Area:=pi*power(radius,2);
 9 Insert into AREAS values (radius, area);
 10 Radius := radius+1;
 11 Exit when area>100;
 12 End loop;
 13 End;
 14 /

PL/SQL procedure successfully completed.

To verify that the SQL executed correctly, query the AREAS table:

SQL> select * from areas;

 RADIUS AREA
---------- ----------
 3 28.27
 4 50.27
 5 78.54
 6 113.1

Both of these commands—the PL/SQL block and the query of the AREAS table—have now
been parsed and stored in the shared pool. The time required to parse the commands will
therefore not be a factor in the performance profiling done in the next steps.

Delete the rows from the AREAS table so the table is ready for the test:

SQL> delete from areas;

4 rows deleted.

SQL> commit;

Commit complete.

Next, execute the START_PROFILER procedure of the DBMS_PROFILER package. Oracle will
collect the statistics for the commands that are run following the execution of START_PROFILER.

SQL> exec dbms_profiler.start_profiler;

PL/SQL procedure successfully completed.

Now run the PL/SQL block again:

SQL> Declare
 2 Pi constant NUMBER(9,7) := 3.141593;
 3 Radius integer(5);
 4 Area number(14,2);
 5 Begin
 6 Radius :=3;
 7 Loop
 8 Area:=pi*power(radius,2);
 9 Insert into AREAS values (radius, area);

Chapter 37: PL/SQL Tuning 601

 10 Radius := radius+1;
 11 Exit when area>100;
 12 End loop;
 13 End;
 14 /

PL/SQL procedure successfully completed.

Stop the profiler, as shown in the following lines of code:

SQL> exec dbms_profiler.stop_profiler;

PL/SQL procedure successfully completed.

If you have executed the profrep.sql script in your schema, you will now be able to query the
profiler statistics from the views provided. PLSQL_PROFILER_RUNS displays the schema name
and the date the code was executed, as shown in the following listing:

SQL> set pagesize 1000

SQL> select * from plsql_profiler_runs

 RUNID RELATED_RUN RUN_OWNER RUN_DATE
---------- ----------- -------------------------------- ---------
RUN_COMMENT

RUN_TOTAL_TIME

RUN_SYSTEM_INFO

RUN_COMMENT1

SPARE1

 1 0 PRACTICE 08-NOV-07
08-NOV-07
 1.7515E+10

The PLSQL_PROFILER_DATA view shows the time, in nanoseconds, for each line. If the same
code is executed multiple times, it will display the total time, the maximum time, and the
minimum time per line.

SQL> select * from plsql_profiler_data;

 RUNID UNIT_NUMBER LINE# TOTAL_OCCUR TOTAL_TIME MIN_TIME MAX_TIME
---------- ----------- ---------- ----------- ---------- ---------- ----------
 SPARE1 SPARE2 SPARE3 SPARE4
---------- ---------- ---------- ----------
 1 1 1 1 1400 1400 1400

 1 2 1 0 8900 8900 8900

602 Part IV: PL/SQL

 1 2 2 1 3000 3000 3000

 1 2 6 1 700 700 700

 1 2 8 4 19200 2000 11800

 1 2 9 4 444700 26400 357500

 1 2 10 4 5200 700 2900

 1 2 11 4 3100 400 1900

 1 2 13 1 3100 3100 3100

 1 3 1 2 37600 1800 30100

10 rows selected.

As shown in the preceding listing, the most time-intensive step, at 444,700 nanoseconds, is
line 9. We can now go back to the code and see that line 9 is

 9 Insert into AREAS values (radius, area);

By comparison, line 8 (which does the Area calculation) took less than 5 percent of the time
line 9 took. Any effort spent tuning the PL/SQL block should start with tuning the step that is by
far the most expensive one—the SQL command that inserts the rows into the table one at a time.

How scalable is the code? What happens if we insert many more rows? Let’s use the profiler
to see how each step’s performance changes. To make sure there is no confusion with prior
statistics, execute the proftab.sql script to drop and re-create the statistics tables in the schema:

SQL> @proftab

Table dropped.

Table dropped.

Table dropped.

Sequence dropped.

Table created.

Comment created.

Table created.

Chapter 37: PL/SQL Tuning 603

Comment created.

Table created.

Comment created.

Sequence created.

Next, start the profiler:

SQL> exec dbms_profiler.start_profiler;

PL/SQL procedure successfully completed.

Execute the AREAS PL/SQL block again, but this time change line 11 so the exit criteria is
Area>1000:

SQL> Declare
 2 Pi constant NUMBER(9,7) := 3.141593;
 3 Radius integer(5);
 4 Area number(14,2);
 5 Begin
 6 Radius :=3;
 7 Loop
 8 Area:=pi*power(radius,2);
 9 Insert into AREAS values (radius, area);
 10 Radius := radius+1;
 11 Exit when area>1000;
 12 End loop;
 13 End;
 14 /

PL/SQL procedure successfully completed.

Next, stop the profiler:

SQL> exec dbms_profiler.stop_profiler;

PL/SQL procedure successfully completed.

Then check the reporting views to see the statistics:

SQL> select * from plsql_profiler_lines_cross_run
 2 order by total_time;

UNIT_OWNER UNIT_NAME
-------------------------------- --------------------------------
UNIT_TYPE LINE# TOTAL_OCCUR TOTAL_TIME MIN_TIME
-------------------------------- ---------- ----------- ---------- ----------
 MAX_TIME

<anonymous> <anonymous>
ANONYMOUS BLOCK 6 1 300 300
 300

604 Part IV: PL/SQL

<anonymous> <anonymous>
ANONYMOUS BLOCK 2 1 2500 2500
 2500

<anonymous> <anonymous>
ANONYMOUS BLOCK 13 1 3100 3100
 3100

<anonymous> <anonymous>
ANONYMOUS BLOCK 11 16 6900 300
 1800

<anonymous> <anonymous>
ANONYMOUS BLOCK 10 16 13600 700
 2800

<anonymous> <anonymous>
ANONYMOUS BLOCK 8 16 45700 2000
 12600

<anonymous> <anonymous>
ANONYMOUS BLOCK 1 3 48300 1200
 31100

<anonymous> <anonymous>
ANONYMOUS BLOCK 9 16 1787400 26200
 1380900

8 rows selected.

NOTE
The PLSQL_PROFILER_LINES_CROSS_RUN table is created via the
profrep.sql script, where available.

As shown in the Total_Occur column in the listing, the different lines of the PL/SQL block are
executed a different numbers of times. The lines within the loop are executed multiple times, and
for those lines the total time shown is the cumulative execution time for all of the times those
lines are executed. How did the number of executions change the average time per execution?

Line 9, the insert, took a total of 444,700 nanoseconds during the first test. That test required
inserting four rows, so the inserts averaged 111,175 nanoseconds each. During the second test, 16
rows were inserted in 1,787,400 nanoseconds—an average of 111,702 nanoseconds per row. The
insert operation performance is linear; on average, every insert takes almost exactly the same
amount of time regardless of the number of inserts. Although its performance is predictable, that
kind of performance will not scale well; ideally we would want each new execution of a step to
take no additional time.

If you are attempting to tune PL/SQL code that performs many separate transactions, you
should look into the use of bulk insert and bulk select operations, as described in the next
sections of this chapter.

Chapter 37: PL/SQL Tuning 605

Use PL/SQL Features for Bulk Operations
PL/SQL provides many features for enhancing the performance of code that performs many separate
queries or many separate transactions. By combining multiple small operations you may be able
to realize performance gains, particularly in their CPU usage. By combining multiple commands
into one, you can decrease the number of parsing operations and the related processing costs.
These savings will be small when the number of transactions is small, but as the number of
transactions increases, the savings can be considerable. In the following sections you will see
brief overviews and examples of two such methods: forall and bulk collect.

forall
The forall operator issues a series of dynamic or static DML commands, replacing for loops. You
can specify upper and lower bounds for the values the forall command iterates through during its
processing. The forall operator uses bulk binding, allowing a collection of data to be passed to
the database in a single command. Queries can pass back multiple results without requiring a
separate fetch for each row.

Consider the following example. First, let’s create a new table to use during this testing:

create table BOOKSHELF_TEMP
as select * from BOOKSHELF;

Now, delete all the rows in BOOKSHELF_TEMP that have Rating values of 1, 2, or 3. You can
use PL/SQL to iterate through and issue separate delete commands for each Rating (within a for
loop). The following listing shows the use of forall to perform the deletes in a bulk fashion:

DECLARE
 TYPE NumList IS VARRAY(20) OF NUMBER;
 Ratings NumList := NumList(1, 2, 3);
BEGIN
 FORALL i IN Ratings.FIRST..Ratings.LAST
 delete from BOOKSHELF_TEMP
 where Rating = Ratings(i);
 COMMIT;
END;
/

The line

 Ratings NumList := NumList(1, 2, 3);

defines the Ratings collection; it uses the NumList datatype (a varying array with up to 20 values).
You can then use the Ratings collection values in controlling the commands to be executed. In
this case, we go from the first entry to the last:

 FORALL i IN Ratings.FIRST..Ratings.LAST

For each of those ratings, we perform the same delete:

 delete from BOOKSHELF_TEMP
 where Rating = Ratings(i);

606 Part IV: PL/SQL

The following example, from Oracle, provides a quick comparison on the performance of
forall commands during inserts. To see the output of the DBMS_OUTPUT calls, you should first
set serveroutput on:

set serveroutput on

With the output display enabled, the following commands will show the performance
improvements forall provides:

CREATE TABLE parts1 (pnum INTEGER, pname VARCHAR2(15));
CREATE TABLE parts2 (pnum INTEGER, pname VARCHAR2(15));
DECLARE
 TYPE NumTab IS TABLE OF parts1.pnum%TYPE INDEX BY PLS_INTEGER;
 TYPE NameTab IS TABLE OF parts1.pname%TYPE INDEX BY PLS_INTEGER;
 pnums NumTab;
 pnames NameTab;
 iterations CONSTANT PLS_INTEGER := 500;
 t1 INTEGER;
 t2 INTEGER;
 t3 INTEGER;
BEGIN
 FOR j IN 1..iterations LOOP -- load index-by tables
 pnums(j) := j;
 pnames(j) := 'Part No. ' || TO_CHAR(j);
 END LOOP;
 t1 := DBMS_UTILITY.get_time;
 FOR i IN 1..iterations LOOP -- use FOR loop
 INSERT INTO parts1 VALUES (pnums(i), pnames(i));
 END LOOP;
 t2 := DBMS_UTILITY.get_time;
 FORALL i IN 1..iterations -- use FORALL statement
 INSERT INTO parts2 VALUES (pnums(i), pnames(i));
 t3 := DBMS_UTILITY.get_time;
 DBMS_OUTPUT.PUT_LINE('Execution Time (secs)');
 DBMS_OUTPUT.PUT_LINE('---------------------');
 DBMS_OUTPUT.PUT_LINE('FOR loop: ' || TO_CHAR((t2 - t1)/100));
 DBMS_OUTPUT.PUT_LINE('FORALL: ' || TO_CHAR((t3 - t2)/100));
 COMMIT;
END;
/

The sample code inserts data via two separate loops. The first inserts data into the PARTS1
table via a traditional for loop:

 FOR i IN 1..iterations LOOP -- use FOR loop
 INSERT INTO parts1 VALUES (pnums(i), pnames(i));
 END LOOP;

The second loop uses the forall approach:

 FORALL i IN 1..iterations -- use FORALL statement
 INSERT INTO parts2 VALUES (pnums(i), pnames(i));

The example only does 500 rows, so the performance difference will be limited:

Chapter 37: PL/SQL Tuning 607

 iterations CONSTANT PLS_INTEGER := 500;

With that small of a data set, any difference in the performance will be significant; it will
indicate how the performance will trend as the number of iterations increases. Running on a fairly
robust server, the following results were achieved:

FOR loop: 0.03 sec
FORALL: 0.01 sec

As the number of rows increases, the times savings increases.
When using forall, you should take considerable care with the values it will iterate through.

You can set up distinct lists of values (as in the preceding delete example) or tell Oracle to iterate
through a specific number of values. See the Oracle PL/SQL Users Guide and Reference for the
complete list of options available for forall.

bulk collect
Like forall, bulk collect operates on sets of records in an efficient manner. Whereas forall supports
data manipulation, bulk collect supports queries. Instead of looping through each row of a cursor,
you can use bulk collect to store the query results in collections in a single operation. The bulk
collect operator supports the use of select into, fetch into, and returning into, as shown in the
following examples.

In a bulk collect query, all of the variables you are selecting data into must be collections
(nested tables or varying arrays). The basic format for a bulk collect operation is shown in the
following example from Oracle (this example presumes the existence of an EMPLOYEES table in
your schema):

DECLARE
 TYPE NumTab IS TABLE OF employees.employee_id%TYPE;
 TYPE NameTab IS TABLE OF employees.last_name%TYPE;
 enums NumTab; -- No need to initialize the collections.
 names NameTab; -- Values will be filled in by the SELECT INTO.
 PROCEDURE print_results IS
 BEGIN
 IF enums.COUNT = 0 THEN
 DBMS_OUTPUT.PUT_LINE('No results!');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Results:');
 FOR i IN enums.FIRST .. enums.LAST
 LOOP
 DBMS_OUTPUT.PUT_LINE(' Employee #' || enums(i) || ': ' || names(i));
 END LOOP;
 END IF;
 END;
BEGIN
 -- Retrieve data for employees with Ids greater than 1000
 SELECT employee_id, last_name
 BULK COLLECT INTO enums, names FROM employees WHERE employee_id > 1000;
-- The data has all been brought into memory by BULK COLLECT
-- No need to FETCH each row from the result set
 print_results();
 -- Retrieve approximately 20% of all rows
 SELECT employee_id, last_name

608 Part IV: PL/SQL

 BULK COLLECT INTO enums, names FROM employees SAMPLE (20);
 print_results();
END;
/

NOTE
The collections are initialized automatically. If you use a varying array,
all the return values must fit in the varying array’s declared size.

As in the forall example, the first step involves declaring the variables:

DECLARE
 TYPE NumTab IS TABLE OF employees.employee_id%TYPE;
 TYPE NameTab IS TABLE OF employees.last_name%TYPE;
 enums NumTab; -- No need to initialize the collections.
 names NameTab; -- Values will be filled in by the SELECT INTO.

Within the executable commands block, the number of results is first evaluated via the use of
the COUNT attribute for the nested table:

 BEGIN
 IF enums.COUNT = 0 THEN
 DBMS_OUTPUT.PUT_LINE('No results!');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Results:');
 FOR i IN enums.FIRST .. enums.LAST
 LOOP
 DBMS_OUTPUT.PUT_LINE(' Employee #' || enums(i) || ': ' || names(i));
 END LOOP;
 END IF;
 END;

You can use the bulk collect operator to select the data into the nested tables declared in the
prior section of the listing:

-- Retrieve data for employees with Ids greater than 1000
 SELECT employee_id, last_name
 BULK COLLECT INTO enums, names FROM employees WHERE employee_id > 1000;
-- The data has all been brought into memory by BULK COLLECT
-- No need to FETCH each row from the result set
 print_results();

See the Oracle PL/SQL User’s Guide and Reference for a full description of the capabilities
for bulk collect and forall operations. From a planning perspective, you should consider the bulk
operations when designing code that will be routinely processing large volumes of data. Avoid
row-by-row operations that will have difficulty scaling (as shown in the profiler example earlier
in this chapter).

Sound design for PL/SQL procedures involves understanding the SQL, the control paths,
and the data volumes. Your tuning efforts should follow those same steps—evaluating the SQL,
profiling the costs of the control paths, and modifying coding approaches to properly support the
data volumes. As the application and database mature, you will need to periodically revisit the
code to make sure it can continue to meet the performance capacity needs of the business.

PART
V

Object-Relational
Databases

This page intentionally left blank

CHAPTER
38

Implementing Object
Types, Object Views, and

Methods

611

612 Part V: Object-Relational Databases

n this chapter, you will see details on the use of object types. This chapter covers
topics including security administration for object types and the indexing of object
type attributes. The creation of methods for object types is also shown, along with
the use of object views and INSTEAD OF triggers.

To use the information provided in this chapter, you should be familiar with datatypes (see
Chapter 5), views (see Chapter 17), the grant command (see Chapter 20), indexes (see Chapter
17), and PL/SQL procedures and triggers (see Chapters 32, 34, and 35). Elements of each of these
topics play a part in the implementation of an object-relational database.

Working with Object Types
You can use object types to group related columns into objects. For example, columns that are
part of address information can be grouped into an ADDRESS_TY datatype via the create type
command. For this example, use an account named Dora with CONNECT and RESOURCE roles:

rem while connected as Dora:

create type ADDRESS_TY as object
(Street VARCHAR2(50),
 City VARCHAR2(25),
 State CHAR(2),
 Zip NUMBER);
/

The create type command in the preceding listing creates an ADDRESS_TY object type. You
can use ADDRESS_TY when creating additional database objects. For example, the following
create type command creates the PERSON_TY datatype, using the ADDRESS_TY datatype as the
datatype for its Address column:

create type PERSON_TY as object
(Name VARCHAR2(25),
 Address ADDRESS_TY);
/

Because the Address column of the PERSON_TY datatype uses the ADDRESS_TY datatype,
it holds not one value but four—the four columns that constitute the ADDRESS_TY datatype.

Security for Object Types
The preceding example assumed that the same user owned both the ADDRESS_TY datatype and
the PERSON_TY datatype. What if the owner of the PERSON_TY datatype were different from the
ADDRESS_TY datatype’s owner?

For example, what if the account named Dora owns the ADDRESS_TY datatype, and the user
of the account named George tries to create the PERSON_TY datatype? George executes the
following command:

rem while connected as George:

create type PERSON_TY as object
(Name VARCHAR2(25),
 Address ADDRESS_TY);
/

I

Chapter 38: Implementing Object Types, Object Views, and Methods 613

If George does not own the ADDRESS_TY object type, Oracle will respond to this create type
command with the following message:

Warning: Type created with compilation errors.

The compilation errors are caused by problems creating the constructor method—a special
method created by Oracle when the datatype is created. Oracle cannot resolve the reference to
the ADDRESS_TY datatype because George does not own a datatype with that name. George
could issue the create type command again (using the or replace clause) to specifically reference
Dora’s ADDRESS_TY datatype:

create or replace type PERSON_TY as object
(Name VARCHAR2(25),
 Address Dora.ADDRESS_TY);
/

Warning: Type created with compilation errors.

To see the errors associated with the datatype creation, use the show errors command:

show errors
Errors for TYPE PERSON_TY:

LINE/COL ERROR
-------- --
0/0 PL/SQL: Compilation unit analysis terminated
3/11 PLS-00201: identifier 'DORA.ADDRESS_TY' must be declared

George will not be able to create the PERSON_TY datatype (which includes the ADDRESS_TY
datatype) unless Dora first grants him EXECUTE privilege on her type. The following listing shows
this grant:

rem while connected as Dora:

grant EXECUTE on ADDRESS_TY to George;

Now that the proper grants are in place, George can create a datatype that is based on Dora’s
ADDRESS_TY datatype, as shown in the following listing.

rem while connected as George:

create or replace type PERSON_TY as object
(Name VARCHAR2(25),
 Address Dora.ADDRESS_TY);
/

Using another user’s object types is not trivial. For example, during insert operations, you
must specify the owner of each type or use a synonym. George can create a table based on his
PERSON_TY datatype (which includes Dora’s ADDRESS_TY object type), as shown in the
following listing:

create table CUSTOMER
(Customer_ID NUMBER,
 Person PERSON_TY);

614 Part V: Object-Relational Databases

If George owned the PERSON_TY and ADDRESS_TY datatypes, an insert into CUSTOMER
would use the following format:

insert into CUSTOMER values
(1,PERSON_TY('SomeName',
 ADDRESS_TY('StreetValue','CityValue','ST',11111)));

Because George does not own the ADDRESS_TY datatype, this command will fail. During the
insert, the ADDRESS_TY constructor method is used—and Dora owns it. Therefore, the insert
command must be modified to specify Dora as the owner of ADDRESS_TY. The following example
shows the corrected insert statement, with the reference to Dora shown in bold:

insert into CUSTOMER values
(1,PERSON_TY('SomeName',
 Dora.ADDRESS_TY('StreetValue','CityValue','ST',11111)));

George can simplify the SQL by creating a synonym named ADDRESS_TY:

create synonym ADDRESS_TY for Dora.ADDRESS_TY;

This synonym can be used in queries, DML, and DDL.
You can use a synonym for another user’s object type during queries and inserts. For example,

George’s insert works now that the ADDRESS_TY synonym exists:

insert into CUSTOMER values
(1,PERSON_TY('SomeName',
 ADDRESS_TY('StreetValue','CityValue','ST',11111)));

NOTE
When you create a synonym, Oracle does not check the validity of
the object for which you are creating a synonym. When you create
synonym x for y, Oracle does not check to make sure that y is a valid
object name or valid object type. The validity of that object is only
checked when the object is accessed via the synonym.

In a relational-only implementation of Oracle, you grant the EXECUTE privilege on procedural
objects such as procedures and packages. Within the object-relational implementation of Oracle, the
EXECUTE privilege is extended to cover object types as well. The EXECUTE privilege is appropriate
because object types can include methods—PL/SQL functions and procedures that operate on the
datatype. If you grant someone the privilege to use your object type, you are granting the user the
privilege to execute the methods you have defined on the object type. Although Dora did not yet
define any methods on the ADDRESS_TY object type, Oracle automatically creates constructor
methods to access the data. Any object (such as PERSON_TY) that uses the ADDRESS_TY object type
uses the constructor method associated with ADDRESS_TY. Even if you haven’t created any methods
for your object type, it still has procedures associated with it.

You can describe CUSTOMER:

describe CUSTOMER

 Name Null? Type
 --- -------- ---------
 CUSTOMER_ID NUMBER
 PERSON PERSON_TY

Chapter 38: Implementing Object Types, Object Views, and Methods 615

You can use the set describe depth command in SQL*Plus to show the datatype attributes for
tables that use object-relational features. You can specify depth values from 1 to 50:

set describe depth 2

desc CUSTOMER

 Name Null? Type
 --- -------- ----------------
 CUSTOMER_ID NUMBER
 PERSON PERSON_TY
 NAME VARCHAR2(25)
 ADDRESS DORA.ADDRESS_TY

set describe depth 3

desc customer

 Name Null? Type
 --- -------- ----------------
 CUSTOMER_ID NUMBER
 PERSON PERSON_TY
 NAME VARCHAR2(25)
 ADDRESS DORA.ADDRESS_TY
 STREET VARCHAR2(50)
 CITY VARCHAR2(25)
 STATE CHAR(2)
 ZIP NUMBER

Indexing Object Type Attributes
As shown in the previous listings, the CUSTOMER table contains a normal column (Customer_ID)
and a Person column that is defined by the PERSON_TY object type.

From the datatype definitions shown in the preceding section of this chapter, you can see that
PERSON_TY has one column (Name) followed by an Address column defined by the ADDRESS_
TY datatype.

During queries, you fully qualify the datatype attributes when referencing columns within the
object types by prefacing the attribute name with the column name and by prefacing the column
name with a correlation variable. For example, the following query returns the Customer_ID
column along with the Name column. The Name column is an attribute of the datatype that
defines the Person column, so you refer to the attribute as Person.Name:

select Customer_ID, C.Person.Name
 from CUSTOMER C;

NOTE
When querying the attributes of an object type, you must
use a correlation variable for the table, as shown in this
example.

616 Part V: Object-Relational Databases

To set the display attributes for an object type’s attributes in SQL*Plus, use the column
command, specifying the name of the datatype and the attribute:

column Customer_ID format 9999999
column Person.Name format A25

You can refer to attributes within the ADDRESS_TY object type by specifying the full path
through the related columns. For example, the Street column is referred to as Person.Address
.Street, fully describing its location within the structure of the table. In the following example, the
City column is referenced twice—once in the list of columns to select, and once within the where
clause. In each reference, a correlation variable (in this example, C) is required.

select C.Person.Name,
 C.Person.Address.City
 from CUSTOMER C
 where C.Person.Address.City like 'C%';

Because the City column is used with a range search in the where clause, the Oracle optimizer
may be able to use an index when resolving the query. If an index is available on the City column,
Oracle can quickly find all the rows that have City values starting with the letter C, as requested
by the query.

NOTE
See Chapter 46 for guidelines regarding the columns to index.

To create an index on a column that is part of an object type, you need to specify the full
path to the column as part of the create index command. To create an index on the City column
(which is part of the Address column), you can execute the following command:

create index I_CUSTOMER$CITY
on CUSTOMER(Person.Address.City);

This command will create an index named I_CUSTOMER$CITY on the Person.Address.City column.
Whenever the City column is accessed, the Oracle optimizer will evaluate the SQL used to access
the data and determine if the new index can be useful for improving the performance of the query.

NOTE
In the create index command, you do not use correlation variables
when referencing the attributes of object types.

When creating tables based on object types, you should consider how the columns within the
object types will be accessed. If, like the City column in the preceding example, certain columns
will commonly be used as part of limiting conditions in queries, they should be indexed. In this
regard, the representation of multiple columns in a single object type may hinder your application
performance because it may obscure the need to index specific columns within the datatype.
When using object types, you become accustomed to treating a group of columns as a single
entity, such as the Address columns or the Person columns. It is important to remember that the
optimizer, when evaluating query access paths, will consider the columns individually. In addition,
remember that indexing the City column in one table that uses the ADDRESS_TY object type does

Chapter 38: Implementing Object Types, Object Views, and Methods 617

not affect the City column in a second table that uses the ADDRESS_TY object type. For example,
if there is a second table named BRANCH that uses the ADDRESS_TY object type, its City column
will not be indexed unless you create an index for it. The fact that there is an index on the City
column in the CUSTOMER table will have no impact on the City column in the BRANCH table.

Therefore, one of the advantages of object types—the ability to improve adherence to
standards for logical data representation—does not extend to the physical data representation.
You need to address each physical implementation separately.

Implementing Object Views
The CUSTOMER table created in the previous section of this chapter assumed that a PERSON_TY
datatype already existed. When implementing object-relational database applications, you should
first use the relational database design methods described in the first part of this book. After the
database design is properly normalized, you should look for groups of columns (or individual
columns) that constitute the representation of an object type. You can then create your tables
based on the object types, as shown earlier in this chapter.

But what if your tables already exist? What if you have previously created a relational database
application and now want to implement object-relational concepts in your application without
rebuilding and re-creating the entire application? To do this, you need the ability to overlay object-
oriented (OO) structures, such as object types, on existing relational tables. Oracle provides object
views as a means for defining objects used by existing relational tables.

NOTE
Throughout the examples in this book, the names of object views will
always end with the suffix OV.

In the examples earlier in this chapter, the order of operations was as follows:

 1. Create the ADDRESS_TY datatype.

 2. Create the PERSON_TY datatype, using the ADDRESS_TY datatype.

 3. Create the CUSTOMER table, using the PERSON_TY datatype.

If the CUSTOMER table already existed, you could create the ADDRESS_TY and PERSON_TY
datatypes and use object views to relate them to the CUSTOMER table. In the following listing,
the CUSTOMER table is created as a relational table, using only the built-in datatypes. To keep
the examples separated, create these objects under a new schema.

rem connected as a new user:

drop table CUSTOMER;

create table CUSTOMER
(Customer_ID NUMBER primary key,
 Name VARCHAR2(25),
 Street VARCHAR2(50),
 City VARCHAR2(25),
 State CHAR(2),
 Zip NUMBER);

618 Part V: Object-Relational Databases

If you want to create another table or application that stores information about people and
addresses, you may choose to create the ADDRESS_TY and PERSON_TY object types. However,
for consistency, they should be applied to the CUSTOMER table as well.

With the CUSTOMER table already created (and possibly containing data), you should create
the object types. First, create ADDRESS_TY:

drop type PERSON_TY;
drop type ADDRESS_TY;
drop synonym ADDRESS_TY;

create or replace type ADDRESS_TY as object
(Street VARCHAR2(50),
 City VARCHAR2(25),
 State CHAR(2),
 Zip NUMBER);
/

Next, create PERSON_TY, which uses ADDRESS_TY:

create or replace type PERSON_TY as object
(Name VARCHAR2(25),
 Address ADDRESS_TY);
/

Now, create an object view based on the CUSTOMER table using the object types you have
defined. An object view starts with the create view command. Within the create view command,
you specify the query that will form the basis of the view. You’ll use the object types you just
created. The code for creating the CUSTOMER_OV object view is shown in the following listing:

create view CUSTOMER_OV (Customer_ID, Person) as
select Customer_ID,
 PERSON_TY(Name,
 ADDRESS_TY(Street, City, State, Zip))
 from CUSTOMER;

Let’s look at this command closely. In the first line, the object view is named:

create view CUSTOMER_OV (Customer_ID, Person) as

The CUSTOMER_OV view will have two columns: the Customer_ID column and the Person
column (the latter is defined by the PERSON_TY object type). Note that you cannot specify
“object” as an option within the create view command.

In the next section of the create view command, you create the query that will form the basis
for the view:

select Customer_ID,
 PERSON_TY(Name,
 ADDRESS_TY(Street, City, State, Zip))
 from CUSTOMER;

This example presents several important syntax issues. When a table is built on existing object
types, you select column values from the table by referring to the names of the columns (such as
Person and Address in earlier examples) instead of their constructor methods. When creating the

Chapter 38: Implementing Object Types, Object Views, and Methods 619

object view, however, you refer to the names of the constructor methods (PERSON_TY and
ADDRESS_TY) instead.

You can use a where clause in the query that forms the basis of the object view. In the
following example, CUSTOMER_OV is modified to include a where clause that limits it to
showing the CUSTOMER values for which the State column has a value of 'DE':

create or replace view CUSTOMER_OV (Customer_ID, Person) as
select Customer_ID,
 PERSON_TY(Name,
 ADDRESS_TY(Street, City, State, Zip))
 from CUSTOMER
 where State = 'DE';

Note that when you create the object view CUSTOMER_OV, the where clause of the view’s
base query does not refer to the object type. Instead, it refers directly to the CUSTOMER table.
The where clause refers directly to the State column because the query refers directly to the
CUSTOMER table—a relational table that is not based on any object types.

To create object views based on relational tables, the order of operations is as follows:

 1. Create the CUSTOMER table if it does not already exist.

 2. Create the ADDRESS_TY object type.

 3. Create the PERSON_TY object type, using the ADDRESS_TY object type.

 4. Create the CUSTOMER_OV object view, using the defined object types.

There are two main benefits to using object views. First, they allow you to create object types
that operate against tables that already exist. Because you can use the same object types in multiple
tables within your application, you can improve your application’s adherence to standard
representation of data and your ability to reuse existing objects. Because you can define methods
for the object types, the methods will apply to the data within any new tables you create as well as
to your existing tables.

Second, object views provide two different ways to enter data into the base table. The
flexibility of data manipulation for object views—being able to treat the base table as either a
relational table or an object table—is a significant benefit for application developers. In the next
section, you will see the data-manipulation options available for object views.

Manipulating Data via Object Views
You can update the data in the CUSTOMER table via the CUSTOMER_OV object view, or you
can update the CUSTOMER table directly. By treating CUSTOMER as just a table, you can insert
data into it via a normal SQL insert command, as shown in the following example:

insert into CUSTOMER values
(123,'SIGMUND','47 HAFFNER RD','LEWISTON','NJ',22222);

This insert command inserts a single record into the CUSTOMER table. Even though you have
created an object view on the table, you can still treat the CUSTOMER table as a regular
relational table.

Because the object view has been created on the CUSTOMER table, you can insert into
CUSTOMER via the constructor methods used by the view. As previously shown in this chapter,
when you insert data into an object that uses object types, you specify the names of the constructor

620 Part V: Object-Relational Databases

methods within the insert command. The example shown in the following listing inserts a single
record into the CUSTOMER_OV object view using the CUSTOMER_TY, PERSON_TY, and
ADDRESS_TY constructor methods:

insert into CUSTOMER_OV values
 (234,
 PERSON_TY('EVELYN',
 ADDRESS_TY('555 HIGH ST','LOWLANDS PARK','NE',33333)));

Because you can use either technique to insert values into the CUSTOMER_OV object view,
you can standardize the manner in which your application performs data manipulation. If your
inserts are all based on object types, you can use the same kind of code for inserts regardless of
whether the object types were created before or after the table was.

You can query the rows just entered from either CUSTOMER or CUSTOMER_OV; but because
the view has a where clause, CUSTOMER_OV will only show the rows that pass that limiting
condition.

Using INSTEAD OF Triggers
If you create an object view, you can use an INSTEAD OF trigger to tell Oracle how to update the
underlying tables that are part of the view. You can use INSTEAD OF triggers on either object
views or standard relational views.

For example, if a view involves a join of two tables, your ability to update records in the view
is limited. However, if you use an INSTEAD OF trigger, you can tell Oracle how to update, delete,
or insert records in tables when a user attempts to change values via the view. The code in the
INSTEAD OF trigger is executed in place of the insert, update, or delete command you enter.

For example, you may have a view that joins the BOOKSHELF table to BOOKSHELF_AUTHOR:

create or replace view AUTHOR_PUBLISHER as
select BA.AuthorName, Title, B.Publisher
 from BOOKSHELF_AUTHOR BA inner join BOOKSHELF B
 using (Title);

You can select values from this view—and if you use INSTEAD OF triggers, you can also
perform data manipulation via this view. Consider these records:

select AuthorName, Publisher from AUTHOR_PUBLISHER
 where AuthorName = 'W. P. KINSELLA';

AUTHORNAME PUBLISHER
-- ----------
W. P. KINSELLA MARINER
W. P. KINSELLA BALLANTINE

If we attempt to update the Publisher value, the update fails:

update AUTHOR_PUBLISHER
 set Publisher = 'MARINER'
 where AuthorName = 'W. P. KINSELLA';

set Publisher = 'MARINER'
 *
ERROR at line 2:

Chapter 38: Implementing Object Types, Object Views, and Methods 621

ORA-01779: cannot modify a column which maps to a
 non key-preserved table

The problem is that Oracle cannot determine which publisher in which record to update in
BOOKSHELF. To perform the update via the view, you will need to use an INSTEAD OF trigger.

In the following listing, an INSTEAD OF trigger for the AUTHOR_PUBLISHER view is created:

create or replace trigger AUTHOR_PUBLISHER_UPDATE
instead of UPDATE on AUTHOR_PUBLISHER
for each row
begin
 if :old.Publisher <> :new.Publisher
 then
 update BOOKSHELF
 set Publisher = :new.Publisher
 where Title = :old.Title;
 end if;
 if :old.AuthorName <> :new.AuthorName
 then
 update BOOKSHELF_AUTHOR
 set AuthorName = :new.AuthorName
 where Title = :old.Title;
 end if;
end;
/

In the first part of this trigger, the trigger is named and its purpose is described via the instead
of clause. The trigger has been named to make its function clear: It is used to support update
commands executed against the AUTHOR_PUBLISHER view. It is a row-level trigger; each
changed row will be processed, as shown next:

create trigger AUTHOR_PUBLISHER_UPDATE
instead of UPDATE on AUTHOR_PUBLISHER
for each row

The next section of the trigger tells Oracle how to process the update. In the first check within
the trigger body, the Publisher value is checked. If the old Publisher value is equal to the new
Publisher value, no changes are made. If the values are not the same, the BOOKSHELF table is
updated with the new Publisher value:

begin
 if :old.Publisher <> :new.Publisher
 then
 update BOOKSHELF
 set Publisher = :new.Publisher
 where Title = :old.Title;
 end if;

In the next section of the trigger, the AuthorName value is evaluated. If the AuthorName value
has changed, the BOOKSHELF table is updated to reflect the new AuthorName value:

 if :old.AuthorName <> :new.AuthorName
 then
 update BOOKSHELF_AUTHOR

622 Part V: Object-Relational Databases

 set AuthorName = :new.AuthorName
 where Title = :old.Title;
 end if;

Thus, the view relies on two tables—BOOKSHELF and BOOKSHELF_AUTHOR—and an
update of the view can update either or both of the tables. The INSTEAD OF trigger, introduced
to support object views, is a powerful tool for application development.

You can now update the AUTHOR_PUBLISHER view directly and have the trigger update the
proper underlying table. For example, the following command will update the BOOKSHELF table:

update AUTHOR_PUBLISHER
 set Publisher = 'MARINER'
 where AuthorName = 'W. P. KINSELLA';

2 rows updated.

Verify the update by querying the BOOKSHELF table:

select Publisher from BOOKSHELF
 where Title in
(select Title from BOOKSHELF_AUTHOR
 where AuthorName = 'W. P. KINSELLA');

PUBLISHER

MARINER
MARINER

INSTEAD OF triggers are very powerful. As shown in this example, you can use them to
perform operations against different database tables, using the flow-control logic available within
PL/SQL. In dealing with object views, you can use INSTEAD OF triggers to redirect DML against
the object views to the base tables for the views.

Methods
When you created an object view on the CUSTOMER table, you defined object types that the
table used. Those datatypes help to standardize the representation of data, but they serve another
purpose as well. You can define methods that apply to datatypes, and by applying those datatypes
to existing tables, you can apply those methods to the data in those tables.

Consider the CUSTOMER_OV object view:

create or replace view CUSTOMER_OV (Customer_ID, Person) as
select Customer_ID,
 PERSON_TY(Name,
 ADDRESS_TY(Street, City, State, Zip))
 from CUSTOMER;

This view applies the PERSON_TY and ADDRESS_TY object types to the data in the CUSTOMER
table. If any methods are associated with those object types, they will apply to the data in the
table. When you create an object type, you use the create type command. When you create a
method, you use the create type body command.

Chapter 38: Implementing Object Types, Object Views, and Methods 623

Syntax for Creating Methods
Before creating the body for a method, you must name the method within the datatype declaration.
For example, let’s create a new datatype, ANIMAL_TY. The datatype definition for ANIMAL_TY is
shown in the following listing:

create or replace type ANIMAL_TY as object
(Breed VARCHAR2(25),
 Name VARCHAR2(25),
 BirthDate DATE,
member function AGE (BirthDate IN DATE) return NUMBER);
/

The ANIMAL_TY datatype could be used as part of an object view on the BREEDING table
used in Chapter 14. In the BREEDING table, the name of an offspring, its sex, its parents, and its
birthdate are recorded.

Within the create type command, the line

member function AGE (BirthDate IN DATE) return NUMBER)

names the function that is a “member” of the ANIMAL_TY datatype. Because AGE will return a
value, it is a function (see Chapter 35). To define the AGE function, use the create type body
command, whose full syntax is shown in the Alphabetical Reference.

Let’s create the AGE function as a member function within the ANIMAL_TY datatype. The
AGE function will return the age, in days, of the animals:

create or replace type body ANIMAL_TY as
member function Age (BirthDate DATE) return NUMBER is
 begin
 RETURN ROUND(SysDate - BirthDate);
 end;
end;
/

If you had additional functions or procedures to code, you would specify them within the
same create type body command, before the final end clause.

Now that the AGE function has been created, it is associated with the ANIMAL_TY object
type. If a table uses this object type, it can use the AGE function.

NOTE
You cannot drop or re-create a type that is in use by a table.

You can use the AGE function within a query. If ANIMAL_TY is used as the object type for a
column named Animal in the table named ANIMAL, the table structure could be as follows:

create table ANIMAL
(ID NUMBER,
 Animal ANIMAL_TY);

insert into ANIMAL values
(11,ANIMAL_TY('COW','MIMI',TO_DATE('01-JAN-1997','DD-MON-YYYY')));

624 Part V: Object-Relational Databases

You can now invoke the AGE function, which is part of the ANIMAL_TY object type. Like the
attributes of an object type, the member methods are referenced using the column names that use
the object types (in this case, Animal.AGE). Your result will reflect the current system date when
you execute the query:

select A.Animal.AGE(A.Animal.BirthDate)
 from ANIMAL A;

A.ANIMAL.AGE(A.ANIMAL.BIRTHDATE)

 2694

The A.Animal.AGE(A.Animal.BirthDate) call executes the AGE method within the ANIMAL_
TY datatype. Therefore, you do not have to store variable data such as age within your database.
Instead, you can store static data—such as birthdate—in your database and use function and
procedure calls to derive the variable data.

NOTE
In this example, you need to use correlation variables in two places—
when calling the AGE method and when passing the name of the
BirthDate column to that method.

Managing Methods
You can add new methods to an object type by altering the object type (via the alter type
command). When altering an object type, list all its methods, both the old and the new. After
altering the object type, alter the object type’s body, listing all the object type’s methods in a
single command.

You do not need to grant EXECUTE privilege on the member functions and procedures of
object types. If you grant another user EXECUTE privilege on the ANIMAL_TY object type, that
user automatically has EXECUTE privilege on the methods that are part of the object type. Thus,
the grant of access to the object type includes both the data representation and its data access
methods, in accordance with OO concepts.

When creating member functions, you can specify them as being map methods or order
methods (or neither, as in the case of the ANIMAL_TY.Age member function). A map method
returns the relative position of a given record in the ordering of all records within the object.
A type body can contain only one map method, which must be a function.

An order method is a member function that takes a record in the object as an explicit argument
and returns an integer value. If the returned value is negative, zero, or positive, the implicit “self”
argument of the function is less than, equal to, or greater than, respectively, that of the explicitly
specified record. When multiple rows within an object are compared in an order by clause, the
order method is automatically executed to order the rows returned. An object type specification
can contain only one order method, which must be a function with the return type INTEGER.

The notion of ordering within the rows of an object type may have more relevance when you
consider the implementation of collectors—datatypes that hold multiple values per row. Oracle
offers two types of collectors, called nested tables and varying arrays. In the next chapter, you will
see how to implement these collector types.

CHAPTER
39

Collectors (Nested Tables
and Varying Arrays)

625

626 Part V: Object-Relational Databases

ollectors make use of object types. You should be familiar with the creation and
implementation of object types (see Chapter 38) before attempting to use varying
arrays and nested tables.

Varying Arrays
A varying array allows you to store repeating attributes of a record in a single row. For example,
suppose you want to track which of your tools were borrowed by which of your neighbors. You
could model this in a relational database by creating a BORROWER table:

create table BORROWER
(Name VARCHAR2(25),
 Tool VARCHAR2(25),
constraint BORROWER_PK primary key (Name, Tool));

Even though the borrower’s Name value does not change, it is repeated in each record
because it is part of the primary key. Collectors such as varying arrays allow you to repeat only
those column values that change, potentially saving storage space. You can use collectors to
accurately represent relationships between object types in your database objects. In the following
sections, you will see how to create and use collectors.

Creating a Varying Array
You can create a varying array based on either an object type or one of Oracle’s standard
datatypes (such as NUMBER). For example, you could create a new object type, TOOL_TY, as
shown in the following listing, which has only one column; you should limit varying arrays to one
column. If you need to use multiple columns in an array, consider using nested tables (described
later in this chapter).

create type TOOL_TY as object
(ToolName VARCHAR2(25));
/

You do not have to create the base type—in this case, TOOL_TY—before you can create a
varying array (to be named TOOLS_VA). Because the varying array is based on only one column,
you can create the TOOLS_VA type in a single step. To create the varying array, use the as varray()
clause of the create type command:

create or replace type TOOLS_VA as varray(5) of VARCHAR2(25);
/

When this create type command is executed, a type named TOOLS_VA is created. The as
varray(5) clause tells Oracle that a varying array is being created, and it will hold a maximum of
five entries per record. The name of the varying array is the pluralized TOOLS (instead of TOOL)
to show that this type will be used to hold multiple records. The suffix VA makes it clear that the
type is a varying array. You can now use this type as the basis for a column definition, as shown
in the following listing:

drop table BORROWER;

create table BORROWER

C

Chapter 39: Collectors (Nested Tables and Varying Arrays) 627

(Name VARCHAR2(25),
 Tools TOOLS_VA,
constraint BORROWER_PK primary key (Name));

Describing the Varying Array
The BORROWER table will contain one record for each borrower, even if that borrower has
multiple tools. The multiple tools will be stored in the Tools column, using the TOOLS_VA
varying array. You can describe the BORROWER table as follows:

desc BORROWER

Name Null? Type
------------------------------- -------- ------------
NAME NOT NULL VARCHAR2(25)
TOOLS TOOLS_VA

Note that the set describe depth command shown in Chapter 38 will not affect this output.
You can query similar information from USER_TAB_COLUMNS:

column Data_Type format a12

select Column_Name,
 Data_Type
 from USER_TAB_COLUMNS
 where Table_Name = 'BORROWER';

COLUMN_NAME DATA_TYPE
------------------------------ ------------
NAME VARCHAR2
TOOLS TOOLS_VA

USER_TYPES shows TOOLS_VA is a collection, with no attributes:

select TypeCode,
 Attributes
 from USER_TYPES
 where Type_Name = 'TOOLS_VA';

TYPECODE ATTRIBUTES
------------------------------ ----------
COLLECTION 0

For more details on TOOLS_VA, query the USER_COLL_TYPES data dictionary view, as
shown in the following listing:

select Coll_Type,
 Elem_Type_Owner,
 Elem_Type_Name,
 Upper_Bound,
 Length
 from USER_COLL_TYPES
 where Type_Name = 'TOOLS_VA';

628 Part V: Object-Relational Databases

COLL_TYPE ELEM_TYPE_OWNER
------------------------------ -----------------------------
ELEM_TYPE_NAME UPPER_BOUND LENGTH
------------------------------ ----------- ----------
VARYING ARRAY
VARCHAR2 5 25

If you base a varying array on an existing object type, the object type’s owner will be
displayed in the Elem_Type_Owner column, and the object type’s name will be displayed
in the Elem_Type_Name column. Because TOOLS_VA uses VARCHAR2 instead of an object
type, the Elem_Type_Owner column’s value is NULL.

Inserting Records into the Varying Array
Because a varying array is an object type, you need to use constructor methods to insert records
into tables that use varying arrays. Furthermore, because the varying array is itself an object type,
you may need to nest calls to multiple constructor methods to insert a record into a table that uses
a varying array.

The following command will insert a single record into the BORROWER table. In this
example, the record will have a single Name column value and three Tools values.

insert into BORROWER values
('JED HOPKINS',
 TOOLS_VA('HAMMER','SLEDGE','AX'));

This insert command first specifies the value for the Name column. Because the Name
column is not part of any object type, it is populated in the same way you would insert values
into any relational column:

insert into BORROWER values
('JED HOPKINS',

The next part of the insert command inserts records into the Tools column. Because the Tools
column uses the TOOLS_VA varying array, you need to use the TOOLS_VA constructor method:

TOOLS_VA('HAMMER','SLEDGE','AX'));

Because this is a varying array, you can pass multiple values to the TOOLS_VA constructor
method. As the preceding listing shows, three tools are listed in a single insert for the single
borrower name. If the varying array had been based on the TOOL_TY object type, you would
have instead nested calls to TOOL_TY within the TOOLS_VA calls:

insert into BORROWER values
('JED HOPKINS',
 TOOLS_VA(
 TOOL_TY('HAMMER'),
 TOOL_TY('SLEDGE'),
 TOOL_TY('AX')));

Basing the varying array on an Oracle-supplied datatype (and using only a single column)
instead of a user-defined object type simplifies the insert command by eliminating the nested
calls to additional constructor methods.

Oracle TIGHT / Oracle Database 11g: The Complete Reference / Loney / 159875-8

Chapter 39: Collectors (Nested Tables and Varying Arrays) 629

The TOOLS_VA varying array was defined to have up to five values. In this insert command,
only three values were entered for the row; the other two are uninitialized. If you want to set the
uninitialized values to NULL, you can specify that in the insert command:

insert into BORROWER values
('JED HOPKINS',
 TOOLS_VA('HAMMER','SLEDGE','AX',NULL,NULL));

If you specify too many values to insert into the varying array, Oracle responds with the following:

ORA-22909: exceeded maximum VARRAY limit

You cannot insert records into a table that contains a varying array unless you know the
structure and datatypes within the array. This example assumes that all the datatypes used by the
BORROWER table were within the schema used to create the BORROWER table. If the object
types are owned by a separate schema, the creator of the BORROWER table will need EXECUTE
privilege on those datatypes. See Chapter 38 for examples of using object types created under
other schemas.

Selecting Data from Varying Arrays
You can query the varying array data directly from the table:

select Tools from BORROWER;

TOOLS
--
TOOLS_VA('HAMMER', 'SLEDGE', 'AX')

You can use the TABLE function in the from clause to display the data from varying arrays on
separate lines. Consider the following query and its output:

select B.Name, N.*
 from BORROWER B, TABLE(B.Tools) N;

NAME COLUMN_VALUE
------------------------- -------------------------
JED HOPKINS HAMMER
JED HOPKINS SLEDGE
JED HOPKINS AX
JED HOPKINS
JED HOPKINS

How did that work? The TABLE function took as its input the name of the varying array, and
its output is given the alias N. The values within N are selected, generating the second column
of the output. All five entries in the varying array are shown, including the two NULL values that
were not specified during the insert.

To display the varying array data on separate lines, you can also use PL/SQL. You can query
the varying array to determine its maximum number of entries per row, called its LIMIT, and the
current number of entries per row, called its COUNT. To retrieve the COUNT, LIMIT, and data from
a varying array, you can use a set of nested Cursor FOR loops, as shown in the following listing:

630 Part V: Object-Relational Databases

NOTE
For an overview of PL/SQL and Cursor FOR loops, see Chapter 32.

set serveroutput on
declare
 cursor borrower_cursor is
 select * from BORROWER;
begin
 for borrower_rec in borrower_cursor
 loop
 dbms_output.put_line('Contact Name: '||borrower_rec.Name);
 for i in 1..borrower_rec.Tools.Count
 loop
 dbms_output.put_line(borrower_rec.Tools(i));
 end loop;
 end loop;
end;
/

The following is the output of this PL/SQL script:

Contact Name: JED HOPKINS
HAMMER
SLEDGE
AX

PL/SQL procedure successfully completed.

The script uses several PL/SQL features to retrieve data from the varying array. The data will
be displayed via the PUT_LINE procedure of the DBMS_OUTPUT package (see Chapter 35), so
you must first enable PL/SQL output to be displayed:

set serveroutput on

In the Declarations section of the PL/SQL block, a cursor is declared; the cursor’s query
selects all the values from the BORROWER table:

declare
 cursor borrower_cursor is
 select * from BORROWER;

The Executable Commands section of the PL/SQL block contains two nested FOR loops. In the
first loop, each record from the cursor is evaluated and the Name value is printed via PUT_LINE:

begin
 for borrower_rec in borrower_cursor
 loop
 dbms_output.put_line('Contact Name: '||borrower_rec.Name);

NOTE
You should only print character data via PUT_LINE. PL/SQL will print
numeric values via PUT_LINE, but you cannot concatenate them to
expressions before printing. Therefore, you may need to use the TO_
CHAR function on numeric data before printing it via PUT_LINE.

Chapter 39: Collectors (Nested Tables and Varying Arrays) 631

In the next section of the PL/SQL block, the rows are evaluated further to retrieve the data
stored in the varying array. A second FOR loop, nested within the first loop, is executed. The inner
FOR loop is limited by the number of values in the array, as defined by the COUNT method (the
maximum number of values in the array is available via the LIMIT method).

The values in the Tools array will be printed, one by one, by this loop:

 for i in 1..borrower_rec.Tools.Count
 loop
 dbms_output.put_line(borrower_rec.Tools(i));

The notation

Tools(i)

tells Oracle to print the array value that corresponds to the value of i. Thus, the first time through
the loop, the first value in the array is printed; then the value of i is incremented, and the second
value in the array is printed.

The last part of the PL/SQL block closes the two nested loops and ends the block:

 end loop;
 end loop;
end;

Because this method involves nested loops within PL/SQL, selecting data from varying arrays is
not trivial.

Note that we may get a different number of tools for each borrower—anywhere from zero to
five. For example, the following row would insert a row with just one entry in the varying array:

insert into BORROWER values
('FRED FULLER',
 TOOLS_VA('HAMMER'));

You can select that data via PL/SQL, via the TABLE function, or via SQL:

select B.Name, N.*
 from BORROWER B, TABLE(B.Tools) N;

NAME COLUMN_VALUE
------------------------- -------------------------
FRED FULLER HAMMER
JED HOPKINS HAMMER
JED HOPKINS SLEDGE
JED HOPKINS AX
JED HOPKINS
JED HOPKINS

For greater flexibility in selecting data from collectors, you should consider the use of nested
tables, as described in the next section.

NOTE
You can use the modify limit clause of the alter type command to
change the maximum number of entries allowed in a varying array.

632 Part V: Object-Relational Databases

Following the examples of the use of nested tables, you will see additional functions that can
be used against varying arrays and nested tables.

Nested Tables
Whereas varying arrays have a limited number of entries, a second type of collector, called a
nested table, has no limit on the number of entries per row. A nested table is, as its name implies,
a table within a table. In this case, it is a table that is represented as a column within another
table. You can have multiple rows in the nested table for each row in the main table.

For example, if you have a table of animal breeders, you may also have data about their
animals. Using a nested table, you could store the information about breeders and all of their
animals within the same table. Consider the ANIMAL_TY datatype introduced in Chapter 38:

create or replace type ANIMAL_TY as object
(Breed VARCHAR2(25),
 Name VARCHAR2(25),
 BirthDate DATE);
/

NOTE
To keep this example simple, this version of the ANIMAL_TY datatype
does not include any methods. For this example, you should drop the
ANIMAL table if it exists in your practice schema.

The ANIMAL_TY datatype contains a record for each animal—its breed, name, and birth date.
To use this datatype as the basis for a nested table, you need to create a new datatype:

create type ANIMALS_NT as table of ANIMAL_TY;
/

The as table of clause of this create type command tells Oracle that you will be using this type as
the basis for a nested table. The name of the type, ANIMALS_NT, has a pluralized root to indicate
that it stores multiple rows, and it has the suffix NT to indicate that it will be a nested table.

You can now create a table of breeders, using the ANIMALS_TY datatype:

create table BREEDER
(BreederName VARCHAR2(25),
 Animals ANIMALS_NT)
 nested table ANIMALS store as ANIMALS_NT_TAB;

In this create table command, the BREEDER table is created. The first column of the BREEDER
table is a BreederName column. The second column is a column named Animals, whose
definition is the nested table ANIMALS_NT.

When creating a table that includes a nested table, you must specify the name of the table
that will be used to store the nested table’s data. That is, the data for the nested table is not stored
“inline” with the rest of the table’s data. Instead, it is stored apart from the main table. The data in
the Animals column will be stored in one table, and the data in the BreederName column will be
stored in a separate table. Oracle will maintain pointers between the tables. In this example, the
“out-of-line” data for the nested table is stored in a table named ANIMALS_NT_TAB:

Chapter 39: Collectors (Nested Tables and Varying Arrays) 633

nested table ANIMALS store as ANIMALS_NT_TAB;

This example highlights the importance of naming standards for collectors. If you pluralize the
column names (“Animals” instead of “Animal”) and consistently use suffixes (TY, NT, and so forth),
you can tell what an object is just by its name. Furthermore, because nested tables and varying
arrays may be based directly on previously defined datatypes, their names may mirror the names
of the datatypes on which they are based. Therefore, a datatype named ANIMAL_TY could be
used as the basis for a varying array named ANIMALS_VA or a nested table named ANIMALS_NT.
The nested table would have an associated out-of-line table named ANIMALS_NT_TAB. If you
know that a table named ANIMALS_NT_TAB exists and you are consistent in your object naming,
you automatically know that it stores data based on a datatype named ANIMAL_TY.

Specifying Tablespaces for Nested Tables
When you create the BREEDER table with the ANIMALS nested table, the nested table’s storage is
created in the same table as the parent table. If you create a nested table within a nested table, the
child table is created in the same tablespace as its parent table unless you specify a tablespace.

You can use the create table command to specify a tablespace for the nested table, as shown
in the following listing. In this example, the BREEDER table will be stored in the user’s default
tablespace, whereas the ANIMALS nested table will be stored in the USERS tablespace:

drop table BREEDER;

create table BREEDER
(BreederName VARCHAR2(25),
 Animals ANIMALS_NT)
 nested table ANIMALS store as ANIMALS_NT_TAB (tablespace USERS);

You can move the nested table via the move clause of the alter table command. If you
execute the alter table move command on the BREEDER table, its nested table will not be moved.
To move the nested table, use the name of the storage table listed in the create table command:

alter table ANIMALS_NT_TAB move tablespace PRACTICE;

Inserting Records into a Nested Table
You can insert records into a nested table by using the constructor methods for its datatype. For
the Animals column, the datatype is ANIMALS_NT; therefore, you will use the ANIMALS_NT
constructor method. The ANIMALS_NT type, in turn, uses the ANIMAL_TY datatype. As shown
in the following example, inserting a record into the BREEDER table requires you to use both the
ANIMALS_NT and ANIMAL_TY constructor methods. In the example, three animals are listed for
the breeder named Jane James.

insert into BREEDER values
('JANE JAMES',
 ANIMALS_NT(
 ANIMAL_TY('DOG', 'BUTCH', '31-MAR-01'),
 ANIMAL_TY('DOG', 'ROVER', '05-JUN-01'),
 ANIMAL_TY('DOG', 'JULIO', '10-JUN-01')
));

634 Part V: Object-Relational Databases

This insert command first specifies the name of the breeder:

insert into BREEDER values
('JANE JAMES',

Next, the value for the Animals column is entered. Because the Animals column uses the
ANIMALS_NT nested table, the ANIMALS_NT constructor method is called:

ANIMALS_NT(

The ANIMALS_NT nested table uses the ANIMAL_TY datatype, so the ANIMAL_TY constructor
method is called for each value inserted:

 ANIMAL_TY('DOG', 'BUTCH', '31-MAR-01'),
 ANIMAL_TY('DOG', 'ROVER', '05-JUN-01'),
 ANIMAL_TY('DOG', 'JULIO', '10-JUN-01')
));

You can see the datatypes that constitute the table and its nested table via the describe
command. Use the set describe depth SQL*Plus command to enable the display of the datatype
attributes:

set describe depth 2

desc breeder

 Name Null? Type
 --- -------- ------------
 BREEDERNAME VARCHAR2(25)
 ANIMALS ANIMALS_NT
 BREED VARCHAR2(25)
 NAME VARCHAR2(25)
 BIRTHDATE DATE

You can query this metadata from USER_TAB_COLUMNS, USER_TYPES, USER_COLL_TYPES,
and USER_TYPE_ATTRS data dictionary views, as in the examples earlier in this chapter.

Working with Nested Tables
Nested tables support a great variety of queries. A nested table is a column within a table. To
support queries of the columns and rows of a nested table, use the TABLE function introduced
earlier in this chapter.

To see how the TABLE function is used, first consider the nested table by itself. If it were a
normal column of a relational table, you would be able to query it via a normal select command:

select BirthDate /* This won't work.*/
 from ANIMALS_NT
 where Name = 'JULIO';

ANIMALS_NT is not a normal table; it’s a datatype. To select columns (such as BirthDate)
from the nested table, you first need to “flatten” the table so it can be queried. First, apply the
TABLE function to the nested table column (BREEDER.Animals), as shown in the following listing:

select BreederName, N.Name, N.BirthDate
 from BREEDER, TABLE(BREEDER.Animals) N;

Chapter 39: Collectors (Nested Tables and Varying Arrays) 635

BREEDERNAME NAME BIRTHDATE
------------------------- ------------------------- ---------
JANE JAMES BUTCH 31-MAR-01
JANE JAMES ROVER 05-JUN-01
JANE JAMES JULIO 10-JUN-01

With the data in this format, it is simple to retrieve the proper row:

select BreederName, N.Name, N.BirthDate
 from BREEDER, TABLE(BREEDER.Animals) N
where N.Name = 'JULIO';

BREEDERNAME NAME BIRTHDATE
------------------------- ------------------------- ---------
JANE JAMES JULIO 10-JUN-01

You can use the TABLE function whenever you need to perform inserts or updates directly against
the nested table. For example, a breeder probably will have more animals as time goes by, so you
need the ability to add new records to the ANIMALS_NT nested table within the BREEDER table.
You will have to insert records into the nested table without adding new records into the BREEDER
table, and you will need to relate the new Animal records to breeders who are already in the
BREEDER table.

The following insert statement adds a new record to the nested table in Jane James’s BREEDER
record:

insert into TABLE(select Animals
 from BREEDER
 where BreederName = 'JANE JAMES')
values
(ANIMAL_TY('DOG','MARCUS','01-AUG-01'));

The insert does not provide a value for the BreederName column; we are only inserting into
the nested table of a breeder’s row. The TABLE function is again used to “flatten” the nested table
in the Animals column (for Jane’s row), and the new values are inserted. Note the use of the where
clause within the TABLE function call to specify the rows to be acted on.

You can also update the dog’s birth date. Julio’s birth date was originally entered as 10-JUN-01
but has since been discovered to be 01-SEP-01. The following update changes the nested table’s
BirthDate value for Julio. Its syntax and structure are very close to the query examples shown
earlier in this chapter.

update TABLE(select Animals
 from BREEDER
 where BreederName = 'JANE JAMES') N
 set N.BirthDate = '01-SEP-01'
 where N.Name = 'JULIO';

You can verify this change by querying the nested table data:

select BreederName, N.Name, N.BirthDate
 from BREEDER, TABLE(BREEDER.Animals) N;

BREEDERNAME NAME BIRTHDATE
------------------------- ------------------------- ---------
JANE JAMES BUTCH 31-MAR-01

636 Part V: Object-Relational Databases

JANE JAMES ROVER 05-JUN-01
JANE JAMES JULIO 01-SEP-01
JANE JAMES MARCUS 01-AUG-01

You can delete nested table entries as well:

delete TABLE(select Animals
 from BREEDER
 where BreederName = 'JANE JAMES') N
 where N.Name = 'JULIO';

1 row deleted.

select BreederName, N.Name, N.BirthDate
 from BREEDER, TABLE(BREEDER.Animals) N;

BREEDERNAME NAME BIRTHDATE
------------------------- ------------------------- ---------
JANE JAMES BUTCH 31-MAR-01
JANE JAMES ROVER 05-JUN-01
JANE JAMES MARCUS 01-AUG-01

Additional Functions for Nested Tables
and Varying Arrays
In addition to the functions already shown in this chapter, Oracle provides a number of functions
specifically intended for use with collectors. The CARDINALITY function returns the number of
elements in a nested table or varying array:

select CARDINALITY(Animals) from BREEDER;

CARDINALITY(ANIMALS)

 3

The MULTISET EXCEPT function takes two nested tables as input and returns the set of
records that are in the first nested table but not in the second nested table (similar to a minus
operator). MULTISET INTERSECT returns the rows two nested tables have in common. MULTISET
UNION performs a union of two nested tables; you can specify MULTISET UNION ALL (the
default) or MULTISET UNION DISTINCT.

The SET function converts a nested table into a set while eliminating duplicates, returning a
nested table of distinct values:

set linesize 60
select SET(Animals) from BREEDER;

SET(ANIMALS)(BREED, NAME, BIRTHDATE)
--
ANIMALS_NT(ANIMAL_TY('DOG', 'BUTCH', '31-MAR-01'), ANIMAL_TY
('DOG', 'ROVER', '05-JUN-01'), ANIMAL_TY('DOG', 'MARCUS', '0
1-AUG-01'))

Chapter 39: Collectors (Nested Tables and Varying Arrays) 637

See the Alphabetical Reference for the syntax for these functions, along with the COLLECT,
POWERMULTISET, and POWERMULTISET_BY_CARDINALITY functions.

Management Issues for Nested Tables
and Varying Arrays
When storing data that is related to a table, you can choose one of three methods: a varying array,
a nested table, or a separate table. If you have a limited number of rows, a varying array may be
appropriate. As the number of rows increases, however, you may begin to encounter performance
problems while accessing the varying array. These problems may be caused by a characteristic of
varying arrays: They cannot be indexed. Nested tables and standard relational tables, however,
can be indexed. As a result, the performance of a varray collector may worsen as it grows in size.

Varying arrays are further burdened by the difficulty in querying data from them. If varying
arrays are not a good solution for your application, which alternative should you use—a nested
table or a separate relational table? Nested tables and relational tables serve different purposes,
so your answer depends on what you are trying to do with the data. Here are the key differences:

Nested tables are object types, created via the create type command. Therefore, they
can have methods associated with them. If you plan to attach methods to the data, you
should use nested tables instead of relational tables. Alternatively, you could consider
using object views with methods, as described in Chapter 38.

Relational tables are easily related to other relational tables. If the data may be related
to many other tables, it may be best not to nest the data within one table. Storing it in
its own table will give you the greatest flexibility in managing the data relationships.

Variability in Collectors
You can use object types to enforce standards within your database. However, you may not be
able to realize the same standardization benefits when you are using collectors. Consider the
TOOLS_VA varying array shown earlier in this chapter. If another application or table wants to
use a TOOLS_VA varying array, that application must use the same definition for the array,
including the same maximum number of values. However, the new application may have a
different value for the maximum number of tools. Therefore, the array must be altered to support
the greatest possible number of values it may contain in any of its implementations. As a result,
the usefulness of the array’s limiting powers may diminish. To support multiple array limits, you
would need to create multiple arrays, thus eliminating any object reuse benefits you may have
received from creating the varying arrays. You would then need to manage the different array
limits and know what the limit is in each array.

You may also find that multiple nested tables are similar, with a difference in only one or two
columns. You may be tempted to create a single, all-inclusive nested table type that is used in
multiple tables, but that table would also encounter management problems. You would need to
know which columns of the nested table were valid for which implementations. If you cannot use
the same column structure, with the same meaning and relevance of the columns in each instance,
you should not use a shared nested-table object type. If you want to use nested tables in that
environment, you should create a separate nested-table object type for each instance in which
you will use the nested table, and manage them all separately. Having multiple nested-table
object types will complicate the management of the database.

■

■

638 Part V: Object-Relational Databases

Location of the Data
In a varying array, the data in the array is stored with the rest of the data in the table. In nested
tables, however, the data may be stored “out of line” (and as shown earlier in this chapter, the data
may be stored in a separate tablespace). As a result, the amount of data scanned during queries
that do not involve the collector data may be less for a nested table than for a varying array. That
is, during a query, the database may not need to read through the data in the nested table; if a
varying array is used, the database may need to read through the varying array’s data to find the
data it needs. Out-of-line data, as used by nested tables, can improve the performance of queries.

Out-of-line collector data mimics the way the data would be stored in a normal relational
database application. For example, in a relational application, you would store related data (such
as books and authors) in separate tables, and the tables would be physically stored apart. Out-of-
line nested tables store their data apart from the main table but maintain a relationship with the
main table. Out-of-line data may improve the performance of queries by distributing across
multiple tables the I/O performed against the main table.

Out-of-line data is also used to store large objects (LOBs) that are stored internally (as opposed
to BFILEs, which are pointers to LOBs external to the database). In the next chapter, you will
see how to create and manipulate LOB values. The combination of object types, object views,
collectors, and LOBs provides a strong foundation for the implementation of an object-relational
database application.

CHAPTER
40

Using Large Objects

639

640 Part V: Object-Relational Databases

n place of LONG and LONG RAW, you can use the LOB datatypes (BLOB, CLOB,
NCLOB, and BFILE) for storage of long data. Although Oracle still allows LONG
and LONG RAW columns to be created, Oracle recommends that you create new
columns using the LOB datatypes and that you convert existing LONG and LONG
RAW columns to CLOB or BLOB columns, respectively. If you use one of these

datatypes to store large objects (LOBs), you can take advantage of new capabilities for viewing
and manipulating the data. You can also use Oracle Text (see Chapter 27) to perform text searches
on CLOB data.

In this chapter, you will see how to use the LOB datatypes and how to manipulate the data—
which does not even have to be stored within the database!

Available Datatypes
Four types of LOBs are supported:

LOB Datatype Description

BLOB Binary LOB. Binary data stored in the database.

CLOB Character LOB. Character data stored in the database.

BFILE Binary File. Read-only binary data stored outside the database, the
length of which is limited by the operating system.

NCLOB A CLOB column that supports a multibyte character set.

You can create multiple LOBs per table. For example, suppose you want to create a PROPOSAL
table to track formal proposals you submit. Your proposal records may consist of a series of word
processing files and spreadsheets used to document and price the proposed work. The PROPOSAL
table will contain VARCHAR2 datatypes (for columns such as the name of the proposal recipient)
plus LOB datatypes (containing the word processing and spreadsheet files).

NOTE
You cannot create multiple LONG or LONG RAW columns in a single
table.

The create table command in the following listing creates the PROPOSAL table:

create table PROPOSAL
(Proposal_ID NUMBER(10),
 Recipient_Name VARCHAR2(25),
 Proposal_Name VARCHAR2(25),
 Short_Description VARCHAR2(1000),
 Proposal_Text CLOB,
 Budget BLOB,
 Cover_Letter BFILE,
constraint PROPOSAL_PK primary key (Proposal_ID));

Because you may submit multiple proposals to the same recipient, assign each proposal a
Proposal_ID number. The PROPOSAL table stores the recipient of the proposal, the name of the

I

Chapter 40: Using Large Objects 641

proposal, and a short description. Then, taking advantage of the LOB datatypes available in
Oracle, the PROPOSAL table includes three columns:

Proposal_Text A CLOB containing the text of the proposal

Budget A BLOB containing a spreadsheet showing calculations of the cost
and profit for the proposed work

Cover_Letter A binary file (BFILE) stored outside the database that contains your
cover letter that accompanies the proposal

Each row in the PROPOSAL table will have up to three LOB values stored. Oracle will use the
normal database capabilities to support data integrity and concurrency for the Proposal and Budget
entries, but not for the Cover_Letter values. Because the Cover_Letter column uses the BFILE
datatype, its data is stored outside the database. Internally, the database stores only a locator value
that allows it to find the external file, thus reducing the space and management requirements for
the database. Oracle does not guarantee the data integrity of BFILE files stored outside the database.
Also, Oracle does not validate that these files exist when you insert a record using a BFILE datatype.
Data concurrency and integrity are maintained only for internally stored LOBs.

The data for the LOB columns may be physically apart from the PROPOSAL table. Within the
PROPOSAL table, Oracle stores locator values that point to data locations. For BFILE datatypes,
the locator points to an external file; for BLOB and CLOB datatypes, the locator points to a separate
data location that the database creates to hold the LOB data. The data location for the LOB data
may be inline with the rest of the PROPOSAL row or stored out of line. By default, the LOB data is
stored inline if its length is less than approximately 4000 bytes.

Storing the data out of line allows the database to avoid having to scan the LOB data each
time it reads multiple rows from the database. The LOB data will only be read when it is required;
otherwise, only its locator values will be read. You can specify the storage parameters (tablespace
and sizing) for the area used to hold the LOB data, as described in the next section.

Specifying Storage for LOB Data
When you create a table that includes a LOB column, you can specify the storage parameters for
the area used for the LOB data. Thus, for a table that has no LOB columns, you may have a storage
clause in the create table command (see Chapter 17). If the table has at least one LOB column,
you also need an additional lob clause within your create table command.

Consider the PROPOSAL table, this time with a tablespace clause:

create table PROPOSAL
(Proposal_ID NUMBER(10),
 Recipient_Name VARCHAR2(25),
 Proposal_Name VARCHAR2(25),
 Short_Description VARCHAR2(1000),
 Proposal_Text CLOB,
 Budget BLOB,
 Cover_Letter BFILE,
constraint PROPOSAL_PK primary key (Proposal_ID))
 tablespace PROPOSALS;

642 Part V: Object-Relational Databases

Because there are three LOB columns, the create table command should be modified to
include the storage specifications for the out-of-line LOB data (if you plan to store the LOB data
out of line). Two of the LOB columns—Proposal_Text and Budget—will store data within the
database. The revised version of the create table command, with the LOB storage clause specified,
is shown in the following listing:

create table PROPOSAL
(Proposal_ID NUMBER(10),
 Recipient_Name VARCHAR2(25),
 Proposal_Name VARCHAR2(25),
 Short_Description VARCHAR2(1000),
 Proposal_Text CLOB,
 Budget BLOB,
 Cover_Letter BFILE,
constraint PROPOSAL_PK primary key (Proposal_ID))
 tablespace PROPOSALS
lob (Proposal_Text, Budget) store as
(tablespace Proposal_Lobs
 storage (initial 100K next 100K pctincrease 0)
 chunk 16K pctversion 10 nocache logging);

The last four lines of the create table command tell Oracle how to store the out-of-line LOB
data. The instructions are as follows:

lob (Proposal_Text, Budget) store as
(tablespace Proposal_Lobs
 storage (initial 100K next 100K pctincrease 0)
 chunk 16K pctversion 10 nocache logging);

The lob clause tells Oracle that the next set of commands deals with the out-of-line storage
specifications for the table’s LOB columns. The two LOB columns (Proposal_Text and Budget) are
explicitly listed. When the two columns’ values are stored out of line, they are stored in a segment
as specified via the lob clause:

lob (Proposal_Text, Budget) store as

NOTE
If there were only one LOB column, you could specify a name for the
LOB segment. You would name the segment immediately after the
store as clause in the preceding command.

The next two lines specify the tablespace and storage parameters for the out-of-line LOB
storage. The tablespace clause assigns the out-of-line data to the PROPOSAL_LOBS tablespace,
and an optional storage clause can be used to specify the initial, next, and pctincrease values the
out-of-line data storage will use. See the entry for the storage clause in the Alphabetical Reference
for an explanation of the available storage parameters for segments.

 (tablespace Proposal_Lobs

Because the segments are for storing LOB data, several additional parameters are available,
and they are specified within the lob clause:

Chapter 40: Using Large Objects 643

chunk 16K pctversion 10

The chunk LOB storage parameter tells Oracle how much space to allocate during each LOB
value manipulation. The default chunk size is 1KB, going up to a maximum value of 32KB.

The pctversion parameter is the maximum percentage of overall LOB storage space used for
creating new versions of the LOB. By default, older versions of the LOB data will not be overwritten
until 10 percent of the available LOB storage space is used.

The last two parameters of the LOB storage space tell Oracle how to handle the LOB data
during reads and writes:

nocache logging);

The nocache parameter in the lob storage clause specifies that the LOB values are not stored
in memory for faster access during queries. The default lob storage setting is nocache; its opposite
is cache.

The logging parameter specifies that all operations against the LOB data will be recorded in
the database’s redo log files. The opposite of logging, nologging, keeps operations from being
recorded in the redo log files, thereby improving the performance of table-creation operations.
You can also specify the tablespace and storage parameters for a LOB index. See the create table
command entry in the Alphabetical Reference for the full syntax related to LOB indexes.

If you specify cache and omit the nologging/logging clause, logging is automatically
implemented because you cannot specify cache nologging. If cache is not specified and the
nologging/logging clause is omitted, the logging value is obtained from the tablespace in which
the LOB value is stored.

Now that the table has been created, you can begin to enter records into it. In the next
section, you will see how to insert LOB values into the PROPOSAL table and how to use the
DBMS_LOB package to manipulate the values.

You can have as many lob store as columns as you have LOB columns. Simply specify the
LOB column name (or names) as part of the lob clause, as shown here:

lob (Proposal_Text, Budget) store as
(tablespace Proposal_Lobs
 storage (initial 100K next 100K pctincrease 0)
 chunk 16K pctversion 10 nocache logging)

Manipulating and Selecting LOB Values
LOB data can be selected or manipulated in several ways. You can use the character string functions
you would use on VARCHAR2 columns against LOB datatypes. For large LOB values (32KB or more
in length), or for more complex operations against the data, you should manipulate LOB data via
the DBMS_LOB package. Other methods for manipulating LOB data include using application
programming interface (API) and Oracle Call Interface (OCI) programs. In this section, you will see
the use of the string functions plus an overview of the DBMS_LOB package. As these examples
demonstrate, LOBs are much more flexible than LONG datatypes in terms of data-manipulation
possibilities.

Table 40-1 lists the procedures and functions available via the DBMS_LOB package.

644 Part V: Object-Relational Databases

Subprogram Description

APPEND procedure Appends the contents of the source LOB to the destination LOB

CLOSE procedure Closes a previously opened internal or external LOB

COMPARE function Compares two entire LOBs or parts of two LOBs

COPY procedure Copies all, or part, of the source LOB to the destination LOB

CONVERTTOBLOB procedure Reads character data from a source CLOB or NCLOB instance,
converts the character data to the specified character, writes the
converted data to a destination BLOB instance in binary format,
and returns the new offsets

CONVERTOCLOB procedure Reads character data from a source CLOB or NCLOB instance,
converts the character data to the specified character, writes the
converted data to a destination BLOB instance in binary format,
and returns the new offsets

CREATETEMPORARY procedure Creates a temporary BLOB or CLOB and its corresponding
index in the user’s default temporary tablespace

ERASE procedure Erases all or part of a LOB

FILECLOSE procedure Closes the file

FILECLOSEALL procedure Closes all previously opened files

FILEEXISTS function Checks whether the file exists on the server

FILEGETNAME procedure Gets the directory alias and filename

FILEISOPEN function Checks whether the file was opened using the input BFILE
locators

FILEOPEN procedure Opens a file

FRAGMENT_DELETE procedure Deletes the data at the given offset for the given length within
the LOB

FRAGMENT_INSERT procedure Inserts the data at the given offset (limit 32KB) within the LOB

FRAGMENT_MOVE procedure Moves the amount of bytes (BLOB) or characters (CLOB/
NCLOB) from the given offset to the new offset specified

FRAGMENT_REPLACE procedure Replaces the data at the given offset with the given data (not to
exceed 32KB)

FREETEMPORARY procedure Frees the temporary BLOB or CLOB in the user’s default
temporary tablespace

GETCHUNKSIZE function Returns the amount of space used in the LOB chunk to store the
LOB value

GETLENGTH function Gets the length of the LOB value

GET_OPTIONS function Obtains settings corresponding to the option_types field for a
particular LOB

GET_STORAGE_LIMIT function Returns the storage limit for LOBs in your database
configuration

TABLE 40-1 DBMS_LOB Functions and Procedures

Chapter 40: Using Large Objects 645

Initializing Values
Consider the PROPOSAL table again. The Proposal_ID column is the primary key column for the
PROPOSAL table. The PROPOSAL table contains three LOB columns—one BLOB, one CLOB,
and one BFILE. For each of the LOB columns, Oracle will store a locator value that tells it where
to find any out-of-line data stored for the record.

When you insert a record into a table that contains LOBs, you use functions to tell Oracle to
create an empty locator value for the internally stored LOB columns. An empty locator value is
different from a NULL value. If an internally stored LOB column’s value is NULL, you have to set
it to an empty locator value before updating it to a non-NULL value.

Suppose you begin to work on a proposal and enter a record in the PROPOSAL table. At this
point, you have neither a budget spreadsheet nor a cover letter. The insert command is shown in
the following listing:

insert into PROPOSAL
(Proposal_ID, Recipient_Name, Proposal_Name, Short_Description,
 Proposal_Text,
 Budget, Cover_Letter)
values
(1, 'DOT RODALE', 'MAINTAIN ORGANIC GARDEN', NULL,
 'This is the text of a proposal to maintain an organic garden.',
 EMPTY_BLOB(),NULL);

Subprogram Description

INSTR function Returns the matching position of the nth occurrence of the
pattern in the LOB

ISOPEN function Checks to see whether the LOB was already opened using the
input locator

ISTEMPORARY function Checks whether the locator is pointing to a temporary LOB

LOADFROMFILE procedure Loads BFILE data into an internal LOB

LOADBLOBFROMFILE procedure Loads BFILE data into an internal BLOB

LOADCLOBFROMFILE procedure Loads BFILE data into an internal CLOB

OPEN procedure Opens a LOB (internal, external, or temporary) in the indicated
mode

READ procedure Reads data from the LOB starting at the specified offset

SETOPTIONS procedure Enables CSCE features on a per-LOB basis, overriding the
default LOB column settings

SUBSTR function Returns part of the LOB value starting at the specified offset

TRIM procedure Trims the LOB value to the specified shorter length

WRITE procedure Writes data to the LOB from a specified offset

WRITEAPPEND procedure Writes a buffer to the end of a LOB

TABLE 40-1 DBMS_LOB Functions and Procedures (continued)

646 Part V: Object-Relational Databases

The inserted record has a Proposal_ID value of 1 and a Recipient_Name value of DOT
RODALE. The Proposal_Name value is MAINTAIN ORGANIC GARDEN and the Short_
Description column is left NULL for now. The Proposal_Text column is set equal to a short
character string for now. To set the Budget column to an empty locator value, you use the
EMPTY_BLOB function. If you had wanted to set a CLOB datatype column equal to an empty
locator value, you would have used the EMPTY_CLOB function. The Cover_Letter column,
because it is an externally stored BFILE value, is set to NULL.

To set a LOB column to an empty locator value, you have to know its datatype:

BLOB Use EMPTY_BLOB()

CLOB Use EMPTY_CLOB()

NCLOB Use EMPTY_CLOB()

BFILE Use BFILENAME

You use the BFILENAME procedure to point to a directory and filename combination. Before
entering a value for the directory in the BFILENAME function, a user with the DBA role or the
CREATE ANY DIRECTORY system privilege must create the directory. To create a directory, use
the create directory command, as shown in the following example:

create directory proposal_dir as '/u01/proposal/letters';

When inserting BFILE entries, you refer to the logical directory name—such as proposal_dir—
instead of the physical directory name on the operating system. Users with DBA authority can
grant READ access to the directory names to users. See the entry for the create directory command
in the Alphabetical Reference for further details.

You can now enter a second PROPOSAL record; this record will have a Cover_Letter value:

insert into PROPOSAL
(Proposal_ID, Recipient_Name, Proposal_Name, Short_Description,
 Proposal_Text, Budget,
Cover_Letter)
values
(2, 'BRAD OHMONT', 'REBUILD FENCE', NULL,
 EMPTY_CLOB(), EMPTY_BLOB(),
 BFILENAME('proposal_dir','P2.DOC'));

In this listing, a second proposal—rebuilding a fence—is inserted into the PROPOSAL table.
The EMPTY_CLOB() and EMPTY_BLOB() functions are optionally used to insert empty locator
values in the table. The BFILENAME function tells Oracle exactly where to find the cover letter—
it’s in the proposal_dir directory and its name is P2.DOC. Within the BFILENAME function, the
first parameter is always the directory name, and the second parameter is the name of the file
within that directory.

NOTE
The P2.DOC file does not have to exist for this record to be inserted
successfully.

When you select the value from a LOB column, Oracle uses the locator value to find the data
that is associated with the LOB data. You never need to know or specify the locator values. And,

Chapter 40: Using Large Objects 647

as you’ll see in the following sections, you can do things with LOB values that are impossible to
do with LONG datatypes.

Using insert with Subqueries
What if you want to duplicate a proposal record? For example, suppose you begin to work on a
third proposal, and it is very similar to the first proposal:

insert into PROPOSAL
(Proposal_ID, Recipient_Name, Proposal_Name, Short_Description,
 Proposal_Text, Budget, Cover_Letter)
select 3, 'SKIP GATES', 'CLEAR GATES FIELD', NULL,
 Proposal_Text, Budget, Cover_Letter
 from PROPOSAL
 where Proposal_ID = 1;

This insert command tells Oracle to find the PROPOSAL record with a Proposal_ID value of 1.
Take the Proposal_Text, Budget, and Cover_Letter column values and the literal values specified
(3, SKIP GATES, and so forth) and insert a new record into the PROPOSAL table. Note that the
inserted LOB columns will be set to empty locator values. The ability to perform inserts based on
queries is a significant advantage of using LOB datatypes—you cannot perform this type of insert
if a LONG column is part of the query.

NOTE
If you use insert as select to populate LOB values, you may have
multiple BFILE values pointing to the same external file. You may need
to update the new values to point to the correct external files. Oracle
does not maintain data integrity for the external files.

Updating LOB Values
In the third record that was created, the Proposal_Text value was copied from the first record. To
update the Proposal_Text value of the record that has a Proposal_ID of 3, execute the following
command:

update PROPOSAL
 set Proposal_Text = 'This is the new proposal text.'
 where Proposal_ID = 3;

You can also update the Cover_Letter column to point to the correct cover letter. Use the
BFILENAME function to point to the correct file:

update PROPOSAL
 set Cover_Letter = BFILENAME('proposal_dir', 'P3.DOC')
 where Proposal_ID = 3;

You can update NULL values of BFILE columns without first setting them to empty locator values.

Using String Functions to Manipulate LOB Values
You can use the Oracle-provided string functions against CLOB values. For example, you can use
SUBSTR, INSTR, LTRIM, and INITCAP to modify the strings. See Chapter 7 for descriptions of the
built-in string functions.

648 Part V: Object-Relational Databases

In the PROPOSAL table, the Proposal_Text column is defined as a CLOB datatype. Here are
the three Proposal_Text values (the second is NULL):

select Proposal_Text from PROPOSAL;

PROPOSAL_TEXT

This is the text of a proposal to maintain an organic garden.

This is the new proposal text.

Applying INITCAP to the third record yields this result:

select INITCAP(Proposal_Text) from PROPOSAL
 where Proposal_ID = 3;

INITCAP(PROPOSAL_TEXT)

This Is The New Proposal Text.

Applying INSTR to all three rows returns the expected result:

select INSTR(Proposal_Text,'new',1,1) from PROPOSAL;

INSTR(PROPOSAL_TEXT,'NEW',1,1)

 0
 0
 13

You can use SUBSTR to return the first ten characters of the text:

select SUBSTR(Proposal_Text,1,10) from PROPOSAL
 where Proposal_ID = 3;

SUBSTR(PROPOSAL_TEXT,1,10)

This is th

For complex manipulations, you should use the DBMS_LOB package, as described in the
following sections.

NOTE
The regular expression functions (see Chapter 8) may be used against
LOB datatypes.

Using DBMS_LOB to Manipulate LOB Values
You can use the DBMS_LOB package to change or select LOB values. In the following sections,
you will see how to perform SQL functions such as SUBSTR and INSTR on LOB values, as well
as how to append to LOB values, compare LOB values, and read LOB values.

The string comparison and manipulation procedures and functions available within the
DBMS_LOB package are listed in Table 40-1.

Chapter 40: Using Large Objects 649

The major procedures and functions available within the DBMS_LOB package are described
in the following sections. When using BFILEs, the maximum number of files you can concurrently
have open is limited by the setting of the SESSION_MAX_OPEN_FILES parameter in the database’s
system parameter file. The default maximum number of concurrently open BFILE files is 10; the
maximum is either 50 or the value of the MAX_OPEN_FILES parameter, whichever is lower.

NOTE
For the full listing of all DBMS_LOB subprograms, see the Oracle
documentation set. The functions and procedures described in
this chapter are the ones expected to be most frequently used by
developers.

In the following examples, the Proposal_Text CLOB column is used to show the impact of the
major procedures and functions.

READ
The READ procedure reads a piece of a LOB value. In the PROPOSAL table example, the
Proposal_Text for the first row is

select Proposal_Text
 from PROPOSAL
 where Proposal_ID = 1;

PROPOSAL_TEXT

This is the text of a proposal to maintain an organic garden.

This is a fairly short description, so it could have been stored in a VARCHAR2 datatype column.
Because it is stored in a CLOB column, though, its maximum length is much greater than it would
have been if it had been stored in a VARCHAR2 column. The maximum size for both BLOBs and
CLOBs is defined via the formula (4GB – 1) * database block size, yielding values between 8TB
and 128TB. For these examples, we’ll use this short string for purposes of demonstration; you can
use the same functions and operations against longer CLOB strings, as well.

The READ procedure has four parameters, which must be specified in this order:

 1. The LOB locator (for either a BLOB, CLOB, or BFILE)

 2. The number of bytes or characters to be read

 3. The offset (starting point of the read) from the beginning of the LOB value

 4. The output data from the READ procedure

If the end of the LOB value is reached before the specified number of bytes is read, the READ
procedure will return an error.

Because the READ procedure requires the LOB locator as input, the READ procedure is
executed within PL/SQL blocks. You will need to select the LOB locator value, provide that as
input to the READ procedure, and then display the text read via the DBMS_OUTPUT package.

A Word About the DBMS_OUTPUT Package As noted in Chapter 35, you can use the
DBMS_OUTPUT package to display the values of variables within a PL/SQL block. The PUT_
LINE procedure within DBMS_OUTPUT displays the specified output on a line. Before using the

650 Part V: Object-Relational Databases

DBMS_OUTPUT package, you should first execute the set serveroutput on command. In the next
section, you’ll see how to create the PL/SQL block that will read the data from a LOB.

A READ Example To use the READ procedure, you need to know the locator value of the LOB
you want to read. The locator value must be selected from the table that contains the LOB.
Because the locator value must be supplied as input to the READ procedure, you should use PL/
SQL variables to hold the locator value. The READ procedure, in turn, will place its output in a
PL/SQL variable. You can use the DBMS_OUTPUT package to display the output value. The
structure of the PL/SQL block for this example is as follows:

declare
 variable to hold locator value
 variable to hold the amount (the number of characters/bytes to read)
 variable to hold the offset
 variable to hold the output
begin
 set value for amount_var;
 set value for offset_var;
 select locator value into locator var from table;
 DBMS_LOB.READ(locator var, amount var, offset var, output var);
 DBMS_OUTPUT.PUT_LINE('Output:' || output var);
end;

NOTE
See Chapter 32 for an overview of PL/SQL blocks and their
components.

For the PROPOSAL table, selecting the first ten characters from the Proposal_Text column
would look like this:

declare
 locator_var CLOB;
 amount_var INTEGER;
 offset_var INTEGER;
 output_var VARCHAR2(10);
begin
 amount_var := 10;
 offset_var := 1;
 select Proposal_Text into locator_var
 from PROPOSAL
 where Proposal_ID = 1;
 DBMS_LOB.READ(locator_var, amount_var, offset_var, output_var);
 DBMS_OUTPUT.PUT_LINE('Start of proposal text: ' || output_var);
end;
/

When you execute the preceding PL/SQL block, the output will match the SQL SUBSTR
example shown earlier:

Start of proposal text: This is th

PL/SQL procedure successfully completed.

Chapter 40: Using Large Objects 651

The output shows the first ten characters of the Proposal_Text value, starting at the first character
of the LOB value.

The PL/SQL block in the preceding example first declared the variables to use:

declare
 locator_var CLOB;
 amount_var INTEGER;
 offset_var INTEGER;
 output_var VARCHAR2(10);

Next, values were assigned to the variables:

begin
 amount_var := 10;
 offset_var := 1;

Then the locator value was selected from the table and stored in a variable named locator_var:

select Proposal_Text into locator_var
 from PROPOSAL
 where Proposal_ID = 1;

Next, the READ procedure was called, using the values that had been assigned so far:

DBMS_LOB.READ(locator_var, amount_var, offset_var, output_var);

As a result of the execution of the READ procedure, the output_var variable will be populated
with the data that was read. The PUT_LINE procedure displays that data:

DBMS_OUTPUT.PUT_LINE('Start of proposal text: ' || output_var);

This format for PL/SQL blocks will be used throughout the rest of this chapter. You can
optionally set the variable values when they are declared.

If you want to select a different portion of the Proposal_Text CLOB, just change the amount
and offset variables. If you change the number of characters read, you need to change the size
of the output variable, too. In the following example, 12 characters are read from Proposal_Text,
starting from the tenth character:

declare
 locator_var CLOB;
 amount_var INTEGER;
 offset_var INTEGER;
 output_var VARCHAR2(12);
begin
 amount_var := 12;
 offset_var := 10;
 select Proposal_Text into locator_var
 from PROPOSAL
 where Proposal_ID = 1;
 DBMS_LOB.READ(locator_var, amount_var, offset_var, output_var);
 DBMS_OUTPUT.PUT_LINE('Part of proposal text: ' || output_var);
end;
/

652 Part V: Object-Relational Databases

Output from this PL/SQL block is shown in the following listing:

Part of proposal text: he text of a

PL/SQL procedure successfully completed.

If Proposal_Text had been created as a VARCHAR2 column, you could have selected this data
using the SUBSTR function. However, you would have been limited to a maximum column length
of 4,000 characters. Also, note that the LOB column can contain binary data (BLOB datatypes),
and you can use the READ procedure to select data from BLOBs in the same way you select from
CLOBs. For BLOBs, you should declare the output buffer to use the RAW datatype. In PL/SQL,
RAW and VARCHAR2 datatypes (used for the output variables for CLOB and BLOB reads) have a
maximum length of 32,767 characters.

For the READ procedure, possible exceptions are VALUE_ERROR, INVALID_ARGVAL, NO_
DATA_FOUND, UNOPENED_FILE, NOEXIST_DIRECTORY, NOPRIV_DIRECTORY, INVALID_
DIRECTORY, INVALID_OPERATION, and BUFFERING_ENABLED.

SUBSTR
The SUBSTR function within the DBMS_LOB package performs the SQL SUBSTR function on
a LOB value. This function has three input parameters, which must be specified in this order:

 1. The LOB locator

 2. The number of bytes or characters to be read

 3. The offset (starting point of the read) from the beginning of the LOB value

Because SUBSTR is a function, there is no output variable value returned directly from SUBSTR
as there was with READ. For the READ procedure, you declared an output variable and then
populated it within the READ procedure call. The PL/SQL block used for the READ procedure is
shown in the following listing, with the lines related to the output variable shown in bold:

declare
 locator_var CLOB;
 amount_var INTEGER;
 offset_var INTEGER;
 output_var VARCHAR2(12);
begin
 amount_var := 12;
 offset_var := 10;
 select Proposal_Text into locator_var
 from PROPOSAL
 where Proposal_ID = 1;
 DBMS_LOB.READ(locator_var, amount_var, offset_var, output_var);
 DBMS_OUTPUT.PUT_LINE('Section of proposal text: ' || output_var);
end;
/

Because SUBSTR is a function, you will populate the output variable differently. The format is

output_var := DBMS_LOB.SUBSTR(locator_var, amount_var, offset_var);

Chapter 40: Using Large Objects 653

The preceding PL/SQL statement uses the SUBSTR function of the DBMS_LOB package to
select 12 characters from the Proposal_Text LOB column, starting at the tenth character. The full
PL/SQL block is

declare
 locator_var CLOB;
 amount_var INTEGER;
 offset_var INTEGER;
 output_var VARCHAR2(12);
begin
 amount_var := 12;
 offset_var := 10;
 select Proposal_Text into locator_var
 from PROPOSAL
 where Proposal_ID = 1;
 output_var := DBMS_LOB.SUBSTR(locator_var, amount_var, offset_var);
 DBMS_OUTPUT.PUT_LINE('Section of proposal text: ' || output_var);
end;
/

The output is shown in the following listing:

Section of proposal text: he text of a
PL/SQL procedure successfully completed.

The equivalent SQL function call is

select SUBSTR(Proposal_Text,10,12)
 from PROPOSAL
 where Proposal_ID = 1;

The SUBSTR example differs from the READ example in only two ways: the name of the
function call, and the manner of assigning a value to the output variable. As with the READ
procedure example, the PUT_LINE procedure of the DBMS_OUTPUT package is used to display
the results.

In general, you should use the SUBSTR function whenever you are interested in selecting only
a specific section of the LOB value. The READ function can be used to select only a portion of a
text string (as in the previous examples), but it is more often used within a loop. For example,
suppose the LOB value is larger than the largest allowed RAW or VARCHAR2 variable in PL/SQL
(32,767 characters). In that case, you can use the READ procedure within a loop to read all the
data from the LOB value. Refer to Chapter 32 for details on the different loop options available in
PL/SQL.

For the SUBSTR function, possible exceptions are UNOPENED_FILE, NOEXIST_DIRECTORY,
NOPRIV_DIRECTORY, INVALID_DIRECTORY, INVALID_OPERATION, and BUFFERING_ENABLED.

INSTR
The INSTR function within the DBMS_LOB package performs the SQL INSTR function on a LOB
value.

The INSTR function has four input parameters, which must be specified in this order:

 1. The LOB locator

 2. The pattern to be tested for (RAW bytes for BLOBs, character strings for CLOBs)

654 Part V: Object-Relational Databases

 3. The offset (starting point of the read) from the beginning of the LOB value

 4. The occurrence of the pattern within the LOB value

The INSTR function within DBMS_LOB searches the LOB for a specific pattern of bytes or
characters. The occurrence variable allows you to specify which occurrence of the pattern within
the searched value should be returned. The output of the INSTR function is the position of the
start of the pattern within the searched string. For example, in SQL,

1

means that within the string ABCABC, the pattern A is searched for, starting at the first position of
the string, and looking for the first occurrence. The A is found in the first position of the searched
string. If you start the search at the second position of the string, the answer will be different:

4

Because this INSTR starts at the second position, the first A is not part of the value that is
searched. Instead, the first A found is the one in the fourth position.

If you change the last parameter in the SQL INSTR to look for the second occurrence of the
string A, starting at the second position, the pattern is not found:

0

If the SQL INSTR function cannot find the matching occurrence of the pattern, 0 is returned. The
INSTR function of the DBMS_LOB package operates in the same manner.

Because INSTR is a function, you need to assign its output variable in the same manner as the
SUBSTR function’s output variable was assigned. In the following listing, the Proposal_Text CLOB
value is searched for the string 'pr'. The position_var variable is declared to hold the output of the
INSTR function.

declare
 locator_var CLOB;
 pattern_var VARCHAR2(2);
 offset_var INTEGER;
 occur_var INTEGER;
 position_var INTEGER;
begin
 pattern_var := 'pr';
 offset_var := 1;
 occur_var := 1;
 select Proposal_Text into locator_var
 from PROPOSAL
 where Proposal_ID = 1;
 position_var := DBMS_LOB.INSTR(locator_var, pattern_var,
offset_var, occur_var);
 DBMS_OUTPUT.PUT_LINE('Found string at position: ' || position_var);
end;
/

The output would be

Found string at position: 23

PL/SQL procedure successfully completed.

Chapter 40: Using Large Objects 655

The output shows that the search string 'pr' is found within the Proposal_Text, starting at the
23rd character of the LOB value. Because Oracle supports SQL string functions against CLOB
columns, this function call is equivalent to the following query:

select INSTR(Proposal_Text ,'pr',1,1)
 from PROPOSAL
 where Proposal_ID = 1;

For the INSTR function, possible exceptions are UNOPENED_FILE, NOEXIST_DIRECTORY,
NOPRIV_DIRECTORY, INVALID_DIRECTORY, INVALID_OPERATION, and BUFFERING_ENABLED.

GETLENGTH
The GETLENGTH function of the DBMS_LOB package returns the length of the LOB value. The
DBMS_LOB.GETLENGTH function is similar in function to the SQL LENGTH function, but it’s
used only for LOB values.

The GETLENGTH function of the DBMS_LOB package has only one input parameter: the
locator value for the LOB. In the following listing, variables are declared to hold the locator value
and the output value. The GETLENGTH function is then executed, and the result is reported via
the PUT_LINE procedure:

declare
 locator_var CLOB;
 length_var INTEGER;
begin
 select Proposal_Text into locator_var
 from PROPOSAL
 where Proposal_ID = 1;
 length_var := DBMS_LOB.GETLENGTH(locator_var);
 DBMS_OUTPUT.PUT_LINE('Length of LOB: ' || length_var);
end;
/

The following is the GETLENGTH output:

Length of LOB: 61

PL/SQL procedure successfully completed.

If the LOB value is NULL, the GETLENGTH function will return a value of NULL.
The equivalent SQL function for CLOB values is

select LENGTH(Proposal_Text)
 from PROPOSAL
 where Proposal_ID = 1;

COMPARE
The COMPARE function of the DBMS_LOB package compares two LOB values. If the two LOB
values are the same, the COMPARE function returns 0; otherwise, it returns a nonzero integer
value (usually 1 or –1). To execute the COMPARE function, the DBMS_LOB package essentially
performs two READ functions and compares the results. Thus, for each of the LOB values to be
compared, you need to supply a locator value and an offset value; the number of characters or
bytes to be compared will be the same for both LOB values. You can only compare LOBs of the
same datatype.

656 Part V: Object-Relational Databases

The COMPARE function has five input parameters, which must be specified in this order:

 1. The LOB locator for the first LOB

 2. The LOB locator for the second LOB

 3. The amount variable (the number of bytes or characters to compare)

 4. The offset (starting point of the read) from the beginning of the first LOB value

 5. The offset (starting point of the read) from the beginning of the second LOB value

Because the two LOBs being compared can have different offset values, you can compare
the first part of one LOB value with the second part of a different LOB value. The example in the
following listing compares the first 25 characters of the Proposal_Text values from two entries—
the Proposal_ID 1 record and the Proposal_ID 3 record:

declare
 first_locator_var CLOB;
 second_locator_var CLOB;
 amount_var INTEGER;
 first_offset_var INTEGER;
 second_offset_var INTEGER;
 output_var INTEGER;
begin
 amount_var := 25;
 first_offset_var := 1;
 second_offset_var := 1;
 select Proposal_Text into first_locator_var
 from PROPOSAL
 where Proposal_ID = 1;
 select Proposal_Text into second_locator_var
 from PROPOSAL
 where Proposal_ID = 3;
 output_var :=DBMS_LOB.COMPARE(first_locator_var, second_locator_var,
 amount_var, first_offset_var, second_offset_var);
 DBMS_OUTPUT.PUT_LINE('Comparison value (0 if the same): '||
 output_var);
end;
/

The following is the output:

Comparison value (0 if the same): 1

PL/SQL procedure successfully completed.

If the two strings are the same, the COMPARE function will return 0.
In the following listing, the same two LOBs are compared, but this time only their first five

characters are used for the comparison. Because both start with the characters “This ”, the
COMPARE will return 0:

declare
 first_locator_var CLOB;
 second_locator_var CLOB;
 amount_var INTEGER;

Chapter 40: Using Large Objects 657

 first_offset_var INTEGER;
 second_offset_var INTEGER;
 output_var INTEGER;
begin
 amount_var := 5;
 first_offset_var := 1;
 second_offset_var := 1;
 select Proposal_Text into first_locator_var
 from PROPOSAL
 where Proposal_ID = 1;
 select Proposal_Text into second_locator_var
 from PROPOSAL
 where Proposal_ID = 3;
 output_var :=DBMS_LOB.COMPARE(first_locator_var, second_locator_var,
 amount_var, first_offset_var, second_offset_var);
 DBMS_OUTPUT.PUT_LINE('Comparison value (0 if the same): ' ||
 output_var);
end;
/

Comparison value (0 if the same): 0

PL/SQL procedure successfully completed.

The COMPARE function allows you to compare character strings to character strings and
compare binary data to binary data. If you are using the COMPARE function on BLOB columns,
you should define the locator variables as RAW datatypes.

For the COMPARE function, possible exceptions are UNOPENED_FILE, NOEXIST_DIRECTORY,
NOPRIV_DIRECTORY, INVALID_DIRECTORY, INVALID_OPERATION, and BUFFERING_ENABLED.

WRITE
The WRITE procedure of the DBMS_LOB package allows you to write data in specific locations of
the LOB. For example, you can write binary data into a section of a BLOB, overwriting the existing
data there. You can write character data into CLOB fields using the WRITE procedure. This procedure
has four input parameters, which must be specified in this order:

 1. The LOB locator for the LOB

 2. The amount variable (the number of bytes or characters to write)

 3. The offset (starting point of the write) from the beginning of the LOB value

 4. The buffer variable assigned to the character string or binary data being added

Because the WRITE procedure updates the LOB value, you should first lock the row via a
select for update, as shown in bold in the following listing. In this example, a record is selected
and locked. The text ADD NEW TEXT is then written to the LOB value, overwriting the data
starting in position 10 (as defined by the offset variable).

declare
 locator_var CLOB;
 amount_var INTEGER;
 offset_var INTEGER;
 buffer_var VARCHAR2(12);

658 Part V: Object-Relational Databases

begin
 amount_var := 12;
 offset_var := 10;
 buffer_var := 'ADD NEW TEXT';
 select Proposal_Text into locator_var
 from PROPOSAL
 where Proposal_ID = 3
 for update;
 DBMS_LOB.WRITE(locator_var, amount_var, offset_var, buffer_var);
commit;
end;
/

Because the WRITE procedure changes the data, a commit command is added before the end
clause of the PL/SQL block.

NOTE
Test without a commit first so you can see the impact of your
procedure call before committing the change to the database.

For the WRITE procedure, no output is provided. To see the changed data, you need to either
call the READ procedure (within the same PL/SQL block, if you want) or select the LOB value
from the table again:

select Proposal_Text
 from PROPOSAL
 where Proposal_ID = 3;

PROPOSAL_TEXT

This is tADD NEW TEXTsal text.

The WRITE procedure overwrote 12 characters, starting at the tenth character of Proposal_
Text. You can use the WRITEAPPEND procedure to append new data to the end of an existing
LOB value.

For CLOB data, you can rewrite this using an update statement combined with SUBSTR and
concatenation functions.

For the WRITE function, possible exceptions are VALUE_ERROR, INVALID_ARGVAL, QUERY_
WRITE, BUFFERING_ENABLED, and SECUREFILE_OUTOFBOUNDS.

APPEND
The APPEND procedure of the DBMS_LOB package appends data from one LOB to a second
LOB. Because this amounts to an update of a LOB value, the record being updated should be
locked prior to executing the APPEND procedure.

The APPEND procedure takes only two parameters: the locator value for the destination LOB,
and the locator value for the source LOB. If either parameter is NULL, the APPEND procedure
will return an error.

In the following example, two locator variables are defined. The first locator variable is
named dest_locator_var; this is the locator value for the LOB into which the data is to be
appended. The second locator variable, source_locator_var, is the locator value for the source

Chapter 40: Using Large Objects 659

data that is to be appended to the destination LOB. The destination LOB, because it is being
updated, is locked via a select for update command. In this example, the Proposal_Text value for
the Proposal_ID 1 record is appended to the Proposal_Text value for the Proposal_ID 3 record:

declare
 dest_locator_var CLOB;
 source_locator_var CLOB;
begin
 select Proposal_Text into dest_locator_var
 from PROPOSAL
 where Proposal_ID = 3
 for update;
 select Proposal_Text into source_locator_var
 from PROPOSAL
 where Proposal_ID = 1;
 DBMS_LOB.APPEND(dest_locator_var, source_locator_var);
commit;
end;
/

To see the changed data, you can select the record from the PROPOSAL table:

select Proposal_Text
 from PROPOSAL
 where Proposal_ID = 3;

PROPOSAL_TEXT

This is tADD NEW TEXTsal text.This is the text of a proposal to
maintain an orga

What happened to the rest of the text? By default, only 80 characters of LONG and LOB
values are displayed during queries. To see the rest of the text, use the set long command:

set long 1000

select Proposal_Text
 from PROPOSAL
 where Proposal_ID = 3;

PROPOSAL_TEXT

This is tADD NEW TEXTsal text.This is the text of a proposal to
maintain an organic garden.

In this example, the first 1,000 characters of the LOB value were displayed. If you need to
know how long the LOB is, use the GETLENGTH function, as described earlier in this chapter.

In addition to allowing you to append CLOB values, the APPEND procedure allows you to
append BLOB values. When appending BLOB data, you need to be aware of the format of the
BLOB data and the impact of appending new data on the end of the BLOB value. For BLOB
values, the APPEND function may be most useful for applications in which the BLOB contains
only raw data (such as digital data transmissions) rather than formatted binary data (such as
spreadsheet files formatted by a program).

660 Part V: Object-Relational Databases

For CLOB data, you could rewrite this with an update statement, setting the Proposal_Text
value equal to the concatenation of multiple values.

For the APPEND procedure, VALUE_ERROR, QUERY_WRITE, and BUFFERING_ENABLED
are the defined exceptions.

ERASE
You can use the ERASE procedure of the DBMS_LOB package to erase the characters or bytes in
any part of a LOB. You can use ERASE to erase the entire LOB value, or you can specify which
section of the LOB to erase. ERASE is similar in function to WRITE. If you erase data in a BLOB
value, the data is replaced with zero-byte filler. If you erase data in a CLOB value, spaces are
inserted into the CLOB.

Because you are updating a LOB value, you should follow the standard procedures for LOB
updates: Lock the row and commit when the procedure has completed.

In the following PL/SQL block, a portion of Proposal_Text for the record with Proposal_ID 3
is erased. The erased characters will start at an offset of 10 and continue for 17 characters. The
parameters for the ERASE procedure, in order, are

 1. The LOB locator for the LOB

 2. The amount variable (the number of bytes or characters to erase)

 3. The offset (starting point of the erasure) from the beginning of the LOB value

declare
 locator_var CLOB;
 amount_var INTEGER;
 offset_var INTEGER;
begin
 amount_var := 17;
 offset_var := 10;
 select Proposal_Text into locator_var
 from PROPOSAL
 where Proposal_ID = 3
 for update;
 DBMS_LOB.ERASE(locator_var, amount_var, offset_var);
commit;
end;
/

 4. The change to the record can be seen by querying the Proposal_Text value:

select Proposal_Text
 from PROPOSAL
 where Proposal_ID = 3;

PROPOSAL_TEXT

This is t ext.This is the text of a proposal to
maintain an organic garden.

NOTE
The space previously held by the erased data is replaced by blanks;
the rest of the data in the LOB does not change its position.

Chapter 40: Using Large Objects 661

For CLOB data, you can rewrite this operation using an update statement, setting a new value
for Proposal_Text by concatenating SUBSTR results and a blank string.

For the ERASE procedure, possible exceptions are VALUE_ERROR, INVALID_ARGVAL, QUERY_
WRITE, and BUFFERING_ENABLED.

TRIM
You can use the TRIM procedure of the DBMS_LOB package to reduce the size of a LOB value by
trimming characters or bytes from the end of the value (like the SQL RTRIM function). When the
TRIM procedure is executed, you specify the locator value for the LOB and the LOB’s new length.

In the following listing, the Proposal_Text for the Proposal_ID 3 record is trimmed to its first
ten characters. Because the TRIM procedure changes the data, a commit command is added
before the end clause of the PL/SQL block.

declare
 locator_var CLOB;
 new_length_var INTEGER;
begin
 new_length_var := 10;
 select Proposal_Text into locator_var
 from PROPOSAL
 where Proposal_ID = 3
 for update;
 DBMS_LOB.TRIM(locator_var, new_length_var);
commit;
end;
/

For the TRIM procedure, no output is provided. To see the changed data, you need to select
the LOB value from the table again:

select Proposal_Text
 from PROPOSAL
 where Proposal_ID = 3;

PROPOSAL_TEXT
--
This is t

The sample output shows the results of the TRIM procedure following the ERASE procedure
executed in the preceding section. For CLOB data, you could rewrite this as a simple update:

update PROPOSAL
 set Proposal_Text = SUBSTR(Proposal_Text,1,10)
 where Proposal_ID = 3;

For the TRIM procedure, possible exceptions are VALUE_ERROR, INVALID_ARGVAL
QUERY_WRITE, and BUFFERING_ENABLED.

COPY
You can use the COPY procedure of the DBMS_LOB package to copy data from a part of one
LOB into a second LOB. Unlike with the APPEND procedure, you do not have to copy the full

662 Part V: Object-Relational Databases

text of one LOB value into another. During the COPY procedure, you can specify the offset to
read from and the offset to write to. The five parameters of the COPY procedure are, in order:

 1. The destination LOB locator

 2. The source LOB locator

 3. The amount (the number of characters or bytes to copy)

 4. The offset to start writing to within the destination LOB value

 5. The offset to start reading from within the destination LOB value

COPY is a combination of the READ and WRITE capabilities. Like the WRITE operation, the
COPY procedure modifies the LOB value. Therefore, the record should first be locked, and the
PL/SQL block must contain a commit command. In the following example, the first 61 characters
of the Proposal_ID 1 record are copied to the Proposal_ID 3 record. Because the destination LOB
uses an offset of 1, the copied data will overwrite data within the destination LOB.

declare
 dest_locator_var CLOB;
 source_locator_var CLOB;
 amount_var INTEGER;
 dest_offset_var INTEGER;
 source_offset_var INTEGER;
begin
 amount_var := 61;
 dest_offset_var := 1;
 source_offset_var := 1;
 select Proposal_Text into dest_locator_var
 from PROPOSAL
 where Proposal_ID = 3
 for update;
 select Proposal_Text into source_locator_var
 from PROPOSAL
 where Proposal_ID = 1;
 DBMS_LOB.COPY(dest_locator_var, source_locator_var,
 amount_var, dest_offset_var, source_offset_var);
commit;
end;
/

The COPY procedure displays no output. To see the changed data, you need to select the
LOB value from the table again:

select Proposal_Text
 from PROPOSAL
 where Proposal_ID = 3;

PROPOSAL_TEXT

This is the text of a proposal to maintain an organic garden.

For the COPY procedure, possible exceptions are VALUE_ERROR, INVALID_ARGVAL,
QUERY_WRITE, and BUFFERING_ENABLED.

Chapter 40: Using Large Objects 663

Using the BFILE Functions and Procedures
Because BFILE values are stored externally, several functions and procedures are used to manipulate
the files prior to executing READ, SUBSTR, INSTR, GETLENGTH, or COMPARE operations on
BFILE LOBs. The BFILE-related procedures and functions within DBMS_LOB, shown earlier in
Table 40-1, allow you to open files, close files, get the filename, check whether a file exists, and
check whether a file is open. The existence-check function is necessary because Oracle does not
maintain the data stored in the external file; Oracle only maintains the pointer created via the
BFILENAME procedure when the record is inserted or updated. You should use the procedures
and functions in Table 40-1 to control the files used by your PL/SQL code. For example, to read
the first ten bytes from the Cover_Letter BFILE for the Proposal_ID 2 record, you would open the
file and then execute the READ procedure. The PUT_LINE procedure of the DBMS_OUTPUT
package can then be called to show the data that was read.

See Oracle Database SecureFiles and Large Objects Developer’s Guide for additional code
samples and descriptions of the access methods provided.

/* Checking if a pattern exists in a BFILE using instr
/* Procedure compareBFILEs_proc is not part of DBMS_LOB package: */

CREATE OR REPLACE PROCEDURE compareBFILEs_proc IS
 /* Initialize the BFILE locator: */
 file_loc1 BFILE := BFILENAME('MEDIA_DIR', 'keyboard.jpg');
 file_loc2 BFILE;
 Retval INTEGER;
BEGIN
 DBMS_OUTPUT.PUT_LINE('------------ LOB COMPARE EXAMPLE ------------');
 /* Select the LOB: */
 SELECT ad_graphic INTO File_loc2 FROM print_media
 WHERE Product_ID = 3060 AND ad_id = 11001;
 /* Open the BFILEs: */
 DBMS_LOB.OPEN(File_loc1, DBMS_LOB.LOB_READONLY);
 DBMS_LOB.OPEN(File_loc2, DBMS_LOB.LOB_READONLY);
 Retval := DBMS_LOB.COMPARE(File_loc2, File_loc1, DBMS_LOB.LOBMAXSIZE, 1, 1);
 /* Close the BFILEs: */
 DBMS_LOB.CLOSE(File_loc1);
 DBMS_LOB.CLOSE(File_loc2);
END;
/

The approach shown in this example mimics that of the COMPARE example shown earlier.
Because we are working with BFILEs, there are two additional sections: the DBMS_LOB.OPEN
calls to open the files and the DBMS_LOB.CLOSE calls to close the files when the COMPARE has
completed.

Reading data from BFILEs follows the steps shown earlier for the READ function, with the
addition of the calls to open and close the file. The READ process is illustrated via the fread.sql
demo file provided by Oracle in the /rdbms/demo/logs/plsql subdirectory:

/* This file is installed in the following path when you install */
/* the database: $ORACLE_HOME/rdbms/demo/lobs/plsql/fread.sql */
/* Reading data from a BFILE. */
/* Procedure readBFILE_proc is not part of DBMS_LOB package: */

664 Part V: Object-Relational Databases

CREATE OR REPLACE PROCEDURE readBFILE_proc IS
 file_loc BFILE;
 Amount INTEGER := 32767;
 Position INTEGER := 1;
 Buffer RAW(32767);
BEGIN
 DBMS_OUTPUT.PUT_LINE('------------ BFILE READ EXAMPLE ------------');
 /* Select the LOB: */
 SELECT ad_graphic INTO File_loc FROM print_media
 WHERE product_id = 3060 AND ad_id = 11001;
 /* Open the BFILE: */
 DBMS_LOB.OPEN(File_loc, DBMS_LOB.LOB_READONLY);
 /* Read data: */
 DBMS_LOB.READ(File_loc, Amount, Position, Buffer);
 /* Close the BFILE: */
 DBMS_LOB.CLOSE(File_loc);
END;
/

If you use an Exception Handling section in your PL/SQL block, you need to be sure to
include FILECLOSE procedure calls within the declared exceptions. (Refer to Chapter 32 for
further details on exception handling within PL/SQL blocks.)

To move data from an external file into a BLOB datatype, you can create a BFILE datatype in a
table and use the BFILENAME function to create a LOB locator that points to the external file. The
BFILENAME function takes two parameters: the directory name and the filename. Here’s an example:

insert into PROPOSAL (Proposal_ID, Cover_Letter)
values (4, BFILENAME ('proposal_dir','extfile.doc'));

You can then open the file and use the LOADFROMFILE, LOADBLOBFROMFILE, or
LOADCLOBFROMFILE procedure to load the BLOB datatype with the data from the external file.

If the data is presently in a LONG datatype, you can change it to a CLOB or NCLOB column
via the alter table command. You can also use alter table to change a LONG RAW column to a
BLOB datatype column. For insert as select operations, you can use the TO_LOB SQL function to
move the data from the LONG column to a BLOB column.

Deleting LOBs
When you delete LOB values, the locator value is deleted. If the deleted value is an internal LOB
(BLOB, CLOB, or NCLOB), both the locator and the LOB value are deleted. If the deleted value is
an external LOB (BFILE), only the locator value is deleted; you will need to manually delete the
file to which the locator points.

CHAPTER
41

Advanced Object-
Oriented Concepts

665

666 Part V: Object-Relational Databases

n the preceding chapters, all of the object-oriented programming (OOP) features of
Oracle shown shared two characteristics: they are embedded objects, and they are
column objects. An embedded object is one that is completely contained within
another. For example, a nested table is contained within a table, so it is an embedded
object. Although a nested table’s data is stored apart from the main table, its data

can only be accessed via the main table. A column object is one that is represented as a column in
a table. For example, a varying array is represented as a column in a table, so it is a column object.

To take full advantage of OOP capabilities, a database must also support row objects—objects
that are represented as rows instead of columns. The row objects are not embedded objects; instead,
they are referenced objects, accessible via references from other objects. In this chapter, you will
see how row objects are created and referenced.

Object-oriented structures may not be appropriate for many applications—you may be limited
based on your toolset, interfaces, or existing relationships within the database. In this chapter, you
will see how Oracle has implemented row objects and how to use object views to bridge the
object-oriented and relational architectures. In addition to row objects, this chapter covers the
application of objects to PL/SQL—creating object PL/SQL.

Row Objects vs. Column Objects
The distinction between row objects and column objects is critical. First, consider column objects.
Column objects are based on extensions of features already in the database. An object type or a
varying array can be embedded as a column within a table. A nested table or a large object (LOB)
can be stored in a single column of a table. In each case, the object is represented as a column
within a table.

Nested tables and LOBs, however, involve data that is stored out-of-line from the main table.
When you use a LOB (see Chapter 40), you specify the storage values for the table that will store
the LOB data, and Oracle creates LOB locators that point from the main table to the rows in the
LOB table if the LOB data is stored out-of-line. When you create a nested table, you specify the
name of the table in which the nested table’s records will be stored—and Oracle creates pointers
from the main table to the records in the nested tables. Thus, the main table and its embedded
nested table are related.

In row objects, the objects are represented as rows, not columns. The data is not embedded
within the main table; instead, the main table contains a reference to another table. Nested tables,
since they are stored apart from the main table, provide a useful tool for understanding row objects.
What if the nested table’s data is not embedded within the main table, and each of its rows is a
row object? The main table will define references to the related data.

The object-relational features of Oracle described in earlier chapters relied on column objects.
In this chapter, the focus is on the advanced OOP capabilities, which are based on row objects.
You use row objects to create references between the rows of different tables.

Object Tables and OIDs
In an object table, each row is a row object. An object table differs from a normal relational table
in several ways. First, each row within the object table has an OID—an object identifier value—
assigned by Oracle when the row is created. Second, the rows of an object table can be referenced
by other objects within the database.

I

Chapter 41: Advanced Object-Oriented Concepts 667

You can create an object table via the create table command. Consider the ANIMAL_TY
datatype shown in previous chapters. To avoid conflicts with objects created during earlier
chapters, create this type in a new schema:

create or replace type ANIMAL_TY as object
(Breed VARCHAR2(25),
 Name VARCHAR2(25),
 BirthDate DATE);
/

NOTE
To keep this example simple, the ANIMAL_TY datatype is created
without any member functions.

To create an object table of the ANIMAL_TY datatype, issue the following create table command:

create table ANIMAL of ANIMAL_TY;

Table created.

Note that the command has an unusual syntax—creating the table of an object type. The
resulting table may first appear to be a normal relational table:

describe ANIMAL

Name Null? Type
------------------------------- -------- ------------
BREED VARCHAR2(25)
NAME VARCHAR2(25)
BIRTHDATE DATE

The ANIMAL table’s columns map to the attributes of the ANIMAL_TY object type. However,
there are significant differences in how you can use the table, since it is an object table. As noted
earlier in this section, each row within the object table will have an OID value, and the rows can
be referenced as objects.

Inserting Rows into Object Tables
Because ANIMAL is an object table, you can use its object type’s constructor method when
inserting data into the table. Since the ANIMAL table is based on the ANIMAL_TY object type,
the ANIMAL_TY constructor method can be used when inserting values into ANIMAL.

NOTE
Refer to Chapter 38 for details on constructor methods.

In the following listing, three rows are inserted into the ANIMAL object table. In each
command, the ANIMAL_TY constructor method is called.

insert into ANIMAL values
 (ANIMAL_TY('MULE','FRANCES', '01-APR-02'));
insert into ANIMAL values

668 Part V: Object-Relational Databases

 (ANIMAL_TY('DOG','BENJI', '03-SEP-01'));
insert into ANIMAL values
 (ANIMAL_TY('CROCODILE','LYLE', '14-MAY-00'));

If the object type on which the object table is based is itself based on a second object type,
you may need to nest calls to multiple constructor methods within your insert command. (Refer
to Chapter 39 for examples of nested object types.)

NOTE
If an object table is based on a datatype that does not contain any
nested datatypes, you can also insert records into the object table
using the normal insert command syntax for relational tables.

When you insert a row into an object table, Oracle assigns an OID to the row. Having an
OID allows you to use the row as a referenceable object. OID values are not reused.

Selecting Values from Object Tables
When the ANIMAL table was created, it was based entirely on the ANIMAL_TY datatype:

create table ANIMAL of ANIMAL_TY;

When you select from a table that contains an object type, you refer to the object type’s
columns as part of the table’s columns. That is, if you used the ANIMAL_TY datatype as the basis
for a column named Animal, then you would select the animal names by selecting Animal.Name
from the table.

An object table, though, is based on an object type—it has no other columns. Therefore, you
do not need to reference the object type when accessing the columns. To select the names from
the ANIMAL table, just query the attributes directly:

select Name
 from ANIMAL;

NAME

FRANCES
BENJI
LYLE

You can refer to the columns within the where clause just as if ANIMAL were a relational table:

select Name
 from ANIMAL
 where Breed = 'CROCODILE';

NAME

LYLE

If the ANIMAL_TY object type used another object type for one of its columns, that object
type’s column would be referenced during all selects, updates, and deletes.

Chapter 41: Advanced Object-Oriented Concepts 669

Updates and Deletes from Object Tables
If the object table is based on an object type that uses no other object types, an update or delete
of an object table uses the same format as you would use for relational tables. The ANIMAL_TY
datatype does not use any other object type for one of its columns, so your updates and deletes
from the ANIMAL object table behave the same as if ANIMAL were a relational table.

In the following command, one of the rows of ANIMAL is updated:

update ANIMAL
 set BirthDate = '01-MAY-00'
 where Name = 'LYLE';

1 row updated.

Note that during the update, the columns of the object table are referred to as if ANIMAL
were a relational table. During a delete, you use the same means to reference the object table’s
columns in the where clause:

delete from ANIMAL
 where Name = 'LYLE';

1 row deleted.

Keeping a crocodile alongside mules and dogs probably wasn’t such a good idea anyway.

The REF Function
The REF function allows you to reference existing row objects. For example, the ANIMAL table
has (after the deletion of one row, shown in the preceding section) two row objects, each of
which has an OID value assigned to it. You can see the OID assigned to each row by using the
REF function, as shown here:

select REF(A)
 from ANIMAL A
 where Name = 'FRANCES';

REF(A)

0000280209F525172CC0F84F8ABABF0F0F46ECB7209A233BD5F
FD34A7E82D8C0C5CFB88FC0010002270000

NOTE
Your REF(A) value should be different from the one shown here. The
REF(A) value is wrapped over multiple lines in this listing.

In the preceding listing, the ANIMAL table was given the alias A, and that alias was used as
input to the REF function. The output shows the OID for the row object that met the limiting
condition of the query.

NOTE
The REF function takes as its input the alias given to the object table.
The other functions shown later in this chapter also take aliases as
inputs, so you should become familiar with this syntax.

670 Part V: Object-Relational Databases

Since the REF function can only reference row objects, you cannot use it to reference column
objects. Column objects include object types, LOBs, and collectors.

As you can see, the REF function by itself does not give you any useful information. You need
to use another function—DEREF—that translates the REF output into values. You can then use REF
and DEREF to reference row-object values, as described in the next section.

Using the DEREF Function
The REF function takes a row object as its argument and returns a reference value. The DEREF
function does the opposite—it takes a reference value (the OID generated for a reference) and
returns the value of the row object.

Earlier in this chapter, the ANIMAL object table was created using the ANIMAL_TY object type:

create table ANIMAL of ANIMAL_TY;

To see how DEREF and REF work together, consider a table that is related to the ANIMAL table.
The KEEPER table will track the people who take care of the animals. It will have a column for the
name of the keeper (KeeperName) and a reference to the ANIMAL object table (AnimalKept), as
shown in the following listing:

create table KEEPER
(KeeperName VARCHAR2(25),
 AnimalKept REF ANIMAL_TY);

The first part of the create table command looks normal:

create table KEEPER
(KeeperName VARCHAR2(25),

but the last line shows a new feature:

AnimalKept REF ANIMAL_TY);

The AnimalKept column references data that is stored elsewhere. The REF function points the
AnimalKept column to a row object of the ANIMAL_TY datatype. Since ANIMAL is an object
table of the ANIMAL_TY datatype, the AnimalKept column can point to the row objects within
the ANIMAL object table. You can point the REF to any object table of that type.

When you describe the KEEPER table, you can see that its AnimalKept column relies on a REF:

describe KEEPER

Name Null? Type
------------------------------- -------- ----
KEEPERNAME VARCHAR2(25)
ANIMALKEPT REF OF ANIMAL_TY

To see the full details, use a higher value for the describe depth:

set describe depth 2

desc KEEPER

Chapter 41: Advanced Object-Oriented Concepts 671

 Name Null? Type
 --------------------------------------- -------- ----------------
 KEEPERNAME VARCHAR2(25)
 ANIMALKEPT REF OF ANIMAL_TY
 BREED VARCHAR2(25)
 NAME VARCHAR2(25)
 BIRTHDATE DATE

Now, insert a record into KEEPER. You need to use the REF function to store the ANIMAL
references in the AnimalKept column.

insert into KEEPER
select 'CATHERINE WEILZ',
 REF(A)
 from ANIMAL A
 where Name = 'BENJI';

Let’s look at this insert command closely. First, the KeeperName value is selected as a literal
value:

insert into KEEPER
select 'CATHERINE WEILZ',

Next, the value for the AnimalKept column must be specified. But the datatype of AnimalKept
is REF OF ANIMAL_TY, so you must select the reference from the ANIMAL object table to populate
the AnimalKept column:

 REF(A)
 from ANIMAL A
 where Name = 'BENJI';

What’s going on here? First, the ANIMAL object table is queried, and the REF function returns
the OID for the row object selected. The OID is then stored in the KEEPER table as a pointer to
that row object in the ANIMAL object table.

Does the KEEPER table contain the animal information? No. KEEPER contains the name of the
keeper and a reference to a row object in the ANIMAL table. You can see the reference OID by
querying KEEPER:

select * from KEEPER;

KEEPERNAME

ANIMALKEPT

CATHERINE WEILZ
00002202088817DC34109A4A929C632C0FAF1F78EF9A233BD5F
FD34A7E82D8C0C5CFB88FC0

NOTE
Your AnimalKept value and text wrapping will differ from those
shown here.

672 Part V: Object-Relational Databases

The AnimalKept column, as shown in this listing, contains the reference to the row object, not
the value of the data stored in the row object.

You can’t see the referenced value unless you use the DEREF function. When you select from
KEEPER, Oracle will use the OID to evaluate the reference (REF). The DEREF function will take
the reference and return a value.

In the following query, the value of the AnimalKept column in KEEPER is the parameter
passed to the DEREF function. DEREF will take the OID from AnimalKept and find the referenced
object; the function will evaluate the reference and return the values to the user.

select DEREF(K.AnimalKept)
 from KEEPER K
 where KeeperName = 'CATHERINE WEILZ';

DEREF(K.ANIMALKEPT)(BREED, NAME, BIRTHDATE)

ANIMAL_TY('DOG', 'BENJI', '03-SEP-01')

NOTE
The parameter for the DEREF function is the column name of the REF
column, not the table name.

The result shows that the CATHERINE WEILZ record in KEEPER references an ANIMAL record
for the animal named BENJI. A few aspects of this query are noteworthy:

The query used a reference to a row object to travel from one table (KEEPER) to a second
(the ANIMAL object table). Thus, a join is performed in the background, without your
specifying the join criteria.

The object table itself is not mentioned in the query. The only table listed in the query is
KEEPER. You do not need to know the name of the object table to DEREF its values.

The entire referenced row object was returned, not just part of the row.

These are significant differences that separate object queries from relational queries. Thus,
when querying your tables, you need to know the way in which their relationships are established.
Are the relationships based on foreign keys and primary keys, or on object tables and REF datatypes?
If you are planning to use Oracle’s object-oriented features, you need to accommodate the changes
in SQL and the ways relationships are enforced. To help smooth the transition between relational
and object-oriented approaches, Oracle allows you to create object views that contain REFs
superimposed on existing relational tables. See “Object Views with REFs” later in this chapter.

The VALUE Function
The DEREF function was applied to the relational table—the KEEPER table, in this case. The DEREF
function returns the value of the reference that goes from the relational table to the object table.

What about querying from the object table? Can you select from ANIMAL?

select * from ANIMAL;

BREED NAME BIRTHDATE
------------------------- ------------------------- ---------
MULE FRANCES 01-APR-02
DOG BENJI 03-SEP-01

■

■

■

Chapter 41: Advanced Object-Oriented Concepts 673

Even though ANIMAL is an object table, you can select from it as if it were a relational table.
This is consistent with the examples of inserts and selects shown earlier in this chapter. However,
that is not what was shown via the DEREF. The DEREF showed the full structure of the object type
used by the ANIMAL object table:

select DEREF(K.AnimalKept)
 from KEEPER K
 where KeeperName = 'CATHERINE WEILZ';

DEREF(K.ANIMALKEPT)(BREED, NAME, BIRTHDATE)

ANIMAL_TY('DOG', 'BENJI', '03-SEP-01')

To see the same structures from a query of the ANIMAL object table, use the VALUE function.
As shown in the following listing, VALUE shows you the data in the same format that DEREF will
use. The parameter for the VALUE function is the table alias.

select VALUE(A)
 from ANIMAL A
 where Name = 'BENJI';

VALUE(A)(BREED, NAME, BIRTHDATE)

ANIMAL_TY('DOG', 'BENJI', '03-SEP-01')

The VALUE function is useful when debugging references and within PL/SQL, as shown in
“Object PL/SQL,” later in this chapter. Since it allows you to query the formatted values directly
from the object table, you can select those values without using the DEREF query of KEEPER’s
AnimalKept column.

Invalid References
You can delete the object to which a reference points. For example, you can delete a row from
the ANIMAL object table to which a KEEPER record points:

delete from ANIMAL
 where Name = 'BENJI';

The record in KEEPER that references this ANIMAL record will now have what is called a
dangling REF. If you insert a new ANIMAL row for the animal named BENJI, it won’t be recognized
as being part of the same reference established earlier. The reason is that the first time you
inserted a BENJI row, Oracle generated an OID for the row object, and that is what the KEEPER
column referenced. When you deleted the row object, the OID went away—and Oracle does
not reuse OID numbers. Therefore, when the new BENJI record is entered, it is given a new OID
value—and the KEEPER record still points to the old value.

This is a critical difference between relational and OOP systems. In a relational system, the join
between two tables is dependent only on the current data. In an OOP system, the join is between
objects—and just the fact that two objects have the same data doesn’t mean they are the same.

Object Views with REFs
You can use object views to superimpose OOP structures on existing relational tables (refer to
Chapter 38). For example, you can create object types and use them within the object view of

674 Part V: Object-Relational Databases

an existing table. Using object views allows you to access the table via either relational command
syntax or object type syntax. As a result, object views provide an important technological bridge
from existing relational applications to object-relational applications.

A Quick Review of Object Views
This example from Chapter 38 will serve as part of the basis for the advanced object views in this
chapter. First, a CUSTOMER table is created, with the Customer_ID column as its primary key:

create table CUSTOMER
(Customer_ID NUMBER constraint CUSTOMER_PK primary key,
 Name VARCHAR2(25),
 Street VARCHAR2(50),
 City VARCHAR2(25),
 State CHAR(2),
 Zip NUMBER);

Next, two object types are created. The first, ADDRESS_TY, contains attributes for addresses:
Street, City, State, and Zip. The second, PERSON_TY, contains a Name attribute plus an Address
attribute that uses the ADDRESS_TY datatype, as shown in the following listing:

create or replace type ADDRESS_TY as object
(Street VARCHAR2(50),
 City VARCHAR2(25),
 State CHAR(2),
 Zip NUMBER);
/

create or replace type PERSON_TY as object
(Name VARCHAR2(25),
 Address ADDRESS_TY);
/

Since the CUSTOMER table was created without using the ADDRESS_TY and PERSON_TY
datatypes, you need to use object views in order to access CUSTOMER data via object-based
accesses (such as methods). You can create an object view that specifies the object types that
apply to the CUSTOMER table. In the following listing, the CUSTOMER_OV object view is
created:

create view CUSTOMER_OV (Customer_ID, Person) as
select Customer_ID,
 PERSON_TY(Name,
 ADDRESS_TY(Street, City, State, Zip))
 from CUSTOMER;

In the creation of the CUSTOMER_OV object view, the constructor methods for the two object
types (ADDRESS_TY and PERSON_TY) are specified. You can now access the CUSTOMER table
directly (as a relational table) or via the constructor methods for the object types.

The CUSTOMER table will be used in the next set of examples in this chapter.

Object Views Involving References
If the CUSTOMER table shown in the previous section is related to another table, you can use
object views to create a reference between the tables. That is, Oracle will use the existing primary

Chapter 41: Advanced Object-Oriented Concepts 675

key/foreign key relationships to simulate OIDs for use by REFs between the tables. You will thus
be able to access the tables either as relational tables or as objects. When you treat the tables as
objects, you will be able to use the REFs to automatically perform joins of the tables (refer to
“Using the DEREF Function,” earlier in this chapter, for examples).

The CUSTOMER table has a primary key of Customer_ID. Let’s create a small table that
will contain a foreign key reference to the Customer_ID column. In the following listing, the
CUSTOMER_CALL table is created. The primary key of the CUSTOMER_CALL table is the
combination of Customer_ID and Call_Number. The Customer_ID column of CUSTOMER_CALL
is a foreign key back to CUSTOMER—you cannot record a call for a customer who does not
already have a record in CUSTOMER. A single nonkey attribute, Call_Date, is created within
the CUSTOMER_CALL table.

create table CUSTOMER_CALL
(Customer_ID NUMBER,
 Call_Number NUMBER,
 Call_Date DATE,
 constraint CUSTOMER_CALL_PK
 primary key (Customer_ID, Call_Number),
 constraint CUSTOMER_CALL_FK foreign key (Customer_ID)
 references CUSTOMER(Customer_ID));

For example, you could have the following CUSTOMER and CUSTOMER_CALL entries:

insert into CUSTOMER values
(123,'SIGMUND','47 HAFFNER RD','LEWISTON','NJ',22222);
insert into CUSTOMER values
(234,'EVELYN','555 HIGH ST','LOWLANDS PARK','NE',33333);

insert into CUSTOMER_CALL values
(123,1,TRUNC(SysDate)-1);
insert into CUSTOMER_CALL values
(123,2,TRUNC(SysDate));

The foreign key from CUSTOMER_CALL to CUSTOMER defines the relationship between the
tables. From an OOP point of view, the records in CUSTOMER_CALL reference the records in
CUSTOMER. Therefore, we must find a way to assign OID values to the records in CUSTOMER
and generate references in CUSTOMER_CALL.

How to Generate OIDs
First, use an object view to assign OIDs to the records in CUSTOMER. Remember that OIDs are
assigned to records in an object table—and an object table, in turn, is based on an object type.
Therefore, we first need to create an object type that has the same structure as the CUSTOMER table:

create or replace type CUSTOMER_TY as object
(Customer_ID NUMBER,
 Name VARCHAR2(25),
 Street VARCHAR2(50),
 City VARCHAR2(25),
 State CHAR(2),
 Zip NUMBER);
/

676 Part V: Object-Relational Databases

Now, create an object view based on the CUSTOMER_TY type, while assigning OID values to
the records in CUSTOMER:

create or replace view CUSTOMER_OV of CUSTOMER_TY
with object identifier (Customer_ID) as
select Customer_ID, Name, Street, City, State, Zip
 from CUSTOMER;

The first part of this create view command gives the view its name (CUSTOMER_OV) and
tells Oracle that the view’s structure is based on the CUSTOMER_TY datatype:

create or replace view CUSTOMER_OV of CUSTOMER_TY

The next part of the create view command tells the database how to construct OID values for
the rows in CUSTOMER. The with object identifier clause is followed by the column to use for
the OID—in this case, the Customer_ID value. This will allow you to address the rows within the
CUSTOMER table as if they were referenceable row objects within an object table.

with object identifier (Customer_ID) as

The final part of the create view command gives the query on which the view’s data access
will be based. The columns in the query must match the columns in the view’s base datatype.

select Customer_ID, Name, Street, City, State, Zip
 from CUSTOMER;

The rows of CUSTOMER are now accessible as row objects via the CUSTOMER_OV view.
The OID values generated for the CUSTOMER_OV rows are called pkOIDs, because they are
based on CUSTOMER’s primary key values. Relational tables can be accessed as row objects if
you create object views for them.

How to Generate References
The rows of CUSTOMER_CALL reference rows in CUSTOMER. From a relational perspective, the
relationship is determined by the foreign key pointing from the CUSTOMER_CALL.Customer_ID
column to the CUSTOMER.Customer_ID column. Now that the CUSTOMER_OV object view has
been created, and the rows in CUSTOMER can be accessed via OIDs, you need to create reference
values in CUSTOMER_CALL that reference CUSTOMER. Once the REFs are in place, you will be
able to use the DEREF function (shown earlier in this chapter) to access the CUSTOMER data from
within CUSTOMER_CALL.

The create view command for the object view of CUSTOMER_CALL is shown in the following
listing. It uses a new function, MAKE_REF, which is described following the listing.

create view CUSTOMER_CALL_OV as
select MAKE_REF(CUSTOMER_OV, Customer_ID) Customer_ID,
 Call_Number,
 Call_Date
 from CUSTOMER_CALL;

With the exception of the MAKE_REF operation, this create view command looks like a
normal create view command. The MAKE_REF operation is shown in this line:

select MAKE_REF(CUSTOMER_OV, Customer_ID) Customer_ID,

Chapter 41: Advanced Object-Oriented Concepts 677

The MAKE_REF function takes as arguments the name of the object view being referenced and
the name of the column (or columns) that form the foreign key in the local table. In this case, the
Customer_ID column of the CUSTOMER_CALL table references the column that is used as the
basis of OID generation in the CUSTOMER_OV object view. Therefore, two parameters are passed
to MAKE_REF: CUSTOMER_OV and Customer_ID. The result of the MAKE_REF operation is given
the column alias Customer_ID. Since this command creates a view, the result of an operation must
be given a column alias.

What does MAKE_REF do? It creates references (called pkREFs, since they are based on primary
keys) from the CUSTOMER_CALL_OV view to the CUSTOMER_OV view. You can now query the
two views as if CUSTOMER_OV were an object table and CUSTOMER_CALL_OV were a table
that contains a REF datatype that references CUSTOMER_OV.

Querying the Object Views
The queries of the object views with REFs mirror the structure of the queries of table REFs. You
use the DEREF function to select the value of the referenced data, as shown earlier in this chapter.
Applied to the object views, the query will be

select DEREF(CCOV.Customer_ID)
 from CUSTOMER_CALL_OV CCOV
 where Call_Date = TRUNC(SysDate);

DEREF(CCOV.CUSTOMER_ID)(CUSTOMER_ID, NAME, STREET, CITY, STATE,ZIP)

CUSTOMER_TY(123, 'SIGMUND', '47 HAFFNER RD', 'LEWISTON','NJ',22222)

The query found the record in CUSTOMER_CALL for which the Call_Date value was the current
system date. It then took the Customer_ID value from that record and evaluated its reference. That
Customer_ID value, from the MAKE_REF function, pointed to a pkOID value in the CUSTOMER_
OV object view. The CUSTOMER_OV object view returned the record whose pkOID matched the
referenced value. The DEREF function then returned the value of the referenced row. The query
thus returned rows from CUSTOMER even though the user only queried CUSTOMER_CALL.

Object views of column objects enable you to work with tables as if they were both relational
tables and object-relational tables. When extended to row objects, object views enable you to
generate OID values based on established foreign key/primary key relationships. Object views
allow you to continue to use the existing constraints and standard insert, update, delete, and
select commands. They also allow you to use OOP features such as references against the object
tables. Object views thus provide an important technological bridge for migrating to an OOP
database architecture.

As described earlier in this chapter, Oracle performs joins that resolve the references defined
in the database. When the referenced data is retrieved, it brings back the entire row object that
was referenced. To reference the data, you need to establish pkOIDs in the table that is the
“primary key” table in the relationship, and use MAKE_REF to generate references in the table that
is the “foreign key” table in the relationship. You can then work with the data as if it were stored
in object tables.

Object PL/SQL
PL/SQL programs can use the object types you have created. Whereas earlier versions of PL/SQL
could only use the Oracle-provided datatypes (such as DATE, NUMBER, and VARCHAR2), you

678 Part V: Object-Relational Databases

can now use your own object types as well. The result is the merging of SQL, procedural logic,
and OOP extensions—a combination referred to as object PL/SQL.

The following anonymous PL/SQL block uses object PL/SQL concepts. The CUSTOMER_TY
object type is used as the datatype for the Cust1 variable, and its value is populated by a query of
the CUSTOMER_OV object view.

set serveroutput on
declare
 Cust1 CUSTOMER_TY;
begin
 select VALUE(COV) into Cust1
 from CUSTOMER_OV COV
 where Customer_ID = 123;
 DBMS_OUTPUT.PUT_LINE(Cust1.Name);
 DBMS_OUTPUT.PUT_LINE(Cust1.Street);
end;
/

The output of this PL/SQL block is

SIGMUND
47 HAFFNER RD

In the first part of the PL/SQL block, a variable is declared using the CUSTOMER_TY datatype:

declare
 Cust1 CUSTOMER_TY;

The Cust1 variable value is selected from the CUSTOMER_OV object view (created in the
preceding section of this chapter). The VALUE function is used to retrieve the data in the structure
of the object type. Since the data will be selected in the format of the object type, you need to use
the CUSTOMER_OV object view created on the CUSTOMER table.

begin
 select VALUE(COV) into Cust1
 from CUSTOMER_OV COV
 where Customer_ID = 123;

The Cust1.Name and Cust1.Street values are then retrieved from the attributes of the Cust1
variable and displayed. You cannot pass the entire Cust1 variable to the PUT_LINE procedure.

 DBMS_OUTPUT.PUT_LINE(Cust1.Name);
 DBMS_OUTPUT.PUT_LINE(Cust1.Street);
end;

This is a deliberately simple example, but it shows the power of object PL/SQL. You can
use object PL/SQL anywhere you use object types. Your PL/SQL is thus no longer bound to the
Oracle-provided datatypes, and may more accurately reflect the objects in your database. In
this example, an object view was queried to illustrate that the queries can access either column
objects or row objects. You can then select the attributes of the object type and manipulate or
display them. If you have defined methods for the object type, you can apply them as well.

Chapter 41: Advanced Object-Oriented Concepts 679

For example, you can call the object type’s constructor methods within your PL/SQL blocks.
In the following example, a variable named NewCust is defined using the CUSTOMER_TY datatype.
The NewCust variable is then set equal to a set of values using the CUSTOMER_TY constructor
method. The NewCust variable’s set of values is then inserted via the CUSTOMER_OV object view.

declare
 NewCust CUSTOMER_TY;
begin
 NewCust :=
 CUSTOMER_TY(345,'NewCust','StreetVal', 'City','ST',00000);
 insert into CUSTOMER_OV
 values (NewCust);
end;
/

You can see the result of the insert by querying CUSTOMER_OV:

select Customer_ID, Name from CUSTOMER_OV;

CUSTOMER_ID NAME
----------- -------------------------
 123 SIGMUND
 234 EVELYN
 345 NewCust

In addition to calling constructor methods, you can call the methods you have created on
your object types. If you will be comparing the values of variables that use the object types, you
will need to define map or order methods for the datatypes. This capability allows you to further
extend object PL/SQL—you define the datatypes and the functions at the database level, and
they are callable within any of your PL/SQL programs. Object PL/SQL represents a significant
enhancement over traditional PL/SQL.

Objects in the Database
The features available in Oracle—column objects, row objects, and object extensions to PL/SQL—
enable you to implement objects in your database without sacrificing the investment you have
already made in analysis and design. You can continue to create systems based on relational
design techniques and tune them based on relational access methods. The tools that Oracle provides
allow you to create an OOP layer above your relational tables. Once you have that layer in place,
you can access the relational data as if it were stored in a fully OOP database.

Having an OOP layer allows you to realize some of the benefits of an OOP system, such as
abstraction and encapsulation. You can apply the methods for each object type across a set of
consistently implemented objects, and benefit from object reuse and standards enforcement. At
the same time, you can benefit from Oracle’s relational features. The ability to use both relational
and object technology within an application lets you use the proper tool for the proper job within
the database.

Note that implementing object-relational features may force you to change your approach to
data relationships and the tools you use to access the data. If you use row objects, the relationships
among tables are among row objects, not their data—possibly resulting in dangling REFs. Additionally,
unless you use object views you will need to use new SQL syntax for queries and DML operations.

680 Part V: Object-Relational Databases

When implementing the object portion of an object-relational database, start by defining the
object types that are the core components of your business. Every object-relational feature, whether
it relates to column objects or row objects, is based on an object type. The better you have defined
your object types and their methods, the better you will be able to implement objects. If necessary,
nest objects so that you can have multiple variations of the same core object type. The result will
be a database that is properly designed to take advantage of both relational and object-oriented
features.

PART
VI

Java in Oracle

This page intentionally left blank

CHAPTER
42

An Introduction to Java

683

684 Part VI: Java in Oracle

n this chapter, you will see an overview of Java as it relates to Oracle database
applications. There are numerous uses of Java beyond Oracle applications, and there
are many features of the language that will not be used by most Oracle developers.
The goal of this chapter is to provide developers who have a background in SQL
and PL/SQL with an understanding of the Java language structures. This is not an

exhaustive review of Java (numerous books are available that accomplish that goal) but rather a
short overview of the Java language components most commonly used by Oracle developers.

Although in many cases PL/SQL and Java correlate well to each other, there are significant
differences in terminology and usage. That shouldn’t be surprising because the two programming
languages were developed independently. Furthermore, PL/SQL’s object-oriented capabilities
were not part of its initial implementation, whereas Java has been object oriented since its
inception. To use Java effectively, you need to take a different approach than the one you may
have taken in the past with PL/SQL.

Chapter 32 presented an introduction to the PL/SQL language structures and flow control.
This chapter mirrors that approach: You will see the structures used by Java and the basic flow-
control methods provided. Where applicable, you will also see the matching PL/SQL structures.
You should be familiar with PL/SQL (Chapter 32); packages, functions, and procedures (Chapter
35); and user-defined types and methods (Chapter 38) before reading this chapter.

Java vs. PL/SQL: An Overview
In comparing PL/SQL to Java, you get no further than the basic PL/SQL structure—a block—before
you encounter a significant difference in terminology between the two languages. In PL/SQL, a
block is a structured piece of code that has a Declarations section, an Executable Commands section,
and an Exception Handling section. For a PL/SQL block, the structure may be represented as follows:

declare
 <declarations section>
begin
 <executable commands>
 exception
 <exception handling>
end;

In Java, the term block refers to a much smaller subset of code. In Java, a block is a collection
of statements enclosed by curly braces, { and }. For example, the following pseudo-code contains
two Java blocks:

if (some condition) {
 block of code to process if condition is met
}
else {
 block of code to process if condition is not met
}

I

Chapter 42: An Introduction to Java 685

Within PL/SQL, that entire code section would be merely one part of a larger block; within
Java, it contains two separate blocks. Throughout this chapter, all references to “blocks” refer to
Java blocks unless otherwise specified.

A PL/SQL procedure is bound by a begin and end, whereas a Java method is bound by opening
and closing braces. These braces are also utilized to isolate individual blocks of scoped code, or
as indicators of the opening and closing of conditional segments.

A second major difference between PL/SQL and Java is in the declaration of variables. In a
PL/SQL block, you define your variables before you begin the Executable Commands section. In
a Java program, you can define variables where they are needed within the program. A Java program
has no Declarations section comparable to the one used in PL/SQL blocks.

Throughout this chapter, you will see a number of other differences between PL/SQL and Java.
It’s important to remember that Java does not replace PL/SQL within your applications—you can
continue to use PL/SQL for Oracle applications. For data-retrieval operations, you should test the
performance of PL/SQL and Java before deciding on a technical direction to follow.

Getting Started
To use the examples in this section, you need a copy of the Java Development Kit (JDK), which is
available for free download from http://java.sun.com/. You need to install the JDK on the server on
which you will be running the Java programs.

NOTE
The JDK is installed as part of the Oracle Database installation. Be
sure to install both the database kernel software and the associated
client software.

Declarations
Within Java, you can declare variables as needed. A variable has a name and a datatype, and it’s
used to store a data value during the program’s execution. A variable also has a scope, allowing it
to be publicly accessible or private—similar to the manner in which procedures within packages
can have private variables.

Here are examples of Java variable declarations:

char aCharVariable = 'J';
boolean aBooleanVariable = false;

By convention, Java variables always start with a lowercase letter, as shown in this example,
where the datatypes are CHAR and BOOLEAN, and each variable is assigned an initial value.
Note that the assignment character in Java is =, as opposed to := or => in PL/SQL. Each declaration
is terminated with a semicolon.

The available primitive datatypes in Java are listed in Table 42-1.
In addition to the primitive datatypes listed in Table 42-1, you can use reference datatypes,

which are based on the contents of variables. You may note that there is no primitive datatype
for variable-length character strings—Java provides a String class for that purpose. Classes are
discussed later in this chapter.

http://java.sun.com/

686 Part VI: Java in Oracle

Executable Commands
You can assign values to variables via the use of expressions and statements. The arithmetic
operators supported by Java include the following:

Operator Description

* Multiplication

/ Division

+ Addition

– Subtraction

% Modulus

In addition to these operators, you can use Java’s unary operators to simplify your coding. For
example, you can increment variables via the ++ operator, as shown here:

aLoopCounter = aLoopCounter++;

Or you could simply write this:

aLoopCounter++

NOTE
The ++ operator is called a unary operator because it has only one
operand. If an operator requires two operands (such as *), it is called
a binary operator.

In PL/SQL, that would have been written as follows:

aLoopCounter := aLoopCounter +1;

If the ++ operator is placed in front of the variable name, it is a pre-increment operator rather
than a post-increment operator:

Datatype Description

Byte Byte-length integer

Short Short integer

Int Integer

Long Long integer

Float Single-precision floating-point real number

Double Double-precision floating-point real number

Char A single Unicode character

Boolean A Boolean value, true or false

TABLE 42-1 Java Primitive Datatypes

Chapter 42: An Introduction to Java 687

int anotherCounter = ++aLoopCounter;

In this example, the variable anotherCounter is set to the incremented value of aLoopCounter.
By contrast,

int anotherCounter = aLoopCounter++;

sets anotherCounter to the value of aLoopCounter before it is incremented. You can decrement a
variable’s value via the -- unary operator:

aLoopCounter = aLoopCounter--;

You can also combine the assignment of values with an operation. For example, instead of
writing

aNumberVariable = aNumberVariable * 2;

you can write

aNumberVariable *= 2;

You can perform similar combinations using /=, %=, +=, and –=.
If you perform multiple arithmetic operations, you should use parentheses to clearly indicate

the order in which the operations should be evaluated, as shown in the following example:

aNumberVariable = (aNumberVariable*2) +2;

Terminating these operations with semicolons makes them statements—complete units of
execution.

Conditional Logic
You can evaluate variables by using expressions and statements. To do so, you may use one or
more of the fundamental classes provided as part of Java. A full listing of those methods is beyond
the scope of this book; see Sun’s Java documentation site or one of the many Java books available
for the functionality currently provided.

NOTE
The number of supplied classes may change significantly with each
release of Java.

In the following listing, the Character.isUpperCase method is used to evaluate the
aCharVariable variable declared earlier:

if (Character.isUpperCase(aCharVariable)) {
 some commands to execute
}

If the aCharVariable value is uppercase, the commands in the following block will be executed;
otherwise, flow will continue to the next part of the program.

The following is the general syntax for if clauses:

if (expression) {
 statement
}

688 Part VI: Java in Oracle

Notice the lack of a then clause. If the expression being evaluated is true, the following block is
automatically executed. Also, note the lack of an end if clause. Java blocks are simply terminated
by the closing brace of the statement.

You can also have else clauses to evaluate different conditions, as shown in the following listing:

if (expression) {
 statement
}
else {
 statement
}

If you have multiple conditions to check, you can use the else if clause to evaluate each in
turn, ending with an else clause. The following listing illustrates the use of else if clauses:

if (aCharVariable == 'V') {
 statement
}
else if (aCharVariable == 'J') {
 statement
}
else {
 statement
}

NOTE
PL/SQL supports the use of elsif clauses to choose between
alternatives. A single if clause can have multiple elsif clauses.

In addition to supporting if clauses for conditional logic, Java features a switch clause. Used
in conjunction with its break clause and statement labels, the switch clause can approximate the
functionality of goto clauses (which Java does not support). First, let’s look at a simple switch
example. Using the case statement, multiple values of the aMonth variable are evaluated.
Depending on the aMonth value, the text name for the month is displayed, and the processing
leaves the switch block by means of a break.

int aMonth=2;
switch (aMonth) {
 case 1:
 System.out.println("January");
 break;
 case 2:
 System.out.println("February");
 break;
 case 3:
 System.out.println("March");
 break;
 default:
 System.out.println("Out of range");
 break;
}

Chapter 42: An Introduction to Java 689

NOTE
In Java, the arguments of a case statement must be integers.

This kind of code is much more complex to write than a simple TO_CHAR, but it illustrates
the switch usage. The switch operator takes the aMonth variable as its input and then evaluates
its value. If the value matches a case value, the System.out.println method is called to print the
month’s name, and processing control leaves the switch block by means of a break. If the value
does not match one of the case clauses, the default option is executed.

Where does control go? By default, it goes to the next section of the program. However, you
have the option of creating labels for sections of your code and passing the names of those labels
to the break clause. The following listing shows an example of a label and a break clause:

somelabel:
if (aCharVariable == 'V') {
 statement
}
else {
 statement
}
int aMonth=2;
switch (aMonth) {
 case 1:
 System.out.println("January");
 break somelabel;
 case 2:
 System.out.println("February");
 break someotherlabel;
 case 3:
 System.out.println("March");
 break somethirdlabel;
 default:
 System.out.println("Out of range");
 break;
}

In this example, the if clause is evaluated, followed by the switch clause. Note that the aMonth
variable is not declared until just before it is needed. For this example, the aMonth variable is
assigned a value of 2, so the program will display the word “February” and will then branch over
to the section of code identified by the someotherlabel label. If the aMonth value had been 1, the
if clause at the beginning of the code listing would have been re-executed.

Java also supports a ternary operator—an operator that takes three operands and whose
function is similar to that of DECODE. Acting as an inline if-else combination, the ternary
operator evaluates an expression. If the expression evaluates to true, the second operand is
returned; otherwise, the third is returned. The syntax is as follows:

expression ? operand1 : operand2

The following listing shows a sample ternary operation:

aStatusVariable = (aCharVariable == 'V') ? "OK" : "Invalid";

690 Part VI: Java in Oracle

In this example, the expression

(aCharVariable == 'V')

is evaluated. If it is true, “OK” is returned; otherwise, “Invalid” is returned.
You can use the ternary operator to simulate the use of a GREATEST function:

double greatest = (a > b) ? a : b;

In this example, the expression (a > b) is evaluated, where a and b are the names of variables. If
that expression is true, a’s value is returned; otherwise, b’s value is returned.

NOTE
Java has a “greatest” method for numeric values—the Max method
within the java.lang.Math class. The ternary example in the preceding
listing can be rewritten as double greatest = Math.Max(a, b);

You can combine multiple logic checks via the use of AND and OR operations. In Java, an
AND operation is represented by the && operator:

if (aCharVariable == 'V' && aMonth == 3) {
 statement
}

The OR operation is represented by ||, as shown in the following listing:

if (aCharVariable == 'V' || aMonth == 3) {
 statement
}

For performance reasons, the && and || operations are carried out only if required; the
second expression is not evaluated if the first expression determines the result. In the case of the
AND operator, if the first value is false, the evaluation ends at that point and the Boolean value
false is returned. In the case of the OR operator, if the first expression is false, the second expression
will still be evaluated because only one of the test conditions needs to be true for the Boolean
value true to be returned. If the first value of the OR operator were true, subsequent expressions
would not need to be evaluated and true would be returned.

The & and | operators are bitwise AND and OR; they are not short-circuited as && and || are.
All expressions will always be evaluated. This functionality can be important if you are testing the
return values of method calls and you need to make sure the methods are executed.

Loops
Java supports three main types of loops: WHILE loops, DO-WHILE loops, and FOR loops. In this
section, you will see examples of each type of loop. Because Java is not written as an extension of
SQL, it does not support Cursor FOR loops as PL/SQL does.

WHILE Loops and DO-WHILE Loops
A while clause evaluates a condition; if the condition is true, the associated block of statements is
executed. The syntax for a WHILE loop is of the following form:

while (expression) {
 statement

Chapter 42: An Introduction to Java 691

 statement
}

The WHILE loop executes the block of statements (the section within the { and } braces)
repeatedly until the expression is no longer true:

int aNumberVariable = 3;
while (aNumberVariable < 7) {
 some_processing_statement
 aNumberVariable++;
}

In this example, a counter variable (aNumberVariable) is created and initialized. The variable’s
value is then evaluated via the while clause. If the value is less than 7, the associated statement
block is executed. As part of that block, the variable is incremented. When the block completes,
the variable is again evaluated and the loop continues.

NOTE
For examples of WHILE loop processing, see “Classes” later in this
chapter.

You could also write this as a DO-WHILE loop:

int aNumberVariable = 3;
do {
 some_processing_statement
 aNumberVariable++;
} while (aNumberVariable < 7);

In a DO-WHILE loop, the expression’s value is not evaluated until the block has been
processed at least one time.

FOR Loops
You can use a FOR loop to repeatedly execute a block of code. In a FOR loop, you specify an
initial value, a termination value, and an increment for the loop counter. The loop counter will
be incremented each time through the loop, by the increment you specify, until the termination
value is reached. The following is the syntax for a FOR loop:

for (initialization; termination; increment) {
 statement;
}

The prior section’s WHILE example can be rewritten with a for clause, as shown in the
following listing:

for (int aNumberVariable=3; aNumberVariable<7; aNumberVariable++) {
 some_processing_statement
}

The for clause version for this example is much shorter than the while version. In this example,
the aNumberVariable variable is declared and initialized within the FOR loop. As long as the
variable’s value does not exceed 7, the block will be executed. For each pass through the loop,
the variable’s value is incremented by 1 via the ++ unary operator.

692 Part VI: Java in Oracle

Within a loop, you can use the continue clause to jump to another statement within the loop.
If you just use the continue clause by itself, the process flow will jump to the end of the loop body
and evaluate the loop’s termination test. If you use continue with a label (as shown previously in the
section on the switch clause), processing will continue at the next iteration of the labeled loop.

Cursors and Loops
Within PL/SQL, you can use Cursor FOR loops to iterate through the results of a query. You can
use Java’s WHILE and FOR loops to simulate the functionality of a PL/SQL Cursor FOR loop.

Oracle provides sample files that accompany the Oracle software installation, with a large
number of examples illustrating standard coding approaches. The client installation uses the
Oracle Universal Installer to load software drivers and demonstration files, including those
supporting JDBC development. Following installation of the client software, the JDBC examples
will be in the Java-related subdirectories under the Oracle software home directory. The exact
files provided may change from version to version.

NOTE
The README file under the /jdbc subdirectory of the Oracle software
home directory provides extensive information on the versions
supported, environment variable settings by platform, and features
supported. It is critical to read and follow those instructions in order
to effectively use Java against Oracle on your platform.

The following example shows a code fragment from an example provided with the Oracle
client installation:

Statement stmt conn.createStatement();
ResultSet rset = stmt.executeQuery ("select FIRST_NAME, "
 + "LAST_NAME from EMPLOYEES");

 // Iterate through the result and print the employee names
 while (rset.next ())
 System.out.println (rset.getString (1) + " " + rset.getString (2));

This example assumes that a connection to the database has already been established. The first
line of the example creates a variable called stmt, based on a connection variable called conn
(not shown in this partial listing). The second line of the example creates a variable called rset,
based on the result set that the query stmt will return. Following a comment (prefixed by //),
a while clause fetches each row in the result set. If the fetch retrieves a row from the result set,
the ENAME from that EMP row is printed; otherwise, the loop will end.

From a programming perspective, you should be specific in the data returned (as in the
preceding example), specifying the column names to be returned.

The JDBC (Java Database Connectivity; see Chapter 43) demos provided by Oracle show
examples of queries involving procedure calls, LOBs, and DML. In most cases, your Java code
will be performing in a similar manner to the previous example: Write the process flow-control
language in Java and pass it a statement to execute. Based on the outcome of that statement, you
can direct different actions to occur via the use of while, for, if, break, continue, and switch
clauses, as shown earlier in this chapter.

Chapter 42: An Introduction to Java 693

Exception Handling
In a PL/SQL procedure, you have a single EXCEPTION block; in Java, you can have as many try/
catch blocks as you desire. Java provides a robust set of error-handling routines and enables you
to create complex error-handling procedures. In PL/SQL, you raise an exception; in Java, you throw
exceptions. If an exception is thrown, you need to use the Java catch clause to capture and properly
process the exception.

Java’s exception-handling syntax is based on three blocks: try, catch, and finally. The try
block includes the statements that might throw an exception. The catch block immediately
following the try block associates exception handlers with the exceptions that may be thrown by
the try block. The finally block cleans up any system resources not properly cleaned up during
the catch block processing. The general structure is as follows:

try {
 statements
}
catch () {
 statements
}
catch () {
 statements
}
finally {
 statements
}

For example, consider the following Java code:

try {
 Statement stmt = conn.createStatement ();

 stmt.execute ("drop table plsqltest");
}
catch (SQLException e) {
}

In this example, a variable named stmt is created to execute a drop table command. If the
execution fails—for example, if the table does not exist—how will that error be processed? The
catch clause tells Java to handle it via an exception object called SQLException, a standard part
of Java’s SQL implementation. As shown in the example, the catch clause takes two parameters
(an exception object and a variable name) and is optionally followed by a block of statements to
execute.

The try block can contain multiple statements, or you can create separate try blocks for each
statement. In general, it is easier to manage exception handling if you consolidate your catch blocks,
so consolidating your try blocks will help you manage your code as it changes and grows. The
when others clause in PL/SQL is essentially catch (Throwable th) in Java.

The finally block cleans up the state of the current code section before passing control to any
subsequent parts of the program. At run time, the contents of the finally block are always executed,
regardless of the outcome of the try block. For example, you could use the finally block to close a
database connection.

694 Part VI: Java in Oracle

Reserved Words
The reserved words in Java are listed in Table 42-2. You cannot use these words as the names of
classes, methods, or variables.

Classes
In the prior sections of this chapter, you saw the basic syntax structures for Java. In this section,
you will see how to use that syntax to create and use objects. A simple program for printing the
word “Oracle” is shown in the following listing:

public class HelloOracle {
 public static void main (String[] args) {
 System.out.println("Oracle");
 }
}

This example creates a class called HelloOracle. Within the HelloOracle class, a public method
called main is created. The main method prints the word “Oracle.” This is significantly more
complex than

select 'Oracle' from dual;

but the Java version has features lacking in the SQL version. HelloOracle is a class, and as such
its methods can be called from within other classes. HelloOracle could have multiple methods;
in this example, it has only the main method.

The main method’s declaration (public static void main) has a number of keywords that you
should become familiar with:

abstract else interface super

boolean extends long switch

break false native synchronized

byte final new this

case finally null throw

catch float package throws

char for private transient

class goto protected true

const if public try

continue implements return void

default import short volatile

do instanceof static while

double int strictfp

TABLE 42-2 Java Reserved Words

Chapter 42: An Introduction to Java 695

public Defining the class as public allows all classes to call this method.

static Declares that this is a class method; you use static to declare class methods.
An additional option is the keyword final for methods and variables whose
values cannot change (similar to PL/SQL’s constant option).

void Specifies the return value’s datatype from the procedure. Because this
procedure does not return values, its type is void.

In this example, the method is given the name main because that will simplify running the
class’s method. Now that the class has been created, you can compile and load it.

NOTE
To compile and execute a Java class, you must have the JDK on your
server. The following examples assume that the binaries that are part
of that kit are located in a directory that is automatically searched via
the PATH environment variable and that the directory containing your
class files is included in the CLASSPATH environment variable (see
the /jdc/README file for details on environment variable settings).
The programs referenced here (javac and java) are located in the /bin
subdirectory of the JDK software directory.

First, save the program as a plain text file called HelloOracle.java. Next, compile it:

javac HelloOracle.java

A new file, called HelloOracle.class, will be created on your server. You can then run the class:

java HelloOracle

Then the output will be displayed:

Oracle

As shown in the HelloOracle example, the class is first given a name, along with other
optional attributes related to its inheritance of other classes’ attributes. In the class body, all the
class variables and methods are defined. As with abstract datatypes in Oracle, Java classes have
methods associated with them for the manipulation of their related data.

Let’s consider a more complex example. The following listing is a Java program that computes
the area of a circle, given a radius value as input (see Chapter 32 for the PL/SQL version):

// AreaOfCircle.java
//
public class AreaOfCircle {
 public static void main(String[] args) {
 try {
 int input = Integer.parseInt(args[0]);
 double result=area(input);
 System.out.println(result);
 }
 catch (ArrayIndexOutOfBoundsException oob) {
 System.out.println("You did not provide the radius of the circle.");
 System.out.println("Usage: java AreaOfCircle 10");
 }

696 Part VI: Java in Oracle

 catch (NumberFormatException nfe) {
 System.out.println("Enter a valid number for the radius.");
 System.out.println("Usage: java AreaOfCircle 10");
 }
 } // main

 public static double area (int rad) {
 double pi=3.1415927;
 double areacircle=pi*rad*rad;
 return areacircle;
 } // area
} //AreaOfCircle

NOTE
Be sure to include a closing brace, }, for each block. In the examples
shown in this chapter, the closing braces are always on lines by
themselves to simplify debugging and processing flow-control errors
that may arise.

First, note that the class and the name of the file must be the same. In this case, the class is
named AreaOfCircle, so this text is stored in a file called AreaOfCircle.java. The class has two
methods, called main and area. When you execute the class, the main method is automatically
executed. The main method takes the string provided as input and parses it as an integer into the
input variable:

int input=Integer.parseInt(args[0]);

There are at least two possible exceptions that could be thrown when running this code. The
first exception handled, ArrayIndexOutOfBoundsException, occurs when you try to reference a
position in an array that doesn’t exist. Because the code explicitly references the first position of
the array named args (args[0]), an exception will be thrown if no data was passed to the program.
The other possible error, NumberFormatException, would occur if a nonnumeric value was
passed in. For example, if you ran the program by entering “java AreaOfCircle XYZ” instead of
“java AreaOfCircle 123”, the NumberFormatException would be thrown because XYZ isn’t a
valid number. Both of these exceptions are handled by the two catch statements that provide the
user with useful feedback regarding the cause of the error:

catch (ArrayIndexOutOfBoundsException oob) {
 System.out.println("You did not provide the radius of the circle.");
 System.out.println("Usage: java AreaOfCircle 10");
}
catch (NumberFormatException nfe) {
 System.out.println("Enter a valid number for the radius.");
 System.out.println("Usage: java AreaOfCircle 10");
}

Next, a variable named result is declared and is set equal to the value returned by the call to
area(input):

double result=area(input);

To process that directive, the area method is executed using the input variable’s value as its
input. That method is as follows:

Chapter 42: An Introduction to Java 697

public static double area (int rad) {
 double pi=3.1415927;
 double areacircle=pi*rad*rad;
 return areacircle;
}

In its definition, the area method specifies that it will accept one variable, an integer type
named rad. That variable’s value (passed from the input variable in the main method) is then
processed, and a variable named areacircle is calculated and returned to main. In main, that
value is then printed:

 double result=area(input);
 System.out.println(result);

Testing the program is straightforward:

javac AreaOfCircle.java
java AreaOfCircle 10

The following is the output:

314.15927

Let’s extend this example to include WHILE loop processing. In this example, the area method
will be called repeatedly until the resulting input value exceeds a given value:

// AreaOfCircleWhile.java
//
public class AreaOfCircleWhile {
 public static void main(String[] args) {
 try {
 int input=Integer.parseInt(args[0]);
 while (input < 7) {
 double result=area(input);
 System.out.println(result);
 input++;
 }
 }
 catch (ArrayIndexOutOfBoundsException oob) {
 System.out.println("You did not provide the radius of the circle.");
 System.out.println("Usage: java AreaOfCircle 10");
 }
 catch (NumberFormatException nfe) {
 System.out.println("Enter a valid number for the radius.");
 System.out.println("Usage: java AreaOfCircle 10");
 }
 } // main
 public static double area (int rad) {
 double pi=3.1415927;
 double areacircle=pi*rad*rad;
 return areacircle;
 } // area
} // AreaOfCircleWhile

698 Part VI: Java in Oracle

In this listing, the area method and the exception-handling blocks are unchanged from the
prior example. The change is in the main method:

 int input=Integer.parseInt(args[0]);
 while (input < 7) {
 double result=area(input);
 System.out.println(result);
 input++;
 }

While the input value is less than 7, the input value will be processed. After the area for that
radius value has been calculated and printed, the input value is incremented:

input++;

Then the loop is evaluated again. Sample output is shown in the following listing:

javac AreaOfCircleWhile.java
java AreaOfCircleWhile 4

50.2654832
78.5398175
113.0973372

The output shows the area calculations for input radius values of 4, 5, and 6.
This example is not as complete as a finished program—you may need additional exception

handling to handle non-integers, for example—but the structure is the important lesson to learn
from this example. In addition to the methods shown in this example, you could create a constructor
for the AreaOfCircleWhile class. All Java classes have constructors (see Chapter 38) to initialize
new objects based on the class. The constructor’s name is the same as the name of the class. If
you create a class with no constructor, Java will create a default constructor at run time. Like a
method, the constructor body can contain local variable declarations, loops, and statement
blocks. The constructor initializes these variables for the class.

In the following chapters, you will see how to implement Java within Oracle—within stored
procedures and via JDBC. Those chapters assume that you have the basic knowledge of Java
provided in this chapter. For additional information about the Java language, see the Sun
Microsystems Web site and the variety of books devoted to Java.

CHAPTER
43

JDBC Programming

699

700 Part VI: Java in Oracle

ava Database Connectivity (JDBC) builds on the Java and programming basics
described earlier in this book. The discussions and examples in this chapter assume
you are familiar with the Java syntax and structures described in Chapter 42. This
chapter does not cover every aspect of JDBC but focuses on its basic usage.

You can use JDBC to execute dynamic SQL statements in Java programs. Oracle provides
sample files with the Oracle software installation. You can use the sample files as examples to
follow when creating your own JDBC programs.

NOTE
Oracle 11g does not support J2SE 1.2, 1.3, and 1.4. The .zip and .jar
files that support those versions of J2SE are not included in Oracle
JDBC 11g. If you are still using J2SE 1.2, 1.3, or 1.4, you can continue
to use Oracle JDBC 10.2.0.1.0 with those versions of Java. Oracle
10.2 is still fully supported for use with those versions of Java. If you
want to use Oracle JDBC 11g, you must use J2SE 5.0 or later.

As part of the Oracle 11g installation, the following libraries and files can be found in the
/jdbc/lib directory under your Oracle software home directory:

ojdbc5.jar This file contains classes for use with JDK 1.5. It contains the JDBC driver
classes, except classes for NLS support in Oracle Object and Collection types.

ojdbc5_g.jar This is the same as ojdbc5.jar, except that classes have been compiled
with javac -g and contain tracing code.

ojdbc6.jar This file contains classes for use with JDK 1.6. It contains the JDBC driver
classes, except classes for NLS support in Oracle Object and Collection types.

ojdbc6_g.jar This is the same as ojdbc6.jar, except that classes have been compiled
with javac -g and contain tracing code.

The JDBC Javadoc for the public API of the public classes of Oracle JDBC is found in the
ORACLE_HOME/jdbc/doc/javadoc.tar file. Sample JDBC programs are provided in ORACLE_
HOME/jdbc/demo/demo.tar. For National Language Support (NLS), the file ORACLE_HOME/jlib/
orai18n.jar provides the NLS classes for use with JDK 1.5 and 1.6.

When you execute a SQL statement via JDBC, the SQL statement is not checked for errors
until it is run. The JDBC program that contains the SQL command will compile even if the SQL
statement is invalid.

Using the JDBC Classes
JDBC is implemented in Oracle via a set of Oracle-provided classes whose names begin with
oracle.sql, whereas the standard JDBC classes provided with the JDK begin with java.sql. The
JdbcCheckup.java class, shown in the following listing, provides a good roadmap for beginning
JDBC programmers. The JdbcCheckup.java class assumes you are using Oracle Net to connect
to the database.

■

■

■

■

J

Chapter 43: JDBC Programming 701

NOTE
The following code is provided by Oracle. Your programming
standards may implement these commands differently, such as by
calling System.out.println in place of System.out.print, or by placing
the brackets in different places.

/*
 * This sample can be used to check the JDBC installation.
 * Just run it and provide the connect information. It will select
 * "Hello World" from the database.
 *
 */

// You need to import the java.sql package to use JDBC
import java.sql.*;

// We import java.io to be able to read from the command line
import java.io.*;

import oracle.jdbc.pool.OracleDataSource;

class JdbcCheckup
{
 public static void main (String args [])
 throws SQLException, IOException
 {
 // Prompt the user for connect information
 System.out.println ("Please enter information to test connection to the
database");
 String user;
 String password;
 String database;

 user = readEntry ("user: ");
 int slash_index = user.indexOf ('/');
 if (slash_index != -1)
 {
 password = user.substring (slash_index + 1);
 user = user.substring (0, slash_index);
 }
 else
 password = readEntry ("password: ");
 database = readEntry ("database (a TNSNAME entry, name-value pairs): ");

 // Create an OracleDataSource and set URL
 OracleDataSource ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:oci8:" + user + "/" + password + "@" + database);

 System.out.print ("Connecting to the database...");
 System.out.flush ();

702 Part VI: Java in Oracle

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.

 System.out.println ("Connecting...");
 Connection conn = ods.getConnection();

 System.out.println ("connected.");

 // Create a statement
 Statement stmt = conn.createStatement ();

 // Do the SQL "Hello World" thing
 ResultSet rset = stmt.executeQuery ("select 'Hello World' from dual");

 while (rset.next ())
 System.out.println (rset.getString (1));

 System.out.println ("Your JDBC installation is correct.");

 // close the resultSet
 rset.close();

 // Close the statement
 stmt.close();

 // Close the connection
 conn.close();
 }

 // Utility function to read a line from standard input
 static String readEntry (String prompt)
 {
 try
 {
 StringBuffer buffer = new StringBuffer ();
 System.out.print (prompt);
 System.out.flush ();
 int c = System.in.read ();
 while (c != '\n' && c != -1)
 {
 buffer.append ((char)c);
 c = System.in.read ();
 }
 return buffer.toString ().trim ();
 }
 catch (IOException e)
 {
 return "";
 }
 }
}

Chapter 43: JDBC Programming 703

NOTE
Production applications would be expected to include many more
exception-handling sections than shown in this brief example. See
Chapter 42 for an example of exception handling.

Starting at the top, this script first imports the java.sql classes provided by Sun Microsystems:

import java.sql.*;

The Oracle-provided data source driver is then imported:

import oracle.jdbc.pool.OracleDataSource;

When you are prompted for information, the user variable is populated via a call to the
readEntry function:

 user = readEntry ("user: ");

The readEntry function is defined later in the class, in the section beginning

 // Utility function to read a line from standard input
 static String readEntry (String prompt)

Once the connection data has been input, a connection object is created to maintain the state
of the database session, based on the OracleDataSource definition. The getConnection call in the
following listing starts the connection:

 Connection conn = ods.getConnection();

If you receive an error during the connection, this step is usually the cause. An incorrect
username/password combination, a mismatched set of drivers, or failure to install and configure
Oracle Net will cause this step to fail.

By default, a connection object is created with autocommit turned on—every transaction is
automatically committed. To change that setting, you can use the following command (assuming
you name the connection object conn, as shown in the example):

conn.setAutoCommit(false);

The class then creates a statement, executes a hard-coded query, and prints the output:

 // Create a statement
 Statement stmt = conn.createStatement ();

 // Do the SQL "Hello World" thing
 ResultSet rset = stmt.executeQuery ("select 'Hello World' from dual");

 while (rset.next ())
 System.out.println (rset.getString (1));

The result set, statement, and connection are then closed and the program completes.
Note that there are two steps in executing the statement: First, it’s created via the call to the
createStatement method. Second, it’s executed via the executeQuery method. In place of
executeQuery, you can use execute or, if you’re running an insert, update, or delete SQL

704 Part VI: Java in Oracle

statement, executeUpdate. If you select a column value (instead of just a text string), you should
specify that column value in the print command, as shown in the following listing:

 ResultSet rset =stmt.executeQuery("select User from dual");
 while (rset.next ()) {
 System.out.println (rset.getString ("USER"));

Using JDBC for Data Manipulation
Let’s combine the pieces that have been described so far—the basic connection syntax from
this chapter with the Java classes from Chapter 42. The example in this section will query the
RADIUS_VALS table, calculate an area for each value, and insert those values into the AREAS
table. Therefore, it requires the use of the Java equivalent of a Cursor FOR loop, along with
support for executable commands and inserts.

For the example, put three records into the RADIUS_VALS table and delete any rows in the
AREAS table:

delete from RADIUS_VALS;
insert into RADIUS_VALS(Radius) values (3);
insert into RADIUS_VALS(Radius) values (4);
insert into RADIUS_VALS(Radius) values (10);
delete from AREAS;
commit;

The following listing, JdbcCircle.java, contains the connection components from
JdbcCheckup.java. The executable commands for the circle area start in the section called
RetrieveRadius, shown in bold in the listing.

// You need to import the java.sql package to use JDBC
import java.sql.*;
// We import java.io to be able to read from the command line
import java.io.*;

import oracle.jdbc.pool.OracleDataSource;

class JdbcCircle {

 public static void main (String args [])
 throws SQLException, IOException {

 // Prompt the user for connect information
 System.out.println ("Please enter information for connection");
 String user;
 String password;
 String database;

 user = readEntry ("user: ");
 int slash_index = user.indexOf ('/');
 if (slash_index != -1) {

 password = user.substring (slash_index + 1);

Chapter 43: JDBC Programming 705

 user = user.substring (0, slash_index);
 }
 else {
 password = readEntry ("password: ");
 }
 database = readEntry ("database (a TNSNAME entry): ");
 System.out.println ("Connecting to the database...");

 // Create an OracleDataSource and set URL
 OracleDataSource ods = new OracleDataSource();
 ods.setURL("jdbc:oracle:oci8:" + user + "/" + password + "@" + database);
 System.out.flush ();

 // Connect to the database
 // You can put a database name after the @ sign in the connection URL.

 Connection conn = ods.getConnection();

 System.out.println ("connected.");

 // Create a statement
 Statement stmt = conn.createStatement ();

 // RetrieveRadius
 ResultSet rset =stmt.executeQuery("select Radius from RADIUS_VALS");

 while (rset.next ()) {
 // if you wish to print the values:
 // System.out.println (rset.getInt ("RADIUS"));
 int radInput = rset.getInt ("RADIUS");

 // Retrieve Radius value, calculate area:
 double result = area(radInput);

 // insert the value into AREAS
 String sql = "insert into AREAS values ("+radInput+","+result+ ")";
 // If you want to print the SQL statement:
 // System.out.println(sql);

 // Create a statement for the insert:
 Statement insArea = conn.createStatement();
 // Execute the insert:
 boolean insertResult = insArea.execute(sql);
 }

 // close the resultSet
 rset.close();
 // Close the statement
 stmt.close();
 // Close the connection
 conn.close();
 }

706 Part VI: Java in Oracle

 // Utility function to calculate the area
 public static double area (int rad) {
 double pi=3.1415927;
 double areacircle=pi*rad*rad;
 return areacircle;
 }

 // Utility function to read a line from standard input
 static String readEntry (String prompt) {

 try {
 StringBuffer buffer = new StringBuffer ();
 System.out.print (prompt);
 System.out.flush ();
 int c = System.in.read ();
 while (c != '\n' && c != -1) {

 buffer.append ((char)c);
 c = System.in.read ();
 }
 return buffer.toString ().trim ();
 }
 catch (IOException e) {
 return "";
 }
 }
}

In the RetrieveRadius section, the query to be executed is passed to the executeQuery
method. The result of the query is stored in a variable named rset.

// RetrieveRadius
 ResultSet rset =stmt.executeQuery("select Radius from RADIUS_VALS");

As noted in Chapter 42, you can use a while loop in Java to approximate the functionality of a
PL/SQL Cursor FOR loop. The following part of the RetrieveRadius section uses the getInt method
to retrieve the integer Radius value from the result set. If the value had been a string, the getString
method would have been used instead.

 while (rset.next ()) {
 // if you wish to print the values:
 // System.out.println (rset.getInt ("RADIUS"));
 int radInput = rset.getInt ("RADIUS");

The radInput variable, assigned in the preceding listing, can now be used as input to the area
calculation. The area calculation is performed via a utility function (see the full JdbcCircle listing)
based on the code examples presented in Chapter 42.

// Retrieve Radius value, calculate area:
 double result = area(radInput);

We now have the radius value (the radInput variable) and the area value (the result variable)
to use when populating the AREAS table. Let’s build the insert statement to perform the insert.

Chapter 43: JDBC Programming 707

First, use the string concatenation functions in Java to concatenate text with the variable values.
Make sure not to include a semicolon at the end of the generated command string.

 // insert the value into AREAS
 String sql = "insert into AREAS values ("+radInput+","+result+ ")";
 // If you want to print the SQL statement:
 // System.out.println(sql);

Next, create a statement and execute the insert command (via a call to the sql variable that
contains the command text):

 // Create a statement for the insert:
 Statement insArea = conn.createStatement();
 // Execute the insert:
 boolean insertResult = insArea.execute(sql);

Did it work? Compile and execute the JdbcCircle.java file:

javac JdbcCircle.java
java JdbcCircle

When prompted, provide a username and password for the owner of the RADIUS_VALS and
AREAS tables. After the program completes, check the AREAS table:

select * from AREAS
 order by Radius;

 RADIUS AREA
--------- ---------
 3 28.27
 4 50.27
 10 314.16

This example is based on a simple calculation—the area of a circle—but it illustrates the key
concepts in JDBC development: connecting to the database, retrieving data, implementing a Cursor
FOR loop, assigning variables, generating a dynamic SQL statement, and executing DML.

JDBC supports extensive programming features, including statement caching, connection
caching, connection failover, distributed transactions, support for LOBs, and more. See the
Oracle Database JDBC Developer’s Guide and Reference for further details on the use of JDBC.

This page intentionally left blank

CHAPTER
44

Java Stored Procedures

709

710 Part VI: Java in Oracle

ou can write stored procedures, triggers, object type methods, and functions that
call Java classes. In this chapter, you will see a sample set of Java procedures, along
with the commands required to execute a procedure. To get the most from this
chapter, you should already be familiar with Java structures (refer to Chapter 42)
and the uses of Java classes and JDBC (Chapter 43). You should also be familiar

with the basic syntax and usage of stored procedures (refer to Chapter 35).

To focus on the database access operations of the Java classes, the example in this chapter is
brief. The following class, called BookshelfDML, contains methods to insert and delete records
from the BOOKSHELF table. In this example, the calculation of the area is not performed; rather,
all required values are supplied during the insert. The following listing shows the BookshelfDML
.java class file:

import java.sql.*;
import java.io.*;
import oracle.jdbc.*;

public class BookshelfDML {
 public static void insertBookshelf (String title, String publisher,
 String categoryname, String rating) throws SQLException {
 String sql = "INSERT INTO BOOKSHELF VALUES (?,?,?,?)";
 try {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setString(1, title);
 pstmt.setString(2, publisher);
 pstmt.setString(3, categoryname);
 pstmt.setString(4, rating);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }

 public static void updateBookshelf (String rating,
 String title) throws SQLException {
 String sql = "UPDATE BOOKSHELF SET Rating = ? " +
 "WHERE Title = ? ";
 try {
 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setString(1, rating);
 pstmt.setString(2, title);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }

 public static void deleteBookshelf (String title) throws SQLException {
 String sql = "DELETE FROM BOOKSHELF WHERE TITLE = ?";
 try {

Y

Chapter 44: Java Stored Procedures 711

 Connection conn =
 DriverManager.getConnection("jdbc:default:connection:");
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.setString(1, title);
 pstmt.executeUpdate();
 pstmt.close();
 } catch (SQLException e) {System.err.println(e.getMessage());}
 }
}

The BookshelfDML.java file defines the BookshelfDML class. Within the BookshelfDML class,
there are separate methods for processing inserts, updates, and deletes. In each of the method
specifications, the datatypes for the BOOKSHELF table’s related columns are specified (in this
example, they are all VARCHAR2 datatypes).

These parameters use the datatypes provided as part of Oracle’s class libraries. If you use the
standard Java datatypes, you may encounter datatype-related problems during the class execution.

The next part of the insert method inserts the values into the BOOKSHELF table:

String sql = "INSERT INTO BOOKSHELF VALUES (?,?,?,?)";

The four variables are defined via setString (setInt would have been used for integers):

pstmt.setString(1, title);
pstmt.setString(2, publisher);
pstmt.setString(3, categoryname);
pstmt.setString(4, rating);

Note that the variable names are case sensitive—they must exactly match the names declared
earlier.

The delete method is very similar in structure. Its SQL statement is

String sql = "DELETE FROM BOOKSHELF WHERE TITLE = ?";

Note that no part of the class creates a connection to the database, in contrast with the
examples in Chapter 43. The connection used to invoke this class will provide the connection
context for the class’s methods.

You can verify that the class compiles properly by processing it via the Java compiler. Note
that this step will not validate your SQL:

javac BookshelfDML.java

This step should complete successfully. If you encounter errors during this compilation step,
check your environment configuration (see the README file supplied with your Oracle software)
and your class file.

Loading the Class into the Database
You can use the loadjava utility to load the class into the database. The syntax for the loadjava
utility is as follows:

loadjava {-user | -u} username/password[@database]
 [-option_name -option_name ...] filename filename ...

The options available for the loadjava utility are shown in Table 44-1.

712 Part VI: Java in Oracle

Argument Description

filenames You can specify any number and combination of .java, .class, .sqlj, .ser, .jar,
.zip, and resource file name arguments.

-proxy host:port If you do not have physical access to the server host or the loadjava client for
loading classes, resources, and Java source, you can use an HTTP URL with the
loadjava tool to specify the JAR, class file, or resource and then load the class
from a remote server. host is the host name or address, and port is the port the
proxy server is using. The URL implementation must be such that the loadjava
tool can determine the type of file to load—that is, JAR, class, resource, or Java
source. For example:
loadjava –u scott –r –v –proxy proxy_server:1020
http://my.server.com/this/is /the/path/my.jar
Password: password
When the URL support is used inside the server, you should have proper Java
permissions to access the remote source. The URL support also includes ftp:
and file: URLs.

-casesensitivepub Publishing will create case-sensitive names. Unless the names are already all
uppercase, it will usually require quoting the names in PL/SQL.

-cleargrants The -grant option causes the loadjava tool to grant EXECUTE privileges to
classes, sources, and resources. However, it does not cause it to revoke any
privileges. If -cleargrants is specified, then the loadjava tool will revoke any
existing grants of execute privilege before it grants execute privilege to the users
and roles specified by the -grant operand. For example, if the intent is to have
execute privilege granted to only SCOTT, then the proper options are:
-grant SCOTT -cleargrants

-debug Turns on SQL logging.

-definer By default, class schema objects run with the privileges of their invoker.
This option confers definer privileges upon classes instead. This option is
conceptually similar to the UNIX setuid facility.

-dirprefix prefix For any files or JAR entries that start with prefix, this prefix will be deleted from
the name before the name of the schema object is determined. For classes
and sources, the name of the schema object is determined by their contents.
Therefore, this option will only have an effect for resources.

-encoding Identifies the source file encoding for the compiler, overriding the matching
value, if any, in JAVA$OPTIONS. Values are the same as for the javac
-encoding option. If you do not specify an encoding on the command line or in
JAVA$OPTIONS, then the encoding is assumed to be the value returned by:
System.getProperty("file.encoding");
This option is relevant only when loading a source file.

-fileout file Displays all messages to the designated file.

TABLE 44-1 Loadjava Utility Options

Chapter 44: Java Stored Procedures 713

Argument Description

-force Forces files to be loaded, even if they match digest table entries.

-genmissing Determines what classes and methods are referred to by the classes that the
loadjava tool is asked to process. Any classes not found in the database or file
arguments are called missing classes. This option generates dummy definitions
for missing classes containing all the referred methods. It then loads the
generated classes into the database. This processing happens before the class
resolution.
Because detecting references from source is more difficult than detecting
references from class files, and because source is not generally used for distributing
libraries, the loadjava tool will not attempt to do this processing for source files.
The schema in which the missing classes are loaded will be the one specified
by the -user option, even when referring classes are created in some other
schema. The created classes will be flagged so that tools can recognize them. In
particular, this is needed so that the verifier can recognize the generated classes.

-genmissingjar
jar_file

This option performs the same actions as -genmissing. In addition, it creates a
JAR file, jar_file, that contains the definitions of any generated classes.

-grant Grants the EXECUTE privilege on loaded classes to the listed users. Any number
and combination of usernames can be specified, separated by commas, but not
spaces.
Granting the EXECUTE privilege on an object in another schema requires that
the original CREATE PROCEDURE privilege was granted via the WITH GRANT
options.
Note:
-grant is a cumulative option. Users are added to the list of those with the
EXECUTE privilege. To remove privileges, use the -cleargrants option.
The schema name should be in uppercase.

-help Displays usage message on how to use the loadjava tool and its options.

-jarasresource Instead of unpacking the JAR file and loading each class within it, this argument
loads the whole JAR file into the schema as a resource.

-noaction Takes no action on the files. Actions include creating the schema objects,
granting execute permissions, and so on. The normal use of this argument is
within an option file to suppress creation of specific classes in a JAR. When
used on the command line, unless overridden in the option file, it will cause
the loadjava tool to ignore all files, except that JAR files will still be examined
to determine if they contain a META-INF/loadjava-options entry. If so, then the
option file is processed. The -action option in the option file will override the
-noaction option specified on the command line.

-norecursivejars Treats JAR files contained in other JAR files as resources. This is the default
behavior. This option is used to override the -recursivejars option.

TABLE 44-1 Loadjava Utility Options (continued)

714 Part VI: Java in Oracle

Argument Description

-nosynonym Does not create a public synonym for the classes. This is the default behavior.
This overrides the -synonym option.

-nousage Suppresses the usage message that is given if no option is specified or if the
-help option is specified.

-noverify Causes the classes to be loaded without bytecode verification. oracle.aurora
.security.JServerPermission(Verifier) must be granted to use this option. To be
effective, this option must be used in conjunction with -resolve.

-oci | -oci8 Directs the loadjava tool to communicate with the database using the JDBC
Oracle Call Interface (OCI) driver. -oci and -thin are mutually exclusive. If
neither is specified, then -oci is used by default. Choosing -oci implies the
syntax of the -user value. You do not need to provide the URL.

-publish package The package is created or replaced by the loadjava tool. Wrappers for the
eligible methods will be defined in this package. Through the use of option
files, a single invocation of the loadjava tool can be instructed to create more
than one package. Each package will undergo the same name transformations
as the methods.

-pubmain number A special case applied to methods with a single argument, which is of type java
.lang.String. Multiple variants of the SQL procedure or function will be created,
each of which takes a different number of arguments of type VARCHAR.
In particular, variants are created taking all arguments up to and including
number. The default value is 3. This option applies to main, as well as any
method that has exactly one argument of type java.lang.String.

-recursivejars Normally, if the loadjava tool encounters an entry in a JAR with a .jar extension,
it will load the entry as a resource. If this option is specified, then the loadjava
tool will process contained JAR files as if they were top-level JAR files. That is, it
will read their entries and load classes, sources, and resources.

-resolve Compiles, if necessary, and resolves external references in classes after all classes
on the command line have been loaded. If you do not specify the -resolve option,
the loadjava tool loads files, but does not compile or resolve them.

-resolver Specifies an explicit resolver specification, which is bound to the newly loaded
classes. If -resolver is not specified, then the default resolver specification,
which includes current user’s schema and PUBLIC, is used.

-resolveonly Causes the loadjava tool to skip the initial creation step. It will still perform
grants, resolves, create synonyms, and so on.

-schema Designates the schema where schema objects are created. If not specified, then
the -user schema is used. To create a schema object in a schema that is not your
own, you must have the CREATE PROCEDURE or CREATE ANY PROCEDURE
privilege. You must have CREATE TABLE or CREATE ANY TABLE privilege.
Finally, you must have the JServerPermission loadLibraryInClass for the class.

TABLE 44-1 Loadjava Utility Options (continued)

Chapter 44: Java Stored Procedures 715

For example, to load the BookshelfDML.java file into the Practice schema in an instance
named “orcl,” you can use the following command:

loadjava –user Practice/practice@orcl.world -verbose BookshelfDML.java

NOTE
Depending on your specific configuration, you may need to use the
–encoding argument as well.

Argument Description

-stdout Causes the output to be directed to stdout, rather than to stderr.

-stoponerror Normally, if an error occurs while the loadjava tool is processing files, it will
issue a message and continue to process other classes. This option stops when
an error occurs. In addition, it reports all errors that apply to Java objects and
are contained in the USER_ERROR table of the schema in which classes are
being loaded, except that is does not report ORA-29524 errors. These are
errors that are generated when a class cannot be resolved because a referred
class could not be resolved. Therefore, these errors are a secondary effect of
whatever caused a referred class to be unresolved.

-synonym Creates a PUBLIC synonym for loaded classes, making them accessible outside
the schema into which they are loaded. To specify this option, you must have
the CREATE PUBLIC SYNONYM privilege. If -synonym is specified for source
files, then the classes compiled from the source files are treated as if they had
been loaded with -synonym.

-tableschema
schema

Creates the loadjava tool internal tables within the specified schema, rather
than in the Java file destination schema.

-thin Directs the loadjava tool to communicate with the database using the JDBC
Thin driver. Choosing -thin implies the syntax of the -user value. You do need to
specify the appropriate URL through the -user option.

-unresolvedok When combined with -resolve, this argument will ignore unresolved errors.

-user Specifies a username, password, and database connection string. The files will
be loaded into this database instance.

-verbose Directs the loadjava tool to display detailed status messages while running. Use
the -verbose option to learn when the loadjava tool does not load a file because
it matches a digest table entry.

-jarsasdbobjects Indicates that JARs processed by the current loadjava tool command are to be
stored in the database as database resident JARs.

-prependjarnames Is used with the -jarsasdbobjects option. This option enables classes with the
same names coming from different JARs to coexist in the same schema. It does
this by prefixing a version of the name of the JAR to the class name to produce
a unique name for the database object.

TABLE 44-1 Loadjava Utility Options (continued)

716 Part VI: Java in Oracle

You should see a series of comments related to the loading of the class into the database. If any
errors are reported, the load will not complete.

NOTE
The name of the class should not match the name of any of the
existing objects in your schema.

The AreasDML class is now loaded into the database. During the load, Oracle will create
multiple tables and Java objects within your schema.

NOTE
You can load Java files manually from local BFILE or LOB columns via
the create java [source | class | resource] commands.

If you are running your database on a standalone server and you have not defined a service
name for the database, you will need to specify a full connection specification for the loadjava
program call. The format will be

loadjava –user practice/practice@localhost:1521:orcl -v BookshelfDML.java

How to Access the Class
Now that the BookshelfDML class has been loaded into the database, you must create a procedure
to call each of the methods. The create procedure command in the following listing creates a
procedure called InsertBookshelfViaJava:

create or replace procedure InsertBookshelfViaJava
(Title VARCHAR2, Publisher VARCHAR2,
 CategoryName VARCHAR2, Rating VARCHAR2)
as
language java
name 'BookshelfDML.insertBookshelf(java.lang.String, java.lang.String,
java.lang.String, java.lang.String)';
/

This brief procedure has four parameters—the four columns of the BOOKSHELF table. Its
language java clause tells Oracle that the procedure is calling a Java method. The name of the
method is specified in the name clause (be sure to be consistent with your use of capital letters).
The formats for the Java method call are then specified.

A separate procedure will delete the BOOKSHELF table’s records via a method call:

create or replace procedure DeleteBookshelfViaJava
(Title VARCHAR2)
as
language java
name 'BookshelfDML.deleteBookshelf(java.lang.String)';
/

A third procedure will update the Rating value based on Title:

create or replace procedure UpdateBookshelfViaJava
(Rating VARCHAR2, Title VARCHAR2)
as
language java

Chapter 44: Java Stored Procedures 717

name 'BookshelfDML.updateBookshelf(java.lang.String, java.lang.String)';
/

Now, go into SQL*Plus and use the call command to execute the Java classes:

call InsertBookshelfViaJava('TEST','TESTPub','ADULTNF','2');

You will see this response:

Call completed.

Instead of using call, you can execute the procedure within a PL/SQL block:

begin
 InsertBookshelfViaJava('TEST','TESTPub','ADULTNF','2');
end;
/

The call command will pass the column values as parameters to the InsertBookshelfViaJava
stored procedure. It will format them according to the specifications in the name clause and will
pass them to the BookshelfDML.insertBookshelf method. That method will use your current
connection to execute its commands, and the row will be inserted. Most of these libraries and
classes will not have been loaded yet within the database. That’s a lot of steps to go through,
so performance will be affected the first time you run the Java stored procedure, but subsequent
executions will be much faster. You can verify its success by querying the BOOKSHELF table:

column Title format a10
select * from BOOKSHELF where Title like 'TEST';

TITLE PUBLISHER CATEGORYNAME RA
---------- -------------------- -------------------- --
TEST TESTPub ADULTNF 2

You can update the rating via UpdateBookshelfViaJava:

begin
 UpdateBookshelfViaJava('3','TEST');
end;
/

select * from BOOKSHELF where Title like 'TEST';

TITLE PUBLISHER CATEGORYNAME RA
---------- -------------------- -------------------- --
TEST TESTPub ADULTNF 3

And you can delete that record via a call to DeleteBookshelfViaJava:

begin
 DeleteBookshelfViaJava('TEST');
end;
/

select * from BOOKSHELF where Title like 'TEST';

no rows selected

718 Part VI: Java in Oracle

The call to DeleteBookshelfViaJava will complete much faster than the call to
InsertBookshelfViaJava, because your Java libraries will have been loaded the first time
you executed InsertBookshelfViaJava.

If your insert is not acceptable—for example, if you attempt to insert a character string into a
NUMBER datatype column—Oracle will display an error. When debugging Java stored procedures,
you can call System.err.println from within your Java code, as shown in the BookshelfDML.java
listing earlier in this chapter. To display the output within your SQL*Plus session, you must first
execute the following commands:

set serveroutput on
call DBMS_JAVA.SET_OUTPUT(10000);

Calling DBMS_JAVA.SET_OUTPUT will redirect the output of System.out.println to DBMS_
OUTPUT.PUT_LINE.

Calling Java Stored Procedures Directly
Oracle provides an application programming interface (API) to support direct invocation of static
Java stored procedures. The classes for this method are found in the oracle.jpub.reflect package,
so you must import this package into your client-side code. The Java interface for the API is

public class Client
{
 public static String getSignature(Class[]);
 public static Object invoke(Connection, String, String,
 String, Object[]);
 public static Object invoke(Connection, String, String,
 Class[], Object[]);
}

When accessed via this API, the procedures’ arguments cannot be OUT or IN OUT. Returned
values must all be part of the function result. Note that the method invocation will use invoker’s
rights. See the Java developer’s guides that accompany the Oracle software installation for further
details on the API.

Where to Perform Commands
The BookshelfDML example is intended to provide an overview of the implementation of Java
stored procedures. Suppose you now want to make the procedures more complex, involving
additional tables and calculations. As shown in previous chapters, you can perform those
calculations either in Java or in PL/SQL.

Your choice of a platform and language for your data processing will impact your performance.
In general, you will pay a performance penalty the first time you execute a Java stored procedure
(as the classes are loaded), but subsequent executions will not pay the same penalty. If you repeatedly
execute the same commands, the performance impact of the first execution will be minimal.

Logging out and logging back in impacts your performance, but not nearly as much as the first
execution of the procedure. When you use Java stored procedures, you must be aware of the way
in which the application interacts with Oracle. If your users frequently log out and log back in,
they will pay a performance penalty the first time they execute the procedure following each
login. Furthermore, the first execution of the procedure following a database startup will pay the
most severe performance penalty. The performance impact of these actions must be taken into
account during the design stage of your application development.

Chapter 44: Java Stored Procedures 719

Here are some tips to reduce the performance penalties associated with the Java stored
procedure calls:

Execute each Java stored procedure following database startup. In the case of the
BookshelfDML example, this may involve inserting and deleting a test record following
each startup.

Reduce the number of short-term database connections (for example, by connection
pooling).

Perform most of your direct database manipulation via standard SQL and PL/SQL.

Java is an appropriate technology to use for many computational processes and for display
manipulation. In general, SQL and PL/SQL are slightly more efficient than Java for database
connections and data manipulation. However, the performance of Java within Oracle makes
it a strong alternative to PL/SQL; the primary source of the performance penalty for Java stored
procedures is the time required to go through the PL/SQL wrapper. When designing applications
that integrate Java, SQL, and PL/SQL, focus on using each language for the functions that it
performs best.

If your code involves many loops and manipulations of data, Java may outperform PL/SQL.
The costs of using Java—for Java object creation and the PL/SQL header interaction—may be
offset by the improved performance Java yields during the actual work. Note that the compiled
native PL/SQL available in Oracle Database 11g should provide a strong alternative to Java from
a performance perspective.

In general, actions that involve selecting data from the database and manipulating it are best
handled by PL/SQL and SQL. Computations on the selected data may be processed faster by
Java. In your application design, be sure to use the proper tool for the proper function, and avoid
unnecessary performance penalties.

■

■

■

This page intentionally left blank

PART
VII

Hitchhiker’s Guides

This page intentionally left blank

CHAPTER
45

The Hitchhiker’s Guide to
the Oracle Data Dictionary

723

724 Part VII: Hitchhiker’s Guides

racle’s data dictionary stores all the information that is used to manage the objects
in the database. Although the data dictionary is usually the domain of database
administrators (DBAs), it also is a source of valuable information for developers
and end users.

In this chapter, you will see the data dictionary—Oracle’s internal directory—from the
perspective of an end user; the data dictionary tables and views are not listed alphabetically, but
rather are grouped by function (tables, security, and so on). This organization is designed to let
you quickly find your way to the information you need. The most-used data dictionary views are
all shown here, along with examples of their usage.

Depending on which Oracle configuration options you are using, some of the groups will not
apply to your database. The most commonly used views are listed first. The groupings used in this
chapter are, in order:

New Views Introduced in Oracle Database 11g

The Road Maps: DICTIONARY (DICT) and DICT_COLUMNS

Things You Select From: Tables (and Columns), Views, Synonyms, and Sequences

Recycle Bin: USER_RECYCLEBIN and DBA_RECYCLEBIN

Constraints and Comments

Indexes and Clusters

Abstract Datatypes, ORDBMS-Related Structures, and LOBs

Database Links and Materialized Views

Triggers, Procedures, Functions, and Packages

Dimensions

Space Allocation and Usage, Including Partitions and Subpartitions

Users and Privileges

Roles

Auditing

Miscellaneous

Monitoring: The V$ Dynamic Performance Tables

NOTE
As new features are added, it is expected that the data dictionary will
be modified with each future release of Oracle. This is not intended to
be an exhaustive list of all the data dictionary views. Those listed here
are the most commonly accessed by user queries.

A Note about Nomenclature
With some exceptions, the names of the objects in the Oracle data dictionary begin with one of
three prefixes: “USER,” “ALL,” or “DBA.” Records in the “USER” views usually show information

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

O

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 725

about objects owned by the account performing the query. Records in the “ALL” views include
the “USER” records plus information about objects on which privileges have been granted to
PUBLIC or to the user. “DBA” views encompass all of the database objects, regardless of owner.
For most database objects, “USER,” “ALL,” and “DBA” views are available.

In keeping with the user focus of this guide, the emphasis will be on the “USER” views or
those that are accessible to all users. The “ALL” and “DBA” views will be described when they
are applicable.

New Views Introduced in Oracle Database 11g
For users familiar with the data dictionary in Oracle10g, Table 45-1 lists the views that are
introduced in Oracle Database 11g.

ALL_ Views DBA_ Views USER_ Views
DBA_ADDM_FDG_BREAKDOWN USER_ADDM_FDG_BREAKDOWN

DBA_ADDM_FINDINGS USER_ADDM_FINDINGS

DBA_ADDM_INSTANCES USER_ADDM_INSTANCES

DBA_ADDM_SYSTEM_DIRECTIVES

DBA_ADDM_TASK_DIRECTIVES USER_ADDM_TASK_DIRECTIVES

DBA_ADDM_TASKS USER_ADDM_TASKS

DBA_ADVISOR_DIR_DEFINITIONS

DBA_ADVISOR_DIR_INSTANCES

DBA_ADVISOR_DIR_TASK_INST USER_ADVISOR_DIR_TASK_INST

DBA_ADVISOR_EXEC_PARAMETERS USER_ADVISOR_EXEC_PARAMETERS

DBA_ADVISOR_EXECUTION_TYPES

DBA_ADVISOR_EXECUTIONS USER_ADVISOR_EXECUTIONS

DBA_ADVISOR_FDG_BREAKDOWN USER_ADVISOR_FDG_BREAKDOWN

DBA_ADVISOR_FINDING_NAMES

DBA_ADVISOR_SQLA_COLVOL USER_ADVISOR_SQLA_COLVOL

DBA_ADVISOR_SQLA_TABLES USER_ADVISOR_SQLA_TABLES

DBA_ADVISOR_SQLA_TABVOL USER_ADVISOR_SQLA_TABVOL

DBA_ADVISOR_SQLA_WK_SUM USER_ADVISOR_SQLA_WK_SUM

DBA_ADVISOR_SQLPLANS USER_ADVISOR_SQLPLANS

DBA_ADVISOR_SQLSTATS USER_ADVISOR_SQLSTATS

DBA_ARGUMENTS

ALL_ASSEMBLIES DBA_ASSEMBLIES USER_ASSEMBLIES

DBA_AUTOTASK_CLIENT

DBA_AUTOTASK_CLIENT_HISTORY

DBA_AUTOTASK_CLIENT_JOB

DBA_AUTOTASK_OPERATION

DBA_AUTOTASK_SCHEDULE

DBA_AUTOTASK_TASK

TABLE 45-1 New Data Dictionary Views in Oracle Database 11g

726 Part VII: Hitchhiker’s Guides

ALL_ Views DBA_ Views USER_ Views
DBA_AUTOTASK_WINDOW_CLIENTS

DBA_AUTOTASK_WINDOW_HISTORY

ALL_CHANGE_PROPAGATION_
SETS

ALL_CHANGE_PROPAGATIONS

ALL_CHANGE_SETS

ALL_CHANGE_SOURCES

ALL_CHANGE_TABLES

ALL_COL_PENDING_STATS DBA_COL_PENDING_STATS USER_COL_PENDING_STATS

DBA_COMPARISON USER_COMPARISON

DBA_COMPARISON_COLUMNS USER_COMPARISON_COLUMNS

DBA_COMPARISON_ROW_DIF USER_COMPARISON_ROW_DIF

DBA_COMPARISON_SCAN USER_COMPARISON_SCAN

DBA_COMPARISON_SCAN_SUMMARY USER_COMPARISON_SCAN_SUMMARY

DBA_COMPARISON_SCAN_VALUES USER_COMPARISON_SCAN_VALUES

DBA_CPOOL_INFO

DBA_CQ_NOTIFICATION_QUERIES USER_CQ_NOTIFICATION_QUERIES

ALL_CUBE_ATTR_VISIBILITY DBA_CUBE_ATTR_VISIBILITY USER_CUBE_ATTR_VISIBILITY

ALL_CUBE_ATTRIBUTES DBA_CUBE_ATTRIBUTES USER_CUBE_ATTRIBUTES

ALL_CUBE_BUILD_PROCESSES DBA_CUBE_BUILD_PROCESSES USER_CUBE_BUILD_PROCESSES

ALL_CUBE_CALCULATED_
MEMBERS

DBA_CUBE_CALCULATED_MEMBERS USER_CUBE_CALCULATED_MEMBERS

ALL_CUBE_DIM_LEVELS DBA_CUBE_DIM_LEVELS USER_CUBE_DIM_LEVELS

ALL_CUBE_DIM_MODELS DBA_CUBE_DIM_MODELS USER_CUBE_DIM_MODELS

ALL_CUBE_DIM_VIEW_COLUMNS DBA_CUBE_DIM_VIEW_COLUMNS USER_CUBE_DIM_VIEW_COLUMNS

ALL_CUBE_DIM_VIEWS DBA_CUBE_DIM_VIEWS USER_CUBE_DIM_VIEWS

ALL_CUBE_DIMENSIONALITY DBA_CUBE_DIMENSIONALITY USER_CUBE_DIMENSIONALITY

ALL_CUBE_DIMENSIONS DBA_CUBE_DIMENSIONS USER_CUBE_DIMENSIONS

ALL_CUBE_HIER_LEVELS DBA_CUBE_HIER_LEVELS USER_CUBE_HIER_LEVELS

ALL_CUBE_HIER_VIEW_COLUMNS DBA_CUBE_HIER_VIEW_COLUMNS USER_CUBE_HIER_VIEW_COLUMNS

ALL_CUBE_HIER_VIEWS DBA_CUBE_HIER_VIEWS USER_CUBE_HIER_VIEWS

ALL_CUBE_HIERARCHIES DBA_CUBE_HIERARCHIES USER_CUBE_HIERARCHIES

ALL_CUBE_MEASURES DBA_CUBE_MEASURES USER_CUBE_MEASURES

ALL_CUBE_VIEW_COLUMNS DBA_CUBE_VIEW_COLUMNS USER_CUBE_VIEW_COLUMNS

ALL_CUBE_VIEWS DBA_CUBE_VIEWS USER_CUBE_VIEWS

ALL_CUBES DBA_CUBES USER_CUBES

DBA_EPG_DAD_AUTHORIZATION USER_EPG_DAD_AUTHORIZATION

DBA_FLASHBACK_ARCHIVE USER_FLASHBACK_ARCHIVE

DBA_FLASHBACK_ARCHIVE_TABLES USER_FLASHBACK_ARCHIVE_TABLES

DBA_FLASHBACK_ARCHIVE_TS

DBA_FLASHBACK_TXN_REPORT USER_FLASHBACK_TXN_REPORT

TABLE 45-1 New Data Dictionary Views in Oracle Database 11g (continued)

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 727

ALL_ Views DBA_ Views USER_ Views
DBA_FLASHBACK_TXN_STATE USER_FLASHBACK_TXN_STATE

DBA_HIST_BASELINE_DETAILS

DBA_HIST_BASELINE_METADATA

DBA_HIST_BASELINE_TEMPLATE

DBA_HIST_CLUSTER_INTERCON

DBA_HIST_COLORED_SQL

DBA_HIST_EVENT_HISTOGRAM

DBA_HIST_IC_CLIENT_STATS

DBA_HIST_IC_DEVICE_STATS

DBA_HIST_INTERCONNECT_PINGS

DBA_HIST_IOSTAT_FILETYPE

DBA_HIST_IOSTAT_FILETYPE_NAME

DBA_HIST_IOSTAT_FUNCTION

DBA_HIST_IOSTAT_FUNCTION_NAME

DBA_HIST_MEM_DYNAMIC_COMP

DBA_HIST_MEMORY_RESIZE_OPS

DBA_HIST_MEMORY_TARGET_ADVICE

DBA_HIST_MUTEX_SLEEP

DBA_HIST_PERSISTENT_QUEUES

DBA_HIST_PERSISTENT_SUBS

DBA_HIST_RSRC_CONSUMER_GROUP

DBA_HIST_RSRC_PLAN

ALL_IDENTIFIERS DBA_IDENTIFIERS USER_IDENTIFIERS

ALL_IND_PENDING_STATS DBA_IND_PENDING_STATS USER_IND_PENDING_STATS

DBA_INVALID_OBJECTS

ALL_JAVA_COMPILER_OPTIONS DBA_JAVA_COMPILER_OPTIONS USER_JAVA_COMPILER_OPTIONS

DBA_LOGSTDBY_UNSUPPORTED_TABLE

ALL_MEASURE_FOLDER_
CONTENTS

DBA_MEASURE_FOLDER_CONTENTS USER_MEASURE_FOLDER_CONTENTS

ALL_MEASURE_FOLDERS DBA_MEASURE_FOLDERS USER_MEASURE_FOLDERS

ALL_MINING_MODEL_ATTRIBUTES DBA_MINING_MODEL_ATTRIBUTES USER_MINING_MODEL_ATTRIBUTES

ALL_MINING_MODEL_SETTINGS DBA_MINING_MODEL_SETTINGS USER_MINING_MODEL_SETTINGS

ALL_MINING_MODELS DBA_MINING_MODELS USER_MINING_MODELS

ALL_MVIEW_DETAIL_PARTITION DBA_MVIEW_DETAIL_PARTITION USER_MVIEW_DETAIL_PARTITION

ALL_MVIEW_DETAIL_
SUBPARTITION

DBA_MVIEW_DETAIL_SUBPARTITION USER_MVIEW_DETAIL_SUBPARTITION

DBA_NETWORK_ACL_PRIVILEGES USER_NETWORK_ACL_PRIVILEGES

DBA_NETWORK_ACLS

DBA_OLDIMAGE_COLUMNS USER_OLDIMAGE_COLUMNS

DBA_REGISTRY_DATABASE

DBA_REGISTRY_DEPENDENCIES

TABLE 45-1 New Data Dictionary Views in Oracle Database 11g (continued)

728 Part VII: Hitchhiker’s Guides

ALL_ Views DBA_ Views USER_ Views
DBA_REGISTRY_PROGRESS

DBA_RSRC_CAPABILITY

DBA_RSRC_CATEGORIES

DBA_RSRC_INSTANCE_CAPABILITY

DBA_RSRC_IO_CALIBRATE

DBA_RSRC_STORAGE_POOL_MAPPING

ALL_SCHEDULER_CREDENTIALS DBA_SCHEDULER_CREDENTIALS USER_SCHEDULER_CREDENTIALS

DBA_SCHEDULER_JOB_ROLES

ALL_SCHEDULER_REMOTE_
DATABASES

DBA_SCHEDULER_REMOTE_DATABASES

ALL_SCHEDULER_REMOTE_
JOBSTATE

DBA_SCHEDULER_REMOTE_JOBSTATE USER_SCHEDULER_REMOTE_JOBSTATE

DBA_SQL_MANAGEMENT_CONFIG

DBA_SQL_PATCHES

DBA_SQL_PLAN_BASELINES

ALL_STAT_EXTENSIONS DBA_STAT_EXTENSIONS USER_STAT_EXTENSIONS

ALL_STREAMS_COLUMNS DBA_STREAMS_COLUMNS

DBA_STREAMS_TP_COMPONENT

DBA_STREAMS_TP_COMPONENT_LINK

DBA_STREAMS_TP_COMPONENT_STAT

DBA_STREAMS_TP_DATABASE

DBA_STREAMS_TP_PATH_BOTTLENECK

DBA_STREAMS_TP_PATH_STAT

DBA_SUBSCR_REGISTRATIONS USER_SUBSCR_REGISTRATIONS

ALL_SYNC_CAPTURE DBA_SYNC_CAPTURE

ALL_SYNC_CAPTURE_PREPARED_
TABS

DBA_SYNC_CAPTURE_PREPARED_TABS

ALL_SYNC_CAPTURE_TABLES DBA_SYNC_CAPTURE_TABLES

ALL_TAB_HISTGRM_PENDING_
STATS

DBA_TAB_HISTGRM_PENDING_STATS USER_TAB_HISTGRM_PENDING_STATS

ALL_TAB_PENDING_STATS DBA_TAB_PENDING_STATS USER_TAB_PENDING_STATS

ALL_TAB_STAT_PREFS DBA_TAB_STAT_PREFS USER_TAB_STAT_PREFS

DBA_TEMP_FREE_SPACE

ALL_TRIGGER_ORDERING DBA_TRIGGER_ORDERING USER_TRIGGER_ORDERING

DBA_USERS_WITH_DEFPWD

DBA_WORKLOAD_CAPTURES

DBA_WORKLOAD_CONNECTION_MAP

DBA_WORKLOAD_FILTERS

DBA_WORKLOAD_REPLAY_DIVERGENCE

DBA_WORKLOAD_REPLAYS

TABLE 45-1 New Data Dictionary Views in Oracle Database 11g (continued)

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 729

The Road Maps: DICTIONARY (DICT)
and DICT_COLUMNS
Descriptions for the objects that make up the Oracle data dictionary are accessible via a view
named DICTIONARY. This view, also accessible via the public synonym DICT, queries the
database to determine which data dictionary views you can see. It also searches for public
synonyms for those views.

The following example queries DICT for the names of all data dictionary views whose
names include the string 'MVIEWS'. Selecting from DICT via a non-DBA account, as shown in
the following listing, returns the object name and comments for each data dictionary object that
matches your search criteria. There are only two columns in this view: Table_Name and the
table’s associated Comments.

column Comments format a35 word_wrapped
column Table_Name format a25

select Table_Name, Comments
 from DICT
 where Table_Name like '%MVIEWS%'
 order by Table_Name;

TABLE_NAME COMMENTS
------------------------- -----------------------------------
ALL_BASE_TABLE_MVIEWS All materialized views with log(s)
 in the database that the user can
 see
ALL_MVIEWS All materialized views in the
 database
ALL_REGISTERED_MVIEWS Remote materialized views of local
 tables that the user can see
USER_BASE_TABLE_MVIEWS All materialized views with log(s)
 owned by the user in the database
USER_MVIEWS All materialized views in the
 database
USER_REGISTERED_MVIEWS Remote materialized views of local
 tables currently using logs owned
 by the user

6 rows selected.

You can query the columns of the dictionary views via the DICT_COLUMNS view. Like the
DICTIONARY view, DICT_COLUMNS displays the comments that have been entered into the
database for the data dictionary views. DICT_COLUMNS has three columns: Table_Name,
Column_Name, and Comments. Querying DICT_COLUMNS lets you determine which data
dictionary views would be most useful for your needs.

For example, if you want to view space allocation and usage information for your database
objects but are not sure which data dictionary views store that information, you can query DICT_

730 Part VII: Hitchhiker’s Guides

COLUMNS, as shown in the following example, which looks for all the dictionary tables that have
a column named Blocks:

select Table_Name
 from DICT_COLUMNS
 where Column_Name = 'BLOCKS'
 and Table_Name like 'USER%'
 order by Table_Name;

TABLE_NAME

USER_ALL_TABLES
USER_EXTENTS
USER_FREE_SPACE
USER_OBJECT_TABLES
USER_SEGMENTS
USER_TABLES
USER_TAB_PARTITIONS
USER_TAB_PENDING_STATS
USER_TAB_STATISTICS
USER_TAB_SUBPARTITIONS
USER_TS_QUOTAS

To list all of the available column names that you could have used in the last example, query
DICT_COLUMNS:

select distinct Column_Name
 from DICT_COLUMNS
 order by Column_Name;

Whenever you’re unsure about where to find the data you want, just check DICTIONARY and
DICT_COLUMNS. If it appears that a large number of views could be useful, query DICTIONARY
(as in the first example) to see the comments on each view.

Things You Select From: Tables (and Columns),
Views, Synonyms, and Sequences
A user’s catalog lists all of those objects that the user can select records from; that is, any object
that can be listed in the from clause of a query. Although sequences are not referenced directly
in from clauses, Oracle includes them in the catalog. In this section, you will see how to retrieve
information about tables, columns, views, synonyms, sequences, and the user catalog.

Catalog: USER_CATALOG (CAT)
Querying USER_CATALOG will display all tables, views, synonyms, and sequences the user
owns. The Table_Name column shows the name of the object (even if it is not a table), and the
Table_Type column shows the type of object:

select Table_Name, Table_Type
 from USER_CATALOG
 where Table_Name like 'T%';

USER_CATALOG may also be referred to by the public synonym CAT.

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 731

Two additional catalogs are available. ALL_CATALOG lists everything in your USER_CATALOG
view plus any objects that you or PUBLIC have been granted access to. DBA_CATALOG is a
DBA-level version of the catalog showing all tables, views, sequences, and synonyms in the
database. In addition to the Table_Name and Table_Type columns shown in the USER_CATALOG
query, ALL_CATALOG and DBA_CATALOG include an Owner column.

Objects: USER_OBJECTS (OBJ)
USER_CATALOG only displays information for tables, views, sequences, and synonyms. To
retrieve information on all types of objects, query USER_OBJECTS. You can use this view to find
out about many types of objects, including clusters, database links, directories, functions, indexes,
libraries, packages, package bodies, Java classes, abstract datatypes, resource plans, sequences,
synonyms, tables, triggers, materialized views, LOBs, and views. USER_OBJECTS’ columns are
shown in the following listing:

COLUMN_NAME

OBJECT_NAME
SUBOBJECT_NAME
OBJECT_ID
DATA_OBJECT_ID
OBJECT_TYPE
CREATED
LAST_DDL_TIME
TIMESTAMP
TEMPORARY
GENERATED
SECONDARY
NAMESPACE
EDITION_NAME

USER_OBJECTS (also known by its public synonym OBJ) contains several vital pieces of
information that are not found in other data dictionary views. It records the creation date of objects
(the Created column) and the last time an object was altered (the Last_DDL_Time column). These
columns are very useful when trying to reconcile different sets of objects in the same application.

NOTE
If you re-create objects in any way, such as via the Import utility, their
Created values will change to the last time they were created.

Two additional object listings are available. ALL_OBJECTS lists everything in your USER_
OBJECTS view plus any objects for which access has been granted to you or PUBLIC. DBA_
OBJECTS is a DBA-level version of the object listing, showing all of the objects in the database.
In addition to the columns shown in the USER_OBJECTS view, ALL_OBJECTS and DBA_OBJECTS
include an Owner column.

Tables: USER_TABLES (TABS)
Although all of a user’s objects are shown in USER_OBJECTS, few attributes of those objects
are shown there. To get more information about an object, you need to look at the view that is
specific to that type of object. For tables, that view is USER_TABLES. It can also be referenced via
the public synonym TABS.

732 Part VII: Hitchhiker’s Guides

NOTE
Earlier versions of Oracle included a view called TAB. That view,
which is similar in function to TABS, is still supported because of
Oracle products that reference it. However, TAB does not contain
the columns that TABS contains. Use TABS in your data dictionary
queries.

The columns in USER_TABLES can be divided into four major categories (identification,
space-related, statistics-related, and other). The following listing shows the columns of the USER_
TABLES view:

TABLE_NAME
TABLESPACE_NAME
CLUSTER_NAME
IOT_NAME
STATUS
PCT_FREE
PCT_USED
INI_TRANS
MAX_TRANS
INITIAL_EXTENT
NEXT_EXTENT
MIN_EXTENTS
MAX_EXTENTS
PCT_INCREASE
FREELISTS
FREELIST_GROUPS
LOGGING
BACKED_UP
NUM_ROWS
BLOCKS
EMPTY_BLOCKS
AVG_SPACE
CHAIN_CNT
AVG_ROW_LEN
AVG_SPACE_FREELIST_BLOCKS
NUM_FREELIST_BLOCKS
DEGREE
INSTANCES
CACHE
TABLE_LOCK
SAMPLE_SIZE
LAST_ANALYZED
PARTITIONED
IOT_TYPE
TEMPORARY
SECONDARY
NESTED
BUFFER_POOL
ROW_MOVEMENT
GLOBAL_STATS

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 733

USER_STATS
DURATION
SKIP_CORRUPT
MONITORING
CLUSTER_OWNER
DEPENDENCIES
COMPRESSION
COMPRESS_FOR
DROPPED
READ_ONLY

The table’s name is shown in the Table_Name column. The Backed_Up column shows whether
or not the table has been backed up since its last modification. The Partitioned column will have
a value of 'YES' if the table has been partitioned (data dictionary views related to partitions are
described in the “Space Allocation and Usage, Including Partitions and Subpartitions” section of
this chapter).

The space-related columns, such as Pct_Free, Initial_Extent, Max_Extents, and Pct_Increase,
are described in the “Storage” entry of the Alphabetical Reference. The statistics-related columns,
such as Num_Rows, Blocks, Empty_Blocks, Avg_Row_Len, and Last_Analyzed, are populated
when the table is analyzed.

NOTE
You can use the USER_TAB_STATISTICS view to access the statistics
for your tables. You can use USER_TAB_PENDING_STATS for pending
statistics.

Querying the Table_Name column from USER_TABLES will display the names of all of the
tables in the current account. The following query lists all of the tables whose names begin with
the letter L:

select Table_Name from USER_TABLES
 where Table_Name like 'L%';

The ALL_TABLES view shows all of the tables owned by the user as well as any to which the
user has been granted access (either directly or via grants to PUBLIC). Most third-party reporting
tools that list available tables for queries obtain that list by querying ALL_TABLES. Since ALL_
TABLES can contain entries for multiple users, it contains an Owner column in addition to the
columns in USER_TABLES. DBA_TABLES, which lists all tables in the database, has the same
column definitions as ALL_TABLES.

The Degree and Instances columns in USER_TABLES relate to how the table is queried during
parallel queries. For information on Degree, Instances, and the other table parameters, see CREATE
TABLE in the Alphabetical Reference.

NOTE
For external tables, see USER_EXTERNAL_TABLES and
USER_EXTERNAL_LOCATIONS.

USER_TABLES and other data dictionary views contain a new column named Dropped. That
column will have a value of 'YES' or 'NO'; see the section on the recycle bin for information on
descriptions of drop objects.

734 Part VII: Hitchhiker’s Guides

Columns: USER_TAB_COLUMNS (COLS)
Although users do not query from columns, the data dictionary view that shows columns is
closely tied to the data dictionary view of tables. This view, called USER_TAB_COLUMNS, lists
information specific to columns. USER_TAB_COLUMNS can also be queried via the public
synonym COLS.

The columns you can query from USER_TAB_COLUMNS can be separated into three major
categories:

Identification, such as Table_Name, Column_Name, and Column_ID

Definition related, such as Data_Type, Data_Length, Data_Precision, Data_Scale,
Nullable, and Default_Length

Statistics related, such as Num_Distinct, Low_Value, High_Value, Density, Num_Nulls,
and others

The Table_Name and Column_Name columns contain the names of your tables and columns.
The usage of the definition-related columns is described in the “Datatypes” entry in the Alphabetical
Reference. The statistics-related columns are populated when the table is analyzed. Statistics for
columns are also provided in the USER_TAB_COL_STATISTICS view (described shortly).

To see the column definitions for a table, query USER_TAB_COLUMNS, specifying the Table_
Name in the where clause:

select Column_Name, Data_Type
 from USER_TAB_COLUMNS
 where Table_Name = 'NEWSPAPER';

COLUMN_NAME DATA_TYPE
------------- ---------
FEATURE VARCHAR2
SECTION CHAR
PAGE NUMBER

The information in this example is also obtainable via the SQL*Plus describe command;
however, describe does not give you the option of seeing the column defaults and statistics. The
ALL_TAB_COLUMNS view shows the columns for all of the tables and views owned by the user
as well as any to which the user has been granted access (either via direct grants or via grants to
PUBLIC). Since ALL_TAB_COLUMNS can contain entries for multiple users, it contains an Owner
column in addition to the columns in USER_TAB_COLUMNS. DBA_TAB_COLUMNS, which lists
the column definitions for all tables and views in the database, has the same column definitions
as ALL_TAB_COLUMNS.

Column Statistics
Most of the column statistics are available in both USER_TAB_COLUMNS (their former home)
and USER_TAB_COL_STATISTICS. The columns available in USER_TAB_COL_STATISTICS are the
statistics-related columns of USER_TAB_COLUMNS plus the Table_Name and Column_Name
columns.

USER_TAB_COL_STATISTICS contains statistics columns that are also provided via USER_
TAB_COLUMNS for backward compatibility. You should access them via USER_TAB_COL_
STATISTICS.

■

■

■

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 735

Column Value Histograms
You can use histograms to improve the analysis used by the cost-based optimizer. The USER_
TAB_HISTOGRAMS view contains information about each column’s histogram: the Table_Name,
Column_Name, Endpoint_Number, Endpoint_Value, and Endpoint_Actual_Value. The values in
USER_TAB_HISTOGRAMS are used by the optimizer to determine the distribution of the column
values within the table. “ALL” and “DBA” versions of USER_TAB_HISTOGRAMS are available.

Updatable Columns
You can update records in views that contain joins in their view queries, provided the join meets
certain criteria. The USER_UPDATABLE_COLUMNS view lists all columns you can update. You
can query the Owner, Table_Name, and Column_Name for the column; the Updatable column
will have a value of 'YES' if the column can be updated, and a value of 'NO' if the column cannot
be updated. You can also query to determine whether you can insert or delete records from the
view via the Insertable and Deletable columns.

Views: USER_VIEWS
The base query of a view is accessible via the USER_VIEWS data dictionary view, which contains
ten columns; the three main columns are as follows:

View_Name The name of the view

Text_Length The length of the view’s base query, in characters

Text The query that the view uses

The other columns, described later in this section, are primarily related to object views and
editioning.

NOTE
This section only applies to traditional views. For materialized views,
see “Database Links and Materialized Views” later in the chapter.

The Text column is a LONG datatype. This may cause a problem when querying USER_VIEWS
via SQL*Plus, because SQL*Plus truncates LONGs. The point at which truncation occurs, however,
can be changed via the set long command. USER_VIEWS provides a mechanism for determining
the proper setting for the LONG truncation point, as you’ll see in the following example.

The Text_Length column shows the length of the view’s query. Therefore, the SQL*Plus LONG
truncation point must be set to a value equal to or greater than the view’s Text_Length value. For
example, the following listing shows a view whose View_Name is AGING and whose Text_
Length is 355:

select View_Name, Text_Length
 from USER_VIEWS
 where View_Name = 'AGING';

View_Name Text_Length
---------------- -------------
AGING 355

736 Part VII: Hitchhiker’s Guides

Since the length of the view’s text is 355 characters, use the set long command to increase the
LONG truncation point to at least 355 (the default is 80) to see the full text of the view’s query:

set long 355

You can then query USER_VIEWS for the view’s Text, using the query shown in the following
listing:

select Text
 from USER_VIEWS
 where View_Name = 'AGING';

If you had not used the set long command, then the output would have been truncated at 80
characters, with no message telling you why the truncation occurred. Before querying other views,
you will need to recheck their Text_Length values.

NOTE
You can query the column definitions for views from USER_TAB_
COLUMNS, the same view you query for tables.

If you use column aliases in your views, and your column aliases are part of the view’s query,
then your data dictionary queries for information about views will be simplified. Since the entire
text of the view’s query is displayed in USER_VIEWS, the column aliases will be displayed as well.

You can create views using this format:

create view NEWSPAPER_VIEW (SomeFeature, SomeSection)
 as select Feature, Section
 from NEWSPAPER;

Listing the column names in the header of the create view command removes the column
aliases from the query and thus prevents you from seeing them via USER_VIEWS. The only way
to see the view’s column names would be to query USER_TAB_COLUMNS. If the column names
are in the query, then you only need to query one data dictionary view (USER_VIEWS) for both
the query and the column names.

For example, given the NEWSPAPER_VIEW view created in the last example, if you were to
query USER_VIEWS, you would see

select Text
 from USER_VIEWS
 where View_Name ='NEWSPAPER_VIEW';

TEXT

select Feature, Section from NEWSPAPER

This query does not show you the new column names you assigned, since you did not make
those column names part of the view’s query. To make those column names show up in USER_
VIEWS, add them as column aliases in the view’s query:

create view NEWSPAPER_VIEW
 as select Feature SomeFeature, Section SomeSection
 from NEWSPAPER;

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 737

Now when you query USER_VIEWS, the column aliases will be displayed as part of the view’s
query text:

select Text
 from USER_VIEWS
 where View_Name ='NEWSPAPER_VIEW';

TEXT

select Feature SomeFeature, Section SomeSection
 from NEWSPAPER

To support object views, USER_VIEWS contains the following columns:

Type_Text Type clause of the typed view

Type_Text_Length Length of the type clause of the typed view

OID_Text WITH OID clause of the typed view

OID_Text_Length Length of the WITH OID clause of the typed view

View_Type_Owner Owner of the view’s type for typed views

View_Type Type of the view

See Chapters 38 and 41 for information on object views and types.
The ALL_VIEWS view lists all of the views owned by the user as well as any views to which

the user has been granted access, either via direct grants or via grants to PUBLIC. Since ALL_
VIEWS can contain entries for multiple users, it contains an Owner column in addition to the
columns listed earlier in this section. DBA_VIEWS, which lists all views in the database, has the
same column definitions as ALL_VIEWS.

Synonyms: USER_SYNONYMS (SYN)
USER_SYNONYMS lists all of the synonyms that a user owns. The columns are as follows:

Synonym_Name The name of the synonym

Table_Owner The owner of the table that the synonym refers to

Table_Name The name of the table that the synonym refers to

DB_Link The name of the database link used in the synonym

USER_SYNONYMS is useful when debugging programs or resolving problems with users’ access
to objects within applications. USER_SYNONYMS is also known by the public synonym SYN.

The DB_Link column will be NULL if the synonym does not use a database link. Therefore, if
you want to see a list of the database links currently in use by the synonyms owned by your account,
execute this query:

select distinct DB_Link
 from USER_SYNONYMS
 where DB_Link is not null;

738 Part VII: Hitchhiker’s Guides

The ALL_SYNONYMS view lists all of the synonyms owned by the user, public synonyms,
and all synonyms to which the user has been granted access. Since ALL_SYNONYMS can contain
entries for multiple users, it contains an Owner column in addition to the columns listed earlier in
this section. DBA_SYNONYMS, which lists all synonyms in the database, has the same column
definitions as ALL_SYNONYMS.

Sequences: USER_SEQUENCES (SEQ)
To display the attributes of sequences, you can query the USER_SEQUENCES data dictionary
view. This view can also be queried using the public synonym SEQ. The columns of USER_
SEQUENCES are as follows:

Sequence_Name Name of the sequence

Min_Value Minimum value of the sequence

Max_Value Maximum value of the sequence

Increment_By Increment between sequence values

Cycle_Flag A flag to indicate whether the value should cycle back to the Min_Value
once the Max_Value is reached

Order_Flag A flag to indicate whether sequence numbers are generated in order

Cache_Size The number of sequence entries cached in memory

Last_Number The last sequence number used or cached; it is typically greater than
the last value in cache.

The Last_Number column is not updated during normal database operation; it is used during
database restart/recovery operations.

ALL_SEQUENCES lists all of the sequences owned by the user or to which the user or PUBLIC
has been granted access. Since ALL_SEQUENCES can contain entries for multiple users, it contains
a Sequence_Owner column in addition to the columns listed. DBA_SEQUENCES, which lists all
sequences in the database, has the same column definitions as ALL_SEQUENCES.

Recycle Bin: USER_RECYCLEBIN
and DBA_RECYCLEBIN
You can use the flashback table command to recover tables and dependent objects that have
been dropped. To see the objects presently in your recycle bin, query USER_RECYCLEBIN. The
public synonym RECYCLEBIN can be used in place of USER_RECYCLEBIN in your queries. You
will see the original object name, whether it can be recovered (the Can_Undrop column), and
whether it was dropped because it was related to a base object that was dropped (the Base_
Object column value).

Objects stay in the recycle bin until they are purged. Objects can be removed from the
recycle bin automatically if there is no longer any free space in the tablespace they were dropped
from. DBAs can see all objects in all users’ recycle bins via the DBA_RECYCLEBIN view. There is
no “ALL” version of this view. See the entry for the purge command in the Alphabetical Reference
for details on removing objects from the recycle bin.

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 739

Constraints and Comments
Constraints and comments help you to understand how tables and columns relate to each other.
Comments are strictly informational; they do not enforce any conditions on the data stored in the
objects they describe. Constraints, on the other hand, define the conditions under which that data
is valid. Typical constraints include NOT NULL, UNIQUE, PRIMARY KEY, and FOREIGN KEY. In
the following sections, you will see how to retrieve data about constraints and comments from the
data dictionary.

Constraints: USER_CONSTRAINTS
Constraint information is accessible via the USER_CONSTRAINTS view. This information is very
useful when trying to alter data constraints or resolve problems with an application’s data. The
columns of this view are shown in the following listing:

COLUMN_NAME

OWNER
CONSTRAINT_NAME
CONSTRAINT_TYPE
TABLE_NAME
SEARCH_CONDITION
R_OWNER
R_CONSTRAINT_NAME
DELETE_RULE
STATUS
DEFERRABLE
DEFERRED
VALIDATED
GENERATED
BAD
RELY
LAST_CHANGE
INDEX_OWNER
INDEX_NAME
INVALID
VIEW_RELATED

Although this is a “USER” view, it contains an Owner column. In this view, Owner refers to
the owner of the constraint, not the owner of the table (which is the user).

Valid values for the Constraint_Type column are as follows:

'C' CHECK constraint (includes NOT NULLs)

'P' PRIMARY KEY constraint

'R' FOREIGN KEY (reference) constraint

'U' UNIQUE constraint

'V' WITH CHECK OPTION constraint (for views)

'O' WITH READ ONLY constraint (for views)

■

■

■

■

■

■

740 Part VII: Hitchhiker’s Guides

Understanding the constraint types is crucial when you are trying to get useful information
about your constraints.

FOREIGN KEY constraints will always have values for the R_Owner and R_Constraint_Name
columns. These two columns will tell you which constraint the FOREIGN KEY references. A
FOREIGN KEY references another constraint, not another column. NOT NULL constraints on
columns are stored as CHECK constraints, so they have a Constraint_Type of 'C'.

Querying USER_CONSTRAINTS will give you the names of all the constraints on a table. This
is important when trying to interpret error messages that only provide the name of the constraint
that was violated.

Once you know the name and type of a constraint, you can check the columns associated
with it via the USER_CONS_COLUMNS view, described in the next section.

If you do not assign constraint names when creating them, Oracle will generate unique
constraint names. See “Integrity Constraint” in the Alphabetical Reference for further details. If a
constraint name has been system-generated, that fact will be indicated via the Generated column.

If you defer a constraint (as indicated by the Deferred column), the constraint will not be
enforced for the duration of a transaction. For example, if you were performing bulk updates on
related tables and could not guarantee the order of transactions, you may decide to defer constraint
checking on the tables until all of the updates have completed.

ALL_CONSTRAINTS lists the constraints on all of the tables that the user or PUBLIC can
access. DBA_CONSTRAINTS lists all of the constraints in the database. Each of these views has
the same set of columns as USER_CONSTRAINTS (since they all include the Owner column).

Constraint Columns: USER_CONS_COLUMNS
You can view the columns associated with constraints via the USER_CONS_COLUMNS data
dictionary view. If you have already queried USER_CONSTRAINTS to obtain the types and names
of the constraints involved, you can use USER_CONS_COLUMNS to determine which columns
are involved in the constraint. The columns in this view are the following:

Owner The owner of the constraint

Constraint_Name The name of the constraint

Table_Name The name of the table associated with the constraint

Column_Name The name of the column associated with the constraint

Position The order of the column within the constraint definition

There are only two columns in USER_CONS_COLUMNS that are not in USER_
CONSTRAINTS: Column_Name and Position. A sample query of this table is shown in the
following listing (your constraint names will be different):

select Column_Name, Position
 from USER_CONS_COLUMNS
 where Constraint_Name = 'SYS_C0008791';

COLUMN_NAME POSITION
------------ --------
FIRSTNAME 1
LASTNAME 2

As shown in the preceding listing, the combination of FirstName and LastName forms the
constraint (in this case, a primary key).

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 741

The Position column is significant. When you create a UNIQUE or PRIMARY KEY constraint,
Oracle automatically creates a unique index on the set of columns you specify. The index is
created based on the column order you specify. The column order, in turn, affects the performance
of the index. An index comprising multiple columns may be used most efficiently if the leading
column of that index (Position=1) is used in the query’s where clause. See Chapter 46 for further
details on the optimizer.

The ALL_CONS_COLUMNS and DBA_CONS_COLUMNS views have the same column
definitions as USER_CONS_COLUMNS. ALL_CONS_COLUMNS can be used to display column
information about constraints on all tables that the user can access regardless of owner. DBA_
CONS_COLUMNS lists the column-level constraint information for the entire database.

Constraint Exceptions: EXCEPTIONS
When enabling constraints on tables that already contain data, you may encounter constraint
violations within the data. For example, you may attempt to create a PRIMARY KEY constraint on
a column that contains the same value for multiple records, but such an attempt would fail due to
uniqueness constraint violations.

You can capture information about the rows that cause constraint creations to fail. First, create
a table called EXCEPTIONS in your schema; the SQL script that should be used to create this table
is named utlexcpt.sql, and is usually located in the /rdbms/admin directory under the Oracle home
directory.

The EXCEPTIONS table contains four columns: Row_ID (the ROWID of each row that violated
the constraint), Owner (the owner of the violated constraint), Table_Name (the table on which the
violated constraint was created), and Constraint (the constraint violated by the row). After creating
the EXCEPTIONS table, attempt to enable a PRIMARY KEY constraint:

alter table NEWSPAPER enable PRIMARY KEY
exceptions into EXCEPTIONS;

ORA-02437: cannot enable (NEWSPAPER.SYS_C00516) - primary key violated

The constraint creation fails, and a reference to all rows that violate the constraint is placed in
the EXCEPTIONS table. For example, if the PRIMARY KEY constraint in the last example generated
exceptions, then you could query the EXCEPTIONS table as shown in the following listing:

select Owner, Table_Name, Constraint from EXCEPTIONS;

OWNER TABLE_NAME CONSTRAINT
---------- ---------- ----------
PRACTICE NEWSPAPER SYS_C00516
PRACTICE NEWSPAPER SYS_C00516

Two rows violated the constraint named SYS_C00516 (which, in this example, is the constraint
name given to the PRIMARY KEY constraint for the NEWSPAPER table). You can determine which
rows of the NEWSPAPER table correspond to these exceptions by joining the Row_ID column of
the EXCEPTIONS table to the ROWID pseudo-column of the table on which the constraint was
being placed (in this example, the NEWSPAPER table):

select *
 from NEWSPAPER
 where RowID in
 (select Row_ID from EXCEPTIONS);

742 Part VII: Hitchhiker’s Guides

The rows that caused the constraint violations will then be displayed.

NOTE
Row_ID is an actual column in the EXCEPTIONS table, with a datatype
of ROWID. It is joined to the ROWID pseudo-column in the table
from which the exceptions were generated.

Flashback and recovery operations may change the ROWIDs for rows previously inserted into
tables.

Table Comments: USER_TAB_COMMENTS
You can add a comment to a table, view, or column after it has been created. Comments on the
data dictionary views are the basis for the records displayed via the DICTIONARY and DICT_
COLUMNS views. To display comments about your own tables, use the USER_TAB_COMMENTS
view.

USER_TAB_COMMENTS contains three columns:

Table_Name The name of the table or view

Table_Type The object type (table, object table, or view)

Comments Comments that have been entered for the object

To add a comment to a table, use the comment command, as shown in the following listing:

comment on table BIRTHDAY is 'Birthday list for Blacksburg
 employees';

Query USER_TAB_COMMENTS by specifying the Table_Name you want to see the comments
for, as shown in the following listing:

select Comments
 from USER_TAB_COMMENTS
 where Table_Name = 'BIRTHDAY';

COMMENTS

Birthday list for Blacksburg
 employees

To remove a comment, set the comment to two single quotes with no space between them:

comment on table BIRTHDAY is '';

You can view the comments on all of the tables you can access via the ALL_TAB_COMMENTS
view. ALL_TAB_COMMENTS has an additional column, Owner, which specifies the owner of the
table. DBA_TAB_COMMENTS lists all of the tables in the database, and it has an Owner column
as well.

Column Comments: USER_COL_COMMENTS
USER_COL_COMMENTS displays the comments that have been entered for columns within
your tables. These comments are added to the database via the comment command. USER_COL_
COMMENTS contains three columns:

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 743

Table_Name The name of the table or view

Column_Name The name of the column

Comments Comments that have been entered for the column

To add a comment to a column, use the comment command, as shown in the following
listing:

comment on column BIRTHDAY.AGE is 'Age in years';

Query USER_COL_COMMENTS by specifying the Table_Name and Column_Name you want
to see the comments for.

select Comments
 from USER_COL_COMMENTS
 where Table_Name = 'BIRTHDAY'
 and Column_Name = 'AGE';

To remove a comment, set the comment to two single quotes with no space between them:

comment on column BIRTHDAY.AGE is '';

You can view the column comments on all of the tables you can access via the ALL_COL_
COMMENTS view. ALL_COL_COMMENTS has an additional column, Owner, which specifies the
owner of the table. DBA_COL_COMMENTS lists all of the columns in all of the tables in the
database, and it has an Owner column as well.

Indexes and Clusters
Indexes and clusters do not change the data that is stored in tables; however, they do change the
way that data is accessed. In the following sections, you will see data dictionary views that describe
indexes and clusters. You will see descriptions of the data dictionary views related to partitioned
indexes in “Space Allocation and Usage, Including Partitions and Subpartitions” in this chapter.

Indexes: USER_INDEXES (IND)
In Oracle, indexes are very closely related to constraints. The PRIMARY KEY and UNIQUE
constraints always have associated indexes. As with constraints, two data dictionary views are
used to query information about indexes: USER_INDEXES and USER_IND_COLUMNS. USER_
INDEXES is also known by its public synonym, IND.

The columns in USER_INDEXES can be grouped into four categories (identification, space-
related, statistics-related, and other). The columns of USER_INDEXES are shown in the following
listing:

INDEX_NAME
INDEX_TYPE
TABLE_OWNER
TABLE_NAME
TABLE_TYPE
UNIQUENESS
COMPRESSION
PREFIX_LENGTH
TABLESPACE_NAME

744 Part VII: Hitchhiker’s Guides

INI_TRANS
MAX_TRANS
INITIAL_EXTENT
NEXT_EXTENT
MIN_EXTENTS
MAX_EXTENTS
PCT_INCREASE
PCT_THRESHOLD
INCLUDE_COLUMN
FREELISTS
FREELIST_GROUPS
PCT_FREE
LOGGING
BLEVEL
LEAF_BLOCKS
DISTINCT_KEYS
AVG_LEAF_BLOCKS_PER_KEY
AVG_DATA_BLOCKS_PER_KEY
CLUSTERING_FACTOR
STATUS
NUM_ROWS
SAMPLE_SIZE
LAST_ANALYZED
DEGREE
INSTANCES
PARTITIONED
TEMPORARY
GENERATED
SECONDARY
BUFFER_POOL
USER_STATS
DURATION
PCT_DIRECT_ACCESS
ITYP_OWNER
ITYP_NAME
PARAMETERS
GLOBAL_STATS
DOMIDX_STATUS
DOMIDX_OPSTATUS
FUNCIDX_STATUS
JOIN_INDEX
IOT_REDUNDANT_PKEY_ELIM
DROPPED
VISIBILITY
DOMIDX_MANAGEMENT

The name of the index is shown in the Index_Name column. The owner and name for the
table being indexed are in the Table_Owner and Table_Name columns. The Uniqueness column
will be set to UNIQUE for unique indexes and set to NONUNIQUE for nonunique indexes.
Table_Type records whether the index is on a 'TABLE' or a 'CLUSTER'. The Dropped column
identifies indexes that are in the recycle bin. The Visibility column identifies indexes that are
visible to the optimizer.

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 745

The space-related columns are described in the “Storage” entry in the Alphabetical Reference.
The statistics-related columns are populated when the table is analyzed (see the analyze

command in the Alphabetical Reference). The Degree and Instances columns refer to the degree
of parallelism used when the index is created.

NOTE
You can use the USER_IND_STATISTICS view to access the statistics
for your indexes.

To see all of the indexes on a table, query USER_INDEXES using the Table_Owner and Table_
Name columns in the where clause, as shown in the following listing:

select Index_Name, Uniqueness
 from USER_INDEXES
 where Table_Owner = 'PRACTICE'
 and Table_Name = 'BIRTHDAY';

INDEX_NAME UNIQUENES
---------------- ---------
PK_BIRTHDAY UNIQUE

The Clustering_Factor column is not directly related to clusters, but rather represents the
degree to which the rows in the table are ordered. The more ordered those rows are, the more
efficient range queries will be (range queries are those in which a range of values is given for a
column, such as where LastName like 'A%').

To discover which columns are part of the index, and their order within the index, you need
to query the USER_IND_COLUMNS view, which is described in the next section.

ALL_INDEXES shows all of the indexes owned by the user as well as any created on tables to
which the user or PUBLIC has been granted access. Since ALL_INDEXES can contain entries for
multiple users, it contains an Owner column in addition to the columns in USER_INDEXES. DBA_
INDEXES, which lists all indexes in the database, has the same column definitions as ALL_INDEXES.

NOTE
For function-based indexes, see USER_IND_EXPRESSIONS.

Indexed Columns: USER_IND_COLUMNS
You can determine which columns are in an index by querying USER_IND_COLUMNS. The
columns available via this view are as follows:

Index_Name The name of the index

Table_Name The name of the indexed table

Column_Name The name of a column within the index

Column_Position The column’s position within the index

Column_Length The indexed length of the column

Char_Length Maximum code point length of the column (Unicode)

Descend A Y/N flag to indicate whether or not the column is sorted in
descending order

746 Part VII: Hitchhiker’s Guides

Five columns in this view are not in USER_INDEXES: Column_Name, Column_Position,
Column_Length, Char_Length, and Descend. Column_Length, like the statistics-related columns
in USER_INDEXES, is populated when the index’s base table is analyzed. A sample query of this
table, using the Index_Name from the USER_INDEXES example, is shown in the following listing
(in this example, the Column_Position column is given the alias Pos):

select Column_Name, Column_Position Pos
 from USER_IND_COLUMNS
 where Index_Name = 'PK_BIRTHDAY';

COLUMN_NAME POS
------------ ---
FIRSTNAME 1
LASTNAME 2

As you can see from this query, the PK_BIRTHDAY index consists of two columns: FirstName
and LastName, in that order. See Chapter 46 for details on how the optimizer uses multicolumn
indexes.

ALL_IND_COLUMNS can be used to display column information about indexes on all tables
that the user can access regardless of owner. DBA_IND_COLUMNS lists the column-level index
information for the entire database.

If you create a bitmap join index (introduced in Oracle9i), you can query USER_JOIN_IND_
COLUMNS for the join details. USER_JOIN_IND_COLUMNS records the names of the tables
involved in the join and the inner and outer join columns.

Clusters: USER_CLUSTERS (CLU)
The storage and statistics parameters associated with clusters are accessible via USER_CLUSTERS
(also known by the public synonym CLU). The columns in this data dictionary view are shown in
the following listing:

COLUMN_NAME

CLUSTER_NAME
TABLESPACE_NAME
PCT_FREE
PCT_USED
KEY_SIZE
INI_TRANS
MAX_TRANS
INITIAL_EXTENT
NEXT_EXTENT
MIN_EXTENTS
MAX_EXTENTS
PCT_INCREASE
FREELISTS
FREELIST_GROUPS
AVG_BLOCKS_PER_KEY
CLUSTER_TYPE
FUNCTION
HASHKEYS
DEGREE

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 747

INSTANCES
CACHE
BUFFER_POOL
SINGLE_TABLE
DEPENDENCIES

The Cluster_Name column contains the name of the cluster. Cluster_Type specifies whether
the cluster uses a standard B*-tree index or a hashing function for the cluster.

The usage of the space-related columns is described in the “Storage” entry in the Alphabetical
Reference. The statistics-related columns are populated when the table is analyzed.

ALL_CLUSTERS and DBA_CLUSTERS have an additional column, Owner, since they list clusters
in multiple schemas.

Cluster Columns: USER_CLU_COLUMNS
To see the mapping of table columns to cluster columns, query USER_CLU_COLUMNS, whose
columns are the following:

Cluster_Name The name of the cluster

Clu_Column_Name The name of the key column in the cluster

Table_Name The name of a table within the cluster

Tab_Column_Name The name of the key column in the table

Since a single cluster can store data from multiple tables, USER_CLU_COLUMNS is useful for
determining which columns of which tables map to the cluster’s columns.

There is no “ALL” version of this view. There are only USER_CLU_COLUMNS for the user’s
cluster columns, and DBA_CLU_COLUMNS, which shows the column mappings for all clusters
in the database.

Abstract Datatypes and LOBs
In the following sections, you will see the data dictionary views associated with object-relational
structures such as abstract datatypes, methods, and large objects (LOBs). “ALL” and “DBA” versions
of all of these data dictionary views are available. Because they contain records for multiple
owners, the “ALL” and “DBA” versions of these views contain Owner columns as well as the
columns listed in this section.

Abstract Datatypes: USER_TYPES
Abstract datatypes created within your schema are listed in USER_TYPES, which includes
columns for the Type_Name, number of attributes (Attributes), and number of methods (Methods)
defined for the datatype.

For example, the ANIMAL_TY datatype has three attributes and one method (methods are
defined via the create type body command), as shown in the following listing:

select Type_Name,
 Attributes,
 Methods
 from USER_TYPES

748 Part VII: Hitchhiker’s Guides

 where Type_Name = 'ANIMAL_TY';

TYPE_NAME ATTRIBUTES METHODS
------------------------------ ---------- ----------
ANIMAL_TY 3 1

Datatype Attributes: USER_TYPE_ATTRS
To see the attributes of a datatype, you need to query the USER_TYPE_ATTRS view. The columns
in USER_TYPE_ATTRS are shown in the following listing:

COLUMN_NAME

TYPE_NAME
ATTR_NAME
ATTR_TYPE_MOD
ATTR_TYPE_OWNER
ATTR_TYPE_NAME
LENGTH
PRECISION
SCALE
CHARACTER_SET_NAME
ATTR_NO
INHERITED

You can query USER_TYPE_ATTRS to see the relationships between nested abstract datatypes.
For example, the PERSON_TY datatype uses the ADDRESS_TY datatype, as shown in the following
listing:

select Attr_Name,
 Length,
 Attr_Type_Name
 from USER_TYPE_ATTRS
 where Type_Name = 'PERSON_TY';

ATTR_NAME LENGTH ATTR_TYPE_NAME
------------------------------ ---------- ------------------
NAME 25 VARCHAR2
ADDRESS ADDRESS_TY

Datatype Methods: USER_TYPE_METHODS and USER_METHOD_PARAMS
If a type has methods defined for it, then you query USER_TYPE_METHODS to determine the
methods’ names. USER_TYPE_METHODS contains columns showing the type name (Type_
Name), method name (Method_Name), method number (Method_No, used for overloaded
methods), and type of method (Method_Type). USER_TYPE_METHODS also includes columns
that show the number of parameters (Parameters) and results (Results) returned by the method.

For example, the ANIMAL_TY datatype has one method, a member function named AGE.
The AGE method has one input parameter (Birthdate) and one output result (the age, in days).
Querying USER_TYPE_METHODS shows that two parameters are defined for AGE, not one as
expected:

select Parameters,
 Results

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 749

 from USER_TYPE_METHODS
 where Type_Name = 'ANIMAL_TY'
 and Method_Name = 'AGE';

PARAMETERS RESULTS
---------- ----------
 2 1

Why does AGE have two parameters if it only has one input parameter defined? To find out,
you can query USER_METHOD_PARAMS, which describes the parameters for your methods:

select Param_Name, Param_No, Param_Type_Name
 from USER_METHOD_PARAMS
 order by Param_No;

PARAM_NAME PARAM_NO PARAM_TYPE_NAME
------------------------------ ---------- -----------------
SELF 1 ANIMAL_TY
BIRTHDATE 2 DATE

USER_METHOD_PARAMS shows that for each method, Oracle creates an implicit SELF
parameter. The results of your methods are shown in USER_METHOD_RESULTS:

select Method_Name,
 Result_Type_Name
 from USER_METHOD_RESULTS
 where Type_Name = 'ANIMAL_TY';

METHOD_NAME RESULT_TYPE_NAME
------------------------------ ----------------------------
AGE NUMBER

Other Datatypes: USER_REFS, USER_COLL_TYPES, and USER_NESTED_TABLES
If you use REFs (see Chapter 41), you can query the USER_REFS data dictionary view to display
the REFs you have defined. USER_REFS will show the name of the table containing the REF
column (Table_Name) and the column name of the object column (Column_Name). The attributes
of the REF—such as whether or not it is stored with the ROWID—are also accessible via USER_REFS.

Collector types (nested tables and varying arrays) are described via the USER_COLL_TYPES
data dictionary view. The columns of USER_COLL_TYPES include Type_Name, Upper_Bound (for
varying arrays), and the Length and Precision of the elements. You can use USER_COLL_TYPES in
conjunction with the abstract datatype data dictionary views shown earlier in this section to determine
the type structure of a collector. You can also query USER_NESTED_TABLES and USER_VARRAYS
to see details for your collections.

LOBs: USER_LOBS
As described in Chapter 40, you can store large objects inside the database. The USER_LOBS
view provides information on the LOBs defined in your tables; a sample listing is shown here:

column column_name format A30

select Table_Name,

750 Part VII: Hitchhiker’s Guides

 Column_Name
 from USER_LOBS;

TABLE_NAME COLUMN_NAME
------------------------------ ----------------------------
PROPOSAL PROPOSAL_TEXT
PROPOSAL BUDGET

USER_LOBS also shows the names of the segments used to hold the LOB data when it grows
large; however, it does not show the datatypes of the LOB columns. To see the LOB datatypes,
you can either describe the table that includes the LOBs or query USER_TAB_COLUMNS (as
shown earlier in this chapter).

To use BFILE datatypes for LOBs, you have to create directories (see the entry for the create
directory command in the Alphabetical Reference). The ALL_DIRECTORIES data dictionary
shows the Owner, Directory_Name, and Directory_Path columns for each directory to which you
have been granted access. A “DBA” version of this view is also available. No “USER” version of
this view is available.

Database Links and Materialized Views
Database links and materialized views are used to manage access to remote data. Depending on
the type of materialized view you use, you may be able to use materialized view logs. In the
following sections, you will see descriptions of the data dictionary views you can use to display
information about database links and materialized views. For further information on database
links, see Chapter 25. For further information on materialized views, see Chapter 26.

Database Links: USER_DB_LINKS
To see the database links created under your account, query USER_DB_LINKS. The columns of
this view, including the link name (DB_Link), username to connect to (Username), the account
password (Password), and the connection string (Host), show the information about the remote
connection that the link will be used to establish. The Username and Password values will be
used to log into the remote database defined by the Host value.

The Host column stores the Oracle Net service names. This column stores the exact character
string you specify during the create database link command, and does not alter its case.
Therefore, you should be careful with the case you use when creating database links. Otherwise,
your queries against USER_DB_LINKS will have to take into account inconsistencies in the case
of the Host column. For example, looking for a database link that uses the 'HQ' service descriptor
would require you to enter

select * from USER_DB_LINKS
where upper(Host)='HQ';

since it is possible that there are entries with a Host value of 'hq' instead of 'HQ'.

NOTE
If you are using default logins to the remote database, then Password
will be NULL.

The ALL_DB_LINKS view lists all of the database links that either are owned by the user or are
PUBLIC database links. DBA_DB_LINKS lists all database links in the database. ALL_DB_LINKS

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 751

and DBA_DB_LINKS share most of the same column definitions as USER_DB_LINKS; they have
an Owner column rather than the Password column.

See Chapter 25 for further information on the uses of database links.

Materialized Views
You can query USER_MVIEWS to display information about the materialized views owned by
your account. This view, whose columns appear in the following listing, shows the structural
information about the materialized view as well as its refresh schedule.

NOTE
See Chapter 26 for details on materialized views.

OWNER
MVIEW_NAME
CONTAINER_NAME
QUERY
QUERY_LEN
UPDATABLE
UPDATE_LOG
MASTER_ROLLBACK_SEG
MASTER_LINK
REWRITE_ENABLED
REWRITE_CAPABILITY
REFRESH_MODE
REFRESH_METHOD
BUILD_MODE
FAST_REFRESHABLE
LAST_REFRESH_TYPE
LAST_REFRESH_DATE
STALENESS
AFTER_FAST_REFRESH
UNKNOWN_PREBUILT
UNKNOWN_PLSQL_FUNC
UNKNOWN_EXTERNAL_TABLE
UNKNOWN_CONSIDER_FRESH
UNKNOWN_IMPORT
UNKNOWN_TRUSTED_FD
COMPILE_STATE
USE_NO_INDEX
STALE_SINCE
NUM_PCT_TABLES
NUM_FRESH_PCT_REGIONS
NUM_STALE_PCT_REGIONS

The name of the materialized view is found in the Mview_Name column of USER_MVIEWS.
The local base table for the view is the Container_Name column. To determine which database
links are being used by your materialized views, query the Master_Link column, as shown in the
following example:

select Master_Link
 from USER_MVIEWS;

752 Part VII: Hitchhiker’s Guides

The names of the database links returned by this query can be used as input for queries
against USER_DB_LINKS. This query will display all of the database link information available for
database links used in your materialized views:

select *
 from USER_DB_LINKS
 where DB_Link in
 (select Master_Link
 from USER_MVIEWS);

Additional queries that are useful in the management of materialized views are provided in
Chapter 26.

The ALL_MVIEWS and DBA_MVIEWS views have the same column definitions as USER_
MVIEWS. You can use ALL_MVIEWS to display information about all materialized views that the
user can access regardless of owner. DBA_MVIEWS lists materialized view information for all
users in the database.

Two related views—USER_REFRESH and USER_REFRESH_CHILDREN—display information
about refresh groups. USER_MVIEW_REFRESH_TIMES shows the last time each materialized view
was refreshed. You can access comments on the materialized views via USER_MVIEW_COMMENTS,
and query rewrite details via USER_REWRITE_EQUIVALENCES.

You can query USER_MVIEW_ANALYSIS to see the materialized views that support query
rewrite. If a materialized view contains references to a remote table, it will not be listed in this
view. You can query the owner of the materialized view, its name (Mview_Name), and the owner
of the base table (Mview_Table_Owner). Many of the columns in this view are flags, such as
Summary ('Y' if the view contains an aggregation), Known_Stale ('Y' if the view’s data is inconsistent
with the base table), and Contains_Views ('Y' if the materialized view references a view).

If the materialized view contains aggregations, you can query USER_MVIEW_AGGREGATES
for details on the aggregations. Columns in this view are as follows:

Owner Owner of the materialized view

Mview_Name Name of the materialized view

Position_in_Select Position within the query

Container_Column Name of the column

Agg_Function Aggregate function

DistinctFlag 'Y' if the aggregation uses the DISTINCT function

Measure The SQL text of the measure, excluding the aggregate function

You can query details of the relations within materialized views from the USER_MVIEW_
DETAIL_RELATIONS and USER_MVIEW_KEYS data dictionary views. If the materialized view is
based on joins, see USER_MVIEW_ JOINS for the join details. In general, USER_MVIEW_ANALYSIS
will be the most commonly used data dictionary view related to materialized views.

Materialized View Logs: USER_MVIEW_LOGS
Materialized view logs can be used by many materialized views to determine which records in
the master table need to be refreshed in the materialized view of that table. You can query USER_
MVIEW_LOGS for information about a user’s logs, including the name of the master table (Master),

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 753

the table holding the log records (Log_Table), and whether the materialized view is based on the
primary key or the ROWID (the Primary_Key and ROWIDs columns). USER_MVIEW_LOGS is
usually queried for maintenance purposes, such as to determine the name of the trigger used to
create the materialized view log records.

DBA_MVIEW_LOGS has the same column definitions as USER_MVIEW_LOGS, and shows all
materialized view logs in the database. You can query USER_BASE_TABLE_MVIEWS for a listing
of the materialized view master tables using materialized view logs.

Triggers, Procedures, Functions, and Packages
You can use procedures, packages, and triggers—blocks of PL/SQL code stored in the database—
to enforce business rules or to perform complicated processing. Triggers are described in Chapter 34.
Procedures, functions, and packages are described in Chapter 35. In the following sections, you
will see how to query the data dictionary for information about triggers, procedures, packages,
and functions.

Triggers: USER_TRIGGERS
USER_TRIGGERS contains information about the triggers owned by your account. This view,
whose columns appear in the following listing, shows the trigger type and body.

TRIGGER_NAME
TRIGGER_TYPE
TRIGGERING_EVENT
TABLE_OWNER
BASE_OBJECT_TYPE
TABLE_NAME
COLUMN_NAME
REFERENCING_NAMES
WHEN_CLAUSE
STATUS
DESCRIPTION
ACTION_TYPE
TRIGGER_BODY
CROSSEDITION

The ALL_TRIGGERS view lists the triggers for all tables to which you have access. DBA_
TRIGGERS lists all of the triggers in the database. Both of these views contain an additional
column, Owner, which records the owner of the trigger.

A second trigger-related data dictionary view, USER_TRIGGER_COLS, shows how columns
are used by a trigger. It lists the name of each column affected by a trigger, as well as how the
trigger is used. Like USER_TRIGGERS, “ALL” and “DBA” versions of this data dictionary view
are available.

As of Oracle 11g, you can query the USER_TRIGGER_ORDERING data dictionary view.
The columns of USER_TRIGGER_ORDERING include the name of the trigger, the trigger that
it references, and the ordering type (to follow or precede the referenced trigger).

Procedures, Functions, and Packages: USER_SOURCE
The source code for existing procedures, functions, packages, and package bodies can be queried
from the USER_SOURCE data dictionary view. The Type column in USER_SOURCE identifies the

754 Part VII: Hitchhiker’s Guides

procedural object as a 'PROCEDURE', 'FUNCTION', 'PACKAGE', 'PACKAGE BODY', 'TRIGGER',
'TYPE', 'TYPE BODY', or 'JAVA SOURCE'. Each line of code is stored in a separate record in
USER_SOURCE.

You can select information from USER_SOURCE via a query similar to the one shown in the
following listing. In this example, the Text column is selected and ordered by Line number. The
Name of the object and the object Type are used to specify which object’s source code to display.

select Text
 from USER_SOURCE
 where Name = '&procedure_name'
 and Type = 'PROCEDURE'
 order by Line;

NOTE
The sequence of the lines is maintained by the Line column; therefore,
the Line column should be used in the order by clause.

The ALL_SOURCE and DBA_SOURCE views have all of the columns found in USER_
SOURCE plus an additional Owner column (the owner of the object). ALL_SOURCE can be used
to display the source code for all procedural objects that the user can access regardless of owner.
DBA_SOURCE lists the source code for all users in the database.

NOTE
To see the persistent parameter settings for PL/SQL units, query USER_
STORED_SETTINGS.

Code Errors: USER_ERRORS
The show errors command in SQL*Plus checks the USER_ERRORS data dictionary view for the
errors associated with the most recent compilation attempt for a procedural object. show errors
will display the line and column number for each error, as well as the text of the error message.

To view errors associated with previously created procedural objects, you may query USER_
ERRORS directly. You may need to do this when viewing errors associated with package bodies,
since a package compilation that results in an error may not display the package body’s error
when you execute the show error command. You may also need to query USER_ERRORS when
you encounter compilation errors with multiple procedural objects.

The following are the columns available in USER_ERRORS:

Name The name of the procedural object

Type The object type ('PROCEDURE', 'FUNCTION', 'PACKAGE', 'PACKAGE
BODY', 'TRIGGER', 'TYPE', 'TYPE BODY', 'VIEW', 'JAVA CLASS', or
'JAVA SOURCE')

Sequence The line sequence number, for use in the query’s order by clause

Line The line number within the source code at which the error occurs

Position The position within the line at which the error occurs

Text The text of the error message

Attribute Flag to indicate whether the selected row is an error ('ERROR') or a
warning ('WARNING')

Message_Number Numerical error number, without prefix

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 755

Queries against this view should always include the Sequence column in the order by clause.
“ALL” and “DBA” versions of this view are also available; they feature an additional column,
Owner, which records the owner of the object.

Code Size: USER_OBJECT_SIZE
You can query the amount of space used in the SYSTEM tablespace for a procedural object from
the USER_OBJECT_SIZE data dictionary view. As shown in the following listing, the four separate
size areas can be added together to determine the total space used in the SYSTEM data dictionary
tables to store the object. The four Size columns, along with the Name and Type columns, constitute
all of the columns in this view.

select Source_Size+Code_Size+Parsed_Size+Error_Size Total
 from USER_OBJECT_SIZE
 where Name = '&procedure_name'
 and Type = 'PROCEDURE';

There is also a “DBA” version of this view available: DBA_OBJECT_SIZE lists the sizes for all
objects in the database.

Dimensions
You can query the Dimension_Name column of the USER_DIMENSIONS view to see the names
of your dimensions. USER_DIMENSIONS also contains columns for the dimension owner
(Owner), status (the Invalid column, set to 'Y' or 'N'), and revision level (the Revision column).
The attributes of a dimension are accessed via additional data dictionary views.

To see the hierarchies within a dimension, query USER_DIM_HIERARCHIES. This view has
only three columns: Owner, Dimension_Name, and Hierarchy_Name. Querying USER_DIM_
HIERARCHIES for the GEOGRAPHY dimension returns the name of its hierarchies:

select Hierarchy_Name
 from USER_DIM_HIERARCHIES;

HIERARCHY_NAME

COUNTRY_ROLLUP

You can see the hierarchy details for COUNTRY_ROLLUP by querying USER_DIM_CHILD_
OF, as shown in the following listing. The first command creates a dimension named
GEOGRAPHY that records the hierarchies of countries and continents.

create dimension GEOGRAPHY
 level COUNTRY_ID is COUNTRY.Country
 level CONTINENT_ID is CONTINENT.Continent
 hierarchy COUNTRY_ROLLUP (
 COUNTRY_ID child of
 CONTINENT_ID
 join key COUNTRY.Continent references CONTINENT_id);

column join_key_id format a4

select Child_Level_Name,

756 Part VII: Hitchhiker’s Guides

 Parent_Level_Name,
 Position, Join_Key_Id
 from USER_DIM_CHILD_OF
where Hierarchy_Name = 'COUNTRY_ROLLUP';

CHILD_LEVEL_NAME PARENT_LEVEL_NAME POSITION JOIN
---------------------- ------------------------------ --------- ----
COUNTRY_ID CONTINENT_ID 1 1

To see the join key for a hierarchy, query USER_DIM_JOIN_KEY:

select Level_name, Child_Join_Column
 from USER_DIM_JOIN_KEY
 where Dimension_Name = 'GEOGRAPHY'
 and Hierarchy_Name = 'COUNTRY_ROLLUP';

LEVEL_NAME CHILD_JOIN_COLUMN
------------------------------ ------------------------------
CONTINENT_ID CONTINENT

You can see the levels of a dimension by querying the USER_DIM_LEVELS data dictionary
view, and see the key columns for the levels via USER_DIM_LEVEL_KEY. Attribute information
for dimensions is accessible via USER_DIM_ATTRIBUTES.

There are “ALL” and “DBA” views of all of the data dictionary views related to dimensions.
Because the “USER” views for dimensions contain an Owner column, there are no additional
columns found in the corresponding “ALL” and “DBA” views.

Space Allocation and Usage, Including Partitions
and Subpartitions
You can query the data dictionary to determine the space that is available and allocated for
database objects. In the following sections, you will see how to determine the default storage
parameters for objects, your space usage quota, available free space, and the way in which objects
are physically stored. For information on Oracle’s methods of storing data, see Chapters 22 and 51.

Tablespaces: USER_TABLESPACES
You can query the USER_TABLESPACES data dictionary view to determine which tablespaces you
have been granted access to and the default storage parameters in each. A tablespace’s default
storage parameters will be used for each object stored within that tablespace unless the create or
alter command for that object specifies its own storage parameters. The storage-related columns
in USER_TABLESPACES, shown in the following listing, are very similar to the storage-related
columns in USER_TABLES. See the “Storage” entry of the Alphabetical Reference for further details.

TABLESPACE_NAME
BLOCK_SIZE
INITIAL_EXTENT
NEXT_EXTENT
MIN_EXTENTS
MAX_EXTENTS
MAX_SIZE

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 757

PCT_INCREASE
MIN_EXTLEN
STATUS
CONTENTS
LOGGING
FORCE_LOGGING
EXTENT_MANAGEMENT
ALLOCATION_TYPE
SEGMENT_SPACE_MANAGEMENT
DEF_TAB_COMPRESSION
RETENTION
BIGFILE
PREDICATE_EVALUATION
ENCRYPTED
COMPRESS_FOR

There is no “ALL” version of this view. DBA_TABLESPACES shows the storage parameters for
all tablespaces.

Space Quotas: USER_TS_QUOTAS
USER_TS_QUOTAS is a very useful view for determining the amount of space you have currently
allocated and the maximum amount of space available to you by tablespace. A sample query of
USER_TS_QUOTAS is shown in the following listing:

select * from USER_TS_QUOTAS;

TABLESPACE_NAME BYTES MAX_BYTES BLOCKS MAX_BLOCKS
--------------- ---------- ---------- ---------- ----------
USERS 67584 0 33 0

USER_TS_QUOTAS contains one record for each Tablespace_Name. The Bytes column
reflects the number of bytes allocated to objects owned by the user. Max_Bytes is the maximum
number of bytes the user can own in that tablespace; if there is no quota for that tablespace, then
Max_Bytes will display a value of 0. The Bytes and Max_Bytes columns are translated into Oracle
blocks in the Blocks and Max_Blocks columns, respectively.

There is no “ALL” version of this view. DBA_TS_QUOTAS shows the storage quotas for all
users for all tablespaces and is a very effective way to list space usage across the entire database.

Segments and Extents: USER_SEGMENTS
and USER_EXTENTS
As described in Chapter 22, space is allocated to objects (such as tables, clusters, and indexes) in
segments, the physical counterparts to the logical objects created in the database. You can query
USER_SEGMENTS to see the current storage parameters and space usage in effect for your segments.
USER_SEGMENTS is very useful when you are in danger of exceeding one of the storage limits; its
columns are shown in the following listing:

SEGMENT_NAME
PARTITION_NAME
SEGMENT_TYPE
SEGMENT_SUBTYPE

758 Part VII: Hitchhiker’s Guides

TABLESPACE_NAME
BYTES
BLOCKS
EXTENTS
INITIAL_EXTENT
NEXT_EXTENT
MIN_EXTENTS
MAX_EXTENTS
MAX_SIZE
RETENTION
MINRETENTION
PCT_INCREASE
FREELISTS
FREELIST_GROUPS
BUFFER_POOL

Segments consist of contiguous sections called extents. The extents that constitute segments
are described in USER_EXTENTS. In USER_EXTENTS, you will see the actual size of each extent
within the segment; this is very useful for tracking the impact of changes to the next and pctincrease
settings (in dictionary-managed tablespaces). In addition to the Segment_Name, Segment_Type,
and Tablespace_Name columns, USER_EXTENTS has three new columns: Extent_ID (to identify
the extent within the segment), Bytes (the size of the extent, in bytes), and Blocks (the size of the
extent, in Oracle blocks).

Both USER_SEGMENTS and USER_EXTENTS have “DBA” versions, which are useful for
listing the space usage of objects across owners. Both DBA_SEGMENTS and DBA_EXTENTS
have an additional Owner column. If you want to list all of the owners who own segments in a
tablespace, you can query based on the Tablespace_Name column in DBA_SEGMENTS, and list
all of the owners of segments in that tablespace. There are no “ALL” versions of these views.

Partitions and Subpartitions
A single table’s data can be stored across multiple partitions. See Chapter 18 for examples of
partitions and descriptions of the indexing options available. To see how a table is partitioned,
you should query the USER_PART_TABLES data dictionary view, whose columns are shown in
the following listing:

TABLE_NAME
PARTITIONING_TYPE
SUBPARTITIONING_TYPE
PARTITION_COUNT
DEF_SUBPARTITION_COUNT
PARTITIONING_KEY_COUNT
SUBPARTITIONING_KEY_COUNT
STATUS
DEF_TABLESPACE_NAME
DEF_PCT_FREE
DEF_PCT_USED
DEF_INI_TRANS
DEF_MAX_TRANS
DEF_INITIAL_EXTENT
DEF_NEXT_EXTENT
DEF_MIN_EXTENTS

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 759

DEF_MAX_EXTENTS
DEF_MAX_SIZE
DEF_PCT_INCREASE
DEF_FREELISTS
DEF_FREELIST_GROUPS
DEF_LOGGING
DEF_COMPRESSION
DEF_COMPRESS_FOR
DEF_BUFFER_POOL
REF_PTN_CONSTRAINT_NAME
INTERVAL

Most of the columns of USER_PART_TABLES define the default storage parameters for the
table partitions. When a partition is added to the table, it will by default use the storage parameters
shown in USER_PART_TABLES. USER_PART_TABLES also shows the number of partitions in the
table (Partition_Count), the number of columns in the partition key (Partitioning_Key_Count), and
the type of partitioning (Partitioning_Type).

USER_PART_TABLES stores a single row for each table that has been partitioned. To see
information about each of the individual partitions that belong to the table, you can query USER_
TAB_PARTITIONS. In USER_TAB_PARTITIONS, you will see one row for each of the table’s
partitions. The columns of USER_TAB_PARTITIONS are shown in the following listing:

TABLE_NAME
COMPOSITE
PARTITION_NAME
SUBPARTITION_COUNT
HIGH_VALUE
HIGH_VALUE_LENGTH
PARTITION_POSITION
TABLESPACE_NAME
PCT_FREE
PCT_USED
INI_TRANS
MAX_TRANS
INITIAL_EXTENT
NEXT_EXTENT
MIN_EXTENT
MAX_EXTENT
MAX_SIZE
PCT_INCREASE
FREELISTS
FREELIST_GROUPS
LOGGING
COMPRESSION
COMPRESS_FOR
NUM_ROWS
BLOCKS
EMPTY_BLOCK
AVG_SPACE
CHAIN_CNT
AVG_ROW_LEN
SAMPLE_SIZE

760 Part VII: Hitchhiker’s Guides

LAST_ANALYZED
BUFFER_POOL
GLOBAL_STATS
USER_STATS

USER_TAB_PARTITIONS contains columns that identify the table to which the partition belongs
and shows the partition’s storage parameters and the statistics for the partition. The statistics-related
columns are populated when the table is analyzed. The identification columns show the high value
for the range used to define the partition (High_Value) and the position of the partition within the
table (Partition_Position).

The columns used for the partition key are accessible via the USER_PART_KEY_COLUMNS
data dictionary view. USER_PART_KEY_COLUMNS contains only four columns:

Name The name of the partitioned table or index

Object_Type Object type (TABLE or INDEX)

Column_Name The name of the column that is part of the partition key

Column_Position The position of the column within the partition key

Statistics for the partition columns are accessible via the USER_PART_COL_STATISTICS data
dictionary view. The columns in USER_PART_COL_STATISTICS closely mirror those in USER_
TAB_COL_STATISTICS.

Data histogram information for partitions is accessible via the USER_PART_HISTOGRAMS
data dictionary view. The columns of this view display the endpoint values for each of the buckets
in the histogram. The columns are Table_Name, Partition_Name, Column_Name, Bucket_Number,
Endpoint_Value, and Endpoint_Actual_Value.

Since indexes may be partitioned, there is a USER_IND_PARTITIONS data dictionary view
available. The columns in USER_IND_PARTITIONS parallel those in USER_INDEXES, with a few
modifications to the identification columns. The identification columns for partitioned indexes
include the name of the partition, the high value for the partition, and the position of the partition
within the table. The statistics-related columns are populated when the partition is analyzed. The
space-related columns describe the space allocation for the index; see the “Storage” entry in the
Alphabetical Reference for information on storage parameters.

If a partition has subpartitions, you can see the details for the subpartitions via data dictionary
views. USER_IND_SUBPARTITIONS contains the space-related and statistics-related columns of
USER_IND_PARTITIONS, along with columns to identify the subpartition (Subpartition_Name
and Subpartition_Position). Similarly, USER_TAB_SUBPARTITIONS contains the space-related
and statistics-related columns of USER_TAB_PARTITIONS, along with Subpartition_Name and
Subpartition_Position columns. Thus, you can determine the space definitions of each of your
partitions and subpartitions.

As shown earlier in this section, you can query the USER_PART_COL_STATISTICS and USER_
PART_HISTOGRAMS data dictionary views for statistical information regarding partitions. For
subpartitions, you can query USER_SUBPART_COL_STATISTICS and USER_SUBPART_HISTOGRAMS,
whose structures mirror that of the partition statistics views. To see the subpartition key columns, you
can query USER_SUBPART_KEY_COLUMNS, whose column structure is identical to that of USER_
PART_KEY_COLUMNS.

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 761

Free Space: USER_FREE_SPACE
In addition to viewing the space you have used, you can also query the data dictionary to see
how much space is currently marked as “free” space. USER_FREE_SPACE lists the free extents
in all tablespaces accessible to the user. It lists by Tablespace_Name the File_ID, Block_ID, and
relative file number of the starting point of the free extent. The size of the free extent is listed in
both bytes and blocks. DBA_FREE_SPACE is frequently used by DBAs to monitor the amount of
free space available and the degree to which it has become fragmented.

Users and Privileges
Users and their privileges are recorded within the data dictionary. In the following sections, you
will see how to query the data dictionary for information about user accounts, resource limits,
and user privileges.

Users: USER_USERS
You can query USER_USERS to list information about your account. The USER_USERS view
includes your Username, User_ID (a number assigned by the database), Default_Tablespace,
Temporary_Tablespace, and Created date (when your account was created). The Account_Status
column in USER_USERS displays the status of your account, whether it is locked, unlocked
('OPEN'), or expired. If the account is locked, the Lock_Date column will display the date the
account was locked and the Expiry_Date column will display the date of expiration. You can also
query information about the resource consumer group (Initial_Rsrc_Consumer_Group) assigned to
you by the DBA, and your External_Name value.

ALL_USERS contains only the Username, User_ID, and Created columns from USER_USERS,
but it lists that information for all accounts in the database. ALL_USERS is useful when you need
to know the usernames that are available (for example, during grant commands). DBA_USERS
contains all of the columns in USER_USERS, plus two additional columns: Password (the encrypted
password for the account) and Profile (the user’s resource profile). DBA_USERS lists this information
for all users in the database.

Resource Limits: USER_RESOURCE_LIMITS
In Oracle, profiles can be used to place limits on the amount of system and database resources
available to a user. If no profiles are created in a database, the default profile, which specifies
unlimited resources for all users, will be used. The resources that can be limited are described in
the create profile entry of the Alphabetical Reference. Profiles enforce additional security
measures, such as expiration dates on accounts and the minimum length of passwords.

To view the limits that are in place for your current session, you can query USER_RESOURCE_
LIMITS. Its columns are the following:

Resource_Name The name of the resource (for example, SESSIONS_PER_USER)

Limit The limit placed on this resource

USER_PASSWORD_LIMITS describes the password profile parameters for the user. It has the
same columns as USER_RESOURCE_LIMITS.

762 Part VII: Hitchhiker’s Guides

There is no “ALL” or “DBA” version of this view; it is limited to the user’s current session. To
see the cost associated with each available resource, you can query the RESOURCE_COST view.
DBAs can access the DBA_PROFILES view to see the resource limits for all profiles. The Resource_
Type column of DBA_PROFILES indicates whether the resource profile is a 'PASSWORD' or
'KERNEL' profile.

Table Privileges: USER_TAB_PRIVS
To view grants for which you are the grantee, the grantor, or the object owner, query USER_TAB_
PRIVS (user table privileges). In addition to its Grantee, Grantor, and Owner columns, this view
contains columns for the Table_Name, Hierarchy, Privilege, and a flag (set to 'YES' or 'NO') to
indicate whether the privilege was granted with admin option (Grantable).

USER_TAB_PRIVS_MADE displays the USER_TAB_PRIVS records for which the user is the
owner (it therefore lacks an Owner column). USER_TAB_PRIVS_RECD (user table privileges
received) displays the USER_TAB_PRIVS records for which the user is the grantee (it therefore
lacks a Grantee column). Since both USER_TAB_PRIVS_MADE and USER_TAB_PRIVS_RECD
are simply subsets of USER_TAB_PRIVS, you can duplicate their functionality simply by querying
against USER_TAB_PRIVS with an appropriate where clause to view the subset you want.

There are “ALL” versions available for USER_TAB_PRIVS, USER_TAB_PRIVS_MADE, and
USER_TAB_PRIVS_RECD. The “ALL” versions list those objects for which either the user or
PUBLIC is the grantee or grantor. There is a “DBA” version of USER_TAB_PRIVS named DBA_
TAB_PRIVS that lists all object privileges granted to all users in the database. DBA_TAB_PRIVS
has the same column definitions as USER_TAB_PRIVS. Instead of an Owner column, ALL_TAB_
PRIVS has a Table_Schema column that displays the schema of the object.

Column Privileges: USER_COL_PRIVS
In addition to granting privileges on tables, you can also grant privileges at the column level. For
example, you can grant users the ability to update only certain columns in a table. See Chapter
19 and the grant command in the Alphabetical Reference for further details.

The data dictionary views used to display column privileges are almost identical in design to
the table privileges views described in the previous section. There is an additional Column_Name
column in each of the COL views, and the Hierarchy column is not found there. USER_COL_
PRIVS is analogous to USER_TAB_PRIVS, USER_COL_PRIVS_MADE is analogous to USER_TAB_
PRIVS_MADE, and USER_COL_PRIVS_RECD is analogous to USER_TAB_PRIVS_RECD.

“ALL” versions are available for all of the column privileges views. DBA_COL_PRIVS lists all
column privileges that have been granted to users in the database (just as DBA_TAB_PRIVS lists
all table privileges granted to users).

System Privileges: USER_SYS_PRIVS
USER_SYS_PRIVS lists the system privileges that have been granted to the user. Its columns are
Username, Privilege, and Admin_Option (a flag set to 'YES' or 'NO' to indicate whether the
privilege was granted with admin option). All system privileges directly granted to a user are
displayed via this view. System privileges granted to a user via a role are not displayed here.
The following query shows sample output for the PRACTICE account:

select Username, Privilege * from USER_SYS_PRIVS;

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 763

USERNAME PRIVILEGE
------------------------------ -----------------------
PRACTICE CREATE DIMENSION
PRACTICE UNLIMITED TABLESPACE

There is no “ALL” version of this view. To see the system privileges granted to all users in the
database, query DBA_SYS_PRIVS, which has nearly the same column definitions as USER_SYS_
PRIVS (the DBA version has a Grantee column, while the USER version has a Username column).

Roles
In addition to privileges granted directly to users, sets of privileges may be grouped into roles.
Roles may be granted to users or to other roles, and may consist of both object and system
privileges. For information on the use and management of roles, see Chapter 19.

To see which roles have been granted to you, query the USER_ROLE_PRIVS data dictionary
view. Any roles that have been granted to PUBLIC will also be listed here. The available columns
for USER_ROLE_PRIVS are as follows:

Username The username (may be 'PUBLIC')

Granted_Role The name of the role granted to the user

Admin_Option A flag to indicate whether the role was granted with admin option ('YES'
or 'NO')

Default_Role A flag to indicate whether the role is the user’s default role ('YES' or 'NO')

OS_Granted A flag to indicate whether the operating system is being used to manage
roles ('YES' or 'NO')

To list all of the roles available in the database, you need to have DBA authority; you can then
query DBA_ROLES to list all roles. DBA_ROLE_PRIVS lists the assignment of those roles to all of
the users in the database.

Roles may receive three different types of grants, and each has a corresponding data
dictionary view:

Table/column grants ROLE_TAB_PRIVS. Similar to USER_TAB_PRIVS and USER_COL_
PRIVS, except that it has a Role column instead of a Grantee column
and does not have a Grantor column.

System privileges ROLE_SYS_PRIVS. Similar to USER_SYS_PRIVS, except that it has a
Role column instead of a Username column.

Role grants ROLE_ROLE_PRIVS. Lists all roles that have been granted to other roles.

NOTE
If you are not a DBA, these data dictionary views list only those roles
that have been granted to you.

In addition to these views, there are two views, each with a single column, that list the
privileges and roles enabled for the current session:

SESSION_PRIVS The Privilege column lists all system privileges available to the session,
whether granted directly or via roles.

SESSION_ROLES The Role column lists all roles that are currently enabled for the session.

764 Part VII: Hitchhiker’s Guides

SESSION_PRIVS and SESSION_ROLES are available to all users.

NOTE
See Chapter 19 for information on enabling and disabling roles and
the setting of default roles.

Auditing
As a non-DBA user within an Oracle database, you cannot enable the database’s auditing features.
If auditing has been enabled, there are data dictionary views that anyone can use to view the
audit trail.

Many different audit trail data dictionary views are available. Most of these views are based on a
single audit trail table in the database (SYS.AUD$). The most generic of the audit trail views available
is named USER_AUDIT_TRAIL. Since this view shows the audit records for many different types of
actions, many of the columns may be inapplicable for any given row. The “DBA” version of this
view, DBA_AUDIT_TRAIL, lists all entries from the audit trail table; USER_AUDIT_TRAIL lists only
those that are relevant to the user.

A vast number of auditing capabilities is available (see the audit command in the Alphabetical
Reference for a complete listing). Each type of audit can be accessed via its own data dictionary
view. The following are the available views:

USER_AUDIT_OBJECT For statements concerning objects

USER_AUDIT_SESSION For connections and disconnections

USER_AUDIT_STATEMENT For grant, revoke, audit, noaudit, and alter system commands
issued by the user

There are “DBA” versions available for each of the “USER” views in the previous list; the “DBA”
versions show all of the audit trail records that fit into the view’s category.

You can view the auditing options that are currently in effect for your objects by querying
USER_OBJ_AUDIT_OPTS. For each object listed in USER_OBJ_AUDIT_OPTS, the audit options
for each command that may be performed on that object (identified by the Object_Name and
Object_Type columns) are listed in USER_OBJ_AUDIT_OPTS. The column names of USER_OBJ_
AUDIT_OPTS correspond to the first three letters of the command (for example, Alt for alter, Upd
for update, and so on). Each column will record whether that command is audited for that object
when the command is successful ('S'), unsuccessful ('U'), or both. The default auditing options in
effect for any new objects in the database can be displayed via the ALL_DEF_AUDIT_OPTS view,
which has the same column naming conventions as USER_OBJ_AUDIT_OPTS. USER_OBJ_
AUDIT_OPTS includes Object_Name and Object_Type columns.

The commands that can be audited are stored in a reference table named AUDIT_ACTIONS,
which has two columns: Action (the numeric code for the action) and Name (the name of the
action/command). Action and Name correspond to the Action and Action_Name columns of
USER_AUDIT_TRAIL.

DBAs can use several additional auditing views that do not have “USER” counterparts, including
DBA_AUDIT_EXISTS, DBA_PRIV_AUDIT_OPTS, DBA_STMT_AUDIT_OPTS, and STMT_AUDIT_
OPTION_MAP. See the Oracle Database Reference for details on these DBA-only views.

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 765

Miscellaneous
In addition to the data dictionary views described earlier in this chapter, several miscellaneous
views and tables may be available within your data dictionary. These views and tables include
DBA-only views and the table used when the explain plan command is executed. In the following
sections, you will see brief descriptions for each of the miscellaneous view types.

Monitoring: The V$ Dynamic Performance Tables
The views that monitor the database environment performance are called the dynamic performance
views. The dynamic performance views are commonly referred to as the V$ (pronounced “Vee-
Dollar”) tables, because they all begin with the letter V followed by the dollar sign ($).

The definitions and usage of columns within the monitoring views are subject to change with
each version of the database that is released. Correctly interpreting the results of ad hoc queries
against views usually requires referring to the Oracle Database Administrator’s Guide. The V$
tables are normally used only by the DBA. Consult the Oracle Database Reference and the Oracle
DBA Handbook for details on the use of the V$ views.

CHAINED_ROWS
The analyze command can be used to generate a listing of the chained or migrated rows within a
table. This listing of chained rows can be stored in a table called CHAINED_ROWS. To create the
CHAINED_ROWS table in your schema, run the utlchain.sql script (usually found in the /rdbms/
admin subdirectory under the Oracle home directory).

To populate the CHAINED_ROWS table, use the list chained rows into clause of the analyze
command, as shown in the following listing:

analyze TABLE BIRTHDAY list chained rows into CHAINED_ROWS;

The CHAINED_ROWS table lists the Owner_Name, Table_Name, Cluster_Name (if the table
is in a cluster), Partition_Name (if the table is partitioned), Subpartition_Name (if the table contains
subpartitions), Head_RowID (the ROWID for the row), and an Analyze_TimeStamp column that
shows the last time the table or cluster was analyzed. You can query the table based on the Head_
RowID values in CHAINED_ROWS, as shown in the following example:

select * from BIRTHDAY
 where RowID in
 (select Head_RowID
 from CHAINED_ROWS
 where Table_Name = 'BIRTHDAY');

If the chained row is short in length, then it may be possible to eliminate the chaining by
deleting and reinserting the row.

PLAN_TABLE
When tuning SQL statements, you may want to determine the steps that the optimizer will take to
execute your query. To view the query path, you must first create a table in your schema named
PLAN_TABLE. The script used to create this table is called utlxplan.sql, and is usually stored in the
/rdbms/admin subdirectory of the Oracle software home directory.

766 Part VII: Hitchhiker’s Guides

After you have created the PLAN_TABLE table in your schema, you can use the explain plan
command, which will generate records in your PLAN_TABLE, tagged with the Statement_ID value
you specify for the query you want to have explained. See Chapter 46 for details on the generation
of the explain plan listings.

The ID and Parent_ID columns in PLAN_TABLE establish the hierarchy of steps (Operations)
that the optimizer will follow when executing the query. See Chapter 46 for details on the Oracle
optimizer and the interpretation of PLAN_TABLE records.

Interdependencies: USER_DEPENDENCIES and IDEPTREE
Objects within Oracle databases can depend upon each other. For example, a stored procedure
may depend upon a table, or a package may depend upon a package body. When an object
within the database changes, any procedural object that depends upon it will have to be
recompiled. This recompilation can take place either automatically at run time (with a
consequential performance penalty) or manually (see Chapter 35 for details on compiling
procedural objects).

Two sets of data dictionary views are available to help you track dependencies. The first is
USER_DEPENDENCIES, which lists all direct dependencies of objects. However, this only goes
one level down the dependency tree. To fully evaluate dependencies, you must create the
recursive dependency-tracking objects in your schema. To create these objects, run the utldtree
.sql script (usually located in the /rdbms/admin subdirectory of the Oracle home directory). This
script creates two objects you can query: DEPTREE and IDEPTREE. They contain identical
information (although their column definitions differ), but IDEPTREE is indented based on the
pseudo-column Level, and is thus easier to read and interpret.

DBA-Only Views
Since this chapter is intended for use by developers and end users, the data dictionary views
available only to DBAs are not covered here. The DBA-only views are used to provide information
about distributed transactions, lock contention, rollback segments, and other internal database
functions. For information on the use of the DBA-only views, see the Oracle Database Administrator’s
Guide.

Oracle Label Security
Users of Oracle Label Security can view additional data dictionary views, including ALL_SA_
GROUPS, ALL_SA_POLICIES, ALL_SA_USERS, and ALL_SA_USER_PRIVS. For details on the
usage of these views, see the Oracle Label Security Administrator’s Guide.

SQL*Loader Direct Load Views
To manage the direct load option within SQL*Loader, Oracle maintains a number of data
dictionary views. These generally are only queried for debugging purposes, upon request from
Oracle Customer Support. The SQL*Loader direct load option is described under the “SQLLDR”
entry in the Alphabetical Reference; its supporting data dictionary views are listed here:

LOADER_COL_INFO

LOADER_CONSTRAINT_INFO

LOADER_FILE_TS

■

■

■

Chapter 45: The Hitchhiker’s Guide to the Oracle Data Dictionary 767

LOADER_PARAM_INFO

LOADER_PART_INFO

LOADER_REF_INFO

LOADER_TAB_INFO

LOADER_TRIGGER_INFO

For details on the use of these views, see the catldr.sql script, usually located in the /rdbms/
admin subdirectory of the Oracle home directory.

Globalization Support Views
Three data dictionary views are used to display information about the Globalization Support
parameters currently in effect in the database. Nonstandard values for the NLS parameters (such
as NLS_DATE_FORMAT and NLS_SORT) can be set via the database’s parameter file or via the
alter session command. (See the alter session command in the Alphabetical Reference for further
information on NLS settings.) To see the current NLS settings for your session, instance, and
database, query NLS_SESSION_PARAMETERS, NLS_INSTANCE_PARAMETERS, and NLS_
DATABASE_PARAMETERS, respectively.

Libraries
Your PL/SQL routines (see Chapter 35) can call external C programs. To see which external C
program libraries are owned by you, you can query USER_LIBRARIES, which displays the name of
the library (Library_Name), the associated file (File_Spec), whether or not the library is dynamically
loadable (Dynamic), and the library’s status (Status). ALL_LIBRARIES and DBA_LIBRARIES are also
available; they include an additional Owner column to indicate the owner of the library. For further
information on libraries, see the entry for the create library command in the Alphabetical Reference.

Heterogeneous Services
To support the management of heterogeneous services, Oracle provides a number of data dictionary
views. All of the views in this category begin with the letters “HS” instead of “DBA.” In general,
these views are used primarily by DBAs. For details on the “HS” views, see the Oracle Database
Reference.

Indextypes and Operators
Operators and indextypes are closely related. You can use the create operator command to create
a new operator and define its bindings. You can reference operators in indextypes and in SQL
statements. The operators, in turn, reference functions, packages, types, and other user-defined objects.

You can query the USER_OPERATORS view to see each operator’s Owner, Operator_Name,
and Number_of_Binds values. Ancillary information for operators is accessible via USER_
OPANCILLARY, and you can query USER_OPARGUMENTS to see the operator arguments.
You can query USER_OPBINDINGS to see the operator bindings.

USER_INDEXTYPE_OPERATORS lists the operators supported by indextypes. Indextypes,
in turn, are displayed via USER_INDEXTYPES. There are “ALL” and “DBA” views of all the
operator and indextype views. You can see the indextype arraytypes via the USER_INDEXTYPE_
ARRAYTYPES view.

■

■

■

■

■

768 Part VII: Hitchhiker’s Guides

Outlines
When you use stored outlines, you can retrieve the names of, and details for, the outlines via the
USER_OUTLINES data dictionary views. To see the hints that make up the outlines, query USER_
OUTLINE_HINTS. There are “ALL” and “DBA” versions of USER_OUTLINES and USER_
OUTLINE_HINTS.

Advisors
You can access data dictionary views related to tuning recommendations. These views begin with
“USER_ADVISOR_” and there is a matching set of views at the “DBA_” level, and there are DBA-
only advisor views as well (such as DBA_ADVISOR_DEFINITIONS).

For example, USER_ADVISOR_ACTIONS contains data about the actions associated with all
recommendations in the database. Each action is specified in the Command column, with six
related attribute columns. USER_ADVISOR_LOG displays information about the current state of
all the tasks, as well as execution-specific data such as progress monitoring and completion status.
Parameters for the advisors are accessible via USER_ADVISOR_PARAMETERS; you can see the
rationale for recommendations via the USER_ADVISOR_RATIONALE view.

For the results of an analysis of all recommendations in the database, see the USER_ADVISOR_
RECOMMENDATIONS view. A recommendation can have multiple actions associated with it (see
USER_ADVISOR_ACTIONS) based on the rationales used.

See Table 45-1 for the full list of Advisor-related data dictionary views added with Oracle 11g.
For the vast majority of users, those views will only be accessed via the Oracle Enterprise Manager
or other graphical interfaces.

Schedulers
You can access a set of views related to Scheduler jobs in the database. These include USER_
SCHEDULER_ JOBS (all Scheduler jobs owned by the user), USER_SCHEDULER_PROGRAMS (the
scheduler programs), and USER_SCHEDULER_PROGRAM_ARGS (the arguments for the scheduler
programs). You can see the execution details for the jobs via the USER_SCHEDULER_ JOB_LOG,
USER_SCHEDULER_ JOB_RUN_DETAILS, and USER_SCHEDULER_RUNNING_ JOBS views. You
can see the schedules via USER_SCHEDULER_SCHEDULES.

CHAPTER
46

The Hitchhiker’s Guide
to Tuning Applications

and SQL

769

770 Part VII: Hitchhiker’s Guides

ith each new release of its products, Oracle adds features to enhance the
performance of your applications. These features may include new options that you
must manually implement (such as partitioning) or under-the-cover changes that
provide a performance benefit without your making any changes to your
application.

Do not approach tuning as something done after an application goes into production, or after
a system test has been performed. As you will see, planning for the performance of an application
must be part of the design process.

In this chapter, you will see a description of the major new tuning changes introduced with
Oracle Database 11g. A set of guidelines and best practices related to tuning Oracle applications
is also provided. The final section of the chapter is dedicated to integrating those features with the
recommended best practices. You will also see guidelines for generating and interpreting explain
plans and stored outlines.

New Tuning Features in Oracle Database 11g
Oracle Database 11g introduces a number of new features aimed at simplifying and automating
the tuning process. DBAs and developers who previously had to perform manual steps related to
tuning will now find that the database performs some of these steps with no intervention. Note
that the database cannot redesign your application; it can only make the commands it receives
complete as quickly as possible. Please see the “Tuning—Best Practices” section for the principles
of sound performance design. As this book is intended for all users, the DBA-specific tools are not
the focus here; rather, the focus is on designing and developing systems whose performance can
be easily administered.

The following performance-related features are new as of Oracle Database 11g. For further
details on all tuning-related features, see the Performance Tuning Guide that comes as part of the
Oracle documentation set.

New Tuning Features in Oracle 11g
The new and updated performance-tuning features in Oracle Database 11g Release 1 (11.1) include:

Active session history (ASH) enhancements ASH statistics are enhanced to provide
row-level activity information for each SQL statement that is captured. This information
can be used to identify which part of the SQL execution contributed most significantly to
the SQL elapsed time. The ASH views, accessible to DBAs, provide historical information
about the active sessions in the database.

Automatic Database Diagnostic Monitor (ADDM) enhancements DBAs and
developers can use ADDM to analyze the database and generate recommendations for
performance tuning. In Oracle 11g, ADDM has been enhanced to perform analysis on
database clusters on various levels of granularity (such as database cluster, database
instance, or specific targets) over any specified time period.

Automated SQL tuning DBAs can use the SQL Tuning Advisor to generate
recommendations for tuning SQL commands. You can automate the scheduling
of SQL Tuning Advisor tasks to run during maintenance windows using Automated
Maintenance Task.

■

■

■

W

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 771

AWR baselines The Automated Workload Repository (AWR) reports provide baseline
statistics for the database and show the database performance during specified intervals.
A baseline contains performance data from a specific time period that is preserved for
comparison with other similar workload periods when performance problems occur.
Several types of baselines are available in Oracle Database: fixed baselines, moving
window baselines, and baseline templates.

Database Replay You can capture a database workload on a production system and
replay it on a test system to ensure that system changes, such as database upgrades, will
yield the desired results. (See Chapter 31.)

Enhanced I/O statistics I/O statistics are collected for all I/O calls made by Oracle
Database in the following dimensions: consumer group, database file, and database
function.

Enhanced optimizer statistics maintenance The collection and publication of statistics
is now decoupled. You can collect optimizer statistics, store them as pending statistics,
test them, and then publish them only if the statistics are valid.

Extended statistics The optimizer now gathers information on a group of columns in a
table (MultiColumn statistics) to analyze column dependencies in column groups. It also
gathers information about expressions in columns.

I/O calibration The I/O calibration feature enables you to assess the performance of the
storage subsystem and determine whether I/O performance problems are caused by the
database or the storage subsystem.

Query result caches You can store results of frequently run SQL queries in server-side
and client-side result caches. This ensures a faster response time when these queries are
subsequently executed. (See Chapter 47.)

Real-time SQL monitoring Real-time SQL monitoring enables you to monitor the
execution of long-running SQL statements as they are being executed. Both cursor-
level statistics (such as CPU time and I/O time) and execution plan statistics (such as
cardinality of intermediate results, memory, and temporary space used by each operator
in the plan) are updated in near real-time while the statement executes. These statistics
are exposed by two new fixed views: V$SQL_MONITOR and V$SQL_PLAN_MONITOR.

SQL Performance Analyzer The SQL Performance Analyzer enables DBAs to forecast
the impact of system changes on SQL performance by testing these changes using a SQL
workload on a test system.

SQL plan baselines Changes to the execution plan for a SQL statement can cause
severe performance degradation. Oracle Database can capture, select, and evolve SQL
plan baselines, preventing the optimizer from using a new plan until it has been verified
to be more efficient than the existing plan. This feature replaces the plan stability feature
in previous versions of Oracle Database.

SQL test case builder The SQL test case builder provides the ability to build a reproducible
test case by gathering and packaging the necessary information related to a SQL incident
so that it can be reproduced on another system.

■

■

■

■

■

■

■

■

■

■

■

772 Part VII: Hitchhiker’s Guides

Tuning—Best Practices
At least 50% of the time—conservatively—performance problems are designed into an application.
During the design of the application and the related database structures, the application architects
may not know all the ways in which the business will use the application data over time. As a
result, there may always be some components whose performance is poor during the initial
release, while other problems will appear later as the business usage of the application changes.

In some cases, the fix will be relatively straightforward—changing an initialization parameter,
adding an index, or rescheduling large operations. In other cases, the problem cannot be fixed
without altering the application architecture. For example, an application may be designed to
heavily reuse functions for all data access—so that functions call other functions, which call
additional functions even to perform the simplest database actions. As a result, a single database
call may result in tens of thousands of function calls and database accesses. Such an application
will usually not scale well; as more users are added to the system, the burden of the number of
executions per user will slow the performance for the individual users. Tuning the individual SQL
statements executed as part of that application may yield little performance benefit; the statements
themselves may be well tuned already. Rather, it is the sheer number of executions that leads to
the performance problem.

The following best practices may seem overly simplistic—but they are violated over and over
in database applications, and those violations directly result in performance problems. There are
always exceptions to the rules because the next change to your software or environment may
allow you to violate the rules without affecting your performance. In general, though, following
these rules will allow you to meet performance requirements as the application usage increases.

Do as Little as Possible
End users do not care, in general, if the underlying database structures are fully normalized to
Third Normal Form or if they are laid out in compliance with object-oriented standards. Users
want to perform a business process, and the database application should be a tool that helps that
business process complete as quickly as possible. The focus of your design should not be the
achievement of theoretical design perfection; it should always be on the end user’s ability to
do his or her job. Simplify the processes involved at every step in the application.

In Your Application Design, Strive to Eliminate Logical Reads
In the past, there was a heavy focus on eliminating physical reads—and while this is still a good
idea, no physical reads occur unless logical reads require them.

Let’s take a simple example. Select the current time from DUAL. If you select down to the
second level, the value will change 86,400 times per day. Yet there are application designers who
repeatedly perform this query, executing it millions of times per day. Such a query likely performs
few physical reads throughout the day—so if you are focused solely on tuning the physical I/O,
you would likely disregard it. However, it can significantly impact the performance of the
application. How? By using the CPU resources available. Each execution of the query will force
Oracle to perform work, using processing power to find and return the correct data. As more and
more users execute the command repeatedly, you may find that the number of logical reads used
by the query exceeds all other queries. In some cases, multiple processors on the server are
dedicated to servicing repeated small queries of this sort. What business benefit do they generate?
Little to none.

Consider the following real-world example. A programmer wanted to implement a pause in a
program, forcing it to wait 30 seconds between the completion of two steps. Since the performance

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 773

of the environment would not be consistent over time, the programmer coded the routine in the
following format (shown in pseudo-code):

perform Step 1
select SysDate from DUAL into a StartTime variable
begin loop
 select SysDate from DUAL in a CurrentTime variable;
 Compare CurrentTime with the StartTime variable value.
 If 30 seconds have passed, exit the loop;
 Otherwise repeat the loop, calculating SysDate again.
end loop
perform Step 2.

Is that a reasonable approach? Absolutely not! It will do what the developer wanted, but at a
significant cost to the application and there is nothing a database administrator can do to improve
its performance. In this case the cost will not be due to I/O activity—the DUAL table will stay in
the instance’s memory area—but rather in CPU activity. Every time this program is run, by every
user, the database will spend 30 seconds consuming as many CPU resources as the system can
support. In this particular case the select SysDate from DUAL query accounted for over 40% of
all of the CPU time used by the application. All of that CPU time was wasted. Tuning the
individual SQL statement will not help; the application design must be revised to eliminate the
needless execution of commands. A far better solution would have been to develop a way to track
the completion of the first step and any subsequent processing, then start the second step with no
embedded wait time calculation.

For those who favor tuning based on the buffer cache hit ratio, this database had a hit ratio of
almost 100% due to the high number of completely unnecessary logical reads without related
physical reads. The buffer cache hit ratio compares the number of logical reads to the number of
physical reads; if 10% of the logical reads require physical reads, the buffer cache hit ratio is 100
less 10, or 90%. Low hit ratios identify databases that perform a high number of physical reads;
extremely high hit ratios such as found in this example may identify databases that perform an
excessive number of logical reads.

In Your Application Design, Strive to Avoid Trips to the Database
Remember that you are tuning an application, not a query. You may need to combine multiple
queries into a single procedure so that the database can be visited once rather than multiple times
for each screen. This bundled-query approach is particularly relevant for “thin-client” applications
that rely on multiple application tiers. Look for queries that are interrelated based on the values
they return, and see if there are opportunities to transform them into single blocks of code. The
goal is not to make a monolithic query that will never complete; the goal is to avoid doing work
that does not need to be done. In this case, the constant back-and-forth communication between
the database server, the application server, and the end user’s computer is targeted for tuning.

This problem is commonly seen on complex data-entry forms in which each field displayed
on the screen is populated via a separate query. Each of those queries is a separate trip to the
database. As with the example in the previous section, the database is forced to execute large
numbers of related queries. Even if each of those queries is tuned, the burden of the number of
commands—multiplied by the number of users—will consume the CPU resources available on
the server. Such a design may also impact the network usage, but the network is seldom the
problem—the issue is the number of times the database is accessed.

Within your packages and procedures, you should strive to eliminate unnecessary database
accesses. Store commonly needed values in local variables instead of repeatedly querying the

774 Part VII: Hitchhiker’s Guides

database. If you don’t need to make a trip to the database for information, don’t make it. That
sounds simple, but you would be amazed at how often application developers fail to consider
this advice.

There is no initialization parameter that can make this change take effect. It is a design issue
and requires the active involvement of developers, designers, DBAs, and application users in the
application performance planning and tuning process.

For Reporting Systems, Store the Data the Way the Users Will Query It
If you know the queries that will be executed—such as via parameterized reports—you should
strive to store the data so that Oracle will do as little work as possible to transform the format of
the data in your tables into the format presented to the user. This may require the creation and
maintenance of materialized views or reporting tables. That maintenance is of course extra work
for the database to perform—but it is performed in batch mode and does not directly affect the
end user. The end user, on the other hand, benefits from the ability to perform the query faster.
The database as a whole will perform fewer logical and physical reads because the accesses to
the base tables to populate and refresh the materialized views are performed infrequently when
compared to the end-user queries against the views.

Avoid Repeated Connections to the Database
Opening a database connection may be a slow and largely avoidable operation. If you need to
connect to the database, keep the connection open and reuse the connection. At the application
level, you may be able to use connection pooling to support this need. Within the database you
may be able to use stored procedures, packages, and other methods to maintain connections
while you are performing your processing.

Another real-life example: An application designer wanted to verify that the database was
running prior to executing a report. The solution was to open a session and execute the following
query: select count(*) from DUAL. If the query came back with the proper result (1), then the
database was running, a new connection would be opened, and the report query would be
executed. What is wrong with that approach? In small systems you may be able to survive such
a design decision. In OLTP systems with a high number of concurrent users, you will encounter
significant performance problems as the database spends most of its time opening and closing
connections. Within the database, the select count(*) from DUAL query will be executed millions
of times per day—Oracle will spend the bulk of the resources available to the application opening
and closing connections and returning the database status to the application. The query performs
little I/O but its impact is seen in its CPU usage and the constant opening of connections.

Why is such a step even needed? If you properly handle the errors from the report queries
themselves, it would be obvious that the database connection is not functioning properly in the
event of a failure. The unnecessary database availability check is made worse by the failure to
reuse the same connection. No DBA action can correct this; the application must be designed
from the start to reuse connections properly.

Use the Right Indexes
In an effort to eliminate physical reads, some application developers create many indexes on
every table. Aside from their impact on data load times (discussed in the “Test Correctly” section
later in this chapter), it is possible that many of the indexes will never be needed. In OLTP
applications, you should not use bitmap indexes; if a column has few distinct values, you should
consider leaving it unindexed. The optimizer supports skip-scan index accesses, so you may use
an index on a set of columns even if the leading column of the index is not a limiting condition
for the query.

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 775

Do It as Simply as Possible
Now that you have eliminated the performance costs of unnecessary logical reads, unneeded
database trips, unmanaged connections, and inappropriate indexes, take a look at the commands
that remain.

Go Atomic
You can use SQL to combine many steps into one large query. In some cases, this may benefit
your application—you can create stored procedures and reuse the code and reduce the number
of database trips performed. However, you can take this too far, creating large queries that fail to
complete quickly enough. These queries commonly include multiple sets of grouping operations,
inline views, and complex multi-row calculations against millions of rows.

If you are performing batch operations, you may be able to break such a query into its atomic
components, creating temporary tables to store the data from each step. If you have an operation
that takes hours to complete, you almost always can find a way to break it into smaller
component parts. Divide and conquer the performance problem.

For example, a batch operation may combine data from multiple tables, perform joins and
sorts, and then insert the result into a table. On a small scale this may perform satisfactorily. On
a large scale, you may have to divide this operation into multiple steps:

 1. Create a work table. Insert rows into it from one of the source tables for the query,
selecting only those rows and columns that you care about later in the process.

 2. Create a second work table for the columns and rows from the second table.

 3. Create any needed indexes on the work tables. Note that all of the steps to this point
can be parallelized—the inserts, the queries of the source tables, and the creation of the
indexes.

 4. Perform the join, again parallelized. The join output may go into another work table.

 5. Perform any sorts needed. Sort as little data as possible.

 6. Insert the data into the target table.

Why go through all of those steps? Because you can tune them individually, you may be able
to tune them to complete much faster individually than Oracle can complete them as a single
command. For batch operations, you should consider making the steps as simple as possible.
You will need to manage the space allocated for the work tables, but this approach can generate
significant benefits to your batch-processing performance.

Eliminate Unnecessary Sorts
As part of the example in the preceding section, the sort operation was performed last. In general,
sort operations are inappropriate for OLTP applications. Sort operations do not return any rows to
the user until the entire set of rows is sorted. Row operations, on the other hand, return rows to
the user as soon as those rows are available.

Consider the following simple test: Perform a full table scan of a large table. As soon as the
query starts to execute, the first rows are displayed. Now, perform the same full table scan but add
an order by clause on an unindexed column. No rows will be displayed until all of the rows have
been sorted. Why does this happen? Because for the second query Oracle performs a SORT
ORDER BY operation on the results of the full table scan. As it is a set operation, the set must be
completed before the next operation is performed.

776 Part VII: Hitchhiker’s Guides

Now, imagine an application in which there are many queries executed within a procedure.
Each of the queries has an order by clause. This turns into a series of nested sorts—no operation
can start until the one before it completes.

Note that union operations perform sorts. If it is appropriate for the business logic, use a union
all operation in place of a union, as a union all does not perform a sort (because it does not
eliminate duplicates).

During index creations, you may be able to eliminate subsequent sorts by using the compute
statistics clause of the create index command and gathering the statistics as the index is created.

Eliminate the Need to Query Undo Segments
When performing a query, Oracle will need to maintain a read-consistent image of the rows
queried. If a row is modified by another user, the database will need to retrieve the earlier version
of the blocks from the undo segment to see the row as it existed at the time your query began.
Application designs that call for queries to frequently access data that others may be changing at
the same time force the database to do more work—it has to look in multiple locations for one
piece of data. Again, this is a design issue. DBAs may be able to size the undo segment areas to
reduce the possibility of queries encountering errors, but correcting the fundamental problem
requires a change to the application design.

Tell the Database What It Needs to Know
Oracle’s optimizer relies on statistics when it evaluates the thousands of possible paths to take
during the execution of a query. How you manage those statistics can significantly impact the
performance of your queries.

Keep Your Statistics Updated
How often should you gather statistics? With each major change to the data in your tables, you
should reanalyze the tables. If you have partitioned the tables, you can analyze them on a
partition-by-partition basis. You can use the Automatic Statistics Gathering feature to automate
the collection of statistics. By default, that process gathers statistics during a maintenance window
from 10 P.M. to 6 A.M. each night and all day on weekends.

Since the analysis job is usually a batch operation performed after hours, you can tune it by
improving sort and full table scan performance at the session level. The result will be greatly
enhanced performance for the sorts and full table scans the analysis performs.

Hint Where Needed
In most cases, the cost-based optimizer (CBO) selects the most efficient execution path for queries.
However, you may have information about a better path. For example, you may be joining a local
table to a table in a remote database, in which case you would want to avoid repeatedly querying
individual rows from the remote table; you would most likely benefit from doing fewer retrievals of
many rows from the remote database. You may give Oracle a hint to influence the join operations,
the overall query goal, the specific indexes used, or the parallelism of the query. See the “Related
Hints” sections later in this chapter for an overview of the major hints.

Maximize the Throughput in the Environment
In an ideal environment, there is never a need to query information outside the database; all of
the data stays in memory all of the time. Unless you are working with a very small database,
however, this is not a realistic approach. In this section, you will see guidelines for maximizing
the throughput of the environment.

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 777

Use Disk Caching
If Oracle cannot find the data it needs in the database, it performs a physical read. But how many
of the physical reads actually reach the disk? If you use disk caching, you may be able to prevent
90% or more of the access requests for the most-needed blocks. If the database buffer cache hit
ratio is 90%, you are accessing the disks 10% of the time—and if the disk cache prevents 90% of
those requests from reaching the disk, your effective hit ratio is 99%. Oracle’s internal statistics do
not reflect this improvement; you will need to work with your disk administrators to configure and
monitor the disk cache.

Use a Larger Database Block Size
There is only one reason not to use the largest block size available in your environment for a new
database: if you cannot support a greater number of users performing updates and inserts against a
single block. Other than that, increasing the database block size should improve the performance
of almost everything in your application. Larger database block sizes help keep indexes from
splitting levels and help keep more data in memory longer. To support many concurrent inserts
and updates, increase the setting for the pctfree parameter at the object level.

Store Data Efficiently at the Block Level
Oracle stores blocks of data in memory. It is in your best interest to make sure those blocks are as
densely packed with data as possible. If your data storage is inefficient at the block level, you will
not gain as much benefit as you can from the caches available in the database.

If the rows in your application are not going to be updated, set the pctfree as low as possible.
For partitioned tables, set the pctfree value for each partition to maximize the row storage within
blocks. By default, each partition will use the pctfree setting for the table. Set a low pctfree value
for indexes.

If the pctfree setting is too low, updates may force Oracle to move the row (called a migrated
row). In some cases row chaining is inevitable, such as when your row length is greater than your
database block size. When row chaining and migration occur, each access of a row will require
accessing multiple blocks, impacting the number of logical reads required for each command.
You can detect row chaining by analyzing the table and then checking its statistics via USER_
TABLES; the Chain_Cnt column will be populated with the number of chained rows when the
table is analyzed.

Designing to Throughput, Not Disk Space
Take an application that is running on eight 9GB disks and move it to a single 72GB disk. Will the
application run faster or slower? In general, it will run slower, since the throughput of the single
disk is unlikely to be equal to the combined throughput of the eight separate disks. Rather than
designing your disk layout based on the space available (a common method), design it based on
the throughput of the disks available. You may decide to use only part of each disk. The
remaining space on the disk will not be used by the production application unless the throughput
available for that disk improves.

Avoid the Use of the Temporary Segments
Whenever possible, perform all sorts in memory. Any operation that writes to the temporary
segments is potentially wasting resources. Oracle uses temporary segments when the sort area
within the PGA does not allocate enough memory to support the sorting requirements of
operations. Sorting operations include index creations, order by clauses, statistics gathering,
group by operations, and some joins. As noted earlier in this chapter, you should strive to sort as
few rows as possible. When performing the sorts that remain, perform them in memory.

778 Part VII: Hitchhiker’s Guides

NOTE
Oracle does not recommend using the SORT_AREA_SIZE parameter
unless the instance is configured with the shared server option. Oracle
recommends that you enable automatic sizing of SQL working areas
by setting PGA_AGGREGATE_TARGET instead. SORT_AREA_SIZE is
retained for backward compatibility.

Favor Fewer, Faster Processors
Given the choice, use a small number of fast processors in place of a larger number of slower
processors. The operating system will have fewer processing queues to manage and will generally
perform better.

Divide and Conquer Your Data
If you cannot avoid performing expensive operations on your database, you can attempt to split
the work into more manageable chunks. Often you can severely limit the number of rows acted
on by your operations, substantially improving performance.

Use Partitions
Partitions can benefit end users, DBAs, and application support personnel. For end users there are
two potential benefits: improved query performance and improved availability for the database.
Query performance may improve because of partition elimination. The optimizer knows what
partitions may contain the data requested by a query. As a result, the partitions that will not
participate are eliminated from the query process. Since fewer logical and physical reads are
needed, the query should complete faster.

The availability improves because of the benefits partitions generate for DBAs and application
support personnel. Many administrative functions can be performed on single partitions, allowing
the rest of the table to be unaffected. For example, you can truncate a single partition of a table.
You can split a partition, move it to a different tablespace, or switch it with an existing table (so
that the previously independent table is then considered a partition). You can gather statistics on
one partition at a time. All of these capabilities narrow the scope of administrative functions,
reducing their impact on the availability of the database as a whole.

Use Materialized Views
You can use materialized views to divide the types of operations users perform against your
tables. When you create a materialized view, you can direct users to query the materialized view
directly or you can rely on Oracle’s query rewrite capability to redirect queries to the materialized
view. As a result, you will have two copies of the data—one that services the input of new
transactional data, and a second, the materialized view, that services queries. As a result, you can
take one of them offline for maintenance without affecting the availability of the other. Also note
that you can index the base table and the materialized view differently, with each having the
structures needed for the specific data access types it is intended for.

Use Parallelism
Almost every major operation can be parallelized—including queries, inserts, object creations,
and data loads. The parallel options allow you to involve multiple processors in the execution of
a single command, effectively dividing the command into multiple smaller coordinated
commands. As a result, the command may perform better. You can specify a degree of parallelism
at the object level and can override it via hints in your queries.

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 779

NOTE
Parallel operations work best when the operations involve large
sets of data.

Test Correctly
In most development methodologies, application testing has multiple phases, including module
testing, full system testing, and performance stress testing. Many times, the full system test and
performance stress test are not performed adequately due to time constraints as the application
nears its delivery deadline. The result is that applications are released into production without any
way to guarantee that the functionality and performance of the application as a whole will meet
the needs of the users. This is a serious and significant flaw and should not be tolerated by any
user of the application. Users do not need just one component of the application to function
properly; they need the entire application to work properly in support of a business process. If
they cannot do a day’s worth of business in a day, the application fails.

This is a key tenet regarding identifying the need for tuning: If the application slows the speed
of the business process, it should be tuned. The tests you perform must be able to determine if the
application will hinder the speed of the business process under the expected production load.

Test with Large Volumes of Data
As described earlier in this chapter, objects within the database function differently after they have
been used for some time. For example, the pctfree setting may make it likely that blocks will be
only half-used or rows will be chained. Each of these causes performance problems that will only
be seen after the application has been used for some time.

A further problem with data volume concerns indexes. As B*-tree indexes grow in size, they
may split internally—the level of entries within the index increases. As a result, you can picture
the new level as being an index within the index. The additional level in the index increases the
effect of the index on data load rates. You will not see this impact until after the index is split.
Applications that work acceptably for the first week or two in production, only to suddenly falter
after the data volume reaches critical levels, do not support the business needs. In testing, there is
no substitute for production data loaded at production rates while the tables already contain a
substantial amount of data.

Test with Many Concurrent Users
Testing with a single user does not reflect the expected production usage of most database
applications. You must be able to determine if concurrent users will encounter deadlocks, data
consistency issues, or performance problems. For example, suppose an application module uses a
work table during its processing. Rows are inserted into the table, manipulated, and then queried.
A separate application module does similar processing—and uses the same table. When executed
at the same time, the two processes attempt to use each other’s data. Unless you are testing with
multiple users executing multiple application functions simultaneously, you may not discover this
problem and the business data errors it will generate.

Testing with many concurrent users will also help to identify areas in the application in which
users frequently use undo segments to complete their queries, impacting performance.

Test the Impact of Indexes on Your Load Times
Every insert, update, or delete of an indexed column may be about three times slower than the
same transaction against an unindexed table. There are some exceptions—sorted data has much
less of an impact, for example—but the rule is generally true. If you can load three thousand rows

780 Part VII: Hitchhiker’s Guides

per second into an unindexed table in your environment, adding a single index to the table should
slow your insert speed to around a thousand rows per second. The impact is dependent on your
operating environment, the data structures involved, and the degree to which the data is sorted.

How many rows per second can you insert in your environment? Perform a series of simple
tests. Create a table with no indexes and insert a large number of rows into it. Repeat the tests to
reduce the impact of physical reads on the timing results. Calculate the number of rows inserted
per second. In most environments you can insert tens of thousands of rows per second into the
database. Perform the same test in your other database environments so you can identify any that
are significantly different than the others.

Now consider your application. Are you able to insert rows into your tables via your application
at anywhere near the rate you just calculated? Many applications run at less than 5% of the rate
the environment will support. They are bogged down by unneeded indexes or the type of code
design issues described earlier in this chapter. If their load rate decreases—say from 40 rows per
second to 20 rows per second—the tuning focus should not be solely on how that decrease
occurred but also on how the application managed to get only 40 rows per second inserted in
an environment that supports thousands of rows inserted per second.

Make All Tests Repeatable
Most regulated industries have standards for tests. Their standards are so reasonable that all testing
efforts should follow them. Among the standards is that all tests must be repeatable. To be compliant
with the standards, you must be able to re-create the data set used, the exact action performed,
the exact result expected, and the exact result seen and recorded. Preproduction tests for validation
of the application must be performed on the production hardware. Moving the application to
different hardware requires retesting the application. The tester and the business users must sign
off on all tests.

Most people, on hearing those restrictions, would agree that they are good steps to take in
any testing process. Indeed, your business users may be expecting that the people developing the
application are following such standards even if they are not required by the industry. But are they
followed, and if not, then why not? There are two commonly cited reasons for not following such
standards: time and cost. Such tests require planning, personnel resources, business user
involvement, and time for execution and documentation. Testing on production-caliber hardware
may require the purchase of additional servers. Those are the most evident costs—but what is the
business cost of failing to perform such tests? The testing requirements for validated systems in
the U.S. pharmaceutical industry were implemented because those systems directly impact the
integrity of critical products such as the safety of the blood supply. If your business has critical
components served by your application (and if it does not, then why are you building the
application?), you must consider the costs of insufficient, rushed testing and communicate those
potential costs to the business users. The evaluation of the risks of incorrect data or unacceptably
slow performance must involve the business users. In turn, that may lead to an extended deadline
to support proper testing.

In many cases, the rushed testing cycle occurs because there was not a testing standard in
place at the start of the project. If there is a consistent, thorough, and well-documented testing
standard in place at the enterprise level when the project starts, then the testing cycle will be
shorter when it is finally executed. Testers will have known long in advance that repeatable data
sets will be needed. Templates for tests will be available. If there is an issue with any test result,
or if the application needs to be retested following a change, the test can be repeated. And the
application users will know that the testing is robust enough to simulate the production usage of
the application. If the system fails the tests for performance reasons, the problem may be a design

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 781

issue (as described in the previous sections) or a problem with an individual query. In the following
sections you will see how to display the execution path for a SQL statement, the major operations
involved, and the related hints you can employ when tuning SQL.

Generating and Reading Explain Plans
You can display the execution path for a query in either of two ways:

The set autotrace on command

The explain plan command

In the following sections, both commands are explained; for the remainder of the chapter, the
set autotrace on command will be used to illustrate execution paths as reported by the optimizer.

Using set autotrace on
You can have the execution path automatically displayed for every transaction you execute within
SQL*Plus. The set autotrace on command will cause each query, after being executed, to display
both its execution path and high-level trace information about the processing involved in resolving
the query.

To use the set autotrace on command, you must have first created a PLAN_TABLE table within
your account. The PLAN_TABLE structure may change with each release of Oracle, so you should
drop and re-create your copy of PLAN_TABLE with each Oracle upgrade. The commands shown
in the following listing will drop any existing PLAN_TABLE and replace it with the current version.

NOTE
In order for you to use set autotrace on, your DBA must have first
created the PLUSTRACE role in the database and granted that role to
your account. The PLUSTRACE role gives you access to the underlying
performance-related views in the Oracle data dictionary. The script to
create the PLUSTRACE role is called plustrce.sql, usually found in the
/sqlplus/admin directory under the Oracle software home directory.

The file that creates the PLAN_TABLE table is located in the /rdbms/admin subdirectory under
the Oracle software home directory.

drop table PLAN_TABLE;
@$ORACLE_HOME/rdbms/admin/utlxplan.sql

When you use set autotrace on, records are inserted into your copy of the PLAN_TABLE to
show the order of operations executed. After the query completes, the selected data is displayed.
After the query’s data is displayed, the order of operations is shown followed by statistical
information about the query processing. The following explanation of set autotrace on focuses on
the section of the output that displays the order of operations.

NOTE
To show the explain plan output without running the query, use the
set autotrace trace explain command.

■

■

782 Part VII: Hitchhiker’s Guides

If you use the set autotrace on command with its default options, you will not see the
explain plan for your queries until after they complete. The explain plan command (described
next) shows the execution paths without running the queries first. Therefore, if the performance
of a query is unknown, you may choose to use the explain plan command before running it. If
you are fairly certain that the performance of a query is acceptable, use set autotrace on to
verify its execution path.

NOTE
When you use the set autotrace on command, Oracle will
automatically delete the records it inserts into PLAN_TABLE
once the execution path has been displayed.

If you use the parallel query options or query remote databases, an additional section of the
set autotrace on output will show the text of the queries executed by the parallel query server
processes or the query executed within the remote database.

To disable the autotrace feature, use the set autotrace off command.
In order to use set autotrace, you must be able to access the database via SQL*Plus. If you

have SQL access but not SQL*Plus access, you can use explain plan instead, as described in the
next section.

In the following example, a full table scan of the BOOKSHELF table is executed. The rows of
output are not displayed in this output, for the sake of brevity. The order of operations is displayed
below the query.

select *
 from BOOKSHELF;

Execution Plan
--
 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=1 Card=31 Bytes=12
 40)
 1 0 TABLE ACCESS (FULL) OF 'BOOKSHELF' (TABLE) (Cost=4 Card=31
 Bytes=1240)

The “Execution Plan” shows the steps the optimizer will use to execute the query. Each step is
assigned an ID value (starting with 0). The second number shows the “parent” operation of the
current operation. Thus, for the preceding example, the second operation—the TABLE ACCESS
(FULL) OF 'BOOKSHELF'—has a parent operation (the select statement itself). Each step displays
a cumulative cost for that step plus all of its child steps.

You can generate the order of operations for DML commands, too. In the following example,
a delete statement’s execution path is shown:

delete
 from BOOKSHELF_AUTHOR;

Execution Plan
--
 0 DELETE STATEMENT Optimizer=ALL_ROWS (Cost=4 Card=37 Bytes=12
 58)
 1 0 DELETE OF 'BOOKSHELF_AUTHOR'
 2 1 TABLE ACCESS (FULL) OF 'BOOKSHELF_AUTHOR' (TABLE) (Cost=
 4 Card=37 Bytes=1258)

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 783

The delete command, as expected, involves a full table scan. If you have analyzed your
tables, the Execution Plan column’s output shows the number of rows from each table, the
relative cost of each step, and the overall cost of the operation. The costs shown at the steps are
cumulative; they are the costs of that step plus all of its child steps. You could use that information
to pinpoint the operations that are the most costly during the processing of the query.

In the following example, a slightly more complex query is executed. An index-based query is
made against the BOOKSHELF table, using its primary key index.

select /*+ INDEX(bookshelf) */ *
 from BOOKSHELF
 where Title like 'M%';

Execution Plan
--
 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=3 Card=2 Bytes=80)
 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'BOOKSHELF' (TABLE) (Cost
 =3 Card=2 Bytes=80)
 2 1 INDEX (RANGE SCAN) OF 'SYS_C004834' (INDEX (UNIQUE)) (Co
 st=1 Card=2)

This listing includes three operations. Operation #2, the INDEX RANGE SCAN of the
BOOKSHELF primary key index (its name was system-generated), provides data to operation #1,
the TABLE ACCESS BY INDEX ROWID operation. The data returned from the TABLE ACCESS BY
INDEX ROWID is used to satisfy the query (operation #0).

The preceding output also shows that the optimizer is automatically indenting each
successive step within the execution plan. In general, you should read the list of operations from
the inside out and from top to bottom. Thus, if two operations are listed, the one that is the most
indented will usually be executed first. If the two operations are at the same level of indentation,
then the one that is listed first (with the lowest operation number) will be executed first.

NOTE
Many factors influence the choices the optimizer makes when
selecting an execution path for your query. When you execute the
examples shown here in your database, the optimizer may choose
a different path than is shown in the examples. That’s okay; the
optimizer is considering your database, environment, parameter
settings, and options when determining which path to choose.

In the following example, BOOKSHELF and BOOKSHELF_AUTHOR are joined without the
benefit of indexes. Oracle will use a join operation called a merge join, in which each table is
separately sorted prior to the two sorted row sets being joined:

select /*+ USE_MERGE (bookshelf, bookshelf_author)*/
 BOOKSHELF_AUTHOR.AuthorName
 from BOOKSHELF, BOOKSHELF_AUTHOR
 where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

Execution Plan
--
 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=7 Card=5 Bytes=320)

784 Part VII: Hitchhiker’s Guides

 1 0 MERGE JOIN (Cost=7 Card=5 Bytes=320)
 2 1 INDEX (FULL SCAN) OF 'SYS_C004834' (INDEX (UNIQUE)) (Cos
 t=1 Card=31)
 3 1 SORT (JOIN) (Cost=5 Card=37 Bytes=1258)
 4 3 TABLE ACCESS (FULL) OF 'BOOKSHELF_AUTHOR' (TABLE) (Cos
 t=1 Card=37 Bytes=1258)

The indentation here may seem confusing at first, but the operational parentage information
provided by the operation numbers clarifies the order of operations. The innermost operations are
performed first—the TABLE ACCESS FULL and INDEX FULL SCAN operations. Next, the full table
scan’s data is processed via a SORT JOIN operation (in operation #4), while the output from the
index scan (which is sorted already) is used as the basis for a TABLE ACCESS BY INDEX ROWID
(step 2). Both step 2 and step 4 have operation #1, the MERGE JOIN, as their parent operations.
The MERGE JOIN operation provides data back to the user via the select statement.

If the same query were run as a NESTED LOOPS join, a different execution path would be
generated. As shown in the following listing, the NESTED LOOPS join would be able to take
advantage of the primary key index on the Title column of the BOOKSHELF table.

NOTE
Based on the size of the tables and the available statistics, Oracle may
choose to perform a different type of join, called a hash join, instead
of a NESTED LOOPS join.

select /*+ INDEX(bookshelf) */
 BOOKSHELF_AUTHOR.AuthorName
 from BOOKSHELF, BOOKSHELF_AUTHOR
 where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title

Execution Plan
--
 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=4 Card=37 Bytes=19
 24)
 1 0 NESTED LOOPS (Cost=4 Card=37 Bytes=1924)
 2 1 TABLE ACCESS (FULL) OF 'BOOKSHELF_AUTHOR' (TABLE) (Cost=
 4 Card=37 Bytes=1258)
 3 1 INDEX (UNIQUE SCAN) OF 'SYS_C004834' (INDEX (UNIQUE)) (C
 ost=1 Card=1 Bytes=18)

NESTED LOOPS joins are among the few execution paths that do not follow the “read from
the inside out” rule of indented execution paths. To read the NESTED LOOPS execution path
correctly, examine the order of the operations that directly provide data to the NESTED LOOPS
operation (in this case, operations #2 and #3). Of those two operations, the operation with the
lowest number (#2, in this example) is executed first. Thus, the TABLE ACCESS FULL of the
BOOKSHELF_AUTHOR table is executed first (BOOKSHELF_AUTHOR is the driving table for
the query).

Once you have established the driving table for the query, the rest of the execution path can
be read from the inside out and from top to bottom. The second operation performed is the
INDEX UNIQUE SCAN of the BOOKSHELF primary key index. The NESTED LOOPS operation
is then able to return rows to the user.

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 785

If a hash join had been selected instead of a NESTED LOOPS join, the execution path would
have been

select /*+ USE_HASH (bookshelf) */
 BOOKSHELF_AUTHOR.AuthorName
 from BOOKSHELF, BOOKSHELF_AUTHOR
 where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

Execution Plan
--
 0 SELECT STATEMENT Optimizer=ALL_ROWS (Cost=6 Card=37 Bytes=19
 24)
 1 0 HASH JOIN (Cost=6 Card=37 Bytes=1924)
 2 1 INDEX (FULL SCAN) OF 'SYS_C004834' (INDEX (UNIQUE)) (Cos
 t=2 Card=31 Bytes=558)
 3 1 TABLE ACCESS (FULL) OF 'BOOKSHELF_AUTHOR' (TABLE) (Cost=
 1 Card=37 Bytes=1258)

The hash join execution path shows that two separate scans are performed. Since the two
operations are listed at the same level of indentation, the BOOKSHELF table’s primary key
index is scanned first (since it has the lower operation number).

Using explain plan
You can use the explain plan command to generate the execution path for a query without first
running the query. To use the explain plan command, you must first create a PLAN_TABLE table
in your schema (see the previous instructions on creating the table). To determine the execution
path of a query, prefix the query with the following SQL:

explain plan
for

An example of the execution of the explain plan command is shown in the following listing:

explain plan
for
select /*+ USE_HASH (bookshelf) */
 BOOKSHELF_AUTHOR.AuthorName
 from BOOKSHELF, BOOKSHELF_AUTHOR
 where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

When the explain plan command is executed, records will be inserted into PLAN_TABLE. You
can query PLAN_TABLE directly or you can use the DBMS_XPLAN package to format the results
for you. The use of the DBMS_XPLAN package is shown in the following listing:

select * from table(DBMS_XPLAN.Display);

NOTE
The utlxplp.sql script, located in the $ORACLE_HOME/rdbms/admin
directory, will display the explain plan for the most recently executed
command by calling the DBMS_XPLAN.Display procedure.

786 Part VII: Hitchhiker’s Guides

The result is a formatted explain plan listing:

PLAN_TABLE_OUTPUT
--

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |

0	SELECT STATEMENT		37	1924	4 (25)	00:00:01
* 1	HASH JOIN		37	1924	4 (25)	00:00:01
2	INDEX FULL SCAN	SYS_C004834	32	608	1 (100)	00:00:01
3	TABLE ACCESS FULL	BOOKSHELF_AUTHOR	37	1258	4 (25)	00:00:01

Predicate Information (identified by operation id):

 1 - access("BOOKSHELF"."TITLE"="BOOKSHELF_AUTHOR"."TITLE")

The output includes the Cost column, which displays the relative “cost” of each step and its
child steps. It also includes the ID values, indenting to show the relationships between steps, and
an additional section listing the limiting conditions applied at each step.

When tuning a query, you should watch for steps that scan many rows but only return a small
number of rows. For example, you should avoid performing a full table scan on a multimillion
row table in order to return three rows. You can use the explain plan output to identify those steps
that deal with the greatest number of rows.

Major Operations Within Explain Plans
As illustrated in the preceding listings, the explain plan for a query provides insight into the
methods Oracle uses to retrieve and process rows. In the following sections you will see
descriptions of the most commonly used operations.

TABLE ACCESS FULL
A full table scan sequentially reads each row of a table. The optimizer calls the operation used
during a full table scan a TABLE ACCESS FULL. To optimize the performance of a full table scan,
Oracle reads multiple blocks during each database read.

A full table scan may be used whenever there is no where clause on a query. For example,
the following query selects all of the rows from the BOOKSHELF table:

select *
 from BOOKSHELF;

To resolve the preceding query, Oracle will perform a full table scan of the BOOKSHELF
table. If the BOOKSHELF table is small, a full table scan of BOOKSHELF may be fairly quick,
incurring little performance cost. However, as BOOKSHELF grows in size, the cost of performing
a full table scan grows. If you have multiple users performing full table scans of BOOKSHELF,
then the cost associated with the full table scans grows even faster.

With proper planning, full table scans need not be performance problems. You should work
with your database administrators to make sure the database has been configured to take
advantage of features such as Parallel Query and multiblock reads. Unless you have properly
configured your environment for full table scans, you should carefully monitor their use.

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 787

NOTE
Depending on the data being selected, the optimizer may choose to
use a full scan of an index in place of a full table scan.

TABLE ACCESS BY INDEX ROWID
To improve the performance of table accesses, you can use Oracle operations that access rows by
their ROWID values. The ROWID records the physical location where the row is stored. Oracle
uses indexes to correlate data values with ROWID values—and thus with physical locations of the
data. Given the ROWID of a row, Oracle can use the TABLE ACCESS BY INDEX ROWID operation
to retrieve the row.

When you know the ROWID, you know exactly where the row is physically located. You can
use indexes to access the ROWID information, as described in the next major section, “Operations
That Use Indexes.” Because indexes provide quick access to ROWID values, they help to improve
the performance of queries that make use of indexed columns.

Related Hints
Within a query, you can specify hints that direct the CBO in its processing of the query. To specify
a hint, use the syntax shown in the following example. Immediately after the select keyword,
enter the following string:

/*+

Next, add the hint, such as

FULL(bookshelf)

Close the hint with the following string:

*/

Hints use Oracle’s syntax for comments within queries, with the addition of the + sign at the
start of the hint. Throughout this chapter, the hints relevant to each operation will be described.
For table accesses, the FULL hint tells Oracle to perform a full table scan (the TABLE ACCESS
FULL operation) on the listed table, as shown in the following listing:

select /*+ FULL(bookshelf) */ *
 from BOOKSHELF
 where Title like 'T%';

If you did not use the FULL hint, Oracle would normally plan to use the primary key index on
the Title column to resolve this query. Since the table is presently small, the full table scan is not
costly. As the table grows, you would probably favor the use of a ROWID-based access for this
query.

Operations That Use Indexes
Within Oracle are two major types of indexes: unique indexes, in which each row of the indexed
table contains a unique value for the indexed column(s), and nonunique indexes, in which the
rows’ indexed values can repeat. The operations used to read data from the indexes depend on
the type of index in use and the way in which you write the query that accesses the index.

788 Part VII: Hitchhiker’s Guides

Consider the BOOKSHELF table:

create table BOOKSHELF
(Title VARCHAR2(100) primary key,
Publisher VARCHAR2(20),
CategoryName VARCHAR2(20),
Rating VARCHAR2(2),
constraint CATFK foreign key (CategoryName)
references CATEGORY(CategoryName));

The Title column is the primary key for the BOOKSHELF table—that is, it uniquely identifies each
row, and each attribute is dependent on the Title value.

Whenever a PRIMARY KEY or UNIQUE constraint is created, Oracle creates a unique index
to enforce uniqueness of the values in the column. As defined by the create table command, a
PRIMARY KEY constraint will be created on the BOOKSHELF table. The index that supports the
primary key will be given a system-generated name, since the constraint was not explicitly
named.

You can create indexes on other columns of the BOOKSHELF table manually. For example,
you could create a nonunique index on the CategoryName column via the create index command:

create index I_BOOKSHELF_CATEGORY
 on BOOKSHELF(CategoryName)
tablespace INDEXES
compute statistics;

The BOOKSHELF table now has two indexes on it: a unique index on the Title column, and a
nonunique index on the CategoryName column. One or more of the indexes could be used during
the resolution of a query, depending on how the query is written and executed. As part of the index
creation, its statistics were gathered via the compute statistics clause. Since the table is already
populated with rows, you do not need to execute a separate command to analyze the index.

INDEX UNIQUE SCAN
To use an index during a query, your query must be written to allow the use of an index. In most
cases, you allow the optimizer to use an index via the where clause of the query. For example,
the following query could use the unique index on the Title column:

select *
 from BOOKSHELF
 where Title = 'INNUMERACY';

Internally, the execution of the preceding query will be divided into two steps. First, the Title
column index will be accessed via an INDEX UNIQUE SCAN operation. The ROWID value that
matches the title 'INNUMERACY' will be returned from the index; that ROWID value will then be
used to query BOOKSHELF via a TABLE ACCESS BY INDEX ROWID operation.

If all of the columns selected by the query had been contained within the index, then Oracle
would not have needed to use the TABLE ACCESS BY INDEX ROWID operation; since the data
would be in the index, the index would be all that is needed to satisfy the query. Because the
query selected all columns from the BOOKSHELF table, and the index did not contain all of the
columns of the BOOKSHELF table, the TABLE ACCESS BY INDEX ROWID operation was necessary.

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 789

INDEX RANGE SCAN
If you query the database based on a range of values, or if you query using a nonunique index,
then an INDEX RANGE SCAN operation is used to query the index.

Consider the BOOKSHELF table again, with a unique index on its Title column. A query of the
form

 select Title
 from BOOKSHELF
 where Title like 'M%';

would return all Title values beginning with M. Since the where clause uses the Title column, the
primary key index on the Title column can be used while resolving the query. However, a unique
value is not specified in the where clause; a range of values is specified. Therefore, the unique
primary key index will be accessed via an INDEX RANGE SCAN operation. Because INDEX
RANGE SCAN operations require reading multiple values from the index, they are less efficient
than INDEX UNIQUE SCAN operations.

In the preceding example, only the Title column was selected by the query. Since the values
for the Title column are stored in the primary key index—which is being scanned—there is no
need for the database to access the BOOKSHELF table directly during the query execution. The
INDEX RANGE SCAN of the primary key index is the only operation required to resolve the query.

The CategoryName column of the BOOKSHELF table has a nonunique index on its values.
If you specify a limiting condition for CategoryName values in your query’s where clause,
an INDEX RANGE SCAN of the CategoryName index may be performed. Since the
BOOKSHELF$CATEGORY index is a nonunique index, the database cannot perform an
INDEX UNIQUE SCAN on BOOKSHELF$CATEGORY, even if CategoryName is equated
to a single value in your query.

When Indexes Are Used
Since indexes have a great impact on the performance of queries, you should be aware of the
conditions under which an index will be used to resolve a query. The following sections describe
the conditions that can cause an index to be used while resolving a query.

If You Set an Indexed Column Equal to a Value
In the BOOKSHELF table, the CategoryName column has a nonunique index named
BOOKSHELF$CATEGORY. A query that compares the CategoryName column to a value
will be able to use the BOOKSHELF$CATEGORY index.

The following query compares the CategoryName column to the value 'ADULTNF':

select Title
 from BOOKSHELF
 where CategoryName = 'ADULTNF';

Since the BOOKSHELF$CATEGORY index is a nonunique index, this query may return
multiple rows, and an INDEX RANGE SCAN operation may be used when reading data from it.
Depending on the table’s statistics, Oracle may choose to perform a full table scan instead.

If it uses the index, the execution of the preceding query may include two operations: an
INDEX RANGE SCAN of BOOKSHELF$CATEGORY (to get the ROWID values for all of the rows

790 Part VII: Hitchhiker’s Guides

with 'ADULTNF' values in the CategoryName column), followed by a TABLE ACCESS BY INDEX
ROWID of the BOOKSHELF table (to retrieve the Title column values).

If a column has a unique index created on it, and the column is compared to a value with an
= sign, then an INDEX UNIQUE SCAN will be used instead of an INDEX RANGE SCAN.

If You Specify a Range of Values for an Indexed Column
You do not need to specify explicit values in order for an index to be used. The INDEX RANGE
SCAN operation can scan an index for ranges of values. In the following query, the Title column
of the BOOKSHELF table is queried for a range of values (those that start with M):

select Title
 from BOOKSHELF
 where Title like 'M%';

A range scan can also be performed when using the > or < operators:

select Title
 from BOOKSHELF
 where Title > 'M';

When specifying a range of values for a column, an index will not be used to resolve the
query if the first character specified is a wildcard. The following query will not perform an INDEX
RANGE SCAN on the available indexes:

select Publisher
 from BOOKSHELF
 where Title like '%M%';

Since the first character of the string used for value comparisons is a wildcard, the index
cannot be used to find the associated data quickly. Therefore, a full table scan (TABLE ACCESS
FULL operation) will be performed instead. Depending on the statistics for the table and the
index, Oracle may choose to perform a full scan of the index instead. In this example, if the
selected column is the Title column, the optimizer may choose to perform a full scan of the
primary key index rather than a full scan of the BOOKSHELF table.

If No Functions Are Performed on the Column in the where Clause
Consider the following query, which will use the BOOKSHELF$CATEGORY index:

select COUNT(*)
 from BOOKSHELF
 where CategoryName = 'ADULTNF';

NOTE
Given the size of the BOOKSHELF table, the optimizer will usually
elect to perform a full table scan rather than use an index for this
lookup. For larger tables, the index-based approach should be chosen.

What if you did not know whether the values in the CategoryName column were stored as
uppercase, mixed case, or lowercase values? In that event, you may write the query as follows:

select COUNT(*)
 from BOOKSHELF
 where UPPER(CategoryName) = 'ADULTNF';

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 791

The UPPER function changes the Manager values to uppercase before comparing them to the
value 'ADULTNF'. However, using the function on the column may prevent the optimizer from
using an index on that column. The preceding query (using the UPPER function) will perform a
TABLE ACCESS FULL of the BOOKSHELF table unless you have created a function-based index
on UPPER(CategoryName); see Chapter 17 for details on function-based indexes.

If you concatenate two columns together or a string to a column, then indexes on those
columns will not be used. The index stores the real value for the column, and any change to that
value will prevent the optimizer from using the index.

If No IS NULL or IS NOT NULL Checks Are Used for the Indexed Column
NULL values are not stored in indexes. Therefore, the following query will not use an index; there
is no way the index could help to resolve the query:

select Title
 from BOOKSHELF
 where CategoryName is null;

Since CategoryName is the only column with a limiting condition in the query, and the
limiting condition is a NULL check, the BOOKSHELF$CATEGORY index will not be used and
a TABLE ACCESS FULL operation will be used to resolve the query.

What if an IS NOT NULL check is performed on the column? All of the non-NULL values for
the column are stored in the index; however, the index search would not be efficient. To resolve
the query, the optimizer would need to read every value from the index and access the table for
each row returned from the index. In most cases, it would be more efficient to perform a full table
scan than to perform an index scan (with associated TABLE ACCESS BY INDEX ROWID operations)
for all of the values returned from the index. Therefore, the following query may not use an index:

select Title
 from BOOKSHELF
 where CategoryName is not null;

If the selected columns are in an index, the optimizer may choose to perform a full index scan
in place of the full table scan.

If Equivalence Conditions Are Used
In the examples in the prior sections, the Title value was compared to a value with an = sign, as in
this query:

select *
 from BOOKSHELF
 where Title = 'INNUMERACY';

What if you wanted to select all of the records that did not have a Title of 'INNUMERACY'?
The = would be replaced with !=, and the query would now be

select *
 from BOOKSHELF
 where Title != 'INNUMERACY';

When resolving the revised query, the optimizer may not use an index. Indexes are used
when values are compared exactly to another value—when the limiting conditions are equalities,
not inequalities. The optimizer would only choose an index in this example if it decided the full

792 Part VII: Hitchhiker’s Guides

index scan (plus the TABLE ACCESS BY INDEX ROWID operations to get all the columns) would
be faster than a full table scan.

Another example of an inequality is the not in clause, when used with a subquery. The
following query selects values from the BOOKSHELF table for books that aren’t written by
Stephen Jay Gould:

select *
 from BOOKSHELF
 where Title NOT IN
(select Title
 from BOOKSHELF_AUTHOR
 where AuthorName = 'STEPHEN JAY GOULD');

In some cases, the query in the preceding listing would not be able to use an index on the Title
column of the BOOKSHELF table, since it is not set equal to any value. Instead, the BOOKSHELF
.Title value is used with a not in clause to eliminate the rows that match those returned by the
subquery. To use an index, you should set the indexed column equal to a value. In many cases,
Oracle will internally rewrite the not in as a not exists clause, allowing the query to use an index.
The following query, which uses an in clause, could use an index on the BOOKSHELF.Title column
or could perform a nonindexed join between the tables; the optimizer will choose the path with
the lowest cost based on the available statistics:

select *
 from BOOKSHELF
 where Title IN
(select Title
 from BOOKSHELF_AUTHOR
 where AuthorName = 'STEPHEN JAY GOULD');

If the Leading Column of a Multicolumn Index Is Set Equal to a Value
An index can be created on a single column or on multiple columns. If the index is created on
multiple columns, the index will be used if the leading column of the index is used in a limiting
condition of the query.

If your query specifies values for only the nonleading columns of the index, the index can be
used via the index skip-scan feature introduced in Oracle9i. Skip-scan index access enables the
optimizer to potentially use a concatenated index even if its leading column is not listed in the
where clause. You may need to use the INDEX hint (described in the next section) to tell the
optimizer to use the index for a skip-scan access. You can use the INDEX_SS hint to suggest a
skip-scan index access.

If the MAX or MIN Function Is Used
If you select the MAX or MIN value of an indexed column, the optimizer may use the index to
quickly find the maximum or minimum value for the column.

If the Index Is Selective
All of the previous rules for determining whether an index will be used consider the syntax of the
query being performed and the structure of the index available. The optimizer can use the selectivity
of the index to judge whether using the index will lower the cost of executing the query.

In a highly selective index, a small number of records are associated with each distinct column
value. For example, if there are 100 records in a table and 80 distinct values for a column in that

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 793

table, the selectivity of an index on that column is 80 / 100 = 0.80. The higher the selectivity, the
fewer the number of rows returned for each distinct value in the column.

The number of rows returned per distinct value is important during range scans. If an index
has a low selectivity, then the many INDEX RANGE SCAN operations and TABLE ACCESS BY
INDEX ROWID operations used to retrieve the data may involve more work than a TABLE
ACCESS FULL of the table.

The selectivity of an index is not considered by the optimizer unless you have analyzed the
index. The optimizer can use histograms to make judgments about the distribution of data within
a table. For example, if the data values are heavily skewed so that most of the values are in a very
small data range, the optimizer may avoid using the index for values in that range while using the
index for values outside the range.

Related Hints
Several hints are available to direct the optimizer in its use of indexes. The INDEX hint is the most
commonly used index-related hint. The INDEX hint tells the optimizer to use an index-based scan
on the specified table. You do not need to mention the index name when using the INDEX hint,
although you can list specific indexes if you choose.

For example, the following query uses the INDEX hint to suggest the use of an index on the
BOOKSHELF table during the resolution of the query:

select /*+ index(bookshelf bookshelf$category) */ Title
 from BOOKSHELF
 where CategoryName = 'ADULTNF';

According to the rules provided earlier in this section, the preceding query should use the
index without the hint being needed. However, if the index is nonselective or the table is small,
the optimizer may choose to ignore the index. If you know that the index is selective for the data
values given, you can use the INDEX hint to force an index-based data access path to be used.

In the hint syntax, name the table (or its alias, if you give the table an alias) and, optionally,
the name of the suggested index. The optimizer may choose to disregard any hints you provide.

If you do not list a specific index in the INDEX hint, and multiple indexes are available for the
table, the optimizer evaluates the available indexes and chooses the index whose scan is likely to
have the lowest cost. The optimizer could also choose to scan several indexes and merge them
via the AND-EQUAL operation.

A second hint, INDEX_ASC, functions the same as the INDEX hint: It suggests an ascending
index scan for resolving queries against specific tables. A third index-based hint, INDEX_DESC,
tells the optimizer to scan the index in descending order (from its highest value to its lowest). To
suggest an index fast full scan, use the INDEX_FFS hint. The ROWID hint is similar to the INDEX
hint, suggesting the use of the TABLE ACCESS BY INDEX ROWID method for the specified table.
The AND_EQUAL hint suggests the optimizer merge the results of multiple index scans.

Additional Tuning Issues for Indexes
When you’re creating indexes on a table, two issues commonly arise: Should you use multiple
indexes or a single concatenated index, and if you use a concatenated index, which column
should be the leading column of the index?

In general, it is faster for the optimizer to scan a single concatenated index than to scan and
merge two separate indexes. The more rows returned from the scan, the more likely the concatenated
index scan will outperform the merge of the two index scans. As you add more columns to the
concatenated index, it becomes less efficient for range scans.

794 Part VII: Hitchhiker’s Guides

For the concatenated index, which column should be the leading column of the index? The
leading column should be very frequently used as a limiting condition against the table, and it
should be highly selective. In a concatenated index, the optimizer will base its estimates of the
index’s selectivity (and thus its likelihood of being used) on the selectivity of the leading column
of the index. Of these two criteria—being used in limiting conditions and being the most selective
column—the first is more important.

A highly selective index based on a column that is never used in limiting conditions will
never be used. A poorly selective index on a column that is frequently used in limiting conditions
will not benefit your performance greatly. If you cannot achieve the goal of creating an index that
is both highly selective and frequently used, then you should consider creating separate indexes
for the columns to be indexed.

Many applications emphasize online transaction processing over batch processing; there may
be many concurrent online users but a small number of concurrent batch users. In general, index-
based scans allow online users to access data more quickly than if a full table scan had been
performed. When creating your application, you should be aware of the kinds of queries executed
within the application and the limiting conditions in those queries. If you are familiar with the
queries executed against the database, you may be able to index the tables so that the online
users can quickly retrieve the data they need. When the database performance directly impacts
the online business process, the application should perform as few database accesses as possible.

Operations That Manipulate Data Sets
Once the data has been returned from the table or index, it can be manipulated. You can group
the records, sort them, count them, lock them, or merge the results of the query with the results of
other queries (via the union, minus, and intersect operators). In the following sections, you will
see how the data manipulation operations are used.

Most of the operations that manipulate sets of records do not return records to the users until
the entire operation is completed. For example, sorting records while eliminating duplicates
(known as a SORT UNIQUE NOSORT operation) cannot return records to the user until all of the
records have been evaluated for uniqueness. On the other hand, index scan operations and table
access operations can return records to the user as soon as a record is found.

When an INDEX RANGE SCAN operation is performed, the first row returned from the query
passes the criteria of the limiting conditions set by the query—there is no need to evaluate the
next record returned prior to displaying the first record. If a set operation—such as a sorting
operation—is performed, then the records will not be immediately displayed. During set
operations, the user will have to wait for all rows to be processed by the operation. Therefore,
you should limit the number of set operations performed by queries used by online users (to limit
the perceived response time of the application). Sorting and grouping operations are most
common in large reports and batch transactions.

Ordering Rows
Three of Oracle’s internal operations sort rows without grouping the rows. The first is the SORT
ORDER BY operation, which is used when an order by clause is used in a query. For example,
the BOOKSHELF table is queried and sorted by Publisher:

select Title from BOOKSHELF
 order by Publisher;

When the preceding query is executed, the optimizer will retrieve the data from the BOOKSHELF
table via a TABLE ACCESS FULL operation (since there are no limiting conditions for the query, all

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 795

rows will be returned). The retrieved records will not be immediately displayed to the user; a SORT
ORDER BY operation will sort the records before the user sees any results.

Occasionally, a sorting operation may be required to eliminate duplicates as it sorts records.
For example, what if you only want to see the distinct Publisher values in the BOOKSHELF table?
The query would be as follows:

select DISTINCT Publisher from BOOKSHELF;

As with the prior query, this query has no limiting conditions, so a TABLE ACCESS FULL operation
will be used to retrieve the records from the BOOKSHELF table. However, the distinct keyword
tells the optimizer to only return the distinct values for the Publisher column.

To resolve the query, the optimizer takes the records returned by the TABLE ACCESS FULL
operation and sorts them via a SORT UNIQUE NOSORT operation. No records will be displayed
to the user until all of the records have been processed.

In addition to being used by the distinct keyword, the SORT UNIQUE NOSORT operation is
invoked when the minus, intersect, and union (but not union all) functions are used.

A third sorting operation, SORT JOIN, is always used as part of a MERGE JOIN operation and
is never used on its own. The implications of SORT JOIN on the performance of joins are described
in “Operations That Perform Joins,” later in this chapter.

Grouping Rows
Two of Oracle’s internal operations sort rows while grouping like records together. The two
operations—SORT AGGREGATE and SORT GROUP BY—are used in conjunction with grouping
functions (such as MIN, MAX, and COUNT). The syntax of the query determines which operation
is used.

In the following query, the maximum Publisher value, alphabetically, is selected from the
BOOKSHELF table:

select MAX(Publisher)
 from BOOKSHELF;

To resolve the query, the optimizer will perform two separate operations. First, a TABLE ACCESS
FULL operation will select the Publisher values from the table. Second, the rows will be analyzed
via a SORT AGGREGATE operation, which will return the maximum Publisher value to the user.

If the Publisher column were indexed, the index could be used to resolve queries of the
maximum or minimum value for the index (as described in “Operations That Use Indexes,” earlier
in this chapter). Since the Publisher column is not indexed, a sorting operation is required. The
maximum Publisher value will not be returned by this query until all of the records have been
read and the SORT AGGREGATE operation has completed.

The SORT AGGREGATE operation was used in the preceding example because there is no
group by clause in the query. Queries that use the group by clause use an internal operation
named SORT GROUP BY.

What if you want to know the number of titles from each publisher? The following query
selects the count of each Publisher value from the BOOKSHELF table using a group by clause:

select Publisher, COUNT(*)
 from BOOKSHELF
 group by Publisher;

This query returns one record for each distinct Publisher value. For each Publisher value, the
number of its occurrences in the BOOKSHELF table will be calculated and displayed in the
COUNT(*) column.

796 Part VII: Hitchhiker’s Guides

To resolve this query, Oracle will first perform a full table scan (there are no limiting
conditions for the query). Since a group by clause is used, the rows returned from the TABLE
ACCESS FULL operation will be processed by a SORT GROUP BY operation. Once all the rows
have been sorted into groups and the count for each group has been calculated, the records will
be returned to the user. As with the other sorting operations, no records are returned to the user
until all of the records have been processed.

The operations to this point have involved simple examples—full table scans, index scans,
and sorting operations. Most queries that access a single table use the operations described in the
previous sections. When tuning a query for an online user, avoid using the sorting and grouping
operations that force users to wait for records to be processed. When possible, write queries that
allow application users to receive records quickly as the query is resolved. The fewer sorting and
grouping operations you perform, the faster the first record will be returned to the user. In a batch
transaction, the performance of the query is measured by its overall time to complete, not the
time to return the first row. As a result, batch transactions may use sorting and grouping operations
without impacting the perceived performance of the application.

If your application does not require all of the rows to be sorted prior to presenting query
output, consider using the FIRST_ROWS hint. FIRST_ROWS tells the optimizer to favor execution
paths that do not perform set operations.

UNION, MINUS, and INTERSECT
The union, minus, and intersect clauses allow the results of multiple queries to be processed and
compared. Each of the functions has an associated operation—the names of the operations are
UNION, MINUS, and INTERSECTION.

The following query selects all of the Title values from the BOOKSHELF table and from the
BOOK_ORDER table:

select Title
 from BOOKSHELF
 UNION
select Title
 from BOOK_ORDER;

When the preceding query is executed, the optimizer will execute each of the queries separately,
and then combine the results. The first query is

select Title
 from BOOKSHELF

There are no limiting conditions in the query, and the Title column is indexed, so the primary key
index on the BOOKSHELF table will be scanned.

The second query is

select Title
 from BOOK_ORDER

There are no limiting conditions in the query, and the Title column is indexed, so the primary key
index on the BOOK_ORDER table will be scanned.

Since the query performs a union of the results of the two queries, the two result sets will then
be merged via a UNION-ALL operation. Using the union operator forces Oracle to eliminate
duplicate records, so the result set is processed by a SORT UNIQUE NOSORT operation before

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 797

the records are returned to the user. If the query had used a union all clause in place of union, the
SORT UNIQUE NOSORT operation would not have been necessary. The query would be

select Title
 from BOOKSHELF
 UNION ALL
select Title
 from BOOK_ORDER;

When processing the revised query, the optimizer would perform the scans required by the
two queries, followed by a UNION-ALL operation. No SORT UNIQUE NOSORT operation would
be required, since a union all clause does not eliminate duplicate records.

When processing the union query, the optimizer addresses each of the unioned queries
separately. Although the examples shown in the preceding listings all involved simple queries
with full table scans, the unioned queries can be very complex, with correspondingly complex
execution paths. The results are not returned to the user until all of the records have been
processed.

NOTE
UNION ALL is a row operation. UNION, which includes a SORT
UNIQUE NOSORT, is a set operation.

When a minus clause is used, the query is processed in a manner very similar to the
execution path used for the union example. In the following query, the Title values from the
BOOKSHELF and BOOK_ORDER tables are compared. If a Title value exists in BOOK_ORDER
but does not exist in BOOKSHELF, then that value will be returned by the query. In other words,
we want to see all of the Titles on order that we don’t already have.

select Title
 from BOOK_ORDER
 MINUS
select Title
 from BOOKSHELF;

When the query is executed, the two minused queries will be executed separately. The first of
the queries,

select Title
 from BOOK_ORDER

requires an index scan based on the BOOK_ORDER primary key. The second query,

select Title
 from BOOKSHELF

requires a full index scan of the BOOKSHELF primary key index.
To execute the minus clause, each of the sets of records returned by the full table scans is

sorted via a SORT UNIQUE NOSORT operation (in which rows are sorted and duplicates are
eliminated). The sorted sets of rows are then processed by the MINUS operation. The MINUS
operation is not performed until each set of records returned by the queries is sorted. Neither of
the sorting operations returns records until the sorting operation completes, so the MINUS

798 Part VII: Hitchhiker’s Guides

operation cannot begin until both of the SORT UNIQUE NOSORT operations have completed.
Like the union query example, the example query shown for the MINUS operation will perform
poorly for online users who measure performance by the speed with which the first row is
returned by the query.

The intersect clause compares the results of two queries and determines the rows they have
in common. The following query determines the Title values that are found in both the
BOOKSHELF and BOOK_ORDER tables:

select Title
 from BOOK_ORDER
INTERSECT
select Title
 from BOOKSHELF;

To process the INTERSECT query, the optimizer starts by evaluating each of the queries
separately. The first query,

select Title
 from BOOK_ORDER

requires a full scan against the BOOK_ORDER primary key index. The second query,

select Title
 from BOOKSHELF

requires a full scan of the BOOKSHELF primary key index. The results of the two table scans
are each processed separately by SORT UNIQUE NOSORT operations. That is, the rows from
BOOK_ORDER are sorted, and the rows from BOOKSHELF are sorted. The results of the two sorts
are compared by the INTERSECTION operation, and the Title values returned from both sorts are
returned by the intersect clause.

The execution path of a query that uses an intersect clause requires SORT UNIQUE NOSORT
operations to be used. Since SORT UNIQUE NOSORT operations do not return records to the
user until the entire set of rows has been sorted, queries using the intersect clause will have to
wait for both sorts to complete before the INTERSECTION operation can be performed. Because
of the reliance on sort operations, queries using the intersect clause will not return any records to
the user until the sorts complete.

The union, minus, and intersect clauses all involve processing sets of rows prior to returning
any rows to the user. Online users of an application may perceive that queries using these
functions perform poorly, even if the table accesses involved are tuned; the reliance on sorting
operations will affect the speed with which the first row is returned to the user.

Selecting from Views
When you create a view, Oracle stores the query that the view is based on. For example, the
following view is based on the BOOKSHELF table:

create or replace view ADULTFIC as
select Title, Publisher
 from BOOKSHELF
 where CategoryName = 'ADULTFIC';

When you select from the ADULTFIC view, the optimizer will take the criteria from your
query and combine them with the query text of the view. If you specify limiting conditions in your

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 799

query of the view, those limiting conditions will—if possible—be applied to the view’s query text.
For example, if you execute the query

select Title, Publisher
 from ADULTFIC
 where Title like 'T%';

the optimizer will combine your limiting condition

where Title like 'T%';

with the view’s query text, and it will execute the query

select Title, Publisher
 from BOOKSHELF
 where CategoryName = 'ADULTFIC'
 and Title like 'T%';

In this example, the view will have no impact on the performance of the query. When the
view’s text is merged with your query’s limiting conditions, the options available to the optimizer
increase; it can choose among more indexes and more data access paths.

The way that a view is processed depends on the query on which the view is based. If the
view’s query text cannot be merged with the query that uses the view, the view will be resolved
first before the rest of the conditions are applied. Consider the following view:

create or replace view PUBLISHER_COUNT as
select Publisher, COUNT(*) Count_Pub
 from BOOKSHELF
 group by Publisher;

The PUBLISHER_COUNT view will display one row for each distinct Publisher value in the
BOOKSHELF table along with the number of records that have that value. The Count_Pub column
of the PUBLISHER_COUNT view records the count per distinct Publisher value.

How will the optimizer process the following query of the PUBLISHER_COUNT view?

select *
 from PUBLISHER_COUNT
 where Count_Pub > 1;

The query refers to the view’s Count_Pub column. However, the query’s where clause cannot be
combined with the view’s query text, since Count_Pub is created via a grouping operation. The
where clause cannot be applied until after the result set from the PUBLISHER_COUNT view has
been completely resolved.

Views that contain grouping operations are resolved before the rest of the query’s criteria are
applied. Like the sorting operations, views with grouping operations do not return any records
until the entire result set has been processed. If the view does not contain grouping operations,
the query text may be merged with the limiting conditions of the query that selects from the view.
As a result, views with grouping operations limit the number of choices available to the optimizer
and do not return records until all of the rows are processed—and such views may perform poorly
when queried by online users.

When the query is processed, the optimizer will first resolve the view. Since the view’s query is

select Publisher, COUNT(*) Count_Pub

800 Part VII: Hitchhiker’s Guides

 from BOOKSHELF
 group by Publisher;

the optimizer will read the data from the BOOKSHELF table via a TABLE ACCESS FULL operation.
Since a group by clause is used, the rows from the TABLE ACCESS FULL operation will be
processed by a SORT GROUP BY operation. An additional operation—FILTER—will then process
the data. The FILTER operation is used to eliminate rows based on the criteria in the query:

where Count_Pub > 1

If you use a view that has a group by clause, rows will not be returned from the view until all
of the rows have been processed by the view. As a result, it may take a long time for the first row
to be returned by the query, and the perceived performance of the view by online users may be
unacceptable. If you can remove the sorting and grouping operations from your views, you
increase the likelihood that the view text can be merged with the text of the query that calls the
view—and as a result, the performance may improve (although the query may use other set
operations that negatively impact the performance).

When the query text is merged with the view text, the options available to the optimizer
increase. For example, the combination of the query’s limiting conditions with the view’s limiting
conditions may allow a previously unusable index to be used during the execution of the query.

The automatic merging of the query text and view text can be disabled via the NO_MERGE
hint. The PUSH_PRED hint forces a join predicate into a view; PUSH_SUBQ causes nonmerged
subqueries to be evaluated as early as possible in the execution path.

Selecting from Subqueries
Whenever possible, the optimizer will combine the text from a subquery with the rest of the
query. For example, consider the following query:

select Title
 from BOOKSHELF
 where Title in
(select Title from BOOK_ORDER);

The optimizer, in evaluating the preceding query, will determine that the query is functionally
equivalent to the following join of the BOOKSHELF and BOOK_ORDER tables:

select BOOKSHELF.Title
 from BOOKSHELF, BOOK_ORDER
 where BOOKSHELF.Title = BOOK_ORDER.Title;

With the query now written as a join, the optimizer has a number of operations available to
process the data (as described in the following section, “Operations That Perform Joins”).

If the subquery cannot be resolved as a join, it will be resolved before the rest of the query
text is processed against the data—similar in function to the manner in which the FILTER operation
is used for views. As a matter of fact, the FILTER operation is used for subqueries if the subqueries
cannot be merged with the rest of the query!

Subqueries that rely on grouping operations have the same tuning issues as views that contain
grouping operations. The rows from such subqueries must be fully processed before the rest of the
query’s limiting conditions can be applied.

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 801

Operations That Perform Joins
Often, a single query will need to select columns from multiple tables. To select the data from
multiple tables, the tables are joined in the SQL statement—the tables are listed in the from
clause, and the join conditions are listed in the where clause. In the following example, the
BOOKSHELF and BOOK_ORDER tables are joined, based on their common Title column values:

select BOOKSHELF.Title
 from BOOKSHELF, BOOK_ORDER
 where BOOKSHELF.Title = BOOK_ORDER.Title;

which can be rewritten as

select Title
 from BOOKSHELF inner join BOOK_ORDER
 using (Title);

or

select Title
 from BOOKSHELF natural inner join BOOK_ORDER;

The join conditions can function as limiting conditions for the join. Since the BOOKSHELF.
Title column is equated to a value in the where clause in the first listing, the optimizer may be
able to use an index on the BOOKSHELF.Title column during the execution of the query. If an
index is available on the BOOK_ORDER.Title column, that index would be considered for use by
the optimizer as well.

Oracle has three main methods for processing joins: MERGE JOIN operations, NESTED LOOPS
operations, and HASH JOIN operations. Based on the conditions in your query, the available
indexes, and the available statistics, the optimizer will choose which join operation to use.
Depending on the nature of your application and queries, you may want to force the optimizer to
use a method different from its first choice of join methods. In the following sections, you will see
the characteristics of the different join methods and the conditions under which each is most useful.

How Oracle Handles Joins of More than Two Tables
If a query joins more than two tables, the optimizer treats the query as a set of multiple joins. For
example, if your query joined three tables, then the optimizer would execute the joins by joining
two of the tables together, and then joining the result set of that join to the third table. The size of
the result set from the initial join impacts the performance of the rest of the joins. If the size of the
result set from the initial join is large, then many rows will be processed by the second join.

If your query joins three tables of varying size—such as a small table named SMALL, a
medium-sized table named MEDIUM, and a large table named LARGE—you need to be aware of
the order in which the tables will be joined. If the join of MEDIUM to LARGE will return many
rows, then the join of the result set of that join with the SMALL table may perform a great deal of
work. Alternatively, if SMALL and MEDIUM were joined first, then the join between the result set
of the SMALL-MEDIUM join and the LARGE table may minimize the amount of work performed
by the query.

802 Part VII: Hitchhiker’s Guides

MERGE JOIN
In a MERGE JOIN operation, the two inputs to the join are processed separately, sorted, and
joined. MERGE JOIN operations are commonly used when there are no indexes available for the
limiting conditions of the query.

In the following query, the BOOKSHELF and BOOKSHELF_AUTHOR tables are joined. If
neither table has an index on its Title column, then there are no indexes that can be used during
the query (since there are no other limiting conditions in the query). The example uses a hint to
force a merge join to be used:

select /*+ USE_MERGE (bookshelf, bookshelf_author)*/
 BOOKSHELF_AUTHOR.AuthorName
 from BOOKSHELF, BOOKSHELF_AUTHOR
 where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title
 and BOOKSHELF.Publisher > 'T%';

or

select /*+ USE_MERGE (bookshelf, bookshelf_author)*/
 BOOKSHELF_AUTHOR.AuthorName
 from BOOKSHELF inner join BOOKSHELF_AUTHOR
 on BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title
 where BOOKSHELF.Publisher > 'T%';

To resolve the query, the optimizer may choose to perform a MERGE JOIN of the tables. To
perform the MERGE JOIN, each of the tables is read individually (usually by a TABLE ACCESS
FULL operation or a full index scan). The set of rows returned from the table scan of the
BOOKSHELF_AUTHOR table is sorted by a SORT JOIN operation. The set of rows returned from
the INDEX FULL SCAN and TABLE ACCESS BY INDEX ROWID of the BOOKSHELF table is
already sorted (in the index), so no additional SORT JOIN operation is needed for that part of the
execution path. The data from the SORT JOIN operations is then merged via a MERGE JOIN
operation.

When a MERGE JOIN operation is used to join two sets of records, each set of records is
processed separately before being joined. The MERGE JOIN operation cannot begin until it has
received data from both of the SORT JOIN operations that provide input to it. The SORT JOIN
operations, in turn, will not provide data to the MERGE JOIN operation until all of the rows have
been sorted. If indexes are used as data sources, the SORT JOIN operations may be bypassed.

If the MERGE JOIN operation has to wait for two separate SORT JOIN operations to complete,
a join that uses the MERGE JOIN operation will typically perform poorly for online users. The
perceived poor performance is due to the delay in returning the first row of the join to the users.
As the tables increase in size, the time required for the sorts to be completed increases dramatically.
If the tables are of greatly unequal size, then the sorting operation performed on the larger table
will negatively impact the performance of the overall query.

Since MERGE JOIN operations involve full scanning and sorting of the tables involved, you
should only use MERGE JOIN operations if both tables are very small or if both tables are very
large. If both tables are very small, then the process of scanning and sorting the tables will complete
quickly. If both tables are very large, then the sorting and scanning operations required by MERGE
JOIN operations can take advantage of Oracle’s parallel options.

Oracle can parallelize operations, allowing multiple processors to participate in the execution
of a single command. Among the operations that can be parallelized are the TABLE ACCESS FULL
and sorting operations. Since a MERGE JOIN uses the TABLE ACCESS FULL and sorting operations,

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 803

it can take full advantage of Oracle’s parallel options. Parallelizing queries involving MERGE
JOIN operations frequently improves the performance of the queries (provided there are adequate
system resources available to support the parallel operations).

NESTED LOOPS
NESTED LOOPS operations join two tables via a looping method: The records from one table are
retrieved, and for each record retrieved, an access is performed of the second table. The access of
the second table is performed via an index-based access.

A form of the query from the preceding MERGE JOIN section is shown in the following listing.
A hint is used to recommend an index-based access of the BOOKSHELF table:

select /*+ INDEX(bookshelf) */
 BOOKSHELF.Publisher,
 BOOKSHELF_AUTHOR.AuthorName
 from BOOKSHELF, BOOKSHELF_AUTHOR
 where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

Since the Title column of the BOOKSHELF table is used as part of the join condition in the
query, the primary key index can resolve the join. When the query is executed, a NESTED LOOPS
operation can be used to execute the join.

To execute a NESTED LOOPS join, the optimizer must first select a driving table for the join,
which is the table that will be read first (usually via a TABLE ACCESS FULL operation, although
index scans are commonly seen). For each record in the driving table, the second table in the join
will be queried. The example query joins BOOKSHELF and BOOKSHELF_AUTHOR, based on
values of the Title column. During the NESTED LOOPS execution, an operation will select all of
the records from the BOOKSHELF_AUTHOR table. The primary key index of the BOOKSHELF
table will be probed to determine whether it contains an entry for the value in the current record
from the BOOKSHELF_AUTHOR table. If a match is found, then the Title value will be returned
from the BOOKSHELF primary key index. If other columns were needed from BOOKSHELF, the
row would be selected from the BOOKSHELF table via a TABLE ACCESS BY INDEX ROWID
operation.

At least two data access operations are involved in the NESTED LOOPS join: an access of the
driving table and an access, usually index-based, of the driven table. The data access methods
most commonly used—TABLE ACCESS FULL, TABLE ACCESS BY INDEX ROWID, and index
scans—return records to successive operations as soon as a record is found; they do not wait for
the whole set of records to be selected. Because these operations can provide the first matching
rows quickly to users, NESTED LOOPS joins are commonly used for joins that are frequently
executed by online users.

When implementing NESTED LOOPS joins, you need to consider the size of the driving table.
If the driving table is large and is read via a full table scan, then the TABLE ACCESS FULL operation
performed on it may negatively affect the performance of the query. If indexes are available on
both sides of the join, Oracle will select a driving table for the query. The optimizer will check the
statistics for the size of the tables and the selectivity of the indexes and will choose the path with
the lowest overall cost.

When joining three tables together, Oracle performs two separate joins: a join of two tables to
generate a set of records, and then a join between that set of records and the third table. If NESTED
LOOPS joins are used, then the order in which the tables are joined is critical. The output from
the first join generates a set of records, and that set of records is used as the driving table for the
second join.

804 Part VII: Hitchhiker’s Guides

The size of the set of records returned by the first join impacts the performance of the second
join—and thus may have a significant impact on the performance of the overall query. You should
attempt to join the most selective tables first so that the impact of those joins on future joins will
be negligible. If large tables are joined in the first join of a multijoin query, then the size of the
tables will impact each successive join and will negatively impact the overall performance of the
query. The optimizer should select the proper join path; you can confirm the costs and join path
by generating the explain plan.

NESTED LOOPS joins are useful when the tables in the join are of unequal size—you can use
the smaller table as the driving table and select from the larger table via an index-based access.
The more selective the index is, the faster the query will complete.

HASH JOIN
The optimizer may dynamically choose to perform joins using the HASH JOIN operation in place
of either MERGE JOIN or NESTED LOOPS. The HASH JOIN operation compares two tables in
memory. During a hash join, the first table is scanned and the database applies “hashing” functions
to the data to prepare the table for the join. The values from the second table are then read
(typically via a TABLE ACCESS FULL operation), and the hashing function compares the second table
with the first table. The rows that result in matches are returned to the user.

The optimizer may choose to perform hash joins even if indexes are available. In the sample
query shown in the following listing, the BOOKSHELF and BOOKSHELF_AUTHOR tables are
joined on the Title column:

select /*+ USE_HASH (bookshelf) */
 BOOKSHELF_AUTHOR.AuthorName
 from BOOKSHELF, BOOKSHELF_AUTHOR
 where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

The BOOKSHELF table has a unique index on its Title column. Since the index is available
and can be used to evaluate the join conditions, the optimizer may choose to perform a NESTED
LOOPS join of the two tables as shown in the previous section. If a hash join is performed, then
each table will be read via a separate operation. The data from the table and index scans will
serve as input to a HASH JOIN operation. The hash join does not rely on operations that process
sets of rows. The operations involved in hash joins return records quickly to users. Hash joins are
appropriate for queries executed by online users if the tables are small and can be scanned quickly.

Processing Outer Joins
When processing an outer join, the optimizer will use one of the three methods described in the
previous sections. For example, if the sample query were performing an outer join between
BOOK_ORDER and CATEGORY (to see which categories had no books on order), a NESTED
LOOPS OUTER operation may be used instead of a NESTED LOOPS operation. In a NESTED
LOOPS OUTER operation, the table that is the “outer” table for the outer join is typically used as
the driving table for the query; as the records of the inner table are scanned for matching records,
NULL values are returned for rows with no matches.

Related Hints
You can use hints to override the optimizer’s selection of a join method. Hints allow you to
specify the type of join method to use or the goal of the join method.

In addition to the hints described in this section, you can use the FULL and INDEX hints,
described earlier, to influence the way in which joins are processed. For example, if you use a

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 805

hint to force a NESTED LOOPS join to be used, then you may also use an INDEX hint to specify
which index should be used during the NESTED LOOPS join and which table should be accessed
via a full table scan.

Hints About Goals
You can specify a hint that directs the optimizer to execute a query with a specific goal in mind.
The available goals related to joins are the following:

ALL_ROWS Execute the query so that all of the rows are returned as quickly as possible.

FIRST_ROWS Execute the query so that the first row will be returned as quickly as
possible.

By default, the optimizer will execute a query using an execution path that is selected to
minimize the total time needed to resolve the query. Thus, the default is to use ALL_ROWS as the
goal. If the optimizer is only concerned about the total time needed to return all rows for the
query, then set-based operations such as sorts and MERGE JOIN can be used. However, the ALL_
ROWS goal may not always be appropriate. For example, online users tend to judge the
performance of a system based on the time it takes for a query to return the first row of data. The
users thus have FIRST_ROWS as their primary goal, with the time it takes to return all of the rows
as a secondary goal.

The available hints mimic the goals: the ALL_ROWS hint allows the optimizer to choose from
all available operations to minimize the overall processing time for the query, and the FIRST_
ROWS hint tells the optimizer to select an execution path that minimizes the time required to
return the first row to the user.

If you use the FIRST_ROWS hint, the optimizer will be less likely to use MERGE JOIN and
more likely to use NESTED LOOPS.

Hints About Methods
In addition to specifying the goals the optimizer should use when evaluating join method
alternatives, you can list the specific operations to use and the tables to use them on. If a query
involves only two tables, you do not need to specify the tables to join when providing a hint
for a join method to use.

The USE_NL hint tells the optimizer to use a NESTED LOOPS operation to join tables. In the
following example, the USE_NL hint is specified for the join query example. Within the hint, the
BOOKSHELF table is listed as the inner table for the join.

select /*+ USE_NL(bookshelf) */
 BOOKSHELF.Publisher,
 BOOKSHELF_AUTHOR.AuthorName
 from BOOKSHELF, BOOKSHELF_AUTHOR
 where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

If you want all of the joins in a many-table query to use NESTED LOOPS operations, you
could just specify the USE_NL hint with no table references. In general, you should specify table
names whenever you use a hint to specify a join method, because you do not know how the
query may be used in the future. You may not even know how the database objects are currently
set up—for example, one of the objects in your from clause may be a view that has been tuned to
use MERGE JOIN operations.

■

■

806 Part VII: Hitchhiker’s Guides

If you specify a table in a hint, you should refer to the table alias or the unqualified table
name. That is, if your from clause refers to a table as

from FRED.HIS_TABLE, ME.MY_TABLE

then you should not specify a hint such as

/*+ USE_NL(ME.MY_TABLE) */

Instead, you should refer to the table by its name, without the owner:

/*+ USE_NL(my_table) */

If multiple tables have the same name, then you should assign table aliases to the tables and
refer to the aliases in the hint. For example, if you join a table to itself, then the from clause may
include the text shown in the following listing:

from BOOKSHELF B1, BOOKSHELF B2

A hint forcing the BOOKSHELF-BOOKSHELF join to use NESTED LOOPS would be written to
use the table aliases, as shown in the following listing:

/*+ USE_NL(b2) */

The optimizer will ignore any hint that isn’t written with the proper syntax. Any hint with
improper syntax will be treated as a comment (since it is enclosed within the /* and */
characters).

If you are using NESTED LOOPS joins, then you need to be concerned about the order in
which the tables are joined. The ORDERED hint, when used with NESTED LOOPS joins,
influences the order in which tables are joined.

When you use the ORDERED hint, the tables will be joined in the order in which they are
listed in the from clause of the query. If the from clause contains three tables, such as

from BOOK_ORDER, BOOKSHELF, BOOKSHELF_AUTHOR

then the first two tables will be joined by the first join, and the result of that join will be joined to
the third table.

Since the order of joins is critical to the performance of NESTED LOOPS joins, the ORDERED
hint is often used in conjunction with the USE_NL hint. If you use hints to specify the join order,
you need to be certain that the relative distribution of values within the joined tables will not
change dramatically over time; otherwise, the specified join order may cause performance
problems in the future.

You can use the USE_MERGE hint to tell the optimizer to perform a MERGE JOIN between
specified tables. In the following listing, the hint instructs the optimizer to perform a MERGE JOIN
operation between BOOKSHELF and BOOKSHELF_AUTHOR:

select /*+ USE_MERGE (bookshelf, bookshelf_author)*/
 BOOKSHELF_AUTHOR.AuthorName
 from BOOKSHELF, BOOKSHELF_AUTHOR
 where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title
 and BOOKSHELF.Publisher > 'T%';

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 807

You can use the USE_HASH hint to tell the optimizer to consider using a HASH JOIN method.
If no tables are specified, then the optimizer will select the first table to be scanned into memory
based on the available statistics.

select /*+ USE_HASH (bookshelf) */
 BOOKSHELF.Publisher,
 BOOKSHELF_AUTHOR.AuthorName
 from BOOKSHELF, BOOKSHELF_AUTHOR
 where BOOKSHELF.Title = BOOKSHELF_AUTHOR.Title;

Additional Tuning Issues
As noted in the discussions of NESTED LOOPS and MERGE JOIN operations, operations differ
in the time they take to return the first row from a query. Since MERGE JOIN relies on set-based
operations, it will not return records to the user until all of the rows have been processed.
NESTED LOOPS, on the other hand, can return rows to the user as soon as rows are available.

Because NESTED LOOPS joins are capable of returning rows to users quickly, they are often
used for queries that are frequently executed by online users. Their efficiency at returning the first
row, however, is often impacted by set-based operations applied to the rows that have been selected.
For example, adding an order by clause to a query adds a SORT ORDER BY operation to the end
of the query processing—and no rows will be displayed to the user until all of the rows have been
sorted.

As described in “Operations That Use Indexes,” earlier in this chapter, using functions on a
column prevents the database from using an index on that column during data searches unless
you have created a function-based index.

Some techniques that were used in previous versions of Oracle to disable indexes no longer
are available. For example, some developers would append a null string to each column involved
in a join in an effort to suppress index usage:

select BOOKSHELF_AUTHOR.AuthorName
 from BOOKSHELF, BOOKSHELF_AUTHOR
 where BOOKSHELF.Title||'' = BOOKSHELF_AUTHOR.Title||'';

As of Oracle Database 10g, the optimizer does not allow the null strings to block the index
usage—the query uses the index on the BOOKSHELF.Title column as part of a HASH JOIN
execution.

As noted during the discussion of the NESTED LOOPS operation, the order of joins is as
important as the join method selected. If a large or nonselective join is the first join in a series,
the large data set returned will negatively impact the performance of the subsequent joins in the
query as well as the performance of the query as a whole.

Depending on the hints, optimizer goal, and statistics, the optimizer may choose to use a
variety of join methods within the same query. For example, the optimizer may evaluate a three-
table query as a NESTED LOOPS join of two tables, followed by a MERGE JOIN of the NESTED
LOOPS output with the third table. Such combinations of join types are usually found when the
ALL_ROWS optimizer goal is in effect.

To see the order of operations, you can use the set autotrace on command to see the
execution path, as described earlier in this chapter.

808 Part VII: Hitchhiker’s Guides

Parallelism and Cache Issues
In addition to the operations and hints listed in the previous sections, you can use two other sets
of hints to influence the query processing. The additional hints allow you to control the parallelism
of queries and the caching of data within the data buffer cache.

If your server has multiple processors, and the data being queried is distributed across
multiple devices, then you may be able to improve the processing of your queries by parallelizing
the data access and sorting operations. When a query is parallelized, multiple processes are run
in parallel, each of which accesses or sorts data. A query coordinator process distributes the
workload and assembles the query results for the user.

The degree of parallelism—the number of scanning or sorting processes started for a query—
can be set at the table level (see the create table command in the Alphabetical Reference). The
optimizer will detect the table-level settings for the degree of parallelism and will determine the
number of query server processes to be used during the query. The optimizer will dynamically
check the number of processors and devices involved in the query and will base its parallelism
decisions on the available resources.

You can influence the parallelism of your queries via the PARALLEL hint. In the following
example, a degree of parallelism of 4 is set for a query of the BOOKSHELF table:

select /*+ PARALLEL (bookshelf,4) */ *
 from BOOKSHELF;

In the preceding query, a second operation—the SORT ORDER BY operation for the order by
Publisher clause—was added. Because the sorting operation can also be parallelized, the query
may use nine query server processes instead of five (four for the table scan, four for the sort, and
one for the query coordinator). The optimizer will dynamically determine the degree of parallelism
to use based on the table’s settings, the database layout, and the available system resources.

If you want to disable parallelism for a query, you can use the NO_PARALLEL hint (called
NOPARALLEL in versions prior to Oracle Database 10g). The NO_PARALLEL hint may be used if
you want to serially execute a query against a table whose queries are typically executed in a
parallelized fashion.

If a small, frequently accessed table is read via a full table scan, that table’s data can be kept
in the SGA for as long as possible. You can mark the table as belonging to the “Keep” pool, using
the buffer_pool clause of the create table or alter table command. If the table has been designated
for storage in the Keep pool, its blocks in memory are kept apart from the main cache. If the Keep
pool is sized adequately, the blocks will remain in memory until the database is shut down. The
Keep pool must be configured by the DBA, and it must be large enough to accommodate the
tables that are to use it. Creating a Keep pool that is too small will generate the opposite of the
intended effect—more physical reads will be required for the most active tables.

If a table is commonly used by many queries or users, and there is no appropriate indexing
scheme available for the query, then you should use the Keep pool to improve the performance
of accesses to that table. This approach is most useful for static tables.

Implementing Stored Outlines
As you migrate from one database to another, the execution paths for your queries may change.
Your execution paths may change for several reasons:

You may be using a different optimizer in different databases (cost-based in one, rule-
based in another).

■

Chapter 46: The Hitchhiker’s Guide to Tuning Applications and SQL 809

You may have enabled different optimizer features in the different databases.

The statistics for the queried tables may differ in the databases.

The frequency with which statistics are gathered may differ among the databases.

The databases may be running different versions of the Oracle kernel.

The effects of these differences on your execution paths can be dramatic and can have a
significant negative impact on your query performance as you migrate or upgrade your
application. To minimize the impact of these differences on your query performance, Oracle
introduced a feature called a stored outline in Oracle8i.

A stored outline stores a set of hints for a query. Those hints will be used every time the query
is executed. Using the stored hints will increase the likelihood that the query will use the same
execution path each time. Hints do not mandate an execution path (they’re hints, not commands)
but do decrease the impact of database moves on your query performance.

You must have the CREATE ANY OUTLINE system privilege in order to create an outline. Use
the create outline command to create an outline for a query, as shown in the following listing:

create outline REORDERS
 for category DEVELOPMENT
 on
select BOOKSHELF.Title
 from BOOKSHELF, BOOK_ORDER
 where BOOKSHELF.Title = BOOK_ORDER.Title;

If you do not specify a name for your outline, the outline will be given a system-generated
name.

NOTE
You can create outlines for DML commands and for create table as
select commands.

Once an outline has been created, you can alter it. For example, you may need to alter the
outline to reflect significant changes in data volumes and distribution. You can use the rebuild
clause of the alter outline command to regenerate the hints used during query execution:

alter outline REORDERS rebuild;

NOTE
You need the ALTER ANY OUTLINE system privilege to use this
command.

You can also rename an outline via the rename clause of the alter outline command:

alter outline REORDERS rename to BOOK_REORDERS;

You can change the category of an outline via the change category clause of the alter outline
command.

You can enable the usage of stored outlines by setting the USE_STORED_OUTLINES
parameter to TRUE within your session (via alter session).

■

■

■

■

810 Part VII: Hitchhiker’s Guides

To manage stored outlines, use the OUTLN_PKG package, which gives you three capabilities:

Drop outlines that have never been used

Drop outlines within a specific category

Move outlines from one category to another

Each of these three capabilities has a corresponding procedure within OUTLN_PKG. To drop
outlines that have never been used, execute the DROP_UNUSED procedure, as shown in the
following listing:

execute OUTLN_PKG.DROP_UNUSED;

To drop all of the outlines within a category, execute the DROP_BY_CAT procedure, which
has the name of the category as its only input parameter. The following example drops all of the
outlines within the DEVELOPMENT category:

execute OUTLN_PKG.DROP_BY_CAT -
 (cat => 'DEVELOPMENT');

To reassign outlines from an old category to a new category, use the UPDATE_BY_CAT
procedure, as shown in the following example.

execute OUTLN_PKG.UPDATE_BY_CAT -
 (old_cat => 'DEVELOPMENT', -
 new_cat => 'TEST');

To drop a specific outline, use the drop outline command.

Review
The preceding sections have shown the methods used by the optimizer to access and manipulate
data. When tuning queries, you need to keep in mind several factors:

The goal of the user Do you want rows to be quickly returned, or do you care more
about the total throughput time for the query?

The application design How does this query fit within the overall design of the
application? How is it executed? Are there external factors that affect its performance?

The type of joins used Are the tables properly indexed?

The size of the tables How large are the tables that are being queried? If there are
multiple joins, how large is the set of data returned from each join?

The selectivity of the data How selective are the indexes in use?

The sorting operations How many sorting operations are performed? Are nested sorting
operations being performed?

If you can carefully manage the issues related to performance, then the number of “problem”
queries within your database should diminish. If a query appears to be taking more resources than
it should, then you should use the set autotrace on or explain plan command to determine the
order of operations used for the query. You can use the tips and discussions provided throughout
this chapter to then tune the operations or the set of operations.

■

■

■

■

■

■

■

■

■

CHAPTER
47

SQL Result Cache and
Client-Side Query Cache

811

812 Part VII: Hitchhiker’s Guides

he primary goal of designing database applications is to return the correct results as
quickly as possible. Application developers spend countless hours trying to write
efficient SQL code, and Oracle DBAs tune the database memory structures to
provide efficient access to the data and index blocks needed to satisfy the queries.

Tuning an application normally involves finding the best path to touch the least amount of data
and/or index blocks in the Oracle database buffer cache. Accessing data in memory is always
much faster than accessing data from disk. Oracle uses algorithms to keep highly used data blocks
in memory to reduce the number of physical disk reads. Oracle DBAs can increase the size of the
default buffer cache or make use of the KEEP buffer pool to increase the number of blocks resident
in memory for highly used tables and indexes. Even if all the data and index blocks are
in memory, the query still has to read them to obtain the result set.

Oracle has introduced a new feature called the SQL Result Cache with the release of 11g. It
can be used to cache a read-consistent version of the query results of commonly executed queries.
Static queries that are run time and time again no longer need to read the underlying data and
index blocks but instead can read the results of queries from the new SQL Result Cache memory
area within the Shared Pool of SGA. A SQL statement is run once to read all the necessary index
and data blocks that produce a query result, which can optionally be stored in the SQL Result
Cache via a hint in the statement or by setting a database initialization parameter.

The SQL Result Cache is stored within the SGA so that all users connecting to the database
instance have access to the query results stored there. Anyone executing the same SQL statement
including the RESULT_CACHE hint will be able to make use of the SQL Result Cache and will not
have to perform the physical and logical I/O to generate the output of the query.

Let’s take a look at how the SQL Result Cache works. The following query performs a full
table scan to generate its output. This query has to access all the same data blocks each time it
is run by the same user or a different user.

SQL> SET AUTOT ON
SQL> select state_code, prod_code, sum(amt) from sales
 2 where state_code in ('IL','IN','MI')
 3 GROUP BY STATE_CODE, PROD_CODE ORDER BY 1,2;

ST PROD_CODE SUM(AMT)
-- ---------- ----------
IL 100860 16520
IL 100861 189180
...
MI 200380 208
55 rows selected.
Elapsed: 00:00:00.45
Execution Plan
--
Plan hash value: 3229864837

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
0	SELECT STATEMENT		66	792	317 (9)	00:00:04
1	SORT GROUP BY		66	792	317 (9)	00:00:04
* 2	TABLE ACCESS FULL	SALES	21775	255K	312 (7)	00:00:04

T

Chapter 47: SQL Result Cache and Client-Side Query Cache 813

--
Predicate Information (identified by operation id):

 2 - filter("STATE_CODE"='IL' OR "STATE_CODE"='IN' OR
 "STATE_CODE"='MI')
Statistics
--
 0 recursive calls
 0 db block gets
 1071 consistent gets
 0 physical reads
 0 redo size
 1737 bytes sent via SQL*Net to client
 453 bytes received via SQL*Net from client
 5 SQL*Net roundtrips to/from client
 1 sorts (memory)
 0 sorts (disk)
 55 rows processed

From the preceding trace, we can see that the query performed 1,071 consistent gets while
doing a full table scan of the sales table. Total time for the query was .45 seconds. That may seem
fast for a table containing 225,000 records, but if users of the database have to perform this query
over and over again, the elapsed time certainly adds up to a large number of seconds.

The easiest way to make use of the SQL Result Cache is to include a RESULT_CACHE hint in
the SQL statement, as shown next. The first time this query is run, it will have to access all the
same data blocks as the preceding query, but now the result of the query will be stored in the SGA
for others to use.

SQL> select /*+ result_cache */ state_code, prod_code, sum(amt) from sales
 2 where state_code in ('IL','IN','MI')
 3 GROUP BY STATE_CODE, PROD_CODE ORDER BY 1,2;

ST PROD_CODE SUM(AMT)
-- ---------- ----------
IL 100860 16520
IL 100861 189180
...
MI 200380 208
55 rows selected.
Elapsed: 00:00:00.45
Execution Plan
--
Plan hash value: 3229864837
--
| Id | Operation | Name | Rows | Bytes | Cost
 (%CPU)| Time |
--

| 0 | SELECT STATEMENT | | 66 | 792 | 317
(9)| 00:00:04 |
| 1 | RESULT CACHE | gx61vnrf7aqs046gr4r3m70kqs | | | |
|
| 2 | SORT GROUP BY | | 66 | 792 | 317

814 Part VII: Hitchhiker’s Guides

(9)| 00:00:04 |
|* 3 | TABLE ACCESS FULL| SALES | 21775 | 255K| 312
(7)| 00:00:04 |
--

Predicate Information (identified by operation id):

 3 - filter("STATE_CODE"='IL' OR "STATE_CODE"='IN' OR "STATE_CODE"='MI')
Result Cache Information (identified by operation id):
--
 1 - column-count=3; dependencies=(DEMO.SALES); parameters=(nls);
name="select /*+ result_cache */ state_code, prod_code, sum(amt) from sales
where state_code in ('IL','IN','MI')
GROUP BY STATE_CODE,"
Statistics
--
 1 recursive calls
 0 db block gets
 1071 consistent gets
 0 physical reads
 0 redo size
 1737 bytes sent via SQL*Net to client
 453 bytes received via SQL*Net from client
 5 SQL*Net roundtrips to/from client
 1 sorts (memory)
 0 sorts (disk)
 55 rows processed

The number of consistent gets (1,071) and the time to execute this query (.45 seconds) are
exactly the same as the first query. Note that the Plan Hash value (3229864837) is the same for
both execution plans, but the explain plan is different. An additional line in the second explain
plan lists the operation as the RESULT CACHE and gives it a hexadecimal name. Because this is
the first execution of this statement with the RESULT_CACHE hint, Oracle stored the result in the
SQL Result Cache of this database instance. Anyone executing this same SQL statement on this
database instance will be able to make use of this query result in the cache. If this were a RAC
database, each instance would have its own SQL Result Cache and the results would only be
available on an instance if the preceding query (including the hint) is executed on that instance.

Now, let’s execute the query again to see if it makes use of the SQL Result Cache:

SQL> select /*+ result_cache */ state_code, prod_code, sum(amt) from sales
 2 where state_code in ('IL','IN','MI')
 3 GROUP BY STATE_CODE, PROD_CODE ORDER BY 1,2;

ST PROD_CODE SUM(AMT)
-- ---------- ----------
IL 100860 16520
IL 100861 189180
...
MI 200380 208
55 rows selected.
Elapsed: 00:00:00.12
Execution Plan
--

Chapter 47: SQL Result Cache and Client-Side Query Cache 815

Plan hash value: 3229864837
--
| Id | Operation | Name | Rows | Bytes | Cost
 (%CPU)| Time |
--

| 0 | SELECT STATEMENT | | 66 | 792 | 317
(9)| 00:00:04 |
| 1 | RESULT CACHE | gx61vnrf7aqs046gr4r3m70kqs | | | |
|
| 2 | SORT GROUP BY | | 66 | 792 | 317
(9)| 00:00:04 |
|* 3 | TABLE ACCESS FULL| SALES | 21775 | 255K| 312
(7)| 00:00:04 |
--

Predicate Information (identified by operation id):

 3 - filter("STATE_CODE"='IL' OR "STATE_CODE"='IN' OR "STATE_CODE"='MI')
Result Cache Information (identified by operation id):
--
 1 - column-count=3; dependencies=(DEMO.SALES); parameters=(nls);
name="select /*+ result_cache */ state_code, prod_code, sum(amt) from sales
where state_code in ('IL','IN','MI') GROUP BY STATE_CODE,"
Statistics
--
 0 recursive calls
 0 db block gets
 0 consistent gets
 0 physical reads
 0 redo size
 1737 bytes sent via SQL*Net to client
 453 bytes received via SQL*Net from client
 5 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 55 rows processed

Looking at the trace, we can see that the execution plan is exactly the same as the query that
loaded the data into the SQL Result Cache and that the plan hash value is exactly the same as that
for both preceding queries. What is different is the execution time. Instead of .45 seconds elapsed
time, the query ran in .12 seconds. I ran the query several different times and from different sessions,
and in each case the elapsed time was .12 seconds and the consistent gets (logical reads) was
always zero.

What happens if the table is updated? Oracle will continue to use the results for the query that
are stored in the SQL Result Cache until the changes are committed.

To test this, update the sales table in a second SQL*Plus session:

SQL> rem now do an update in another session;
SQL> update sales set amt =amt + 1 where state_code = 'IL'
and prod_code = 100860;

816 Part VII: Hitchhiker’s Guides

Now run the query again in the first session and note that the output is the same because the
changes have not been committed:

SQL> select /*+ result_cache */ state_code, prod_code, sum(amt) from sales
 2 where state_code in ('IL','IN','MI')
 3 GROUP BY STATE_CODE, PROD_CODE ORDER BY 1,2;

ST PROD_CODE SUM(AMT)
-- ---------- ----------
IL 100860 16520
IL 100861 189180
...
MI 200380 208
55 rows selected.
Elapsed: 00:00:00.15
Execution Plan
--
Plan hash value: 3229864837
--
| Id | Operation | Name | Rows | Bytes | Cost(%CPU)| Time |
--

| 0 | SELECT STATEMENT | | 66 | 792 | 317
(9)| 00:00:04 |
| 1 | RESULT CACHE | gx61vnrf7aqs046gr4r3m70kqs | | | |
|
| 2 | SORT GROUP BY | | 66 | 792 | 317
(9)| 00:00:04 |
|* 3 | TABLE ACCESS FULL| SALES | 21775 | 255K| 312
(7)| 00:00:04 |
--

Predicate Information (identified by operation id):

 3 - filter("STATE_CODE"='IL' OR "STATE_CODE"='IN' OR "STATE_CODE"='MI')
Result Cache Information (identified by operation id):
--
 1 - column-count=3; dependencies=(DEMO.SALES); parameters=(nls);
name="select /*+ result_cache */ state_code, prod_code, sum(amt) from sales
where state_code in ('IL','IN','MI') GROUP BY STATE_CODE,"
Statistics
--
 0 recursive calls
 0 db block gets
 0 consistent gets
 0 physical reads
 0 redo size
 1737 bytes sent via SQL*Net to client
 453 bytes received via SQL*Net from client
 5 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 55 rows processed

Looking at this trace, we can see that the SQL Result Cache has been used as expected and
that the output of the query provides read-consistent results that we would expect because the
second session has not committed the changes.

Now let’s see what happens when we run the query in the first session after we commit the
changes in the second session:

Chapter 47: SQL Result Cache and Client-Side Query Cache 817

SQL> rem now commit in second session
SQL> commit;
Commit complete
SQL> select /*+ result_cache */ state_code, prod_code, sum(amt) from sales
 2 where state_code in ('IL','IN','MI')
 3 GROUP BY STATE_CODE, PROD_CODE ORDER BY 1,2;

ST PROD_CODE SUM(AMT)
-- ---------- ----------
IL 100860 16672
IL 100861 189180
...
MI 200380 208
55 rows selected.
Elapsed: 00:00:00.55
Execution Plan
--
Plan hash value: 3229864837
--

| Id | Operation | Name | Rows | Bytes | Cost(%CPU)| Time |
--

| 0 | SELECT STATEMENT | | 66 | 792 | 317
(9)| 00:00:04 |
| 1 | RESULT CACHE | gx61vnrf7aqs046gr4r3m70kqs | | | |
| 2 | SORT GROUP BY | | 66 | 792 | 317
(9)| 00:00:04 |
|* 3 | TABLE ACCESS FULL| SALES | 21775 | 255K| 312
(7)| 00:00:04 |
--
Predicate Information (identified by operation id):

 3 - filter("STATE_CODE"='IL' OR "STATE_CODE"='IN' OR "STATE_CODE"='MI')
Result Cache Information (identified by operation id):
--
 1 - column-count=3; dependencies=(DEMO.SALES); parameters=(nls);
name="select /*+ result_cache */ state_code, prod_code, sum(amt) from sales
where state_code in ('IL','IN','MI') GROUP BY STATE_CODE,"
Statistics
--
 0 recursive calls
 0 db block gets
 1071 consistent gets
 0 physical reads
 0 redo size
 1737 bytes sent via SQL*Net to client
 453 bytes received via SQL*Net from client
 5 SQL*Net roundtrips to/from client
 1 sorts (memory)
 0 sorts (disk)
 55 rows processed

Oracle determined that the table being queried has been updated and that the changes were
committed. It therefore forced the SQL*Plus session to requery the data and place it in the result
set. The updated values now show up in the output of the query as expected. Notice that the
consistent reads are back to 1,071, as they were when the query was first run, and that the time
has increased from .12 seconds to .55 as a result of having to access all the data blocks once again.

818 Part VII: Hitchhiker’s Guides

Running the query again produces the same results, but the consistent reads are zero because
the SQL Result Cache is being used, as shown here:

SQL> select /*+ result_cache */ state_code, prod_code, sum(amt) from sales
 2 where state_code in ('IL','IN','MI')
 3 GROUP BY STATE_CODE, PROD_CODE ORDER BY 1,2;

ST PROD_CODE SUM(AMT)
-- ---------- ----------
IL 100860 16672
IL 100861 189180
...
MI 200380 208
55 rows selected.
Elapsed: 00:00:01.21
Execution Plan
--
Plan hash value: 3229864837
--

| Id | Operation | Name | Rows | Bytes | Cost(%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 66 | 792 | 317
(9)| 00:00:04 |
| 1 | RESULT CACHE | gx61vnrf7aqs046gr4r3m70kqs | | | |
|
| 2 | SORT GROUP BY | | 66 | 792 | 317
(9)| 00:00:04 |
|* 3 | TABLE ACCESS FULL| SALES | 21775 | 255K| 312
(7)| 00:00:04 |
--

Predicate Information (identified by operation id):

 3 - filter("STATE_CODE"='IL' OR "STATE_CODE"='IN' OR "STATE_CODE"='MI')
Result Cache Information (identified by operation id):
--
 1 - column-count=3; dependencies=(DEMO.SALES); parameters=(nls);
name="select /*+ result_cache */ state_code, prod_code, sum(amt) from sales
where state_code in ('IL','IN','MI') GROUP BY STATE_CODE,"

Statistics
--
 0 recursive calls
 0 db block gets
 0 consistent gets
 0 physical reads
 0 redo size
 1737 bytes sent via SQL*Net to client
 453 bytes received via SQL*Net from client
 5 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 55 rows processed

Database Parameter Settings for SQL Result Cache
The SQL Result Cache is part of the Shared Pool Area, and Oracle has provided a number of
parameters related to this feature.

Chapter 47: SQL Result Cache and Client-Side Query Cache 819

The RESULT_CACHE_MODE parameter can be used to turn the SQL Result Cache on or off at
the database level. It can be set to the following values:

AUTO The Oracle optimizer determines which result sets should be stored in the cache
depending on repetitive use.

Manual The RESULT_CACHE hint must be used in the SQL statement to have the result
set of a query stored in the cache. This is the default.

Force All results of all queries are stored in the cache.

Use of the RESULT_CACHE or the NORESULT_CACHE hint takes precedence over the database
RESULT_CACHE_MODE initialization parameter setting.

The RESULT_CACHE_MAX_SIZE parameter is used to determine the size of the SQL Result
Cache within the Shared Pool Area. Here are some points to keep in mind:

If this parameter set to zero, the SQL Result Cache is disabled.

This parameter cannot be greater than 75 percent of the Shared Pool Area size.

The default is dependent on other memory settings, is platform specific, and is
derived from the MEMORY_TARGET, the SGA TARGET, and the SHARED_POOL_SIZE
parameters.

The RESULT_CACHE_MAX_RESULT parameter is used to determine the maximum size of a
result set in the SQL Result Cache. The default is 5 percent of the size specified by the RESULT_
CACHE_MAX_SIZE parameter.

The RESULT_CACHE_REMOTE_EXPIRATION parameter is used to specify the number of
minutes that a result set using a remote object is to be considered valid before it will be requeried
by the next user to execute the corresponding SQL statement. Here are some points to keep in
mind:

Setting the RESULT_CACHE_REMOTE_EXPIRATION parameter to zero indicates that
result sets using remote database objects should not be cached.

Setting this parameter to a nonzero value can produce incorrect results if the remote table
has changed.

The default value is zero.

Remember that the SQL Result Cache is part of the Shared Pool, and if you set the SHARED_
POOL_SIZE in the parameter file, you may want to increase the size of the Shared Pool when you
migrate from previous releases to 11g.

The DBMS_RESULT_CACHE Package
The DBMS_RESULT_CACHE package includes a number of procedures and functions that can be
used to monitor and administer the SQL Result Cache within the Shared Pool.

The DBMS_RESULT_CACHE.MEMORY REPORT procedure produces a detailed report of the
memory usage of the SQL Result Cache.

SQL> set serveroutput on
SQL> exec dbms_result_cache.memory_report;

■

■

■

■

■

■

■

■

■

820 Part VII: Hitchhiker’s Guides

R e s u l t C a c h e M e m o r y R e p o r t
 [Parameters]
Block Size = 1K bytes
Maximum Cache Size = 1568K bytes (1568 blocks)
Maximum Result Size = 78K bytes (78 blocks)
 [Memory]
Total Memory = 100300 bytes [0.057% of the Shared Pool]
... Fixed Memory = 5132 bytes [0.003% of the Shared Pool]
... Dynamic Memory = 95168 bytes [0.054% of the Shared Pool]
....... Overhead = 62400 bytes
....... Cache Memory = 32K bytes (32 blocks)
........... Unused Memory = 27 blocks
........... Used Memory = 5 blocks
............... Dependencies = 1 blocks (1 count)
............... Results = 4 blocks
................... SQL = 2 blocks (1 count)
................... Invalid = 2 blocks (1 count)
PL/SQL procedure successfully completed.

The DBMS_RESULT_CACHE.FLUSH procedure can be used to flush the memory used by the
result cache. You can include parameters to retain the current size of the result cache and to keep
the current statistics. Both parameters are false by default. The following example shows that the
dynamic memory usage is zero after the flush procedure is executed:

SQL> execute dbms_result_cache.flush;
PL/SQL procedure successfully completed.
SQL> exec dbms_result_cache.memory_report;

R e s u l t C a c h e M e m o r y R e p o r t
 [Parameters]
Block Size = 1K bytes
Maximum Cache Size = 1568K bytes (1568 blocks)
Maximum Result Size = 78K bytes (78 blocks)
 [Memory]
Total Memory = 5132 bytes [0.003% of the Shared Pool]
... Fixed Memory = 5132 bytes [0.003% of the Shared Pool]
... Dynamic Memory = 0 bytes [0.000% of the Shared Pool]
PL/SQL procedure successfully completed.

The DBMS_RESULT_CACHE.STATUS function can be used to determine the status of the
result cache:

SQL> select dbms_result_cache.status from dual;

STATUS
--
ENABLED

The DBMS_RESULT_CACHE.INVALIDATE function can be used to invalidate queries that are
dependent on a specific table:

SQL> execute dbms_result_cache.invalidate ('DEMO','SALES');

Chapter 47: SQL Result Cache and Client-Side Query Cache 821

Dictionary Views for the SQL Result Cache
Several data dictionary views provide detailed information about the SQL Result Cache:

V$RESULT_CACHE_DEPENDENCY displays the depends-on relationship between
cached results and dependencies.

V$RESULT_CACHE_MEMORY displays all the memory blocks and their status.

V$RESULT_CACHE_OBJECTS displays all the objects (both cached results and
dependencies) and their attributes.

V$RESULT_CACHE_STATISTICS displays various result cache settings and usage statistics.

Additional Details for SQL Result Cache
The SQL Result Cache can also be used for the following:

Subqueries and in-line queries, even if the outer query changes.

Functions that return values to a calling statement. (Use the RESULT CACHE keyword and
optionally specify any dependencies using the “relies on” clause to list underlying tables
that should invalidate the result set.)

Flashback queries. (These can also be cached.)

The SQL Result Cache is automatically disabled for the following:

Temporary tables and dictionary tables

CURRVAL and NEXTVAL sequences

Queries containing CURRENT_DATE or SYSDATE

Memory is not automatically released from the result cache. You can use DBMS_RESULT_
CACHE.INVALIDATE to release the memory used by SQL statements that are dependent on a
specific table. You can also use the DBMS_RESULT_CACHE.FLUSH procedure to free up the
entire result cache.

Oracle Call Interface (OCI) Client Query Cache
In addition to the SQL Result Cache, Oracle has implemented a client-side query cache that can
be used to cache data in the memory of client systems for applications using OCI calls. Query
results for commonly executed query sets are cached locally, thus eliminating the need to make
the roundtrip to the database to retrieve commonly used application data. This, in turn, eliminates
the CPU and process load on the database server and the corresponding network traffic.

The client query cache is best suited for static result sets and commonly executed queries that
are used by the application. Benefits include enhanced performance of lookup tables and the ability
to extend the server-side query cache to the client. Client-side query cache is automatically
refreshed if the result cache changes in the database.

To make use of the client-side cache, the Oracle DBA has to set up an additional cache within
the SGA of the database using the following parameters:

■

■

■

■

■

■

■

■

■

■

822 Part VII: Hitchhiker’s Guides

CLIENT_RESULT_CACHE_SIZE All OCI client processes get this maximum size. This
can be overridden by the sqlnet.ora configuration parameter OCI_RESULT_CACHE_
MAX_SIZE. The default is zero; this is a static parameter.

CLIENT_RESULT_CACHE_LAG Specifies the maximum time (in milliseconds) since the
last roundtrip to the server before which the OCI client query makes a roundtrip to get
any database changes related to the queries cached on the client. The default is 5000 ms;
this parameter is not dynamic.

Oracle Call Interface (OCI) Client
Query Cache Restrictions
Queries written in the OCI calls must include the result cache hint to indicate that results are to
be stored in the query result cache. Applications must be relinked with Oracle 11g, and the clients
must connect to an Oracle 11g or higher database.

The client-side query cache is best used for practices for read-only or read-mostly database
objects. In addition, if the result cache hint is for queries that return large results sets, a large
amount of client result cache memory will be used.

The following parameters can be used in a client configuration file or within a sqlnet.ora file
to override the cache parameters set in the database parameter file:

OCI_RESULT_CACHE_MAX_SIZE Specifies the maximum size of the CLIENT_RESULT_
CACHE_SIZE for this client

OCI_RESULT_CACHE_MAX_RSET_SIZE Specifies the maximum size of an individual
result set, in bytes

OCI_RESULT_CACHE_MAX_RSET_ROWS Specifies the maximum number of rows for
an individual result

You can query the V$CLIENT_RESULT_CACHE_STATISTICS view to display various result
cache settings and usage statistics.

■

■

■

■

■

CHAPTER
48

Case Studies in Tuning

823

824 Part VII: Hitchhiker’s Guides

s described in Chapter 46, performance tuning begins with design. In many cases,
the core performance problem in a database application has been designed into
the system. You may be able to identify the most resource-intensive parts of the
application, focusing future tuning efforts on specific database parameters or
SQL statements. In this chapter, you will see case studies related to different

performance problems and their resolutions. The case studies present three common problem
areas—environmental issues, problem queries, and application architecture—from an application
tuner’s perspective.

Case Study 1: Waits, Waits, and More Waits
A large online transaction-processing system experienced significant performance problems as
the number of concurrent users increased. At times of intense batch activity, such as month-end
closing processes, the system performance was unacceptable for the online users. Is the problem
with the environment, the application, or the implementation of the application in the environment?
To identify the core problems and develop a path toward improved performance, the database
statistics were reviewed. The system was complex, but the core problems from Oracle’s perspective
were similar to those described in Chapter 46—the database was being asked to execute a large
number of slow commands.

The first step in tuning the database involved looking at the dynamic performance statistics
during times when the application was performing acceptably and then again when the
performance was unacceptable. The AWR utility was used to gather the statistics. For these
intervals, the following statistics were examined in detail:

Number of executions per second

Number of logical reads per second

Number of waits per physical reads

Number of waits during data writes

Number of waits for undo segment headers and blocks

Number of physical reads per second

Number of sorts performed on disk and in memory

Capturing these statistics is important, both to identify problem areas and to measure the impact
on performance as the database environment and application SQL are changed during the tuning
process. Each of these statistics—or components of it—is reported via AWR (and its predecessor,
Statspack). You can select the statistics for the database because it was last started from the
dynamic performance views, such as V$SYSSTAT and V$WAITSTAT, but those statistics will be
skewed by other activity in the database unassociated with your application. The following table
shows the initial statistics gathered over a three-hour test. The results are shown here:

Statistic Value

Test duration 10,800 seconds (3 hours)

Executions per second 1,700

Logical reads per second 67,000

Physical reads per second 6,300

■

■

■

■

■

■

■

A

Chapter 48: Case Studies in Tuning 825

Statistic Value

Buffer busy waits 600,000

Undo header waits 300

Sorts in memory 800,000

Sorts on disk 200

Physical read waits that occurred:
 Db file sequential read (one-block reads)
 Db file scattered read (multiblock reads)

32,700,000
4,500,000

Transactions per second 10

Physical writes per second 100

Given this information, what is the first area to focus on? The system was very active—1,700
executions per second and 67,000 logical reads per second were evidence of a large number of
database requests executed constantly over a three-hour period. To properly analyze the statistics,
you should start by transforming them into a consistent set of units. In this example, let’s consider
all the activity on a per-second basis. Divide the statistics that were previously presented at the
interval level by 10,800 to see their per-second values:

Statistic Value (per Second)

Executions 1,700

Logical reads 67,000

Physical reads 6,300

Buffer busy waits 55

Undo header waits 0.03

Sorts in memory 74

Sorts on disk 0.02

Physical read waits that occurred:
 Db file sequential read (one-block reads)
 Db file scattered read (multiblock reads)

3,028
416

Transactions 10

Physical writes 100

With all the statistics presented in the same units, you can quickly develop an overview
of what an average second looks like in the database. The total number of physical read waits
occurring during a typical second was 3,028 + 416 = 3,444. Those waits were incurred when
the database attempts to resolve a request for a physical read—and in a typical second, there are
6,300 such requests. Therefore, a physical read event had to wait, on average, almost 55 percent
of the time (3,444 / 6,300). Only about 45 percent of the read requests were completed without a
wait occurring.

At the same time, writes were also waiting. There were 55 data block waits per second as
the database attempted to perform 100 physical writes—again, a 55 percent wait ratio. A review
of the datafile I/O statistics (available via Statspack reports, AWR reports, and queries against
V$FILESTAT) showed that the database I/O was distributed evenly across the most active tablespaces.

826 Part VII: Hitchhiker’s Guides

If the I/O were not evenly distributed, it is likely that a single disk or set of disks encountering
problems would be the main source of the I/O waits.

How could you reduce the number of physical waits? If you only considered the queries that
are performing full table scans as possible causes of performance problems, you would very likely
have little impact on this application. Full table scans led to the scattered read waits shown in the
prior table—and they account for only 12 percent (416 / 3,444) of the physical read waits that
occurred. If you completely removed all the waits generated by full table scans, you probably
would not have a significant impact on the performance of the application.

NOTE
If the full table scans are performed via parallel queries, they will
always be read from disk and not from memory.

Given this scenario, the following hypotheses can be developed:

The application requirements exceeded the I/O capacity of the system as it is configured.

The application generated a large number of SQL command executions.

Most of the SQL commands executed do not generate physical reads. The data block
buffer cache hit ratio is over 90 percent (1 – 6,300 / 67,000, in this case).

The application may be consuming large amounts of CPU resources as well, because it is
executing many commands and very actively managing the I/O queue.

Given those hypotheses, where should the tuning effort start? The application profile was of a
read-intensive application (there are 6,300 physical reads per second to go with only 100 physical
writes). The queries themselves appeared to be fairly well tuned (as judged by the overall hit ratio;
there were likely to be individual queries that were not properly tuned). Both reads and waits were
reporting the same problem—they could not access the disks fast enough to avoid waits. As a
result, the focus should first be on stabilizing the I/O environment. Is it performing well? If there is
no problem found with the I/O system and the application SQL cannot be changed, the environment
might have to be upgraded or enhanced to support the loads generated by the application.

All aspects of the common I/O environment should be evaluated for their impact on
performance—controllers, network interface cards, the disk array, and the network (for shared
network storage). In many systems the I/O is spread across many disks, and the performance is
more impacted by the common elements used to access those disks than the disks themselves.

In most modern enterprise-scale configurations, a buffer area is available for the disk
environment. As a result, most physical read requests do not reach the disk; the buffer services the
read requests. In this study, around 10 percent of logical reads generated physical read requests.
The I/O environment was intended to handle 90 percent of those physical read requests via its
buffer. Because the buffer in this environment was not properly configured to support this volume
of activity (as determined by the storage management personnel), most physical read requests
were reaching the disk. Improving the use of the buffer improved all I/O in the environment and
eliminated many of the disk accesses.

As a side effect of the I/O improvement, the CPU requirements of the application may be
reduced. The CPU requirements may be lowered because the system does not have to spend
so much time managing I/O queues—and those resources are now available to user processes
instead. It is possible that some other process on the system may now be free to take more of the

■

■

■

■

Chapter 48: Case Studies in Tuning 827

available resources, illustrating the need to continue monitoring the system even after the tuning
effort has been completed.

To further reduce the system load, operations that could be performed in batch mode were
removed from the online processing portion of the application. For comparison, the following
table shows the statistics following the tuning of the I/O environment and the modification of the
application:

Statistic Value (per Second)

Logical reads 67,000

Physical reads 3,830 (was 6,300)

Buffer busy waits 25 (was 55)

Physical read waits that occurred:
 Db file sequential read (one-block reads)
 Db file scattered read (multiblock reads)

466 (was 3,028)
173 (was 416)

Transactions 10

Physical writes 115

In the revised environment, the number of physical reads was reduced by 40 percent, but the
number of waits was reduced by over 80 percent. The database was able to support the same
number of logical reads, transactions, and physical writes (with fewer waits during writes)—and
the end-user performance is now acceptable. The batch processes will still require attention;
rescheduling poorly written code may lessen contention for the online users, but that work will
still need to be done later.

This is not the end of the story—there are still waits occurring, the database will grow over
time, users will develop new queries, and application modules will be added over time. During
those changes, you should track the critical statistics over time so you can isolate the impact of
changes on the environment, identify problem areas, and forecast future performance.

Case Study 2: Application-Killing Queries
Almost every database will eventually support a query that consumes many more resources than
it should. The query may be performing multiple full table scans (in the event that indexes are
missing). The query may be generating Cartesian products (when multiple tables are listed in the
from clause but their join syntax is not specified). The query may be performing multiple nested
sorts of millions of rows.

In general, when tuning SQL you should strive to work with as few rows as possible. If you only
need ten rows out of a ten-million-row table, try to use an index that returns as few rows as possible
for your where clause criteria, and then filter through those rows for the ten rows you want.

Although this approach may seem straightforward, it is repeatedly violated. When developing an
application, you should consider how each of the SQL statements you write will be executed—its
frequency, its performance requirements for each execution, its dependencies on other commands,
the indexes it will use, and so on. The goal is to support the business process as efficiently as
possible. If you fail to consider how the code will be used, the application may suffer and the speed
of the application may drive the speed of the business process—an unacceptable condition.

In a large online processing application, queries of the following format were the most frequently
executed commands (based on the statistics in the Executions column of V$SQL). Because the

828 Part VII: Hitchhiker’s Guides

query performs a full table scan, the cumulative number of physical reads (the Disk_Reads column)
approaches the cumulative number of logical reads (the Buffer_Gets column) in its V$SQL entry:

select T35.C1
from T35
where (lower(T35.C4) like '%tom clark%');

There are at least three things wrong with this query if it is to be used in a production application.
If you were to run this query one time, the performance might be acceptable—you’ll be performing
a full table scan of the T35 table because of the reasons listed in the next paragraph. But what
happens when many users concurrently execute similar queries, and the T35 table contains
millions of rows? What if you make this kind of query available to a world of users via a Web
interface? The application performance suffers and adversely impacts the very process the
application is supposed to support.

The problems with the query include the following:

There’s no use of bind variables. Every execution of the query will be parsed separately
unless the database administrator has set the CURSOR_SHARING initialization parameter
to FORCE or SIMILAR (the preferred setting). If CURSOR_SHARING is set to EXACT, the
shared SQL area will be filled with thousands of almost identical commands, separately
parsed and differing only in the literal value passed in as the search string.

No function-based index was defined on the C4 column, but the query is performing a
LOWER function on the column. If there is only a standard index available, Oracle will
not be able to use the index to support this query.

The search string begins with a percent wildcard. As a result, you would expect Oracle to
perform a full table scan in order to find values that meet the criteria.

NOTE
You should generate the explain plan for any queries that are targeted
for tuning.

Let’s consider one possible solution to the third problem—the content of the search string. In
this application, the user typed in the name (“tom clark” in this case) and the application code put
wildcards in front and behind the name, trying to maximize the number of potential matches that
would be found. The application developer presented the user with all the potential values that
could possibly match the exact search string.

From the database administration side, you can make sure CURSOR_SHARING is properly
configured, and you can create a function-based index on the C4 column so index scans may be
chosen instead of table scans. But the core problem remains—how can the query be rewritten to
select as few rows as possible in order to generate its result set?

The answer lies in the use of Oracle Text. As described in Chapter 27, you can create text
indexes on columns to support searches for strings, wildcards, text expansions, and more. In this
case, you will pass the name as the search string, and the text index will search its indexed values
for matches—taking into account the wildcards. The application developer will have to change
the query to use the Oracle Text syntax, and the database administrator will need to create and
maintain the text index objects. However, the performance benefits are significant—the full text
scans on the large table are eliminated. In this case, that benefit for very commonly executed
queries offsets the overhead costs involved in maintaining the text indexes.

■

■

■

Chapter 48: Case Studies in Tuning 829

NOTE
If you use indexes to index names, you need to create an empty
stoplist. Otherwise, Oracle will skip common words (such as “AN”)
that may be real names.

In this particular case, the use of text indexes for this query dramatically reduced the search
times for the Web-based users. The number of physical and logical reads against the search table
was cut significantly and remained low as the application grew. The database administrator and
application maintenance team had additional text index objects to manage as a trade-off for the
performance benefit gained.

Text indexes are not the solution to every problem. In most situations, a standard index
containing multiple columns will be the solution. The important step is to identify the most
resource-intensive queries (by querying V$SQL or using Statspack/AWR) and reviewing them from
an application architecture perspective. For each query, ask what it is used for and why it is doing
what it is doing. Consider a simple query such as the following:

select COUNT(*) from COUNTRIES;

Individually, each execution of this query will complete very quickly—there are only several
hundred countries, and the table can be cached in the data block buffer cache. But if this query is
executed several million times a day, it may perform more logical reads than any other query in
the database. Those logical reads translate into CPU resources allocated for repeated queries of
static data that could be spent on more useful queries of dynamic data. When looking for problem
queries, be sure to check for queries that are executed many times in addition to those that are
expensive for each execution.

Using the 10053 Trace Event
A query may not use the same explain plan in every environment. When a query is parsed,
Oracle examines the possible ways of executing the query and assigns a cost to each of the
alternatives. The costs are not arbitrary; Oracle considers the statistics on the tables (such as the
number of rows), the indexes (including their selectivity), and the database parameter values.

Oracle provides a trace event you can use to see the calculations the optimizer performed
when evaluating alternative paths. The output of the trace event is a trace file written to the
USER_DUMP_DEST directory (as defined in the startup parameter file) on the database server.

Within your session, you can enable tracing via the following command:

alter session set
events '10053 trace name context forever, level 1';

With tracing turned on for your session, you should now run the SQL you want to analyze.
When the SQL command completes, you can turn off tracing via the following command:

alter session set
events '10053 trace name context off';

The trace information will only be generated the first time a command is parsed. If the
command has already been parsed within the instance, the trace file will show the command you
executed but not the calculations performed by the optimizer.

The order of the sections of the trace file output vary between releases of Oracle, but in
general they include the following:

The initialization parameters for the database■

830 Part VII: Hitchhiker’s Guides

The object-level statistics

The table access paths considered

The join order and operations options considered

The chosen path

The parameter settings and the object-level statistics are important to note when evaluating
the query’s execution path. The same query run in different databases may follow different
execution paths, leading to significantly different performance for the application. Often these
differences are due to variances in the statistics across databases; you can use this trace to see
how those statistics influence the chosen path.

For each table involved in the query, the trace file will show the table statistics and the index
statistics. Given that the statistics and initialization parameters tuning is not an art or a mystery, it
is therefore a math problem. What is the cost of a full scan of each table? What is the cost of each
type of join (nested loops, sort merges, and hash joins)? How large is the sort area size, and how
likely is it that the query will need to use a temporary segment for storage? For each type of join,
what happens if we switch the order in which the tables are accessed?

Each of these permutations will be evaluated, with a cost generated for each approach. These
costs are then compared, and the approach with the lowest cost is selected.

Changing parameter values at the database or session level influences how the costs are
calculated and thus influences which join path is selected. For example, increasing the setting
for DB_FILE_MULTIBLOCK_READ_COUNT makes full table scans “cost” less, and decreasing
the OPTIMIZER_INDEX_COST_ADJ parameter setting makes index accesses “cost” less.

Additionally, changing the object statistics will influence the costs used during the optimizer’s
calculations. If you are concerned about the optimizer’s choices in a coming production release,
you can export the statistics from the production database and import them into the testing
database. The next time the commands are parsed, they will use the new statistics and will
generate explain plans that will reflect the calculations.

You can use the 10053 trace event to verify the optimizer calculations for critical queries
during significant changes in the database lifecycle. For example, you can use the trace events to
determine how the optimizer choices are impacted by the following:

Changes in the database version

Changes in the operating platform

Changes in the initialization parameters

Changes in the object statistics

Changes in the hints provided to the query

In each case, the trace output provides the foundation for the calculations the optimizer is
performing, thus eliminating the guesswork in query tuning.

Case Study 3: Long-Running Batch Jobs
A company was planning to move a large volume of data on a repeated basis from a transactional
system to a reporting system. The transactional system was outside of their control, so there was
no opportunity to use database links, materialized views, or other replication methods directly

■

■

■

■

■

■

■

■

■

Chapter 48: Case Studies in Tuning 831

interacting with the source system. Instead, the data source was a single large file sent each day
from the transactional system.

Attempting to load the large file into the reporting system repeatedly caused availability
problems—the time needed to load the data through conventional inserts exceeded the available
time window for the operation. Any failures during the loading process created even greater
problems because the partially loaded data was deleted and reloaded. As a result, the performance
of the load job affected the availability of the entire reporting application. Based on the current and
anticipated data volumes, the amount of data loaded daily is expected to triple within 12 months.

Assuming the database is properly configured so there are no I/O or memory issues to resolve,
several approaches are available to resolve this type of problem:

Even though the source system provides the data in one set, you may not have to insert
it all at once. Instead of loading data into the reporting system once each day, consider
sending incremental loads throughout the day. If the loading process does not impact the
queries (for example, by invalidating indexes during the load or causing irregularities in
the reported data), these small loads may be able to work alongside user queries.

Don’t load the data; use external tables instead. This approach is ideal for situations in
which a small number of well-defined queries report against the data a small number
of times.

Parallelize large operations. Use all the available resources on the server. Although this
may help the current performance problems, it may affect the application’s ability to
scale well with increased data volumes.

Load the data into temporary work tables, then treat them as partitions of existing tables.

Each of these options involves at least a minor design change, and you cannot select the
proper solution and make the change without understanding how the end users use the data. Is
the data loaded into a single table or into multiple tables? Do the end users directly access the
tables the data is loaded into? How stale can the data in the tables be?

Let’s first consider the worst-case scenario: The users need all the data available at once, so
no incremental feed is available. The loaded data is inserted into multiple related tables. Further,
the load should have minimal impact on the availability of the rest of the data in the database.
Lastly, the end users query the loaded tables directly.

In such a scenario, you should consider partitioning the table being loaded. For each day’s
data load, create a new table whose structure is the same as the table the users will be querying.
Load the data into the table, index it, analyze it, and perform whatever transforms are necessary
to properly format the data for the user. When the data is ready for presentation to the user,
execute the alter table exchange partition command, telling Oracle to treat the table you have
created as a partition of the table the users will query. Because you only touch the application’s
tables when you add the new partition, the downtime for the application is minimal—particularly
if you are able to use only local indexes on the partitioned table.

The exchange partition approach effectively divides the two operations being performed on
the table—its loading by you and its querying by the users. Once you are able to separate those
two operations, your design and maintenance capabilities increase dramatically.

Consider a slightly better scenario: The users need all the data available at once, but they do
not directly query the table being loaded. The users query materialized views based on the table.
You should tune the materialized views to make the materialized views fast-refreshable, allowing
changes to the loaded table to be incrementally applied to the objects the users will be querying.

■

■

■

■

832 Part VII: Hitchhiker’s Guides

Again, separating the bulk load operation from the queries of the same objects significantly
enhances your maintenance options. See Chapter 26 for details on the configuration of materialized
view refresh options.

If the users always query materialized views that aggregate the data, you should consider
not loading the data at all. Instead, use external tables (see Chapter 28) to reference the data file
during an insert as select operation into a summary table. External tables cannot be indexed and
will therefore result in a full scan of the file—but because you are not loading the raw data, the
insert as select of the summary may complete faster than if you had loaded the data and then
aggregated it. As a side benefit, you only have to store the raw data once (at the file system level)
rather than twice.

Regardless of which of these options you choose, you should investigate the use of options
that exploit the available system resources—including parallel query, parallel DML, parallel
loading, partitioning, and bulk processing. In terms of improving the performance of the load
itself, there are many features available: using nologging during loads, using SQL*Loader Direct
Path loads, and starting parallel Data Pump jobs. Note that many of these options can be applied
on a partition-by-partition level.

Tuning batch loads requires you to make an educated judgment about the degree to which
set processing will be used. You can configure the application to process one row at a time. For
example, you can insert one row into a master table and then insert all its children rows into
other tables before inserting a second row into the master table and repeating the process.
That row-based approach will suffer as the volume of rows increases. The row-based approach
guarantees read consistency across the loaded tables, but if the job is executed during off-hours
(or the exchange partition method is used), that benefit may not be realized by the users.

By comparison, you can create set operations that process huge volumes of rows at once. It is
likely that at some point the number of rows processed in a set will impact the performance of the
load, particularly if complex sorts are involved. In such a case, you may need to break the large
batch process into smaller steps and process smaller groups. For example, the operation flow may be

 1. Select 100,000 rows from the input tables.

 2. Perform the aggregations and transforms on those rows.

 3. Store the results of those aggregations and transforms in a temporary work table.

 4. Select the next 100,000 rows from the input tables.

 5. Repeat until all the rows have been processed and inserted into the temporary work table.

 6. Properly index and analyze the temporary work table.

 7. Perform additional operations on the data in the temporary work table (such as generating
grand totals or new columns or performing joins with other tables).

 8. Insert rows from the temporary work table into the production table.

 9. Drop or truncate the temporary work table.

Such a sequence of operations attempts to gain the benefits of both approaches—a procedural
approach that operates on sets of rows. How large should each set of rows be? That depends on
your operating environment, the operations performed, and the data itself. You should properly
test the process to make sure the more procedural approach completes faster than the single batch
operation. You should take into consideration the greater number of potential points of failure in
the procedural approach, and handle exceptions accordingly.

Chapter 48: Case Studies in Tuning 833

In this example, the original daily load job took 12 hours to complete. By breaking it into
smaller pieces, the total time was reduced to three hours—long enough to run the job multiple
times within the load window if required.

Those design decisions require you to know your data, how it is used, and how it affects the
business process. Regardless of your architecture, you need to be able to test the application
while simulating a real-life workload under repeatable conditions. During the tests and during
production usage, you must be able to monitor the environment and the application for
performance problems as the data volumes grow.

During the tuning process, you may have to make trade-offs. For example, in the batch-process
tuning effort, you may allocate more disk space to the database (for the temporary work table) in
order to improve overall performance. Each part of the application should be considered as a
critical part of the whole application, and developed and planned accordingly. When the application
performance affects the business process performance, you should identify the problem areas—
such as the environment, particular queries, or the data-flow architecture—and implement a
design more in tune with the application’s needs.

This page intentionally left blank

CHAPTER
49

Advanced Architecture
Options—DB Vault,

Content DB, and
 Records DB

835

836 Part VII: Hitchhiker’s Guides

ne of the common security problems with Oracle databases is that the privileged
users SYS and SYSTEM, as well as other accounts with SYSDBA privileges, have full
access to all the data within the database. In the past, you could audit the activity
of all users in the database but could not prevent privileged users from viewing
and/or changing application data. Oracle has released a new product called Oracle

Database Vault to deal with this problem.

Oracle Database Vault
Oracle Database Vault can be used to address common regulatory compliance requirements and
can also be used to reduce the risk of insider threats in the following ways:

By preventing highly privileged users, DBAs, and others with SYSADMIN privileges from
accessing or modifying application data

By enforcing separation of duty by setting up security administration separate from
database administration

By providing controls over when, where, and how applications, data, and databases can
be accessed as well as who can access them

By providing several out-of-the-box security reports that show what was accessed in the
database and when it was accessed

Government regulations such as Sarbanes-Oxley (SOX), the EU Privacy Directive, and the
Healthcare Insurance Portability and Accountability Act (HIPAA) all require strong internal controls
on access, disclosure, and the modification of sensitive information that could lead to fraud, identity
theft, financial irregularities, and financial penalties. Oracle Database Vault realms, command rules,
and factors and separation-of-duty features can all be added to existing application environments
without changes to the existing application code to meet these and other government regulations.

Oracle Database Vault is available for Oracle Database 11g Release 1, Oracle Database 10g
Release 2, and Oracle Database 9i Release 2. Oracle Database Vault is certified for use with
Oracle PeopleSoft applications and Oracle E-Business Suite, and other application certifications
are underway.

New Concepts for Oracle Database Vault
Oracle Database Vault introduces several new concepts:

Realm A container that serves as a “protection zone” within the database where Oracle
Database Vault is installed. The Database Vault administrator can create a realm and
define the content within the realm. This realm can be composed of a single table, multiple
tables, an entire application, or multiple applications.

Command rules A collection of rules a security administrator can create to control how
users execute almost any SQL statement, including SELECT, ALTER SYSTEM, database
definition language (DDL), and data manipulation language (DML) statements. Command
rules can work with rule sets to determine whether a statement is allowed. Rule sets use
factors such as time of day, IP address, host name, or any number of identifiable attributes
associated with a user. For example, a user will only be granted access to certain data if
they meet the requirements of the command rules, which might state that access to the
application is restricted to working hours and only from an internal IP address (as well

■

■

■

■

■

■

O

Chapter 49: Advanced Architecture Options—DB Vault, Content DB, and Records DB 837

as any other number of configurable parameters). These restrictions can be applied to all
system users, including the most powerful DBA or SYSDBA roles.

Multifactor authorization Rule sets that leverage multiple factors in their decision process.
Security administrators can define rules that are based on specific compliance requirements
or security requirements—for example, limiting connections to specific IP addresses, a range
of IP addresses, only during business hours, and so on.

Highly privileged user controls are enforced using both Oracle Database Vault realms and
command rules. Oracle Database Vault creates multiple security realms “out of the box” upon
installation. Oracle Database Vault realms prevent highly privileged users, who are not otherwise
granted privileges on application objects, from using privileges such as “select any” to access
these objects. Command rules are used to provide control over how, when, and where an
authorized user can connect to the database and execute a SQL command.

Database Vault factors can be used when evaluating the execution of command rules. This
prevents ad hoc access to the database and enables multifactor authorization procedures. Oracle
Database Vault enforces segregation of duties by separating out the privileges of security
administration and database account management from the regular DBA responsibility. For
example, database account management is considered a separate responsibility within Oracle
Database Vault. Highly privileged users with the “create user” privilege will be automatically
blocked from using that privilege once Oracle Database Vault is installed unless they are
subsequently authorized by the Oracle Database Vault account management responsibility.

Oracle and third-party applications should be installed prior to Oracle Database Vault,
because Oracle Database Vault enforces separation of duty on account management and security
administration. Some installation and patching processes used by both Oracle and third parties
may fail if Oracle Database Vault is already enabled. As a workaround, Oracle Database Vault
can be disabled and then reenabled after the installation or patching is complete.

Disabling Oracle Database Vault
Use the following steps to disable Oracle Database Vault:

 1. Shut down the database. All instances of a Real Application Clusters (RAC) database must
be shut down. Stop the dbconsole process in case it is running. For both single-instance
and Oracle Real Application Clusters installations, use the following command:

$ emctl stop dbconsole

 For single-instance installations, shut down the database instance as follows:

$ sqlplus "sys / as sysoper"
Enter password: password
SQL> SHUTDOWN NORMAL
SQL> EXIT

 For RAC installations, shut down each database instance as follows:

$ srvctl stop database -d db_name

 2. Relink the Oracle executable to turn off the Oracle Database Vault option:

$ cd $ORACLE_HOME/rdbms/lib
$ make -f ins_rdbms.mk dv_off

■

838 Part VII: Hitchhiker’s Guides

$ cd $ORACLE_HOME/bin
$ relink oracle

 For RAC installations, run the preceding commands on all nodes.

 3. In SQL*Plus, start the database.

 For single-instance database installations:

$ sqlplus "sys / as sysoper"
Enter password: password
SQL> STARTUP
SQL> EXIT

 or RAC installations:

$ srvctl start database -d db_name

 4. At a command prompt, run Oracle Database Vault Configuration Assistant (DVCA) by
using the dvca -action disable option:

dvca -action disable
 -oh $ORACLE_HOME
 -service myservicename
 -instance myinstance
 -dbname mydbname
 -owner_account myownername
 -logfile dvcalog.txt

 -oh is the Oracle Home.

 -service is the database service name.

 -instance is the name of the database instance.

 -dbname is the database name.

- owner_account is the Oracle Database Vault Owner account name.

See the Oracle Database Vault Administrators Guide for more information on using DVCA.
With Oracle Database Vault now disabled, you can restart your database and/or perform

required tasks such as patching or installing software.

Enabling Oracle Database Vault
Use the following steps to enable Oracle Database Vault on UNIX systems:

 1. At a command prompt, use DVCA to reenable Oracle Database Vault, as follows:

dvca -action enable
 -oh $ORACLE_HOME
 -service myservicename
 -instance myinstance
 -dbname mydbname
 -owner_account myownername
 -logfile dvcalog.txt

■

■

■

■

■

Chapter 49: Advanced Architecture Options—DB Vault, Content DB, and Records DB 839

 2. Turn off the software processes. Make sure that the environment variables ORACLE_
HOME, ORACLE_SID, and PATH are correctly set.

 3. Stop the dbconsole process in case it is running. For both single-instance and RAC
installations, use the following command:

$ emctl stop dbconsole

 4. Shut down the database instance.

 For single-instance installations:

$ sqlplus "sys / as sysoper"
Enter password: password
SQL> SHUTDOWN NORMAL
SQL> EXIT

 For RAC installations:

$ srvctl stop database -d db_name

 5. Relink the oracle executable to turn on the Oracle Database Vault option:

$ cd $ORACLE_HOME/rdbms/lib
$ make -f ins_rdbms.mk dv_on
$ cd $ORACLE_HOME/bin
$ relink oracle

 For RAC installations, run these commands on all nodes.

 6. In SQL*Plus, start the database.

 For single-instance database installations:

$ sqlplus "sys / as sysoper"
Enter password: password
SQL> STARTUP
SQL> EXIT

 For RAC installations:

$ srvctl start database -d db_name

Additional detailed instructions on how to enable (or disable) Oracle Database Vault can be
found in the Oracle Database Vault Administration Guide.

Database Vault Installation Notes
Customers installing Oracle Database Vault in Oracle Database 9.2.0.8, 10.2.0.3, and 10.2.0.4
environments should verify that a temporary tablespace called TEMP exists prior to starting the
installation process. This installation dependency has been removed in Oracle Database 11g.

During the Oracle Database Vault installation process, the installer provides the option to create
an account management responsibility. Oracle recommends creating the account management
responsibility to provide enhanced separation of duties between the Database Vault security
administrator (owner), account management, and other DBA responsibilities.

840 Part VII: Hitchhiker’s Guides

Oracle SYSDBA Access
Oracle recommends strictly limiting connections using the SYSDBA role. Only connect to the
database using the SYSDBA role when absolutely necessary and only for those applications that still
require SYSDBA connections, such as Oracle RMAN and mandatory patching processes. For all
other cases, create named database accounts to perform daily database administration operations.
In the future, Oracle will be eliminating the requirement to connect as SYSDBA for any activity.

Oracle Database Administration
Oracle recommends that customers who use the Oracle SYSTEM account for general DBA
purposes create named DBA accounts for their database administrators. Doing so will provide
increased accountability for administrative actions in the database.

Oracle SYSTEM User
Many applications developed in the past have used the Oracle user account SYSTEM for holding some
application tables. It may be necessary to add the SYSTEM account to your realm authorizations for
some applications to continue working normally. Note that restrictions can be placed on the
SYSTEM account to increase security in these scenarios. For example, an Oracle Database Vault
rule set could be used to restrict connections as the SYSTEM user to specific IP addresses.

Root and Other Operating System Access
Oracle Database Vault doesn’t prevent highly privileged operating system users from directly
accessing database files. For this kind of protection, Oracle’s Transparent Data Encryption (TDE) is
recommended. Oracle recommends carefully reviewing and restricting direct access at the operating
system level by creating personalized accounts.

In Linux and UNIX environments, these personalized accounts should use sudo to access the
Oracle software owner when needed. With sudo, you control which specific command each
personalized user can execute. The allowed commands should not include make and relink.
However, in the case of patching or an emergency, these can be enabled for a very limited time.

Separation of Duties
Oracle Database Vault helps administrators manage operations more securely by providing fine-
grain controls on database operations such as creating accounts, granting powerful roles, changing
table structures, and using security-related packages for Virtual Private Database and Label
Security. Oracle Database Vault’s default separation of duty can be divided into three categories.

Database account management Database Vault prevents the ad hoc creation of
database accounts unless the administrator is explicitly assigned the Database Vault
Account Management administrator role.

Database administration Normal day-to-day database administration tasks such
as those associated with creating and managing tablespaces and adjusting tuning
parameters remain unchanged. Oracle Database Vault blocks ad hoc grants of the
DBA role as well as access to powerful packages such as DBMS_RLS.

E-Business Suite Database Vault security administration Only Database Vault
administrators can change Database Vault E-Business Suite security settings related
to realm and command rules.

Security administrators can extend the Oracle-supplied security settings for Oracle E-Business
Suite to accommodate their specific security requirements. Customized realms and command rules

■

■

■

Chapter 49: Advanced Architecture Options—DB Vault, Content DB, and Records DB 841

can be combined with numerous built-in Database Vault factors to strengthen security even further.
For example, customers can set up a CONNECT command rule to restrict connections to the
database to a specific range of IP addresses, thus creating a trusted path to the Oracle Database
and helping prevent the application bypass security problem. Refer to Oracle Metalink for
additional information on how to extend the Oracle-supplied security settings.

Command Rules
Oracle Database Vault uses the concept of a command rule to control the execution of most SQL
commands by any user. Command rules can be used to control both DDL and DML commands.
You can use command rules to protect the database and its applications from unauthorized or
malicious changes from any user, including the owner of the application.

Command rules can be created using the Database Vault Administration web interface (DVA)
or the Database Vault Administration application programming interface (API).

Oracle will create and display the DVA URL at install time. The URL will be in the form
of http://hostname:portnumber/dva. Log in as the Database Vault Administrator (owner). Click
Command Rules and then click Create. Fill out the attributes to place the necessary limits on
the command you want to restrict.

The Database Vault API is provided by the procedures and functions within the DVSYS.DBMS_
MACADM package. This PL/SQL package allows you to write applications that configure the
realms, factors, rule sets, command rules, secure application roles, and Oracle Label Security
policies normally configured in Oracle Database Vault.

The DVSYS.DBMS_MACADM package is available only for users who have the DV_ADMIN
or DV_OWNER role.

The following procedure uses the DVSYS.DBMS_MACADM package to create a realm named
PERS to protect the data in the personnel schema from DBA access. Note that setting the Audit
Option to 1 creates an audit record when a realm violation occurs (for example, when an
unauthorized user tries to modify an object that is protected by the realm rule for the drop table
command).

BEGIN
 DVSYS.DBMS_MACADM.CREATE_REALM
 (REALM_NAME => 'PERS REALM',
 DESCRIPTION => 'This realm protects personnel data from
dba access', ENABLED => 'Y',
 AUDIT_OPTIONS => 1);
END;
/
COMMIT;

The following is used to protect all objects in the PERS schema:

BEGIN
DVSYS.DBMS_MACADM.ADD_OBJECT_TO_REALM(REALM_NAME => 'PERS REALM',
 OBJECT_OWNER => 'PERS',
 OBJECT_NAME => '%',
 OBJECT_TYPE => '%');
 END;
/
COMMIT;

842 Part VII: Hitchhiker’s Guides

The following is used to authorize the PERS user as the PERS realm owner:

BEGIN
DVSYS.DBMS_MACADM.ADD_AUTH_TO_REALM
 (REALM_NAME => 'PERS REALM',
 GRANTEE => 'PERS');
 END;
/
COMMIT;

Oracle best practices suggest creating command rules for the following SQL statements within
the Oracle Database Vault:

CREATE CLUSTER

DROP CLUSTER

CREATE DATABASE LINK

DROP DATABASE LINK

DROP INDEX

DROP SEQUENCE

CREATE SYNONYM

CROP SYNONYM

ALTER TABLE

CREATE TABLE

DROP TABLE

TRUNCATE TABLE

DROP TABLESPACE

CREATE VIEW

DROP VIEW

Refer to the Oracle Database Vault Administrator’s Guide for additional information about
using the DVSYS.DBMS_MACADM package. A listing of best practices for Oracle Database Value
can be found at http://www.oracle.com/technology/deploy/security/database-security/database-
vault/index.html.

Oracle Content Database Suite
Oracle Content Database Suite is an option available with the Oracle Database Enterprise Edition
software. The primary purpose of the Oracle Content Database Suite is to provide a set of services
to manage all the documents within an organization.

The Oracle Content Database Suite includes several key features, as discussed next.

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

http://www.oracle.com/technology/deploy/security/database-security/database-vault/index.html
http://www.oracle.com/technology/deploy/security/database-security/database-vault/index.html

Chapter 49: Advanced Architecture Options—DB Vault, Content DB, and Records DB 843

Repository
The Oracle Content Database Suite repository components include the Oracle Content Server and
the Oracle Content Database. The Oracle Content Server comprises the programs and
executables that access the Oracle Content Database:

Oracle Content Server The Oracle Content Server runs on all the standard operating
systems, such as Microsoft Windows Server, Red Hat, SuSe Linux, AIX, Solaris, and HP-
UX. It requires web server software and supports Apache, Sun Java System Web Server,
IBM HTTP server, and Microsoft’s Internet Information Services. The Oracle Content
Server also requires a Java Virtual Machine (JVM) to execute server-side Java programs
on the web server. Database software also needs to be installed on the same server, and
several different databases besides Oracle are supported.

Oracle Content Database Oracle provides a default database installation that can be
used to store the metadata of all the revisions of the content managed by the Oracle
Content Server. Using an Oracle database as the Oracle Content Database provides the
capability to use the built-in Oracle Database fine-grained access control, which allows
different security levels to be specified at the folder or document level. Database roles
are created and assigned to users based on their business need to access data within a
folder or document. The Oracle Content Database provides an auditing mechanism that
enables an organization to audit any event in the Content Database and to generate audit
trails and reports whenever they are needed.

Document Management
Document management within Oracle Content Database Suite uses multiple tools, including a
portlet suite, integrated converters, and scripts:

Oracle Content Database Portlet Suite The Oracle Content Portlet Suite enables you
to integrate Oracle Content Server functionality into various portal servers, such as
WebLogic, WebSphere, Plum Logis, and Sun One.

Oracle Dynamic Converter The Oracle Dynamic Converter is used to convert
documents into the desired format for storage and display of the stored content. Content
can be displayed in a web browser or on a wireless device, in Microsoft Word, Adobe
Acrobat, and several other formats.

Oracle Content Desktop The Oracle Content Desktop software is installed on a
user’s desktop to provide an interface between client applications and a Content Server
instance. It also provides integration with Microsoft Outlook, which can be used to
transfer content directly to or from Microsoft Outlook, including both e-mail messages
and attachments.

Oracle Content Integration Suite Oracle Content Integration Suite (CIS) enables
communication with Content Server and is deployable on many different J2EE application
servers, in addition to working in non-J2EE environments.

Oracle Drive Oracle Drive is a WebDAV client. It maps the Oracle Portal Repository
as a drive and allows you to perform desktop authoring and publishing, as well as portal-
specific metadata attribution, directly from the Windows desktop.

■

■

■

■

■

■

■

844 Part VII: Hitchhiker’s Guides

Kofax Release Script Kofax Release Script is a set of tools used to convert paper
documents into electronic documents.

User Security
Users log into the Oracle Content Server using a user ID and password, just like logging into an
Oracle database. The usernames and passwords are stored in the Context Server and can
optionally be stored in the Oracle Context Database. There are four different types of users:

Consumers Consumers are the users of the data stored in the Oracle Context Database,
and they use a web browser to search for, find, and view content. Consumers cannot add
content to the Context Database, and their login credentials are used to determine what
they have access to.

Contributors Contributors can also be consumers of the data stored in the Context
Database, but they can also add new content or revise existing content.

Administrators Administrators are responsible for setting up and maintaining the
Oracle Content Server and Database and the user community. Administrators can also
assign sub-administrators to assist in the management of the system. The Database Vault
Administrator cannot see data protected by a realm. The Database Vault Administrator
also cannot add himself or herself to the list of authorized users for any realm he or she
creates. This is part of Oracle Database Vault’s separation of duties.

Sub-administrators Sub-administrators maintain a subset of the content management
system and its user logins.

Predefined Users Oracle Content Server creates two users when it is installed. The first
user is called sysadmin and is the default system administrator. The user ID is assigned
the admin role and cannot be deleted from the system. The default password should be
changed immediately. The second user is called user1 and is assigned the contributor
role. This user ID can be deleted from the system, if desired. However, if it’s maintained,
the default password should be changed.

Security Groups
All files that are checked into the content management system must be assigned to a security
group. Oracle provides two default security groups: public and secure. Any consumer can view
all the documents in the “public” security group. Content system files stored in the “secure”
security group can only be viewed by the system administrators. Additional security groups can
be defined and managed using the User Admin interface. Permissions are assigned to users to
allow them to read, write, delete, or administer documents within a security group. Roles can
also be set up to provide a group of permissions to users.

External User Security
Oracle Content Server security can be set up to use the Microsoft Active Directory user base or
an LDAP-compliant user base such as iPlanet. When users log into the Content Server, they are
assigned roles and accounts based on their user attributes defined in the external security system.

Network Access
Network assess must be configured so that access is only allowed to the Oracle directory structure
through the Oracle Content Server application. The data directory and the config directory within

■

■

■

■

■

■

Chapter 49: Advanced Architecture Options—DB Vault, Content DB, and Records DB 845

the Oracle Content Server contain usernames and passwords and therefore should not be shared
on the network.

Oracle Records Database
Oracle 10.1 provided a new product called the Oracle Records Database that can be used to
manage electronic records for regulatory compliance and legal discovery. Oracle Records
Database provides the foundation to declare, classify, store, and retrieve electronic records.

Oracle Records Database (Records DB) is used in conjunction with the Oracle Content DB to
provide the ability to specify that a document or other content entity be retained for a specified
period of time. It also prevents or controls changes to the document during the retention period
and disposes of the document in a prescribed way once the retention period has expired. Policies
created in the Oracle Records DB are implemented via the Oracle Content DB application on the
information stored in the Oracle Content DB repository.

Oracle Records DB provides record management administration procedures as Web Services
and therefore can be integrated with applications and business processes within an organization.
Administrators can use Oracle BPEL workflows to capture and declare records to be stored in the
Records DB. Integration is also provided to capture records in Oracle E-Business Suite, PeopleSoft,
Siebel, and SAP.

Oracle Records DB administrators can model their organization’s policies by setting up
various hierarchies, including record series, categories, and folders within the Records DB and
then apply different levels of access to the data via roles. Extensive auditing capabilities are
provided to collect both global and object audit histories, along with custom auditing.

The Oracle Records DB provides hardware integration for Network Appliance SnapLock and
EMC Centera storage devices to store, maintain, and provide access to electronic documents
using the policies defined within the Oracle Records Database. Configuration is provided from
the Oracle Content DB administration console.

Oracle Universal Records Manager (URM) replaced the Oracle Records Database in 2007.
The Oracle URM can be used to apply retention policies as well as legal discovery information
for database records, e-mail attachments, and electronic documents stored in file servers. It can
be used to define and manage records and retention policies on a U.S. Department of Defense
5015.2–certified records management server.

The Oracle URM uses a web interface just like the Oracle Records DB and communicates
using HTTP, SOAP, and JavaBeans. The Oracle URM consists of four main parts:

Records Manager (RM) The Records Manager is used to control the creation,
classification, retention period, and destruction of records. Classification and retention
policies can be defined and automatically applied to newly created records. Retention
policies can be defined to archive expired records, move them to secondary storage, or
destroy them.

Physical Records Manager (PRM) Physical Records Manager is used to manage the
retention or disposition of records and nonrecord content stored in electronic form or in
physical form. The same retention and disposition plan can be used for all forms of data
managed by the URM.

Notification Services Notification services are integrated with Oracle workflow services
to set up retentions and notification for records.

■

■

■

846 Part VII: Hitchhiker’s Guides

Adapter Services The Oracle URM provides a set of services that can be used to
monitor the repository, to perform various tasks to support the URM, and to manage
communications. The services are provided as Web services and as part of a software
development kit for Java and .NET. Just like the Oracle Records DB, the Oracle URM uses
the Oracle Content Server and needs to be installed on the same server as the Oracle
Content Server. Supported platforms include Windows Server and Linux. The underlying
Oracle database must be Oracle 10.2 or greater to use the Oracle URM and should be
independent from the install platform used for Oracle Content DB, Oracle Records DB,
and Oracle URM.

Oracle Content DB installs a number of database objects and schemas when it is configured.
Oracle Content DB creates the following schemas:

Content, content$dr, and content$cm for managing content and related metadata

Relationships, indexes, and so on

Content$id for enabling user provisioning from Oracle Internet Directory

Owf_mgr for Oracle Workflow built-in workflows

It also creates the following queues:

ifs_bpel_in and ifs_bpel_out for communicating with Oracle BPEL Process Manager

ifs_in and ifs_out for communicating with Oracle Workflow

During normal database operations, a well-defined set of processes needs to access the
preceding listed database objects. Oracle Database Vault enables an organization to create a
set of realms and command rules, with supporting rules and rule sets that restrict access to this
minimum set of processes.

Oracle provides a set of PL/SQL scripts on otn.oracle.com that enable the appropriate Oracle
Database Vault configuration to protect the Oracle Content DB and Oracle Records DB data in
the database. This configuration consists of a set of realms and rules that restricts access to the
Oracle Content DB objects and additionally restricts connections to known machines—the
Oracle Content DB middle tiers, Oracle BPEL Process Manager middle tiers, and Oracle Internet
Directory. It is expected that these rules will be used in conjunction with IT security best practices
to secure and control access to the machines involved.

Each organization will need to adjust these rules to accommodate additional access needed
to diagnose and maintain the application. DBAs may need direct access to the Content DB to
generate AWR and ADDM or other reports to tune a query that is taking too long. It is
recommended that such access be enabled through additional realms that are only enabled when
necessary and that audit all access.

Additional information, documentation, and downloads for Oracle Database Vault, Oracle
Content DB, Oracle Records DB, and Oracle URM are available on otn.oracle.com.

■

■

■

■

■

■

■

CHAPTER
50

Oracle Real Application
Clusters

847

848 Part VII: Hitchhiker’s Guides

n an Oracle Real Application Clusters (RAC) environment, multiple instances
access a single database. The instances are commonly created on separate servers
that are connected via a high-speed interconnect with access to a shared disk area.
The database files reside on a shared set of disks, and each instance has its own
control files and online redo log files that are also stored on the shared disks.

Every instance shares the same datafiles and the same control file. Online redo log files are
assigned to a specific instance using the THREAD parameter, and only that instance with that
thread number writes to them. Every instance has to be able to read all online redo log files so
that any instance can archive the log files if the owning instance is shut down. A user can be
directed to connect to the database through one of the instances attached to it; if an instance goes
down, the connection may be dynamically reconnected to the database via another instance in
the cluster. RAC thus provides a high-availability solution (accounting for server and instance
failure) and a scalable high-performance solution (by increasing the memory and processors
available to the connecting processes).

In this chapter, you will see an overview of the installation and management of RAC. Many
of the details are operating system–specific, but the configuration process flow will be the same
across platforms.

Preinstallation Steps
Before starting the Oracle RAC installation, you need to verify that your environment and cluster
are properly configured to support it. The servers that will host the instances are referred to as
nodes in the cluster. Each of the nodes should have external shared disks. Each node should have
redundant switches to support failover requirements. Each node should have one private Internet
Protocol (IP) address for private connections and one public IP address for client connections and
connection failovers from other nodes.

Each node must support TCP/IP (Transmission Control Protocol/Internet Protocol) and a
supported interconnect software protocol.

NOTE
You must choose an interconnect that is supported by Oracle. See the
Metalink site (http://metalink.oracle.com) for the latest certification
matrix.

Oracle provides clusterware, simplifying the installation and configuration process. For the
shared disk area, Oracle recommends the use of its Automatic Storage Management feature (see
Chapter 51).

NOTE
Be sure to install all required patches on the operating system prior
to starting the installation process. As part of your standard Oracle
software installation procedures, you should review all required
operating system patch levels.

DBAs and application developers typically do not get involved in network system design, but
for RAC installations you need to be actively involved in the network configuration. For example,
the MTU network setting determines how large each packet is when data is sent from server to
server. In RAC installations, many database blocks may be sent between the nodes, and it is

I

http://metalink.oracle.com

Chapter 50: Oracle Real Application Clusters 849

critical that communication be as efficient as possible. If MTU is set to 1500 bytes (its historical
value, and the default in some installations), then each 32K database block will require over 20
separate network packets. Even if those packets are transferred between nodes in 1 millisecond,
which equates to a 20-millisecond read time for a single block, you can probably read the data
off your disks faster than that. If the hardware supports increasing the MTU, you may be able to
improve the transfer speeds for blocks across the cluster interconnect. If you are moving to a RAC
environment, you need to understand how the network and hardware configuration impacts the
performance and scalability of your applications. Your system administrators should make sure
your configuration appropriately supports the anticipated transfer of blocks across the RAC nodes
with as little overhead as possible.

Installing RAC
The installation of RAC in Oracle Database 11g is a two-step process. In the first step, use the Oracle
Universal Installer (OUI) to install CRS (Cluster Ready Services). CRS provides an integrated set of
solutions for cluster management. You can use CRS to manage cluster membership, group services,
group resource management, and high-availability configuration. You can use CRS to define services
that support distributing workload across servers. The Automatic Workload Repository (AWR) collects
statistics on the services; see Chapter 46 for further details on AWR.

NOTE
RAC is available with both the Standard Edition and the Enterprise
Edition of Oracle Database 10 g and Oracle Database 11g.

Both steps of the installation process use the OUI; see Chapter 2 for details on OUI. After
completing the first step (installation of the CRS), you can begin the second step of the installation:
installing the Oracle Database 11g software with RAC in a different Oracle home directory than
you used in the first step. You should also use the installer to create and configure services for
your RAC environment. After your software installation completes, OUI will start the Database
Configuration Assistant to complete environment configuration and create the RAC database.

NOTE
If you have installed a previous Oracle clustered database version, the
Database Upgrade Assistant (DBUA) will upgrade your database to the
Release 11g version of RAC.

Storage
You can use Automatic Storage Management (ASM) to create disk groups and simplify their
management. As described in Chapter 51, database administrators can add new disks to disk
groups; Oracle will manage the contents and the distribution of the files among the disks involved.

ASM is normally installed before the database software. In Oracle 10.2.0, Oracle suggested
installing ASM in its own $ORACLE_HOME directory. In Oracle 11g, Oracle suggests installing
ASM in the same $ORACLE_HOME directory as CRS. The Oracle 11g recommended approach
is expected to be the standard for future releases.

You can use ASM to provide redundancy from within Oracle if there is no hardware redundancy
available. When you define the disk group, you can specify a failure group; Oracle will use the
failure group as a redundant version of the primary group of disks in the disk group. Oracle’s
installation programs refer to the software-based redundancy as “normal” redundancy. You can

850 Part VII: Hitchhiker’s Guides

specify multiple failure groups for additional redundant protection (at the cost of additional space).
If hardware mirroring is available, you can use external (file system–based) redundancy.

Many RAC environments use a combination of raw devices and logical volume management
software. Logical volume management (LVM) provides a file-system management interface to raw
devices.

You can use ASM disk groups to further reduce the management complexity of the RAC
database—Oracle manages the files and the file systems. You can administer the files and disk
groups manually or via Oracle Enterprise Manager’s (OEM’s) Grid Control options.

Initialization Parameters
As part of configuring the instances, you must set values for the database initialization parameters
maintained in the server parameter file. RAC installations should use the server parameter file to
manage the set of parameters shared by the instances.

The following initialization parameters must have the same value for all instances in the RAC
cluster:

ACTIVE_INSTANCE_COUNT

ARCHIVE_LAG_TARGET

COMPATIBLE

CLUSTER_DATABASE

CLUSTER_DATABASE_INSTANCES

CONTROL_FILES

DB_BLOCK_SIZE

DB_DOMAIN

DB_FILES

DB_NAME

DB_RECOVERY_FILE_DEST

DB_RECOVERY_FILE_DEST_SIZE

DB_UNIQUE_NAME

INSTANCE_TYPE (RDBMS or ASM)

PARALLEL_MAX_SERVERS

REMOTE_LOGIN_PASSWORD_FILE

UNDO_MANAGEMENT

NOTE
If DML_LOCKS and RESULT_CACHE_MAX_SIZE are set to 0, their
values in all instances must be identical.

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

Chapter 50: Oracle Real Application Clusters 851

The following initialization parameters must have unique values for each instance in the RAC
cluster:

ASM_PREFERRED_READ_FAILURE_GROUPS (for ASM instances only)

INSTANCE_NAME

INSTANCE_NUMBER

UNDO_TABLESPACE

NOTE
Within an instance, set INSTANCE_NUMBER and THREAD to the
same value.

In addition to these parameters, you should specify identical values for the following
initialization parameters across the instances:

Parameter Description

ARCHIVE_LAG_TARGET Different values for instances in your Oracle RAC database are
likely to increase overhead because of additional automatic
synchronization performed by the database processing.
When using Streams with your Oracle RAC database, the value
should be greater than zero.

LICENSE_MAX_USERS Because this parameter determines a database-wide limit on the
number of users defined in the database, it is useful to have the
same value on all instances of your database so you can see the
current value no matter which instance you are using. Setting
different values may cause Oracle to generate additional warning
messages during instance startup, or cause commands related to
database user management to fail on some instances.

LOG_ARCHIVE_FORMAT If you do not use the same value for all your instances, you
unnecessarily complicate media recovery. The recovering
instance expects the required archive log file names to have the
format defined by its own value of LOG_ARCHIVE_FORMAT,
regardless of which instance created the archive log files.
Databases that support Data Guard, either to send or receive
archived redo log files, must use the same value of LOG_
ARCHIVE_FORMAT for all instances.

SPFILE If this parameter does not identify the same file to all instances,
then each instance may behave differently and unpredictably
in failover, load-balancing, and during normal operations.
Additionally, a change you make to the SPFILE with an ALTER
SYSTEM SET or ALTER SYSTEM RESET command is saved only in
the SPFILE used by the instance where you run the command. Your
change will not be reflected in instances using different SPFILEs.
If the SPFILE values are different in instances where the values
were set by the server, you should restart the instances that are
not using the default SPFILE.

■

■

■

■

852 Part VII: Hitchhiker’s Guides

Parameter Description

TRACE_ENABLED If you want diagnostic trace information to be always available
for your Oracle RAC database, you must set TRACE_ENABLED to
TRUE on all your database instances. If you trace on only some
of your instances, diagnostic information might not be available
when required should the only accessible instances be those with
TRACE_ENABLED set to FALSE.

UNDO_RETENTION By setting different values for UNDO_RETENTION in each
instance, you are likely to reduce scalability and encounter
unpredictable behavior following a failover. Therefore, you
should carefully consider whether you will accrue any benefits
before you assign different values for this parameter to the
instances in your Oracle RAC database.

Avoid using the dynamic memory management features in RAC instances. Dynamic memory
management will generate network traffic that can negatively impact the performance of the
database as a whole without benefiting the applications it is supporting.

Starting and Stopping RAC Instances
You can use Grid Control to manage all of the instances associated with a RAC database. You can
stop, start, and monitor databases, instances, and their listeners via Grid Control. As with any
non-RAC database, you can use SQL*Plus to issue shutdown and startup commands. For RAC
databases you can also use the SRVCTL utility, as shown in the examples in this section.

Regardless of the tool used to shut down or start the instance, the following rules apply to
RAC clusters:

Shutting down an instance does not affect the operation of other running instances.

Shutting down a database mounted in shared mode requires that you shut down every
instance in the RAC cluster.

After a shutdown normal or a shutdown immediate, no instance recovery is needed. If
you use shutdown abort on a RAC instance, a still-running instance performs instance
recovery for the shutdown instance. If the aborted instance was the last one running, the
next instance to start will perform the recovery.

If you use shutdown transactional with the local option, all transactions in the instance
will have to be either committed or rolled back prior to the shutdown. Transactions on
other instances do not impact the local shutdown transactional. If you do not specify
the local clause, then the shutdown transactional will wait for all transactions on all
instances that started prior to the shutdown command to complete.

You can use SQL*Plus commands to shut down and start up RAC databases one at a time
until the whole environment has started. See Chapter 51 for details on startup and shutdown
commands. You can start up an instance on your local node via the startup mount command.

You can use the SRVCTL utility to manage multiple instances in a single command. The
syntax to start instances is

srvctl start instance -d <db_name> -i <inst_name_list>
 [-o <start_options>] [-c <connect_str> | -q]

■

■

■

■

Chapter 50: Oracle Real Application Clusters 853

The keyword following srvctl start specifies the service being started—instance, database,
service, nodeapps, or asm. Note that multiple instances can be passed as part of the inst_name_
list parameter value (via a comma-separated list). The start_options are open, mount, and nomount.
The connect_str parameter allows you to pass a connect string when connecting to the database.
The q parameter, if specified, tells SRVCTL to prompt for user connection information when
SRVCTL is run; by default SRVCTL will connect to the local database as SYSDBA.

The following command will start and open a local database named MYDB and will open all
instances of the MYDB database:

srvctl start –database –d mydb –o open

The following command will start two instances for the MYDB database:

srvctl start instance –d mydb –i mydb1,mydb2

For ASM instances, specify the node name (-n), the instance name (-i), and the startup options
(-o), as in the following example. The instance name is optional because only one instance of
ASM can run on a single node.

srvctl start asm -n mynode1 -i asm1 –o open

NOTE
To see the instances that are part of your cluster, you can use either
OEM or SQL*Plus. From within SQL*Plus, query the V$ACTIVE_
INSTANCES view. The view will display one row for each instance—
showing the instance number, the host name, and the instance name.

You can use the

srvctl stop {database | instance | service | nodeapps | asm }

command to stop databases, instances, and other services.
Other available SRVCTL commands are listed in Table 50-1.

SRVCTL Command Description

srvctl add
{database|instance|service|nodeapps|asm}

Adds a configuration to your cluster database
configuration. srvctl add service adds services to a
database and assigns them to instances. You can use
the srvctl add service command to configure the
Transparent Application Failover (TAF) policy for a
service.

srvctl config
{database|service|nodeapps|asm}

Displays the configuration information stored in the
Oracle Cluster Registry.

srvctl disable
{database|instance|service|asm}

Disables the named object and prevents it from being
started automatically.

srvctl enable
{database|instance|service|asm}

Enables the named object to be started automatically.

TABLE 50-1 SRVCTL Command Options

854 Part VII: Hitchhiker’s Guides

Transparent Application Failover
RAC provides support for transparent application failover (TAF) in the event of an instance failure.
To guard against hardware failure, the database file storage must be failure tolerant (usually through
the use of RAID arrays, mirroring, or ASM-enforced software mirroring). When a user connects to
the database through an instance, any transactions executed by the user are recorded in the redo
log thread for that instance.

If an instance fails (or is shut down via a shutdown abort), one of the surviving instances will
perform the needed recoveries. With TAF, the user’s connection will be reestablished via another
instance in the same cluster, connecting to the same database.

When you install and configure the RAC environment, Oracle configures the network services
for you. For example, if you create a service called db.us.acme.com, the service name entry in
the tnsnames.ora file may resemble this:

db.us.acme.com=
(description= (load_balance=on) (failover=on)
(address_list=
 (address=(protocol=tcp)(host=db1-server)(port=1521))
 (address=(protocol=tcp)(host=db2-server)(port=1521)))
(connect_data= (service_name=db.us.acme.com)))

SRVCTL Command Description

srvctl getenv
{database|instance|service|nodeapps}

Displays environment status.

srvctl modify
{database|instance|service|nodeapps}

Modifies the object configuration without removing
and adding the CRS resources.

srvctl relocate service Relocates the named service names from one named
instance to another named instance.

srvctl remove
{database|instance|service|nodeapps|asm}

Removes the named object from the cluster
environment.

srvctl setenv
{database|instance|service|nodeapps}

Sets environment values in the configuration file.

srvctl start
{database|instance|service|nodeapps|asm}

Starts CRS-enabled, nonrunning applications for the
database, all or named instances, all or named service
names, or node-level applications.

srvctl status
{database|instance|service|nodeapps|asm}

Displays the current state of the named object.

srvctl stop
{database|instance|service|nodeapps|asm}

Stops the CRS applications for the database, all or
named instances, all or named service names, or node-
level applications.

srvctl unsetenv
{database|instance|service|nodeapps}

Unsets environment values in the configuration file.

TABLE 50-1 SRVCTL Command Options (continued)

Chapter 50: Oracle Real Application Clusters 855

The user can connect to the instance via the db.us.acme.com service name (for example, via
a remote SQL*Plus session) and execute queries. While the user is connected, you can shut down
the db1-server host. If the user—still in the same session—attempts to execute another query, the
session will be transparently reestablished via the db2-server host and the query will be executed.

The listener.ora file entry for the database will contain entries similar to the following listing:

listeners_db.us.acme.com=
(address=(protocol=tcp)(host=db1-server)(port=1521))
(address=(protocol=tcp)(host=db2-server)(port=1521))

If the user has changed environment variables within the session (via alter session), or has
set session-specific variables, those values may need to be reestablished in the newly connected
session.

As described earlier in this chapter, you can create and manage services within your RAC
cluster. You can assign services to run on one or more instances; services integrate cluster
database resources to simplify cluster manageability.

You can use SVRCTL to create and add services. You can assign services to instances for
preferred (normal) and available (recovery) processing. You can identify other instances that
are available to support the service levels change or for planned outages.

NOTE
You can use the DBCA to manage service assignments and service
preferences.

Assigning services to nodes is a critical part of the RAC design process. The goal is for the
configuration to be a benefit rather than a hindrance. To achieve that goal, you should avoid
creating a RAC configuration in which multiple sessions will be executing long-running updates
of the same blocks at the same time on different nodes of the cluster. If you can isolate your users
so they can share data rather than compete for it, you will dramatically improve your likelihood
of success. You may need to force specific users to specific nodes of the cluster rather than relying
on the round-robin assignment of users; the more you can control the use of locks against your
tables, the more you can control the cluster performance.

Adding Nodes and Instances to the Cluster
You can add nodes to an existing cluster and you can add instances to an existing RAC environment.
The nodes must meet the criteria listed earlier in this chapter—they must be configured with the
proper networking protocol configurations and they must support high-speed data transmissions
with the other nodes in the cluster. It is generally simplest to make the operating system on the
new node a copy of one of the existing nodes in the cluster. The nodes must be able to execute
remote commands via equivalence files.

The specific installation steps for the new node vary by operating system. In general, a UNIX
cluster administrator will add the new node to the clusterware configuration (based on directions
from its vendor). You can then start the Oracle Universal Installer (OUI) in addNode mode (in
UNIX, via <CRS_HOME>/OUI/bin/addNode.sh and in Windows via <CRS_HOME>\oui\bin\
addNode.bat). OUI will then present you with a series of prompts to add the new node to the
cluster as it verifies the configuration.

856 Part VII: Hitchhiker’s Guides

OUI will then begin the installation process, instantiating root scripts if needed, copying the
CRS files to the new nodes if needed, and then prompting you to run several scripts at the operating
system level. OUI then saves the cluster inventory. You can then execute the CRSSETUP utility to
add CRS information for the new nodes. You can then run one final utility, RACGONS, to configure
the Oracle Notification Services port for the new server. See the Oracle documentation for the
syntax of the CRSSETUP and RACGONS utilities, as they involve detailed configuration of node
names, node numbers, and ports.

Once the node has been added to the cluster, you can add an instance. Start the Database
Configuration Assistant (see Chapter 2) and choose “Real Application Clusters database.” You can
then select “Add Instance” and the name of the database the instance will access. Enter the instance
parameters where prompted and accept the summary information to initiate the instance creation.
Oracle will create the instance and its network services.

To remove an existing instance from a RAC cluster, start the DBCA on a node other than the
node hosting the instance that will be removed. The DBCA will display a list of the current instances
in the configuration; select the one to be removed from the list. DBCA will display a list of services
assigned to that instance so you can relocate them to other instances in the cluster. The selected
instance will be deregistered from the RAC cluster.

CHAPTER
51

The Hitchhiker’s Guide to
Database Administration

857

858 Part VII: Hitchhiker’s Guides

n this chapter, you will see the basic steps involved in administering an Oracle
Database 11g database. There are many components to the database administrator
(DBA) job, and there are books written specifically for DBAs. This chapter will
provide an overview of the tasks of a DBA, along with guidance on the usage of
standard DBA tools. This chapter does not provide a full, detailed description of

every DBA task.

In earlier chapters, you have already seen many of the functions of a DBA, such as creating
tables, indexes, views, users, synonyms, database links, and packages. The DBA topics described
in this chapter will therefore focus on the production-control functions of the DBA role:

Creating a database

Starting and stopping the database

Sizing and managing the memory areas for the database

Allocating and managing space for the objects

Creating and managing undo

Performing backups

For each of these topics, many options are available to developers and DBAs. The following
sections of this chapter should provide you with enough information to get started, and to learn
what questions to ask of your DBAs and system administrators. For further details on all of these
topics, see Oracle 11g DBA Handbook.

Creating a Database
The simplest way to generate a create database script is via the Oracle Universal Installer
(OUI). When you install Oracle, OUI gives you the option to create a database via the Database
Configuration Assistant (DBCA). If you use that option, DBCA will create a database as part of the
software installation process; you can invoke DBCA at any later time to create additional databases.
See the create database entry in the Alphabetical Reference for the full command syntax.

The create database command is issued from within SQL*Plus, via an account with the
SYSDBA system privilege:

connect system/manager as sysdba
startup nomount
create database...

To issue connect as SYSDBA successfully, you must have the proper authorization at the
operating-system and database levels. See your operating system–specific Oracle documentation
for information on the operating-system rights needed.

Using the Oracle Enterprise Manager
Oracle Enterprise Manager (OEM), a graphical user interface (GUI) tool, is supplied as part of the
standard Oracle toolset to enable DBAs to manage databases from a personal computer. The OEM
toolset provides a robust interface for remote database administration. All DBAs can use the same
central OEM repository (a set of tables created in a database) to perform their work. In addition to

■

■

■

■

■

■

I

Chapter 51: The Hitchhiker’s Guide to Database Administration 859

those changes, OEM includes task scheduling and assignment features to enable around-the-clock
database coverage.

You must make several key decisions before installing and configuring OEM. You need to
decide where the OEM repository is to be created and how and when you are going to perform
backups to protect this repository. Since you can use OEM as an interface to Oracle Recovery
Manager (RMAN), recovery information can be stored in the OEM repository. You may want to
create a small, separate database in which to store the OEM repository. You should ensure that
this database is backed up frequently so that recovery of the repository itself is assured.

If you are the only DBA working with the OEM toolset, you will not have to consider who will
handle administration of specific databases in your environment. If there are several DBAs at the
site, you will need to determine task definitions, database responsibilities, and schedules. With
OEM, you can grant levels of access and privilege to each DBA in the group on a task-by-task
basis. You can configure OEM to enable you to send e-mail requests and assignments to other
DBAs or take control of a problem to speed resolution.

If you have a previous version of OEM installed, migrate that repository to the newest version
to take advantage of the new features. If you have more than one repository on your system, you
will need to take precautions to ensure that you migrate each version of the repository without
damaging currently stored information.

Although you do not have to use OEM, it provides a common GUI for managing your databases.
As your enterprise grows in size (and in number of databases and DBAs), the consistency of the
DBA interface will support consistent implementation of your change-control and production-
control processes.

OEM enables you to manage Real Application Clusters (RAC) environments and Grid
environments. By providing a graphical interface to the administration or the database, OEM
simplifies the learning curve for new DBAs and allows very complex functions to be performed
easily.

Starting and Stopping the Database
To start a database, issue the startup command from within SQL*Plus, as shown in the following
listing. In the examples in this chapter, the name of the database is MYDB.

connect system/manager as sysdba;
startup open MYDB;

Alternatively, you can mount the database:

connect system/manager as sysdba;
startup mount MYDB;

When the database is mounted but not open, you can manage its files. For example, if you
moved some of the database’s files while the database was shut down, you need to let Oracle
know where to find them before it will restart. To give the new locations of the files, you can
mount the database (as shown in the preceding listing) and then use the alter database command
to rename the old files to their new locations. Once you have finished telling Oracle the new
locations for the files, you can open the database via the alter database open command.

Four primary options are available for shutting down the database. In a normal shutdown (the
default), Oracle waits for all users to log out of the database before shutting down. In a transactional
shutdown, Oracle waits for active transactions to complete before shutting down. In an immediate
shutdown, Oracle rolls back all existing uncommitted transactions and logs out any users currently

860 Part VII: Hitchhiker’s Guides

logged in. In an abort shutdown, the database immediately shuts down, and all uncommitted
transactions are lost.

NOTE
While the database is in the process of shutting down or starting up,
no new logins are permitted.

To perform a normal shutdown, use the shutdown command. For a transactional shutdown,
use shutdown transactional. An immediate shutdown, as shown in the following listing, uses the
shutdown immediate version of the shutdown command. To abort the database, use shutdown
abort.

connect system/manager as sysdba;
shutdown immediate

If you use shutdown abort, Oracle will automatically perform recovery operations during the
next database startup. A shutdown abort may also be useful in situations where the database
needs to be stopped in the shortest possible time, for example, for an impending power failure.
During the subsequent startup, Oracle will perform any necessary recovery operations.

You may also use OEM to start up and shut down the instance, via the General tab on the
Instance Manager/Configuration screen.

Sizing and Managing Memory Areas
When you start a database, Oracle allocates a memory area (the System Global Area, or SGA)
shared by all the database users. The two largest areas of the SGA are usually the database buffer
cache and the shared pool; their size will directly impact the memory requirements for the database
and the performance of database operations. Their sizes are controlled by parameters in the
database’s initialization file.

The database buffer cache is an area in the SGA used to hold the data blocks that are read from
the data segments in the database, such as tables and indexes. The size of the database buffer
cache is determined by the DB_CACHE_SIZE parameter (expressed in terms of number of bytes)
in the initialization parameter file for the database. The default size for the database blocks is set
via the DB_BLOCK_SIZE parameter specified in the parameter file during database creation. Managing
the size of the database buffer cache is an important part of managing and tuning the database.

The database has a default block size, but you can establish cache areas for different database
block sizes and then create tablespaces to use those caches. For example, you can create a 4KB
block size database with some tablespaces set to 8KB. The size of the 8KB cache would be set via
the DB_8K_CACHE_SIZE parameter. To create tablespaces to use that cache, specify blocksize 8K
as part of the create tablespace command. If the default block size for the database is 4KB, you
would not set a value for DB_4K_CACHE_SIZE; the size specified for DB_CACHE_SIZE would be
used for the 4KB cache.

NOTE
The cache for the block size must exist before you create a tablespace
that uses that block size.

The different cache areas can be resized while the database is running. Caches can only be
made larger if unallocated memory is available. The caches must be increased or decreased in
granules. For a database with an SGA less than 128M, the granule size is 4M—so DB_8K_CACHE_

Chapter 51: The Hitchhiker’s Guide to Database Administration 861

SIZE can be 4M, 8M, 12M, and so on. If you attempt to use any other setting, Oracle will round it
up to the next granule size. The following listing shows the setting of the DB_8K_CACHE_SIZE
parameter. To see if memory is available, query the V$SGA_DYNAMIC_FREE_MEMORY view.

alter system set DB_8K_CACHE_SIZE = 8m;

If you create a tablespace that uses a nondefault database block size, you must be sure that
the related cache size parameter (such as DB_8K_CACHE_SIZE) is updated in your database
parameter file. If you are using an init.ora file, you must update it with the new value. If you are
using a system parameter file (the preferred method), it will be automatically updated when you
execute the alter system command with the scope=both clause.

NOTE
You cannot alter the SGA_MAX_SIZE or JAVA_POOL_SIZE parameter
values while the database is open.

Oracle will manage the space in the buffer caches by using an algorithm that keeps the most
actively used blocks in memory for as long as possible. When free space is needed in the cache,
the new data blocks will use either the space occupied by infrequently accessed blocks or the
space occupied by a modified block once it has been written out to disk.

If the SGA is not large enough to hold the most frequently used data, different objects will
contend for space within the data block buffer cache. Contention is particularly likely when
multiple applications use the same database and thus share the same SGA. In that case, the most
recently used tables and indexes from each application constantly contend for space in the SGA
with the most recently used objects from other applications. As a result, requests for data from the
data block buffer cache will result in a lower ratio of “hits” to “misses.” Data block buffer cache
misses result in physical I/Os for data reads, resulting in performance degradation.

The shared pool stores the data dictionary cache (information about the database structures)
and the library cache (information about statements that are run against the database). While the
data block buffer and dictionary cache enable sharing of structural and data information among
users in the database, the library cache allows the sharing of commonly used SQL statements.

The shared pool contains the execution plan and parse tree for SQL statements run against the
database. The second time that an identical SQL statement is run (by any user), Oracle is able to
take advantage of the parse information available in the shared pool to expedite the statement’s
execution. Like the data block buffer cache, the shared pool is managed via an LRU algorithm. As
the shared pool fills, less recently used execution paths and parse trees will be removed from the
library cache to make room for new entries. If the shared pool is too small, statements will be
continually reloaded into the library cache, affecting performance.

The size (in bytes) of the shared pool is set via the SHARED_POOL_SIZE initialization parameter.
Like the other caches, the shared pool size can be altered while the database is open.

You can use Automatic Shared Memory Management (ASMM) to dynamically manage the
sizes of the memory areas. To activate ASMM, set a nonzero value for the SGA_TARGET database
initialization parameter. After you set SGA_TARGET to the size of the SGA you want (that is, all of
the caches added together), you then set the other cache-related parameters (DB_CACHE_SIZE,
SHARED_POOL_SIZE, JAVA_POOL_SIZE, and LARGE_POOL_SIZE) each to 0. Shut down and
restart the database for those changes to take effect; the database will then begin actively managing
the sizes of the different caches. You can monitor the sizes of the caches at any time via the
V$SGASTAT dynamic performance view. While the database is running, you can alter the SGA_
TARGET parameter value and Oracle will automatically alter the sizes of the related caches.

862 Part VII: Hitchhiker’s Guides

NOTE
To minimize inter-instance traffic, RAC instances should use fixed
cache sizes instead of dynamic cache management.

As the workload in the database changes, the database will alter the cache sizes to reflect the
needs of the application. For example, if there is a heavy batch-processing load at night and a
more intensive online transaction load during the day, the database may alter the cache sizes as
the load changes. These changes occur automatically, without DBA intervention. If you specify
a value for a pool in your initialization parameter file, then Oracle will use that as the minimum
value for that pool.

NOTE
DBAs can create KEEP and RECYCLE pools in the buffer cache. KEEP
and RECYCLE pools are not affected by the dynamic cache resizing.

From within OEM, you can see if dynamic memory management is enabled by clicking on
the Memory Parameters option; the Automatic Shared Memory Management button can be set to
Enabled or Disabled.

The Initialization Parameter File
The characteristics of the database instance—such as the size of the SGA and the number of
background processes—are specified during startup. These parameters are stored in a file called
the system parameter file. To generate the system parameter file for an open database, use the
create spfile command. You can generate a readable version of the system parameter file via the
create pfile from spfile command. See the Alphabetical Reference for the command syntax for
these commands. The “pfile” version of the parameter file, formerly known as the init.ora file,
usually contains the database name as part of the filename. For example, a database named
MYDB may have a pfile file named initmydb.ora. In general, you should use the server parameter
file option for managing your parameter settings because it supports dynamic changes to the
parameters while the database is running.

Allocating and Managing Space for the Objects
When a database is created, it is divided into multiple logical sections called tablespaces. The
SYSTEM tablespace is the first tablespace created, and the SYSAUX tablespace is created as part
of every Oracle Database 11g database. You can then create additional tablespaces to hold
different types of data (such as tables, indexes, and undo segments). Tablespaces can be renamed
via the rename to clause of the alter tablespace command.

NOTE
SYSAUX is created as part of every database starting with Oracle 10 g.
It is created automatically if you use the Database Upgrade Assistance
provided by Oracle.

When a tablespace is created, datafiles are created to hold its data. These files immediately
allocate the space specified during their creation. Each datafile can support only one tablespace.
Datafiles can be set to automatically extend when they run out of space; you can set the increment
by which they extend and their maximum size. Each user’s schema is a collection of logical
database objects, such as tables and indexes, that refer to physical data structures that are stored

Chapter 51: The Hitchhiker’s Guide to Database Administration 863

in tablespaces. Objects from a user’s schema may be stored in multiple tablespaces, and a single
tablespace can contain objects from multiple schemas.

When a database object (such as a table or index) is created, it is assigned to a tablespace
via user defaults or specific instructions. A segment is created in that tablespace to hold the data
associated with that object.

A segment is made up of sections called extents—contiguous sets of Oracle blocks. Once the
existing extents can no longer hold new data, the segment will obtain another extent. If a segment
is composed of multiple extents, there is no guarantee that those extents will be contiguous.

Tablespaces can be created as locally managed (the default) or dictionary managed. Databases
have one or more tablespaces, and tablespaces consist of one or more datafiles. Within those
tablespaces, Oracle stores segments for database objects. Each segment can have multiple extents.
Extent information for a specific object is stored in both the data dictionary and the segment
headers. If a segment grows over a specific number of extents depending on the block size and
platform, Oracle will create extent map blocks to keep track of the additional extents.

Managing the space used by tablespaces, datafiles, segments, and database objects is one of
the basic functions of the DBA.

When you create a tablespace, specify the default storage parameters for the tablespace. Every
object that is created in that tablespace will then use those storage parameters unless you explicitly
override them. By establishing a consistent set of storage parameter values, you can simplify the
space allocation and management within your tablespaces, as shown in the following section of
this chapter.

Implications of the storage Clause
The amount of space used by a segment is determined by its storage parameters. These parameters
are determined by the database at segment-creation time; if no specific storage parameters are
given in the create table, create index, or create cluster command, then the database will use the
default storage parameters for the tablespace in which the segment is to be stored.

NOTE
You can assign default tablespaces to users, and assign space quotas
within those tablespaces, via the create user, alter user, and grant
commands. See the Alphabetical Reference for the command syntax.

When you create a table, index, or other segment, you can use the default values for a locally
managed tablespace (the recommended option) or specify a storage clause as part of the create
command. You can also specify a tablespace clause, enabling you to direct Oracle to store the
data in a particular tablespace. For example, a create table command in a dictionary-managed
tablespace may include the following clauses:

tablespace USERS
storage (initial 1M next 1M pctincrease 0
minextents 1 maxextents 200)

If no storage clause is specified, the tablespace’s default storage parameters will be used. For a
locally managed USERS tablespace, the create table command would only need to include

tablespace USERS

The storage parameters specify the initial extent size, the next extent size, the pctincrease
(a factor by which each successive extent will geometrically grow), the maxextents (maximum

864 Part VII: Hitchhiker’s Guides

number of extents), and the minextents (minimum number of extents). After the segment has been
created, the initial and minextents values cannot be altered unless you perform a reorganization
of the object. The default values for the storage parameters for each tablespace are available in
the DBA_TABLESPACES and USER_TABLESPACES views.

When you create a tablespace, you specify its default storage parameters. The following
command creates a locally managed tablespace and specifies its default storage parameters.
See the syntax for create tablespace in the Alphabetical Reference.

create tablespace CODES_TABLES
datafile '/u01/oracle/VLDB/codes_tables.dbf' size 10M
extent management local uniform size 256K;

When a segment is created, it will acquire at least one extent. The initial extent will be used
to store data until it no longer has any free space available (the pctfree clause can be used to
reserve a percentage of space within each block in the segment to remain available for updates
of existing rows). If you create a dictionary-managed tablespace, the extent sizes may not be
uniform; the segment will extend by obtaining a second extent of the size specified by the next
parameter. By default, tablespaces will be created with local extent management.

Assuming that the block size for the database in which this tablespace is created is 4KB in
this example, the tablespace is created with the extent management declared as local and with
a uniform size of 256KB. Each bit in the bitmap describes 64 blocks (256/4). If the uniform size
clause is omitted, the default is autoallocate. The default size for uniform is 1MB.

NOTE
If you specify local in a create tablespace command, you cannot
specify a default storage clause, minextents, or temporary.

Locally managed tablespaces can take over some of the space management tasks performed
by DBAs in dictionary-managed tablespaces. Because of their architecture, they are less likely to
be fragmented, and their objects are less likely to have space-related problems.

You can create a set of locally managed tablespaces with a small number of storage
parameters and resolve most of the space requests in your database. For example, you could
create three DATA tablespaces as shown here:

create tablespace DATA_SMALL
datafile '/u01/oracle/VLDB/data_small.dbf'
size 100M
extent management local uniform size 1M;

create tablespace DATA_MEDIUM
datafile '/u01/oracle/VLDB/data_medium.dbf'
size 1000M
extent management local uniform size 4M;

create tablespace DATA_LARGE
datafile '/u01/oracle/VLDB/data_large.dbf'
size 10000M
extent management local uniform size 16M;

Chapter 51: The Hitchhiker’s Guide to Database Administration 865

In this example, the DATA_SMALL tablespace creates objects with extent sizes that are each
1MB; DATA_MEDIUM uses 4MB extent sizes, and DATA_LARGE uses 16MB extent sizes. If you
have a small table, simply place it in the DATA_SMALL tablespace. If it grows significantly in size,
you can move it to the DATA_MEDIUM or DATA_LARGE tablespace.

Within each of these example tablespaces, all objects will have the same storage parameters,
simplifying any future maintenance you perform. Using consistent extent sizes also improves the
reuse of space once an object has been dropped from the tablespace or moved.

The following sections describe space management of each major object type. Note that if you
use locally managed tablespaces, many of the storage clause issues do not apply; you rely on the
tablespace to manage the space based on the parameters defined at the tablespace level. Although
this may result in some overallocation of space, it will greatly simplify the space management
operations in your database.

Table Segments
Table segments, also called data segments, store the rows of data associated with tables or clusters.
Each data segment contains a header block that serves as a space directory for the segment.

Once a data segment acquires an extent, it keeps that extent until the segment is dropped,
truncated, or compressed. Deleting rows from a table via the delete command has no impact on
the amount of space that has been allocated to that table. The number of extents will increase
until either the user’s quota in the tablespace is reached or the tablespace runs out of space (if the
datafiles cannot autoextend).

To minimize the amount of wasted space in a data block, tune the pctfree parameter. The
pctfree parameter specifies the amount of space that will be kept free within each datablock. The
free space can then be used when NULL-valued columns are updated to have values, or when
updates to other values in the row force the total length of the row to increase. The proper setting
of pctfree is application-specific since it is dependent on the nature of the updates that are being
performed.

You can use the alter table command to alter most storage parameters for an existing table.
You can use the move option of the alter table command to change the tablespace assignment for
a table.

Index Segments
Like table segments, index segments hold the space that has been allocated to them until they are
dropped; however, they can also be indirectly dropped if the table or cluster they index is dropped.
To minimize contention, indexes should be stored in a tablespace that is different from the tablespace
that holds their associated tables.

You can use the rebuild option of the alter index command to alter the storage and tablespace
settings for an index. In the following listing, the JOB_PK index is rebuilt in the INDEXES tablespace.

alter index JOB_PK rebuild
tablespace INDEXES;

During the index rebuild process, both the old and the new indexes will temporarily coexist
in the database. Therefore, you must have enough space available to store both indexes prior to
executing the alter index rebuild command.

While the index is being built, the optimizer will, by default, gather statistics about the index’s
contents.

866 Part VII: Hitchhiker’s Guides

System-Managed Undo
You can use Automatic Undo Management to place all undo data in a single tablespace. When
you create an undo tablespace, Oracle manages the storage, retention, and space utilization for
your rollback data via system-managed undo (SMU).

To start using SMU, you must first create an undo tablespace using the following command:

create undo tablespace undo_tablespace datafile 'filespec' size n;

Next, set the UNDO_MANAGEMENT initialization parameter in your system parameter file
or init.ora file to AUTO. Specify your undo tablespace via the UNDO_TABLESPACE initialization
parameter. You will not need to create or manage any rollback segments within the undo tablespace.

Setting Undo Retention
You can explicitly manage how long Oracle retains undo data in the undo tablespace via the
UNDO_RETENTION initialization parameter. Retaining undo serves two purposes: it supports the
retention of inactive, in-use data for long-running queries, and it supports queries that show the
prior state of current data (see Chapter 29).

For example, if you set

UNDO_RETENTION=600

then Oracle will make a best effort to retain all committed undo data in the database for 600
seconds. With that setting, any query taking less than 10 minutes should not result in an ORA-
1555 (“Snapshot too old”) error. While the database is running, you can change the UNDO_
RETENTION parameter value via the alter system command. You can use the create tablespace
and alter tablespace commands to force Oracle to guarantee that the requested undo retention is
maintained even at the expense of current transactions.

Creating an Undo Tablespace
You can create an undo tablespace during the database creation process, as shown in the
following listing:

create database UNDODB
undo tablespace UNDO_TBS
...

In an existing database, you can use the create tablespace command to create an undo
tablespace:

create undo tablespace UNDO_TBS
datafile '/u01/oracle/undodb/undo_tbs_1.dbf'
size 100m;

See the Alphabetical Reference for the full syntax of the create tablespace command.
Once you have created an undo tablespace, you can manage it via the alter tablespace

command. For example, you can add datafiles to the undo tablespace or rename existing datafiles
the same as you would for any other tablespace. To stop using a tablespace as your undo tablespace,
use the alter system command to set a new value for the UNDO_TABLESPACE initialization
parameter, or change that parameter during a database shutdown/startup.

Chapter 51: The Hitchhiker’s Guide to Database Administration 867

Temporary Segments
Temporary segments store temporary data during sorting operations (such as large queries, index
creations, and unions). Each user has a temporary tablespace specified when the account is created
via create user, or altered via alter user. The user’s temporary tablespace must be a tablespace
that has been designated as a temporary tablespace.

When you create a database, you can specify a default temporary tablespace for all users. For
an existing database, you can change the default tablespace via the alter database command, as
shown in the following listing:

alter database default temporary tablespace TEMP;

When you alter the database’s default temporary tablespace assignment, users who had been
assigned the old default temporary tablespace will be redirected to the new default temporary
tablespace. To see the current default temporary tablespace, execute the following query:

select Property_Value
 from DATABASE_PROPERTIES
 where Property_Name = 'DEFAULT_TEMP_TABLESPACE';

You can specify a tablespace as a “temporary” tablespace via the create temporary
tablespace command. A temporary tablespace cannot be used to hold any permanent segments,
only temporary segments created during operations. The first sort to use the temporary tablespace
allocates a temporary segment within the temporary tablespace; when the query completes, the
space used by the temporary segment is not dropped. Instead, the space used by the temporary
segment is available for use by other queries, allowing the sorting operation to avoid the costs
of allocating and releasing space for temporary segments. If your application frequently uses
temporary segments for sorting operations, the sorting process should perform better if a
dedicated temporary tablespace is used.

You can create multiple temporary tablespaces and group them. Assign the temporary tablespaces
to tablespace groups via the tablespace group clause of the create temporary tablespace or alter
tablespace command. You can then specify the group as a user’s default tablespace. Tablespace
groups can help to support parallel operations involving sorts. To dedicate an existing tablespace for
temporary segments, specify the temporary clause of the create tablespace or alter tablespace
command, as shown in the following listing:

alter tablespace TEMP temporary;

NOTE
If there are any permanent segments (tables or indexes, for example)
stored in TEMP, the command shown in the preceding listing will fail.

To enable the TEMP tablespace to store permanent (nontemporary) objects, use the permanent
clause of the create tablespace or alter tablespace command, as shown in the following listing:

alter tablespace TEMP permanent;

The Contents column in the DBA_TABLESPACES data dictionary view displays the status of
the tablespace as either “TEMPORARY” or “PERMANENT.”

868 Part VII: Hitchhiker’s Guides

Free Space
A free extent in a tablespace is a collection of contiguous free blocks in the tablespace. A tablespace
may contain multiple data extents and free extents. When a segment is dropped, its extents are
not, by default, deallocated and marked as free. As of Oracle Database 10g, the default behavior
is for the space to be retained while the object moves to the user’s recycle bin. You can recover
the object from the recycle bin via the flashback table to before drop command (see Chapter 30).
Space can be freed from the recycle bin via the purge command (see the Alphabetical Reference).

To force the tablespace to coalesce its free space, use the coalesce clause of the alter
tablespace clause, as shown in the following listing:

alter tablespace DATA coalesce;

The preceding command will force the neighboring free extents in the DATA tablespace to be
coalesced into larger free extents. The command will coalesce up to eight separate areas, just like
SMON.

NOTE
The alter tablespace command will not coalesce free extents that are
separated by data extents.

Locally managed tablespaces do not require the same degree of free space management.
Since locally managed tablespaces can be configured to have consistent extent sizes for all
segments, dropped extents are easily reused.

When allocating a new extent, Oracle will not merge contiguous free extents unless there is
no alternative. In dictionary-managed tables, this can result in the large free extent at the rear of
the tablespace being used while the smaller free extents toward the front of the tablespace are
relatively unused. The small free extents become “speed bumps” in the tablespace because they
are not, by themselves, of adequate size to be of use. As this usage pattern progresses, the amount
of space wasted in the tablespace increases.

In an ideal database, all objects are created at their appropriate size, and all free space is
always stored together, a resource pool waiting to be used. If you can avoid dynamic space
allocation during application usage, you remove both a performance impact and a source of
potential application failure.

Sizing Database Objects
Choosing the proper space allocation parameters for database objects is critical. Developers
should begin estimating space requirements before the first database objects are created.
Afterward, the space requirements can be refined based on actual usage statistics. The following
sections discuss the space estimation methods for tables, indexes, and clusters.

Why Size Objects?
You should size your database objects for three reasons:

To preallocate space in the database, thereby minimizing the amount of future work
required to manage object space requirements

To reduce the amount of space wasted due to overallocation of space

■

■

Chapter 51: The Hitchhiker’s Guide to Database Administration 869

To improve the likelihood of a dropped free extent being reused by another segment

You can accomplish all of these goals by following the sizing methodology shown in the
following sections. This methodology is based on Oracle’s internal methods for allocating space
to database objects. Rather than rely on detailed calculations, the methodology relies on
approximations that will dramatically simplify the sizing process while simplifying the long-term
maintainability of the database.

The Golden Rule for Space Calculations
Keep your space calculations simple, generic, and consistent across databases. There are far more
productive ways to spend your work time than performing extremely detailed space calculations
that Oracle may ignore anyway. Even if you follow the most rigorous sizing calculations, you
cannot be sure how Oracle will load the data into the table or index.

Consider an index on a table with 100,000 rows. During tests, loading the data into the table
in sorted order required 920 blocks for the index. The table and index were then truncated and
the data was reloaded in a nonsorted order; the index now required 1,370 blocks. The 49 percent
increase in space required by the index was due to Oracle’s internal index management processes.
If you can’t reliably be within 49 percent of the correct answer, why spend a lot of time on sizing
exercises?

In the following section, you’ll see how to simplify the space estimation process, freeing you
to perform much more useful DBA functions. These processes should be followed whether you
are generating the default storage values for a dictionary-managed tablespace or the extent sizes
for locally managed tablespaces.

The Ground Rules for Space Calculations
Oracle follows a set of internal rules when allocating space:

Oracle only allocates whole blocks, not parts of blocks.

Oracle allocates sets of blocks.

Oracle may allocate larger or smaller sets of blocks depending on the available free
space in the tablespace.

For locally managed tablespaces, the extents are always of a uniform size specified at creation
or generated via the auto-allocate algorithm. Your goal should be to work with Oracle’s space
allocation methods instead of against them. If you use consistent extent sizes, you can largely
delegate the space allocation to Oracle.

The Impact of Extent Size on Performance
No direct performance benefit is gained by reducing the number of extents in a table. In some
situations (such as in parallel query environments), having multiple extents in a table can reduce
I/O contention and enhance your performance. To simplify management, the extents need to be
properly sized.

Oracle reads data from tables in two ways: by RowID (usually immediately following an
index access) and via full table scans. If the data is read via RowID, then the number of extents
in the table is not a factor in the read performance. Oracle will read each row from its physical
location (as specified in the RowID) and retrieve the data.

■

■

■

■

870 Part VII: Hitchhiker’s Guides

To avoid paying any possible performance penalties for your extent sizes, you must choose
between one of the following strategies:

 1. Create extents that are significantly larger than the I/O buffer size for your operating
system. If the extents are very large, then very few additional reads will be necessary
even if the extent size is not a multiple of the I/O buffer size.

 2. Set DB_FILE_MULTIBLOCK_READ_COUNT to take full advantage of the I/O buffer size
for your operating system. Note that setting it too high may make the optimizer think that
full table scans are more efficient than they actually are, resulting in changes to existing
execution plans.

 3. If you must create small extents, choose extent sizes that are a multiple of the I/O buffer
size for your operating system.

To maximize the reuse of dropped free extents in dictionary-managed tablespaces, use a pool
of extent sizes that meets the following criterion: every extent size will hold an integral multiple
of every smaller extent size. The simplest implementation of this rule is to create extent sizes that
increase by doubling: 1MB, 2MB, 4MB, 8MB, 16MB, 32MB. To reduce the number of extent sizes
to manage, you can quadruple the values instead of doubling: 1MB, 4MB, 16MB, and so on.
Using those values for extent sizes will eliminate I/O problems and will enhance the likelihood
that dropped extents will be reused.

Sizing the Objects
To effectively manage your space, all you need to do is select a set of space values that meet the
criteria described in the preceding sections. Once the space allocations are finalized, separate
them by tablespace. For example:

create tablespace DATA_1M
datafile '/u01/oracle/VLDB/data_1m.dbf'
size 100M
extent management local uniform size 1M;

create tablespace DATA_4M
datafile '/u02/oracle/VLDB/data_4m.dbf'
size 400M
extent management local uniform size 4M;

create tablespace DATA_16M
datafile '/u03/oracle/VLDB/data_16m.dbf'
size 16000M
extent management local uniform size 16M;

In this example, three separate DATA tablespaces are created, with extent sizes of 1MB, 4MB,
and 16MB. If you need to create a table 3MB in size, you can create it either with three 1MB extents
in DATA_1M or with one 4MB extent in DATA_4M. A table that will grow to 10MB can be placed
in DATA_16M.

As your tables grow in size, your default storage clauses will grow in a consistent fashion,
following the space rules and your standards for extent sizes. DATA_64M would be next,
followed by DATA_256M and DATA_1G. Use the same extent sizes across your databases to ease
space management of your entire database environment.

Chapter 51: The Hitchhiker’s Guide to Database Administration 871

As the extent sizes grow, the distribution of extent sizes across tablespaces will usually result
in a separation of table types—small static tables will be isolated in the tablespaces with small
extent sizes. Large transaction processing tables (or their partitions) will be segregated to the large
extent size tables, simplifying later management and tuning activities.

NOTE
The database block size may change at the tablespace level. Be sure
the extent sizes you choose account for the largest block size in use
in the database. Limiting the usage of nonstandard block sizes in the
database will simplify cross-database maintenance and your sizing
procedures.

Monitoring an Undo Tablespace
As described in Chapter 29, you can use system-managed undo (SMU) to simplify transaction
management. Specify values for the UNDO_TABLESPACE, UNDO_RETENTION, and UNDO_
MANAGEMENT initialization parameters.

NOTE
If you are using rollback segments instead of SMU, see the entries for
create rollback segment, alter rollback segment, and set transaction
in the Alphabetical Reference.

The primary view for gathering statistics on the undo tablespace usage is V$UNDOSTAT. The
V$UNDOSTAT view provides a histogram of the retained data usage. In ten-minute intervals,
Oracle records the total number of undo blocks consumed in the UndoBlks column of V$UNDOSTAT,
and the number of transactions supported in the TxnCount column. You can use the data from
V$UNDOSTAT to determine if the undo tablespace is properly sized for the transaction volume of
the application. Oracle maintains 144 rows in V$UNDOSTAT, reflecting the past day’s statistics.

Other columns of interest in V$UNDOSTAT include MaxQuerylen, which records the duration
in seconds of the longest query executed; the undo retention must be greater than this value. If the
NoSpaceErrCnt column of V$UNDOSTAT has a nonzero value, you should add space to the undo
tablespace to avoid future space-related errors. Another column, SsOlderRcnt, records the
number of times an ORA-01555 (“snapshot too old”) error occurred. Increasing the UNDO_
RETENTION value can reduce the occurrence of this error.

Automating Storage Management
You can use automatic storage management (ASM) to enhance and simplify your storage
management efforts. ASM offers a number of significant advantages, including:

You can easily add new disks to the set of disks available to the database; Oracle will
decide how to best use the disks to distribute the I/O workload.

The I/O workload will be dynamically distributed among the available disks, without
DBA intervention.

The I/O stripe width can be maintained at different levels for different types of files, all
maintained by the database.

Software mirroring can be enabled if hardware mirroring is not.

■

■

■

■

872 Part VII: Hitchhiker’s Guides

Configuring ASM
To use ASM, you must configure an ASM instance. See Chapters 2 and 3 on the use of the Oracle-
provided tools for installing and configuring ASM and the database software.

You can then use the create diskgroup command with the available disks. For example, you
may have four disks available to you:

create diskgroup DISKGROUP1
external redundancy
disk '/u01', '/u02', '/u03', '/u04';

NOTE
You can use wildcards in the disk names.

The external redundancy clause means that the disk group is relying on hardware mirroring.
To use software mirroring, use the normal redundancy clause and specify the disks that make up
the mirror set via the failgroup clause. In software mirroring, Oracle uses the mirror set as a set
of disks, not as a one-to-one mirror of the diskgroup disks. To see the disks that constitute a disk
group, query the V$ASM_DISK dynamic view.

Now that the disk group is available, create a tablespace that uses the disk group, as shown in
the following example:

create tablespace USERS2 datafile '+diskgroup1/users2_01'
size 500m;

Oracle will create the datafile for the USERS2 tablespace in the specified disk group and will
manage its I/O requirements across the available disks. If you need to add more disks to the disk
group, use the alter diskgroup command:

alter diskgroup DISKGROUP1 add disk '/u05';

Diskgroups may be dropped via the drop diskgroup command.
ASM instances are mounted but not opened. Once you create an ASM instance on a server,

your database instances can use the ASM instance to manage the logical volumes for the
database-related files.

In general, you should create separate diskgroups for separate types of files (datafiles, redo log
files, archive log files, Data Pump export files, and so on). You can then manage the physical layout
for each type of file, allowing the write-intensive log files to be stored using a physical configuration
that best supports writes, whereas the datafiles are stored in a layout that best supports reads.

Segment Space Management
In addition to automating the management of storage at the diskgroup level, Oracle has capabilities
for managing the space within segments. You can use these options to reclaim unused space
within segments, estimate future space needs, and reorganize tables online.

If your application frequently deletes rows from a table, that table’s blocks may be only
partially filled with rows. You can manually compress the space within the table via the alter
table command. First, enable row movement within the table:

alter table BOOKSHELF_CHECKOUT enable row movement;

Chapter 51: The Hitchhiker’s Guide to Database Administration 873

Next, have Oracle move rows within the table to compress the allocation of rows within blocks:

alter table BOOKSHELF_CHECKOUT shrink space compact;

The shrink space compact operation will reorganize the rows of the table so they are stored
more compactly. However, the high-water mark for the table—the highest block number to which
rows have ever been written—is unaffected. Since all full table scans will read all blocks up to the
high-water mark, you should adjust that value. You can adjust the high-water mark via the shrink
space clause of the alter table command. For example:

alter table BOOKSHELF_CHECKOUT shrink space;

You can cascade the effects of this change to the table’s indexes via the shrink space cascade
option.

To predict space usage, you can use the OBJECT_GROWTH_TREND function of the DBMS_
SPACE package. As parameters, pass the schema name, object name, and object type, as shown
in the following listing. You should run this as a SYSDBA-privileged user.

select * from
table(DBMS_SPACE.OBJECT_GROWTH_TREND
('PRACTICE','BOOKSHELF_CHECKOUT','TABLE'));

The output will show the past space usage for the object along with projected space
requirements for the object. The results are based on statistics gathered via the Automated Workload
Repository (AWR). Using the MMON background process, AWR collects and stores database
statistics that support administration and tuning on an hourly basis. The information gathered via
AWR allows Oracle to project your future space usage as well as identify tuning opportunities.

Transporting Tablespaces
A transportable tablespace is a tablespace that can be “unplugged” from one database and
“plugged into” another. To be transportable, a tablespace—or a set of tablespaces—must be
self-contained. The tablespace set cannot contain any objects that refer to objects in other
tablespaces. Thus, if you transport a tablespace containing indexes, you must move the tablespace
containing the indexes’ base tables as part of the same transportable tablespace set. The better
you have organized and distributed your objects among tablespaces, the easier it is to generate
a self-contained set of tablespaces to transport.

To transport tablespaces, you need to generate a tablespace set, copy or move that tablespace
set to the new database, and plug the set into the new database. The databases must be on the
same operating system, with the same version of Oracle and character set.

Generating a Transportable Tablespace Set
A transportable tablespace set contains all of the datafiles for the tablespaces being moved, along
with an export of the metadata for those tablespaces. You can optionally choose whether to include
referential integrity constraints as part of the transportable tablespace set. If you choose to use
referential integrity constraints, the transportable tablespace set will increase to include the tables
required to maintain the key relationships. Referential integrity is optional because you may have
the same code tables in multiple databases. For example, you may be planning to move a
tablespace from your test database to your production database. If you have a COUNTRY table
in the test database, then you may already have an identical COUNTRY table in the production

874 Part VII: Hitchhiker’s Guides

database. Since the codes tables are identical in the two databases, you do not need to transport
that portion of the referential integrity constraints. You could transport the tablespace containing
the noncodes tables and then re-enable the referential integrity in the target database once the
tablespace has been moved, simplifying the creation of the transportable tablespace set.

To determine if a tablespace set is self-contained, execute the TRANSPORT_SET_CHECK
procedure of the DBMS_TTS package. This procedure takes two input parameters: the set of
tablespaces and a Boolean flag set to TRUE if you want referential integrity constraints to be
considered. In the following example, referential integrity constraints are not considered for the
combination of the AGG_DATA and AGG_INDEXES tablespaces:

execute DBMS_TTS.TRANSPORT_SET_CHECK('AGG_DATA,AGG_INDEXES',FALSE);

NOTE
You cannot transport the SYSTEM, SYSAUX, or temporary tablespaces.

If there are any self-containment violations in the specified set, Oracle will populate the
TRANSPORT_SET_VIOLATIONS data dictionary view. If there are no violations, the view will
be empty.

Once you have selected a self-contained set of tablespaces, make the tablespaces read-only,
as shown here:

alter tablespace AGG_DATA read only;
alter tablespace AGG_INDEXES read only;

Next, export the metadata for the tablespaces, using the TRANSPORT_TABLESPACES and
TABLESPACES Export parameters:

expdp TRANSPORT_TABLESPACES=Y TABLESPACES=(AGG_DATA,AGG_INDEXES)
CONSTRAINTS=N GRANTS=Y TRIGGERS=N

As shown in the example, you can specify whether triggers, constraints, and grants are
exported along with the tablespace metadata. You should also note the names of the accounts
that own objects in the transportable tablespace set. You can now copy the tablespaces’ datafiles
to a separate area. If needed, you can put the tablespaces back into read-write mode in their
current database. After you have generated the transportable tablespace set, you can move its
files (including the export) to an area that the target database can access.

Plugging in the Transportable Tablespace Set
Once the transportable tablespace set has been moved to an area accessible to the target database,
you can plug the set into the target database. First, use Import to import the exported metadata:

impdp TRANSPORT_TABLESPACES=Y DATAFILES=(agg_data.dbf, agg_indexes.dbf)

In the import, you specify the datafiles that are part of the transportable tablespace set. You
can optionally specify the tablespaces (via the TABLESPACES parameter) and the object owners
(via the OWNERS parameter).

After the import completes, all tablespaces in the transportable tablespace set are left in read-
only mode. You can issue the alter tablespace read write command in the target database to place
the new tablespaces in read-write mode.

alter tablespace AGG_DATA read write;
alter tablespace AGG_INDEXES read write;

Chapter 51: The Hitchhiker’s Guide to Database Administration 875

Note that you cannot change the ownership of the objects being transported.
Transportable tablespaces support very fast movement of large datasets. In a data warehouse,

you could use transportable tablespaces to publish aggregations from core warehouse to data
mart, or from the data marts to a global data warehouse. Any read-only data can be quickly
distributed to multiple databases—instead of sending SQL scripts, you can send datafiles and
exported metadata. This modified data movement process may greatly simplify your procedures
for managing remote databases, remote data marts, and large data-movement operations.

As of Oracle 11g, you can transport one partition of a partitioned table. When the partition’s
metadata is imported on the target side, use the DEPARTITION option of Data Pump Import to
import the partition as a standalone table in the new environment. See Chapter 24 for details on
Data Pump.

NOTE
The source and target operating systems can be different; endian
conversion is supported during this process. The datafiles must be
converted via RMAN’s convert tablespace…to platform command.

Performing Backups
Like the rest of the material in this chapter, this section provides an overview rather than an in-
depth review. Backup and recovery is a complex topic, and all backup and recovery methods
should be thoroughly tested and practiced before being implemented in a production environment.
The purpose of this section is to give developers an understanding of Oracle’s capabilities, along
with the impact of the backup decisions on recovery efforts and availability. Before using backup
and recovery methods in a production environment, you should refer to books that are dedicated
to that topic, including Oracle’s documentation.

The backup methods provided by Oracle can be categorized as follows:

Logical backups using Data Pump Export and Import

Physical file system backups: offline backups and online backups

Incremental physical file system backups via Recovery Manager (RMAN)

The following sections describe each of these methods and their capabilities.

Data Pump Export and Import
Data Pump is a server-based data-extraction and import utility. Its features include significant
architectural and functional enhancements over the original Import and Export utilities. Data
Pump allows you to stop and restart jobs, see the status of running jobs, and restrict the data that
is exported and imported. As of Oracle 11g, you can compress and encrypt the output data as it is
being written, change it as it is being written (via the REMAP_DATA option), and have partitions
imported as standalone tables.

NOTE
Data Pump can use files generated via the original Export utility, but
the original Import utility cannot use the files generated from Data
Pump Export.

■

■

■

876 Part VII: Hitchhiker’s Guides

Data Pump runs as a server process, thus benefiting users in multiple ways. The client process
that starts the job can disconnect and later reattach to the job. Performance is enhanced (as
compared to Export/Import) because the data no longer has to be processed by a client program.
Data Pump extractions and loads can be parallelized, thus further enhancing performance.

Data Pump performs a logical backup of the data; it queries the data from the tables in a
running database. During a recovery, Data Pump can be used to restore the database (or selected
tables) to the point in time when the export was started. The data restored via Data Pump cannot
then be rolled forward to later points in time—it is a fixed snapshot of the data as it existed when
the backup was executed.

See Chapter 24 for a full description of Data Pump and its capabilities.

Offline Backups
An offline backup (sometimes called a cold backup) is a physical backup of the database files,
made after the database has been shut down via either a shutdown normal or a shutdown
immediate or a shutdown transactional. While the database is shut down, each of the files that is
actively used by the database is backed up. These files provide a complete image of the database
as it existed at the moment it was shut down.

The following files should be backed up during cold backups:

All datafiles

All control files

All online redo logs

NOTE
You should also back up the database initialization parameter file,
particularly if the backup will serve as the basis for a disaster recovery
process.

Having all of these files backed up while the database is closed provides a complete image
of the database as it existed at the time it was closed. The full set of these files could be retrieved
from the backups at a later date and the database would be able to function. It is not valid to
perform a file system backup of the database while it is open unless an online backup is being
performed (as discussed later in this chapter).

NOTE
Be careful with the backups of the online redo log files. In the event of
a recovery, you need to be sure you do not accidentally overwrite any
existing online redo log files needed for recovery.

Ideally, all of the datafiles are located in directories at the same level on each device. For
example, all database files may be stored in an instance-specific subdirectory under an /oracle
directory for each device (such as /db01/oracle/MYDB). Directories such as these should contain
all of the datafiles, redo log files, and control files for a database. The only file you may optionally
add to the offline backup that will not be in this location is the production initialization parameter
file, which should be in either the /app/oracle/admin/INSTANCE_NAME/pfile subdirectory under
the Oracle software base directory, or the /dbs directory under the Oracle software home directory.

■

■

■

Chapter 51: The Hitchhiker’s Guide to Database Administration 877

If you use the directory structure in the prior example, your backup commands are greatly
simplified, since you will be able to use wildcards in the filenames. After shutting down the
database, back up the files to the backup destination area (either a tape or a separate disk area).

Since offline backups involve changes to the database’s availability, they are usually
scheduled to occur at night.

Offline backups are very reliable. To reduce their impact on the database’s availability, you
may use online backups. As described in the following section, online backups use Oracle’s
ARCHIVELOG mode to allow consistent file system backups during database usage.

Online Backups
You can use online backups for any database that is running in ARCHIVELOG mode. In this
mode, the online redo logs are archived, creating a full log of all transactions within the database.

Oracle writes to the online redo log files in a cyclical fashion; after filling the first log file, it
begins writing to the second log until that one fills, and then begins writing to the third. Once the
last online redo log file is filled, the LGWR (Log Writer) background process begins to overwrite
the contents of the first redo log file.

When Oracle is run in ARCHIVELOG mode, the ARC0-ARCt (Archiver) background processes
make a copy of each redo log file before overwriting it. These archived redo log files are usually
written to a disk device. The archived redo log files may also be written directly to a tape device,
but this tends to be very operator-intensive.

You can perform file system backups of a database while that database is open, provided the
database is running in ARCHIVELOG mode. An online backup involves setting each tablespace
(or the entire database) into a backup state, backing up the related datafiles, and then restoring the
tablespaces to their normal state.

NOTE
When using the Oracle-supplied RMAN utility, you do not have to
place each tablespace into a backup state.

The database can be fully recovered from an online backup, and can, via the archived redo
logs, be rolled forward to any point in time. When the database is then opened, any committed
transactions that were in the database at that time will have been restored and any uncommitted
transactions will have been rolled back.

While the database is open, the following files can be backed up, depending on the RMAN
command used:

All datafiles

All archived redo log files

One control file, via the alter database command

Online backup procedures are very powerful for two reasons. First, they provide full point-in-
time recovery. Databases that are not running in ARCHIVELOG mode can only be recovered to
the point in time when the backup occurred. Second, they allow the database to remain open
during the file system backup. Thus, even databases that cannot be shut down due to user
requirements can still have file system backups.

■

■

■

878 Part VII: Hitchhiker’s Guides

Getting Started
To make use of the ARCHIVELOG capability, the database must first be placed in ARCHIVELOG
mode. The following listing shows the steps needed to place a database in ARCHIVELOG mode.
Run SQL*Plus and mount the database (providing its name in place of “mydb” in these examples),
then alter it as shown here:

connect system/manager as sysdba
startup mount mydb;
alter database archivelog;
alter database open;

The following command will display the current ARCHIVELOG status of the database from
within SQL*Plus:

archive log list

NOTE
To see the currently active online redo log and its sequence number,
query the V$LOG dynamic view.

To change a database back to NOARCHIVELOG mode, use the following set of commands
after shutting down the database:

connect system/manager as sysdba
startup mount mydb;
alter database noarchivelog;
alter database open;

A database that has been placed in ARCHIVELOG mode will remain in that mode until it is
placed in NOARCHIVELOG mode. The location of the archived redo log files is determined by the
settings in the database’s parameter file. The parameters to note are as follows (with sample values):

log_archive_dest_1 = /db01/oracle/arch/CC1/arch
log_archive_dest_state_1 = ENABLE
log_archive_format = arch%s.arc

In this example, the archived redo log files are being written to the directory /db01/oracle/
arch/CC1. The archived redo log files will all begin with the letters “arch,” followed by a sequence
number. For example, the archived redo log file directory may contain the following files:

arch_170.arc
arch_171.arc
arch_172.arc

Each of these files contains the data from a single online redo log. They are numbered
sequentially, in the order in which they were created. The size of the archived redo log files
varies, but does not exceed the size of the online redo log files. Within the LOG_ARCHIVE_
FORMAT setting, the available variables are

Chapter 51: The Hitchhiker’s Guide to Database Administration 879

Variable Description

%s Log sequence number

%S Log sequence number, zero filled

%t Thread number

%T Thread number, zero filled

%a Activation ID

%d Database ID

%r Resetlogs ID that ensures unique names are constructed for the archived log
files across multiple incarnations of the database

If the destination directory of the archived redo log files runs out of space, then ARCH will
stop processing the online redo log data and the database will temporarily hang. This situation
can be resolved by adding more space to the archived redo log file destination disk or by backing
up the archived redo log files and then removing them from this directory. You can also specify an
alternate location via the LOG_ARCHIVE_DEST_n parameter; this location will only be used when
the initial location is full.

NOTE
Never delete archived redo log files until you have backed them up
and verified that you can restore them successfully.

The database will not be in ARCHIVELOG mode unless you have executed the alter database
archivelog command shown earlier in this section. Once the database is in ARCHIVELOG mode,
it will remain in that mode through subsequent database shutdowns and startups until you
explicitly place it in NOARCHIVELOG mode via the alter database noarchivelog command. The
LOG_ARCHIVE_MAX_PROCESSES parameter must be set to a value greater than 0 for archiving
to start; its default value is 2.

NOTE
The archivelog destination area is different from the flash recovery
area. The flash recovery area supports the flashback database
command. See Chapter 30 for details of this command and the
associated parameters.

Performing Online Database Backups Using O/S Utilities
Once a database is running in ARCHIVELOG mode, you can back it up while it is open and
available to users. This capability allows round-the-clock database availability to be achieved
while still guaranteeing the recoverability of the database.

Although online backups can be performed during normal working hours, they should be
scheduled for the times of the least user activity for several reasons. First, the online backups will
use operating-system commands to back up the physical files, and these commands will use the
available I/O resources in the system (impacting the system performance for interactive users).
Second, while the tablespaces are being backed up, the manner in which transactions are written

880 Part VII: Hitchhiker’s Guides

to the archived redo log files changes. When you put a tablespace in “backup” mode, the DBWR
process writes all of the blocks in the buffer cache that belong to any file that is part of the
tablespace back to disk. When the blocks are read back into memory and then changed, they will
be copied to the log buffer the first time that a change is made to them. As long as they stay in the
buffer cache, they will not be recopied to the online redo log file. This will use a great deal more
space in the archived redo log file destination directory.

The command file for a hot backup has three parts:

 1. A backup of the datafiles, which in turn consists of

 A. Setting the tablespaces into backup state

 B. Backing up the tablespace’s datafiles

 C. Restoring the tablespace to its normal state

 2. Backup of the archived redo log files, which consists of

 A. Recording which files are in the archived redo log destination directory

 B. Backing up the archived redo log files, then (optionally) deleting or compressing them

 3. Backup of the control file via the alter database backup controlfile command

NOTE
The online backup process is automated via the RMAN utility.

You can create a script to perform the backups, but the use of RMAN is preferred.
When the datafiles are being backed up, you may back them up directly to tape or to disk.

If you have enough disk space available, choose the latter option, since it will greatly reduce the
time necessary for the backup procedures to complete.

Recovery Manager
A Recovery Manager utility called RMAN is provided with the Oracle database to enable you to
back up and recover your databases in an automated manner using either a command-line mode
or the Recovery Manager from within the Oracle Enterprise Manager. You can use either
approach to back up, restore, and recover database files. One of the biggest benefits of RMAN is
that it does not put the tablespaces into hot backup mode, so changed data blocks are not copied
to the online redo log files, which would impact system I/O resources.

Recovery Manager keeps track of backups either through a Recovery Catalog or by placing
the required information into the control file for the database being backed up. Recovery Manager
adds new backup capabilities that are unavailable in the other Oracle backup utilities. There are
four components within the Recovery Manager: the RMAN executable, one or more target databases,
the recovery catalog database, and the media management software. The only components that
you must have are the RMAN executable and a target database.

Recovery Manager allows you to perform incremental physical backups of datafiles. During
a full (called a level 0) datafile backup, all of the blocks ever used in the datafile are backed up.
During a cumulative (level 1) datafile backup, all of the blocks used since the last full datafile
backup are backed up. An incremental (level 2) datafile backup backs up only those blocks that
have changed since the most recent cumulative or full backup. You can define the levels used for
incremental backups.

Chapter 51: The Hitchhiker’s Guide to Database Administration 881

The ability to perform incremental and cumulative backups of datafiles may greatly improve
the performance of backups. The greatest performance improvements will be realized by very
large databases in which only a small subset of a large tablespace changes. Using the traditional
backup methods, you would need to back up all of the datafiles in the tablespace. Using Recovery
Manager, you only back up the blocks that have changed since the last backup.

During database recovery using Recovery Manager, you need to know which files are current,
which are restored, and the backup method you plan to use. If you use the recovery catalog,
Recovery Manager stores its catalog of information in an Oracle database—and you need to back
up that database or else you may lose your entire backup and recovery catalog of information.

Recovery Manager is only used by DBAs, who need to make the decisions regarding the
Recovery Manager architecture for your environment (for example, deciding on the location of
the recovery catalog). You should work with your DBA to understand the recovery options in use
and their implications for database availability and recovery time.

Where to Go from Here
In this chapter, you’ve seen a high-level overview of the topics that production DBAs deal with
every day. In addition to the topics discussed here, DBAs monitor databases, tune databases,
install software, maintain database connectivity, and many other tasks. If you are interested in
learning more about those tasks, see your Oracle documentation set or the Oracle DBA Handbook.
The more developers understand about database administration, the more likely they are to build
applications that take advantage of the database’s inherent capabilities.

This page intentionally left blank

CHAPTER
52

The Hitchhiker’s Guide to
XML in Oracle

883

884 Part VII: Hitchhiker’s Guides

ML (eXtensible Markup Language) is a standardized syntax for describing
hierarchical data. Rather than being a programming language, XML is a universal
format for structured documents and data. Its tag-based syntax will be familiar to
those familiar with HTML (Hypertext Markup Language) and gives it the flexibility
to handle complex data. Whereas HTML tells a Web browser how to present data,

XML tells applications what the data means.

XML is well suited to solving data-interchange problems among heterogeneous systems;
database-resident data is easily accessed, converted, and stored. In this chapter, you will see an
overview of the XML access methods available in Oracle. XML and its toolsets are evolving; see
http://www.w3.org for the most current information.

Document Type Definitions, Elements,
and Attributes
In XML, application-specific tags or “elements” wrap around the data they describe. The syntax
for these tags is defined in a special kind of XML document called a Document Type Definition
(DTD). The DTD defines the structure for a valid XML document. The structure is strictly hierarchical.

Each XML document is an instantiation of an infoset—the abstract data model consisting of a
document and its information items. Information items are mostly elements, attributes, and
content. For example, an XML infoset may contain the following:

<book>
 <title>MY LEDGER</title>
 <chapter num="1">
 <title>Beginning</title>
 <text>&chapter1;</text>
 </chapter>
</book>

In this example, the tags <book> and </book> define the starting and ending points of the
infoset. The XML document describes a book named “MY LEDGER.” That book has chapters, and
the first chapter’s title is “Beginning.” The text of the chapter is not stored inside the XML document;
instead, a pointer is created to an external file.

In addition to being a tag in the file, “title” is an element. It has content (in this example, “MY
LEDGER”). As shown in this example, you can set the content of elements by providing values
between tags (for the title) or within the tag (as in the chapter number setting). Elements can contain
content, child elements, or both, or they may be empty. For data interchange, you should avoid
creating elements that contain both content and child elements. To create an empty element, its
tag would be in this format:

<name/>

NOTE
Element names are case sensitive.

Each element has exactly one parent, and a parent can have any number of children. The
strict hierarchical nature of XML means that if an element starts within another element (such as
“chapter” within “book”), its ending tag must precede the ending tag for the parent element.

X

http://www.w3.org

Chapter 52: The Hitchhiker’s Guide to XML in Oracle 885

As shown in the book example, elements have attributes. For example, the chapter element
has an attribute named num. The attribute value is enclosed in double quotes:

 <chapter num="1">

NOTE
Like element names, attribute names are case sensitive.

In general, applications use element attributes for specific items (such as the chapter number)
and element content for the bulk of the data (in this case, the chapter text).

An XML document is said to be “well-formed” if the following conditions are met:

Every start tag has a matching end tag.

Elements do not overlap.

There is one root element.

Attribute values are always within quotes.

An element does not have two attributes within the same name.

Comments and processing instructions do not appear inside tags.

There are no “unescaped” < or & signs in an element’s or attribute’s character data.

These are the basic syntax rules. If an XML document conforms to these rules, it may still not
be valid. To be valid, the XML document must conform to the rules of a Document Type Definition
(DTD). The DTD is a formal way of describing what elements and entities may appear in an XML
document, and what each element’s contents and attributes are.

For example, consider the following XML document:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE CustomerList SYSTEM "Example1.dtd">
<CustomerList>
 <Customer preferredCustomer="">
 <ID>12345</ID>
 <Address>
 <Name>TUSC</Name>
 <Street>377 E BUTTERFIELD RD</Street>
 <City>LOMBARD</City>
 <State>IL</State>
 <Country>USA</Country>
 <ZIP_CODE>60148</ZIP_CODE>
 <PHONE>630-960-2909</PHONE>
 </Address>
 <CreditRating>EXCELLENT</CreditRating>
 <SalesRepID></SalesRepID>
 <RegionID>5</RegionID>
 <Comments>THIS IS A TEST XML DOCUMENT</Comments>
 <ShippingMethod>M</ShippingMethod>
 </Customer>
</CustomerList>

■

■

■

■

■

■

■

886 Part VII: Hitchhiker’s Guides

The first line is an XML declaration, which starts with “<?” and ends with “?>”:

<?xml version="1.0" encoding="UTF-8"?>

The version attribute should be set to 1.0 for now. The encoding attribute is optional; its
default value is UTF-8. You can also set a third attribute, standalone. In this case, the XML
document is not a standalone document; it has a related DTD, as specified in the second line:

<!DOCTYPE CustomerList SYSTEM "Example1.dtd">

The related DTD file Example1.dtd for this example is shown in the following listing:

<?xml version="1.0" encoding="UTF-8"?>
<!ELEMENT CustomerList (Customer*)>
<!ELEMENT Customer (ID, Address, CreditRating*, SalesRepID*,
 RegionID, Comments*, ShippingMethod)>
<!ATTLIST Customer preferredCustomer CDATA #IMPLIED>
<!ELEMENT ID (#PCDATA)>
<!ELEMENT Address (Name, Street*, City, County,
 State, Country, ZIP_CODE, PHONE)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Street (#PCDATA)>
<!ELEMENT City (#PCDATA)>
<!ELEMENT County (#PCDATA)>
<!ELEMENT State (#PCDATA)>
<!ELEMENT Country (#PCDATA)>
<!ELEMENT ZIP_CODE (#PCDATA)>
<!ELEMENT PHONE (#PCDATA)>
<!ELEMENT CreditRating (#PCDATA)>
<!ELEMENT SalesRepID (#PCDATA)>
<!ELEMENT RegionID (#PCDATA)>
<!ELEMENT Comments (#PCDATA)>
<!ELEMENT ShippingMethod (#PCDATA)>

The DTD is analogous to the control file specifications for external tables. It tells applications
what they will find in the XML document—the element names and the hierarchy of elements. An
XML document can have only one DTD.

The syntax for the element declarations is

<!ELEMENT element_name (content_model)>

where content_model specifies what children an element can or must have and the order they are
in. The simplest content model is #PCDATA, which says that the element can contain only parsed
character data. Here’s an example:

<!ELEMENT Name (#PCDATA)>

In this example, the CustomerList element contains zero or more “Customer” elements, as
indicated by the * suffix:

<!ELEMENT CustomerList (Customer*)>

The allowable suffixes are as follows:

Chapter 52: The Hitchhiker’s Guide to XML in Oracle 887

* Permits zero or more occurrences

+ Permits one or more occurrences

? Permits zero or one occurrences

As shown in the Address element specification, you can specify a sequence of multiple
elements by separating them with commas:

<!ELEMENT Address (Name, Street*, City, County,
 State, Country, ZIP_CODE, PHONE)>

You can provide multiple options within the specification, separated by the vertical bar (|)
character. For example, a point on a two-dimensional graph may be specified via its horizontal
and vertical measurements or its distance and angle from the center:

<!ELEMENT Point ((x,y) | (distance, angle))>

For real-world applications, DTDs can quickly become very complex. You can have attribute
lists, external references, entity attributes, IDs, conditional inclusions, and other structures within
your DTD. Refer to XML documentation for a thorough review of DTD structures and options.

NOTE
Before creating a DTD for a standard business operation, see if one is
already available for your purpose. Web sites such as http://www.xml.
org/xml/registry.jsp provide many examples of DTDs. These registries
provide a valuable resource for the documentation of industry-
standard DTDs and their components.

XML Schema
The XML Schema specification is an alternative to DTDs. It includes datatyping, which is
particularly helpful when working with relational databases. Whereas DTDs are not extensible
(they’re just control files), XML Schema is extensible in the following ways:

Parts of schemas can be reused in other schemas.

Complex structures can be reused in other schemas.

Derived datatypes can be created based on existing datatypes.

A single document instance can reference multiple schemas.

Within XML Schema, elements are declared using xsd:element, as shown in the following
listing:

<xsd:element name="Date">

The element’s datatype can be declared via the type attribute:

<xsd:element name="Date" type="date">

■

■

■

■

http://www.xml.org/xml/registry.jsp
http://www.xml.org/xml/registry.jsp

888 Part VII: Hitchhiker’s Guides

You can specify the minimum and maximum number of occurrences for the element via the
minOccurs and maxOccurs attributes:

<xsd:element name="Date" type="date" minOccurs="0" maxOccurs="1">

Built-in XML Schema types include primitive types (such as string, Boolean, number, float,
date, time, and datetime) and derived types (such as normalizedString, integer, token, and
language). The full list of types can be found at http://www.w3.org/TR/xmlschema-2/.

You can create and name complex types, just as you can create abstract datatypes in Oracle.
The following code creates the “Address” type:

<xsd:complexType name="Address">
 <xsd:sequence>
 <xsd:element name="Street1"/>
 <xsd:element name="Street2"/>
 <xsd:element name="City"/>
 <xsd:element name="State"/>
 <xsd:element name="Zip"/>
 </xsd:sequence>
</xsd:complexType>

You can then refer to the “Address” complex type when defining your elements:

<xsd:element name="mailingAddress" type="Address"/>
<xsd:element name="billingAddress" type="Address"/>

If you are declaring a content model for a single element, use an anonymous type, as shown
in the following listing:

<xsd:element name="Name">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="First"/>
 <xsd:element name="MiddleInitial"/>
 <xsd:element name="Last"/>
 </xsd:sequence>
 </xsd:complexType
</xsd:element>

Attributes are declared using xsd:attribute, as shown in the following example:

<xsd:attribute name="paid" type="boolean"/>

You can create attributes within a complex type:

<xsd:element name="Invoice">
 <xsd:complexType>
 <xsd:attribute name="paid" use="optional" default="True"/>
 </xsd:complexType>
</xsd:element>

In addition to creating attributes, you can create attribute groups and model groups. Model
groups are groups or element definitions, named for reuse. The “group” element must be a top-
level schema component (a child of the “schema” element). For example, the following listing
shows the creation of a MealOptions group, referenced by the “FlightDinner” element:

http://www.w3.org/TR/xmlschema-2/

Chapter 52: The Hitchhiker’s Guide to XML in Oracle 889

<xsd:element name="FlightDinner">
 <xsd:sequence>
 <xsd:element ref="Name"/>
 <xsd:group ref="MealOptions"/>
 </xsd:sequence>
</xsd:element>

<xsd:group name="MealOptions">
 <xsd:choice>
 <xsd:element name="Fish" type="Meal"/>
 <xsd:element name="Meat" type="Meal"/>
 <xsd:element name="Vegetarian" type="Meal"/>
 </xsd:choice>
</xsd:group>

Attributes are commonly grouped together if elements often use the same set of attributes.
This is similar to the approach described in Chapter 39, in which common attributes were
combined to form new object types. For example, the following definition for a “Product”
element uses an attribute group named productDetails. Other elements can reuse this same
attribute group, improving your ability to enforce a standardized representation of this data.

<xsd:element name="Product">
 <xsd:complexType>
 <xsd:attributeGroup ref="productDetails"/>
 </xsd:complexType>
</xsd:element>

<xsd:attributeGroup name="productDetails">
 <xsd:attribute name="productID" use="required" type="xsd:ID"/>
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 <xsd:attribute name="description" use="required" type="xsd:string"/>
 <xsd:attribute name="unit" type="xsd:positiveInteger"/>
 <xsd:attribute name="price" use="required" type="xsd:decimal"/>
 <xsd:attribute name="stock" type="xsd:integer"/>
</xsd:attributeGroup>

You can enforce uniqueness within a document instance by using xsd:unique:

<xsd:unique name="uniqueProductID">
 <xsd:selector xpath="tc:Product/"/>
 <xsd:field xpath="tc:@productID"/>
</xsd:unique>

Uniqueness is declared at the same level as the complex type definition for the “Product”
element. The tc: namespace is for the schema you are creating and is declared in the xsd:schema
element. The xsd:selector value specifies the elements to constrain (the “Product” elements), and
xsd:field specifies the attribute to constrain (productID).

You can use xsd:key and xsd:keyref to create references between elements. For example, you
can create a “Customer” element and then reference it from multiple “Invoice” elements:

<xsd:key name="customerID">
 <xsd:selector xpath="tc:SalesData/"/>
 <xsd:field xpath="tc:Customer/@CustID"/>

890 Part VII: Hitchhiker’s Guides

</xsd:key>

<xsd:keyref name="item" refer="customerID">
 <xsd:selector xpath="tc:SalesData/"/>
 <xsd:field xpath="tc:Invoice/@CustID"/>
</xsd:keyref>

To allow an element to be NULL, use the nillable attribute:

<xsd:element name="FlightDinner" nillable="true"/>

Using XSU to Select, Insert, Update,
and Delete XML Values
You can use Oracle’s XML-SQL Utility (XSU) to convert the result of a SQL query to XML. XSU
supports dynamic generation of DTDs and the insertion of XML into database tables. You can also
use XSU to update or delete rows from database objects.

You can access XSU via Java and PL/SQL APIs (application programming interfaces). The XSU
Java classes are part of the Oracle kernel software. The PL/SQL API is a wrapper that publishes the
Java classes to PL/SQL. Because the XSU classes are stored in the database, you can write new
stored procedures to directly access XSU’s Java classes. Because a PL/SQL API is available, XSU’s
functionality can be accessed directly through SQL.

For example, you can generate the XML version of the RATING table via the XSU PL/SQL
procedures. The following listing creates a procedure named PRINTCLOBOUT that will be called
as part of the data-output process. The data will be read in as a CLOB.

create or replace procedure PRINTCLOBOUT(result IN OUT NOCOPY CLOB)
 is
xmlstr varchar2(32767);
line varchar2(2000);
begin
 xmlstr := dbms_lob.SUBSTR(result,32767);
 loop
 exit when xmlstr is null;
 line := substr(xmlstr,1,instr(xmlstr,chr(10))-1);
 dbms_output.put_line('| '||line);
 xmlstr := substr(xmlstr,instr(xmlstr,chr(10))+1);
 end loop;
end;
/

Now that the PRINTCLOBOUT procedure exists, run the following anonymous PL/SQL block.
This block queries the RATING table, so that table must be accessible from your schema.

NOTE
You must set serveroutput on prior to executing this PL/SQL block.

declare
 queryCtx DBMS_XMLquery.ctxType;
 result CLOB;
begin

Chapter 52: The Hitchhiker’s Guide to XML in Oracle 891

 -- set up the query context...
 queryCtx := DBMS_XMLQuery.newContext('select * from rating');
 -- get the result...
 result := DBMS_XMLQuery.getXML(queryCtx);
 -- Now you can use the result to put it in tables/send as messages...
 printClobOut(result);
 DBMS_XMLQuery.closeContext(queryCtx); -- you must close the query...
end;
/

The result is the RATING table, formatted with XML tags:

| <?xml version = '1.0'?>
| <ROWSET>
| <ROW num="1">
| <RATING>1</RATING>
| <RATINGDESCRIPTION>ENTERTAINMENT</RATINGDESCRIPTION>
| </ROW>
| <ROW num="2">
| <RATING>2</RATING>
| <RATINGDESCRIPTION>BACKGROUND INFORMATION</RATINGDESCRIPTION>
| </ROW>
| <ROW num="3">
| <RATING>3</RATING>
| <RATINGDESCRIPTION>RECOMMENDED</RATINGDESCRIPTION>
| </ROW>
| <ROW num="4">
| <RATING>4</RATING>
| <RATINGDESCRIPTION>STRONGLY RECOMMENDED</RATINGDESCRIPTION>
| </ROW>
| <ROW num="5">
| <RATING>5</RATING>
| <RATINGDESCRIPTION>REQUIRED READING</RATINGDESCRIPTION>
| </ROW>
| </ROWSET>

PL/SQL procedure successfully completed.

Insert, Update, and Delete Processing with XSU
To insert a document into a table or view, use the DBMS_XMLSave package. XSU will parse the
document and create an insert statement that inserts the values into all the columns of the table or
view. An absent element is treated as a NULL value.

create or replace procedure INSPROC(xmlDoc IN CLOB,
tableName IN VARCHAR2) is
 insCtx DBMS_XMLSave.ctxType;
 rows number;
 begin
 insCtx := DBMS_XMLSave.newContext(tableName); -- get the context
 rows := DBMS_XMLSave.insertXML(insCtx,xmlDoc); -- insert the doc
 DBMS_XMLSave.closeContext(insCtx); -- close the handle
end;
/

892 Part VII: Hitchhiker’s Guides

You can now pass in XML documents as CLOB input values to the INSPROC procedure,
along with the table name. INSPROC will take the XML document and insert its values into the
table. Updates can be executed via calls to a separate procedure, UPDATEPROC, shown in the
following listing:

create or replace procedure UPDATEPROC (xmlDoc IN clob) is
 updCtx DBMS_XMLSave.ctxType;
 rows number;
begin
 updCtx := DBMS_XMLSave.newContext('RATING'); -- get context
 DBMS_XMLSave.clearUpdateColumnList(updCtx); -- clear settings
 DBMS_XMLSave.setKeyColumn(updCtx,'RATING'); -- set RATING as key
 rows := DBMS_XMLSave.updateXML(updCtx,xmlDoc); -- update
 DBMS_XMLSave.closeContext(updCtx); -- close context
end;
/

In this example, the Rating column is the key column used for the update’s where clause:

 DBMS_XMLSave.setKeyColumn(updCtx,'RATING'); -- set RATING as key

The new values are passed in as an XML document in CLOB format, and the RATING table
values are updated based on the contents of the XML document.

Delete operations function in much the same way. The following procedure takes an XML
document as its input, establishes the Rating column as the key for the RATING table, and
performs the delete based on the key values in the input document. Note that newContext takes
the table name RATING as its input value, whereas setKeyColumn takes the key column name
(which in this case happens to also be Rating).

create or replace procedure DELETEPROC(xmlDoc IN clob) is
 delCtx DBMS_XMLSave.ctxType;
 rows number;
begin
 delCtx := DBMS_XMLSave.newContext('RATING');
 DBMS_XMLSave.setKeyColumn(delCtx,'RATING');
 rows := DBMS_XMLSave.deleteXML(delCtx,xmlDoc);
 DBMS_XMLSave.closeContext(delCtx);
end;
/

XSU and Java
If you prefer, you can perform the XSU DML operations via calls to Java classes instead of the PL/
SQL procedures. In place of the DBMS_XMLQuery package, you should execute the oracle.xml
.sql.query.OracleXMLQuery class. In place of the DBMS_XMLSave package, use oracle.xml.sql
.dml.OracleXMLSave.

For example, the Oracle-provided sample Java program for XML queries is customized slightly
in the following listing. It relies on connection management in a fashion very similar to that
shown in the JDBC examples. The program imports the oracle.xml.sql.query.OracleXMLQuery

Chapter 52: The Hitchhiker’s Guide to XML in Oracle 893

class, enabling it to get the XML string; Java’s System.out.println method is then called to display
the output.

import oracle.xml.sql.query.OracleXMLQuery;
import java.lang.*;
import java.sql.*;

// class to test the String generation!
class testXMLSQL {

 public static void main(String[] argv)
 {

 try{
 // Create the connection.
 Connection conn = getConnection("practice","practice");

 // Create the query class.
 OracleXMLQuery qry = new OracleXMLQuery(conn, "select * from rating");

 // Get the XML string.
 String str = qry.getXMLString();

 // Print the XML output.
 System.out.println(" The XML output is:\n"+str);
 // Always close the query to get rid of any resources...
 qry.close();
 }catch(SQLException e){
 System.out.println(e.toString());
 }
 }

 // Get the connection given the user name and password...!
 private static Connection getConnection(String username,
 String password)
 throws SQLException
 {
 // Register the JDBC driver...
DriverManager.registerDriver(new oracle.jdbc.OracleDriver());

 // Create the connection using the OCI8 driver.
 Connection conn =
DriverManager.getConnection("jdbc:oracle:oci8:@or90",username,password);

 return conn;
 }
}

For details on connection management and Java, see Part VI of this book.

894 Part VII: Hitchhiker’s Guides

Customizing the Query Process
You can create your own procedures to simplify the interaction with the DBMS_XMLQuery and
DBMS_XMLSave packages. For example, the following listing creates a function named GET_
XML, which will select the rows from the table and display them in XML format.

create function GET_XML (in_SQL varchar2)
 return CLOB
is queryCtx DBMS_XMLQuery.ctxType;
 result CLOB;
begin queryCtx := DBMS_XMLQuery.newContext(in_SQL);
 result := DBMS_XMLQuery.getXML(queryCtx);
 DBMS_XMLQuery.closeContext(queryCtx);
 return result;
end;
/

The data will be returned in CLOB format, so you can use the set long command to set the
maximum display length (the default is 80 characters). You can call GET_XML from within SQL
queries, as shown in the following listing:

set pagesize 100 long 2000

select GET_XML('select * from category') from DUAL;

GET_XML('SELECT*FROMCATEGORY')
--
<?xml version = '1.0'?>
<ROWSET>
 <ROW num="1">
 <CATEGORYNAME>ADULTREF</CATEGORYNAME>
 <PARENTCATEGORY>ADULT</PARENTCATEGORY>
 <SUBCATEGORY>REFERENCE</SUBCATEGORY>
 </ROW>
 <ROW num="2">
 <CATEGORYNAME>ADULTFIC</CATEGORYNAME>
 <PARENTCATEGORY>ADULT</PARENTCATEGORY>
 <SUBCATEGORY>FICTION</SUBCATEGORY>
 </ROW>
 <ROW num="3">
 <CATEGORYNAME>ADULTNF</CATEGORYNAME>
 <PARENTCATEGORY>ADULT</PARENTCATEGORY>
 <SUBCATEGORY>NONFICTION</SUBCATEGORY>
 </ROW>
 <ROW num="4">
 <CATEGORYNAME>CHILDRENPIC</CATEGORYNAME>
 <PARENTCATEGORY>CHILDREN</PARENTCATEGORY>
 <SUBCATEGORY>PICTURE BOOK</SUBCATEGORY>
 </ROW>
 <ROW num="5">
 <CATEGORYNAME>CHILDRENFIC</CATEGORYNAME>

Chapter 52: The Hitchhiker’s Guide to XML in Oracle 895

 <PARENTCATEGORY>CHILDREN</PARENTCATEGORY>
 <SUBCATEGORY>FICTION</SUBCATEGORY>
 </ROW>
 <ROW num="6">
 <CATEGORYNAME>CHILDRENNF</CATEGORYNAME>
 <PARENTCATEGORY>CHILDREN</PARENTCATEGORY>
 <SUBCATEGORY>NONFICTION</SUBCATEGORY>
 </ROW>
</ROWSET>

Using XMLType
You can use XMLType as a datatype in your tables. XMLType can be used to store and query XML
data in the database. As a type, XMLType has member functions to access, extract, and query XML
data using a class of operations known as Xpath expressions. The SYS_XMLGEN, SYS_XMLAGG,
and DBMS_XMLGEN packages create XMLType values from existing object-relational data. When
you designate a column as using the XMLType datatype, Oracle will store the data internally in a
CLOB datatype.

The following listing shows the creation of a table using the XMLType datatype:

create table MY_XML_TABLE
(Key1 NUMBER,
Xml_Column SYS.XMLTYPE);

If you describe the table, you will see its columns:

desc MY_XML_TABLE

 Name Null? Type
 --- -------- ------------
 KEY1 NUMBER
 XML_COLUMN SYS.XMLTYPE

If you increase the describe depth, you will see the member functions for the XMLType
column as well. The following listing shows the first few of the many functions and methods
available:

set describe depth 5
desc MY_XML_TABLE
 Name Null? Type
 --- -------- -------------------
 KEY1 NUMBER
 XML_COLUMN SYS.XMLTYPE

METHOD

 STATIC FUNCTION CREATEXML RETURNS XMLTYPE
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 XMLDATA CLOB IN

896 Part VII: Hitchhiker’s Guides

METHOD

 MEMBER FUNCTION EXTRACT RETURNS XMLTYPE
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 XPATH VARCHAR2 IN

METHOD

 MEMBER FUNCTION EXISTSNODE RETURNS NUMBER
 Argument Name Type In/Out Default?
 ------------------------------ ----------------------- ------ --------
 XPATH VARCHAR2 IN

METHOD

 MEMBER FUNCTION ISFRAGMENT RETURNS NUMBER

METHOD

 MEMBER FUNCTION GETCLOBVAL RETURNS CLOB

METHOD

 MEMBER FUNCTION GETSTRINGVAL RETURNS VARCHAR2

METHOD

 MEMBER FUNCTION GETNUMBERVAL RETURNS NUMBER

You can now insert values into MY_XML_TABLE by calling XMLType’s CREATEXML method:

insert into MY_XML_TABLE (Key1, Xml_Column)
values (1, SYS.XMLTYPE.CREATEXML
 ('<book>
 <title>MY LEDGER</title>
 <chapter num= "1 ">
 <title>Beginning</title>
 <text>This is the ledger of G.B. Talbot</text>
 </chapter>
</book>'));

You can query the data by calling the GETCLOBVAL method. For example, the query

select M.Xml_Column.GETCLOBVAL() as XML_Data
 from MY_XML_TABLE M
 where Key1 = 1;

Chapter 52: The Hitchhiker’s Guide to XML in Oracle 897

returns this data:

XML_DATA

<book>
 <title>MY LEDGER</title>
 <chapter num="1">
 <title>Beginning</title>
 <text>This is the ledger of G.B. Talbot</text>
 </chapter>
</book>

NOTE
You can create functional indexes on columns created with the
XMLType datatype to improve the performance of queries.

Other Features
This chapter has shown a very high-level view of the interaction of XML data with the Oracle
database. There are many other possibilities, including the use of style sheets for data formatting,
and creating XSQL pages. You can even create text indexes on XMLType columns, provided you
have installed the Oracle Context option:

create index XML_INDEX on MY_XML_TABLE (Xml_Column)
 indextype is ctxsys.context;

Oracle provides a number of packages to interact with XML data, including DBMS_XMLDOM,
DBMS_XMLGEN, DBMS_XMLINDEX, DBMS_XMLPARSER, DBMS_XMLQUERY, DBMS_XMLSAVE,
DBMS_XMLSCHEMA, DBMS_XMLSTORE, and DBMS_XMLTRANSLATIONS.

Oracle provides utilities to support additional uses, such as oraxml (a command-line interface
to parse an XML document) and oraxsl (a command-line interface used to apply a style sheet on
multiple XML documents). A full discussion of every utility and data-access method is beyond the
scope of this book; see the XML documentation provided with Oracle Database 11g for additional
options and sample programs. See the Alphabetical Reference for descriptions of functions that
act on XMLType instances, including EXTRACT, EXTRACTVALUE, SYS_XMLAGG, SYS_XMLGEN,
UPDATEXML, XMLAGG, XMLCONCAT, and XMLELEMENT.

This page intentionally left blank

PART
VIII

Alphabetical Reference
Copyright © 2008, Oracle Corporation. All rights reserved. This appendix contains
Oracle Corporation User Documentation reproduced herein with permission of
Oracle Corporation, and offers brief summaries of the most common SQL commands,
functions, and datatypes. The commands are arranged alphabetically. This material is
extracted from Oracle Database SQL Reference Release 11g, SQL*Plus User’s Guide
and Reference, and Oracle Database Utilities 11g Release 1.

899

900 Part VIII: Alphabetical Reference

his part contains references for most major Oracle commands, functions, and keywords
with cross-referencing of topics. The reference is intended for use by both developers
and users of Oracle, but assumes some familiarity with the products. Reading the
introduction to this reference will help you make the most productive use of the entries.

What This Alphabetical Reference Includes
This alphabetical reference contains entries for virtually every Oracle command in SQL, PL/SQL, and
SQL*Plus used in Oracle Database 11g and SQL. Each command is listed with its correct format or
syntax, an explanation of its purpose and use, and important details, restrictions, and hints about it, along
with examples to illustrate proper usage. Topics are in alphabetical order and are cross-referenced, both
within the alphabetical reference and to preceding chapters in the book.

What This Alphabetical Reference
Does Not Include
This is not a tutorial; it does not explain the screen-oriented development and administration tools.
Additionally, there are a few areas where usage is likely to be so specialized or infrequent that
inclusion here did not seem of much benefit. In these instances, the text refers you to the Oracle
manual in which you can find the needed information.

General Format of Entries
Entries in this reference are typically either definitions of terms or descriptions of functions, commands,
and keywords. These are usually structured in six sections: the keyword, its type, a SEE ALSO cross-
reference, the format in which the keyword appears, a description of its components, and an example
of its use. A typical entry looks like the following:

RPAD
SEE ALSO CHARACTER FUNCTIONS, LPAD, LTRIM, RTRIM, TRIM, Chapter 7
FORMAT RPAD(string,length [,'set'])
DESCRIPTION Right PAD. RPAD makes a string a certain length by adding a certain set of
characters to the right. If set is not specified, the default pad character is a space.
EXAMPLE

select RPAD('HELLO ',24,'WORLD') from DUAL;

produces this:

HELLO WORLDWORLDWORLDWOR

The Sections of Each Entry
The KEYWORD usually appears on a line by itself. In some cases a brief definition follows. If a keyword
has more than one definition, either in different Oracle tools or in different Oracle versions, the keyword
is followed by a brief qualifier to indicate that more than one listing exists for this keyword.

SEE ALSO suggests other topics that are closely related to the keyword, or gives the chapter or chapters
in the book that provide detailed descriptions of how the keyword is used in practice. Occasionally you
will be referred to an Oracle manual or other reference book that contains detail beyond the scope of this
reference.

T

FORMAT generally follows the notation of Oracle manuals, with all SQL and other keywords in
uppercase. In actual use, these must be entered exactly as they are shown (except that case is irrelevant).
Variables and variable parameters are shown in lowercase italic. This indicates that some appropriate
value should be substituted. When parentheses are shown, they must be entered where they appear, as
must words shown in uppercase.

Standard Usages for Variables
Some standard usages for variables follow:

This Variable Indicates
column The name of a column

database The name of a database

link The name of a link in Oracle Net

password A password

segment The name of a segment

table The name of a table

tablespace The name of a tablespace

user The name of a user or owner

view The name of a view

Other Formatting Guidelines
Some other guidelines for formatting follow:

character means the value must be a single character.

string typically represents a character column or an expression or column that can be treated
like a CHAR or VARCHAR2 column after automatic data conversion.

value usually represents a NUMBER column or an expression or column that can be treated
like a NUMBER column after automatic data conversion.

date usually represents a DATE column or an expression or column that can be treated like a
DATE column after automatic data conversion.

datetime usually represents a TIMESTAMP column or an expression or column that can be
treated like a TIMESTAMP column after automatic data conversion.

integer must be a whole number, such as –3, 0, or 12.

expression means any form of a column. This could be a literal, a variable, a mathematical
computation, a function, or virtually any combination of functions and columns whose final
result is a single value, such as a string, a number, or a date.

Occasionally other notation is used as well, such as condition or query. This is explained or is
apparent in context.

Optional items are enclosed in square brackets, as in [user.], meaning that user is not
necessarily required.

Alternative items in a list are separated by a single broken vertical bar, as in OFF | ON, which
should be read “OFF or ON.” On some systems, this vertical bar is displayed as a solid vertical bar.

Required options, where one item of a list of items is required, are surrounded by curly braces,
as in {OFF | ON}.

■

■

■

■

■

■

■

■

■

■

■

General Format of Entries 901

902 Part VIII: Alphabetical Reference

The default item in a list, if there is one, will be listed first.

Three periods (an ellipsis) indicate that the preceding expression can be repeated any number
of times, as in column [,column]. . ., which means that ,column may be any number of
additional columns separated by commas.

In rare instances, normal notation is either insufficient or inappropriate for what is being shown.
In these cases, the DESCRIPTION section spells out more fully what is intended in the
FORMAT section.

Other Elements of a Listing
A few commands have a return type, which indicates the datatype of the value returned by a function.

DESCRIPTION is an explanation of the command and its parts. Boldface words within the description
usually refer to either commands or variables shown in the FORMAT section.

EXAMPLE shows either the results of a function or how a keyword is used in a real command. The
style of the examples is not the same as the style of the FORMAT section. Instead, it follows the style of
the first part of this book (described in Chapter 5), since that style is more typical of real coding practice.

The Order of the Keywords
This reference is in alphabetical order, with all entries that begin with symbols coming before the first
entry beginning with the letter A.

Words that are hyphenated or that have an underscore character in them are alphabetized as if the
hyphen or underscore were a space.

Symbols
The symbols are listed in order of appearance with a short definition or name.

_ underline (also called underscore or underbar)

! exclamation mark

" double quotation mark

pound sign

$ dollar sign

? question mark

% percent sign

& ampersand

&& double ampersand

' single quotation mark or apostrophe

() parentheses

* asterisk or multiplication

** exponentiation in PL/SQL

+ plus

- subtraction or hyphen

- - double hyphen, SQL comment minus or hyphen

. period or dot, a name or variable separator

.. to

■

■

■

/ division or slash

/* slash asterisk, start of a SQL comment

: colon

:= is set equal to in PL/SQL

; semicolon

<< >> label name delimiter in PL/SQL

< less than

<= less than or equal to

< > not equal

!= not equal

= equal

> greater than

>= greater than or equal to

@ at sign

@@ double at sign

[] square brackets

^ caret

^= not equal

{} curly braces

| broken vertical bar

|| concatenation

_ (Underscore)
The underscore represents a single position with the LIKE operator. See LIKE.

_EDITOR
See EDIT.

! (Exclamation Mark)
SEE ALSO $, =, CONTAINS, SOUNDEX, Chapter 27
FORMAT Within SQL, ! is used as part of the “not equal” expression, !=. For example, you can
select all the city values that are not in the continent of Asia:

select City
 from LOCATION
 where Continent != 'ASIA';

For CONTEXT text indexes, ! signals the text engine to perform a SOUNDEX search. The terms to
search for will be expanded to include terms that sound like the search term, using the text’s SOUNDEX
value to determine possible matches.

select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, '!grate')>0;

! (Exclamation Mark) 903

904 Part VIII: Alphabetical Reference

" (Double Quotation Mark)
SEE ALSO ALIAS, TO_CHAR, Chapters 7 and 10
DESCRIPTION " surrounds a table or column alias that contains special characters or a space, or
surrounds literal text in a date format clause of TO_CHAR.
EXAMPLE Here " is used as an alias:

select NEXT_DAY(CycleDate,'FRIDAY') "Pay Day!"
 from PAYDAY;

And here it is used as a formatting portion of TO_CHAR:

select FirstName, Birthdate, TO_CHAR(BirthDate,
 '"Baby Girl on" fmMonth ddth, YYYY, "at" HH:MI "in the Morning"')
 "Formatted"
 from BIRTHDAY
 where FirstName = 'VICTORIA';

FIRSTNAME BIRTHDATE Formatted
--------------- --------- ------------------------------
VICTORIA 20-MAY-49 Baby Girl on May 20th, 1949,
 at 3:27 in the Morning

(Pound Sign)
SEE ALSO REMARK, /* */, Chapter 6
DESCRIPTION # completes a block of documentation in a SQL*Plus start file where the block
is begun by the word DOCUMENT. SQL*Plus ignores all lines from the line where it sees the word
DOCUMENT until the line after the #.

$ (Dollar Sign)
SEE ALSO @, @@, HOST, START, CONTAINS, Chapter 27
FORMAT For SQL*Plus:

$ host_command

In UNIX environments, the $ symbol can be replaced with ! when executing host commands.
For CONTEXT text indexes:

select column
 from table
 where CONTAINS(text_column, '$search_term') >0;

DESCRIPTION $ passes any host command back to the operating system for execution without
exiting SQL*Plus. $ is shorthand for HOST. This doesn’t work on all hardware or operating systems.

For a CONTEXT text index, $ instructs the search engine to perform a stem expansion on the
search term. A stem expansion includes in the search those words that have the same word stem. For
example, a stem expansion of the word 'sing' would include 'singing', 'sang', and 'sung'.

? (Question Mark)
SEE ALSO CONTAINS, Chapter 27

FORMAT

select column
 from table
 where CONTAINS(text_column, '?term')>0;

DESCRIPTION For CONTEXT text indexes, ? instructs the text engine to perform a fuzzy match
search. The terms to search for will be expanded to include terms that are spelled similarly to the
search term, using the text index as the source for possible matches.

% (Percent)
% is a wildcard used to represent any number of positions and characters with the LIKE operator. See LIKE.

%FOUND
SEE ALSO %ISOPEN, %NOTFOUND, %ROWCOUNT, CURSOR, SQL CURSOR, Chapter 32
FORMAT

cursor%FOUND

or

SQL%FOUND

DESCRIPTION %FOUND is a success flag for select, insert, update, and delete. cursor is the name
of an explicit cursor declared in a PL/SQL block, or the implicit cursor named SQL. %FOUND can be
attached to a cursor name as a suffix. The two together are a success flag for the execution of SELECT,
INSERT, UPDATE, and DELETE statements in PL/SQL blocks.

PL/SQL temporarily sets aside a section of memory as a scratchpad for the execution of SQL
statements, and for storing certain kinds of information (or attributes) about the state of that execution.
If the SQL statement is a select, this area will contain one row of data.

%FOUND is one of those attributes. %FOUND is typically tested (via IF/THEN logic) after an
explicit fetch has been performed from the cursor. It will be TRUE if the fetch retrieved a row, and FALSE
otherwise. It always evaluates to TRUE, FALSE, or NULL. %NOTFOUND is the logical opposite. It is
FALSE when %FOUND is TRUE, TRUE when %FOUND is FALSE, and NULL when %FOUND is NULL.

Testing %FOUND for the condition of an explicit cursor before it is OPENed raises an EXCEPTION
(error code ORA-01001, INVALID CURSOR).

%ISOPEN
SEE ALSO SQL CURSOR, Chapter 32
FORMAT

cursor%ISOPEN

DESCRIPTION cursor must be either the name of an explicitly declared cursor or the implicit cursor
named SQL. %ISOPEN evaluates to TRUE if the named cursor is open, and to FALSE if it is not.
SQL%ISOPEN will always evaluate to FALSE, because the SQL cursor is opened and closed automatically
when a SQL statement not explicitly declared is executed (see SQL CURSOR). %ISOPEN is used in
PL/SQL logic; it cannot be a part of a SQL statement.

%NOTFOUND
See %FOUND.

%NOTFOUND 905

906 Part VIII: Alphabetical Reference

%ROWCOUNT
SEE ALSO CLOSE, DECLARE CURSOR, DELETE, FETCH, INSERT, OPEN, SELECT, UPDATE, Chapter 32
FORMAT

cursor%ROWCOUNT

DESCRIPTION cursor must be either the name of an explicitly declared cursor or the implicit cursor
named SQL. cursor%ROWCOUNT contains the cumulative total number of rows that have been
fetched from the active set in this cursor. %ROWCOUNT can be used to intentionally process only a
fixed number of rows, but is more commonly used as an exception handler for selects that are intended
to return just one row (for example, select. . .into). In these cases, %ROWCOUNT is set to 0 if no rows
are returned (%NOTFOUND can make this test as well), and to 2 if more than one row is returned,
regardless of the actual number.

%ROWCOUNT is used in PL/SQL logic; it cannot be a part of a SQL statement. If SQL%ROWCOUNT
is used, it can only refer to the most recently opened implicit cursor. If no implicit cursor has been
opened, SQL%ROWCOUNT returns NULL.

%ROWTYPE
SEE ALSO FETCH, Chapter 32
FORMAT

{[user.]table | cursor}%ROWTYPE

DESCRIPTION %ROWTYPE declares a record variable to have the same structure as an entire row
in a table (or view), or as a row retrieved by the named cursor. %ROWTYPE is used as part of a variable
declaration and assures that the variable will contain the appropriate fields and datatypes to handle all
of the columns being fetched. If [user.]table is used, the table (or view) must exist in the database.

To create a variable that will contain corresponding fields, use declare, a variable name, and
%ROWTYPE with the table name, and then select a row into the record. Because the variable has the
same structure as the table, you can reference the fields as variable.field, using notation similar to table
.column used in SQL statements. select. . .into and fetch. . .into are the only methods for loading an
entire record variable. Individual fields within the record can be loaded using :=, as shown here:

BOOKSHELF_RECORD.Publisher := 'PANDORAS';

If a cursor is used as the prefix for %ROWTYPE, then it can contain a select statement with only as
many columns as are needed. However, if a column that is fetched from a named cursor is an expression,
rather than a simple column name, the expression must be given an alias in the select statement before
it can be referenced using this technique.

%TYPE
SEE ALSO %ROWTYPE, Chapter 32
FORMAT

{[user.]table.column | variable}%TYPE

DESCRIPTION %TYPE is used to declare a variable to be of the same type as a previously declared
variable, or as a particular column in a table that exists in the database you’re connected to.
EXAMPLE In this example a new variable, Writer, is declared to be the same type as the AuthorName
column in the AUTHOR table. Since Writer now exists, it can be used to declare yet another new
variable, Coauthor.

Writer AUTHOR.AuthorName%TYPE;
Coauthor Writer%TYPE;

& or && (Ampersand or Double Ampersand)
SEE ALSO :, ACCEPT, DEFINE, START, CONTAINS, Chapter 27
FORMAT For SQL*Plus:

&integer
&variable
&&variable

For CONTEXT indexes:

select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'property & harvests')>0;

DESCRIPTION & and && can be used in several ways (&& applies only to the second definition):

As a prefix for parameters in a SQL*Plus start file. Values are substituted for &1, &2, etc.
See START.

As a prefix for a substitution variable in a SQL command in SQL*Plus. SQL*Plus will prompt
for a value if an undefined & or && variable is found. && will define the variable and thereby
preserve its value; & will not define or preserve the value, but only substitute what is entered
one time. See ACCEPT and DEFINE.

When using CONTEXT indexes, & is used to signal an AND condition for text searches
involving multiple search terms. If any of the search terms is not found, the text will not be
returned by the search.

' (Single Quotation Mark)
SEE ALSO " (Double Quotation Mark), Chapter 7
FORMAT

'string'

DESCRIPTION ' surrounds a literal, such as a character string or date constant. To use one
quotation mark or an apostrophe in a string constant, use two ' marks (not a double quotation mark).
Avoid the use of apostrophes in data (and elsewhere) whenever possible.
EXAMPLE

select 'William' from DUAL;

produces this:

William

whereas

select 'William''s brother' from DUAL;

produces this:

William's brother

■

■

■

' (Single Quotation Mark) 907

908 Part VIII: Alphabetical Reference

() (Parentheses)
SEE ALSO PRECEDENCE, SUBQUERY, UPDATE, Chapters 13 and 15
DESCRIPTION Parentheses enclose subqueries or lists of columns, or control precedence within
expressions.

* (Multiplication)
SEE ALSO +, –, /, Chapters 9 and 27
FORMAT

value1 * value2

DESCRIPTION value1 * value2 means value1 multiplied by value2. For CONTEXT indexes, * is
used to weight the individual search terms differently.

** (Exponentiation)
SEE ALSO POWER
FORMAT

x ** y

DESCRIPTION x is raised to the power y. x and y may be constants, variables, columns, or
expressions. Both must be numeric.
EXAMPLE 4**4 = 256

+ (Addition)
SEE ALSO -, *, /, Chapter 9
FORMAT

value1 + value2

DESCRIPTION value1 + value2 means value1 plus value2.

– (Subtraction [Form 1])
SEE ALSO +, *, /, Chapter 9, CONTAINS, MINUS, Chapter 27
FORMAT

value1 - value2

DESCRIPTION value1 – value2 means value1 minus value2. For CONTEXT indexes, a – tells the
text search of two terms to subtract the score of the second term’s search from the score of the first
term’s search before comparing the result to the threshold score. For CTXCAT indexes, a – tells the
text search engine to exclude the row from the result set if the term following the – is found.

- (Hyphen [Form 2])
SEE ALSO Chapter 6
FORMAT

command text -
 text -
 text

DESCRIPTION SQL*Plus command continuation; a - continues a command on the following line.
EXAMPLE

ttitle left 'Current Portfolio' -
right 'November 1st, 1999' skip 1 -
center 'Industry Listings ' skip 4;

-- (Comment)
SEE ALSO /* */, REMARK, Chapter 6
FORMAT

-- any text

DESCRIPTION -- tells Oracle a comment has begun. Everything from that point to the end of the
line is treated as a comment. These delimiters are used only within SQL itself or in PL/SQL and must
appear before the SQLTERMINATOR.
EXAMPLE

select Feature, Section, Page
-- this is just a comment
 from NEWSPAPER -- this is another comment
 where Section = 'F';

. (Period or Dot [Form 1]) (SQL*Plus)
FORMAT

&variable.suffix

DESCRIPTION The . is a variable separator, which is used in SQL*Plus to separate the variable
name from a suffix so that the suffix is not considered a part of the variable name.
EXAMPLE Here, the suffix “st” is effectively concatenated to the contents of the variable &Avenue:

define Avenue = 21
select '100 &Avenue.st Street' from DUAL;

produces this:

100 21st Street

This same technique might also be used in a WHERE clause.

. (Period or Dot [Form 2])
SEE ALSO SYNTAX OPERATORS, Chapter 38
FORMAT

 [user.][table.]column

DESCRIPTION The . is a name separator, used to specify the complete name of a column, including
(optionally) its table or user. The . is also used to address columns within abstract datatypes during
selects, updates, and deletes.
EXAMPLE

select Practice.BOOKSHELF.Title
 from Practice.BOOKSHELF, Practice.BOOKSHELF_AUTHOR
 where Practice.BOOKSHELF.Title = Practice.BOOKSHELF_AUTHOR.Title;

. (Period or Dot [Form 2]) 909

910 Part VIII: Alphabetical Reference

If the table contains columns based on an abstract datatype, the datatype’s attributes may be accessed
via the . notation.

select C.Person.Address.City
 from Company C
 where C.Person.Address.State = 'FL';

See Chapter 38 for further examples.

.. (To)
See LOOP.

/ (Division [Form 1])
SEE ALSO +, –, *, Chapter 9
FORMAT

value1 / value2

DESCRIPTION value1 / value2 means value1 divided by value2.

/ (Slash [Form 2]) (SQL*Plus)
SEE ALSO ;, BUFFER, EDIT, GET, RUN, SQLTERMINATOR under SET
DESCRIPTION / executes the SQL in the SQL buffer without displaying it, unlike RUN, which
displays it first.

/* */ (Comment)
SEE ALSO REMARK, Chapter 6
FORMAT

/* any text */

DESCRIPTION /* tells Oracle a comment has begun. Everything Oracle sees from that point
forward, even for many words and lines, it regards as a comment until it sees the ending */, which ends
the comment. Comments cannot be embedded within comments; that is, a /* is terminated by the first
following */, even if there is an intervening /*.
EXAMPLE

select Feature, Section, Page
 /* this is a multi-line comment
 used to extensively document the code */
 from NEWSPAPER
 where Section = 'F';

: (Colon, Host Variable Prefix)
SEE ALSO INDICATOR VARIABLE
FORMAT

:name

DESCRIPTION name is the name of a host variable. When PL/SQL is embedded in a host language
through an Oracle precompiler, host variables can be referenced from within the PL/SQL blocks by

prefixing their host language names with a colon. In effect, this is the host variable. If PL/SQL changes
its value through an assignment (:=), the value of the host variable is changed. Host variables may be
used anywhere a PL/SQL variable can be used. The one exception is in assigning the value NULL to a
host variable, which is not supported directly, but requires the use of an indicator variable.
EXAMPLE

int BookCount;
...
 select COUNT(*) into :BookCount from BOOKSHELF;

:= (Set Equal To)
SEE ALSO DECLARE CURSOR, FETCH, SELECT INTO, Chapter 32
FORMAT

variable := expression

DESCRIPTION The PL/SQL variable is set equal to the expression, which may be a constant, NULL,
or a calculation with other variables, literals, and PL/SQL functions.
EXAMPLE

Extension := Quantity * Price;
Title := 'BARBERS WHO SHAVE THEMSELVES';
Name := NULL;

; (Semicolon)
SEE ALSO / (Slash), EDIT, GET, RUN, SQLTERMINATOR under SET, CONTAINS, NEAR, Chapter 27
DESCRIPTION ; executes the SQL or the command that precedes it. For CONTEXT indexes, ;
indicates that a proximity search should be executed for the specified text strings. If the search terms
are 'summer' and 'lease', then a proximity search for the two terms could be

select Text
 from SONNET
 where CONTAINS(Text,'summer;lease') >0;

When evaluating the text search results, text with the words 'summer' and 'lease' near to each
other in the text will have higher scores than text with the words 'summer' and 'lease' farther apart.

< < > > (PL/SQL Label Name Delimiter)
See BEGIN, BLOCK STRUCTURE, END, GOTO, LOOP, Chapter 32.

@ (“At” Sign [Form 1]) (SQL*Plus)
SEE ALSO @@, START
FORMAT

@file

DESCRIPTION @ starts the SQL*Plus start file named file. @ is similar to START, but does not allow
command-line arguments.

@ (“At” Sign [Form 2])
SEE ALSO CONNECT, COPY, CREATE DATABASE LINK, Chapter 25

@ (“At” Sign [Form 2]) 911

912 Part VIII: Alphabetical Reference

FORMAT

CON[NECT] user[/password] [@database];
COPY [FROM user/password@database]
 [TO user/password@database]
 {APPEND | CREATE | INSERT | REPLACE}
 table [(column, [column]...)]
 USING query;
SELECT... FROM [user.]table[link] [, [user.]table[@link]]...

DESCRIPTION @ prefixes a database name in a CONNECT or COPY command, or a link name in a
FROM clause.

@@ (Double “At” Sign) (SQL*Plus)
SEE ALSO @ (Form 1), START
FORMAT

@@file

DESCRIPTION @@ starts a nested SQL*Plus start file named file. @@ is similar to @, but differs in
that @@, when used in a command file, will search for a start file in the same directory as the command
file that called it (rather than in the directory you are in when you execute the command file).

{} (Curly Braces)
SEE ALSO CONTAINS, Chapter 27, Chapter 42
FORMAT For text searches, {} indicate that the enclosed text should be considered part of the search
string even if it is a reserved word. For example, if the search term is 'in and out', and you want to
search for the entire phrase, then you must enclose the word 'and' within braces:

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'transactions {and} finances')>0;

Within Java, {} indicate the beginning and ending of a block.

| (Vertical Bar)
SEE ALSO BTITLE, SET HEADSEP, TTITLE, Chapter 6, Chapter 27
FORMAT

text|text

DESCRIPTION When used in a SQL*Plus COLUMN, TTITLE, or BTITLE command, | is the default
HEADSEP character, and is used to denote the splitting of a line onto a second line. (When used in
listings in this Reference, | denotes a break between alternative choices: variable | literal would be read
“variable or literal.” On some machines this shows as a solid vertical bar.) Within text queries, | signals
an OR condition for searches involving two search terms. If either of the search terms is found, and its
search score exceeds the specified threshold value, the text will be returned by the search.
EXAMPLE Here’s how | is used as a HEADSEP character.

TTITLE 'This is the First Line|and This is the Second'

produces this:

This is the First Line
and This is the Second

Here’s how | is used as an OR clause in a text search query:

REM CONTAINS method for CONTEXT indexes:
select Title
 from BOOK_REVIEW_CONTEXT
 where CONTAINS(Review_Text, 'property | harvests')>0;
REM CATSEARCH method for CTXCAT indexes:
select Title
 from BOOK_REVIEW_CTXCAT
 where CATSEARCH(Review_Text, 'property | harvests', NULL)>0;

|| (Concatenation)
SEE ALSO . (Period or Dot [Form 1]), CHARACTER FUNCTIONS, SUBSTR, Chapter 7
FORMAT

expression1 || expression2

DESCRIPTION || concatenates two strings together.
EXAMPLE Use || to display a column of cities, followed by a comma, a space, and the country:

select City||', '||Country from LOCATION;

ABS (Absolute Value)
SEE ALSO NUMBER FUNCTIONS, Chapter 9
FORMAT

ABS(value)

value must be a number, whether a literal number, the name of a number column, a literal
character string containing a valid number, or a character column containing only a valid number.
DESCRIPTION Absolute value is the measure of the magnitude of something, and is always a
positive number.
EXAMPLES

146
ABS(-30) = 30
ABS('-27.88') = 27.88

ABSTRACT DATATYPES
Abstract datatypes are datatypes that consist of one or more attributes. Rather than being constrained to
the standard datatypes of NUMBER, DATE, and VARCHAR2, abstract datatypes can consist of multiple
attributes and/or other, previously defined abstract datatypes. Abstract datatypes are more commonly
known as object types. See Chapter 38 for examples, and CREATE TYPE for creation syntax.

ACCEPT
SEE ALSO &, &&, DEFINE

ACCEPT 913

914 Part VIII: Alphabetical Reference

FORMAT

ACC[EPT] variable [NUM[BER]|CHAR|DATE|BINARY_FLOAT|BINARY_DOUBLE] [FOR[MAT]
format] [DEF[AULT] default] [PROMPT text | NOPR[OMPT]] [HIDE]

DESCRIPTION ACCEPT takes input from a user’s keyboard and puts it in the named variable with the
specified datatype. If the variable has not been previously DEFINEd, it is created. FORMAT specifies the
input format for the reply (such as A20). DEFAULT sets the default value if a reply is not given. PROMPT
displays the text to the user before accepting the input. NOPROMPT skips a line and waits for input
without displaying any prompt. Using neither PROMPT nor NOPROMPT causes ACCEPT to invent a
prompt asking for the value of the variable. HIDE suppresses the user’s entry, and is valuable for
passwords and the like.
EXAMPLE The following prompts the user with “How hot?” and puts the user’s entry in a number
variable named Temperature:

ACCEPT Temperature NUMBER PROMPT 'How hot? '

ACCUMULATE
See CONTAINS.

ACOS
SEE ALSO ASIN, ATAN, ATAN2, COS, COSH, EXP, LN, LOG, SIN, SINH, TAN, TANH
FORMAT

ACOS(value)

DESCRIPTION ACOS returns the arc cosine of a value. Input values range from –1 to 1; outputs are
expressed in radians.

ADD_MONTHS
SEE ALSO DATE FUNCTIONS, Chapter 10
FORMAT

ADD_MONTHS(date,integer)

DESCRIPTION ADD_MONTHS adds a number of months to date, and returns the date that is that many
months in the future. date must be a legitimate Oracle date. integer must be an integer; a noninteger value
will be truncated to the next smallest integer. A negative value for integer will return a date in the past.
EXAMPLE ADD_MONTHS adds 1 month and 0.3 month to April 22, 2001:

select ADD_MONTHS(TO_DATE('22-APR-01'),1),
 ADD_MONTHS(TO_DATE('22-APR-01'),.3) from DUAL;

ADD_MONTH ADD_MONTH
--------- ---------
22-MAY-01 22-APR-01

AGGREGATE FUNCTIONS
SEE ALSO Chapter 9
DESCRIPTION An aggregate function computes a single summary value (such as sum or average)
from the individual number values in a group of values. This is an alphabetical list of all current group
functions in the Oracle version of SQL. Each of these is listed elsewhere in this reference under its own
name, with its proper format and use. Aggregate functions are useful in select lists and ORDER BY and
HAVING clauses.

FUNCTION NAME AND USE AVG gives the average of the values for a group of rows.
COLLECT takes the input column value and creates a nested table of the input type out of the rows

selected.
CORR returns the coefficient of correlation of a set of number pairs.
CORR_* supports nonparametric or rank correlation (CORR_K and CORR_S).
COUNT gives the count of rows for a column, or for a table (with *).
COVAR_POP returns the population covariance of a set of number pairs.
COVAR_SAMP returns the sample covariance of a set of number pairs.
CUME_DIST calculates the cumulative distribution of a value in a group of values.
DENSE_RANK computes the rank of a row in an ordered group of rows.
FIRST operates on a set of values from a set of rows that ranks as the first with respect to a given

sorting specification.
GROUP_ID distinguishes duplicate groups resulting from a GROUP BY specification.
GROUPING distinguishes superaggregate rows from regular grouped rows.
GROUPING_ID returns a number corresponding to the GROUPING bit vector associated with

a row.
LAST operates on a set of values from a set of rows that ranks as the last with respect to a given

sorting specification.
MAX gives the maximum of all values for a group of rows.
MEDIAN gives the median value for a group of rows, ignoring NULLs.
MIN gives the minimum of all values for a group of rows.
PERCENT_RANK performs a percent ranking calculation.
PERCENTILE_CONT is a percentile calculation function that assumes a continuous distribution model.
PERCENTILE_DISC is a percentile calculation function that assumes a discrete distribution model.
RANK calculates the rank of a value in a group of values.
REGR functions perform linear regression analysis on a group of values.
STATS_BINOMIAL_TEST tests the difference between a sample proportion and a given proportion.
STATS_CROSSTAB analyzes two nominal values.
STATS_F_TEST tests whether two variables are significantly different.
STATS_KS_TEST tests whether two variables are from the same population.
STATS_MODE returns the value that occurs with the greatest frequency in a group.
STATS_MW_TEST tests two independent samples against a null hypothesis.
STATS_ONE_WAY_ANOVA is a one-way analysis of variance.
STATS_T_TEST_* functions measure the significance of a difference of means.
STATS_WSR_TEST determines whether the differences between samples are significantly different

from zero.
STDDEV gives the standard deviation of all values for a group of rows.
STDDEV_POP computes the population standard deviation and returns the square root of the

population variance.
STDDEV_SAMP computes the cumulative sample standard deviation and returns the square root of

the sample variance.
SUM gives the sum of all values for a group of rows.
VAR_POP returns the population variance of a set of numbers after discarding the NULLs in this set.
VAR_SAMP returns the sample variance of a set of numbers after discarding the NULLs in this set.
VARIANCE gives the variance of all values for a group of rows.

ALIAS
An alias is a temporary name assigned to a table or a column within a SQL statement and is used to
refer to it elsewhere in the same statement (if a table) or in a SQL*Plus command (if a column). You can
use the AS keyword to separate the column definition from its alias. See " (Double Quotation Mark),
AS, and SELECT. When used for a table, the alias is referred to as a correlation name.

ALIAS 915

916 Part VIII: Alphabetical Reference

ALL
SEE ALSO ANY, BETWEEN, EXISTS, IN, LOGICAL OPERATORS, Chapter 13
FORMAT

operator ALL list

DESCRIPTION != ALL is the equivalent of NOT IN. operator can be any one of =, >, >=, <, <=, or
!=, and list can be a series of literal strings (such as 'Talbot', 'Jones', 'Hild'), a series of literal numbers
(such as 2, 43, 76, 32.06, 444), or a column from a subquery, where each row of the subquery becomes
a member of the list, such as this:

LOCATION.City != ALL (select City from WEATHER)

The list value can be a series of columns in the WHERE clause of the main query, as shown here:

Prospect != ALL (Vendor, Client)

RESTRICTIONS list cannot be a series of columns in a subquery, such as this:

Prospect != ALL (select Vendor, Client from . . .)

Many people find this operator and the ANY operator very difficult to remember, because the logic
for some of their cases is not immediately intuitive. As a result, some form of EXISTS is usually substituted.
The combination of an operator with ALL and a list can be illustrated with the following explanations:

Page = ALL (4,2,7) Page is equal to every item in the list—no number qualifies. A
subquery could return a list where all the items were identical, and a
value of Page could be equal to every one of them, but this would be
very rare.

Page > ALL (4,2,7) Page is greater than the greatest item in the list (4,2,7)—anything
larger than 7 qualifies.

Page >= ALL (4,2,7) Page is greater than or equal to the greatest item in the list (4,2,7)—
anything equal to or larger than 7 qualifies.

Page < ALL (4,2,7) Page is less than the lowest item in the list (4,2,7)—anything below 2
qualifies.

Page <= ALL (4,2,7) Page is less than or equal to the lowest item in the list (4,2,7)—
anything equal to or lower than 2 qualifies.

Page != ALL (4,2,7) Page is not equal to any item in the list—any number qualifies except
4, 2, and 7.

ALTER CLUSTER
SEE ALSO CREATE CLUSTER, CREATE TABLE, STORAGE, Chapter 17

FORMAT
alter_cluster::=

ALTER CLUSTER
schema .

cluster

physical_attributes_clause

SIZE size_clause

allocate_extent_clause

deallocate_unused_clause

CACHE

NOCACHE

parallel_clause
;

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

allocate_extent_clause::=

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

deallocate_unused_clause::=

DEALLOCATE UNUSED
KEEP size_clause

parallel_clause::=

NOPARALLEL

PARALLEL
integer

ALTER CLUSTER 917

918 Part VIII: Alphabetical Reference

DESCRIPTION Descriptions of the parameters can be found under CREATE TABLE. They have the
same purpose and effect, except that here they are used to alter a cluster. Size is described under
CREATE CLUSTER. In order to alter a cluster, you must either own the cluster or have ALTER ANY
CLUSTER system privilege.

All tables in a cluster use the STORAGE values set by CREATE CLUSTER. ALTER CLUSTER changes
these values for future cluster blocks, but does not affect those that already exist. ALTER CLUSTER does
not allow changing the extent parameters in STORAGE. The DEALLOCATE UNUSED clause allows the
cluster to shrink in size, freeing unused space.
EXAMPLE

alter cluster BOOKandAUTHOR size 1024;

ALTER DATABASE
SEE ALSO ALTER ROLLBACK SEGMENT, CREATE DATABASE, RECOVER, STARTUP, SHUTDOWN,
Chapter 51
FORMAT
alter_database::=

ALTER DATABASE
database

startup_clauses

recovery_clauses

database_file_clauses

logfile_clauses

controlfile_clauses

standby_database_clauses

default_settings_clauses

instance_clauses

security_clause

;

startup_clauses::=

MOUNT

STANDBY

CLONE
DATABASE

OPEN

READ WRITE

RESETLOGS

NORESETLOGS

UPGRADE

DOWNGRADE

READ ONLY

recovery_clauses::=

general_recovery

managed_standby_recovery

BEGIN

END
BACKUP

general_recovery::=

RECOVER
AUTOMATIC FROM ’ location ’

full_database_recovery

partial_database_recovery

LOGFILE ’ filename ’

TEST

ALLOW integer CORRUPTION

parallel_clause

CONTINUE
DEFAULT

CANCEL

full_database_recovery::=

STANDBY
DATABASE

UNTIL

CANCEL

TIME date

CHANGE integer

USING BACKUP CONTROLFILE

ALTER DATABASE 919

920 Part VIII: Alphabetical Reference

partial_database_recovery::=

TABLESPACE tablespace

,

DATAFILE
’ filename ’

filenumber

,

STANDBY

TABLESPACE tablespace

,

DATAFILE
’ filename ’

filenumber

,
UNTIL

CONSISTENT WITH
CONTROLFILE

parallel_clause::=

NOPARALLEL

PARALLEL
integer

managed_standby_recovery::=

RECOVER

MANAGED STANDBY DATABASE

USING CURRENT LOGFILE

DISCONNECT
FROM SESSION

NODELAY

UNTIL CHANGE integer

FINISH

CANCEL

TO LOGICAL STANDBY
db_name

KEEP IDENTITY

database_file_clauses::=

RENAME FILE ’ filename ’

,

TO ’ filename ’

create_datafile_clause

alter_datafile_clause

alter_tempfile_clause

create_datafile_clause::=

CREATE DATAFILE
’ filename ’

filenumber

,
AS

file_specification

,

NEW

alter_datafile_clause::=

DATAFILE
’ filename ’

filenumber

,

ONLINE

OFFLINE
FOR DROP

RESIZE size_clause

autoextend_clause

END BACKUP

alter_tempfile_clause::=

TEMPFILE
’ filename ’

filenumber

,

RESIZE size_clause

autoextend_clause

DROP
INCLUDING DATAFILES

ONLINE

OFFLINE

autoextend_clause::=

AUTOEXTEND

OFF

ON
NEXT size_clause maxsize_clause

maxsize_clause::=

MAXSIZE
UNLIMITED

size_clause

ALTER DATABASE 921

922 Part VIII: Alphabetical Reference

logfile_clauses::=

ARCHIVELOG
MANUAL

NOARCHIVELOG

NO
FORCE LOGGING

RENAME FILE ’ filename ’

,

TO ’ filename ’

CLEAR
UNARCHIVED

LOGFILE logfile_descriptor

,
UNRECOVERABLE DATAFILE

add_logfile_clauses

drop_logfile_clauses

supplemental_db_logging

add_logfile_clauses::=

ADD
STANDBY

LOGFILE

INSTANCE ’ instance_name ’ GROUP integer
redo_logfile_spec

,

MEMBER ’ filename ’
REUSE

,

TO logfile_descriptor

,

drop_logfile_clauses::=

DROP
STANDBY

LOGFILE

logfile_descriptor

,

MEMBER ’ filename ’

,

supplemental_db_logging::=

ADD

DROP
SUPPLEMENTAL LOG

DATA

supplemental_id_key_clause

supplemental_plsql_clause

supplemental_id_key_clause::=

DATA (

ALL

PRIMARY KEY

UNIQUE

FOREIGN KEY

,

) COLUMNS

supplemental_plsql_clause::=

DATA FOR PROCEDURAL REPLICATION

logfile_descriptor::=

GROUP integer

(’ filename ’

,

)

’ filename ’

controlfile_clauses::=

CREATE

LOGICAL

PHYSICAL
STANDBY CONTROLFILE AS ’ filename ’

REUSE

BACKUP CONTROLFILE TO
’ filename ’

REUSE

trace_file_clause

trace_file_clause::=

TRACE
AS ’ filename ’

REUSE
RESETLOGS

NORESETLOGS

ALTER DATABASE 923

924 Part VIII: Alphabetical Reference

standby_database_clauses::=

activate_standby_db_clause

maximize_standby_db_clause

register_logfile_clause

commit_switchover_clause

start_standby_clause

stop_standby_clause

convert_standby_clause

parallel_clause

activate_standy_db_clause::=

ACTIVATE

PHYSICAL

LOGICAL
STANDBY DATABASE

FINISH APPLY

maximize_standby_db_clause::=

SET STANDBY DATABASE TO MAXIMIZE

PROTECTION

AVAILABILITY

PERFORMANCE

register_logfile_clause::=

REGISTER
OR REPLACE

PHYSICAL

LOGICAL
LOGFILE

file_specification

,

FOR logminer_session_name

commit_switchover_clause::=

PREPARE

COMMIT
TO SWITCHOVER

TO

PHYSICAL

LOGICAL
PRIMARY

PHYSICAL
STANDBY

WITH

WITHOUT
SESSION SHUTDOWN

WAIT

NOWAIT

LOGICAL STANDBY

CANCEL

start_standby_clause::=

START LOGICAL STANDBY APPLY
IMMEDIATE NODELAY

NEW PRIMARY dblink

INITIAL
scn_value

SKIP FAILED TRANSACTION

FINISH

stop_standby_clause::=

STOP

ABORT
LOGICAL STANDBY APPLY

convert_standby_clause::=

CONVERT TO
PHYSICAL

SNAPSHOT
STANDBY

ALTER DATABASE 925

926 Part VIII: Alphabetical Reference

default_settings_clauses::=

SET DEFAULT
BIGFILE

SMALLFILE
TABLESPACE

DEFAULT TABLESPACE tablespace

DEFAULT TEMPORARY TABLESPACE
tablespace

tablespace_group_name

RENAME GLOBAL_NAME TO database . domain

ENABLE BLOCK CHANGE TRACKING
USING FILE ’ filename ’

REUSE

DISABLE BLOCK CHANGE TRACKING

flashback_mode_clause

set_time_zone_clause

set_time_zone_clause::=

SET TIME_ZONE = ’

+

–
hh : mi

time_zone_region

’

flashback_mode_clause::=

FLASHBACK
ON

OFF

instance_clauses::=

ENABLE

DISABLE
INSTANCE ’ instance_name ’

security_clause::=

GUARD

ALL

STANDBY

NONE

DESCRIPTION To alter a database, you must have the ALTER DATABASE system privilege.
database is the database name, and must be eight or fewer characters long.
When a database is first created, it is MOUNTed in EXCLUSIVE mode, meaning no one but its

creator has access to it. To allow multiple instances to access the database, use MOUNT PARALLEL
if you have installed the Oracle Real Application Clusters option.

After mounting a database, you OPEN it. RESETLOGS resets the redo log, cleaning out any redo
entries. You use this option to restore a database after a partial recovery from a media failure. The
NORESETLOGS option leaves everything the same when you OPEN the database.

You can recover the database with a RECOVER clause. This command performs media recovery
for a lost database. You can use multiple recovery processes to apply redo entries to datafiles for each
instance. See RECOVER. You can BACKUP a CONTROLFILE to the specified file or to a trace file.

STANDBY databases provide a mechanism for automated failover in the event of a database failure.
See the Oracle Database Administrator’s Guide for details on the creation and management of standby
databases.

RENAME changes the name of an existing database or redo log file. DBAs can also CREATE
DATAFILEs and CREATE TEMPFILEs and manage the increments by which datafiles autoextend. The
AUTOEXTEND clause can be used to dynamically extend datafiles as needed, in increments of NEXT
size, to a maximum of MAXSIZE (or UNLIMITED). You can use the RESIZE clause to increase or
decrease the size of an existing datafile. You can bring a file ONLINE or take it OFFLINE with the
DATAFILE clause. You can CREATE a new DATAFILE to replace an old one to re-create a datafile lost
without backup.

ARCHIVELOG and NOARCHIVELOG define the way redo log files are used. NOARCHIVELOG is
the default, and using it means that redo log files will be reused without saving their contents elsewhere.
This provides instance recovery except from a media failure, such as a disk crash. ARCHIVELOG forces
redo log files to be archived (usually to another disk or a tape), so that you can recover from a media
failure. This mode also supports instance recovery.

ADD LOGFILE adds a redo log file or files to the database. redo_logfile_spec specifies the redo
log file names and sizes. SIZE is the number of bytes set aside for this file. Suffixing this with K
multiplies the value by 1024; using M multiplies it by 1048576. REUSE (without SIZE) means destroy
the contents of any file by this name and give the name to this database. SIZE with REUSE creates the
file if it doesn’t exist, and checks its size if it does. SIZE alone creates the file if it doesn’t exist, but
returns an error if it does exist. The redo log file is assigned to a thread, either explicitly with the
THREAD clause or to the thread assigned to the current instance of Oracle. A GROUP is a collection
of redo log files. You can add a GROUP of redo log files by listing them, and you can name the group
with an integer.

ADD LOGFILE MEMBER adds new files to an existing redo log file group, either by specifying the
GROUP integer or by listing all the redo log files in the group.

DROP LOGFILE drops an existing redo log file group. DROP LOGFILE MEMBER drops one or
more members of a redo log file group.

You can RENAME GLOBAL_NAME to change the name of the database. If you specify a domain,
tell Oracle where the database is on the network. You must change references to the database from
remote databases as well.

You can use the RESET COMPATIBILITY option, in conjunction with the COMPATIBLE parameter
in the initialization parameter file, to revert from compatibility with one version of Oracle to a previous
version.

You can ENABLE or DISABLE a THREAD. PUBLIC makes the thread available to any instance not
requesting a specific thread.

As of Oracle Database 11g, the ALTER DATABASE command has been enhanced to simplify and
expand the managed_standby_recovery and standby_database_clauses options. The supplemental_db_
logging clause contains new syntax for supplemental logging of PL/SQL calls.

ALTER DIMENSION
SEE ALSO CREATE DIMENSION, DROP DIMENSION, Chapter 26

ALTER DIMENSION 927

928 Part VIII: Alphabetical Reference

FORMAT
alter_dimension::=

ALTER DIMENSION
schema .

dimension

ADD

level_clause

hierarchy_clause

attribute_clause

extended_attribute_clause

DROP

LEVEL level

RESTRICT

CASCADE

HIERARCHY hierarchy

ATTRIBUTE attribute
LEVEL level

COLUMN column

,

COMPILE

;

level_clause::=

LEVEL level IS

level_table . level_column

(level_table . level_column

,

)

SKIP WHEN NULL

hierarchy_clause::=

HIERARCHY hierarchy (child_level CHILD OF parent_level
dimension_join_clause

)

dimension_join_clause::=

JOIN KEY

child_key_column

(child_key_column

,

)

REFERENCES parent_level

attribute_clause::=

ATTRIBUTE level DETERMINES

dependent_column

(dependent_column

,

)

extended_attribute_clause::=

ATTRIBUTE attribute LEVEL level DETERMINES

dependent_column

(dependent_column

,

)

DESCRIPTION ALTER DIMENSION modifies the attributes, hierarchy, and levels of an existing
dimension. See CREATE DIMENSION.
EXAMPLE

alter dimension TIME drop hierarchy MONTH_TO_DATE;

ALTER DISKGROUP
SEE ALSO CREATE DISKGROUP, DROP DISKGROUP, Chapter 51
FORMAT
alter_diskgroup::=

ALTER DISKGROUP

diskgroup_name

add_disk_clause

drop_disk_clause

resize_disk_clause

rebalance_diskgroup_clause

disk_online_clause

disk_offline_clause

rebalance_diskgroup_clause

check_diskgroup_clause

diskgroup_template_clauses

diskgroup_directory_clauses

diskgroup_alias_clauses

diskgroup_attributes

drop_diskgroup_file_clause

diskgroup_name

,

ALL

undrop_disk_clause

diskgroup_availability

ALTER DISKGROUP 929

930 Part VIII: Alphabetical Reference

add_disk_clause::=

ADD
FAILGROUP failgroup_name

DISK qualified_disk_clause

,

qualified_disk_clause::=

search_string
NAME disk_name SIZE size_clause

FORCE

NOFORCE

drop_disk_clauses::=

DROP

DISK disk_name

FORCE

NOFORCE

,

DISKS IN FAILGROUP failgroup_name

FORCE

NOFORCE

,

resize_disk_clauses::=

RESIZE

ALL
SIZE size_clause

DISK disk_name
SIZE size_clause

,

DISKS IN FAILGROUP failgroup_name
SIZE size_clause

,

disk_online_clause::=

ONLINE

DISK disk_name

,

DISKS IN FAILGROUP failgroup_name

,

ALL

WAIT

NOWAIT

disk_offline_clause::=

OFFLINE

DISK disk_name

,

DISKS IN FAILGROUP failgroup_name

,
timeout_clause

timeout_clause::=

DROP AFTER integer
M

H

undrop_disk_clause::=

UNDROP DISKS

rebalance_diskgroup_clause::=

REBALANCE
POWER integer

WAIT

NOWAIT

check_diskgroup_clause::=

CHECK

REPAIR

NOREPAIR

ALTER DISKGROUP 931

932 Part VIII: Alphabetical Reference

diskgroup_template_clauses::=

ADD

MODIFY
TEMPLATE qualified_template_clause

,

DROP TEMPLATE template_name

,

qualified_template_clause::=

template_name ATTRIBUTES (

MIRROR

HIGH

UNPROTECTED

FINE

COARSE
)

diskgroup_directory_clauses::=

ADD DIRECTORY ’ filename ’

,

DROP DIRECTORY ’ filename ’

FORCE

NOFORCE

,

RENAME DIRECTORY ’ old_dir_name ’ TO ’ new_dir_name ’

,

diskgroup_alias_clauses::=

ADD ALIAS ’ alias_name ’ FOR ’ filename ’

,

DROP ALIAS ’ alias_name ’

,

RENAME ALIAS ’ old_alias_name ’ TO ’ new_alias_name ’

,

diskgroup_attributes::=

SET ATTRIBUTE ’ attribute_name ’ = ’ attribute_value ’

drop_diskgroup_file_clause::=

DROP FILE ’ filename ’

,

diskgroup_availability::=

MOUNT

RESTRICTED

NORMAL

FORCE

NOFORCE

DISMOUNT

FORCE

NOFORCE

DESCRIPTION ALTER DISKGROUP lets you perform a number of operations on a disk group or on
the disks in a disk group.

The DISK_CLAUSES options include adding, dropping, and resizing disks within a group. Within
the DISKGROUP_CLAUSES option, you can rebalance and check disk groups.

The ALTER DISKGROUP command is only valid if you have installed Automated Storage
Management (ASM) and have started an ASM instance.

For example, here’s how to drop a disk from an existing disk group:

alter diskgroup DGROUP_01 drop disk DGROUP_01_0001;

As of Oracle Database 11g, the ALTER DISKGROUP command includes enhanced and simplified
versions of the check_diskgroup_clause and diskgroup_availability options and adds the disk_offline_
clause and disk_online_clauses options.

ALTER FLASHBACK ARCHIVE
SEE ALSO CREATE FLASHBACK ARCHIVE, DROP FLASHBACK ARCHIVE
FORMAT
alter_flashback_archive::=

ALTER FLASHBACK ARCHIVE flashback_archive

SET DEFAULT

ADD

MODIFY
TABLESPACE tablespace

flashback_archive_quota

REMOVE TABLESPACE tablespace_name

MODIFY RETENTION flashback_archive_retention

PURGE

ALL

BEFORE
SCN expr

TIMESTAMP expr

;

ALTER FLASHBACK ARCHIVE 933

934 Part VIII: Alphabetical Reference

flashback_archive_quota::=

QUOTA integer

M

G

T

P

flashback_archive_retention::=

RETENTION integer

YEAR

MONTH

DAY

DESCRIPTION Use ALTER FLASHBACK ARCHIVE to perform the following tasks:

Designate a flashback data archive as the default flashback data archive for the system.

Add a tablespace for use by the flashback data archive.

Change the quota of a tablespace used by the flashback data archive.

Remove a tablespace from use by the flashback data archive.

Change the retention period of the flashback data archive.

Purge the flashback data archive of old data that is no longer needed.

You must have the FLASHBACK ARCHIVE ADMINISTER system privilege to alter a flashback data
archive in any way. You must also have appropriate privileges on the affected tablespaces to add,
modify, or remove a flashback data archive tablespace.

ALTER FUNCTION
SEE ALSO CREATE FUNCTION, DROP FUNCTION, Chapter 35
FORMAT
alter_function::=

ALTER FUNCTION
schema .

function

C0MPILE
DEBUG compiler_parameters_clause REUSE SETTINGS

;

compiler_parameters_clause::=

parameter_name = parameter_value

■

■

■

■

■

■

DESCRIPTION Use the ALTER FUNCTION command to recompile an invalid stand-alone stored
function. Explicit recompilation eliminates the need for implicit run-time recompilation. Use the
DEBUG option to generate and store the code for use by the PL/SQL debugger.
EXAMPLE

alter function OVERDUE_CHARGES compile;

ALTER INDEX
SEE ALSO CREATE INDEX, DROP INDEX, STORAGE, Chapters 17 and 46
FORMAT
alter_index

ALTER INDEX
schema .

index

deallocate_unused_clause

allocate_extent_clause

shrink_clause

parallel_clause

physical_attributes_clause

logging_clause

rebuild_clause

PARAMETERS (’ ODCI_parameters ’)

COMPILE

ENABLE

DISABLE

UNUSABLE

VISIBLE

INVISIBLE

RENAME TO new_name

COALESCE

MONITORING

NOMONITORING
USAGE

UPDATE BLOCK REFERENCES

alter_index_partitioning

;

deallocate_unused_clause::=

DEALLOCATE UNUSED
KEEP size_clause

ALTER INDEX 935

936 Part VIII: Alphabetical Reference

allocate_extent_clause::=

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

shrink_clause::=

SHRINK SPACE
COMPACT CASCADE

parallel_clause::=

NOPARALLEL

PARALLEL
integer

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

rebuild_clause::=

REBUILD

PARTITION partition

SUBPARTITION subpartition

REVERSE

NOREVERSE

parallel_clause

TABLESPACE tablespace

PARAMETERS (’
ODCI_parameters

XMLIndex_parameters
’)

ONLINE

physical_attributes_clause

key_compression

logging_clause

key_compression::=

COMPRESS
integer

NOCOMPRESS

alter_index_partitioning::=

modify_index_default_attrs

add_hash_index_partition

modify_index_partition

rename_index_partition

drop_index_partition

split_index_partition

coalesce_index_partition

modify_index_subpartition

ALTER INDEX 937

938 Part VIII: Alphabetical Reference

modify_index_default_attrs::=

MODIFY DEFAULT ATTRIBUTES
FOR PARTITION partition

physical_attributes_clause

TABLESPACE
tablespace

DEFAULT

logging_clause

add_hash_index_partition::=

ADD PARTITION
partition TABLESPACE tablespace key_compression parallel_clause

coalesce_index_partition::=

COALESCE PARTITION
parallel_clause

modify_index_partition::=

MODIFY PARTITION partition

deallocate_unused_clause

allocate_extent_clause

physical_attributes_clause

logging_clause

key_compression

PARAMETERS (’ ODCI_parameters ’)

COALESCE

UPDATE BLOCK REFERENCES

UNUSABLE

rename_index_partition::=

RENAME
PARTITION partition

SUBPARTITION subpartition
TO new_name

drop_index_partition::=

DROP PARTITION partition_name

split_index_partition::=

SPLIT PARTITION partition_name_old AT (literal

,

)

INTO (index_partition_description , index_partition_description) parallel_clause

index_partition_description::=

PARTITION
partition

segment_attributes_clause

key_compression

PARAMETERS (’ ODCI_parameters ’)

segment_attributes_clause::=

physical_attributes_clause

TABLESPACE tablespace

logging_clause

modify_index_subpartition::=

MODIFY SUBPARTITION subpartition

UNUSABLE

allocate_extent_clause

deallocate_unused_clause

DESCRIPTION user is the user who owns the index you wish to alter (if you are not that user, you
must have DBA privileges). index is the name of an existing index. See CREATE TABLE for a description
of INITRANS. The default for INITRANS for indexes is 2. STORAGE contains subclauses that are
described under STORAGE. You must have INDEX privilege on the table in order to create an index,
and you must also either own the index or have the ALTER ANY INDEX system privilege.

You can use the REBUILD clause of the ALTER INDEX command to change the storage characteristics
of an existing index. REBUILD uses the existing index as the basis for the new index. All index storage
commands are supported, such as STORAGE (for extent allocation), TABLESPACE (to move the index to a
new tablespace), and INITRANS (to change the initial number of entries).

You can modify, rename, drop, split, or rebuild index partitions.
COMPRESS enables key compression, eliminating repeated occurrence of key column values for

nonunique indexes. integer specifies the prefix length (number of prefix columns to compress). By
default, indexes are not compressed. You cannot compress a bitmapped index.

ALTER INDEX 939

940 Part VIII: Alphabetical Reference

COMPUTE STATISTICS generates statistics for the cost based optimizer at the time the index is
rebuilt.

As of Oracle 11g, ALTER INDEX includes the following options:

A MIGRATE parameter that allows the migration of a domain index from user-managed storage
tables to system-managed storage tables.

An INVISIBLE parameter that lets you modify an index so it is invisible to the optimizer.

A parameters clause that lets you rebuild an XMLIndex as well as a domain index.

ALTER INDEXTYPE
SEE ALSO CREATE INDEXTYPE, DROP INDEXTYPE
FORMAT
alter_indextype::=

ALTER INDEXTYPE
schema .

indextype

ADD

DROP

schema .
operator (parameter_types)

,

using_type_clause

COMPILE

WITH LOCAL RANGE PARTITION storage_table_clause
;

using_type_clause::=

USING
schema .

implementation_type
array_DML_clause

array_DML_clause::=

WITH

WITHOUT
ARRAY DML

(
schema .

type
,

schema .
varray_type

)

,

■

■

■

storage_table_clause::=

WITH
SYSTEM

USER
MANAGED STORAGE TABLES

DESCRIPTION Use ALTER INDEXTYPE to add or drop an operator of the indextype, to modify the
implementation type, or to change the properties of the indextype.

As of Oracle Database 11g, you can specify that domain indexes be range-partitioned and will
have their storage tables and partition maintenance operations managed by the database.

ALTER JAVA
SEE ALSO CREATE JAVA, DROP JAVA, Chapter 42
FORMAT
alter_java::=

ALTER JAVA
SOURCE

CLASS

schema .
object_name

RESOLVER ((match_string
, schema_name

–
))

COMPILE

RESOLVE

invoker_rights_clause

;

invoker_rights_clause::=

AUTHID
CURRENT_USER

DEFINER

DESCRIPTION ALTER JAVA recompiles a Java source schema object. You can also use this command
to change the authorization enforced (definer or current user). To alter Java source schema objects, you
must either own the source or class or have the ALTER ANY PROCEDURE system privilege.

ALTER MATERIALIZED VIEW
SEE ALSO CREATE MATERIALIZED VIEW, DROP MATERIALIZED VIEW, Chapter 26

ALTER MATERIALIZED VIEW 941

942 Part VIII: Alphabetical Reference

FORMAT
alter_materialized_view::=

ALTER MATERIALIZED VIEW
schema .

materialized_view

physical_attributes_clause

table_compression

LOB_storage_clause

,

modify_LOB_storage_clause

,

alter_table_partitioning

parallel_clause

logging_clause

allocate_extent_clause

shrink_clause

CACHE

NOCACHE alter_iot_clauses

USING INDEX physical_attributes_clause

MODIFY scoped_table_ref_constraint

alter_mv_refresh

ENABLE

DISABLE
QUERY REWRITE

COMPILE

CONSIDER FRESH
;

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

table_compression::=

COMPRESS

FOR
ALL

DIRECT_LOAD
OPERATIONS

NOCOMPRESS

LOB_storage_clause::=

LOB

(LOB_item

,

) STORE AS

SECUREFILE

BASICFILE

(LOB_storage_parameters)

(LOB_item) STORE AS

SECUREFILE

BASICFILE

LOB_segname

(LOB_storage_parameters)

LOB_storage_parameters::=

TABLESPACE tablespace

LOB_parameters
storage_clause

storage_clause

ALTER MATERIALIZED VIEW 943

944 Part VIII: Alphabetical Reference

LOB_parameters::=

ENABLE

DISABLE
STORAGE IN ROW

CHUNK integer

PCTVERSION integer

FREEPOOLS integer

LOB_retention_clause

LOB_deduplicate_clause

LOB_compression_clause

ENCRYPT encryption_spec

DECRYPT

CACHE

NOCACHE

CACHE READS

logging_clause

modify_LOB_storage_clause::=

MODIFY LOB (LOB_item) (modify_LOB_parameters)

modify_LOB_parameters::=

storage_clause

PCTVERSION

FREEPOOLS
integer

REBUILD FREEPOOLS

LOB_retention_clause

LOB_deduplicate_clause

LOB_compression_clause

ENCRYPT encryption_spec

DECRYPT

CACHE

NOCACHE

CACHE READS

logging_clause

allocate_extent_clause

shrink_clause

deallocate_unused_clause

parallel_clause::=

NOPARALLEL

PARALLEL
integer

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

ALTER MATERIALIZED VIEW 945

946 Part VIII: Alphabetical Reference

allocate_extent_clause::=

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

deallocate_unused_clause::=

DEALLOCATE UNUSED
KEEP size_clause

shrink_clause::=

SHRINK SPACE
COMPACT CASCADE

alter_iot_clauses::=

index_org_table_clause

alter_overflow_clause

alter_mapping_table_clauses

COALESCE

index_org_table_clause::=

mapping_table_clause

PCTTHRESHOLD integer

key_compression index_org_overflow_clause

index_org_overflow_clause::=

INCLUDING column_name
OVERFLOW

segment_attributes_clause

alter_overflow_clause::=

add_overflow_clause

OVERFLOW

segment_attributes_clause

allocate_extent_clause

shrink_clause

deallocate_unused_clause

add_overflow_clause::=

ADD OVERFLOW
segment_attributes_clause (PARTITION

segment_attributes_clause

,

)

scoped_table_ref_constraint::=

SCOPE FOR (
ref_column

ref_attribute
) IS

schema . scope_table_name

c_alias

,

alter_mv_refresh::=

REFRESH

FAST

COMPLETE

FORCE

ON
DEMAND

COMMIT

START WITH

NEXT
date

WITH PRIMARY KEY

USING
DEFAULT MASTER ROLLBACK SEGMENT

MASTER ROLLBACK SEGMENT rollback_segment

USING
ENFORCED

TRUSTED
CONSTRAINTS

ALTER MATERIALIZED VIEW 947

948 Part VIII: Alphabetical Reference

DESCRIPTION The keyword SNAPSHOT is supported as a replacement for MATERIALIZED VIEW
for backward compatibility.

ALTER MATERIALIZED VIEW lets you change the storage characteristics or refresh mode and times
of a materialized view. You can also enable or disable query rewrite for the materialized view. To alter
a materialized view, you must own the materialized view or have ALTER ANY SNAPSHOT or ALTER
ANY MATERIALIZED VIEW system privilege. See CREATE MATERIALIZED VIEW and Chapter 26 for
details.
EXAMPLE

alter materialized view MONTHLY_SALES
 enable query rewrite;

ALTER MATERIALIZED VIEW LOG
SEE ALSO CREATE MATERIALIZED VIEW, CREATE MATERIALIZED VIEW LOG, DROP
MATERIALIZED VIEW LOG, Chapter 26
FORMAT
alter_materialized_view_log::=

ALTER MATERIALIZED VIEW LOG
FORCE

ON
schema .

table

physical_attributes_clause

alter_table_partitioning

parallel_clause

logging_clause

allocate_extent_clause

shrink_clause

CACHE

NOCACHE

ADD

OBJECT ID

PRIMARY KEY

ROWID

SEQUENCE

(column

,

)

(column

,

)

,

new_values_clause

;

new_values_clause::=

INCLUDING

EXCLUDING
NEW VALUES

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

allocate_extent_clause::=

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

shrink_clause::=

SHRINK SPACE
COMPACT CASCADE

parallel_clause::=

NOPARALLEL

PARALLEL
integer

DESCRIPTION The keyword SNAPSHOT is supported as a replacement for MATERIALIZED VIEW
for backward compatibility.

ALTER MATERIALIZED VIEW LOG lets you change the storage characteristics of a materialized
view log. To alter the log, you must either have the ALTER privilege on the log table or have the ALTER
ANY TABLE system privilege. See CREATE MATERIALIZED VIEW LOG and Chapter 26.

ALTER MATERIALIZED VIEW LOG 949

950 Part VIII: Alphabetical Reference

ALTER OPERATOR
SEE ALSO CREATE OPERATOR, DROP OPERATOR
FORMAT
alter_operator::=

ALTER OPERATOR
schema .

operator

add binding_clause

drop_binding_clause

COMPILE

;

add_binding_clause::=

ADD BINDING (parameter_type

,

) RETURN (return_type)

implementation_clause
using_function_clause

implementation_clause::=

ANCILLARY TO primary_operator (parameter_type

,

)

,

context_clause

context_clause::=

WITH INDEX CONTEXT , SCAN CONTEXT implementation_type
COMPUTE ANCILLARY DATA

WITH COLUMN CONTEXT

using_function_clause::=

USING
schema .

package .

type .
function_name

drop_binding_clause::=

DROP BINDING (parameter_type

,

)
FORCE

DESCRIPTION You can use ALTER OPERATOR to add bindings to, drop bindings from, or compile
an existing operator.

ALTER OUTLINE
SEE ALSO CREATE OUTLINE, DROP OUTLINE, Chapter 46
FORMAT
alter_outline::=

ALTER OUTLINE

PUBLIC

PRIVATE
outline

REBUILD

RENAME TO new_outline_name

CHANGE CATEGORY TO new_category_name

ENABLE

DISABLE

;

DESCRIPTION You can use ALTER OUTLINE to rename a stored outline or to assign it to a different
category. Stored outlines maintain sets of hints for previously executed queries.

ALTER PACKAGE
SEE ALSO CREATE PACKAGE, DROP PACKAGE, Chapter 35
FORMAT
alter_package::=

ALTER PACKAGE
schema .

package

COMPILE
DEBUG

PACKAGE

SPECIFICATION

BODY

compiler_parameters_clause REUSE SETTINGS
;

ALTER PACKAGE 951

952 Part VIII: Alphabetical Reference

compiler_parameters_clause::=

parameter_name = parameter_value

DESCRIPTION ALTER PACKAGE recompiles a package specification and/or body. If you recompile
the specification using PACKAGE, you recompile both the specification and the body. Recompiling the
specification will cause referencing procedures to be recompiled. You can recompile the BODY without
affecting the specification. To alter a package, you must either be the owner of the package or have
ALTER ANY PROCEDURE system privilege.

ALTER PROCEDURE
SEE ALSO CREATE PROCEDURE, DROP PROCEDURE, Chapter 35
FORMAT
alter_procedure::=

ALTER PROCEDURE
schema .

procedure

COMPILE
DEBUG compiler_parameters_clause REUSE SETTINGS

;

compiler_parameters_clause::=

parameter_name = parameter_value

DESCRIPTION ALTER PROCEDURE recompiles a PL/SQL procedure. You can avoid run-time
overhead and error messages by explicitly compiling a procedure in advance. To alter a procedure,
you must either own the procedure or have ALTER ANY PROCEDURE system privilege.

ALTER PROFILE
SEE ALSO CREATE PROFILE, DROP PROFILE, Chapter 19
FORMAT
alter_profile::=

ALTER PROFILE profile LIMIT
resource_parameters

password_parameters
;

resource_parameters::=

SESSIONS_PER_USER

CPU_PER_SESSION

CPU_PER_CALL

CONNECT_TIME

IDLE_TIME

LOGICAL_READS_PER_SESSION

LOGICAL_READS_PER_CALL

COMPOSITE_LIMIT

integer

UNLIMITED

DEFAULT

PRIVATE_SGA

size_clause

UNLIMITED

DEFAULT

password_parameters::=

FAILED_LOGIN_ATTEMPTS

PASSWORD_LIFE_TIME

PASSWORD_REUSE_TIME

PASSWORD_REUSE_MAX

PASSWORD_LOCK_TIME

PASSWORD_GRACE_TIME

expr

UNLIMITED

DEFAULT

PASSWORD_VERIFY_FUNCTION

function

NULL

DEFAULT

DESCRIPTION ALTER PROFILE lets you modify a particular profile setting. See CREATE PROFILE
for details.

ALTER PROFILE 953

954 Part VIII: Alphabetical Reference

ALTER RESOURCE COST
SEE ALSO CREATE PROFILE
FORMAT
alter_resource_cost::=

ALTER RESOURCE COST

CPU_PER_SESSION

CONNECT_TIME

LOGICAL_READS_PER_SESSION

PRIVATE_SGA

integer ;

DESCRIPTION The resource cost formula calculates the total cost of resources used in an Oracle
session. ALTER RESOURCE COST lets you assign a weight to several resources. CPU_PER_SESSION is
the amount of CPU used in a session in hundredths of a second. CONNECT_TIME is the elapsed time
of the session in minutes. LOGICAL_READS_PER_SESSION is the number of data blocks read from
both memory and disk during a session. PRIVATE_SGA is the number of bytes in a private System
Global Area (SGA), which is only relevant if you are using the shared server architecture. By assigning
weights, you change the formula used to calculate total resource cost.

ALTER ROLE
SEE ALSO CREATE ROLE, DROP ROLE, Chapter 19
FORMAT
alter_role::=

ALTER ROLE role

NOT IDENTIFIED

IDENTIFIED

BY password

USING
schema .

package

EXTERNALLY

GLOBALLY

;

DESCRIPTION ALTER ROLE lets you modify a role.

ALTER ROLLBACK SEGMENT
SEE ALSO CREATE DATABASE, CREATE ROLLBACK SEGMENT, CREATE TABLESPACE, DROP
ROLLBACK SEGMENT, STORAGE, Chapter 51

FORMAT
alter_rollback_segment::=

ALTER ROLLBACK SEGMENT rollback_segment

ONLINE

OFFLINE

storage_clause

SHRINK
TO size_clause

;

DESCRIPTION rollback_segment is a name assigned to this rollback segment. STORAGE contains
subclauses that are described under STORAGE. The INITIAL and MINEXTENTS options are not
applicable. A rollback segment can be taken ONLINE or OFFLINE while the database is open. You can
SHRINK it to a specified size (the default is its OPTIMAL size).

You should use System-Managed Undo so that the database will automatically create and drop
rollback segments as needed.

ALTER SEQUENCE
SEE ALSO AUDIT, CREATE SEQUENCE, DROP SEQUENCE, GRANT, REVOKE, NEXTVAL and
CURRVAL under PSEUDO-COLUMNS, Chapter 17
FORMAT
alter_sequence::=

ALTER SEQUENCE
schema .

sequence

INCREMENT BY integer

MAXVALUE integer

NOMAXVALUE

MINVALUE integer

NOMINVALUE

CYCLE

NOCYCLE

CACHE integer

NOCACHE

ORDER

NOORDER

;

DESCRIPTION All of these options affect the future use of an existing sequence with the name
sequence. (Note that start with is not available. To change the value with which a sequence starts,
you must DROP the sequence and CREATE it again.)

ALTER SEQUENCE 955

956 Part VIII: Alphabetical Reference

A new MAXVALUE cannot be specified that is lower than the existing CURRVAL on an ascending
sequence (one that has a positive number as its INCREMENT BY). A similar rule applies for MINVALUE
on a descending sequence (which has a negative INCREMENT BY).

To alter a sequence, you must either have the ALTER privilege on the sequence or have the ALTER
ANY SEQUENCE system privilege.

All other features of ALTER SEQUENCE work as they do in CREATE SEQUENCE, except that they
apply to an existing sequence. See CREATE SEQUENCE for details.

ALTER SESSION
SEE ALSO ALTER SYSTEM
FORMAT
alter_session::=

ALTER SESSION

ADVISE

COMMIT

ROLLBACK

NOTHING

CLOSE DATABASE LINK dblink

ENABLE

DISABLE
COMMIT IN PROCEDURE

ENABLE

DISABLE
GUARD

ENABLE

DISABLE

FORCE

PARALLEL

DML

DDL

QUERY

PARALLEL integer

ENABLE RESUMABLE
TIMEOUT integer NAME string

DISABLE RESUMABLE

alter_session_set_clause

;

alter_session_set_clause::=

SET parameter_name = parameter_value

DESCRIPTION The ALTER SESSION command alters settings in effect for the current user session.
You can specify whether procedures can COMMIT or not, the degree to which DML operations

are parallelized, and whether resumable operations are enabled. If you enable parallel DML or DDL
for your session, you still must specify the PARALLEL hint for the operations to be executed in parallel.

To enable or disable resumable space allocation, you must have the RESUMABLE system privilege.

ALTER SYSTEM
SEE ALSO ALTER SESSION, CREATE PROFILE

FORMAT
alter_system::=

ALTER SYSTEM

archive_log_clause

checkpoint_clause

check_datafiles_clause

distributed_recov_clauses

FLUSH
SHARED_POOL

BUFFER_CACHE

end_session_clauses

SWITCH LOGFILE

SUSPEND

RESUME

quiesce_clauses

rolling_migration_clauses

alter_system_security_clauses

shutdown_dispatcher_clause

REGISTER

SET alter_system_set_clause

RESET alter_system_reset_clause

;

archive_log_clause::=

ARCHIVE LOG
INSTANCE ’ instance_name ’

SEQUENCE integer

CHANGE integer

CURRENT
NOSWITCH

GROUP integer

LOGFILE ’ filename ’
USING BACKUP CONTROLFILE

NEXT

ALL

TO ’ location ’

STOP

ALTER SYSTEM 957

958 Part VIII: Alphabetical Reference

checkpoint_clause::=

CHECKPOINT

GLOBAL

LOCAL

check_datafiles_clause::=

CHECK DATAFILES

GLOBAL

LOCAL

distributed_recov_clauses::=

ENABLE

DISABLE
DISTRIBUTED RECOVERY

end_session_clauses::=

DISCONNECT SESSION ’ integer1 , integer2 ’
POST_TRANSACTION

KILL SESSION ’ integer1 , integer2
, @ integer3

’

IMMEDIATE

quiesce_clauses::=

QUIESCE RESTRICTED

UNQUIESCE

rolling_migration_clauses::=

START ROLLING MIGRATION TO ASM_version

STOP ROLLING MIGRATION

alter_system_security_clauses::=

ENABLE

DISABLE
RESTRICTED SESSION

SET ENCRYPTION WALLET OPEN IDENTIFIED BY ’’ password ’’

SET ENCRYPTION WALLET CLOSE

SET ENCRYPTION KEY
 ’’ certificate_id ’’

IDENTIFIED BY ’’ password ’’

shutdown_dispatcher_clause::=

SHUTDOWN
IMMEDIATE

dispatcher_name

alter_system_set_clause::=

set_parameter_clause

USE_STORED_OUTLINES =

TRUE

FALSE

category_name

set_parameter_clause::=

parameter_name = parameter_value

,
COMMENT = string DEFERRED

SCOPE =

MEMORY

SPFILE

BOTH

SID =
’ sid ’

’ * ’

alter_system_reset_clause::=

parameter_name

SCOPE = SPFILE

SID =
’ sid ’

’ * ’

DESCRIPTION ALTER SYSTEM lets you configure your Oracle instance in many ways. Via the SET
options, you can change many of the initialization parameter values while the database is running. If
you are using a system parameter file, the changes are saved and will be in effect the next time the
database is started.

You can also use the ALTER SYSTEM command to SWITCH LOGFILE, forcing Oracle to change
redo log file groups.

CHECKPOINT performs a checkpoint for (GLOBAL) all instances or (LOCAL) your instance of
Oracle. CHECK DATAFILES verifies that every instance (GLOBAL) or your instance (LOCAL) of Oracle
can access all online datafiles.

ALTER SYSTEM 959

960 Part VIII: Alphabetical Reference

ENABLE or DISABLE RESTRICTED SESSION turns on or off a restricted session, accessible only to
users with that system privilege.

ENABLE or DISABLE DISTRIBUTED RECOVERY turns this option on or off, respectively.
FLUSH SHARED_POOL clears all data from the SGA shared pool.
FLUSH BUFFER_CACHE, available as of Oracle Database 10g, clears the buffer cache of the SGA.
SUSPEND suspends database activity; RESUME re-enables the database.
QUIESCE RESTRICTED places the database into a consistent state during which only SYS and

SYSTEM, connected as SYSDBA, can perform operations. UNQUIESCE returns the database to its
normal mode.

ARCHIVE LOG manually archives the redo log files or enables automatic archiving.
KILL SESSION ends a session with both the SID column and the SERIAL# column of the V$SESSION

table identifying the session. DISCONNECT SESSION, unlike KILL SESSION, gives you the option of
forcing the session’s outstanding transactions to be posted prior to the termination of the session.

As of Oracle Database 11g, you can use ALTER SYSTEM to kill sessions in another instance of a
RAC environment. Additionally, you can use the new rolling_migration_clauses to prepare an ASM
cluster for migration and return it to normal operations after all nodes have migrated to the same
software version.

ALTER TABLE
SEE ALSO ALTER TRIGGER, CREATE TABLE, DROP TABLE, ENABLE, Chapter 17
FORMAT
alter_table::=

ALTER TABLE
schema .

table

alter_table_properties

column_clauses

constraint_clauses

alter_table_partitioning

alter_external_table_clauses

move_table_clause

enable_disable_clause

ENABLE

DISABLE

TABLE LOCK

ALL TRIGGERS
;

alter_table_properties::=

physical_attributes_clause

logging_clause

table_compression

supplemental_table_logging

allocate_extent_clause

deallocate_unused_clause

CACHE

NOCACHE

upgrade_table_clause

records_per_block_clause

parallel_clause

row_movement_clause

flashback_archive_clause

RENAME TO new_table_name

alter_iot_clauses alter_XMLSchema_clause

shrink_clause

READ ONLY

READ WRITE

REKEY encryption_spec

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

ALTER TABLE 961

962 Part VIII: Alphabetical Reference

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

table_compression::=

COMPRESS

FOR
ALL

DIRECT_LOAD
OPERATIONS

NOCOMPRESS

supplemental_table_logging::=

ADD SUPPLEMENTAL LOG
supplemental_log_grp_clause

supplemental_id_key_clause

,

DROP SUPPLEMENTAL LOG
supplemental_id_key_clause

GROUP log_group

,

supplemental_log_grp_clause::=

GROUP log_group (column
NO LOG

,

)
ALWAYS

supplemental_id_key_clause::=

DATA (

ALL

PRIMARY KEY

UNIQUE

FOREIGN KEY

,

) COLUMNS

allocate_extent_clause::=

ALLOCATE EXTENT

(

SIZE size_clause

DATAFILE ’ filename ’

INSTANCE integer

)

deallocate_unused_clause::=

DEALLOCATE UNUSED
KEEP size_clause

shrink_clause::=

SHRINK SPACE
COMPACT CASCADE

upgrade_table_clause::=

UPGRADE

NOT
INCLUDING DATA column_properties

records_per_block_clause::=

MINIMIZE

NOMINIMIZE
RECORDS_PER_BLOCK

parallel_clause::=

NOPARALLEL

PARALLEL
integer

row_movement_clause::=

ENABLE

DISABLE
ROW MOVEMENT

ALTER TABLE 963

964 Part VIII: Alphabetical Reference

alter_iot_clauses::=

index_org_table_clause

alter_overflow_clause

alter_mapping_table_clauses

COALESCE

index_org_table_clause::=

mapping_table_clause

PCTTHRESHOLD integer

key_compression index_org_overflow_clause

mapping_table_clauses::=

MAPPING TABLE

NOMAPPING

key_compression::=

COMPRESS
integer

NOCOMPRESS

index_org_overflow_clause::=

INCLUDING column_name
OVERFLOW

segment_attributes_clause

partition_extended_name::=

PARTITION partition

PARTITION FOR (partition_key_value

,

)

subpartition_extended_name::=

SUBPARTITION subpartition

SUBPARTITION FOR (subpartition_key_value

,

)

segment_attributes_clause::=

physical_attributes_clause

TABLESPACE tablespace

logging_clause

alter_overflow_clause::=

add_overflow_clause

OVERFLOW

segment_attributes_clause

allocate_extent_clause

shrink_clause

deallocate_unused_clause

add_overflow_clause::=

ADD OVERFLOW
segment_attributes_clause (PARTITION

segment_attributes_clause

,

)

alter_mapping_table_clauses::=

MAPPING TABLE
allocate_extent_clause

deallocate_unused_clause

column_clauses::=

add_column_clauses

modify_column_clauses

drop_column_clause

rename_column_clause

modify_collection_retrieval

modify_LOB_storage_clause

alter_varray_col_properties

ALTER TABLE 965

966 Part VIII: Alphabetical Reference

add_column_clause::=

ADD (
column_definition

virtual_column_definition

,

)
column_properties

column_definition::=

column datatype
SORT DEFAULT expr ENCRYPT encryption_spec

inline_constraint

inline_ref_constraint

virtual_column_definition::=

column
datatype GENERATED ALWAYS

AS (column_expression)

VIRTUAL inline_constraint

modify_column_clauses::=

MODIFY
(modify_col_properties

,

)

modify_col_substitutable

modify_col_properties::=

column
datatype DEFAULT expr

ENCRYPT encryption_spec

DECRYPT

inline_constraint LOB_storage_clause alter_XMLSchemas_clause

encryption_spec::=

USING ’ encrypt_algorithm ’ IDENTIFIED BY password
NO

SALT

modify_col_substitutable::=

COLUMN column
NOT

SUBSTITUTABLE AT ALL LEVELS
FORCE

drop_column_clause::=

SET UNUSED

COLUMN column

(column

,

)

CASCADE CONSTRAINTS

INVALIDATE

DROP

COLUMN column

(column

,

)

CASCADE CONSTRAINTS

INVALIDATE CHECKPOINT integer

DROP
UNUSED COLUMNS

COLUMNS CONTINUE

CHECKPOINT integer

rename_column_clause::=

RENAME COLUMN old_name TO new_name

modify_collection_retrieval::=

MODIFY NESTED TABLE collection_item RETURN AS
LOCATOR

VALUE

constraint_clauses::=

ADD
out_of_line_constraint

out_of_line_ref_constraint

MODIFY

CONSTRAINT constraint

PRIMARY KEY

UNIQUE (column

,

)

constraint_state

RENAME CONSTRAINT old_name TO new_name

drop_constraint_clause

ALTER TABLE 967

968 Part VIII: Alphabetical Reference

drop_constraint_clause::=

DROP

PRIMARY KEY

UNIQUE (column

,

)

CASCADE

KEEP

DROP
INDEX

CONSTRAINT constraint
CASCADE

column_properties::=

object_type_col_properties

nested_table_col_properties

varray_col_properties

LOB_storage_clause

(LOB_partition_storage

,

)

XMLType_column_properties

object_type_col_properties::=

COLUMN column substitutable_column_clause

substitutable_column_clause::=

ELEMENT
IS OF

TYPE
(ONLY type)

NOT
SUBSTITUTABLE AT ALL LEVELS

nested_table_col_properties::=

NESTED TABLE
nested_item

COLUMN_VALUE

substitutable_column_clause
STORE AS storage_table

(

(object_properties)

physical_properties

column_properties

)
RETURN AS

LOCATOR

VALUE

object_properties::=

column

attribute

DEFAULT expr

inline_constraint

inline_ref_constraint

out_of_line_constraint

out_of_line_ref_constraint

supplemental_logging_props

supplemental_logging_props::=

SUPPLEMENTAL LOG
supplemental_log_grp_clause

supplemental_id_key_clause

physical_properties::=

segment_attributes_clause
table_compression

ORGANIZATION

HEAP
segment_attributes_clause table_compression

INDEX
segment_attributes_clause

index_org_table_clause

EXTERNAL external_table_clause

CLUSTER cluster (column

,

)

ALTER TABLE 969

970 Part VIII: Alphabetical Reference

varray_col_properties::=

VARRAY varray_item

substitutable_column_clause
varray_storage_clause

substitutable_column_clause

varray_storage_clause::=

STORE AS

SECUREFILE

BASICFILE
LOB

LOB_segname
(LOB_storage_parameters)

LOB_segname

LOB_storage_clause::=

LOB

(LOB_item

,

) STORE AS

SECUREFILE

BASICFILE

(LOB_storage_parameters)

(LOB_item) STORE AS

SECUREFILE

BASICFILE

LOB_segname

(LOB_storage_parameters)

LOB_storage_parameters::=

TABLESPACE tablespace

LOB_parameters
storage_clause

storage_clause

LOB_parameters::=

ENABLE

DISABLE
STORAGE IN ROW

CHUNK integer

PCTVERSION integer

FREEPOOLS integer

LOB_retention_clause

LOB_deduplicate_clause

LOB_compression_clause

ENCRYPT encryption_spec

DECRYPT

CACHE

NOCACHE

CACHE READS

logging_clause

modify_LOB_storage_clause::=

MODIFY LOB (LOB_item) (modify_LOB_parameters)

ALTER TABLE 971

972 Part VIII: Alphabetical Reference

modify_LOB_parameters::=

storage_clause

PCTVERSION

FREEPOOLS
integer

REBUILD FREEPOOLS

LOB_retention_clause

LOB_deduplicate_clause

LOB_compression_clause

ENCRYPT encryption_spec

DECRYPT

CACHE

NOCACHE

CACHE READS

logging_clause

allocate_extent_clause

shrink_clause

deallocate_unused_clause

LOB_retention_clause::=

RETENTION

MAX

MIN integer

AUTO

NONE

LOB_deduplicate_clause::=

DEDUPLICATE

KEEP_DUPLICATES

LOB_compression_clause::=

COMPRESS

HIGH

MEDIUM

NOCOMPRESS

alter_varray_col_properties::=

MODIFY VARRAY varray_item (modify_LOB_parameters)

LOB_partition_storage::=

PARTITION partition
LOB_storage_clause

varray_col_properties

(SUBPARTITION subpartition
LOB_partitioning_storage

varray_col_properties
)

LOB_partitioning_storage::=

LOB (LOB_item)

STORE AS

BASICFILE

SECUREFILE

LOB_segname
(TABLESPACE tablespace)

(TABLESPACE tablespace)

XMLType_column_properties::=

XMLTYPE
COLUMN

column
XMLType_storage XMLSchema_spec

ALTER TABLE 973

974 Part VIII: Alphabetical Reference

XMLType_storage::=

STORE AS

OBJECT RELATIONAL

SECUREFILE

BASICFILE CLOB

BINARY XML

LOB_segname
(LOB_parameters)

(LOB_parameters)

XMLSchema_spec::=

single_XMLSchema_spec

multiple_XMLSchema_spec

ALLOW
ANYSCHEMA

NONSCHEMA

DISALLOW NONSCHEMA

single_XMLSchema_spec::=

XMLSCHEMA XMLSchema_URL
ELEMENT

element

XMLSchema_URL # element

multiple_XMLSchema_spec::=

XMLSCHEMAS (single_XMLSchema_spec

,

)

alter_XMLSchemas_clause::=

ADD

REMOVE
multiple_XMLSchema_spec

ALLOW
ANYSCHEMA

NONSCHEMA

DISALLOW NONSCHEMA

alter_external_table::=

add_column_clause

modify_column_clauses

drop_column_clause

parallel_clause

external_data_properties

REJECT LIMIT
integer

UNLIMITED

PROJECT COLUMN
ALL

REFERENCED

external_data_properties::=

DEFAULT DIRECTORY directory

ACCESS PARAMETERS
(opaque_format_spec)

USING CLOB subquery

LOCATION (
directory :

’ location_specifier ’

,

)

ALTER TABLE 975

976 Part VIII: Alphabetical Reference

alter_table_partitioning::=

modify_table_default_attrs

alter_interval_partitioning

set_subpartition_template

modify_table_partition

modify_table_subpartition

move_table_partition

move_table_subpartition

add_table_partition

coalesce_table_partition

coalesce_table_subpartition

drop_table_partition

drop_table_subpartition

rename_partition_subpart

truncate_partition_subpart

split_table_partition

split_table_subpartition

merge_table_partitions

merge_table_subpartitions

exchange_partition_subpart

modify_table_default_attrs::=

MODIFY DEFAULT ATTRIBUTES
FOR partition_extended_name

segment_attributes_clause table_compression

PCTTHRESHOLD integer key_compression alter_overflow_clause

LOB (LOB_item)

VARRAY varray
(LOB_parameters)

alter_interval_partitioning::=

SET INTERVAL (expr)

SET SET STORE IN (tablespace

,

)

set_subpartition_template::=

SET SUBPARTITION TEMPLATE

(

range_subpartition_desc

,

list_subpartition_desc

,)

hash_subpartition_quantity

modify_table_partition::=

modify_range_partition

modify_hash_partition

modify_list_partition

modify_range_partition::=

MODIFY partition_extended_name

partition_attributes

add_range_subpartition

add_hash_subpartition

add_list_subpartition

COALESCE SUBPARTITION
update_index_clauses parallel_clause

alter_mapping_table_clause

REBUILD
UNUSABLE LOCAL INDEXES

ALTER TABLE 977

978 Part VIII: Alphabetical Reference

modify_hash_partition::=

MODIFY partition_extended_name

partition_attributes

alter_mapping_table_clause

REBUILD
UNUSABLE LOCAL INDEXES

modify_list_partition::=

MODIFY partition_extended_name

partition_attributes

ADD

DROP
VALUES (literal

,

)

add_range_subpartition

add_list_subpartition

add_hash_subpartition

COALESCE SUBPARTITION
update_index_clauses parallel_clause

REBUILD
UNUSABLE LOCAL INDEXES

modify_table_subpartition::=

MODIFY subpartition_extended_name

allocate_extent_clause

deallocate_unused_clause

shrink_clause

LOB LOB_item

VARRAY varray
(modify_LOB_parameters)

REBUILD
UNUSABLE LOCAL INDEXES

ADD

DROP
VALUES (literal

,

)

move_table_partition::=

MOVE partition_extended_name
MAPPING TABLE table_partition_description

update_index_clauses parallel_clause

move_table_subpartition::=

MOVE

range_subpartition_desc

list_subpartition_desc

hash_subpartition_desc

update_index_clauses parallel_clause

add_table_partition::=

ADD PARTITION
partition

add_range_partition_clause

add_hash_partition_clause

add_list_partition_clause

add_system_partition_clause

dependent_tables_clause

add_range_partition_clause::=

range_values_clause
table_partition_description

(

range_subpartition_desc

list_subpartition_desc

hash_subpartition_desc

)

update_index_clauses

add_hash_partition_clause::=

partitioning_storage_clause
update_index_clauses parallel_clause

ALTER TABLE 979

980 Part VIII: Alphabetical Reference

add_list_partition_clause::=

list_values_clause
table_partition_description

(

range_subpartition_desc

list_subpartition_desc

hash_subpartition_desc

)

update_index_clauses

add_system_partition_clause::=

BEFORE
partition_name

partition_number table_partition_description update_index_clauses

add_range_subpartition::=

ADD range_subpartition_desc
dependent_tables_clause update_index_clauses

add_hash_subpartition::=

ADD hash_subpartition_desc
dependent_tables_clause update_index_clauses parallel_clause

add_list_subpartition::=

ADD list_subpartition_desc
dependent_tables_clause update_index_clauses

dependent_tables_clause:=

DEPENDENT TABLES (table (partition_spec

,

)

,

)

coalesce_table_partition::=

COALESCE PARTITION
update_index_clauses parallel_clause

coalesce_table_subpartition::=

COALESCE SUBPARTITION subpartition
update_index_clauses parallel_clause

drop_table_partition::=

DROP partition_extended_name
update_index_clauses

parallel_clause

drop_table_subpartition::=

DROP subpartition_extended_name
update_index_clauses

parallel_clause

rename_partition_subpart::=

RENAME
partition_extended_name

subpartition_extended_name
TO new_name

truncate_partition_subpart::=

TRUNCATE
partition_extended_name

subpartition_extended_name

DROP

REUSE
STORAGE

update_index_clauses
parallel_clause

split_table_partition::=

SPLIT partition_extended_name

AT (literal

,

)
INTO (range_partition_desc , range_partition_desc)

VALUES (literal

,

)
INTO (list_partition_desc , list_partition_desc)

dependent_tables_clause update_index_clauses parallel_clause

ALTER TABLE 981

982 Part VIII: Alphabetical Reference

split_table_subpartition::=

SPLIT subpartition_extended_name

AT (literal

,

)
INTO (range_subpartition_desc , range_subpartition_desc)

VALUES (
literal

NULL

,

)
INTO (list_subpartition_desc , list_subpartition_desc)

dependent_tables_clause update_index_clauses parallel_clause

merge_table_partitions::=

MERGE PARTITIONS partition_extended_name , partition_extended_name

INTO partition_spec dependent_tables_clause update_index_clauses parallel_clause

merge_table_subpartitions::=

MERGE SUBPARTITIONS subpartition_extended_name , subpartition_extended_name

INTO
range_subpartition_desc

list_subpartition_desc dependent_tables_clause update_index_clauses parallel_clause

exchange_partition_subpart::=

EXCHANGE
partition_extended_name

subpartition_extended_name
WITH TABLE table

INCLUDING

EXCLUDING
INDEXES

WITH

WITHOUT
VALIDATION

exceptions_clause update_index_clauses
parallel_clause

exceptions_clause::=

EXCEPTIONS INTO
schema .

table

range_values_clause::=

VALUES LESS THAN (
literal

MAXVALUE

,

)

list_values_clause::=

VALUES (

literal

NULL

,

DEFAULT

)

table_partition_description::=

segment_attributes_clause

table_compression

key_compression OVERFLOW
segment_attributes_clause

LOB_storage_clause

varray_col_properties

range_partition_desc::=

range_values_clause table_partition_description

(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subparts_by_quantity

ALTER TABLE 983

984 Part VIII: Alphabetical Reference

list_partition_desc::=

list_values_clause table_partition_description

(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subparts_by_quantity

range_subpartition_desc::=

SUBPARTITION
subpartition

range_values_clause
partitioning_storage_clause

list_subpartition_desc::=

SUBPARTITION
subpartition

list_values_clause
partitioning_storage_clause

individual_hash_subparts::=

SUBPARTITION
subpartition partitioning_storage_clause

hash_subparts_by_quantity::=

SUBPARTITIONS integer
STORE IN (tablespace

,

)

partitioning_storage_clause::=

TABLESPACE tablespace

OVERFLOW
TABLESPACE tablespace

table_compression

key_compression

LOB_partitioning_storage

VARRAY varray_item STORE AS

SECUREFILE

BASICFILE
LOB LOB_segname

LOB_partitioning_storage::=

LOB (LOB_item)

STORE AS

BASICFILE

SECUREFILE

LOB_segname
(TABLESPACE tablespace)

(TABLESPACE tablespace)

partition_attributes::=

physical_attributes_clause

logging_clause

allocate_extent_clause

deallocate_unused_clause

shrink_clause

OVERFLOW

physical_attributes_clause

logging_clause

allocate_extent_clause

deallocate_unused_clause

table_compression

LOB LOB_item

VARRAY varray
(modify_LOB_parameters)

ALTER TABLE 985

986 Part VIII: Alphabetical Reference

partition_spec::=

PARTITION
partition table_partition_description

update_index_clauses::=

update_global_index_clause

update_all_indexes_clause

update_global_index_clause::=

UPDATE

INVALIDATE
GLOBAL INDEXES

update_all_indexes_clause::=

UPDATE INDEXES

(index (
update_index_partition

update_index_subpartition
)

,

)

update_index_partition::=

index_partition_description
index_subpartition_clause

,

update_index_subpartition::=

SUBPARTITION
subpartition TABLESPACE tablespace

,

index_partition_description::=

PARTITION
partition

segment_attributes_clause

key_compression

PARAMETERS (’ ODCI_parameters ’)

index_subpartition_clause::=

STORE IN (tablespace

,

)

(SUBPARTITION
subpartition TABLESPACE tablespace key_compression

,

)

parallel_clause::=

NOPARALLEL

PARALLEL
integer

move_table_clause::=

MOVE
ONLINE segment_attributes_clause table_compression

index_org_table_clause

LOB_storage_clause

varray_col_properties parallel_clause

flashback_archive_clause::=

FLASHBACK ARCHIVE
flashback_archive

NO FLASHBACK ARCHIVE

enable_disable_clause::=

ENABLE

DISABLE

VALIDATE

NOVALIDATE
UNIQUE (column

,

)

PRIMARY KEY

CONSTRAINT constraint

using_index_clause exceptions_clause CASCADE

KEEP

DROP
INDEX

ALTER TABLE 987

988 Part VIII: Alphabetical Reference

using_index_clause::=

USING INDEX

schema .
index

(create_index_statement)

index_properties

index_properties::=

global_partitioned_index

local_partitioned_index

index_attributes

INDEXTYPE IS
domain_index_clause

XMLIndex_clause

index_attributes::=

physical_attributes_clause

logging_clause

ONLINE

TABLESPACE
tablespace

DEFAULT

key_compression

SORT

NOSORT

REVERSE

VISIBLE

INVISIBLE

parallel_clause

DESCRIPTION ALTER TABLE changes the definition of an existing table. ADD allows you to add a
new column to the end of an existing table, or add a constraint to the table’s definition. These follow
the same format used in CREATE TABLE.

MODIFY changes an existing column, with some restrictions:

You may change the type of column or decrease its size only if the column is NULL in every
row of the table.

A NOT NULL column may be added only to a table with no rows.

An existing column can be modified to NOT NULL only if it has a non-NULL value in every
row or if a default value is specified during the alteration.

Increasing the length of a NOT NULL column without specifying NULL will leave it NOT NULL.

You can use the SET UNUSED clause to mark columns as unused. When you use the DROP
UNUSED COLUMNS clause, the table will be reorganized and all unused columns will be dropped.

ALLOCATE EXTENT lets you allocate a new extent explicitly. ENABLE and DISABLE enable and
disable constraints. All other features of ALTER TABLE work as they do in CREATE TABLE, except that
they apply to an existing table. See CREATE TABLE for details.

In order to alter a table, you must either have the ALTER privilege for that table or have the ALTER
ANY TABLE system privilege.

CACHE specifies that the blocks for this table, when read, are to be marked as “most recently used”
and kept in the data block buffer cache for as long as possible. This option is useful if the tables are
small and fairly static. NOCACHE (the default) reverts the table back to the normal Last Recently Used
(LRU) list behavior.

PARALLEL, along with DEGREE and INSTANCES, specifies the parallel characteristics of the table
(for databases using the Real Application Clusters option). DEGREE specifies the number of query
servers to use; INSTANCES specifies how the table is to be split among instances of Real Application
Clusters for parallel query processing. An integer n specifies that the table is to be split among the
specified number of available instances.

You can use ALTER TABLE to ADD, DROP, EXCHANGE, MODIFY, MOVE, SPLIT, or TRUNCATE
partitions. See Chapter 17 and CREATE TABLE.

The LOB storage clauses specify the storage area to be used for LOB data that will not be stored in
the table itself (out-of-line).

The MOVE ONLINE option allows you to access a table for DML operations during an online table
reorganization. The MOVE and MOVE ONLINE options are only available for nonpartitioned index-
organized tables. During a MOVE ONLINE operation, parallel DML operations against the table are not
supported.

You can use the COMPRESS keyword to instruct Oracle to compress data segments to reduce disk
and memory use for tables that are loaded with direct-path INSERTs.

As of Oracle Database 11g, ALTER TABLE has been enhanced in the following ways:

The performance of the add_column_clause has been improved.

The READ ONLY | READ WRITE clauses let you put a table into read-only mode, thus preventing
DDL or DML changes to the table until you put the table back into read-write mode.

The add_table_partition clause syntax has been expanded to support adding a system partition.

The flashback_archive_clause lets you enable or disable historical tracking for a table.

The add_column_clause supports the addition of virtual columns to tables.

You can modify an XMLType table to add or remove one of more XMLSchemas.

The alter_interval_partitioning clause lets you convert a range-partitioned table to an interval-
partitioned table.

The dependent_tables_clause lets you instruct the database to cascade various partition
maintenance operations on a table to reference-partitioned child tables.

■

■

■

■

■

■

■

■

■

■

■

■

ALTER TABLE 989

990 Part VIII: Alphabetical Reference

ALTER TABLESPACE
SEE ALSO CREATE TABLESPACE, DROP TABLESPACE, STORAGE, Chapters 22 and 51
FORMAT
alter_tablespace::=

ALTER TABLESPACE tablespace

DEFAULT
table_compression

storage_clause

MINIMUM EXTENT size_clause

RESIZE size_clause

COALESCE

SHRINK SPACE
KEEP size_clause

RENAME TO new_tablespace_name

BEGIN

END
BACKUP

datafile_tempfile_clauses

tablespace_logging_clauses

tablespace_group_clause

tablespace_state_clauses

autoextend_clause

flashback_mode_clause

tablespace_retention_clause

;

datafile_tempfile_clauses::=

ADD
DATAFILE

TEMPFILE

file_specification

,

DROP
DATAFILE

TEMPFILE

’ filename ’

file_number

SHRINK TEMPFILE
’ filename ’

file_number

KEEP size_clause

RENAME DATAFILE ’ filename ’

,

TO ’ filename ’

,

DATAFILE

TEMPFILE

ONLINE

OFFLINE

tablespace_logging_clauses::=

logging_clause

NO
FORCE LOGGING

tablespace_group_clause::=

TABLESPACE GROUP
tablespace_group_name

’ ’

tablespace_state_clauses::=

ONLINE

OFFLINE

NORMAL

TEMPORARY

IMMEDIATE

READ
ONLY

WRITE

PERMANENT

TEMPORARY

ALTER TABLESPACE 991

992 Part VIII: Alphabetical Reference

autoextend_clause::=

AUTOEXTEND

OFF

ON
NEXT size_clause maxsize_clause

maxsize_clause::=

MAXSIZE
UNLIMITED

size_clause

flashback_mode_clause::=

FLASHBACK
ON

OFF

tablespace_retention_clause::=

RETENTION
GUARANTEE

NOGUARANTEE

DESCRIPTION tablespace is the name of an existing tablespace. ADD DATAFILE adds to the
tablespace a file or series of files described according to a file_specification, which defines the
database filenames and sizes.

The filename format is operating system specific. SIZE is the number of bytes set aside for this file.
Suffixing this with K multiplies the value by 1024; using M multiplies it by 1048576. REUSE (without
SIZE) means destroy the contents of any file by this name and assign it for use by this tablespace.
REUSE with SIZE creates the file if it doesn’t exist, and checks its size if it does. SIZE alone creates
the file if it doesn’t exist, but returns an error if it does exist.

You can use the AUTOEXTEND clause to dynamically resize your datafiles as needed, in
increments of NEXT size, to a maximum of MAXSIZE (or UNLIMITED).

NOLOGGING specifies the default action for the writing of redo log entries for certain types of
transactions in the tablespace. You can override this setting at the object level. RENAME DATAFILE
changes the name of an existing tablespace file. The tablespace should be offline while the renaming
takes place. Note that RENAME does not actually rename the files; it only associates their new names
with this tablespace. Actually renaming operating system files must be done with the operating system
itself. To properly rename files, first ALTER TABLESPACE OFFLINE, rename the files in the operating
system, RENAME them with ALTER TABLESPACE, and then ALTER TABLESPACE ONLINE.

DEFAULT STORAGE defines the default storage for all future objects created in this tablespace,
unless those defaults are overridden, such as by CREATE TABLE. ONLINE brings the tablespace back
online. OFFLINE takes it offline, either without waiting for its users to log off (IMMEDIATE) or after
they’ve all stopped using it (NORMAL).

MINIMUM EXTENT sets the minimum size for any extent created in the tablespace. COALESCE
combines neighboring free extents in the tablespace into fewer, larger free extents.

READ ONLY tablespaces are never updated by Oracle, and can be placed on read-only media.
Read-only tablespaces do not need repeated backups. All tablespaces are created read-write. To
change a read-only tablespace back to read-write status, use the READ WRITE clause.

BEGIN BACKUP can be executed at any time. It puts the tablespace in a state such that an online
backup can occur while users are accessing the tablespace. END BACKUP indicates the system backup
is finished. If the tablespace is online, any system backup must also back up archive redo logs. If it is
offline, this is unnecessary.

TEMPORARY tablespaces cannot contain any permanent objects (such as tables or indexes); they
can only hold the temporary segments used by Oracle during the processing of sorting operations and
index creations. A PERMANENT tablespace can hold every type of Oracle segment.

NOTE
For bigfile tablespaces, you can use ALTER TABLESPACE for commands
(such as RESIZE) that would only work at the datafile level for smallfile
tablespaces.

You can rename a tablespace (the RENAME clause). You can also guarantee that unexpired undo
data will be preserved, even at the expense of ongoing transactions that require undo space (via
RETENTION GUARANTEE).

As of Oracle Database 11g, you can shrink the space used by a temporary tablespace and an
individual tempfile.

ALTER TRIGGER
SEE ALSO CREATE TRIGGER, DROP TRIGGER, Chapter 34
FORMAT
alter_trigger::=

ALTER TRIGGER
schema .

trigger

ENABLE

DISABLE

RENAME TO new_name

COMPILE
DEBUG compiler_parameters_clause REUSE SETTINGS

;

compiler_parameters_clause::=

parameter_name = parameter_value

DESCRIPTION ALTER TRIGGER enables, disables, renames, or recompiles a PL/SQL trigger. To use
the ALTER TRIGGER command, you must either own the trigger or have ALTER ANY TRIGGER system
privilege.

You can use the COMPILE clause to manually recompile an invalid trigger object. Since triggers
have dependencies, they can become invalid if an object the trigger depends on changes. The DEBUG
clause allows PL/SQL information to be generated during trigger recompilation.

ALTER TRIGGER 993

994 Part VIII: Alphabetical Reference

ALTER TYPE
SEE ALSO CREATE TYPE, CREATE TYPE BODY, Chapter 38
FORMAT
alter_type::=

ALTER TYPE
schema .

type

compile_type_clause

replace_type_clause

alter_method_spec

alter_attribute_definition

alter_collection_clauses

NOT INSTANTIABLE

FINAL

dependent_handling_clause

;

compile_type_clause::=

COMPILE
DEBUG

SPECIFICATION

BODY

compiler_parameters_clause REUSE SETTINGS

compiler_parameters_clause::=

parameter_name = parameter_value

replace_type_clause::=

REPLACE
invoker_rights_clause

AS OBJECT

(atttribute datatype

,
, element_spec

,

)

invoker_rights_clause::=

AUTHID
CURRENT_USER

DEFINER

element_spec::=

inheritance_clauses
subprogram_spec

constructor_spec

map_order_function_spec

, pragma_clause

inheritance_clauses::=

NOT
OVERRIDING

FINAL

INSTANTIABLE

subprogram_spec::=

MEMBER

STATIC

procedure_spec

function_spec

procedure_spec::=

PROCEDURE procedure_name (parameter datatype

,

)

IS

AS
call_spec

function_spec::=

FUNCTION name (parameter datatype

,

) return_clause

ALTER TYPE 995

996 Part VIII: Alphabetical Reference

constructor_spec::=

FINAL INSTANTIABLE
CONSTRUCTOR FUNCTION datatype

(
SELF IN OUT datatype ,

parameter datatype

,

)

RETURN SELF AS RESULT

IS

AS
call_spec

map_order_function_spec::=

MAP

ORDER
MEMBER function_spec

pragma_clause::=

PRAGMA RESTRICT_REFERENCES (
method_name

DEFAULT
,

RNDS

WNDS

RNPS

WNPS

TRUST

,

)

alter_method_spec::=

ADD

DROP

map_order_function_spec

subprogram_spec

,

alter_attribute_definition::=

ADD

MODIFY
ATTRIBUTE

attribute
datatype

(attribute datatype

,

)

DROP ATTRIBUTE

attribute

(attribute

,

)

alter_collection_clauses::=

MODIFY
LIMIT integer

ELEMENT TYPE datatype

dependent_handling_clause::=

INVALIDATE

CASCADE

NOT
INCLUDING TABLE DATA

CONVERT TO SUBSTITUTABLE
FORCE

exceptions_clause

exceptions_clause::=

EXCEPTIONS INTO
schema .

table

DESCRIPTION ALTER TYPE allows you to modify existing abstract datatypes. When you create a
method that acts on the abstract datatype, you use the CREATE TYPE BODY command (see entry in this
appendix). Each method defined in the type body must first be listed in the type.

ALTER TYPE 997

998 Part VIII: Alphabetical Reference

ALTER USER
SEE ALSO CREATE TABLESPACE, GRANT, CREATE PROFILE, CREATE USER, Chapter 19
FORMAT
alter_user::=

ALTER USER

user

IDENTIFIED

BY password
REPLACE old_password

EXTERNALLY
AS ’ certificate_DN ’

GLOBALLY
AS ’

directory_DN
’

DEFAULT TABLESPACE tablespace

TEMPORARY TABLESPACE
tablespace

tablespace_group_name

QUOTA
size_clause

UNLIMITED
ON tablespace

PROFILE profile

DEFAULT ROLE

role

,

ALL
EXCEPT role

,

NONE

PASSWORD EXPIRE

ACCOUNT
LOCK

UNLOCK

user

,

proxy_clause

;

proxy_clause::=

GRANT

REVOKE
CONNECT THROUGH

ENTERPRISE USERS

db_user_proxy

db_user_proxy::=

db_user_proxy

WITH

ROLE

role_name

,

ALL EXCEPT role_name

,

NO ROLES AUTHENTICATION REQUIRED

DESCRIPTION You use ALTER USER to change a user’s password, or the DEFAULT tablespace (for
objects the user owns) or TEMPORARY tablespace (for temporary segments used by the user). Without
ALTER USER, the defaults for both of these are set by the defaults of the first tablespace (both for objects
and temporary segments) to which the user is GRANTed resources and the default temporary
tablespace defined at the database level. ALTER USER can also change the quota, the resource profile,
or the default role (see CREATE USER). You can use the PASSWORD EXPIRE clause to force a user’s
password to expire, in which case the user must change his or her password during the next login. The
ACCOUNT UNLOCK clause allows you to unlock an account that has exceeded its maximum number
of consecutive failed login attempts. See CREATE PROFILE for details on password control. To alter a
user, you must have the ALTER USER system privilege.

You can use the PROXY clause to connect as the specified user and to activate all, some, or none
of the user’s roles. PROXY is typically used in three-tier applications involving application servers.

ALTER VIEW
SEE ALSO CREATE VIEW, DROP VIEW, Chapter 17
FORMAT
alter_view::=

ALTER VIEW
schema .

view

ADD out_of_line_constraint

MODIFY CONSTRAINT constraint
RELY

NORELY

DROP

CONSTRAINT constraint

PRIMARY KEY

UNIQUE (column

,

)

COMPILE

;

DESCRIPTION ALTER VIEW recompiles a view or alters its constraints. To alter a view, you must
either own the view or have ALTER ANY TABLE system privilege.

ALTER VIEW 999

1000 Part VIII: Alphabetical Reference

ANALYTIC FUNCTIONS
Analytic functions compute an aggregate value based on a group of rows; they return multiple rows for
each group. Many of the analytic functions are listed under the AGGREGATE FUNCTIONS entry; when
used as analytic functions, they can only be used within the ORDER BY clause.

In the following alphabetical list of analytic functions (see the individual entries for syntax
descriptions), the functions followed by an asterisk allow for the use of a windowing clause: AVG*,
CORR*, COUNT, COVAR_POP*, COVAR_SAMP*, CUME_DIST, DENSE_RANK, FIRST, FIRST_
VALUE*, LAG, LAST, LAST_VALUE*, LEAD, MAX*, MIN*, NTILE, PERCENT_RANK, PERCENTILE_
CONT, PERCENTILE_DISC, RANK, RATIO_TO_REPORT, REGR_*, ROW_NUMBER, STDDEV*,
STDDEV_POP*, STDDEV_SAMP*, SUM*, VAR_POP*, VAR_SAMP*, VARIANCE*.

ANALYZE
SEE ALSO Chapter 46
FORMAT
analyze::=

ANALYZE

TABLE
schema .

table

INDEX
schema .

index

partition_extension_clause

CLUSTER
schema .

cluster

validation_clauses

LIST CHAINED ROWS
into_clause

DELETE
SYSTEM

STATISTICS

;

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

validation_clauses::=

VALIDATE REF UPDATE
SET DANGLING TO NULL

VALIDATE STRUCTURE

CASCADE
FAST

COMPLETE into_clause OFFLINE

ONLINE

into_clause::=

INTO
schema .

table

DESCRIPTION Oracle recommends that you use the DBMS_STATS package in place of the ANALYZE
command. ANALYZE lets you collect statistics about a table, cluster, partition, or index for the optimizer,
and stores them in the data dictionary; it lets you delete these statistics; it validates the structure of an
object; and it identifies migrated and chained rows of a table or cluster with a listing in a local table. You
use the VALIDATE STRUCTURE clause to test an object for possible data corruption. To analyze a table,
you must either own the table or have the ANALYZE ANY system privilege.

The LIST CHAINED ROWS clause records information about row chaining in a table you specify.

AND
See LOGICAL OPERATORS, PRECEDENCE, CONTAINS.

ANY
SEE ALSO ALL, BETWEEN, EXISTS, IN, LOGICAL OPERATORS, Chapter 13
FORMAT

operator ANY list

DESCRIPTION = ANY is the equivalent of IN. operator can be any one of =, >, >=, <, <=, or !=,
and list can be a series of literal strings (such as 'Talbot', 'Jones', or 'Hild'), a series of literal numbers
(such as 2, 43, 76, 32.06, or 444), or a column from a subquery, where each row of the subquery
becomes a member of the list, as shown here:

LOCATION.City = ANY (select City from WEATHER)

The list variable also can be a series of columns in the WHERE clause of the main query, as shown
here:

Prospect = ANY (Vendor, Client)

RESTRICTIONS list cannot be a series of columns in a subquery, like this:

Prospect = ANY (select Vendor, Client from . . .)

Many people find this operator and the ALL operator very difficult to remember, because the logic for
some of their cases is not immediately intuitive. As a result, some form of EXISTS is usually substituted.

ANY 1001

Oracle TIGHT / Oracle Database 11g: The Complete Reference / Loney / 159875-8

1002 Part VIII: Alphabetical Reference

The combination of an operator with ANY and a list can be illustrated with these explanations:

Page = ANY (4,2,7) Page is in the list (4,2,7)—2, 4, and 7 all qualify.

Page > ANY (4,2,7) Page is greater than any single item in the list (4,2,7)—even 3 qualifies,
because it is greater than 2.

Page >= ANY (4,2,7) Page is greater than or equal to any single item in the list (4,2,7)—even 2
qualifies, because it is equal to 2.

Page < ANY (4,2,7) Page is less than any single item in the list (4,2,7)—even 6 qualifies, because it
is less than 7.

Page <= ANY (4,2,7) Page is less than or equal to any single item in the list (4,2,7)—even 7 qualifies.

Page != ANY (4,2,7) Page is not equal to any single item in the list (4,2,7)—any number qualifies so
long as the list has more than one value. With only one value, != ANY is the
equivalent of !=.

APPEND (SQL*Plus)
SEE ALSO CHANGE, DEL, EDIT, LIST, Chapter 6
FORMAT

A[PPEND] text

DESCRIPTION APPEND is a feature of the SQL*Plus command-line editor. APPEND places the
text at the end of the current line in the current buffer, with no intervening spaces. If you want a space
between the end of the current line and text, put two spaces between APPEND and text. If you want to
append a semicolon at the end of a line, put two of them together (one of them will be regarded as a
command terminator and discarded). APPEND is not available in iSQL*Plus.
EXAMPLE

APPEND ;;

APPENDCHILDXML
FORMAT

APPENDCHILDXML
 (XMLType_instance, XPath_string, value_expr [, namespace_string])

DESCRIPTION APPENDCHILDXML appends a user-supplied value onto the target XML as the child
of the node indicated by an XPath expression.

ARCHIVE LOG
SEE ALSO ALTER DATABASE, RECOVER, Chapter 51
FORMAT

ARCHIVE LOG {LIST|STOP}|{START|NEXT|ALL|integer} [TO destination]

DESCRIPTION ARCHIVE LOG starts or stops automatic archiving of online redo log files, manually
archives specific redo log files, or displays information about redo log files. START enables automatic
archiving; STOP disables it. LIST shows the archive status for the online redo logs. NEXT manually archives
the next online redo log file group that has been filled but not yet archived. ALL manually archives all filled
but not yet archived redo log file groups. You can specify the online redo log group number and the
destination area for the archived files.

EXAMPLE

ARCHIVE LOG ALL
ARCHIVE LOG LIST

AS
SEE ALSO ALIAS, TO_CHAR, Chapters 7 and 10
DESCRIPTION AS is used to separate column formulas from column aliases.
EXAMPLE Here AS separates the column alias PayDay from its column formula:

select NEXT_DAY(CycleDate,'FRIDAY') AS PayDay
from PAYDAY;

ASCII
SEE ALSO CHARACTER FUNCTIONS, ASCIISTR, CHR
FORMAT

ASCII(string)

DESCRIPTION ASCII is an acronym for American Standard Code for Information Interchange. It is a
convention for using digital data to represent printable characters.

The ASCII function will return the ASCII value of the first (leftmost) character in the string. The
ASCII value of a character is an integer between 0 and 255. Those between 0 and 127 are well defined.
Those above 127 (“extended ASCII set”) tend to differ by country, application, and computer
manufacturer. The letter A, for instance, is equal to the ASCII number 65, B is 66, C is 67, and so
on. The decimal point is 46. A minus sign is 45. The number 0 is 48, 1 is 49, 2 is 50, and so on.
EXAMPLE

select ASCII('.'), ASCII(.5),
 ASCII('E'), ASCII('EMILY')
 from DUAL;

ASCII('.') ASCII(.5) ASCII('E') ASCII('EMILY')
---------- --------- ---------- --------------
 46 46 69 69

ASCIISTR
SEE ALSO CHARACTER FUNCTIONS, ASCII, CHR
FORMAT

ASCIISTR(string)

DESCRIPTION The ASCII function takes a string and returns its ASCII equivalent in the database
character set.
EXAMPLE

select ASCIISTR('E'), ASCIISTR('EMILY')
 from DUAL;

A ASCII
- -----
E EMILY

ASCIISTR 1003

1004 Part VIII: Alphabetical Reference

ASIN
SEE ALSO ACOS, ATAN, ATAN2, COS, COSH, EXP, LN, LOG, SIN, SINH, TAN, TANH
FORMAT

ASIN(value)

DESCRIPTION ASIN returns the arc sine of a value. Input values range from –1 to 1; outputs are
expressed in radians.

ASSOCIATE STATISTICS
SEE ALSO ANALYZE
FORMAT
associate_statistics::=

ASSOCIATE STATISTICS WITH
column_association

function_association

storage_table_clause
;

column_association::=

COLUMNS
schema .

table . column

,

using_statistics_type

function_association::=

FUNCTIONS
schema .

function

,

PACKAGES
schema .

package

,

TYPES
schema .

type

,

INDEXES
schema .

index

,

INDEXTYPES
schema .

indextype

,

using_statistics_type

default_cost_clause
, default_selectivity_clause

default_selectivity_clause
, default_cost_clause

using_statistics_type::=

USING

schema .
statistics_type

NULL

default_cost_clause::=

DEFAULT COST (cpu_cost , io_cost , network_cost)

default_selectivity_clause::=

DEFAULT SELECTIVITY default_selectivity

storage_table_clause::=

WITH
SYSTEM

USER
MANAGED STORAGE TABLES

DESCRIPTION ASSOCIATE STATISTICS associates a set of statistics functions with one or more
columns, stand-alone functions, packages, types, or indexes. You must have the required privileges to
ALTER the object being modified.

You can view associations in USER_USTATS after you analyze the object with which you are
associating your statistics functions.

As of Oracle Database 11g, you can specify that the database should manage storage of statistics
collected on a system-managed domain index.

ATAN
SEE ALSO ACOS, ASIN, ATAN2, COS, COSH, EXP, LN, LOG, SIN, SINH, TAN, TANH
FORMAT

ATAN(value)

DESCRIPTION ATAN returns the arc tangent of a value. Input values are unbounded; outputs are
expressed in radians.

ATAN2
SEE ALSO ACOS, ASIN, ATAN, COS, COSH, EXP, LN, LOG, SIN, SINH, TAN, TANH
FORMAT

ATAN2(value1, value2)

DESCRIPTION ATAN2 returns the arc tangent of two values. Input values are unbounded; outputs
are expressed in radians.

ATAN2 1005

1006 Part VIII: Alphabetical Reference

ATTRIBUTE (SQL*Plus)
SEE ALSO COLUMN, Chapter 38
FORMAT

ATTRIBUTE [type_name.attribute_name [option ...]]

option can be one of the following:

ALI[AS] alias
CLE[AR]
FOR[MAT] format
LIKE {type_name.attribute_name|alias}
ON|OFF

DESCRIPTION ATTRIBUTE sets the display attributes for attributes of a user-defined type column in
SQL*Plus.
EXAMPLE

ATTRIBUTE ADDRESS_TY.Street FORMAT A50

AUDIT
SEE ALSO CREATE DATABASE LINK, NOAUDIT, PRIVILEGE
FORMAT
audit::=

AUDIT

audit_operation_clause

audit_schema_object_clause

NETWORK

BY
SESSION

ACCESS WHENEVER
NOT

SUCCESSFUL
;

audit_operation_clause::=

sql_statement_shortcut

ALL

,

system_privilege

ALL PRIVILEGES

,
auditing_by_clause

auditing_by_clause::=

BY

proxy

,

user

,

audit_schema_object_clause::=

sql_operation

,

ALL
auditing_on_clause

auditing_on_clause::=

ON

schema .
object

DIRECTORY directory_name

MINING MODEL
schema .

model

DEFAULT

DESCRIPTION You can AUDIT statements executed by users and statements that access specific
objects.

The statement options are as follows:

Option Audits
ALTER SYSTEM Alter system

CLUSTER Create, alter, drop, or truncate cluster

CONTEXT Create or drop context

DATABASE LINK Create or drop database link

DIMENSION Create, alter, or drop dimension

DIRECTORY Create or drop directory

INDEX Create, alter, analyze, or drop index

MATERIALIZED VIEW Create, alter, or drop materialized view

NOT EXISTS SQL statements that fail because an object does not exist

PROCEDURE Create or drop procedure, function, library, or package; create package body

PROFILE Create, alter, or drop profile

PUBLIC DATABASE LINK Create or drop public database link

AUDIT 1007

1008 Part VIII: Alphabetical Reference

Option Audits
PUBLIC SYNONYM Create or drop public synonym

ROLE Create, alter, drop, or set role

ROLLBACK SEGMENT Create, alter, or drop rollback segment

SEQUENCE Create or drop sequence

SESSION Logon attempts

SYNONYM Create or drop synonym

SYSTEM AUDIT Audit or noaudit of SQL statements

SYSTEM GRANT Grant or revoke system privileges and roles

TABLE Create, drop, or truncate table

TABLESPACE Create, alter, or drop tablespace

TRIGGER Create, alter, or drop trigger; alter table with ENABLE|DISABLE ALL TRIGGERS

TYPE Create, alter, or drop type or type body

USER Create, alter, or drop user

VIEW Create or drop view

The following are additional statement-level options that are available:

Option Commands Audited
ALTER SEQUENCE ALTER SEQUENCE

ALTER TABLE ALTER TABLE

COMMENT TABLE COMMENT ON TABLE table, view, materialized view
COMMENT ON COLUMN table.column, view.column,
materialized view.column

DELETE TABLE DELETE FROM table, view

EXECUTE PROCEDURE CALL
Execution of any procedure or function or access to any variable, library, or
cursor inside a package

GRANT DIRECTORY GRANT privilege ON directory
REVOKE privilege ON directory

GRANT PROCEDURE GRANT privilege ON procedure, function, package
REVOKE privilege ON procedure, function, package

GRANT SEQUENCE GRANT privilege ON sequence
REVOKE privilege ON sequence

GRANT TABLE GRANT privilege ON table, view, materialized view
REVOKE privilege ON table, view, materialized view

GRANT TYPE GRANT privilege ON TYPE
REVOKE privilege ON TYPE

INSERT TABLE INSERT INTO table, view

LOCK TABLE LOCK TABLE table, view

SELECT SEQUENCE Any statement containing sequence.CURRVAL or sequence.NEXTVAL

SELECT TABLE SELECT FROM table, view, materialized view

UPDATE TABLE UPDATE table, view

BY user audits only SQL statements issued by particular users. The default is to audit all users.
WHENEVER [NOT] SUCCESSFUL writes a row to an audit table only when an attempted access to

an audited table or system facility is (or is NOT) successful. Omitting this optional clause causes a row
to be written whether an access is successful or not.

Auditing information is written to a table named SYS.AUD$ and accessed via data dictionary views.
EXAMPLE This audits all updates by a user named CLERK_USER:

audit UPDATE TABLE by clerk_user;

AVG
SEE ALSO COMPUTE, AGGREGATE FUNCTIONS, Chapter 9
FORMAT

AVG ([DISTINCT | ALL] expr) [OVER (analytic_clause)]

DESCRIPTION AVG is the average of expr for a group of rows. DISTINCT forces only unique values
to be averaged. NULL rows are ignored by this function, which may affect results.

BEGIN
SEE ALSO BLOCK STRUCTURE, DECLARE CURSOR, END, EXCEPTION, SQLTERMINATOR under
SET, Chapter 32
FORMAT

 [<<block label>>]
[DECLARE]
BEGIN
 ... block logic ...
END [block label];

DESCRIPTION BEGIN is the opening statement of a PL/SQL block’s executable section. It can be
followed with any legal PL/SQL logic, and an exception handler, and is closed with the END statement.
At least one executable statement is required between BEGIN and END. See BLOCK STRUCTURE.

block label is a name given to a PL/SQL block that starts with the word BEGIN and finishes with the
word END. The word END is followed by a terminator, usually a semicolon (see SQLTERMINATOR under
SET for exceptions). block label follows normal naming conventions for objects, and must be bracketed by
<< and >>. These symbols tell PL/SQL that this is a label. BEGIN may optionally be preceded by a section
called DECLARE (which follows the block label) and may optionally contain a section called EXCEPTION.

BETWEEN
See LOGICAL OPERATORS.

BFILE
BFILE is a datatype (see DATATYPES) used for binary LOB data stored outside the database. Oracle does
not maintain read consistency or data integrity for the externally stored data. Within the database, a
LOB locator value is stored to point to the external file. Before creating a BFILE entry, you must first
create a directory. See CREATE DIRECTORY.

BFILENAME
SEE ALSO BFILE, CREATE DIRECTORY, Chapter 40
FORMAT

BFILENAME ('directory' , 'filename')

BFILENAME 1009

1010 Part VIII: Alphabetical Reference

DESCRIPTION BFILENAME returns a BFILE locator associated with the specified filename and
directory object.

BINARY_DOUBLE
See DATATYPES.

BINARY_FLOAT
See DATATYPES.

BIN_TO_NUM
SEE ALSO NUMBER FUNCTIONS, Chapter 9
FORMAT

BIN_TO_NUM (expr [, expr]...)

DESCRIPTION BIN_TO_NUM converts a bit vector to its equivalent number.
EXAMPLE

select BIN_TO_NUM(1,0,0,1) from DUAL;

BIN_TO_NUM(1,0,0,1)

 9

BITAND
SEE ALSO DECODE, Chapter 16
FORMAT

BITAND (argument1, argument2)

DESCRIPTION BITAND computes an AND operation on the bits of argument1 and argument2,
both of which must resolve to nonnegative integers, and returns an integer. This function is commonly
used with the DECODE function.

BLOB
A BLOB is a binary large object, stored inside the database. See Chapter 41.

BLOCK STRUCTURE
A block structure is a structure of block sections in PL/SQL.
SEE ALSO BEGIN, DECLARE CURSOR, END, EXCEPTION, GOTO, Chapter 32
DESCRIPTION PL/SQL blocks can be embedded in SQL*Plus and any of several programming
languages, through the use of the Oracle precompilers. PL/SQL blocks are structured like this:

 [<<block label>>]
[DECLARE
.. declarations (CURSOR, VARIABLE and EXCEPTION)...]

BEGIN

... block logic (executable code)...

[EXCEPTION

... exception handling logic (for fatal errors)...]

END [block label];

As the brackets show, both the DECLARE and EXCEPTION sections are optional. A block may
optionally be labeled by a block name, which must be bracketed by << and >>.

The sections of a block must be in this order, although blocks may nest inside of other blocks in
either the block logic or exception-handling logic sections. blocks may be used for branching using a
GOTO, or as a prefix in referencing a variable in another block (see DECLARE for details on this). If a
variable will be referenced in a cursor declaration, it must be declared before the cursor is declared.
EXAMPLE

<<calc_areas>>
DECLARE
 pi constant NUMBER(9,7) := 3.14159;
 area NUMBER(14,2);
 cursor rad_cursor is
 select * from RADIUS_VALS;
 rad_val rad_cursor%ROWTYPE;
BEGIN
 open rad_cursor;
 loop
 fetch rad_cursor into rad_val;
 exit when rad_cursor%NOTFOUND;
 area := pi*power(rad_val.radius,2);
 insert into AREAS values (rad_val.radius, area);
 end loop;
 close rad_cursor;
END calc_areas;

BREAK (SQL*Plus)
SEE ALSO CLEAR, COMPUTE, Chapter 6
FORMAT

BRE[AK] [ON report_element [action [action]]] ...

where report_element is

{column|expr|ROW|REPORT}

and action is

 [SKI[P]n|[SKI[P]] PAGE][NODUP[LICATES]|DUP[LICATES]]

DESCRIPTION A break occurs when SQL*Plus detects a specified change, such as the end of a page
or a change in the value of an expression. A break will cause SQL*Plus to perform some action you’ve
specified in the BREAK command, such as SKIP, and to print some result from a COMPUTE command,
such as averages or totals for a column. Only one BREAK command may be in effect at a time. A new
BREAK command may specify changes, and their associated actions, that are to cause a break.

A BREAK ON REPORT causes a break at the end of a report or query.
A change in the value of an expression may occur at any time prior to the REPORT break, and there

may be several ON expression clauses in a single BREAK statement; however, their order in the BREAK

BREAK (SQL*Plus) 1011

1012 Part VIII: Alphabetical Reference

command should be the same as in the order by of the select statement. That is, each expression that
appears in the BREAK command also should be placed in the order by clause of select, in identical
sequence, or the result will be meaningless. In addition, their order should be from the largest grouping
to the smallest (for example, ON Corporation, ON Division, ON Project).

ON ROW causes a break for every row selected.
ON PAGE causes a break at the end of each page, and is independent of breaks caused by

expression, ON ROW, or ON REPORT.
SKIP skips a number of lines, and PAGE or SKIP PAGE skips to a new page, before printing the

result of the associated COMPUTE for the break.
NODUPLICATES suppresses the printing of the values in the expression or column in the BREAK

for every row except the first one after the BREAK occurs.
BREAK by itself will display the current break settings.
CLEAR BREAKS will remove any existing BREAKs.

BTITLE (SQL*Plus)
SEE ALSO ACCEPT, DEFINE, PARAMETERS, REPFOOTER, REPHEADER, SET HEADSEP, TTITLE
FORMAT

BTI[TLE] [printspec [text|variable]... | OFF | ON]

DESCRIPTION BTITLE puts text (may be multiline) at the bottom of each page of a report. OFF and
ON suppress and restore the display of the text without changing its contents. BTITLE by itself displays
the current btitle options and text or variable. text is a bottom title you wish to give this report, and
variable is a user-defined variable or a system-maintained variable, including SQL.LNO, the current
line number, SQL.PNO, the current page number, SQL.RELEASE, the current Oracle release number,
SQL.SQLCODE, the current error code, and SQL.USER, the username.

printspec options are as follows:

COL n skips directly to position n (from the left margin) of the current line.

S[KIP] n prints n blank lines. If no n is specified, one blank line is printed. If n is 0, no blank
lines are printed and the current position for printing becomes position 1 of the current line
(leftmost on the page).

TAB n skips forward n positions (backward if n is negative).

BOLD prints the output data in bold print.

LE[FT], CE[NTER], and R[IGHT] left-justify, center, and right-justify data, respectively, on the
current line. Any text or variables following these commands are justified as a group, up to the
end of the command, or a LEFT, CENTER, RIGHT, or COL. CENTER and RIGHT use the value
set by the SET LINESIZE command to determine where to place the text or variable.

FORMAT string specifies the format model that will control the format of following text
or variables, and follows the same syntax as FORMAT in a COLUMN command, such as
FORMAT A12 or FORMAT $999,999.99. Each time a FORMAT appears, it supersedes the
previous one that was in effect. If no FORMAT model has been specified, the one set by SET
NUMFORMAT is used. If NUMFORMAT has not been set, the default for SQL*Plus is used.

Data values are printed according to the default format unless a variable has been loaded with a
date reformatted by TO_CHAR.

Any number of options, text, and variables may be used in a single BTITLE. Each is printed in the
order specified, and each is positioned and formatted as specified by the clauses that precede it.

■

■

■

■

■

■

CALL
SEE ALSO EXECUTE, Chapter 44
FORMAT
call::=

CALL
routine_clause

object_access_expression

INTO : host_variable

INDICATOR
: indicator_variable

;

routine_clause::=

schema .

type .

package .
function

procedure

method

@ dblink_name
(

argument

,

)

object_access_expression::=

table_alias . column .

object_table_alias .

(expr) .

attribute

.
. method (

argument

,

)

method (
argument

,

)

DESCRIPTION You can use CALL to execute a stored procedure or function from within SQL. You
must have EXECUTE privilege on the procedure or function, or on the package in which the procedure
or function exists.

As of Oracle Database 11g you can use positional, named, and mixed notation in the argument to
the routine being called, if the routine takes any arguments.

CALL 1013

1014 Part VIII: Alphabetical Reference

CARDINALITY
SEE ALSO COLLECTION FUNCTIONS
FORMAT

CARDINALITY (nested_table)

DESCRIPTION CARDINALITY returns the number of elements in a nested table. If the nested table
is empty, or is a null collection, then CARDINALITY returns NULL.

CASE
SEE ALSO OTHER FUNCTIONS, DECODE, TRANSLATE, Chapter 16
FORMAT

CASE
simple_case_expression

searched_case_expression

else_clause
END

simple_case_expression::=

expr WHEN comparison_expr THEN return_expr

searched_case_expression::=

WHEN condition THEN return_expr

else_clause::=

ELSE else_expr

DESCRIPTION CASE supports if-then-else logic within SQL statements. Use WHEN/THEN clauses
to tell the database what to do for each condition. You can use an ELSE clause to handle exceptions to
your WHEN clauses.
EXAMPLE

select distinct
 CASE CategoryName
 when 'ADULTFIC' then 'Adult Fiction'
 when 'ADULTNF' then 'Adult Nonfiction'
 when 'ADULTREF' then 'Adult Reference'
 when 'CHILDRENFIC' then 'Children Fiction'
 when 'CHILDRENNF' then 'Children Nonfiction'
 when 'CHILDRENPIC' then 'Children Picturebook'
 else CategoryName
 end
 from BOOKSHELF;

CAST
SEE ALSO Chapter 39
FORMAT

CAST ({ expr | (subquery) | MULTISET (subquery) } AS type_name)

DESCRIPTION You can use CAST to convert one datatype to another. CAST is most commonly
used when working with collectors such as nested tables.

CATSEARCH
CATSEARCH is used for text searches against CTXCAT text indexes created within Oracle Text. See
Chapter 27 for index creation and text search examples. Supported text search operators include the
following:

Operator Description
| Returns a record if either search term has a score that exceeds the threshold.

AND Returns a record if both search terms have a score that exceeds the threshold. This is the
default action.

- Returns rows that contain the term preceding the - that do not contain the term following it.

NOT Same as -.

() Specifies the order in which search criteria are evaluated.

" " Encloses phrases.

CEIL
SEE ALSO FLOOR, NUMBER FUNCTIONS
FORMAT

CEIL(value)

DESCRIPTION CEIL is the smallest integer higher than or equal to value.
EXAMPLE

CEIL(1.3) = 2
CEIL(-2.3) = -2

CHANGE (SQL*Plus)
SEE ALSO APPEND, DEL, EDIT, LIST, Chapter 6
FORMAT

C[HANGE] /old text/new text/

DESCRIPTION CHANGE is a feature of the SQL*Plus command-line editor. It changes old text to
new text in the current line of the current buffer (the line marked with an * in the LIST). CHANGE is not
available in iSQL*Plus.

CHANGE ignores case in searching for old text. Three dots are a wildcard. If old text is prefixed
with '. . .', everything up to and including the first occurrence of old text is replaced by new text. If old
text is suffixed with '. . .', everything including and after the first occurrence of old text is replaced by
new text. If old text has . . . embedded in it, everything from the part of old text before the dots, through
the part of old text after the dots, is replaced by new text.

The space between the CHANGE and the first / may be omitted; the final delimiter is unnecessary if
no trailing spaces need to be inserted. A delimiter other than / may be used. Any character following
the word CHANGE (other than a space) is assumed to be the delimiter.
EXAMPLES If this is the current line of the current buffer,

where CategoryName = 'ADULTFN'

then

C /ADULTFN/ADULTNF

CHANGE (SQL*Plus) 1015

1016 Part VIII: Alphabetical Reference

would change the line to this:

where CategoryName = 'ADULTNF'

CHAR DATATYPE
See DATATYPES.

CHARACTER FUNCTIONS
SEE ALSO CONVERSION FUNCTIONS, NUMBER FUNCTIONS, OTHER FUNCTIONS, Chapter 7
DESCRIPTION This is an alphabetical list of all current character functions in the Oracle version of
SQL. Each of these is listed elsewhere in this reference under its own name, with its proper format and use.

Function Name and Use
string || string

|| concatenates two strings. The | symbol is called a broken vertical bar, although on some computers it
may be a solid bar.

ASCII(string)

ASCII gives the ASCII value of the first character of a string.

CHR(integer)

CHR gives the character with an ASCII value equal to a given positive integer.

CONCAT(string1,string2)

CONCAT concatenates two strings. It is equivalent to ||.

INITCAP(string)

This stands for INITial CAPital. It changes the first letter of a word or series of words into
uppercase.

INSTR(string, set [, start [,occurrence]])

INSTR finds the location of the beginning of a set of characters IN a STRing.

LENGTH(string)

This tells the LENGTH of a string.

LOWER(string)

LOWER converts every letter in a string to lowercase.

LPAD(string,length [,'set'])

LPAD stands for Left PAD. It makes a string a specific length by adding a specified set of characters
to the left.

LTRIM(string [,'set'])

LTRIM stands for Left TRIM. It trims all the occurrences of any one of a set of characters off of the
left side of a string.

NLS_INITCAP(string[,'NLS_SORT=sort'])

NLS_INITCAP stands for National Language Support INITial CAPital. This version of INITCAP uses
the collating sequence sort to do the case conversion.

NLS_LOWER(string[,'NLS_SORT=sort'])

NLS_LOWER stands for National Language Support LOWERcase. This version of LOWER uses the
collating sequence sort to do the case conversion.

NLS_UPPER(string[,'NLS_SORT=sort'])

NLS_UPPER stands for National Language Support UPPERcase. This version of UPPER uses the
collating sequence sort to do the case conversion.

NLSSORT(string[,'NLS_SORT=sort'])

Oracle uses National Language Support SORT. This gives the collating sequence value of the given
string based on the collating sequence sort or, if omitted, the National Language Support option chosen
for the site.

REGEXP_COUNT(source_string, pattern,
[,position, match_parameter])

REGEXP_COUNT returns the number of occurrences of a specified regular expression pattern in a
source string.

REGEXP_INSTR(source_string, pattern
[,position,occurrence,return_option,match_parameter])

REGEXP_INSTR returns an integer indicating the start of the search pattern. REGEXP_INSTR
extends the capabilities of INSTR by permitting searches of regular expression patterns.

REGEXP_REPLACE(source_string, pattern
[,replace_string,position,occurrence,match_parameter])

REGEXP_REPLACE returns source_string with every occurrence of pattern replaced with replace_
string (zero or more characters). REGEXP_REPLACE extends the capabilities of REPLACE by permitting
searches of regular expression patterns.

REGEXP_SUBSTR(source_string, pattern
[,position,occurrence,match_parameter])

REGEXP_SUBSTR returns a subset of source_string based on the results of a regular expression
search. REGEXP_SUBSTR extends the capabilities of SUBSTR by permitting searches of regular
expression patterns.

REPLACE(string, if [,then])

REPLACE returns string with every occurrence of if replaced with then (zero or more characters). If
no then string is specified, then all occurrences of if are removed. See TRANSLATE.

RPAD(string,length [,'set'])

RPAD stands for Right PAD. It makes a string a specific length by adding a specified set of
characters to the right.

RTRIM(string [,'set'])

RTRIM stands for Right TRIM. It trims all the occurrences of any one of a set of characters off of the
right side of a string.

CHARACTER FUNCTIONS 1017

1018 Part VIII: Alphabetical Reference

SOUNDEX(string)

SOUNDEX converts a string to a code value. Names with similar sounds tend to have the same
code value. You can use SOUNDEX to compare names that might have small spelling differences but
are still the same.

SUBSTR(string, start [,count])

SUBSTRing clips out a piece of a string beginning at start position and counting for count
characters from start.

TRANSLATE(string,if,then)

This TRANSLATEs a string, character by character, based on a positional matching of characters in
the if string with characters in the then string. See REPLACE.

TREAT(expr AS [REF][user.]type)

TREAT changes the declared type of an expression.

TRIM
([{ { LEADING | TRAILING | BOTH } [trim_character])
 | trim_character
 } FROM] trim_source)

TRIM removes all the occurrences of any one of a set of characters off of the right side, left side, or
both sides of a string.

UPPER(string)

UPPER converts every letter in a string into uppercase.

USERENV(option)

USERENV returns information about the USER ENVironment, usually for an audit trail. Options
include 'ENTRYID', 'SESSIONID', and 'TERMINAL'. USERENV is still supported but has been replaced
by SYS_CONTEXT’s UserEnv namespace.

VSIZE(string)

VSIZE gives the storage size of string in Oracle.

CHARTOROWID
SEE ALSO CONVERSION FUNCTIONS, ROWIDTOCHAR
FORMAT

CHARTOROWID(string)

DESCRIPTION This stands for CHARacter TO ROW IDentifier. It changes a character string to act
like an internal Oracle row identifier, or ROWID.

CHR
SEE ALSO ASCII, CHARACTER FUNCTIONS
FORMAT

CHR(integer)

DESCRIPTION CHR will return the character with the ASCII value of integer. (integer means an
integer between 0 and 255, since the ASCII value of a character is an integer between 0 and 255.)
Those between 0 and 127 are well defined. Those above 127 (called the extended ASCII set) tend to
differ by country, application, and computer manufacturer. The letter A, for instance, is equal to the
ASCII number 65, B is 66, C is 67, and so on. The decimal point is 46. A minus sign is 45. The number
0 is 48, 1 is 49, 2 is 50, and so on.
EXAMPLE

select CHR(77), CHR(46), CHR(56) from DUAL;

C C C
- - -
M . 8

CLEAR (SQL*Plus)
SEE ALSO BREAK, COLUMN, COMPUTE
FORMAT

CL[EAR] option

DESCRIPTION CLEAR clears the option.
BRE[AKS] clears breaks set by the BREAK command.
BUFF[ER] clears the current buffer.
COL[UMNS] clears options set by the COLUMN command.
COMP[UTES] clears options set by the COMPUTE command.
SCR[EEN] clears the screen.
SQL clears the SQL buffer.
TIMI[NG] deletes all timing areas created by the TIMING command.

EXAMPLES To clear computes, use this:

clear computes

To clear column definitions, use this:

clear columns

CLOB
CLOB is a datatype that supports character large objects. See Chapter 40.

CLOSE
SEE ALSO DECLARE CURSOR, FETCH, FOR, OPEN, Chapter 32
FORMAT

CLOSE cursor;

DESCRIPTION CLOSE closes the named cursor and releases its resources to Oracle for use
elsewhere. cursor must be the name of a currently open cursor.

Even though a cursor has been closed, its definition has not been lost. You can issue OPEN cursor
again, so long as the cursor was explicitly declared. A FOR loop will also implicitly OPEN a declared
cursor. See CURSOR FOR LOOP.

CLOSE 1019

1020 Part VIII: Alphabetical Reference

CLUSTER_ID
FORMAT

CLUSTER_ID (
schema .

model mining_attribute_clause)

mining_attribute_clause::=

USING

*

schema .
table . *

expr
AS alias

,

DESCRIPTION This function is for use with clustering models that have been created using the
DBMS_DATA_MINING package or with the Oracle Data Mining Java API. It returns the cluster
identifier of the predicted cluster with the highest probability for the set of predictors specified in
the mining_attribute_clause. The value returned is an Oracle NUMBER.

CLUSTER_PROBABILITY
FORMAT

CLUSTER_PROBABILITY (
schema .

model
, cluster_id

mining_attribute_clause)

mining_attribute_clause::=

USING

*

schema .
table . *

expr
AS alias

,

DESCRIPTION This function is for use with clustering models that have been created with the
DBMS_DATA_MINING package or with the Oracle Data Mining Java API. It returns a measure of the
degree of confidence of membership of an input row in a cluster associated with the specified model.

CLUSTER_SET
FORMAT

CLUSTER_SET (
schema .

model
, topN

, cutoff

mining_attribute_clause)

mining_attribute_clause::=

USING

*

schema .
table . *

expr
AS alias

,

DESCRIPTION This function is for use with clustering models that have been created with the
DBMS_DATA_MINING package or with the Oracle Data Mining Java API. It returns a varray of objects
containing all possible clusters that a given row belongs to. Each object in the varray is a pair of scalar
values containing the cluster ID and the cluster probability. The object fields are named CLUSTER_ID
and PROBABILITY, and both are an Oracle NUMBER.

COALESCE
SEE ALSO DECODE, Chapter 16
FORMAT

COALESCE(value1, value2, ...)

DESCRIPTION COALESCE will return the first non-NULL value encountered in the list of values
provided.

COLLECT
SEE ALSO COLLECTION FUNCTIONS, CAST
FORMAT

COLLECT(column)

DESCRIPTION COLLECT takes the input column value and creates a nested table of the input type
out of the rows selected. To get the results of this function, you must use it within a CAST function.

COLLECTION FUNCTIONS
Collection functions operate on nested tables and varying arrays; see Chapter 39 for details. Collection
functions available include CARDINALITY, COLLECT, POWERMULTISET, POWERMULTISET_BY_
CARDINALITY, and SET.

COLLECTION FUNCTIONS 1021

1022 Part VIII: Alphabetical Reference

COLUMN
SEE ALSO ALIAS, Chapter 6
FORMAT

COL[UMN] {column | expression}
 [ALI[AS] alias]
 [CLE[AR] | DEF[AULT]]
 [ENTMAP {ON|OFF}
 [FOLD_A[FTER]
 [FOLD_B[EFORE]
 [FOR[MAT] format]
 [HEA[DING] text
 [JUS[TIFY] {L[EFT]|C[ENTER]| R[IGHT]}]]
 [LIKE {expression | alias}]
 [NEWL[INE]]
 [NEW_V[ALUE] variable]
 [NOPRI[NT]|PRI[NT]]
 [NUL[L] text]
 [OLD_V[ALUE] variable]
 [ON | OFF]
 [WRA[PPED]|WOR[D_WRAPPED]|TRU[NCATED]]...

DESCRIPTION COLUMN controls column and column heading formatting. The options are all
cumulative, and may be entered either simultaneously on a single line, or on separate lines at any time;
the only requirement is that the word COLUMN and the column or expression must appear on each
separate line. If one of the options is repeated, the most recent specified will be in effect. COLUMN by
itself displays all the current definitions for all columns. COLUMN with only a column or expression
will show that column’s current definition.

column or expression refers to a column or expression used in the select. If an expression is used,
the expression must be entered exactly the same way that it is in the select statement. If the expression
in the select is Amount * Rate, then entering Rate * Amount in a COLUMN command will not work. If
a column or expression is given an alias in the select statement, that alias must be used here.

If you select columns with the same name from different tables (in sequential selects), a COLUMN
command for that column name will apply to both. Avoid this by assigning the columns different
aliases in the select (not with the COLUMN command’s ALIAS clause), and entering a COLUMN
command for each column’s alias.

ALIAS gives this column a new name, which then may be used to reference the column in BREAK
and COLUMN commands.

CLEAR drops the column definition.
DEFAULT leaves the column defined and ON, but drops any other options.
ENTMAP allows entity mapping to be turned on or off for selected columns in HTML output.
FOLD_A[FTER] and FOLD_B[EFORE] instruct Oracle to fold a single row of output across multiple

rows when printed. You can choose to fold the row either before or after the column.
FORMAT specifies the display format of the column. The format must be a literal like A25 or

990.99. Without FORMAT specified, the column width is the length as defined in the table.
A LONG column’s width defaults to the value of the SET LONG. Both regular CHAR and LONG

fields can have their width set by a format like FORMAT An, where n is an integer that is the column’s
new width.

A NUMBER column’s width defaults to the value of SET NUMWIDTH, but is changed by the width
in a FORMAT clause such as FORMAT 999,999.99. These options work with both SET NUMFORMAT
and the COLUMN FORMAT commands:

Format Result
, Displays a comma.

. Displays a period.

$99999 A dollar sign is placed in front of every number.

999990 Displays trailing zeroes, and a zero if the value is zero.

099999 Displays leading zeroes.

9999990 The count of nines and zeros determines the maximum digits that can be displayed.

999,999,999.99 Commas and decimals will be placed in the pattern shown.

B99999 The display will be blank if the value is zero.

C999 Displays the ISO currency symbol in this position.

99D99 Displays the decimal in the position indicated.

9.999EEEE The display will be in scientific notation (4 E’s are required).

9G999 Displays the group separator in the position shown.

L999 Displays the local currency symbol.

99999MI If the number is negative, a minus sign follows the number. The default is for the
negative sign to be on the left.

99999PR Negative numbers are displayed within < and >.

RN or rn Displays uppercase or lowercase Roman numerals. Values are 1 to 3999.

S9999 or 9999S Returns leading or trailing + for positive values, – for negative values.

TM Displays the data in the smallest number of decimal characters possible.

U999 Displays the Euro or other dual currency symbol in the specified position.

999V99 Multiplies number by 10n, where n is the number of digits to the right of V.

X Displays the hexadecimal value for the rounded value of the specified number of digits.

HEADING relabels a column heading. The default is the column name or the expression. If text has
blanks or punctuation characters, it must be in single quotes. The HEADSEP character (usually |) in text
makes SQL*Plus begin a new line. The COLUMN command will remember the current HEADSEP
character when the column is defined, and continue to use it for this column unless the column is
redefined, even if the HEADSEP character is changed.

JUSTIFY aligns the heading over the column. By default, this is RIGHT for number columns and
LEFT for anything else.

LIKE replicates the column definitions of a previously defined column for the current one, where
either the expression or label was used in the other column definition. Only those features of the other
column that have not been explicitly defined in the current column command are copied.

NEWLINE starts a new line before printing the column value.
NEW_VALUE names a variable to hold the column’s value for use in the TTITLE command. See

Chapter 6 for usage information.
NOPRINT and PRINT turn the column’s display off or on.
NULL sets text to be displayed if the column has a NULL value. The default for this is a string of

blanks as wide as the column is defined.
OFF or ON turns all these options for a column off or on without affecting its contents.
OLD_VALUE names a variable to hold the column’s value for use in the BTITLE command.
WRAPPED, WORD_WRAPPED, and TRUNCATED control how SQL*Plus displays a heading or

string value too wide to fit the column. WRAP folds the value to the next line. WORD_WRAP folds
similarly, but breaks on words. TRUNCATED truncates the value to the width of the column definition.

COLUMN 1023

1024 Part VIII: Alphabetical Reference

COMMENT
SEE ALSO Chapter 45
FORMAT

COMMENT ON
{ TABLE [schema .] { table | view | materialized view }
| COLUMN [schema .] { table . | view . | materialized view . } column
| OPERATOR [schema .] operator
| INDEXTYPE [schema .] indextype
}
IS 'text';

DESCRIPTION COMMENT inserts the comment text about an object or column into the data
dictionary.

You drop a comment from the database by setting it to an empty string (set text to ' ').
As of Oracle Database 11g, COMMENT has a new MINING MODEL clause that lets you provide

descriptive comments for a data mining model.

COMMIT
To commit means to make changes to data (inserts, updates, and deletes) permanent. Before changes
are stored, both the old and new data exist so that changes can be made, or so that the data can be
restored to its prior state (“rolled back”). When a user enters the Oracle SQL command COMMIT, all
changes from that transaction are made permanent.

COMMIT
SEE ALSO ROLLBACK, SAVEPOINT
FORMAT

COMMIT [WORK] [COMMENT 'text' | FORCE 'text' [, integer]];

DESCRIPTION COMMIT commits any changes made to the database since the last COMMIT was
executed implicitly or explicitly. WORK is optional and has no effect on usage.

COMMENT associates a text comment with the transaction. The comment can be viewed via the
data dictionary view DBA_2PC_PENDING in the event a distributed transaction fails to complete.
FORCE manually commits an in-doubt distributed transaction.

COMPOSE
SEE ALSO CONVERSION FUNCTIONS, Chapter 11
FORMAT

COMPOSE(string)

DESCRIPTION COMPOSE takes as its argument a string in any datatype, and returns a Unicode
string in its fully normalized form in the same character set as the input.
EXAMPLE To display an o with an umlaut:

select COMPOSE ('o' || UNISTR('\0308')) from DUAL;

C
-
ö

COMPUTE (SQL*Plus)
SEE ALSO BREAK, AGGREGATE FUNCTIONS
FORMAT

COMP[UTE][AVG|COU[NT]|MAX[IMUM]|MIN[IMUM]|NUM[BER]|STD|SUM|VAR[IANCE]]...
 [function LABEL label_name
 OF {expression | column | alias} ...
 ON {expression | column | alias | REPORT | ROW}...]

DESCRIPTION expression is a column or expression. COMPUTE performs computations on
columns or expressions selected from a table. It works only with the BREAK command.

By default, Oracle will use the function name (SUM, AVG, etc.) as the label for the result in the
query output. LABEL allows you to specify a label_name that overrides the default value.

OF names the column or expression whose value is to be computed. These columns also must be
in the select clause, or the COMPUTE will be ignored.

ON coordinates the COMPUTE with the BREAK command. COMPUTE prints the computed value
and restarts the computation when the ON expression’s value changes, or when a specified ROW or
REPORT break occurs. See BREAK for coordination details.

COMPUTE by itself displays the computes in effect.
AVG, MAXIMUM, MINIMUM, STD, SUM, and VARIANCE all work on expressions that are numbers.

MAXIMUM and MINIMUM also work on character expressions, but not DATEs. COUNT and NUMBER
work on any expression type.

All of these computes, except NUMBER, ignore rows with NULL values:

AVG Gives average value

COUNT Gives count of non-NULL values

MAXIMUM Gives maximum value

MINIMUM Gives minimum value

NUMBER Gives count of all rows returned

STD Gives standard deviation

SUM Gives sum of non-NULL values

VARIANCE Gives variance

Successive computes are simply put in order without commas, as in this case:

compute sum avg max of Amount Rate on report

This will compute the sum, average, and maximum of both Amount and Rate for the entire report.
EXAMPLE To calculate for each Item classification and for the entire report, enter this:

break on Report on Industry skip 1
compute sum of Volume on Industry Report

CONNECT
SEE ALSO COMMIT, DISCONNECT, Chapter 25
FORMAT

CON[NECT] [{user[/password] [@connect_identifier] |/} [AS SYSOPER|SYSDBA}]];

CONNECT 1025

1026 Part VIII: Alphabetical Reference

DESCRIPTION You must be in SQL*Plus to use this command, although you don’t need to be
logged onto Oracle (see DISCONNECT). CONNECT commits any pending changes, logs you off of
Oracle, and logs on as the specified user. If the password is absent, you are prompted for it. It is not
displayed when you type it in response to a prompt.

@connect_identifier connects to the named database. It may be on your host, or on another
computer connected via Oracle Net.

CONNECT BY
SEE ALSO Chapter 14
FORMAT

SELECT expression [,expression]...
 FROM [user.]table
 WHERE condition
CONNECT BY [PRIOR] expression = [PRIOR] expression
 START WITH expression = expression
 ORDER BY expression

DESCRIPTION CONNECT BY is an operator used in a SELECT statement to create reports on
inheritance in tree-structured data, such as company organization, family trees, and so on. START
WITH tells where in the tree to begin. These are the rules:

The position of PRIOR with respect to the CONNECT BY expressions determines which
expression identifies the root and which identifies the branches of the tree.

A WHERE clause will eliminate individuals from the tree, but not their descendants (or
ancestors, depending on the location of PRIOR).

A qualification in the CONNECT BY (particularly a not equal sign instead of the equal sign)
will eliminate both an individual and all of its descendants.

CONNECT BY cannot be used with a table join in the WHERE clause.

EXAMPLE

select Cow, Bull, LPAD(' ',6*(Level-1))||Offspring AS Offspring,
 Sex, Birthdate
 from BREEDING
connect by Offspring = PRIOR Cow
 start with Offspring = 'DELLA'
 order by Birthdate;

In this example, the clause

connect by Offspring = PRIOR Cow

means the offspring is the cow PRIOR to this one.

CONSTRAINTS
SEE ALSO CREATE TABLE, INTEGRITY CONSTRAINT, Chapter 17

■

■

■

■

FORMAT
constraint::=

inline_constraint

out_of_line_constraint

inline_ref_constraint

out_of_line_ref_constraint

inline_constraint::=

CONSTRAINT constraint_name

NOT
NULL

UNIQUE

PRIMARY KEY

references_clause

CHECK (condition)

constraint_state

out_of_line_constraint::=

CONSTRAINT constraint_name

UNIQUE (column

,

)

PRIMARY KEY (column

,

)

FOREIGN KEY (column

,

) references_clause

CHECK (condition)

constraint_state

inline_ref_constraint::=

SCOPE IS
schema .

scope_table

WITH ROWID

CONSTRAINT constraint_name
references_clause

constraint_state

CONSTRAINTS 1027

1028 Part VIII: Alphabetical Reference

out_of_line_ref_constraint::=

SCOPE FOR (
ref_col

ref_attr
) IS

schema .
scope_table

REF (
ref_col

ref_attr
) WITH ROWID

CONSTRAINT constraint_name
FOREIGN KEY (

ref_col

ref_attr
) references_clause

constraint_state

references_clause::=

REFERENCES
schema .

object
(column)

ON DELETE
CASCADE

SET NULL

constraint_state::=

NOT
DEFERRABLE

INITIALLY
IMMEDIATE

DEFERRED

RELY

NORELY

using_index_clause

ENABLE

DISABLE

VALIDATE

NOVALIDATE

exceptions_clause

using_index_clause::=

USING INDEX

schema .
index

(create_index_statement)

index_properties

index_properties::=

global_partitioned_index

local_partitioned_index

index_attributes

INDEXTYPE IS
domain_index_clause

XMLIndex_clause

index_attributes::=

physical_attributes_clause

logging_clause

ONLINE

TABLESPACE
tablespace

DEFAULT

key_compression

SORT

NOSORT

REVERSE

VISIBLE

INVISIBLE

parallel_clause

exceptions_clause::=

EXCEPTIONS INTO
schema .

table

DESCRIPTION Constraints are defined with the RELATIONAL_PROPERTIES clause of the CREATE
TABLE and ALTER TABLE commands. You use the constraints clauses to create a constraint or to alter
an existing constraint. You can enable and disable constraints. If you disable a constraint and then try
to re-enable it, Oracle will check the data. If the constraint cannot be re-enabled, Oracle can write the
exceptions out to a separate table for review.

For PRIMARY KEY and UNIQUE constraints, Oracle creates indexes. As part of the constraint
clause for those constraints, you can use the USING INDEX clause to specify the tablespace and
storage for the index.

CONSTRAINTS 1029

1030 Part VIII: Alphabetical Reference

CONTAINS
CONTAINS is used to evaluate text searches that use CONTEXT indexes within Oracle Text. Supported
text search operators for CONTAINS are shown in the following table:

Operator Description
OR Returns a record if either search term has a score that exceeds the threshold.

| Same as OR.

AND Returns a record if both search terms have a score that exceeds the threshold.

& Same as AND.

ACCUM Returns a record if the sum of the search terms’ scores exceeds the threshold.

, Same as ACCUM.

MINUS Returns a record if the score of the first search minus the score of the second search
exceeds the threshold.

- Same as MINUS.

* Assigns different weights to the score of the searches.

NEAR The score will be based on how near the search terms are to each other in the
searched text.

; Same as NEAR.

{} Encloses reserved words such as AND if they are part of the search term.

% Multiple-character wildcard.

_ Single-character wildcard.

$ Performs stem expansion of the search term prior to performing the search.

? Performs a fuzzy match (allowing for misspellings) of the search term prior to
performing the search.

! Performs a SOUNDEX (phonetic) search.

() Specifies the order in which search criteria are evaluated.

CONVERSION FUNCTIONS
SEE ALSO CHARACTER FUNCTIONS, NUMBER FUNCTIONS, AGGREGATE FUNCTIONS, Chapter 11
DESCRIPTION The following is an alphabetical list of all current conversion and transformation
functions in Oracle version of SQL.

Function Name Definition
ASCIISTR Translates a string in any character set and returns an ASCII string in the

database character set.

BIN_TO_NUM Converts a binary value to its numerical equivalent.

CAST CASTs one built-in or collection type to another; commonly used with nested
tables and varying arrays.

CHARTOROWID Changes a character string to act like an internal Oracle row identifier, or ROWID.

COMPOSE Translates a string in any datatype to a Unicode string in its fully normalized
form in the same character set as the input.

CONVERT CONVERTs a character string from one national language character set to
another.

Function Name Definition
DECOMPOSE Translates a string in any datatype to a Unicode string after canonical

decomposition in the same character set as the input.

HEXTORAW Changes a character string of hex numbers into binary.

NUMTODSINTERVAL Converts a NUMBER to an INTERVAL DAY TO SECOND literal.

NUMTOYMINTERVAL Converts a NUMBER to an INTERVAL YEAR TO MONTH literal.

RAWTOHEX Changes a string of binary numbers to a character string of hex numbers.

RAWTONHEX Converts RAW to an NVARCHAR2 character value containing its hexadecimal
equivalent.

ROWIDTOCHAR Changes an internal Oracle row identifier, or ROWID, to a character string.

ROWIDTONCHAR Converts a ROWID value to an NVARCHAR2 datatype.

SCN_TO_TIMESTAMP Converts a system change number to an approximate timestamp.

TIMESTAMP_TO_SCN Converts a timestamp to an approximate system change number.

TO_BINARY_DOUBLE Returns a double-precision floating-point number.

TO_BINARY_FLOAT Returns a single-precision floating-point number.

TO_CHAR Converts a NUMBER or DATE to a character string.

TO_CLOB Converts NCLOB values in a LOB column or other character strings to CLOB
values.

TO_DATE Converts a NUMBER, CHAR, or VARCHAR2 to a DATE (an Oracle datatype).

TO_DSINTERVAL Converts a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to an INTERVAL DAY TO SECOND type.

TO_LOB Converts a LONG to a LOB as part of an INSERT AS SELECT.

TO_MULTI_BYTE Converts the single-byte characters in a character string to multibyte characters.

TO_NCHAR Converts a character string, NUMBER, or DATE from the database character set
to the national character set.

TO_NCLOB Converts CLOB values in a LOB column or other character strings to NCLOB
values.

TO_NUMBER Converts a CHAR or VARCHAR2 to a number.

TO_SINGLE_BYTE Converts the multibyte characters in a CHAR or VARCHAR2 to single bytes.

TO_TIMESTAMP Converts a character string to a value of TIMESTAMP datatype.

TO_TIMESTAMP_TZ Converts a character string to a value of TIMESTAMP WITH TIME ZONE datatype.

TO_YMINTERVAL Converts a character string of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to an INTERVAL YEAR TO MONTH type.

TRANSLATE…USING TRANSLATEs characters in a string into different characters.

UNISTR Converts a string into Unicode in the database Unicode character set.

CONVERT
SEE ALSO CONVERSION FUNCTIONS
FORMAT

CONVERT(string,[destination_set,[source_set]])

CONVERT 1031

1032 Part VIII: Alphabetical Reference

DESCRIPTION CONVERT is used to convert the characters in string from one standard bit
representation to another, such as from US7ASCII (the default if either set isn’t entered) to WE8DEC.
This is typically done when data entered into a column on one computer contains characters that can’t
be properly displayed or printed on another computer. CONVERT allows a reasonable translation of
one standard to the other in most cases. The most common sets include the following:

US7ASCII: U.S. 7-bit ASCII character set

WE8ISO8859P1: ISO 8859-1 West European 8-bit character set

EE8MSWIN1250: Microsoft Windows East European Code Page 1250

WE8MSWIN1252: Microsoft Windows West European Code Page 1252

WE8EBCDIC1047: IBM West European EBCDIC Code Page 1047

JA16SJISTILDE: Japanese Shift-JIS character set, compatible with MS Code Page 932

ZHT16MSWIN950: Microsoft Windows Traditional Chinese Code Page 950

UTF8: Unicode 3.0 Universal character set CESU-8 encoding form

AL32UTF8: Unicode 5.0 Universal character set UTF-8 encoding form

COPY (SQL*Plus)
NOTE
The SQL*Plus COPY command is not being enhanced to handle
datatypes or features introduced with, or after, Oracle8i. The COPY
command is likely to be made obsolete in a future release.

SEE ALSO CREATE DATABASE LINK, Chapter 25
FORMAT

COPY [FROM user/password@database]
 [TO user/password@database]
 {APPEND | CREATE | INSERT | REPLACE}
 table [(column [,column]...)]
 USING query

DESCRIPTION COPY copies FROM a table TO a table in another computer using Oracle Net.
FROM is the username, password, and database of the source table, and TO is the destination table.
Either FROM or TO may be omitted, in which case the user’s default database will be used for the
missing clause. The source and destination databases must not be the same, so only one of the FROM
and TO clauses may be absent.

APPEND adds to the destination table; if the table does not exist, it is created. CREATE requires that
the destination table be created; if it already exists, a “table already exists” error occurs. INSERT adds
to the destination table; if the table does not exist, a “table does not exist” error occurs. REPLACE drops
the data in the destination table and replaces it with the data from the source table; if the table does not
exist, it is created.

table is the name of the destination table. column is the name(s) of the column(s) in the destination
table. If named, the number of columns must be the same as in the query. If no columns are named, the
copied columns will have the same names in the destination table as they had in the source table.
query identifies the source table and determines which rows and columns will be copied from it.

SET LONG (see SET) determines the length of a long field that can be copied. LONG columns with
data longer than the value of LONG will be truncated. SET COPYCOMMIT determines how many sets
of rows get copied before a commit. SET ARRAYSIZE determines how many rows are in a set.

■

■

■

■

■

■

■

■

■

EXAMPLE This example copies BOOKSHELF_CHECKOUT from the EDMESTON database to the
database the local SQL*Plus user is connected to. The table LOCAL_CHECKOUT is created by the
copy. The columns may be renamed at the destination. Note the use of the dash (-) at the end of each
line. This is required. The command does not end with a semicolon (since it is a SQL*Plus command,
not a SQL command). See the SET command for options related to the COPY command.

copy from PRACTICE/PRACTICE@EDMESTON -
create LOCAL_CHECKOUT (Borrower, Title) -
 using select Name, Title -
 from BOOKSHELF_CHECKOUT

CORR
SEE ALSO AGGREGATE FUNCTIONS
FORMAT

CORR (expr1 , expr2) [OVER (analytic_clause)]

DESCRIPTION CORR returns the coefficient of correlation of a set of number pairs. Both expr1 and
expr2 are number expressions. Oracle applies the function to the set of (expr1, expr2) after eliminating
the pairs for which either expr1 or expr2 is NULL. Then Oracle makes the following computation:

COVAR_POP(expr1, expr2) / (STDDEV_POP(expr1) * STDDEV_POP(expr2))

The function returns a value of type NUMBER. If the function is applied to an empty set, it returns
NULL.

CORR_K and CORR_S
SEE ALSO CORR
FORMAT

{CORR_K | CORR_S }
 (expr1, expr2 [, { COEFFICIENT |ONE_SIDED_SIG|TWO_SIDED_SIG}])

DESCRIPTION The CORR_K and CORR_S functions support nonparametric or rank correlations.
Correlation coefficients take a value ranging from 1 to –1, where 1 indicates a perfect relationship and
–1 a perfect inverse relationship. The arguments must be either numeric or implicitly converted to a
numeric datatype. ONE_SIDED_SIG is for one-tailed significance of the correlation, TWO_SIDED_SIG
is for two-tailed significance.

COS
SEE ALSO ACOS, ASIN, ATAN, ATAN2, COSH, EXP, LN, LOG, SIN, SINH, TAN, TANH
FORMAT

COS(value)

DESCRIPTION COS returns the cosine of a value, an angle expressed in radians. You can convert a
degree angle into radians by multiplying it by pi/180.

COSH
SEE ALSO ACOS, ASIN, ATAN, ATAN2, COS, EXP, LN, LOG, SIN, SINH, TAN, TANH
FORMAT

COSH(value)

DESCRIPTION COSH returns the hyperbolic cosine of a value.

COSH 1033

1034 Part VIII: Alphabetical Reference

COUNT
SEE ALSO AGGREGATE FUNCTIONS, Chapters 9 and 12
FORMAT

COUNT ({ * | [DISTINCT | ALL] expr }) [OVER (analytic_clause)]

DESCRIPTION COUNT counts the number of rows in which expression is non-NULL, which is
then returned by the query. With DISTINCT, COUNT counts only the distinct non-NULL rows. With *,
COUNT counts all rows, whether NULL or not.

COVAR_POP
SEE ALSO AGGREGATE FUNCTIONS
FORMAT

COVAR_POP (expr1 , expr2) [OVER (analytic_clause)]

DESCRIPTION COVAR_POP returns the population covariance of a set of number pairs. You can
use it as an aggregate or analytic function.

Both expr1 and expr2 are number expressions. Oracle applies the function to the set of (expr1,
expr2) pairs after eliminating all pairs for which either expr1 or expr2 is NULL. Then Oracle makes the
following computation:

(SUM(expr1 * expr2) - SUM(expr2) * SUM(expr1) / n) / n

where n is the number of (expr1, expr2) pairs where neither expr1 nor expr2 is NULL.

COVAR_SAMP
SEE ALSO AGGREGATE FUNCTIONS
FORMAT

COVAR_POP (expr1 , expr2) [OVER (analytic_clause)]

DESCRIPTION COVAR_SAMP returns the sample covariance of a set of number pairs. You can use
it as an aggregate or analytic function.

Both expr1 and expr2 are number expressions. Oracle applies the function to the set of (expr1,
expr2) pairs after eliminating all pairs for which either expr1 or expr2 is NULL. Then Oracle makes the
following computation:

(SUM(expr1 * expr2) - SUM(expr1) * SUM(expr2) / n) / (n-1)

where n is the number of (expr1, expr2) pairs where neither expr1 nor expr2 is NULL.

CREATE CLUSTER
SEE ALSO CREATE INDEX, CREATE TABLE, Chapter 17

FORMAT
create_cluster::=

CREATE CLUSTER
schema .

cluster (column datatype
SORT

,

)

physical_attributes_clause

SIZE size_clause

TABLESPACE tablespace

INDEX

SINGLE TABLE
HASHKEYS integer

HASH IS expr

parallel_clause

N0ROWDEPENDENCIES

ROWDEPENDENCIES

CACHE

N0CACHE
;

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

parallel_clause::=

NOPARALLEL

PARALLEL
integer

DESCRIPTION CREATE CLUSTER creates a cluster for one or more tables. Tables are added to the
cluster using CREATE TABLE with the CLUSTER clause. CREATE CLUSTER requires at least one cluster
column from each of the tables. These must have the same datatype and size, but are not required to
have the same name. For the tables in a cluster, rows with the same cluster column values are kept
together on disk in the same area, the same logical block(s). This can improve performance when the
cluster columns are the columns by which the tables are usually joined.

CREATE CLUSTER 1035

1036 Part VIII: Alphabetical Reference

Each distinct value in each cluster column is stored only once, regardless of whether it occurs once or
many times in the tables and rows. This typically can reduce the amount of disk space needed to store the
tables, but each table continues to appear as if it contains all of its own data. Tables with LONG columns
cannot be clustered.

cluster is the name created for the cluster. column and datatype follow the method of CREATE TABLE,
except that NULL and NOT NULL cannot be specified. However, in the actual CREATE TABLE statement,
at least one cluster column in a cluster must be NOT NULL. SIZE sets the size in bytes for a logical block
(not a physical block). SPACE is the cluster’s initial disk allocation, as used in CREATE TABLE.

SIZE should be the average amount of space needed to store all the rows from all the clustered
tables that are associated with a single cluster key. A small SIZE value may increase the time needed
to access tables in the cluster, but can reduce disk space usage. SIZE should be a proper divisor of the
physical block size. If not, Oracle will use the next larger divisor. If SIZE exceeds the physical block
size, Oracle will use the physical block size instead.

By default, the cluster is indexed, and you must create an index on the cluster key before putting
any data in the cluster. If you specify the hash cluster form, however, you don’t need to (and can’t)
create an index on the cluster key. Instead, Oracle uses a hash function to store the rows of the table.

You can create your own hash value as a column of the table and use that for hashing with the
HASH IS clause to tell Oracle to use that column as the hash value. Otherwise, Oracle uses an internal
hash function based on the columns of the cluster key. The HASHKEYS clause actually creates the hash
cluster and specifies the number of hash values, rounded to the nearest prime number. The minimum
value is 2.

See STORAGE for details on the common storage clause parameters.

CREATE CONTEXT
FORMAT

CREATE [OR REPLACE] CONTEXT namespace USING [schema .] package
[INITIALIZED { EXTERNALLY | GLOBALLY }
| ACCESSED GLOBALLY] ;

DESCRIPTION A context is a set of attributes used to secure an application. CREATE CONTEXT
creates a namespace for a context and associates the namespace with the externally created package
that sets the context. To create a context namespace, you must have the CREATE ANY CONTEXT
system privilege.

CREATE CONTROLFILE
SEE ALSO ALTER DATABASE, CREATE DATABASE

FORMAT
create_controlfile::=

CREATE CONTROLFILE
REUSE SET

DATABASE database

logfile_clause RESETL0GS

NORESETL0GS

DATAFILE file_specification

,

MAXLOGFILES integer

MAXLOGMEMBERS integer

MAXLOGHISTORY integer

MAXDATAFILES integer

MAXINSTANCES integer

ARCHIVELOG

NOARCHIVELOG

FORCE LOGGING character_set_clause
;

logfile_clause::=

LOGFILE
GROUP integer

file_specification

,

character_set_clause::=

CHARACTER SET character_set

DESCRIPTION You can use the CREATE CONTROLFILE command to re-create a control file if you
have lost your current control file to media failure, if you want to change the name of your database,
or if you want to change one of the options for the redo log file or a datafile. In general, this command
should be used only by experienced database administrators.

NOTE
Perform a full offline backup of all of your database files before using
this command.

CREATE CONTROLFILE 1037

1038 Part VIII: Alphabetical Reference

The REUSE option lets existing control files be reused. If you specify the name of an existing
control file but do not use the REUSE option, the command will return an error. The SET option
changes the name of the database, specified by the DATABASE clause. The LOGFILE clause specifies
the redo log file groups, all of which must exist. The RESETLOGS versus NORESETLOGS clause tells
Oracle to reset the current logs or not. The DATAFILE line specifies the datafiles for the database, all of
which must exist.

The MAXLOGFILES option specifies the maximum number of redo log file groups that can be
created. The MAXLOGMEMBERS option specifies the number of copies for a redo log group. The
MAXLOGHISTORY option specifies the number of archived redo log file groups for Real Application
Clusters. The MAXDATAFILES option specifies the maximum number of datafiles that can ever be
created for the database. The MAXINSTANCES option gives the maximum number of Oracle instances
that can mount and open the database. The ARCHIVELOG and NOARCHIVELOG options turn
archiving of the redo log files on and off, respectively.

The CREATE CONTROLFILE command needed for an existing database can be generated via the
ALTER DATABASE BACKUP CONTROLFILE TO TRACE command.

CREATE DATABASE
SEE ALSO ALTER DATABASE, CREATE CONTROLFILE, CREATE ROLLBACK SEGMENT, CREATE
TABLESPACE, SHUTDOWN, STARTUP, Chapters 2 and 51
FORMAT
create_database::=

CREATE DATABASE
database

USER SYS IDENTIFIED BY password

USER SYSTEM IDENTIFIED BY password

CONTROLFILE REUSE

MAXDATAFILES integer

MAXINSTANCES integer

CHARACTER SET charset

NATIONAL CHARACTER SET charset

SET DEFAULT
BIGFILE

SMALLFILE
TABLESPACE

database_logging_clauses

tablespace_clauses

set_time_zone_clause

;

database_logging_clauses::=

LOGFILE
GROUP integer

file_specification

,

MAXLOGFILES integer

MAXLOGMEMBERS integer

MAXLOGHISTORY integer

ARCHIVELOG

NOARCHIVELOG

FORCE LOGGING t

tablespace_clauses::=

EXTENT MANAGEMENT LOCAL

DATAFILE file_specification

,

SYSAUX DATAFILE file_specification

,

default_tablespace

default_temp_tablespace

undo_tablespace

default_tablespace::=

DEFAULT TABLESPACE tablespace
DATAFILE datafile_tempfile_spec

extent_management_clause

default_temp_tablespace::=

BIGFILE

SMALLFILE
DEFAULT TEMPORARY TABLESPACE tablespace

TEMPFILE file_specification

,

extent_management_clause

CREATE DATABASE 1039

1040 Part VIII: Alphabetical Reference

extent_management_clause::=

EXTENT MANAGEMENT
LOCAL

AUTOALLOCATE

UNIFORM
SIZE size_clause

DICTIONARY

undo_tablespace::=

BIGFILE

SMALL
UNDO TABLESPACE tablespace

DATAFILE file_specification

,

set_time_zone_clause::=

SET TIME_ZONE = ’

+

–
hh : mi

time_zone_region

’

DESCRIPTION database is the database name, and must have eight characters or fewer. DB_NAME
in init.ora contains the default database name. In general, this command should be used only by
experienced database administrators.

NOTE
Using this command in an existing database will erase the specified
datafiles.

file_definition defines the redo log file and datafile names and sizes.

'file' [SIZE integer [K | M] [REUSE]

SIZE is the number of bytes set aside for this file. Suffixing this with K multiplies the value by 1024;
M multiplies it by 1048576 (G and T are also supported). REUSE (without SIZE) means destroy the
contents of any file by this name and associate the name with this database. REUSE with SIZE creates
the file if it doesn’t exist, and checks its size if it does exist. CONTROLFILE REUSE overwrites the
existing control files defined by the CONTROL_FILES parameter in the initialization parameter file.

LOGFILE names the files to be used as redo log files. If this parameter is not used, Oracle creates
two by default. MAXLOGFILES overrides the LOG_FILES initialization parameter, and defines the
maximum number of redo log files that can ever be created for this database. This number cannot be
increased later except by re-creating the control file. The minimum number for files is two. A high
number only makes a somewhat larger control file.

DATAFILE names the files to be used for the database itself. MAXDATAFILES sets the absolute
upper limit for files that can be created for this database, and overrides the DB_FILES initialization
parameter. A high number only makes a somewhat larger control file.

You can specify Automatic Storage Management files as well as file system files. When the
AUTOEXTEND option is turned ON for a datafile, the datafile will dynamically extend as needed
in increments of NEXT size, to a maximum of MAXSIZE (or UNLIMITED).

MAXINSTANCES overrides the INSTANCES parameter in init.ora and sets the maximum number
of simultaneous instances that can mount and open this database.

ARCHIVELOG and NOARCHIVELOG define the way redo log files are used when the database
is first created. NOARCHIVELOG is the default, and means that redo log files will get reused without
saving their contents elsewhere. This provides instance recovery but will not recover from a media
failure, such as a disk crash. ARCHIVELOG forces redo log files to be archived (usually to another disk
or a tape), so that you can recover from a media failure. This mode also supports instance recovery.
This parameter can be reset by ALTER DATABASE.

The MAXLOGMEMBERS option specifies the maximum number of copies of a redo log file group.
The MAXLOGHISTORY option specifies the maximum number of archived redo log files, useful only
for the Real Application Clusters when you are archiving redo log files. The CHARACTER SET option
specifies the character set used to store data, which depends on the operating system.

For more automated handling of undo (rollback) segments, you can specify the UNDO TABLESPACE
clause to allocate a tablespace specifically to hold undo data. The database must be started in Automatic
Undo Management (AUM) mode.

You can use the DEFAULT TEMPORARY TABLESPACE clause to designate a non-SYSTEM tablespace
as the default temporary tablespace for all new users created in the database.

CREATE DATABASE LINK
SEE ALSO CREATE SYNONYM, SELECT, Chapter 25
FORMAT
create_database_link::=

CREATE
SHARED PUBLIC

DATABASE LINK dblink

CONNECT TO

CURRENT_USER

user IDENTIFIED BY password
dblink_authentication

dblink_authentication

USING connect_string
;

dblink_authentication::=

AUTHENTICATED BY user IDENTIFIED BY password

DESCRIPTION dblink is the name given to the link. connect_string is the definition of the remote
database that can be accessed through Oracle Net and defines the link between a local database and a
username on a remote database. PUBLIC links can be created only by a user with the CREATE PUBLIC
DATABASE LINK system privilege, but are then available to all users except those who have created a
private link with the same name. If PUBLIC isn’t specified, the link is only available to the user who
executed the CREATE DATABASE LINK statement. connect_string is the Oracle Net service name for
the remote database.

CREATE DATABASE LINK 1041

1042 Part VIII: Alphabetical Reference

Remote tables can be accessed just like local tables, except that the table name must be suffixed by
@link in the FROM clause of the SELECT statement. Most systems set the maximum number of simultaneous
links to four. The DBA can increase this number with the OPEN_LINKS parameter in init.ora.

Tree-structured queries are limited. They may not use the PRIOR operator except in the CONNECT
BY clause. START WITH cannot contain a subquery. CONNECT BY and START WITH cannot use the
function USERENV('ENTRYID'), or the pseudo-column RowNum.

To create a database link, you must have the CREATE DATABASE LINK privilege in the local
database, and the CREATE SESSION privilege in a remote database. To create a public database link,
you must have the CREATE PUBLIC DATABASE LINK system privilege.

If you use the CONNECT TO CURRENT_USER clause, the link will attempt to open a connection in
the remote database by using your current username and password. You therefore need to coordinate
any password changes you make between the local database and the remote database, or else database
links may stop working.

If you use the shared server architecture, you can create SHARED database links that eliminate the
need for many separate dedicated connections via links. When you create a SHARED link, you must
supply a valid username and password in the remote database to use as an authentication for the
connection.
EXAMPLES The following defines a link named EDMESTON_BOOKS that connects to the Practice
username in the EDMESTON database:

create database link EDMESTON_BOOKS
connect to Practice identified by Practice
 using 'EDMESTON';

You now can query Practice’s tables like this:

select Title, Publisher
 from BOOKSHELF@EDMESTON_BOOKS;

A synonym could also be created to hide the remoteness of the tables:

create synonym BOOKSHELF for BOOKSHELF@EDMESTON_BOOKS;

CREATE DIMENSION
SEE ALSO ALTER DIMENSION, DROP DIMENSION, Chapter 26
FORMAT
create_dimension::=

CREATE DIMENSION
schema .

dimension level_clause

hierarchy_clause

attribute_clause

extended_attribute_clause

;

level_clause::=

LEVEL level IS

level_table . level_column

(level_table . level_column

,

)

SKIP WHEN NULL

hierarchy_clause::=

HIERARCHY hierarchy (child_level CHILD OF parent_level
dimension_join_clause

)

dimension_join_clause::=

JOIN KEY

child_key_column

(child_key_column

,

)

REFERENCES parent_level

attribute_clause::=

ATTRIBUTE level DETERMINES

dependent_column

(dependent_column

,

)

extended_attribute_clause::=

ATTRIBUTE attribute LEVEL level DETERMINES

dependent_column

(dependent_column

,

)

DESCRIPTION CREATE DIMENSION creates hierarchies among related columns in tables, for use
by the optimizer. The optimizer uses dimension values when determining whether a materialized view
will return the same data as its base table. To create a dimension, you must have the CREATE DIMENSION
privilege; to create a dimension in another user’s schema, you must have the CREATE ANY DIMENSION
privilege.

LEVEL defines the level within the dimension. HIERARCHY defines the relationships among the
levels. ATTRIBUTE assigns specific attributes to levels within the dimension. JOIN_KEY defines the join
clauses between the levels.
EXAMPLES Consider a geography dimension. Continents are divided into countries, so there is
a hierarchy between country data and continent data. For a table named COUNTRY, with columns
Country and Continent, and a second table named CONTINENT, with a column named Continent:

create table CONTINENT (
 Continent VARCHAR2(30));

create table COUNTRY (
Country VARCHAR2(30) not null,
Continent VARCHAR2(30));

create dimension GEOGRAPHY

CREATE DIMENSION 1043

1044 Part VIII: Alphabetical Reference

 level COUNTRY_ID is COUNTRY.Country
 level CONTINENT_ID is CONTINENT.Continent
 hierarchy COUNTRY_ROLLUP (
 COUNTRY_ID child of
 CONTINENT_ID
 join key COUNTRY.Continent references CONTINENT_ID);

CREATE DIRECTORY
SEE ALSO BFILE, Chapters 28 and 40
FORMAT

CREATE [OR REPLACE] DIRECTORY directory AS 'path_name';

DESCRIPTION Within Oracle, a “directory” is an alias for an operating system directory. You must
create a directory prior to accessing BFILE datatype values or external tables.

CREATE DISKGROUP
SEE ALSO ALTER DISKGROUP, DROP DISKGROUP, Chapter 51
FORMAT
create_diskgroup::=

CREATE DISKGROUP diskgroup_name

HIGH

NORMAL

EXTERNAL

REDUNDANCY

FAILGROUP failgroup_name
DISK qualified_disk_clause

,

ATTRIBUTE ’ attribute_name ’ = ’ attribute_value ’

,

;

qualified_disk_clause::=

search_string
NAME disk_name SIZE size_clause

FORCE

NOFORCE

DESCRIPTION

NOTE
CREATE DISKGROUP is valid only if you are using Automatic Storage
Management (ASM) and you have started an ASM instance.

CREATE DISKGROUP creates a collection of disks. Oracle manages a disk group as a logical unit
and evenly spreads each file across the disks to balance I/O. Oracle automatically distributes database
files across the available disks in disk groups and rebalances the storage when the storage configuration
changes. CREATE DISKGROUP creates a disk group, assigns disks to the disk group, and mounts the
disk group for the first time.

CREATE FLASHBACK ARCHIVE
SEE ALSO ALTER FLASHBACK ARCHIVE, DROP FLASHBACK ARCHIVE
FORMAT
create_flashback_archive::=

CREATE FLASHBACK ARCHIVE
DEFAULT

flashback_archive

TABLESPACE tablespace
flashback_archive_quota

flashback_archive_retention

flashback_archive_quota::=

QUOTA integer

M

G

T

P

flashback_archive_retention::=

RETENTION integer

YEAR

MONTH

DAY

DESCRIPTION Use CREATE FLASHBACK ARCHIVE to create a flashback data archive, which
provides the ability to automatically track and archive transactional data changes to specified database
objects. A flashback data archive consists of multiple tablespaces and stores historic data from all
transactions against tracked tables.

Flashback data archives retain historical data for the time duration specified using the RETENTION
parameter. Historical data can be queried using the flashback query AS OF clause. Archived historic
data that has aged beyond the specified retention period is automatically purged.

You must have the FLASHBACK ARCHIVE ADMINISTER system privilege to create a flashback data
archive. In addition, you must have the CREATE TABLESPACE system privilege to create a flashback
data archive, as well as a sufficient quota on the tablespace in which the historical information will
reside. To designate a flashback data archive as the system default flashback data archive, you must
be logged in as SYSDBA.

CREATE FLASHBACK ARCHIVE 1045

1046 Part VIII: Alphabetical Reference

CREATE FUNCTION
SEE ALSO ALTER FUNCTION, BLOCK STRUCTURE, CREATE LIBRARY, CREATE PACKAGE,
CREATE PROCEDURE, DATATYPES, DROP FUNCTION, Chapter 35
FORMAT
create_function::=

CREATE
OR REPLACE

FUNCTION
schema .

function

(argument

IN

OUT

IN OUT NOCOPY
datatype

,

)
RETURN datatype

invoker_rights_clause

DETERMINISTIC

parallel_enable_clause

AGGREGATE

PIPELINED
USING

schema .
implementation_type

PIPELINED IS

AS

pl/sql_function_body

call_spec

;

invoker_rights_clause::=

AUTHID
CURRENT_USER

DEFINER

parallel_enable_clause::=

PARALLEL_ENABLE

(PARTITION argument BY

ANY

HASH

RANGE
(column

,

)

)
streaming_clause

streaming_clause::=

ORDER

CLUSTER
expr BY (column

,

)

call_spec::=

LANGUAGE
Java_declaration

C_declaration

Java_declaration::=

JAVA NAME string

C_declaration::=

C
NAME name

LIBRARY lib_name
AGENT IN (argument

,

)

WITH CONTEXT PARAMETERS (parameter

,

)

DESCRIPTION function is the name of the function being defined. A function may have parameters
and named arguments of a certain datatype, and every function returns a value of a certain datatype as
specified by the RETURN clause. The PL/SQL block defines the behavior of the function as a series of
declarations, PL/SQL program statements, and exceptions.

The IN qualifier means that you have to specify a value for the parameter when you call the function,
but since you always have to do this for a function, the syntax is optional. In a procedure, you can have
other kinds of parameters. The difference between a function and a procedure is that a function returns a
value to the calling environment.

In order to create a function, you must have the CREATE PROCEDURE system privilege. To create a
function in another user’s account, you must have the CREATE ANY PROCEDURE system privilege.

Your function can use C libraries that are stored outside of the database (see CREATE LIBRARY). If
you use Java within your function, you can provide a Java declaration within the LANGUAGE clause.
The INVOKER_RIGHTS clause lets you specify whether the function executes with the privileges of the
function owner (the definer) or the current user (the invoker).

CREATE FUNCTION 1047

1048 Part VIII: Alphabetical Reference

CREATE INDEX
SEE ALSO ANALYZE, ALTER INDEX, DROP INDEX, INTEGRITY CONSTRAINT, STORAGE,
Chapters 17 and 46
FORMAT
create_index::=

CREATE

UNIQUE

BITMAP
INDEX

schema .
index

ON

cluster_index_clause

table_index_clause

bitmap_join_index_clause

UNUSABLE
;

cluster_index_clause::=

CLUSTER
schema .

cluster index_attributes

table_index_clause::=

schema .
table

t_alias
(index_expr

ASC

DESC

,

)
index_properties

bitmap_join_index_clause::=

schema .
table (

schema .
table .

t_alias .
column

ASC

DESC

,

)

FROM
schema .

table
t_alias

,

WHERE condition
local_partitioned_index

index_attributes

index_expr::=

column

column_expression

index_properties::=

global_partitioned_index

local_partitioned_index

index_attributes

INDEXTYPE IS
domain_index_clause

XMLIndex_clause

index_attributes::=

physical_attributes_clause

logging_clause

ONLINE

TABLESPACE
tablespace

DEFAULT

key_compression

SORT

NOSORT

REVERSE

VISIBLE

INVISIBLE

parallel_clause

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

CREATE INDEX 1049

1050 Part VIII: Alphabetical Reference

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

key_compression::=

COMPRESS
integer

NOCOMPRESS

domain_index_clause::=

indextype
local_domain_index_clause parallel_clause PARAMETERS (’ ODCI_parameters ’)

local_domain_index_clause::=

LOCAL
(PARTITION partition

PARAMETERS (’ ODCI_parameters ’)

,

)

XMLIndex_clause::=

XDB .
XMLINDEX

local_XMLIndex_clause parallel_clause

PARAMETERS (’ XMLIndex_parameters ’)

local_XMLIndex_clause::=

LOCAL
(PARTITION partition

PARAMETERS ’ XMLIndex_parameters ’

,

)

global_partitioned_index::=

GLOBAL PARTITION BY

RANGE (column_list) (index_partitioning_clause)

HASH (column_list)
individual_hash_partitions

hash_partitions_by_quantity

individual_hash_partitions::=

(PARTITION
partition partitioning_storage_clause

,

)

partitioning_storage_clause::=

TABLESPACE tablespace

OVERFLOW
TABLESPACE tablespace

table_compression

key_compression

LOB_partitioning_storage

VARRAY varray_item STORE AS

SECUREFILE

BASICFILE
LOB LOB_segname

LOB_partitioning_storage::=

LOB (LOB_item)

STORE AS

BASICFILE

SECUREFILE

LOB_segname
(TABLESPACE tablespace)

(TABLESPACE tablespace)

hash_partitions_by_quantity::=

PARTITIONS hash_partition_quantity
STORE IN (tablespace

,

)

key_compression

table_compression OVERFLOW STORE IN (tablespace

,

)

CREATE INDEX 1051

1052 Part VIII: Alphabetical Reference

index_partitioning_clause::=

PARTITION
partition

VALUES LESS THAN (literal

,

)
segment_attributes_clause

local_partitioned_index::=

LOCAL

on_range_partitioned_table

on_list_partitioned_table

on_hash_partitioned_table

on_comp_partitioned_table

on_range_partitioned_table::=

(PARTITION
partition

segment_attributes_clause

key_compression

,

)

on_list_partitioned_table::=

(PARTITION
partition

segment_attributes_clause

key_compression

,

)

segment_attributes_clause::=

physical_attributes_clause

TABLESPACE tablespace

logging_clause

on_hash_partitioned_table::=

STORE IN (tablespace

,

)

(PARTITION
partition TABLESPACE tablespace key_compression

,

)

on_comp_partitioned_table::=

STORE IN (tablespace

,

)

(PARTITION
partition

segment_attribute_clause

key_compression index_subpartition_clause

,

)

index_subpartition_clause::=

STORE IN (tablespace

,

)

(SUBPARTITION
subpartition TABLESPACE tablespace key_compression

,

)

parallel_clause::=

NOPARALLEL

PARALLEL
integer

DESCRIPTION index is a name you assign to this index. It’s usually a good idea to make it reflect
the table and columns being indexed. table and column(s) are the table and column(s) for which the
index is to be created. A unique index guarantees that each indexed row is unique on the values of the
index columns. You can use the UNIQUE constraint on the columns to automatically create unique
indexes. Specifying multiple columns will create a composite index. ASC and DESC mean ascending
and descending. CLUSTER is the name of the cluster key that is indexed for a cluster. Clusters must
have their keys indexed for their associated tables to be accessed. PCTFREE is the percentage of space
to leave free in the index for new entries and updates. The minimum is zero.

TABLESPACE is the name of the tablespace to which this index is assigned. The physical attributes
section contains subclauses that are described under STORAGE. NOSORT is an option whose primary
value is in reducing the time to create an index if, and only if, the values in the column being indexed
are already in ascending order. It doesn’t harm anything if they later fall out of ascending order, but
NOSORT works only if they are in order when the index is created. If the rows are not in order,
CREATE INDEX will return an error message, will not damage anything, and will allow you to rerun
it without the NOSORT option.

PARALLEL, along with DEGREE and INSTANCES, specifies the parallel characteristics of the index.
DEGREE specifies the number of query servers to use to create the index; INSTANCES specifies how
the index is to be split among instances of Real Application Clusters for parallel query processing. An
integer n specifies that the index is to be split among the specified number of available instances.

CREATE INDEX 1053

1054 Part VIII: Alphabetical Reference

In order to create an index, you must own the indexed table, have INDEX privilege on the table, or
have the CREATE ANY INDEX system privilege. To create a function-based index, you must have the
QUERY REWRITE privilege.

BITMAP creates a bitmap index, which can be useful for columns with few distinct values. The
PARTITION clauses create indexes on partitioned tables. Bitmap join indexes store index key values for
multiple tables in a single index (usually for data warehouse applications). Bitmap join indexes use the
FROM and WHERE clauses to specify the tables involved and the join conditions.

REVERSE stores the bytes of the indexed value in reverse order. You cannot reverse a bitmap index.
COMPRESS saves storage space by compressing nonunique, nonpartitioned indexes. During data

retrieval, the data will be displayed as if it were uncompressed. You can turn off index compression;
re-create the index using the clause NOCOMPRESS.

COMPUTE STATISTICS analyzes the index data as the index is created.
As of Oracle Database 11g, you can create a locally partitioned domain index, and you can create

an XMLIndex index for XML data. You can use the index_attributes clause to create an index that is
invisible to the optimizer.

CREATE INDEXTYPE
FORMAT
create_indextype::=

CREATE
OR REPLACE

INDEXTYPE
schema .

indextype

FOR
schema .

operator (paramater_type

,

)

,

using_type_clause

WITH LOCAL RANGE PARTITION storage_table_clause

using_type_clause::=

USING
schema .

implementation_type
array_DML_clause

array_DML_clause::=

WITH

WITHOUT
ARRAY DML

(
schema .

type
,

schema .
varray_type

)

,

storage_table_clause::=

WITH
SYSTEM

USER
MANAGED STORAGE TABLES

DESCRIPTION CREATE INDEXTYPE specifies the routines used by a domain index. To create an
indextype, you must have the CREATE INDEXTYPE system privilege. To create an indextype in another
user’s schema, you must have the CREATE ANY INDEXTYPE system privilege.

As of Oracle Database 11g, you can specify that domain indexes be range-partitioned and that they
have their storage tables and partition maintenance operations managed by the database.

CREATE JAVA
SEE ALSO ALTER JAVA, DROP JAVA, Chapters 43 and 44
FORMAT
create_java::=

CREATE
OR REPLACE

AND
RESOLVE

COMPILE NOFORCE

JAVA

SOURCE

RESOURCE
NAMED

schema .
primary_name

CLASS
SCHEMA schema

invoker_rights_clause

RESOLVER ((match_string
, schema_name

–
))

USING

BFILE (directory_object_name , server_file_name)

CLOB

BLOB

BFILE

subquery

’ key_for_BLOB ’

AS source_char

CREATE JAVA 1055

1056 Part VIII: Alphabetical Reference

invoker_rights_clause::=

AUTHID
CURRENT_USER

DEFINER

DESCRIPTION CREATE JAVA creates a Java source, class, or resource. You must have the CREATE
PROCEDURE system privilege or (to create the object in another user’s schema) the CREATE ANY
PROCEDURE system privilege. To replace such a schema object in another user’s schema, you must
have the ALTER ANY PROCEDURE system privilege.

The JAVA SOURCE, JAVA CLASS, and JAVA RESOURCE clauses load sources, classes, and
resources, respectively.

The AUTHID lets you specify whether the function executes with the privileges of the function
owner or the current user.
EXAMPLE The following command creates a Java source:

create java source named "Hello" as
 public class Hello (
 public static String hello() (
 return "Hello World";));

CREATE LIBRARY
SEE ALSO CREATE FUNCTION, CREATE PACKAGE BODY, CREATE PROCEDURE, Chapter 35
FORMAT

CREATE [OR REPLACE] LIBRARY [schema .] libname
{ IS | AS } 'filespec' [AGENT 'agent_dblink'];

DESCRIPTION CREATE LIBRARY creates a library object, allowing you to reference an operating-
system shared library, from which SQL and PL/SQL can call external 3GL functions and procedures. To
use the procedures and functions stored in the library, you must have been granted EXECUTE privilege
on the library. Specify the AGENT clause if you want external procedures to be run from a database
link other than the server. Oracle will use the database link specified by agent_dblink to run external
procedures. If you omit this clause, the default agent on the server (extproc) will run external
procedures.

CREATE MATERIALIZED VIEW
SEE ALSO ALTER MATERIALIZED VIEW, CREATE MATERIALIZED VIEW LOG, DROP
MATERIALIZED VIEW, STORAGE, Chapter 26

FORMAT
create_materialized_view::=

CREATE MATERIALIZED VIEW
schema .

materialized_view
(column_alias

,

)

OF
schema .

object_type (scoped_table_ref_constraint)

ON PREBUILT TABLE

WITH

WITHOUT
REDUCED PRECISION

physical_properties materialized_view_props

USING INDEX

physical_attributes_clause

TABLESPACE tablespace

USING NO INDEX create_mv_refresh

FOR UPDATE

DISABLE

ENABLE
QUERY REWRITE

AS subquery ;

physical_properties::=

segment_attributes_clause
table_compression

ORGANIZATION

HEAP
segment_attributes_clause table_compression

INDEX
segment_attributes_clause

index_org_table_clause

EXTERNAL external_table_clause

CLUSTER cluster (column

,

)

CREATE MATERIALIZED VIEW 1057

1058 Part VIII: Alphabetical Reference

materialized_view_props::=

column_properties table_partitioning_clauses

CACHE

NOCACHE parallel_clause

build_clause

scoped_table_ref_constraint::=

SCOPE FOR (
ref_column

ref_attribute
) IS

schema . scope_table_name

c_alias

,

index_org_table_clause::=

mapping_table_clause

PCTTHRESHOLD integer

key_compression index_org_overflow_clause

key_compression::=

COMPRESS
integer

NOCOMPRESS

index_org_overflow_clause::=

INCLUDING column_name
OVERFLOW

segment_attributes_clause

create_mv_refresh:=

REFRESH

FAST

COMPLETE

FORCE

ON
DEMAND

COMMIT

START WITH

NEXT
date

WITH
PRIMARY KEY

ROWID

USING

DEFAULT

MASTER

LOCAL
ROLLBACK SEGMENT

MASTER

LOCAL
ROLLBACK SEGMENT rollback_segment

USING
ENFORCED

TRUSTED
CONSTRAINTS

NEVER REFRESH

segment_attributes_clause::=

physical_attributes_clause

TABLESPACE tablespace

logging_clause

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

CREATE MATERIALIZED VIEW 1059

1060 Part VIII: Alphabetical Reference

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

table_compression::=

COMPRESS

FOR
ALL

DIRECT_LOAD
OPERATIONS

NOCOMPRESS

column_properties::=

object_type_col_properties

nested_table_col_properties

varray_col_properties

LOB_storage_clause

(LOB_partition_storage

,

)

XMLType_column_properties

object_type_col_properties::=

COLUMN column substitutable_column_clause

substitutable_column_clause::=

ELEMENT
IS OF

TYPE
(ONLY type)

NOT
SUBSTITUTABLE AT ALL LEVELS

nested_table_col_properties::=

NESTED TABLE
nested_item

COLUMN_VALUE

substitutable_column_clause
STORE AS storage_table

(

(object_properties)

physical_properties

column_properties

)
RETURN AS

LOCATOR

VALUE

varray_col_properties::=

VARRAY varray_item

substitutable_column_clause
varray_storage_clause

substitutable_column_clause

varray_storage_clause::=

STORE AS

SECUREFILE

BASICFILE
LOB

LOB_segname
(LOB_storage_parameters)

LOB_segname

LOB_storage_clause::=

LOB

(LOB_item

,

) STORE AS

SECUREFILE

BASICFILE

(LOB_storage_parameters)

(LOB_item) STORE AS

SECUREFILE

BASICFILE

LOB_segname

(LOB_storage_parameters)

CREATE MATERIALIZED VIEW 1061

1062 Part VIII: Alphabetical Reference

LOB_storage_parameters::=

TABLESPACE tablespace

LOB_parameters
storage_clause

storage_clause

LOB_parameters::=

ENABLE

DISABLE
STORAGE IN ROW

CHUNK integer

PCTVERSION integer

FREEPOOLS integer

LOB_retention_clause

LOB_deduplicate_clause

LOB_compression_clause

ENCRYPT encryption_spec

DECRYPT

CACHE

NOCACHE

CACHE READS

logging_clause

LOB_partition_storage::=

PARTITION partition
LOB_storage_clause

varray_col_properties

(SUBPARTITION subpartition
LOB_partitioning_storage

varray_col_properties
)

parallel_clause::=

NOPARALLEL

PARALLEL
integer

build_clause::=

BUILD
IMMEDIATE

DEFERRED

DESCRIPTION The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for
backward compatibility.

CREATE MATERIALIZED VIEW creates a materialized view, a table that holds the results of a query,
usually on one or more tables, called master tables. The master tables may be in a local database or in
a remote database. You can have the data refreshed at intervals by using the REFRESH clause.

To enable a materialized view for query rewrite, you must have the QUERY REWRITE system
privilege. If the materialized view is based on objects in other schemas, you must have the GLOBAL
QUERY REWRITE privilege.

Materialized views cannot contain LONG columns or reference any objects owned by SYS.
A FAST refresh uses the materialized view log associated with the master table(s) to refresh the

materialized view. A COMPLETE refresh re-executes the query. A FORCE refresh lets Oracle make
the choice between a FAST and a COMPLETE refresh. Oracle first refreshes the materialized view
on the START WITH date. If you give a NEXT date, Oracle refreshes the materialized view at intervals
specified by the difference between the START WITH and NEXT dates.

A simple materialized view selects data from a single master table using a simple query. A complex
materialized view selects data using a GROUP BY, CONNECT BY, subquery, join, or set operation in the
query. Oracle can do a FAST refresh only on simple materialized views that have materialized view logs.

To create a materialized view in your schema, you must have the CREATE MATERIALIZED VIEW
system privilege. To create a materialized view in another user’s schema, you must have the CREATE
ANY MATERIALIZED VIEW system privilege.
EXAMPLE

create materialized view LOCAL_BOOKSHELF
storage (initial 100K next 100K pctincrease 0)
tablespace USERS
refresh force
start with SysDate next SysDate+7
with primary key
as
select * from BOOKSHELF@REMOTE_CONNECT;

CREATE MATERIALIZED VIEW LOG
SEE ALSO ALTER MATERIALIZED VIEW LOG, CREATE MATERIALIZED VIEW, DROP
MATERIALIZED VIEW LOG, STORAGE, Chapter 26

CREATE MATERIALIZED VIEW LOG 1063

1064 Part VIII: Alphabetical Reference

FORMAT
create_materialized_vw_log::=

CREATE MATERIALIZED VIEW LOG ON
schema .

table

physical_attributes_clause

TABLESPACE tablespace

logging_clause

CACHE

NOCACHE parallel_clause table_partitioning_clauses

WITH

OBJECT ID

PRIMARY KEY

ROWID

SEQUENCE

(column

,

)

,

new_values_clause

;

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

parallel_clause::=

NOPARALLEL

PARALLEL
integer

new_values_clause::=

INCLUDING

EXCLUDING
NEW VALUES

DESCRIPTION The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for
backward compatibility.

CREATE MATERIALIZED VIEW LOG creates a table associated with the master table of a materialized
view that tracks changes to the master table’s data. Oracle uses the materialized view log to FAST
refresh the materialized views of a master table. The storage options specify the storage of the table.
Oracle logs database changes only if there is a simple materialized view based on the master table.

You can have only one log for a given master table, and the log is stored in the same schema as the
master table. To create a materialized view log on your own master table, you must have the CREATE
TABLE system privilege. If the master table is in another user’s schema, you must have the CREATE ANY
TABLE and COMMENT ANY TABLE system privileges as well as the SELECT privilege on the master table.

CREATE OPERATOR
FORMAT
create_operator::=

CREATE
OR REPLACE

OPERAT0R
schema .

operator binding_clause ;

binding_clause::=

BINDING (parameter_type

,

) RETURN return_type
implementation_clause

using_function_clause

,

implementation_clause::=

ANCILLARY TO primary_operator (parameter_type

,

)

,

context_clause

CREATE OPERATOR 1065

1066 Part VIII: Alphabetical Reference

context_clause::=

WITH INDEX CONTEXT , SCAN CONTEXT implementation_type
COMPUTE ANCILLARY DATA

WITH COLUMN CONTEXT

using_function_clause::=

USING
schema .

package .

type .
function_name

DESCRIPTION CREATE OPERATOR creates a new operator and defines its bindings. You can
reference operators in indextypes and in SQL statements. The operators, in turn, reference functions,
packages, types, and other user-defined objects.

To create an operator, you must have EXECUTE privilege on the functions and operators referenced
by the operator, and the CREATE OPERATOR system privilege. If the operator is created in another
user’s schema, you must have the CREATE ANY OPERATOR system privilege.

CREATE OUTLINE
SEE ALSO Chapter 46
FORMAT
create_outline::=

CREATE
OR REPLACE

PUBLIC

PRIVATE
OUTLINE

outline

FROM

PUBLIC

PRIVATE
source_outline

FOR CATEGORY category ON statement
;

DESCRIPTION CREATE OUTLINE creates a stored outline, which is a set of hints used to create the
execution plan of the associated query. Later executions of the query will use the same set of hints. You
can group stored outlines into categories.

To create an operator, you must have the CREATE ANY OUTLINE system privilege.

EXAMPLE

create outline TEST
 for category DEVELOPMENT
 on select AuthorName, COUNT(AuthorName)
 from BOOKSHELF_AUTHOR
 group by AuthorName;

CREATE PACKAGE
SEE ALSO ALTER PACKAGE, CREATE FUNCTION, CREATE PACKAGE BODY, CREATE PROCEDURE,
CURSOR, DROP PACKAGE, EXCEPTION, RECORD, TABLE, VARIABLE DECLARATION, Chapter 35
FORMAT

CREATE [OR REPLACE] PACKAGE [schema .] package
[AUTHID { CURRENT_USER | DEFINER }]
{ IS | AS } pl/sql_package_spec;

DESCRIPTION CREATE PACKAGE sets up the specification for a PL/SQL package, a group of public
procedures, functions, exceptions, variables, constants, and cursors. Adding OR REPLACE replaces the
package specification if it already exists, which invalidates the package and initiates a recompilation of
the package body and any objects that depend on the package specification.

Packaging your procedures and functions lets them share data through variables, constants, and
cursors. It enables you to grant the whole collection at once as part of a role. Oracle accesses all the
elements of a package more efficiently than it would if they were separate. If you change the package
body, which Oracle stores separately from the package specification, you do not have to recompile
anything that uses the package.

To create a package, you must have the CREATE PROCEDURE system privilege; to create a
package in another user’s account, you must have the CREATE ANY PROCEDURE system privilege.

The AUTHID clause lets you specify whether the package code executes with the privileges of the
package owner or the user who runs the package’s code.

CREATE PACKAGE BODY
SEE ALSO ALTER PACKAGE, CREATE FUNCTION, CREATE LIBRARY, CREATE PACKAGE, CREATE
PROCEDURE, CURSOR, DROP PACKAGE, EXCEPTION, RECORD, TABLE, VARIABLE DECLARATION,
Chapter 35
FORMAT

CREATE [OR REPLACE] PACKAGE BODY [schema .] package
{ IS | AS } pl/sql_package_body;

DESCRIPTION CREATE PACKAGE BODY builds the body of a previously specified package created
with CREATE PACKAGE. Adding OR REPLACE replaces the package body if it already exists. You must
have the CREATE PROCEDURE system privilege to create a package body; to create a package body in
another user’s account, you must have the CREATE ANY PROCEDURE system privilege.

CREATE PFILE
SEE ALSO CREATE SPFILE
FORMAT

CREATE PFILE [= 'pfile_name'] FROM SPFILE [= 'spfile_name'];

CREATE PFILE 1067

1068 Part VIII: Alphabetical Reference

DESCRIPTION CREATE PFILE exports a binary server parameter file into a text-initialization
parameter file (init.ora). Creating a text parameter file is a convenient way to get a listing of the current
parameter settings being used by the database, and it lets you edit the file easily in a text editor and
then convert it back into a server parameter file using the CREATE SPFILE statement. You can specify
the name of both the source binary server parameter file and the target text parameter file.

As of Oracle Database 11g, you can create a parameter file from current systemwide parameter
settings.
EXAMPLE

create pfile from spfile;

CREATE PROCEDURE
SEE ALSO ALTER PROCEDURE, BLOCK STRUCTURE, CREATE LIBRARY, CREATE FUNCTION,
CREATE PACKAGE, DATATYPES, DROP PROCEDURE, Chapters 35 and 44
FORMAT
create_procedure::=

CREATE
OR REPLACE

PROCEDURE
schema .

procedure

(argument

IN

OUT

IN OUT NOCOPY
datatype

DEFAULT expr

,

)

invoker_rights_clause IS

AS

pl/sql_subprogram_body

call_spec

EXTERNAL

;

invoker_rights_clause::=

AUTHID
CURRENT_USER

DEFINER

call_spec::=

LANGUAGE
Java_declaration

C_declaration

Java_declaration::=

JAVA NAME string

C_declaration::=

C
NAME name

LIBRARY lib_name
AGENT IN (argument

,

)

WITH CONTEXT PARAMETERS (parameter

,

)

DESCRIPTION CREATE PROCEDURE creates the specification and body of a procedure. A procedure
may have parameters, named arguments of a certain datatype. The PL/SQL block defines the behavior
of the procedure as a series of declarations, PL/SQL program statements, and exceptions.

The IN qualifier means that you have to specify a value for the argument when you call the
procedure. The OUT qualifier means that the procedure passes a value back to the caller through this
argument. The IN OUT qualifier combines the meaning of both IN and OUT—you specify a value,
and the procedure replaces it with a value. If you don’t have any qualifier, the argument defaults to
IN. The difference between a function and a procedure is that a function returns a value to the calling
environment in addition to any arguments that are OUT arguments.

The PL/SQL block can refer to programs in an external C library or to a Java call specification. The
invoker_rights (AUTHID) clause lets you specify whether the procedure executes with the privileges of
the function owner or the privileges of the user who is calling the function.

CREATE PROFILE
SEE ALSO ALTER PROFILE, ALTER RESOURCE COST, ALTER SYSTEM, ALTER USER, CREATE USER,
DROP PROFILE, Chapter 19
FORMAT
create_profile::=

CREATE PROFILE profile LIMIT
resource_parameters

password_parameters
;

CREATE PROFILE 1069

1070 Part VIII: Alphabetical Reference

resource_parameters::=

SESSIONS_PER_USER

CPU_PER_SESSION

CPU_PER_CALL

CONNECT_TIME

IDLE_TIME

LOGICAL_READS_PER_SESSION

LOGICAL_READS_PER_CALL

COMPOSITE_LIMIT

integer

UNLIMITED

DEFAULT

PRIVATE_SGA

size_clause

UNLIMITED

DEFAULT

password_parameters::=

FAILED_LOGIN_ATTEMPTS

PASSWORD_LIFE_TIME

PASSWORD_REUSE_TIME

PASSWORD_REUSE_MAX

PASSWORD_LOCK_TIME

PASSWORD_GRACE_TIME

expr

UNLIMITED

DEFAULT

PASSWORD_VERIFY_FUNCTION

function

NULL

DEFAULT

DESCRIPTION CREATE PROFILE creates a set of limits on the use of database resources. When you
associate the profile with a user with CREATE USER or ALTER USER, you can control what the user does
via those limits. To use CREATE PROFILE, you must enable resource limits through the initialization
parameter RESOURCE_LIMIT or through the ALTER SYSTEM command.

SESSIONS_PER_USER limits the user to integer concurrent SQL sessions. CPU_PER_SESSION limits
the CPU time in hundredths of seconds. CPU_PER_CALL limits the CPU time for a parse, execute, or
fetch call in hundredths of seconds. CONNECT_TIME limits elapsed time of a session in minutes.
IDLE_TIME disconnects a user after this number of minutes; this does not apply while a query is
running. LOGICAL_READS_PER_SESSION limits the number of blocks read per session; LOGICAL_
READS_PER_CALL does the same thing for parse, execute, or fetch calls. PRIVATE_SGA limits the
amount of space you can allocate in the SGA as private; the K and M options apply only to this limit.

COMPOSITE_LIMIT limits the total resource cost for a session in service units based on a weighted sum
of CPU, connect time, logical reads, and private SGA resources.

UNLIMITED means there is no limit on a particular resource. DEFAULT picks up the limit from the
DEFAULT profile, which you can change through the ALTER PROFILE command.

If a user exceeds a limit, Oracle aborts and rolls back the transaction, and then ends the session.
You must have the CREATE PROFILE system privilege to create a profile. You associate a profile to a
user with the ALTER USER command.

CREATE RESTORE POINT
SEE ALSO FLASHBACK DATABASE, FLASHBACK TABLE, DROP RESTORE POINT
FORMAT
create_restore_point::=

CREATE RESTORE POINT restore_point

AS OF
TIMESTAMP

SCN
expr

PRESERVE

GUARANTEE FLASHBACK DATABASE
;

DESCRIPTION Use CREATE RESTORE POINT to create a restore point, which is a name associated
with a timestamp or an SCN of the database. A restore point can be used to flash back a table or the
database to the time specified by the restore point without the need to determine the SCN or timestamp.
Restore points are also useful in various RMAN operations, including backups and database duplications.
You can use RMAN to create restore points in the process of implementing an archival backup.

CREATE ROLE
SEE ALSO ALTER ROLE, ALTER USER, CREATE USER, DROP ROLE, GRANT, REVOKE, SET ROLE,
Chapter 19
FORMAT

CREATE ROLE role
[NOT IDENTIFIED
| IDENTIFIED { BY password |
 USING [schema .] package | EXTERNALLY | GLOBALLY }];

DESCRIPTION With CREATE ROLE, you can create a named role or set of privileges. When you
grant the role to a user, you grant him or her all the privileges of that role. You first create the role with
CREATE ROLE, then grant privileges to the role using the GRANT command. When a user wants to
access something that the role allows, he or she enables the role with SET ROLE. Alternatively, the role
can be set as the user’s DEFAULT role via the ALTER USER or CREATE USER command.

If you put password protection on the role, the user who wants to use the privileges must supply
the password in the SET ROLE command to enable the role. The USING package clause lets you create
an application role, which is a role that can be enabled only by applications using an authorized
package. If you do not specify schema, Oracle assumes the package is in your own schema.

CREATE ROLE 1071

1072 Part VIII: Alphabetical Reference

CREATE ROLLBACK SEGMENT
SEE ALSO ALTER ROLLBACK SEGMENT, CREATE DATABASE, CREATE TABLESPACE, DROP
ROLLBACK SEGMENT, STORAGE, Chapter 51
FORMAT

CREATE [PUBLIC] ROLLBACK SEGMENT rollback_segment
[{ TABLESPACE tablespace | storage_clause }
[TABLESPACE tablespace | storage_clause]...];

DESCRIPTION rollback_segment is a name assigned to this rollback segment. tablespace is the
name of the tablespace to which this rollback segment is assigned. One tablespace may have multiple
rollback segments.

storage_clause contains subclauses that are described under STORAGE. If PUBLIC is used, this
rollback segment can be used by any instance that requests it; otherwise it is available only to instances
that named it in their initialization parameter files.

CREATE SCHEMA
SEE ALSO CREATE TABLE, CREATE VIEW, GRANT
FORMAT

CREATE SCHEMA AUTHORIZATION schema
{ create_table_statement | create_view_statement | grant_statement }
[create_table_statement | create_view_statement | grant_statement]...;

DESCRIPTION The CREATE SCHEMA command creates a collection of tables, views, and
privilege grants as a single transaction. The schema name is the same as your Oracle username.
The CREATE TABLE, CREATE VIEW, and GRANT commands are the standard commands,
and the order in which the commands appear is not important, even if there are internal
dependencies.

CREATE SEQUENCE
SEE ALSO ALTER SEQUENCE, AUDIT, DROP SEQUENCE, GRANT, REVOKE, NEXTVAL and
CURRVAL under PSEUDO-COLUMNS, Chapter 17
FORMAT

create_sequence::=

CREATE SEQUENCE
schema .

sequence

INCREMENT BY

START WITH
integer

MAXVALUE integer

NOMAXVALUE

MINVALUE integer

NOMINVALUE

CYCLE

NOCYCLE

CACHE integer

NOCACHE

ORDER

NOORDER
;

DESCRIPTION sequence is the name given to the sequence. The default INCREMENT BY is 1. A
positive number will increment the sequence number in an interval equal to the integer. A negative
number will decrement (decrease the value of) the sequence in the same way. START WITH is the
number with which the sequence will begin. The default START WITH is MAXVALUE for descending
sequences and MINVALUE for ascending; use START WITH to override this default.

MINVALUE is the lowest number the sequence will generate. The default is 1 for ascending
sequences. MAXVALUE is the highest number the sequence will generate. For descending sequences,
the default is –1. To allow sequences to progress without limitation, specify only MINVALUE for
ascending sequences and MAXVALUE for descending sequences. To stop creating sequence numbers
and force an error when an attempt is made to get a new one, specify a MAXVALUE on an ascending
sequence, or a MINVALUE on a descending sequence, plus NOCYCLE. To restart either type of
sequence where its MAXVALUE or MINVALUE made it begin, specify CYCLE.

CACHE allows a preallocated set of sequence numbers to be kept in memory. The default is 20.
The value set must be less than MAXVALUE minus MINVALUE.

ORDER guarantees that sequence numbers will be assigned to instances requesting them in the
order the requests are received. This is required only in applications using Real Application Clusters.

To create a sequence in your own schema, you must have the CREATE SEQUENCE system
privilege; to create a sequence in another user’s schema, you must have the CREATE ANY SEQUENCE
system privilege.

CREATE SPFILE
SEE ALSO CREATE PFILE, init.ora
FORMAT

CREATE SPFILE [= 'spfile_name'] FROM PFILE [= 'pfile_name'];

CREATE SPFILE 1073

1074 Part VIII: Alphabetical Reference

DESCRIPTION CREATE SPFILE creates a server parameter file from a client-side text-based
initialization parameter file. Server parameter files are binary files that exist only on the server and
are called from client locations to start up the database. Server parameter files let you make persistent
changes to individual parameters; parameter changes made via ALTER SYSTEM commands are retained
across database shutdowns and startups even if no external parameter file is manually updated.

As of Oracle Database 11g, you can create a system parameter file from current systemwide
parameter settings.

CREATE SYNONYM
SEE ALSO CREATE DATABASE LINK, CREATE TABLE, CREATE VIEW, Chapters 17 and 25
FORMAT

CREATE [PUBLIC] SYNONYM [schema .] synonym
 FOR [schema .] object [@ dblink];

DESCRIPTION CREATE SYNONYM creates a synonym for a table, view, sequence, stored procedure,
function, package, materialized view, Java class object, or synonym, including those on a remote
database. PUBLIC makes the synonym available to all users, but the synonym can be created only by
a DBA or a user with the CREATE PUBLIC DATABASE LINK system privilege. Without PUBLIC, users
must prefix the synonym with their username. synonym is the synonym name. schema.object is the
name of the table, view, or synonym to which the synonym refers. You can have a synonym of
synonym. @database_link is a database link to a remote database. The synonym refers to a table in
the remote database as specified by the database link.
EXAMPLE

create synonym LOCAL_BOOKSHELF for BOOKSHELF@REMOTE_CONNECT;

CREATE TABLE
SEE ALSO ALTER TABLE, CREATE CLUSTER, CREATE INDEX, CREATE TABLESPACE, CREATE TYPE,
DATATYPES, DROP TABLE, INTEGRITY CONSTRAINT, OBJECT NAMES, STORAGE, Chapters 4, 17,
28, 38, 39, and 41
FORMAT
create_table::=

CREATE
GLOBAL TEMPORARY

TABLE schema . table

relational_table

object_table

XMLType_table

relational_table::=

(relational_properties)
ON COMMIT

DELETE

PRESERVE
ROWS

physical_properties table_properties
;

object_table::=

OF
schema .

object_type
object_table_substitution

(object_properties)
ON COMMIT

DELETE

PRESERVE
ROWS

OID_clause OID_index_clause physical_properties table_properties
;

XMLType_table::=

OF XMLTYPE
(object_properties) XMLTYPE XMLType_storage XMLSchema_spec

XMLType_virtual_columns
ON COMMIT

DELETE

PRESERVE
ROWS

OID_clause

OID_index_clause physical_properties table_properties

relational_properties::=

column_definition

virtual_column_definition

out_of_line_constraint

out_of_line_ref_constraint

supplemental_logging_props

,

column_definition::=

column datatype
SORT DEFAULT expr ENCRYPT encryption_spec

inline_constraint

inline_ref_constraint

CREATE TABLE 1075

1076 Part VIII: Alphabetical Reference

virtual_column_definition::=

column
datatype GENERATED ALWAYS

AS (column_expression)

VIRTUAL inline_constraint

encryption_spec::=

USING ’ encrypt_algorithm ’ IDENTIFIED BY password
NO

SALT

object_table_substitution::=

NOT
SUBSTITUTABLE AT ALL LEVELS

object_properties::=

column

attribute

DEFAULT expr

inline_constraint

inline_ref_constraint

out_of_line_constraint

out_of_line_ref_constraint

supplemental_logging_props

oid_clause::=

OBJECT IDENTIFIER IS
SYSTEM GENERATED

PRIMARY KEY

oid_index_clause::=

OIDINDEX
index

(
physical_attributes_clause

TABLESPACE tablespace
)

physical_properties::=

segment_attributes_clause
table_compression

ORGANIZATION

HEAP
segment_attributes_clause table_compression

INDEX
segment_attributes_clause

index_org_table_clause

EXTERNAL external_table_clause

CLUSTER cluster (column

,

)

segment_attributes_clause::=

physical_attributes_clause

TABLESPACE tablespace

logging_clause

physical_attributes_clause::=

PCTFREE integer

PCTUSED integer

INITRANS integer

storage_clause

table_compression::=

COMPRESS

FOR
ALL

DIRECT_LOAD
OPERATIONS

NOCOMPRESS

CREATE TABLE 1077

1078 Part VIII: Alphabetical Reference

table_properties::=

column_properties table_partitioning_clauses

CACHE

NOCACHE

parallel_clause

ROWDEPENDENCIES

NOROWDEPENDENCIES enable_disable_clause

row_movement_clause flashback_archive_clause AS subquery

column_properties::=

object_type_col_properties

nested_table_col_properties

varray_col_properties

LOB_storage_clause

(LOB_partition_storage

,

)

XMLType_column_properties

object_type_col_properties::=

COLUMN column substitutable_column_clause

substitutable_column_clause::=

ELEMENT
IS OF

TYPE
(ONLY type)

NOT
SUBSTITUTABLE AT ALL LEVELS

nested_table_col_properties::=

NESTED TABLE
nested_item

COLUMN_VALUE

substitutable_column_clause
STORE AS storage_table

(

(object_properties)

physical_properties

column_properties

)
RETURN AS

LOCATOR

VALUE

varray_col_properties::=

VARRAY varray_item

substitutable_column_clause
varray_storage_clause

substitutable_column_clause

varray_storage_clause::=

STORE AS

SECUREFILE

BASICFILE
LOB

LOB_segname
(LOB_storage_parameters)

LOB_segname

LOB_storage_clause::=

LOB

(LOB_item

,

) STORE AS

SECUREFILE

BASICFILE

(LOB_storage_parameters)

(LOB_item) STORE AS

SECUREFILE

BASICFILE

LOB_segname

(LOB_storage_parameters)

CREATE TABLE 1079

1080 Part VIII: Alphabetical Reference

LOB_storage_parameters::=

TABLESPACE tablespace

LOB_parameters
storage_clause

storage_clause

LOB_parameters::=

ENABLE

DISABLE
STORAGE IN ROW

CHUNK integer

PCTVERSION integer

FREEPOOLS integer

LOB_retention_clause

LOB_deduplicate_clause

LOB_compression_clause

ENCRYPT encryption_spec

DECRYPT

CACHE

NOCACHE

CACHE READS

logging_clause

LOB_retention_clause::=

RETENTION

MAX

MIN integer

AUTO

NONE

LOB_deduplicate_clause::=

DEDUPLICATE

KEEP_DUPLICATES

LOB_compression_clause::=

COMPRESS

HIGH

MEDIUM

NOCOMPRESS

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

LOB_partition_storage::=

PARTITION partition
LOB_storage_clause

varray_col_properties

(SUBPARTITION subpartition
LOB_partitioning_storage

varray_col_properties
)

LOB_partitioning_storage::=

LOB (LOB_item)

STORE AS

BASICFILE

SECUREFILE

LOB_segname
(TABLESPACE tablespace)

(TABLESPACE tablespace)

XMLType_column_properties::=

XMLTYPE
COLUMN

column
XMLType_storage XMLSchema_spec

CREATE TABLE 1081

1082 Part VIII: Alphabetical Reference

XMLType_storage::=

STORE AS

OBJECT RELATIONAL

SECUREFILE

BASICFILE CLOB

BINARY XML

LOB_segname
(LOB_parameters)

(LOB_parameters)

XMLType_virtual_columns::=

VIRTUAL COLUMNS (column AS (expr)

,

)

XMLSchema_spec::=

single_XMLSchema_spec

multiple_XMLSchema_spec

ALLOW
ANYSCHEMA

NONSCHEMA

DISALLOW NONSCHEMA

single_XMLSchema_spec::=

XMLSCHEMA XMLSchema_URL
ELEMENT

element

XMLSchema_URL # element

multiple_XMLSchema_spec::=

XMLSCHEMAS (single_XMLSchema_spec

,

)

row_movement_clause::=

ENABLE

DISABLE
ROW MOVEMENT

flashback_archive_clause::=

FLASHBACK ARCHIVE
flashback_archive

NO FLASHBACK ARCHIVE

index_org_table_clause::=

mapping_table_clause

PCTTHRESHOLD integer

key_compression index_org_overflow_clause

mapping_table_clauses::=

MAPPING TABLE

NOMAPPING

key_compression::=

COMPRESS
integer

NOCOMPRESS

index_org_overflow_clause::=

INCLUDING column_name
OVERFLOW

segment_attributes_clause

supplemental_logging_props::=

SUPPLEMENTAL LOG
supplemental_log_grp_clause

supplemental_id_key_clause

supplemental_log_grp_clause::=

GROUP log_group (column
NO LOG

,

)
ALWAYS

CREATE TABLE 1083

1084 Part VIII: Alphabetical Reference

supplemental_id_key_clause::=

DATA (

ALL

PRIMARY KEY

UNIQUE

FOREIGN KEY

,

) COLUMNS

external_table_clause::=

(
TYPE access_driver_type

external_data_properties)

REJECT LIMIT
integer

UNLIMITED

external_data_properties::=

DEFAULT DIRECTORY directory

ACCESS PARAMETERS
(opaque_format_spec)

USING CLOB subquery

LOCATION (
directory :

’ location_specifier ’

,

)

table_partitioning_clauses::=

range_partitions

hash_partitions

list_partitions

reference_partitioning

composite_range_partitions

composite_list_partitions

system_partitioning

range_partitions::=

PARTITION BY RANGE (column

,

)

INTERVAL expr
STORE IN (tablespace

,

)

(PARTITION
partition

range_values_clause table_partition_description

,

)

hash_partitions::=

PARTITION BY HASH (column

,

)
individual_hash_partitions

hash_partitions_by_quantity

individual_hash_partitions::=

(PARTITION
partition partitioning_storage_clause

,

)

hash_partitions_by_quantity::=

PARTITIONS hash_partition_quantity
STORE IN (tablespace

,

)

key_compression

table_compression OVERFLOW STORE IN (tablespace

,

)

CREATE TABLE 1085

1086 Part VIII: Alphabetical Reference

list_partitions::=

PARTITION BY LIST (column)

(PARTITION
partition

list_values_clause table_partition_description

,

)

reference_partitioning::=

PARTITION BY REFERENCE (constraint)
(reference_partition_desc

,

)

reference_partition_desc::=

PARTITION
partition table_partition_description

composite_range_partitions::=

PARTITION BY RANGE (column

,

)

INTERVAL (expr)
STORE IN (tablespace

,

)

subpartition_by_range

subpartition_by_list

subpartition_by_hash

(PARTITION
partition

range_partition_desc

,

)

composite_list_partitions::=

PARTITION BY LIST (column

,

)

subpartition_by_range

subpartition_by_hash

subpartition_by_list

(PARTITION
partition

list_partition_desc

,

)

system_partitioning::=

PARTITION BY SYSTEM

PARTITION integer

reference_partition_desc

,

range_partition_desc::=

range_values_clause table_partition_description

(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subparts_by_quantity

list_partition_desc::=

list_values_clause table_partition_description

(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subparts_by_quantity

CREATE TABLE 1087

1088 Part VIII: Alphabetical Reference

subpartition_template::=

SUBPARTITION TEMPLATE

(

range_subpartition_desc

,

list_subpartition_desc

,

individual_hash_subparts

,

)

hash_subpartition_quantity

subpartition_by_range::=

SUBPARTITION BY RANGE (column

,

)
subpartition_template

subpartition_by_list::=

SUBPARTITION BY LIST (column)
subpartition_template

subpartition_by_hash::=

SUBPARTITION BY HASH (column

,

)

SUBPARTITIONS integer
STORE IN (tablespace

,

)

subpartition_template

range_subpartition_desc::=

SUBPARTITION
subpartition

range_values_clause
partitioning_storage_clause

list_subpartition_desc::=

SUBPARTITION
subpartition

list_values_clause
partitioning_storage_clause

individual_hash_subparts::=

SUBPARTITION
subpartition partitioning_storage_clause

hash_subparts_by_quantity::=

SUBPARTITIONS integer
STORE IN (tablespace

,

)

range_values_clause::=

VALUES LESS THAN (
literal

MAXVALUE

,

)

list_values_clause::=

VALUES (

literal

NULL

,

DEFAULT

)

table_partition_description::=

segment_attributes_clause

table_compression

key_compression OVERFLOW
segment_attributes_clause

LOB_storage_clause

varray_col_properties

CREATE TABLE 1089

1090 Part VIII: Alphabetical Reference

partitioning_storage_clause::=

TABLESPACE tablespace

OVERFLOW
TABLESPACE tablespace

table_compression

key_compression

LOB_partitioning_storage

VARRAY varray_item STORE AS

SECUREFILE

BASICFILE
LOB LOB_segname

LOB_partitioning_storage::=

LOB (LOB_item)

STORE AS

BASICFILE

SECUREFILE

LOB_segname
(TABLESPACE tablespace)

(TABLESPACE tablespace)

parallel_clause::=

NOPARALLEL

PARALLEL
integer

enable_disable_clause::=

ENABLE

DISABLE

VALIDATE

NOVALIDATE
UNIQUE (column

,

)

PRIMARY KEY

CONSTRAINT constraint

using_index_clause exceptions_clause CASCADE

KEEP

DROP
INDEX

using_index_clause::=

USING INDEX

schema .
index

(create_index_statement)

index_properties

index_properties::=

global_partitioned_index

local_partitioned_index

index_attributes

INDEXTYPE IS
domain_index_clause

XMLIndex_clause

index_attributes::=

physical_attributes_clause

logging_clause

ONLINE

TABLESPACE
tablespace

DEFAULT

key_compression

SORT

NOSORT

REVERSE

VISIBLE

INVISIBLE

parallel_clause

DESCRIPTION user is the table owner. If the table owner is absent, user defaults to the user issuing
this command. table is the table name, and follows Oracle naming conventions.

column is the name of a column, and datatype is one of the Oracle-supplied datatypes (see
DATATYPES) or a user-defined type (see CREATE TYPE). DEFAULT specifies a value to be assigned to the
column if a row is inserted without a value for this column. The value can be a simple literal or the result of
an expression. The expression, however, cannot include a reference to a column, to Level, or to RowNum.

CREATE TABLE 1091

1092 Part VIII: Alphabetical Reference

For an existing abstract datatype, you can create an object table. The following example creates an
object table called ANIMAL, based on the ANIMAL_TY datatype:

create table ANIMAL of ANIMAL_TY;

CLUSTER includes this table in the named cluster. The table columns listed must correspond in order
and datatype to the cluster’s cluster columns. The names need not be the same as the corresponding
cluster’s columns, although matching names can help the user to understand what is being done.

INITRANS specifies the initial number of transactions that can update a data block concurrently
(selects are not counted). INITRANS ranges from 1 to 255. 1 is the default. Every transaction takes space
in the data block itself until the transaction is completed. When more than the INITRANS number of
transactions are created for the block, space is automatically allocated for them. Transactions queuing
up for execution will occupy more and more free space in the block, although usually there is more free
space than is needed for all concurrent transactions.

Whenever Oracle inserts a row into a table, it first looks to see how much space is available in the
current block (the size of a block is operating system dependent—see the Oracle Installation and User’s
Guide for your system). If the size of the row will leave less than PCTFREE percent in the block, Oracle
puts the row in a newly allocated block instead. The default is 10; 0 is the minimum.

PCTUSED defaults to 40. This is the minimum percentage of available space in a block that will
make it a candidate for insertion of new rows. Oracle tracks how much space in a block has been
made available by deletions. If it falls below PCTUSED, Oracle makes the block available for insertions.

STORAGE contains subclauses that are described under STORAGE. TABLESPACE is the name of
the tablespace to which this table is assigned.

The ENABLE and DISABLE clauses enable and disable constraints, respectively.
PARALLEL, along with DEGREE and INSTANCES, specifies the parallel characteristics of the table.

DEGREE specifies the number of query servers to use; INSTANCES specifies how the table is to be split
among instances of Real Application Clusters for parallel query processing. An integer n specifies that
the table is to be split among the specified number of available instances.

The PARTITION clauses control how the table’s data is partitioned—by range, by hash, or by a
composite of multiple partition methods. See Chapter 18 for details on partitioning.

A temporary table contains data that is visible only to the session that creates it. If a temporary
table is defined as GLOBAL, its definition may be seen by all users. Temporary tables may not be
partitioned and cannot support many standard table features (such as varying array datatypes, LOB
datatypes, and index organization). For example, the following command creates a table whose rows
will be deleted at the end of the current session:

create global temporary table WORK_SCHEDULE (
 StartDate DATE,
 EndDate DATE,
 PayRate NUMBER)
 on commit preserve rows;

The AS clause creates the rows of the new table through the returned query rows. The columns and
types of the query must match those defined in the CREATE TABLE statement. The query used in the AS
clause may not contain any LONG datatype columns. You can turn off logging during the create
table…as select operation via the NOLOGGING keyword. This option disables the redo log entries
that would normally be written during the population of the new table, thus improving performance
while impacting your ability to recover that data if an instance failure occurs prior to the next backup.

The LOB clause specifies the out-of-line data storage used for internally stored LOB (BLOB, CLOB,
and NCLOB) data. The object table definition section applies to object tables, in which each row has
an object ID (OID).

As of Oracle Database 11g, CREATE TABLE has been enhanced as follows:

The flashback_archive_clause lets you create the table with tracking of historical changes
enabled.

The system_partitioning clause lets you partition the table BY SYSTEM.

You can create virtual columns.

You can store XML data in binary XML format.

You can partition a table by reference to another partitioned table.

LOB storage now includes the SECUREFILE parameter, compression options, deduplication
options, and encryption options.

CREATE TABLESPACE
SEE ALSO ALTER TABLESPACE, DROP TABLESPACE, Chapters 22 and 51
FORMAT
create_tablespace::=

CREATE

BIGFILE

SMALLFILE
permanent_tablespace_clause

temporary_tablespace_clause

undo_tablespace_clause

;

permanent_tablespace_clause::=

TABLESPACE tablespace
DATAFILE file_specification

,

MINIMUM EXTENT size_clause

BLOCKSIZE integer
K

logging_clause

FORCE LOGGING

ENCRYPTION encryption_spec

DEFAULT
table_compression

storage_clause

ONLINE

OFFLINE

extent_management_clause

segment_management_clause

flashback_mode_clause

;

■

■

■

■

■

■

CREATE TABLESPACE 1093

1094 Part VIII: Alphabetical Reference

logging_clause::=

LOGGING

NOLOGGING

FILESYSTEM_LIKE_LOGGING

encryption_spec::=

USING ’ encrypt_algorithm ’ IDENTIFIED BY password
NO

SALT

table_compression::=

COMPRESS

FOR
ALL

DIRECT_LOAD
OPERATIONS

NOCOMPRESS

extent_management_clause::=

EXTENT MANAGEMENT
LOCAL

AUTOALLOCATE

UNIFORM
SIZE size_clause

DICTIONARY

segment_management_clause::=

SEGMENT SPACE MANAGEMENT
AUTO

MANUAL

flashback_mode_clause::=

FLASHBACK
ON

OFF

temporary_tablespace_clause::=

TEMPORARY TABLESPACE tablespace
TEMPFILE file_specification

,

tablespace_group_clause extent_management_clause

tablespace_group_clause::=

TABLESPACE GROUP
tablespace_group_name

’ ’

undo_tablespace_clause::=

UNDO TABLESPACE tablespace
DATAFILE file_specification

,

extent_management_clause tablespace_retention_clause

tablespace_retention_clause::=

RETENTION
GUARANTEE

NOGUARANTEE

DESCRIPTION tablespace is the name of the tablespace, and follows Oracle naming conventions.
The DATAFILE is a file or series of files described according to a file_specification, which defines the
file names and sizes:

'file' [SIZE integer [K | M | G | T] [REUSE]

The file format is operating system specific. SIZE is the number of bytes set aside for this file, in
kilobytes (K), megabytes (M), gigabytes (G), or terabytes (T). DEFAULT STORAGE defines the default
storage for all objects created in this tablespace, unless those defaults are overridden in the CREATE
TABLE command itself. ONLINE, the default, indicates that this tablespace will become available to
users as soon as it is created. OFFLINE prevents access to the tablespace until ALTER TABLESPACE
changes it to ONLINE. DBA_TABLESPACES gives the status of all the tablespaces.

SIZE and REUSE together tell Oracle to reuse the file if it already exists (anything it contains will be
wiped out) or create it if it doesn’t already exist. SIZE without REUSE creates a file that does not exist,
but returns an error if it does. Without SIZE, the file must already exist.

The MINIMUM EXTENT size parameter specifies the minimum size for extents within the
tablespace. The default is operating system specific and database block size specific.

When turned ON, the AUTOEXTEND option dynamically extends a datafile as needed in
increments of NEXT size, to a maximum of MAXSIZE (or UNLIMITED). If a tablespace will be used
only for temporary segments created during query processing, you can create it as a TEMPORARY
tablespace. If the tablespace will contain permanent objects (such as tables), then you should use the
default setting of PERMANENT.

EXTENT MANAGEMENT controls the manner in which the extent management data for a
tablespace is recorded. By default, extent usage is LOCAL—the extent location information is stored in
a bitmap within the tablespace’s datafiles.

You can use the BIGFILE clause to create a bigfile tablespace. Also, you can assign a temporary
tablespace to a temporary tablespace group (via the TABLESPACE GROUP clause). For undo
tablespaces, you can guarantee that unexpired data will be preserved even at the expense of ongoing
transactions requiring undo segment space (via RETENTION GUARANTEE).

As of Oracle Database 11g, you can use the ENCRYPT keyword to encrypt an entire tablespace.

CREATE TABLESPACE 1095

1096 Part VIII: Alphabetical Reference

CREATE TRIGGER
SEE ALSO ALTER TABLE, ALTER TRIGGER, BLOCK STRUCTURE, DROP TRIGGER, Chapters 34
and 38
FORMAT
create_trigger::=

CREATE
OR REPLACE

TRIGGER
schema .

trigger

simple_dml_trigger

compound_dml_trigger

non_dml_trigger

FOLLOWS
schema .

trigger

,

ENABLE

DISABLE WHEN (condition)
trigger_body

simple_dml_trigger::=

BEFORE

AFTER

INSTEAD OF

dml_event_clause
referencing_clause FOR EACH ROW

compound_dml_trigger::=

FOR dml_event_clause
referencing_clause

non_dml_trigger::=

BEFORE

AFTER

ddl_event

OR

database_event

OR ON

schema .
SCHEMA

DATABASE

dml_event_clause::=

DELETE

INSERT

UPDATE
OF column

,

OR

ON

schema .
table

NESTED TABLE nested_table_column OF schema .
view

referencing_clause::=

REFERENCING

OLD
AS

old

NEW
AS

new

PARENT
AS

parent

DESCRIPTION CREATE TRIGGER creates and enables a database trigger, a stored procedure block
associated with a table, specified in the ON clause, that Oracle automatically executes when the
specified SQL statement executes against the table. You can use triggers to enforce complex constraints
and to propagate changes throughout the database instead of in your applications. That way, you
implement the triggered code just once, instead of having to implement it in every application.

The main clause of the CREATE TRIGGER command specifies the SQL operation that triggers the
block (such as DELETE, INSERT, or UPDATE) and when the trigger fires (BEFORE, AFTER, or INSTEAD
OF executing the triggering operation). If you specify an OF clause on an UPDATE trigger, the trigger
fires only when you update one or more of the specified columns. Note that you can also create
triggers that fire when DDL events occur (including CREATE, ALTER, and DROP) and when specific
database events occur (logons, logoffs, database startups, shutdowns, and server errors).

The REFERENCING clause specifies a correlation name for the table for the OLD and NEW
versions of the table. This lets you use the name when referring to columns, to avoid confusion,
particularly when the table name is OLD or NEW. The default names are OLD and NEW.

The FOR EACH ROW clause specifies the trigger to be a row trigger, a trigger fired once for each
row affected by the triggering operation. The WHEN clause restricts the execution of the trigger to
happen only when the condition is met. This condition is a SQL condition, not a PL/SQL condition.

You can disable and enable triggers through the ALTER TRIGGER and ALTER TABLE commands. If
a trigger is disabled, Oracle does not fire the trigger when a potential triggering operation occurs. The
CREATE TRIGGER command automatically enables the trigger.

CREATE TRIGGER 1097

1098 Part VIII: Alphabetical Reference

To create a trigger on a table you own, you must have the CREATE TRIGGER system privilege. To
create a trigger on another user’s table, you must have the CREATE ANY TRIGGER system privilege.
The user must have been directly granted all privileges necessary to execute the stored procedure.

As of Oracle Database 11g, CREATE TRIGGER lets you create a compound trigger by specifying
a multipart PL/SQL block. A new FOLLOWS clause lets you order multiple triggers. You can use the
ENABLE and DISABLE clauses to create a trigger in enabled or disabled form.

CREATE TYPE
SEE ALSO CREATE TABLE, CREATE TYPE BODY, Chapters 38 and 39
FORMAT
create_type::=

CREATE
OR REPLACE

TYPE
schema .

type_name

object_type

varray_type

nested_table_type
;

object_type::=

OID ’ object_identifier ’ invoker_rights_clause

IS

AS
OBJECT

UNDER
schema .

supertype

sqlj_object_type

(attribute datatype
sqlj_object_type_attr

,

, element_spec

,

)

NOT
FINAL

NOT
INSTANTIABLE

;

invoker_rights_clause::=

AUTHID
CURRENT_USER

DEFINER

sqlj_object_type::=

EXTERNAL NAME java_ext_name LANGUAGE JAVA USING

SQLData

CustomDatum

OraData

sqlj_object_type_attr::=

EXTERNAL NAME ’ field_name ’

element_spec::=

inheritance_clauses
subprogram_spec

constructor_spec

map_order_function_spec

, pragma_clause

inheritance_clauses::=

NOT
OVERRIDING

FINAL

INSTANTIABLE

subprogram_spec::=

MEMBER

STATIC

procedure_spec

function_spec

procedure_spec::=

PROCEDURE procedure_name (parameter datatype

,

)

IS

AS
call_spec

function_spec::=

FUNCTION name (parameter datatype

,

) return_clause

CREATE TYPE 1099

1100 Part VIII: Alphabetical Reference

constructor_spec::=

FINAL INSTANTIABLE
CONSTRUCTOR FUNCTION datatype

(
SELF IN OUT datatype ,

parameter datatype

,

)

RETURN SELF AS RESULT

IS

AS
call_spec

map_order_function_spec::=

MAP

ORDER
MEMBER function_spec

return_clause::=

RETURN datatype

IS

AS
call_spec

sqlj_object_type_sig

sqlj_object_type_sig::=

RETURN
datatype

SELF AS RESULT
EXTERNAL

VARIABLE NAME ’ java_static_field_name ’

NAME ’ java_method_sig ’

pragma_clause::=

PRAGMA RESTRICT_REFERENCES (
method_name

DEFAULT
,

RNDS

WNDS

RNPS

WNPS

TRUST

,

)

call_spec::=

LANGUAGE
Java_declaration

C_declaration

Java_declaration::=

JAVA NAME string

C_declaration::=

C
NAME name

LIBRARY lib_name
AGENT IN (argument

,

)

WITH CONTEXT PARAMETERS (parameter

,

)

varray_type::=

OID ’ object_identifier ’ IS

AS

VARRAY

VARYING ARRAY
(limit) OF datatype ;

nested_table_type::=

OID ’ object_identifier ’ IS

AS
TABLE OF datatype ;

DESCRIPTION CREATE TYPE creates an abstract datatype, named varying array (VARRAY), nested
table type, or an incomplete object type. To create or replace a type, you must have the CREATE TYPE
privilege. To create a type in another user’s schema, you must have the CREATE ANY TYPE system
privilege.

When creating an abstract datatype, you can base it on Oracle’s provided datatypes (such as DATE
and NUMBER) and on previously defined abstract datatypes.

An “incomplete” type has a name but no attributes or methods. However, it can be referenced by
other object types, and so can be used to define object types that refer to each other. If you have two
types that refer to each other, you must create one as an incomplete type, then create the second, then
re-create the first with its proper definition.

If you plan to create methods for the type, you need to declare the method names in the type
specification.

CREATE TYPE 1101

1102 Part VIII: Alphabetical Reference

EXAMPLES This example creates a type that will have associated methods:

create or replace type ANIMAL_TY as object
(Breed VARCHAR2(25),
 Name VARCHAR2(25),
 BirthDate DATE,
member function AGE (BirthDate IN DATE) return NUMBER,
PRAGMA RESTRICT_REFERENCES(AGE, WNDS));

This example creates a varying array:

create or replace type TOOLS_VA as varray(5) of VARCHAR2(25);

This example creates a type with no methods:

create type ADDRESS_TY as object
(Street VARCHAR2(50),
 City VARCHAR2(25),
 State CHAR(2),
 Zip NUMBER);

This example creates a type that uses another type:

create type PERSON_TY as object
(Name VARCHAR2(25),
 Address ADDRESS_TY);

CREATE TYPE BODY
SEE ALSO CREATE FUNCTION, CREATE PROCEDURE, CREATE TYPE, Chapters 38, 39, and 41
FORMAT
create_type_body::=

CREATE
OR REPLACE

TYPE BODY
schema .

type_name

IS

AS

subprogram_declaration

map_order_func_declaration

,

END ;

subprogram_declaration::=

MEMBER

STATIC

procedure_declaration

function_declaration

constructor_declaration

procedure_declaration::=

PROCEDURE name (parameter datatype

,

)
IS

AS

pl/sql_block

call_spec

function_declaration::=

FUNCTION name (parameter datatype

,

) RETURN datatype
IS

AS

pl/sql_block

call_spec

constructor_declaration::=

FINAL INSTANTIABLE
CONSTRUCTOR FUNCTION datatype

(
SELF IN OUT datatype ,

parameter datatype

,

)

RETURN SELF AS RESULT
IS

AS

pl/sql_block

call_spec

map_order_func_declaration::=

MAP

ORDER
MEMBER function_declaration

call_spec::=

LANGUAGE
Java_declaration

C_declaration

Java_declaration::=

JAVA NAME string

C_declaration::=

C
NAME name

LIBRARY lib_name
AGENT IN (argument

,

)

WITH CONTEXT PARAMETERS (parameter

,

)

CREATE TYPE BODY 1103

1104 Part VIII: Alphabetical Reference

DESCRIPTION CREATE TYPE BODY specifies the methods to be applied to types created via
CREATE TYPE. You must have the CREATE TYPE privilege to create type bodies. To create a type body
in another user’s schema, you must have the CREATE ANY TYPE privilege.
EXAMPLE

create or replace type body ANIMAL_TY as
member function Age (BirthDate DATE) return NUMBER is
 begin
 RETURN ROUND(SysDate - BirthDate);
 end;
end;

CREATE USER
SEE ALSO ALTER USER, CREATE PROFILE, CREATE ROLE, CREATE TABLESPACE, GRANT, Chapter 19
FORMAT
create_user::=

CREATE USER user IDENTIFIED

BY password

EXTERNALLY
AS ’ certificate_DN ’

GLOBALLY
AS ’

directory_DN
’

DEFAULT TABLESPACE tablespace

TEMPORARY TABLESPACE
tablespace

tablespace_group_name

QUOTA
size_clause

UNLIMITED
ON tablespace

PROFILE profile

PASSWORD EXPIRE

ACCOUNT
LOCK

UNLOCK
;

DESCRIPTION CREATE USER creates a user account that lets you log into the database with a
certain set of privileges and storage settings. If you specify a password, you must supply that password
to log on; if you specify the EXTERNALLY option, access is verified through operating system security.
External verification uses the OS_AUTHENT_PREFIX initialization parameter to prefix the operating
system user ID, so the username you specify in CREATE USER should contain that prefix (usually OPS$).

The DEFAULT TABLESPACE is the tablespace in which the user creates objects. The TEMPORARY
TABLESPACE is the tablespace in which temporary objects are created for the user’s operations.

You can put a QUOTA on either of these tablespaces that limits the amount of space, in bytes
(kilobytes or megabytes for K or M options, respectively), that a user can allocate. The PROFILE clause
assigns a named profile to the user to limit usage of database resources. Oracle assigns the DEFAULT
profile to the user if you don’t specify a profile.

When you first create a user, the user has no privileges. You must use the GRANT command to
grant roles and privileges to the user. You should usually grant CREATE SESSION as a minimal privilege.

For information on password expirations and account locking, see CREATE PROFILE and Chapter 19.
You can assign a user a temporary tablespace group as the designated temporary tablespace,

thereby effectively assigning multiple temporary tablespaces to the user.

CREATE VIEW
SEE ALSO CREATE SYNONYM, CREATE TABLE, DROP VIEW, RENAME, INTEGRITY CONSTRAINT,
Chapters 17 and 38
FORMAT
create_view::=

CREATE
OR REPLACE

NO
FORCE

VIEW

schema .
view

(
alias

inline_constraint

out_of_line_constraint

,

)

object_view_clause

XMLType_view_clause

AS subquery
subquery_restriction_clause

;

object_view_clause::=

OF
schema .

type_name

WITH OBJECT IDENTIFIER

DEFAULT

(attribute

,

)

UNDER
schema .

superview

(
out_of_line_constraint

attribute inline_constraint

,

)

CREATE VIEW 1105

1106 Part VIII: Alphabetical Reference

XMLType_view_clause::=

OF XMLTYPE
XMLSchema_spec

WITH OBJECT IDENTIFIER

DEFAULT

(expr

,

)

XMLSchema_spec::=

single_XMLSchema_spec

multiple_XMLSchema_spec

ALLOW
ANYSCHEMA

NONSCHEMA

DISALLOW NONSCHEMA

subquery_restriction_clause::=

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

DESCRIPTION CREATE VIEW defines a view named view. user is the name of the user for whom
the view is created. The OR REPLACE option re-creates the view if it already exists. The FORCE option
creates the view regardless of whether the tables to which the view refers exist or whether the user has
privileges on them. The user still can’t execute the view, but he or she can create it. The NO FORCE
option creates the view only if the base tables exist and the user has privileges on them.

If an alias is specified, the view uses the alias as the name of the corresponding column in the
query. If an alias is not specified, the view inherits the column name from the query; in this case each
column in a query must have a unique name, one that follows normal Oracle naming conventions. It
cannot be an expression. An alias in the query itself also can serve to rename the column.

AS query identifies the columns of tables and other views that are to appear in this view. Its
WHERE clause will determine which rows are to be retrieved.

WITH CHECK OPTION restricts INSERTs and UPDATEs performed through the view to prevent
them from creating rows that the view cannot itself select, based on the WHERE clause of the CREATE
VIEW statement. WITH CHECK OPTION may be used in a view that is based on another view;
however, if the underlying view also has a WITH CHECK OPTION, it is ignored.

constraint is an optional name given to the CHECK OPTION. Without it, Oracle will assign a name
in the form SYS_Cn, where n is an integer. An Oracle-assigned name will usually change during an
import, while a user-assigned name will not change.

UPDATE and DELETE will work on rows in a view if the view is based on a single table and its
query does not contain the GROUP BY clause, the DISTINCT clause, group functions, or references to
the pseudo-column RowNum. You may UPDATE views containing other pseudo-columns or expressions,
as long as they are not referenced in the UPDATE.

You may insert rows through a view if the view is based on a single table and if its query does not
contain the GROUP BY clause, the DISTINCT clause, group functions, references to any pseudo-
columns, or any expressions; rows may also be inserted through a view with more than one table by
using INSTEAD OF triggers. If the view is created WITH READ ONLY, then only SELECTs are allowed
against the view; no data manipulation is allowed.

You can create object views to superimpose abstract datatypes on existing relational tables. To
create a view, you must have the CREATE VIEW system privilege. To create a view in another user’s
schema, you must have the CREATE ANY VIEW system privilege.

CUBE
SEE ALSO GROUPING, ROLLUP, Chapter 12
FORMAT

GROUP BY CUBE (column1, column2)

DESCRIPTION CUBE groups rows based on the values of all possible combinations of expressions
for each row, and returns a single row of summary information for each group. You can use the CUBE
operation to produce crosstab reports. See Chapter 12.

CUBE_TABLE
SEE ALSO AGGREGATE FUNCTIONS
FORMAT

CUBE_TABLE

(’

schema . cube

HIERARCHY

HRR
dimension hierarchy

schema . dimension

HIERARCHY

HRR

dimension
hierarchy ’)

DESCRIPTION CUBE_TABLE extracts data from a cube or dimension and returns it in the two-
dimensional format of a relational table, which can be used by SQL-based applications.

The function takes a single VARCHAR2 argument. The optional hierarchy clause enables you to
specify a dimension hierarchy. A cube can have multiple hierarchy clauses, one for each dimension.

You can generate these different types of tables:

Cube table Contains a key column for each dimension and a column for each measure and
calculated measure in the cube. To create a cube table, you can specify the cube with or
without a cube hierarchy clause. For a dimension with multiple hierarchies, this clause limits
the return values to the dimension members and levels in the specified hierarchy. Without a
hierarchy clause, all dimension members and all levels are included.

Dimension table Contains a key column as well as a column for each level and each
attribute. All dimension members and all levels are included in the table. To create a
dimension table, specify the dimension without a dimension hierarchy clause.

Hierarchy table Contains all the columns of a dimension table plus a column for the parent
member and a column for each source level. Any dimension members and levels that are not
part of the named hierarchy are excluded from the table. To create a hierarchy table, specify
the dimension with a dimension hierarchy clause.

■

■

■

CUBE_TABLE 1107

1108 Part VIII: Alphabetical Reference

CUBE_TABLE is a table function and is always used in the context of a SELECT statement with this
syntax:

select ... from table(CUBE_TABLE('arg'));

CUME_DIST
SEE ALSO AGGREGATE FUNCTIONS
FORMAT For aggregates:

CUME_DIST (expr [, expr]...) WITHIN GROUP
(ORDER BY
 expr [DESC | ASC] [NULLS { FIRST | LAST }]
 [, expr [DESC | ASC] [NULLS { FIRST | LAST }]]...)

For analytics:

CUME_DIST () OVER ([query_partition_clause] order_by_clause)

DESCRIPTION CUME_DIST calculates the cumulative distribution of a value in a group of values.
The range of values returned by CUME_DIST is >0 to <=1. Tie values always evaluate to the same
cumulative distribution value.

CURRENT_DATE
SEE ALSO DATE FUNCTIONS
FORMAT

CURRENT_DATE

DESCRIPTION CURRENT_DATE returns the current date in the session time zone, in a value in the
Gregorian calendar of datatype DATE.
EXAMPLE

SELECT CURRENT_DATE FROM DUAL;

CURRENT_TIMESTAMP
SEE ALSO DATE FUNCTIONS
FORMAT

CURRENT_TIMESTAMP [(precision)]

DESCRIPTION CURRENT_TIMESTAMP returns the current date and time in the session time zone,
in a value of datatype TIMESTAMP WITH TIME ZONE. The time zone displacement reflects the current
local time of the SQL session. If you omit precision, the default is 6. The difference between this
function and LOCALTIMESTAMP is that CURRENT_TIMESTAMP returns a TIMESTAMP WITH TIME
ZONE value while LOCALTIMESTAMP returns a TIMESTAMP value. precision specifies the fractional
second precision of the time value returned.
EXAMPLE

select CURRENT_TIMESTAMP from DUAL;

CURSOR (PL/SQL)
SEE ALSO CREATE PACKAGE, CREATE PACKAGE BODY, Chapter 32
FORMAT

CURSOR cursor [(parameter datatype[,parameter datatype]...]
 [IS query]

DESCRIPTION You can specify a cursor in a PL/SQL package and declare its body. The specification
contains only the list of parameters with their corresponding datatypes, not the IS clause, while the
body contains both. The parameters may appear anywhere in the query that a constant could appear.
You can specify the cursor as a part of the public declarations of the package specification, and then
the cursor body as part of the hidden package body.

CURSOR FOR LOOP
In FOR loops, the loop executes a specified number of times. In a cursor FOR loop, the results of a
query are used to dynamically determine the number of times the loop is executed. In a cursor FOR
loop, the opening, fetching, and closing of cursors is performed implicitly; you do not need to explicitly
code these actions.

The following listing shows a cursor FOR loop that queries the RADIUS_VALS table and inserts
records into the AREAS table:

declare
 pi constant NUMBER(9,7) := 3.1415927;
 area NUMBER(14,2);
 cursor rad_cursor is
 select * from RADIUS_VALS;
begin
 for rad_val in rad_cursor
 loop
 area := pi*power(rad_val.radius,2);
 insert into AREAS values (rad_val.radius, area);
 end loop;
end;

In a cursor FOR loop, there is no OPEN or FETCH command. The

for rad_val in rad_cursor

command implicitly opens the rad_cursor cursor and fetches a value into the rad_val variable. Note that
the rad_val variable is not explicitly declared when you use a cursor FOR loop. When there are no more
records in the cursor, the loop is exited and the cursor is closed. In a cursor FOR loop, there is no need
for a CLOSE command. See Chapter 32 for further information on cursor management within PL/SQL.

CV
FORMAT

CV([dimension_column])

DESCRIPTION CV can be used only in the MODEL clause of a SELECT statement. It returns the
current value of a dimension column carried from the left side to the right side of a rule to provide
relative indexing with respect to the dimension column.

DATA MINING FUNCTIONS
The data mining functions operate on models that have been built using the DBMS_DATA_MINING
package or the Oracle Data Mining Java API. The SQL data mining functions are CLUSTER_ID,
CLUSTER_PROBABILITY, CLUSTER_SET, FEATURE_ID, FEATURE_SET, FEATURE_VALUE, PREDICTION,
PREDICTION_BOUNDS, PREDICTION_COST, PREDICTION_DETAILS, PREDICTION_PROBABILITY,
and PREDICTION_SET.

DATA MINING FUNCTIONS 1109

1110 Part VIII: Alphabetical Reference

DATATYPES
SEE ALSO CHARACTER FUNCTIONS, CONVERSION FUNCTIONS, DATE FUNCTIONS, LIST
FUNCTIONS, NUMBER FUNCTIONS, OTHER FUNCTIONS
DESCRIPTION When a table is created and the columns in it are defined, they must each have a
datatype specified. Oracle’s primary datatypes are VARCHAR2, CHAR, DATE, LONG, LONG RAW,
NUMBER, RAW, and ROWID, but for compatibility with other SQL databases, its CREATE TABLE
statements will accept several versions of these. The following table summarizes the built-in Oracle
datatypes:

Datatype Definition
VARCHAR2(size) Variable-length character string having a maximum of size bytes (up to

4000).

NVARCHAR2(size) Variable-length character string having a maximum of size bytes (up to
4000) or characters, depending on the choice of national character set.

NUMBER(precision, scale) For NUMBER column of specified precision with scale digits after the decimal
point. precision can range from 1 to 38; scale can range from –84 to 127.

LONG Character data of variable size up to 2GB in length.

DATE Valid dates range from January 1, 4712 B.C. to December 31, 9999 A.D.

BINARY_FLOAT 32-bit floating-point number.

BINARY_DOUBLE 64-bit floating-point number.

TIMESTAMP (precision) Date plus time, where precision is the number of digits in the fractional part
of the Seconds field (values range from 0 to 9, default is 6).

TIMESTAMP (precision) WITH
TIME ZONE

TIMESTAMP plus time zone displacement value. precision is the number
of digits in the fractional part of the Seconds field (values range from 0 to
9, default is 6).

TIMESTAMP (precision) WITH
LOCAL TIME ZONE

TIMESTAMP, normalized to local time zone.

INTERVAL YEAR (precision) TO
MONTH

Period of time in years and months, where precision is the number of
digits in the YEAR datetime field (values range from 0 to 9, default is 2).

INTERVAL DAY (day_precision)
TO SECOND (second_precision)

Period of time in days, hours, minutes, and seconds, where day_precision
is the number of digits in the DAY datetime field (values range from 0 to 9,
default is 2) and second_precision is the number of digits in the fractional
part of the Seconds field (values range from 0 to 9, default is 6).

RAW(size) Raw binary data, size bytes long. Maximum size is 2000 bytes.

LONG RAW Raw binary data; otherwise the same as LONG.

ROWID Base 64 string representing the unique address of a row in its table.

UROWID (size) Base 64 string for the logical address of a row in an index-organized table;
maximum size is 4000 bytes.

CHAR(size) Fixed-length character data, size characters long. Maximum size is 2000.
Default is 1 byte. Padded on the right with blanks to full length of size.

NCHAR(size) Multibyte character set version of CHAR.

CLOB Character large object, up to 4GB in length.

NCLOB Same as CLOB, but containing Unicode characters.

BLOB Binary large object, up to 4GB in length.

BFILE Pointer to a binary operating system file.

DATE
DATE is a standard Oracle datatype to store date and time data. Standard date format is 22-APR-04. A
DATE column may contain a date and time between January 1, 4712 B.C. and December 31, 9999 A.D.

DATE FORMATS
SEE ALSO DATE FUNCTIONS, Chapter 10
DESCRIPTION Date format models are used in conversion functions. Date model components are
listed in the following table:

/,-:.; Punctuation to be incorporated in display for TO_CHAR or ignored in format for TO_DATE.

A.D. or AD AD indicator, with or without periods.

A.M. or AM Displays A.M. or P.M., depending upon time of day, with or without periods.

B.C. or BC Same as A.D. or AD.

CC Century: (e.g., 21 for 2004).

SCC Century, with BC dates prefixed with -.

D Number of days in week: 1 to 7.

DAY Day fully spelled out, padded to 9 characters.

DD Number of days in month: 1 to 31.

DDD Number of days in year (since January 1): 1 to 366.

DL Date in local long format; in U.S. format, this is equivalent to fmDay, Month dd, yyyy.

DS Date in local short format; in U.S. format, this is equivalent to MM/DD/RRRR.

DY Three-letter abbreviation of day: FRI.

E Abbreviated era name (Japanese Imperial, ROC Official, and Thai Buddha calendars).

EE Full era name version of E format.

FF [1..9] Fractional seconds; the number following FF specifies the number of digits in the fractional
seconds portion displayed.

FM Suppresses leading and trailing blanks; without FM, all months and days are displayed at same
width.

FX Format Exact: specifies exact format matching for the character argument and the date format
model.

HH Hour of day: always 1 to 12.

HH12 Same as HH.

HH24 Hour of day, 24-hour clock: 0 to 23.

I One-digit year from ISO standard.

IW Weeks in year from ISO standard: 1 to 53.

IY Two-digit year from ISO standard.

IYY Three-digit year from ISO standard.

IYYY Four-digit year from ISO standard.

J Julian; days since December 31, 4712 B.C.

MI Minutes of hour: 0 to 59.

MM Month of year (01 to 12).

MON Three-letter abbreviation of month: e.g., AUG.

DATE FORMATS 1111

1112 Part VIII: Alphabetical Reference

MONTH Month fully spelled out: e.g., AUGUST.

P.M. Same effect as A.M.

Q Quarter of year: 1 to 4.

RM Roman numeral month.

RR Last two digits of year relative to current date.

RRRR Rounded year, accepting either two- or four-digit input.

SS Seconds of minute: 1 to 60.

SSSSS Seconds since midnight: always 0 to 86399.

TS Short time format, for use with DL or DS.

TZD Daylight savings time information.

TZH Time zone hour.

TZM Time zone minute.

TZR Time zone region.

W Number of weeks in month, where week 1 starts on the first day of the month.

WW Number of weeks in year, where week 1 starts on the first day of the year.

X Local radix character.

YEAR or
SYEAR

Year spelled out; S marks BC dates with a leading minus sign.

YYYY or
SYYYY

Full four-digit year; S marks BC dates with a leading minus sign.

Y,YYY Year, with comma.

Y Last one digit of year.

YY Last two digits of year.

YYY Last three digits of year.

Date formats that work only with TO_CHAR but not TO_DATE include:

"string " string is incorporated in display for TO_CHAR.

TH Suffix to a number: ddTH or DDTH produces 24th or 24TH. Capitalization comes from the case
of the number—dd or DD—not from the case of the TH. Works with any number in a date: YYYY,
DD, MM, HH, MI, SS, and so on.

SP Suffix to a number that forces number to be spelled out: DDSP, DdSP, or ddSP produces THREE,
Three, or three. Capitalization comes from case of number—dd or DD—not from the case of SP.
Works with any number in a date: YYYY, DD, MM, HH, MI, SS, and so on.

SPTH Suffix combination of TH and SP that forces number to be both spelled out and given an ordinal
suffix: Ddspth produces Third. Capitalization comes from case of number—dd or DD—not from
the case of SP. Works with any number in a date: YYYY, DD, MM, HH, MI, SS, and so on.

THSP Same as SPTH.

DATE FUNCTIONS
SEE ALSO DATE FORMATS, Chapter 10

DESCRIPTION This is an alphabetical list of all current date functions in Oracle version of SQL.
Each of these is listed elsewhere in this reference under its own name, with its proper format and use.

ADD_MONTHS(date,count) Adds count months to date.

CURRENT_DATE Returns the current date in the session’s time zone.

CURRENT_TIMESTAMP Returns the current timestamp with the active time zone information.

DBTIMEZONE Returns the current database timezone, in UTC format.

EXTRACT(datetime) Extracts a portion of a date from a date value, such as extracting the
month value from a date column’s values.

FROM_TZ Converts a timestamp value to a timestamp with timezone value.

LAST_DAY(date) Gives date of last day of month that date is in.

LOCALTIMESTAMP Returns the local timestamp in the active time zone, with no time zone
information shown.

MONTHS_BETWEEN(date2,date1) Gives date2–date1 in months (can be fractional months).

NEW_TIME(date, 'this', 'other') Gives the date (and time) in this time zone. this will be
replaced by a three-letter abbreviation for the current time zone. other will be replaced by a
three-letter abbreviation for the other time zone for which you’d like to know the time and date.

Time zones are as follows:

AST/ADT Atlantic standard/daylight time

BST/BDT Bering standard/daylight time

CST/CDT Central standard/daylight time

EST/EDT Eastern standard/daylight time

GMT Greenwich mean time

HST/HDT Alaska-Hawaii standard/daylight time

MST/MDT Mountain standard/daylight time

NST Newfoundland standard time

PST/PDT Pacific standard/daylight time

YST/YDT Yukon standard/daylight time

NEXT_DAY(date,'day') Gives date of next day after date, where 'day' is 'Monday', 'Tuesday',
and so on.

NUMTODSINTERVAL(n,'value') Converts a number or expression n to an INTERVAL DAY
TO SECOND literal where value is the unit of n: 'DAY', 'HOUR', 'MINUTE', 'SECOND'.

NUMTOYMINTERVAL(n,'value') Converts a number or expression n to an INTERVAL YEAR
TO MONTH literal where value is the unit of n: 'YEAR', 'MONTH'.

ROUND(date,'format') Without format specified, rounds a date to 12 A.M. (midnight, the
beginning of that day) if time of date is before noon; otherwise, rounds up to next day. For use
of format for rounding, see ROUND.

SESSIONTIMEZONE Returns the value of the current session’s timezone.

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

DATE FUNCTIONS 1113

1114 Part VIII: Alphabetical Reference

SYS_EXTRACT_UTC(datetime_with_timezone) Extracts the Coordinated Universal Time
(UTC) from a datetime field with time zone displacement.

SYSDATE Returns the current date and time.

SYSTIMESTAMP Returns the system date, including fractional seconds and time zone of the
database.

TO_CHAR(date,'format') Reformats date according to format.

TO_DATE(string,'format') Converts a string in a given 'format' into an Oracle date. Will also
accept a number instead of a string, with certain limits. 'format' is restricted.

TO_DSINTERVAL('value') Converts value of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to an INTERVAL DAY TO SECOND type.

TO_TIMESTAMP('value') Converts value of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to a value of TIMESTAMP datatype.

TO_TIMESTAMP_TZ('value') Converts value of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype to a value of TIMESTAMP WITH TIMEZONE datatype.

TO_YMINTERVAL('value') Converts value of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to a value of INTERVAL YEAR TO MONTH datatype.

TRUNC(date,'format') Without format specified, sets a date to 12 A.M. (midnight, the
beginning of that day). For use of format for truncating, see TRUNC.

TZ_OFFSET('value') Returns the time zone offset corresponding to the value entered based
on the date the statement is executed.

DBTIMEZONE
SEE ALSO DATE FUNCTIONS
FORMAT

DBTIMEZONE

DESCRIPTION DBTIMEZONE returns the value of the database time zone.
EXAMPLE

select DBTIMEZONE from DUAL;

DECLARE CURSOR (Form 1—Embedded SQL)
SEE ALSO CLOSE, DECLARE DATABASE, DECLARE STATEMENT, FETCH, OPEN, PREPARE,
SELECT, SELECT (Embedded SQL), Programmer’s Guide to the Oracle Precompilers
FORMAT

EXEC SQL [AT {database | :host_variable}]
DECLARE cursor CURSOR
 FOR {SELECT command | statement}

DESCRIPTION The DECLARE CURSOR statement must appear before any SQL that references this
cursor, and must be compiled in the same source as procedures that reference it. Its name must be
unique to the source.

database is the name of a database already declared in a DECLARE DATABASE statement and used
in a CONNECT; host_variable is a variable with such a name as its value. cursor is the name you assign

■

■

■

■

■

■

■

■

■

■

■

to this cursor. SELECT command is a query with no INTO clause. Alternatively, a SQL statement or a
PL/SQL block already declared in a SQL DECLARE STATEMENT statement can be used.

When the FOR UPDATE OF clause is included in the SELECT statement, an UPDATE can reference
the cursor with WHERE CURRENT OF cursor, although the cursor must still be open, and a row must
be present from a FETCH.

DECLARE CURSOR (Form 2—PL/SQL)
SEE ALSO CLOSE, FETCH, OPEN, SELECT…INTO, Chapter 32
FORMAT

DECLARE
CURSOR cursor (parameter datatype [,parameter datatype]...)
 IS select_statement
 [FOR UPDATE OF column [,column]...];

DESCRIPTION A cursor is a work area that Oracle uses to control the row currently being
processed. DECLARE CURSOR names a cursor and declares that it IS (the result of) a certain select_
statement. The select_statement is required, and may not contain an INTO clause. The cursor must be
declared. It can then be OPENed, and rows can then be FETCHed into it. Finally, it can be CLOSEd.

Variables cannot be used directly in the WHERE clause of the select_statement unless they’ve first
been identified as parameters, in a list that precedes the select. Note that DECLARE CURSOR does not
execute the SELECT statement, and the parameters have no values until they are assigned in an OPEN
statement. Parameters have standard object names, and datatypes including VARCHAR2, CHAR,
NUMBER, DATE, and BOOLEAN, all without size or scale, however.

FOR UPDATE OF is required if you wish to affect the current row in the cursor using either
UPDATE or DELETE commands with the CURRENT OF clause.

DECLARE DATABASE (Embedded SQL)
SEE ALSO CONNECT (Embedded SQL), Programmer’s Guide to the Oracle Precompilers
FORMAT

EXEC SQL DECLARE database DATABASE

DESCRIPTION DECLARE DATABASE declares the name of a remote database for use in later AT
clauses of SQL statements, including COMMIT, DECLARE CURSOR, DELETE, INSERT, ROLLBACK,
SELECT, and UPDATE.

DECLARE STATEMENT (Embedded SQL)
SEE ALSO CLOSE, FETCH, OPEN, PREPARE, Programmer’s Guide to the Oracle Precompilers
FORMAT

EXEC SQL [AT {database | :host_variable}]
DECLARE STATEMENT {statement | block_name} STATEMENT

DESCRIPTION statement is the name of the statement in a DECLARE CURSOR statement, and must
be identical to the statement name here. database is the name of a database previously declared with
DECLARE DATABASE; host_variable may contain such a name as its value. This command is only
needed if DECLARE CURSOR will come before a PREPARE command. When it is used, it should come
prior to DECLARE, DESCRIBE, OPEN, or PREPARE, and must be compiled in the same source as
procedures that reference it.

DECLARE STATEMENT (Embedded SQL) 1115

1116 Part VIII: Alphabetical Reference

DECLARE TABLE
SEE ALSO CREATE TABLE, Programmer’s Guide to the Oracle Precompilers
FORMAT

EXEC SQL DECLARE table TABLE
(column datatype [NULL|NOT NULL],
 ...);

DESCRIPTION table is the name of the table being declared. column is a column name, and
datatype is its datatype. This structure is nearly identical to that of CREATE TABLE, including the
use of NULL and NOT NULL.

You use DECLARE TABLE to tell precompilers to ignore actual Oracle database table definitions
when running with SQLCHECK=FULL. The precompilers will regard the table description here as
relevant to the program and ignore the table definitions in the database. Use this when table definitions
will change, or when a table has not yet been created. If SQLCHECK is not equal to FULL (which
means tables and columns will not be checked against the database anyway), this command is ignored
by the precompiler and becomes simply documentation.
EXAMPLE

EXEC SQL DECLARE COMFORT TABLE (
 City VARCHAR2(13) NOT NULL,
 SampleDate DATE NOT NULL,
 Noon NUMBER(3,1),
 Midnight NUMBER(3,1),
 Precipitation NUMBER
);

DECODE
SEE ALSO OTHER FUNCTIONS, CASE, TRANSLATE, Chapter 16
FORMAT

DECODE(value,if1,then1[,if2,then2,]... ,else)

DESCRIPTION value represents any column in a table, regardless of datatype, or any result of a
computation, such as one date minus another, a SUBSTR of a character column, one number times
another, and so on. For each row, value is tested. If it equals if1, then the result of the DECODE is
then1; if value equals if2, then the result of the DECODE is then2, and so on, for virtually as many if/
then pairs as you can construct. If value equals none of the ifs, then the result of the DECODE is else.
Each of the ifs, thens, and the else also can be a column or the result of a function or computation.
EXAMPLE

select DISTINCT City,
 DECODE(City, 'SAN FRANCISCO', 'CITY BY THE BAY', City)
 from COMFORT;

CITY DECODE(CITY,'SA
------------- ---------------
KEENE KEENE
SAN FRANCISCO CITY BY THE BAY

DECOMPOSE
SEE ALSO CONVERSION FUNCTIONS
FORMAT

DECOMPOSE ('string')

DESCRIPTION DECOMPOSE translates a string in any datatype to a Unicode string after canonical
decomposition in the same character set as the input.

DEFINE (SQL*Plus)
SEE ALSO SET, EDIT
FORMAT

DEF[INE] [variable] | [variable = text]

DESCRIPTION variable is a user or predefined variable whose value you wish to assign or list. text
is the new value for the variable; it must be a CHAR value and should be enclosed within single quotes
if it contains punctuation or blanks. DEFINE without a variable will list all variables.

The following variables are predefined by Oracle for each session:

Variable Description
_CONNECT_IDENTIFIER Connection identifier used to make current connection

_DATE Current date, or a user-defined fixed string

_EDITOR Specifies the editor to be used via the EDIT command

_O_RELEASE Full release number of the database

_O_VERSION Current version of the database

_PRIVILEGE Privilege level of the current connection (for example, AS SYSDBA)

_SQLPLUS_RELEASE Full release number of the SQL*Plus version in use

_USER Username for current connection

DEL (SQL*Plus)
SEE ALSO APPEND, CHANGE, EDIT, INPUT, LIST, Chapter 6
FORMAT

DEL [n | n m | n* | n LAST | * | *n | * LAST | LAST]

DESCRIPTION DEL deletes the current line of the current buffer. You can delete multiple lines with
a single DEL command. DEL is not available in iSQL*Plus.
EXAMPLE

del

deletes the current line in the SQL*Plus buffer.
To delete a range of lines with one command, specify the line numbers of the beginning and

ending of the range in the DEL command. The following command would delete lines 2 through 8
in the current buffer:

del 2 8

To delete from line 4 to the end, use the * character:

del 4*

DEL (SQL*Plus) 1117

1118 Part VIII: Alphabetical Reference

DELETE (Form 1—PL/SQL)
SEE ALSO DECLARE CURSOR, UPDATE, Chapter 32
DESCRIPTION In PL/SQL, DELETE follows the normal SQL command rules, with these added
features:

A PL/SQL function and/or variable can be used in the WHERE clause just as a literal could be.

DELETE…WHERE CURRENT OF cursor can be used in conjunction with a SELECT FOR
UPDATE to delete the last row FETCHed. The FETCH can be either explicit or implicit from
a FOR loop.

Like UPDATE and INSERT, the DELETE command executes only within the SQL cursor. The
SQL cursor’s attributes can be checked for the success of the DELETE. SQL%ROWCOUNT
will contain the number of rows deleted. If this is 0, none were DELETEd. (Also, SQL%FOUND
will be FALSE if none were DELETEd.)

DELETE (Form 2—SQL Command)
SEE ALSO DROP TABLE, FROM, INSERT, SELECT, UPDATE, WHERE, Chapter 15
FORMAT
delete::=

DELETE
hint FROM dml_table_expression_clause

ONLY (dml_table_expression_clause)

t_alias

where_clause returning_clause error_logging_clause
;

DML_table_expression_clause::=

schema . table

partition_extension_clause

@ dblink

view

materialized view

@ dblink

(subquery
subquery_restriction_clause

)

table_collection_expression

■

■

■

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

subquery_restriction_clause::=

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

table_collection_expression::=

TABLE (collection_expression)
(+)

where_clause::=

WHERE condition

returning_clause::=

RETURNING expr

,

INTO data_item

,

error_logging_clause::=

LOG ERRORS
INTO

schema .
table (simple_expression)

REJECT LIMIT
integer

UNLIMITED

DELETE (Form 2—SQL Command) 1119

DESCRIPTION DELETE deletes from table all rows that satisfy condition. The condition may include
a correlated query and use the alias for correlation. If the table is remote, a database link has to be
defined. @link specifies the link. If link is entered, but user is not, the query seeks a table owned by the
same user on the remote database.

When using the DELETE command, you may specify a partition or subpartition. To delete rows
from a table, you must have DELETE privileges on the table. If the SQL92_SECURITY initialization
parameter is set to TRUE, then you must also have SELECT privileges if the DELETE refers to columns
in the table itself.
EXAMPLE This example deletes all rows for the city of Keene from the COMFORT table:

delete from COMFORT
 where City = 'KEENE';

DELETE (Form 3—Embedded SQL)
FORMAT

EXEC SQL [AT {db_name | :host_variable}] [FOR :host_integer | integer]
 DELETE [FROM]
 [(subquery)
 | [user.] {table | view } [@dblink |PARTITION (partition_name)]]
[alias] [WHERE {condition | CURRENT OF cursor}]
[{ RETURN | RETURNING } expr [, expr]... INTO
 :host_variable [[INDICATOR] :ind_variable]
 [, :host_variable [[INDICATOR] :ind_variable]]...]

DESCRIPTION This form of the DELETE command allows you to delete rows (from a table, view, or
index-only table) from within a precompiler program.

DELETEXML
FORMAT

DELETEXML
 (XMLType_instance, XPath_string
 [, namespace_string])

DESCRIPTION DELETEXML deletes the node or nodes matched by the XPath expression in the
target XML.

The input variables are:

XMLType_instance, which is an instance of XMLType.

The XPath_string, which is an XPath expression indicating one or more nodes that are to be
deleted. You can specify an absolute XPath_string with an initial slash or a relative XPath_string
by omitting the initial slash. If you omit the initial slash, the context of the relative path defaults
to the root node. Any child nodes of the nodes specified by XPath_string are also deleted.

The optional namespace_string, which provides namespace information for the XPath_string.
This parameter must be of type VARCHAR2.

DENSE_RANK
SEE ALSO AGGREGATE FUNCTIONS, Chapter 12
FORMAT

DENSE_RANK (expr [, expr]...) WITHIN GROUP

■

■

■

1120 Part VIII: Alphabetical Reference

(ORDER BY
 expr [DESC | ASC] [NULLS { FIRST | LAST }]
 [, expr [DESC | ASC] [NULLS { FIRST | LAST }]]...)

For analytics:

DENSE_RANK () OVER ([query_partition_clause] order_by_clause)

DESCRIPTION DENSE_RANK computes the rank of a row in an ordered group of rows. See Chapter
12 for related examples.

DEPTH
FORMAT

DEPTH(integer)

DESCRIPTION DEPTH is an ancillary function used only with the UNDER_PATH and EQUALS_
PATH conditions. It returns the number of levels in the path specified by the UNDER_PATH condition
with the same correlation variable. The integer value can be any NUMBER integer.

DEREF
The DEREF operator returns the value of a referenced object. See Chapter 41.

DESCRIBE (Form 1—SQL*Plus)
SEE ALSO CREATE TABLE
FORMAT

DESC[RIBE] {[user.]object[@connect_identifier]}

DESCRIPTION DESCRIBE displays a specified object’s definition. If user is omitted, SQL*Plus
displays the table owned by you. The definition includes the table and its columns, with each column’s
name, NULL or NOT NULL status, datatype, and width or precision. DESCRIBE can also be used on
views, synonyms, and function and procedure specifications.
EXAMPLE

describe COMFORT

Name Null? Type
------------------------------- -------- ------------
CITY NOT NULL VARCHAR2(13)
SAMPLEDATE NOT NULL DATE
NOON NUMBER(3,1)
MIDNIGHT NUMBER(3,1)
PRECIPITATION NUMBER

DESCRIBE (Form 2—Embedded SQL)
SEE ALSO PREPARE
FORMAT

EXEC SQL DESCRIBE [BIND VARIABLES FOR
 | SELECT LIST FOR]
 statement_name INTO descriptor

DESCRIPTION The DESCRIBE command initializes a descriptor to hold descriptions of host variables
for a dynamic SQL statement or PL/SQL block. The DESCRIBE command follows the PREPARE command.

DESCRIBE (Form 2—Embedded SQL) 1121

1122 Part VIII: Alphabetical Reference

DISASSOCIATE STATISTICS
SEE ALSO ASSOCIATE STATISTICS
FORMAT
disassociate_statistics::=

DISASSOCIATE STATISTICS FROM

COLUMNS
schema .

table . column

,

FUNCTIONS
schema .

function

,

PACKAGES
schema .

package

,

TYPES
schema .

type

,

INDEXES
schema .

index

,

INDEXTYPES
schema .

indextype

,

FORCE
;

DESCRIPTION ASSOCIATE STATISTICS associates a set of statistics functions with one or more
columns, stand-alone functions, packages, types, or indexes. DISASSOCIATE STATISTICS revokes the
associations. You must have ALTER privilege on the base object.

DISCONNECT (SQL*Plus)
SEE ALSO CONNECT, EXIT, QUIT
FORMAT

DISC[ONNECT]

DESCRIPTION DISCONNECT commits pending changes to the database and logs you off of
Oracle. Your SQL*Plus session remains active and the features of SQL*Plus continue to function, but
without any connection to the database. You can edit buffers, use your own editor, spool and stop
spooling, or connect to Oracle again, but until a connection is established, no SQL can be executed.

EXIT or QUIT will return you to your host’s operating system. If you are still connected when you
EXIT or QUIT, you will be automatically disconnected and logged off of Oracle.

DISTINCT
Distinct means unique. It is used as a part of SELECT statements and group functions. See AGGREGATE
FUNCTIONS, SELECT.

DROP CLUSTER
SEE ALSO CREATE CLUSTER, DROP TABLE, Chapter 17
FORMAT

DROP CLUSTER [schema .] cluster
[INCLUDING TABLES [CASCADE CONSTRAINTS]];

DESCRIPTION DROP CLUSTER deletes a cluster from the database. You must have DROP ANY
CLUSTER privilege if the cluster is not in your own schema. You cannot drop a cluster that contains
tables. The tables must be dropped first. The INCLUDING TABLES clause drops all the clustered tables
automatically. The CASCADE CONSTRAINTS option drops all referential integrity constraints from
tables outside the cluster that refer to keys in the clustered tables.

Individual tables cannot be removed from a cluster. To accomplish the same effect, copy the table
under a new name (use CREATE TABLE with AS SELECT), drop the old one (this will remove it from the
cluster), RENAME the copy to the name of the table you dropped, and then issue the appropriate
GRANTs, and create the needed indexes.

DROP CONTEXT
SEE ALSO CREATE CONTEXT
FORMAT

DROP CONTEXT namespace;

DESCRIPTION DROP CONTEXT deletes a context namespace from the database. You must have
the DROP ANY CONTEXT system privilege.

DROP DATABASE
SEE ALSO CREATE DATABASE, Chapter 51
FORMAT

DROP DATABASE ;

DESCRIPTION DROP DATABASE drops the current database (which must be mounted and closed)
and deletes all control files and datafiles listed in the control file. Any related spfile is also deleted.
Archived logs and backups are not removed. If the database is on raw disks, DROP DATABASE does
not delete the actual raw disk special files.

DROP DATABASE LINK
SEE ALSO CREATE DATABASE LINK, Chapter 25
FORMAT

DROP [PUBLIC] DATABASE LINK link;

DROP DATABASE LINK 1123

1124 Part VIII: Alphabetical Reference

DESCRIPTION DROP DATABASE LINK drops a database link you own. For a public link, the
optional PUBLIC keyword must be used, and you must be a DBA to use it. PUBLIC cannot be used
when dropping a private link. link is the name of the link being dropped. You must have the DROP
PUBLIC DATABASE LINK system privilege to drop a public database link. You may drop private
database links in your account.
EXAMPLE The following will drop a database link named ADAH_AT_HOME:

drop database link ADAH_AT_HOME;

DROP DIMENSION
SEE ALSO CREATE DIMENSION, Chapter 26
FORMAT

DROP DIMENSION [schema .] dimension;

DESCRIPTION DROP DIMENSION drops a dimension that you own. You must have the DROP
ANY DIMENSION system privilege.
EXAMPLE The following will drop the GEOGRAPHY dimension:

drop dimension GEOGRAPHY;

DROP DIRECTORY
SEE ALSO CREATE DIRECTORY, Chapters 24, 28, and 40
FORMAT

DROP DIRECTORY directory_name;

DESCRIPTION DROP DIRECTORY drops an existing directory. You must have the DROP ANY
DIRECTORY privilege to drop a directory.

NOTE
Do not drop a directory while its files are in use.

EXAMPLE The following will drop a directory called REVIEWS:

drop directory REVIEWS;

DROP DISKGROUP
SEE ALSO ALTER DISKGROUP, CREATE DISKGROUP, Chapter 51
FORMAT

DROP DISKGROUP diskgroup_name [{INCLUDING | EXCLUDING} CONTENTS];

DESCRIPTION For databases using Automated Storage Management (ASM), DROP DISKGROUP
drops an ASM disk group along with all the files in the disk group. ASM first ensures that no files in the
disk group are open; if a file is open, the disk group is not dropped.

As of Oracle Database 11g, you can use the FORCE clause to drop a disk group that can no longer
be mounted by an ASM instance.

DROP FLASHBACK ARCHIVE
SEE ALSO ALTER FLASHBACK ARCHIVE, CREATE FLASHBACK ARCHIVE
FORMAT

DROP FLASHBACK ARCHIVE flashback_archive;

DESCRIPTION Use DROP FLASHBACK ARCHIVE to remove a flashback data archive from the
system. This statement removes the flashback data archive and all the historical data in it, but does not
drop the tablespaces that were used by the flashback data archive.

You must have the FLASHBACK ARCHIVE ADMINISTER system privilege to drop a flashback data
archive.

DROP FUNCTION
SEE ALSO ALTER FUNCTION, CREATE FUNCTION, Chapter 35
FORMAT

DROP FUNCTION [schema.] function_name;

DESCRIPTION DROP FUNCTION drops the specified function. Oracle invalidates any objects that
depend on or call the function. You must have the DROP ANY PROCEDURE system privilege to drop a
function that you do not own.

DROP INDEX
SEE ALSO ALTER INDEX, CREATE INDEX, CREATE TABLE, Chapters 17 and 51
FORMAT

DROP INDEX [schema.] index [FORCE];

DESCRIPTION DROP INDEX drops the specified index. You must either own the index or have the
DROP ANY INDEX system privilege. FORCE applies only to domain indexes. This clause drops the
domain index even if the indextype routine invocation returns an error or the index is marked IN
PROGRESS.

DROP INDEXTYPE
SEE ALSO CREATE INDEXTYPE
FORMAT

DROP INDEXTYPE [schema.] indextype [FORCE];

DESCRIPTION DROP INDEXTYPE drops the specified indextype and any association with statistics
types. You must have the DROP ANY INDEXTYPE system privilege.

DROP JAVA
SEE ALSO CREATE JAVA, Chapter 42
FORMAT

DROP JAVA { SOURCE | CLASS | RESOURCE } [schema.] object_name;

DESCRIPTION DROP JAVA drops the specified Java class, source, or resource. You must have the
DROP PROCEDURE system privilege. If the object is in another user’s schema, you must have the
DROP ANY PROCEDURE system privilege.

DROP JAVA 1125

1126 Part VIII: Alphabetical Reference

DROP LIBRARY
SEE ALSO CREATE LIBRARY
FORMAT

DROP LIBRARY library_name;

DESCRIPTION DROP LIBRARY drops the specified library. You must have the DROP ANY LIBRARY
system privilege.

DROP MATERIALIZED VIEW
SEE ALSO ALTER MATERIALIZED VIEW, CREATE MATERIALIZED VIEW, Chapter 26
FORMAT

DROP MATERIALIZED VIEW [schema.] materialized_view [PRESERVE TABLE];

DESCRIPTION DROP MATERIALIZED VIEW drops the indicated materialized view. You must
either own the materialized view or have the DROP ANY SNAPSHOT or DROP ANY MATERIALIZED
VIEW system privilege.

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for backward
compatibility.

PRESERVE TABLE lets you retain the materialized view container table and its contents after
the materialized view object is dropped. The resulting table has the same name as the dropped
materialized view. The metadata associated with the materialized view is dropped but the indexes,
nested table columns, and storage tables for those columns are preserved along with their metadata.

If you drop a materialized view that was created on a prebuilt table, the database drops the
materialized view and the prebuilt table reverts to its identity as a table.

DROP MATERIALIZED VIEW LOG
SEE ALSO ALTER MATERIALIZED VIEW LOG, CREATE MATERIALIZED VIEW LOG, Chapter 26
FORMAT

DROP MATERIALIZED VIEW LOG ON [schema.] table;

DESCRIPTION DROP MATERIALIZED VIEW LOG drops the indicated log table. To drop a
materialized view log, you must have the privileges to drop a table. After dropping the log, any
materialized views on the master table will get COMPLETE refreshes, not FAST refreshes.

The keyword SNAPSHOT is supported in place of MATERIALIZED VIEW for backward
compatibility.

DROP OPERATOR
SEE ALSO ALTER OPERATOR
FORMAT

DROP OPERATOR [schema.] operator [FORCE];

DESCRIPTION DROP OPERATOR drops a user-defined operator. You must either own the operator
or have the DROP ANY OPERATOR system privilege. Specify FORCE to drop the operator even if it is
currently being referenced by one or more schema objects (indextypes, packages, functions, procedures,
and so on), and mark those dependent objects INVALID.

DROP OUTLINE
SEE ALSO CREATE OUTLINE
FORMAT

DROP OUTLINE outline;

DESCRIPTION DROP OUTLINE drops a stored outline from the database. You must have the
DROP ANY OUTLINE system privilege. Subsequent executions of SQL statements that used the outline
will have their execution paths evaluated at run time.

DROP PACKAGE
SEE ALSO ALTER PACKAGE, CREATE PACKAGE, Chapter 35
FORMAT

DROP PACKAGE [BODY] [schema.] package;

DESCRIPTION DROP PACKAGE drops the specified package. Using the optional BODY clause
drops only the body without dropping the package specification. Oracle invalidates any objects that
depend on the package if you drop the package specification, but not if you just drop the body. You
must either own the package or have the DROP ANY PROCEDURE system privilege.

DROP PROCEDURE
SEE ALSO ALTER PROCEDURE, CREATE PROCEDURE, Chapter 35
FORMAT

DROP PROCEDURE [schema.] procedure;

DESCRIPTION DROP PROCEDURE drops the specified procedure. Oracle invalidates any objects
that depend on or call the procedure. You must either own the procedure or have the DROP ANY
PROCEDURE system privilege.

DROP PROFILE
SEE ALSO ALTER PROFILE, CREATE PROFILE, Chapter 19
FORMAT

DROP PROFILE profile [CASCADE];

DESCRIPTION DROP PROFILE drops the specified profile. You must have the DROP PROFILE
system privilege. CASCADE deassigns the profile from any users to whom it has been assigned; they are
automatically assigned the DEFAULT profile in its place. You must use CASCADE if the profile being
dropped is currently assigned to users.

DROP RESTORE POINT
SEE ALSO FLASHBACK DATABASE, FLASHBACK TABLE, CREATE RESTORE POINT
FORMAT

DROP RESTORE POINT restore_point;

DESCRIPTION Use the DROP RESTORE POINT statement to remove a normal restore point or a
guaranteed restore point from the database.

DROP RESTORE POINT 1127

1128 Part VIII: Alphabetical Reference

You need not drop normal restore points. The database automatically drops the oldest restore
points when necessary, as described in the semantics for restore_point. However, you can drop a
normal restore point if you want to reuse the name.

Guaranteed restore points are not dropped automatically. Therefore, if you want to remove a
guaranteed restore point from the database, you must do so explicitly using this statement.

To drop a normal restore point, you must have either the SELECT ANY DICTIONARY or the
FLASHBACK ANY TABLE system privilege. To drop a guaranteed restore point, you must have the
SYSDBA system privilege.

DROP ROLE
SEE ALSO ALTER ROLE, CREATE ROLE, Chapter 19
FORMAT

DROP ROLE role;

DESCRIPTION DROP ROLE drops the specified role. You must either have been granted the role
WITH ADMIN OPTION or have the DROP ANY ROLE system privilege.

DROP ROLLBACK SEGMENT
SEE ALSO ALTER ROLLBACK SEGMENT, CREATE ROLLBACK SEGMENT, CREATE TABLESPACE,
SHUTDOWN, STARTUP, Chapter 51
FORMAT

DROP ROLLBACK SEGMENT rollback_segment;

DESCRIPTION rollback_segment is the name of an existing rollback segment to be dropped. The
segment must not be in use when this statement is executed. PUBLIC is required for dropping public
rollback segments.

The Status column of the data dictionary view DBA_ROLLBACK_SEGS can reveal which rollback
segments are in use. If the segment is in use, you can either wait until it no longer is in use, or
SHUTDOWN the database using IMMEDIATE, and then bring it up in EXCLUSIVE mode using
STARTUP. You must have the DROP ROLLBACK SEGMENT system privilege to drop a rollback segment.

DROP SEQUENCE
SEE ALSO ALTER SEQUENCE, CREATE SEQUENCE, Chapter 17
FORMAT

DROP SEQUENCE [schema.] sequence_name;

DESCRIPTION sequence_name is the name of the sequence being dropped. To drop a sequence,
you must either own the sequence or have the DROP ANY SEQUENCE system privilege.

DROP SYNONYM
SEE ALSO CREATE SYNONYM, Chapter 25
FORMAT

DROP [PUBLIC] SYNONYM [schema.] synonym [FORCE];

DESCRIPTION DROP SYNONYM drops the specified synonym. To drop a public synonym, you
must have the DROP ANY PUBLIC SYNONYM system privilege. To drop a private synonym, you must
own the synonym or have the DROP ANY SYNONYM system privilege. You must specify FORCE if the
synonym has dependent tables or user-defined types.

DROP TABLE
SEE ALSO ALTER TABLE, CREATE INDEX, CREATE TABLE, DROP CLUSTER, Chapter 17
FORMAT

DROP TABLE [schema.] table [CASCADE CONSTRAINTS] [PURGE] ;

DESCRIPTION DROP TABLE drops the specified table. To drop a table, you must either own the
table or have the DROP ANY TABLE system privilege. Dropping a table also drops indexes and grants
associated with it. Objects built on dropped tables are marked invalid and cease to work.

The CASCADE CONSTRAINTS option drops all referential integrity constraints referring to keys in
the dropped table.

You can drop a cluster and all of its tables by using the INCLUDING TABLES clause on DROP
CLUSTER.

Using the DROP TABLE statement moves a table or object table to the recycle bin or removes the
table and all its data from the database entirely. Unless you specify the PURGE clause, the DROP TABLE
statement does not result in space being released back to the tablespace for use by other objects, and the
space continues to count toward the user’s space quota. Objects may be automatically purged from the
recycle bin if the tablespace runs out of space for new objects.

DROP TABLESPACE
SEE ALSO ALTER TABLESPACE, CREATE DATABASE, CREATE TABLESPACE, Chapter 51
FORMAT

DROP TABLESPACE tablespace
[INCLUDING CONTENTS [AND DATAFILES] [CASCADE CONSTRAINTS]];

DESCRIPTION tablespace is the name of the tablespace being dropped. The INCLUDING CONTENTS
option allows you to drop a tablespace that contains data. Without INCLUDING CONTENTS, only an
empty tablespace can be dropped. Tablespaces should be offline (see ALTER TABLESPACE) before dropping,
or the drop operation will be prevented if any users are accessing data, index, rollback, or temporary
segments in the tablespace. You must have the DROP TABLESPACE system privilege to use this command.

DROP TRIGGER
SEE ALSO ALTER TRIGGER, CREATE TRIGGER, Chapters 34 and 38
FORMAT

DROP TRIGGER [schema.] trigger;

DESCRIPTION DROP TRIGGER drops the specified trigger. You must either own the trigger or have
the DROP ANY TRIGGER system privilege.

DROP TYPE
SEE ALSO CREATE TYPE, Chapter 38
FORMAT

DROP TYPE [schema.] type_name [FORCE | VALIDATE];

DESCRIPTION DROP TYPE drops the specification and body of an abstract datatype. You must
either own the type or have the DROP ANY TYPE system privilege. Unless you use FORCE, you cannot
drop a type if a table or other object references it.

DROP TYPE 1129

1130 Part VIII: Alphabetical Reference

DROP TYPE BODY
SEE ALSO CREATE TYPE, CREATE TYPE BODY, DROP TYPE, Chapter 38
FORMAT

DROP TYPE BODY [schema.] type_name;

DESCRIPTION DROP TYPE BODY drops the body of the specified type. You must either own the
type or have the DROP ANY TYPE system privilege.

DROP USER
SEE ALSO ALTER USER, CREATE USER, Chapter 19
FORMAT

DROP USER user [CASCADE];

DESCRIPTION DROP USER drops the specified user. You must have the DROP USER system
privilege. The CASCADE option drops all the objects in the user’s schema before dropping the user,
and you must specify CASCADE if the user has any objects in the schema.

DROP VIEW
SEE ALSO CREATE SYNONYM, CREATE TABLE, CREATE VIEW, Chapter 17
FORMAT

DROP VIEW [schema.] view [CASCADE CONSTRAINTS];

DESCRIPTION DROP VIEW drops the specified view. To drop a view, either the view must be in
your schema or you must have the DROP ANY VIEW system privilege.

DROPJAVA
DROPJAVA is a utility for removing Java classes from the database. See LOADJAVA.

DUAL
SEE ALSO FROM, SELECT, Chapter 10
DESCRIPTION DUAL is a table with only one row and one column in it. Since Oracle’s many
functions work on both columns and literals, it is possible to demonstrate some of its functionality
by using just literals or pseudo-columns. When doing this, the SELECT statement doesn’t care which
columns are in the table, and a single row is more than sufficient to demonstrate a point.
EXAMPLE The following shows the current User and SysDate:

select User, SysDate from DUAL;

DUMP
SEE ALSO RAWTOHEX
FORMAT

DUMP(string [,format [,start [,length]]])

DESCRIPTION DUMP displays the value of string in internal data format, in ASCII, octal, decimal,
hex, or character format. format defaults to ASCII or EBCDIC, depending upon your machine; 8
produces octal, 10 decimal, 16 hex, and 17 character (the same as ASCII or EBCDIC). start is the
beginning position in the string, and length is the number of characters to display. string can be a literal
or an expression.

EXAMPLE The following shows how characters 1 through 8 are represented in hex for just the City
in the first row of the COMFORT table:

select City, DUMP(City,16,1,8) from COMFORT where rownum < 2;

CITY DUMP(CITY,16,1,8)
------------- --------------------------------------
SAN FRANCISCO Typ=1 Len= 13: 53,41,4e,20,46,52,41,4e

EDIT (SQL*Plus)
SEE ALSO DEFINE, SET, Chapter 6
FORMAT

ED[IT] [file[.ext]]

DESCRIPTION EDIT calls an external standard text editor and passes to it the name of the file. If
.ext is omitted, the extension .sql is appended. If file and .ext are both omitted, the editor is called and
passed the name of a file (constructed by SQL*Plus) that contains the contents of the current buffer. The
local user variable _EDITOR determines which text editor is used by EDIT. _EDITOR can be changed
with DEFINE, and this is usually best done in the login.sql file, which is read whenever SQL*Plus is
invoked.

EDIT will fail if the current buffer is empty and EDIT is called without a filename. You can use the
SET EDITFILE command to set the default name of the file created by the EDIT command.

EMPTY_BLOB
SEE ALSO Chapter 40
FORMAT

EMPTY_BLOB()

DESCRIPTION EMPTY_BLOB returns an empty LOB locator that can be used to initialize a LOB
variable or, in an INSERT or UPDATE statement, to initialize a LOB column or attribute to EMPTY.
EMPTY means that the LOB is initialized, but not populated with data.
EXAMPLE

UPDATE BOOK_TEXT set BlobCol = EMPTY_BLOB();

EMPTY_CLOB
SEE ALSO Chapter 40
FORMAT

EMPTY_CLOB()

DESCRIPTION EMPTY_CLOB returns an empty LOB locator that can be used to initialize a LOB
variable or, in an INSERT or UPDATE statement, to initialize a LOB column or attribute to EMPTY.
EMPTY means that the LOB is initialized, but not populated with data.
EXAMPLE

UPDATE BOOK_TEXT set ClobCol = EMPTY_CLOB();

END
SEE ALSO BEGIN, BLOCK STRUCTURE, Chapter 32
FORMAT

END [block label] ;

END 1131

1132 Part VIII: Alphabetical Reference

DESCRIPTION END is unrelated to the END IF and END LOOP statements. See IF and LOOP for
details on either of them.

END is the closing statement of a PL/SQL block’s executable section (and the entire block). If the
block is named at the BEGIN, the name must also follow the word END. At least one executable
statement is required between BEGIN and END.

EXCEPTION
SEE ALSO BLOCK STRUCTURE, RAISE, Chapter 32
FORMAT

EXCEPTION
 {WHEN {OTHERS | exception [OR exception]...}
 THEN statement; [statement;]...}
 [WHEN {OTHER | exception [OR exception]...}
 THEN statement; [statement;]...]...

DESCRIPTION The EXCEPTION section of a PL/SQL block is where program control is transferred
whenever an exception flag is raised. Exception flags are either user-defined or system exceptions
raised automatically by PL/SQL. See RAISE for details on user-defined exception flags. The system
exception flags are all, in effect, BOOLEAN variables that are either TRUE or FALSE. The WHEN clause
is used to test these. For example, the NOT_LOGGED_ON flag is raised if you attempt to issue a
command to Oracle without being logged on. You do not need to have DECLAREd an exception, or
RAISEd this flag yourself. PL/SQL will do it for you.

When any exception flag is raised, the program immediately halts whatever it was doing and jumps
to the EXCEPTION section of the current block. This section, however, doesn’t know automatically
which exception flag was raised, nor what to do. Therefore, you must code the EXCEPTION section
first to check all of the exception flags that are likely to have occurred, and then give action instructions
for each. This is what the WHEN…THEN logic does. You can use WHEN OTHERS as a catch-all to
handle unanticipated errors for which you have not declared exceptions.
EXAMPLE Here, one exception flag is tested in the EXCEPTION section. The ZERO_DIVIDE flag is
raised when any calculation attempts to divide by zero.

declare
 pi constant NUMBER(9,7) := 3.1415927;
 radius INTEGER(5);
 area NUMBER(14,2);
 some_variable NUMBER(14,2);
begin
 radius := 3;
 loop
 some_variable := 1/(radius-4);
 area := pi*power(radius,2);
 insert into AREAS values (radius, area);
 radius := radius+1;
 exit when area \> 100;
 end loop;
exception
 when ZERO_DIVIDE
 then insert into AREAS values (0,0);
end;

The system-raised exception flags are as follows:

Exception Flag Description
ACCESS_INTO_NULL Your program attempts to assign values to the attributes of an

uninitialized (atomically null) object.

CASE_NOT_FOUND None of the choices in the WHEN clauses of a CASE statement is
selected, and there is no ELSE clause.

COLLECTION_IS_NULL Your program attempts to apply collection methods other than EXISTS
to an uninitialized (atomically null) nested table or varying array, or the
program attempts to assign values to the elements of an uninitialized
nested table or varying array.

CURSOR_ALREADY_OPEN Your program attempts to open an already open cursor. A cursor must be
closed before it can be reopened. A CURSOR FOR LOOP automatically
opens the cursor to which it refers. So, your program cannot open that
cursor inside the loop.

DUP_VAL_ON_INDEX Your program attempts to store duplicate values in a database column
that is constrained by a unique index.

INVALID_CURSOR Your program attempts an illegal cursor operation such as closing an
unopened cursor.

INVALID_NUMBER In a SQL statement, the conversion of a character string into a number
fails because the string does not represent a valid number. (In procedural
statements, VALUE_ERROR is raised.) This exception is also raised when
the LIMIT-clause expression in a bulk FETCH statement does not evaluate
to a positive number.

LOGIN_DENIED Your program attempts to log on to Oracle with an invalid username and/
or password.

NO_DATA_FOUND A SELECT INTO statement returns no rows, or your program references a
deleted element in a nested table or an uninitialized element in an index-
by table. SQL aggregate functions such as AVG and SUM always return
a value or a null. So, a SELECT INTO statement that calls an aggregate
function never raises NO_DATA_FOUND. The FETCH statement is
expected to return no rows eventually, so when that happens, no
exception is raised.

NOT_LOGGED_ON Your program issues a database call without being connected to Oracle.

PROGRAM_ERROR PL/SQL has an internal problem.

ROWTYPE_MISMATCH The host cursor variable and PL/SQL cursor variable involved in an
assignment have incompatible return types. For example, when an open
host cursor variable is passed to a stored subprogram, the return types of
the actual and formal parameters must be compatible.

SELF_IS_NULL Your program attempts to call a MEMBER method on a null instance. That
is, the built-in parameter SELF (which is always the first parameter passed
to a MEMBER method) is null.

STORAGE_ERROR PL/SQL runs out of memory or memory has been corrupted.

SUBSCRIPT_BEYOND_COUNT Your program references a nested table or varying array element using an
index number larger than the number of elements in the collection.

SUBSCRIPT_OUTSIDE_LIMIT Your program references a nested table or varying array element using an
index number (–1 for example) that is outside the legal range.

EXCEPTION 1133

1134 Part VIII: Alphabetical Reference

Exception Flag Description
SYS_INVALID_ROWID The conversion of a character string into a universal ROWID fails

because the character string does not represent a valid ROWID.

TIMEOUT_ON_RESOURCE A time-out occurs while Oracle is waiting for a resource.

TOO_MANY_ROWS A SELECT INTO statement returns more than one row.

VALUE_ERROR An arithmetic, conversion, truncation, or size-constraint error occurs. For
example, when your program selects a column value into a character
variable, if the value is longer than the declared length of the variable,
PL/SQL aborts the assignment and raises VALUE_ERROR. In procedural
statements, VALUE_ERROR is raised if the conversion of a character string
into a number fails. (In SQL statements, INVALID_NUMBER is raised.)

ZERO_DIVIDE Your program attempts to divide a number by zero.

The associated Oracle error numbers and SQLCode values are as follows:

Exception Oracle Error # SQLCode
ACCESS_INTO_NULL ORA-06530 –6530

CASE_NOT_FOUND ORA-06592 –6592

COLLECTION_IS_NULL ORA-06531 –6531

CURSOR_ALREADY_OPEN ORA-06511 –6511

DUP_VAL_ON_INDEX ORA-00001 –1

INVALID_CURSOR ORA-01001 –1001

INVALID_NUMBER ORA-01722 –1722

LOGIN_DENIED ORA-01017 –1017

NO_DATA_FOUND ORA-01403 +100

NOT_LOGGED_ON ORA-01012 –1012

PROGRAM_ERROR ORA-06501 –6501

ROWTYPE_MISMATCH ORA-06504 –6504

SELF_IS_NULL ORA-30625 –30625

STORAGE_ERROR ORA-06500 –6500

SUBSCRIPT_BEYOND_COUNT ORA-06533 –6533

SUBSCRIPT_OUTSIDE_LIMIT ORA-06532 –6532

SYS_INVALID_ROWID ORA-01410 –1410

TIMEOUT_ON_RESOURCE ORA-00051 –51

TOO_MANY_ROWS ORA-01422 –1422

VALUE_ERROR ORA-06502 –6502

ZERO_DIVIDE ORA-01476 –1476

OTHERS is the catch-all for any exception flags you did not check for in your EXCEPTION section.
It must always be the last WHEN statement, and must stand alone. It cannot be included with any other
exceptions.

Exception handling, particularly as it relates to exceptions you declare, should really be reserved
for errors that are fatal—that means normal processing should stop.

If an exception flag is raised that is not tested for in the current block, the program will branch to
the EXCEPTION block in the enclosing block, and so on, until either the exception raised is found or
control falls through to the host program.

EXCEPTION sections can reference variables in the same manner that the execution block can.
That is, they can reference local variables directly, or variables from other blocks by prefixing them
with the other block’s name.

Use caution in testing for certain kinds of exceptions. For instance, if the EXCEPTION section takes
the error message and inserts it into a database table, a NOT_LOGGED_ON exception would put the
EXCEPTION section into an infinite loop. Design the statements that follow THEN not to duplicate the
error that got the program there in the first place. You also may use RAISE without an exception name.
This will automatically pass control to the next outer EXCEPTION block, or the main program. See
RAISE for further details.

EXCEPTION_INIT
SEE ALSO DECLARE CURSOR, EXCEPTION, SQLCODE, Programmer’s Guide to the Oracle
Precompilers
FORMAT

PRAGMA EXCEPTION_INIT(exception,integer);

DESCRIPTION The standard system exceptions, such as ZERO_DIVIDE, which are referenced by
name, are actually no more than the association of a name with the internal Oracle error number.
There are hundreds of these error numbers, and only the most common have been given names. Any
that are not named will still raise an exception flag and transfer control to the EXCEPTION block, but
they will all be caught by OTHERS, rather than by name.

You can change this by assigning your own names to other Oracle error numbers. EXCEPTION_
INIT allows you to do this. exception is the one-word name you assign to the integer error number (see
Oracle’s Error Messages and Codes Manual for a complete list). integer should be negative if the error
code is negative (true for fatal errors), and exception must follow normal object naming rules.

Note that the format of this command requires the word PRAGMA before EXCEPTION_INIT. A
pragma is an instruction to the PL/SQL compiler, rather than executable code. The pragma must be in
the DECLARE section of a PL/SQL block, and must be preceded by an exception declaration.
EXAMPLE

DECLARE
 some_bad_error exception;
 pragma exception_init(some_bad_error, -660);
BEGIN
 ...
 EXCEPTION
 when some_bad_error
 then ...
END;

EXECUTE
SEE ALSO CALL, CREATE FUNCTION, CREATE PACKAGE, CREATE PACKAGE BODY, CREATE
PROCEDURE, GRANT, Chapter 35
FORMAT

EXECUTE procedural_object_name [arguments];

EXECUTE 1135

1136 Part VIII: Alphabetical Reference

DESCRIPTION EXECUTE executes a procedure, package, or function. To execute a procedure
within a package, specify both the package name and the procedure name in the EXECUTE command,
as shown in the following example. This example executes a procedure named NEW_BOOK, in a
package named BOOKSHELF_PACKAGE; the value 'TALE OF TWO CITIES' is passed as input to the
procedure.

execute BOOKSHELF_PACKAGE.NEW_BOOK('TALE OF TWO CITIES');

To execute a procedural object, you must have been granted the EXECUTE privilege on that object.
See GRANT.

EXECUTE (Dynamic Embedded SQL)
SEE ALSO EXECUTE IMMEDIATE, PREPARE, Programmer’s Guide to the Oracle Precompilers
FORMAT

EXEC SQL [FOR { integer | :array_size }]
 EXECUTE statement_id
 [USING
 { DESCRIPTOR SQLDA_descriptor
 | :host_variable [[INDICATOR] :indicator_variable]
 [, :host_variable [[INDICATOR] :indicator_variable]]... }]

DESCRIPTION integer is a host variable used to limit the number of iterations when the WHERE
clause uses arrays. statement_id is the identifier for a prepared INSERT, DELETE, or UPDATE statement
to be executed (SELECT is not allowed). USING introduces a list of substitutions into the host variables
of the previously prepared statement.

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

EXECUTE IMMEDIATE (Dynamic Embedded SQL)
SEE ALSO EXECUTE, PREPARE, Programmer’s Guide to the Oracle Precompilers
FORMAT

EXEC SQL [AT {database | :host_variable}]
EXECUTE IMMEDIATE {:string | literal}

DESCRIPTION database is the name of a database connection other than the default; host_variable
may contain such a name as its value. string is a host variable string containing a SQL statement. literal
is a character string containing a SQL statement. The EXECUTE IMMEDIATE statement cannot contain
host variable references other than an executable SQL statement in string. The SQL statement is parsed,
put into executable form, and executed, and the executable form is destroyed. It is intended only for
statements to be executed just once. Statements that require multiple executions should use PREPARE
and EXECUTE, as this eliminates the overhead of parsing for each execution.

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

EXISTS
SEE ALSO ALL, ANY, IN, NOT EXISTS, Chapter 13
FORMAT

select ...
 where EXISTS (select...)

DESCRIPTION EXISTS returns TRUE in a WHERE clause if the subquery that follows it returns at
least one row. The SELECT clause in the subquery can be a column, a literal, or an asterisk—it doesn’t
matter. (Convention suggests an asterisk or an x.)

Many people prefer EXISTS over ANY and ALL because it is easier to remember and understand,
and most formulations of ANY and ALL can be reconstructed using EXISTS.
EXAMPLE The query shown in the following example uses EXISTS to list from the BOOKSHELF
table all Publishers that have had books checked out:

select Publisher
 from BOOKSHELF B
 where EXISTS
 (select 'x' from BOOKSHELF_CHECKOUT
 where BOOKSHELF_CHECKOUT.Title = B.Title);

EXISTSNODE
SEE ALSO Chapter 47
FORMAT

EXISTSNODE (XMLType_instance , Xpath_string)

DESCRIPTION EXISTSNODE determines whether traversal of the document using the path results
in any nodes. It takes as arguments the XMLType instance containing an XML document and a
VARCHAR2 string designating a path.

The return value is NUMBER: 0 if no nodes remain after applying the XPath traversal on the
document, >0 if any nodes remain.

EXIT (Form 1—PL/SQL)
SEE ALSO END, LOOP, Chapter 32
FORMAT

EXIT [loop] [WHEN condition];

DESCRIPTION Without any of its options, EXIT simply takes you out of the current loop, and
branches control to the next statement following the loop. If you are in a nested loop, you can exit from
any enclosing loop simply by specifying the loop name. If you specify a condition, you will exit when
the condition evaluates to TRUE. Any cursor within a loop is automatically closed when you EXIT.

EXIT (Form 2—SQL*Plus)
SEE ALSO COMMIT, DISCONNECT, QUIT, START
FORMAT

{EXIT | QUIT} [SUCCESS|FAILURE|WARNING|integer|variable|:BindVariable]
[COMMIT|ROLLBACK]

EXIT (Form 2—SQL*Plus) 1137

1138 Part VIII: Alphabetical Reference

DESCRIPTION EXIT ends a SQL*Plus session and returns the user to the operating system, calling
program, or menu. Unless ROLLBACK is specified, EXIT commits pending changes to the database. A
return code is also returned. SUCCESS, FAILURE, and WARNING have values that are operating system
specific; FAILURE and WARNING may be the same on some operating systems.

integer is a value that you can pass back explicitly as the return code; variable allows you to set this
value dynamically. This can be a user-defined variable, or a system variable, such as SQL.SQLCODE,
which always contains the SQLCODE of the last SQL statement executed, either in SQL*Plus or an
embedded PL/SQL block.

EXP
SEE ALSO LN, NUMBER FUNCTIONS, Chapter 9
FORMAT

EXP(n)

DESCRIPTION EXP returns e raised to the nth power; e = 2.718281828….

EXPLAIN PLAN
SEE ALSO Chapter 46
FORMAT

EXPLAIN PLAN [SET STATEMENT_ID = 'name']
[INTO [schema.] table [@ dblink]]
FOR statement;

DESCRIPTION name identifies this plan explanation for this statement when it appears in the
output table, and follows normal object-naming conventions. If name is not specified, the
STATEMENT_ID column in the table will be NULL. table is the name of the output table into which the
plan explanation will go. It must be previously created before this procedure can be executed. The start
file utlxplan.sql contains the format and can be used to create the default table, named PLAN_TABLE. If
table is not specified, EXPLAIN PLAN will use PLAN_TABLE. statement is the simple text of any
SELECT, INSERT, UPDATE, or DELETE statement you wish to have analyzed for Oracle’s execution
plan for it.

EXTRACT (datetime)
SEE ALSO DATE FUNCTIONS, Chapter 10
FORMAT

EXTRACT
({ { YEAR
 | MONTH
 | DAY
 | HOUR
 | MINUTE
 | SECOND }
 | { TIMEZONE_HOUR
 | TIMEZONE_MINUTE }
 | { TIMEZONE_REGION
 | TIMEZONE_ABBR
 } }
 FROM { datetime_value_expression | interval_value_expression })

DESCRIPTION EXTRACT extracts and returns the value of a specified datetime field from a datetime
or interval value expression.
EXAMPLE

select BirthDate,
 EXTRACT(Month from BirthDate) AS Month
 from BIRTHDAY
 where FirstName = 'VICTORIA';

BIRTHDATE MONTH
--------- ----------
20-MAY-49 5

EXTRACT (XML)
SEE ALSO Chapter 52
FORMAT

EXTRACT (XMLType_instance , Xpath_string)

DESCRIPTION EXTRACT is similar to the EXISTSNODE function. It applies a VARCHAR2 XPath
string and returns an XMLType instance containing an XML fragment.

EXTRACTVALUE
SEE ALSO XMLType
FORMAT

EXTRACTVALUE(XMLType_instance, Xpath_string [,namespace_string])

DESCRIPTION EXTRACTVALUE takes as arguments an XMLType instance and an XPath expression
and returns a scalar value of the resultant node. The result must be a single node and must be a text
node, an attribute, or an element. By comparison, the EXTRACT function returns an XML fragment;
EXTRACTVALUE returns the scalar value of the XML fragment.

FEATURE_ID
FORMAT

FEATURE_ID (
schema .

model mining_attribute_clause)

mining_attribute_clause:=

USING

*

schema .
table . *

expr
AS alias

,

FEATURE_ID 1139

1140 Part VIII: Alphabetical Reference

DESCRIPTION This function is for use with feature extraction models that have been created using
the DBMS_DATA_MINING package or with the Oracle Data Mining Java API. It returns an Oracle
NUMBER that is the identifier of the feature with the highest value in the row.

FEATURE_SET
FORMAT

FEATURE_SET (
schema .

model
, topN

, cutoff

mining_attribute_clause)

mining_attribute_clause:=

USING

*

schema .
table . *

expr
AS alias

,

DESCRIPTION This function is for use with feature extraction models that have been created using
the DBMS_DATA_MINING package or with the Oracle Data Mining Java API. It returns a varray of
objects containing all possible features. Each object in the varray is a pair of scalar values containing
the feature ID and the feature value. The object fields are named FEATURE_ID and VALUE, and both
are Oracle NUMBER.

The optional topN argument is a positive integer that restricts the set of features to those that have
one of the top N values. If there is a tie at the Nth value, the database still returns only N values. If you
omit this argument, the function returns all features.

FEATURE_VALUE
FORMAT

FEATURE_VALUE (
schema .

model
, feature_id

mining_attribute_clause)

mining_attribute_clause:=

USING

*

schema .
table . *

expr
AS alias

,

DESCRIPTION This function is for use with feature extraction models that have been created using
the DBMS_DATA_MINING package or with the Oracle Data Mining Java API. It returns the value of a
given feature. If you omit the feature_id argument, the function returns the highest feature value. You
can use this form in conjunction with the FEATURE_ID function to obtain the largest feature/value
combination.

FETCH (Form 1—Embedded SQL)
SEE ALSO CLOSE, DECLARE CURSOR, DESCRIBE, INDICATOR VARIABLE, OPEN, PREPARE,
Programmer’s Guide to the Oracle Precompilers
FORMAT

EXEC SQL [FOR { integer | :array_size }]
 FETCH { cursor | :cursor_variable }
 { USING DESCRIPTOR SQLDA_descriptor
 | INTO :host_variable [[INDICATOR] :indicator_variable]
 [, :host_variable [[INDICATOR] :indicator_variable]]... }

DESCRIPTION integer is a host variable that sets the maximum number of rows to fetch into the
output variables. cursor is the name of a cursor previously set up by DECLARE CURSOR. :host_variable
is one or more host variables into which fetched data will be placed. If any of the host variables is an
array, then all of them (in the INTO list) must be arrays. The INDICATOR keyword is optional.

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

FETCH (Form 2—PL/SQL)
SEE ALSO %FOUND, %ROWTYPE, CLOSE, DECLARE CURSOR, LOOP, OPEN, SELECT … INTO,
Chapter 32
FORMAT

FETCH cursor INTO {record | variable [,variable]...};

DESCRIPTION FETCH gets a row of data. The named cursor’s SELECT statement determines which
columns are retrieved, and its WHERE statement determines which (and how many) rows can be
retrieved. This is called the “active set,” but it is not available to you for processing until you fetch it,
row by row, using the FETCH statement. The FETCH gets a row from the active set and drops the row’s
values into the record (or string of variables), which has been defined in the DECLARE.

If you use the variable-list method, each column in the select list of the cursor must have a
corresponding variable, and each of them must have been declared in the DECLARE section. The
datatypes must be the same or compatible.

If you use the record method, the record is DECLAREd using the %ROWTYPE attribute, which
declares the structure of the record to be the same (with the same datatypes) as the column list in the
SELECT. Each variable within this record can then be accessed individually using the record name as a
prefix, and a variable name that is the same as the column name.
EXAMPLE

declare
 pi constant NUMBER(9,7) := 3.1415927;
 area NUMBER(14,2);
 cursor rad_cursor is

FETCH (Form 2—PL/SQL) 1141

1142 Part VIII: Alphabetical Reference

 select * from RADIUS_VALS;
 rad_val rad_cursor%ROWTYPE;
begin
 open rad_cursor;
 loop
 fetch rad_cursor into rad_val;
 exit when rad_cursor%NOTFOUND;
 area := pi*power(rad_val.radius,2);
 insert into AREAS values (rad_val.radius, area);
 end loop;
 close rad_cursor;
end;

file_specification
SEE ALSO ALTER TABLESPACE, CREATE CONTROLFILE, CREATE DATABASE, CREATE LIBRARY,
CREATE TABLESPACE
FORMAT
file_specification::=

datafile_tempfile_spec

redo_log_file_spec

datafile_tempfile_spec::=

’
filename

ASM_filename
’

SIZE size_clause REUSE autoextend_clause

redo_log_file_spec::=

’
filename

ASM_filename
’

(’
filename

ASM_filename
’

,

)
SIZE size_clause REUSE

ASM_filename::=

fully_qualified_file_name

numeric_file_name

incomplete_file_name

alias_file_name

fully_qualified_file_name::=

+ diskgroup_name / db_name / file_type / file_type_tag . filenumber . incarnation_number

numeric_file_name::=

+ diskgroup_name . filenumber . incarnation_number

incomplete_file_name::=

+ diskgroup_name
(template_name)

alias_file_name::=

+ diskgroup_name
(template_name)

/ alias_name

autoextend_clause::=

AUTOEXTEND

OFF

ON
NEXT size_clause maxsize_clause

maxsize_clause::=

MAXSIZE
UNLIMITED

size_clause

DESCRIPTION file_specification defines the name, location, and size of a file used by the database.
For example, when you create a tablespace, you must specify at least one datafile for the tablespace to
use. file_specification provides the format for the datafile portion of the CREATE TABLESPACE
command.

The file specification subclauses datafile_tempfile_spec and redo_log_file_spec let you specify
Automatic Storage Management files in addition to file system files.

FIRST
SEE ALSO DENSE_RANK, LAST
FORMAT

aggregate_function KEEP
(DENSE_RANK FIRST ORDER BY
 expr [DESC | ASC] [NULLS { FIRST | LAST }]
 [, expr [DESC | ASC] [NULLS { FIRST | LAST }]]...
) [OVER query_partitioning_clause]

FIRST 1143

1144 Part VIII: Alphabetical Reference

DESCRIPTION FIRST is both an aggregate and analytic function that operates on a set of values
from a set of rows that rank as the first with respect to a given sorting specification. aggregate_function
is one of the standard numeric grouping functions (such as MIN, MAX, AVG, and STDDEV).

FIRST_VALUE
SEE ALSO LAST_VALUE
FORMAT

FIRST_VALUE (expr) [IGNORE NULLS] OVER (analytic_clause)

DESCRIPTION FIRST_VALUE is an analytic function. It returns the first value in an ordered set of
values. If the first value in the set is null, then FIRST_VALUE returns NULL unless you specify IGNORE
NULLS.

FLASHBACK DATABASE
SEE ALSO FLASHBACK TABLE, Chapter 30
FORMAT
flashback_database::=

FLASHBACK
STANDBY

DATABASE
database

TO

SCN

TIMESTAMP
expr

RESTORE POINT restore_point

TO BEFORE

SCN

TIMESTAMP
expr

RESETLOGS

DESCRIPTION FLASHBACK DATABASE returns the database to a past time or system change
number (SCN). This command provides a fast alternative to performing incomplete database recovery.
Following a FLASHBACK DATABASE operation, in order to have write access to the flashed-back
database, you must reopen it with an ALTER DATABASE OPEN RESETLOGS command.

NOTE
The database must have been put in FLASHBACK mode with an
ALTER DATABASE FLASHBACK ON command. The database must be
mounted in EXCLUSIVE mode but not open.

You can determine how far back you can flash back the database by querying the V$FLASHBACK_
DATABASE_LOG view. The amount of flashback data retained in the database is controlled by the DB_
FLASHBACK_RETENTION_TARGET initialization parameter and the size of the flash recovery area.
EXAMPLE

STARTUP MOUNT EXCLUSIVE;
ALTER DATABASE FLASHBACK ON;
ALTER DATABASE OPEN;

With the database open for over an hour, flash it back:

SHUTDOWN DATABASE;
STARTUP MOUNT EXCLUSIVE;
FLASHBACK DATABASE TO TIMESTAMP SYSDATE-1/24;

FLASHBACK TABLE
SEE ALSO FLASHBACK DATABASE, Chapter 30
FORMAT
flashback_table::=

FLASHBACK TABLE
schema .

table

,

TO

SCN

TIMESTAMP
expr

RESTORE POINT restore_point

ENABLE

DISABLE
TRIGGERS

BEFORE DROP
RENAME TO table

;

DESCRIPTION FLASHBACK TABLE restores an earlier state of a table in the event of human or
application error. Oracle cannot restore a table to an earlier state across any DDL operations that
change the structure of the table.

NOTE
The database must be using Automatic Undo Management for
FLASHBACK TABLE to work. The ability to flash back to old data is
limited by the amount of undo retained in the undo tablespace and
the UNDO_RETENTION initialization parameter setting.

You cannot roll back a FLASHBACK TABLE statement. However, you can issue another
FLASHBACK TABLE statement and specify a time just prior to the current time.

NOTE
Record the current SCN before you issue a FLASHBACK TABLE
command.

You must have either the FLASHBACK object privilege on the table or the FLASHBACK ANY TABLE
system privilege. You must also have SELECT, INSERT, DELETE, and ALTER object privileges on the
table. Row movement must be enabled for all tables in the flashback list. To flash back a table to before
a DROP TABLE operation, you only need the privileges necessary to drop the table.

During a FLASHBACK TABLE operation, Oracle acquires exclusive DML locks on all tables
specified. The command is executed in a single transaction across all tables; if any of them fails, then
the entire statement fails.

FLASHBACK TABLE 1145

1146 Part VIII: Alphabetical Reference

NOTE
FLASHBACK TABLE TO SCN or TO TIMESTAMP does not preserve
ROWIDs. FLASHBACK TABLE TO BEFORE DROP does not recover
referential constraints.

When a table is flashed back, its statistics are not flashed back. Indexes that exist on the table are
reverted and reflect the state of the table at the flashback point. Indexes dropped since the flashback
point are not restored. Indexes created since the flashback point continue to exist and will be updated
to reflect the older data.

To see the contents of your recycle bin, query USER_RECYCLEBIN.
EXAMPLE

FLASHBACK TABLE emp TO BEFORE DROP;

FLOOR
SEE ALSO CEIL, NUMBER FUNCTIONS, Chapter 9
FORMAT

FLOOR(value)

DESCRIPTION FLOOR is the largest integer smaller than or equal to value.
EXAMPLE

FLOOR(2) = 2
FLOOR(-2.3) = -3

FOR
See LOOP and CURSOR FOR LOOP.

FORMAT
See BTITLE, COLUMN, DATE FORMATS, TO_CHAR, TO_DATE, TTITLE.

FROM
SEE ALSO DELETE, SELECT, Chapter 5
FORMAT

DELETE FROM [user.]table[@link] [alias]
 WHERE condition

SELECT... FROM [user.]table[@link] [, [user.]table[@link]]...

DESCRIPTION table is the name of the table used by DELETE or SELECT. link is the link to a remote
database. Both DELETE and SELECT commands require a FROM clause to define the tables from which
rows will be deleted or selected. If the table is owned by another user, its name must be prefixed by the
owner’s username.

If the table is remote, a database link has to be defined. @link specifies the link. If link is entered
but user is not, the query seeks a table owned by the user on the remote database. The condition may
include a correlated query and use the alias for correlation.

FROM_TZ
SEE ALSO TIMESTAMP WITH TIME ZONE

FORMAT

FROM_TZ (timestamp_value , time_zone_value)

DESCRIPTION FROM_TZ converts a timestamp value at a time zone to a TIMESTAMP WITH TIME
ZONE value. time_zone_value is a character string in the format 'TZH:TZM' or a character expression
that returns a string in TZR with optional TZD format.

GET (SQL*Plus)
SEE ALSO EDIT, SAVE
FORMAT

GET file[.ext] [LIS[T] | NOL[IST]]

DESCRIPTION GET loads a host system file named file into the current buffer (whether the SQL
buffer or a named buffer). If the file type is not included, GET assumes a file type of SQL. LIST makes
SQL*Plus list the lines being loaded into the buffer. This is the default. NOLIST gets the file without
listing its contents. If you do not specify a filename extension, .sql is the default value. To change the
default filename extension, use the SET SUFFIX command; see SET.
EXAMPLE This example gets a file called work.sql:

get work

GOTO
SEE ALSO BLOCK STRUCTURE, Chapter 34
FORMAT

GOTO label;

DESCRIPTION GOTO transfers control to a section of code preceded by the named label. Such a
label can be used to precede any legitimate statement within an execution block, or within an
EXCEPTION section. There are certain restrictions:

A GOTO cannot transfer control to a block enclosed in the current block, or inside of a FOR
loop or an IF statement.

A GOTO cannot transfer to a label outside of its own block unless it is to a block that encloses
its block.

EXAMPLE Here’s an informal loop built from a GOTO that, without actually knowing ahead of time
what the top number will be, INSERTs a geometric progression from 1 to about 10,000 into a table:

DECLARE
 ...
BEGIN
 x := 0;
 y := 1;
 <<alpha>>
 x := x + 1;
 y := x*y;
 insert ...
 if y > 10000
 then goto beta;
 goto alpha;
<<beta>>
 exit;

■

■

GOTO 1147

1148 Part VIII: Alphabetical Reference

GRANT
SEE ALSO ALTER USER, CREATE USER, PRIVILEGE, REVOKE, ROLE, Chapter 19
FORMAT
grant::=

GRANT
grant_system_privileges

grant_object_privileges
;

grant_system_privileges::=

system_privilege

role

ALL PRIVILEGES

,

TO grantee_clause
WITH ADMIN OPTION

grant_object_privileges::=

object_privilege

ALL
PRIVILEGES

(column

,

)

,

on_object_clause

TO grantee_clause
WITH HIERARCHY OPTION WITH GRANT OPTION

on_object_clause::=

ON

schema . object

DIRECTORY directory_name

JAVA
SOURCE

RESOURCE

schema .
object

grantee_clause::=

user
IDENTIFIED BY password

role

PUBLIC

,

DESCRIPTION The first form of GRANT extends one or more system privileges to users and roles. A
system privilege is an authorization to perform one of the various data definition or control commands,
such as ALTER SYSTEM, CREATE ROLE, or GRANT itself. See PRIVILEGE for details of these privileges.
A user is created by CREATE USER and is then granted system privileges to enable logging into the
database and other operations. A user without grants is unable to do anything at all in Oracle. A role is
a collection of privileges created by CREATE ROLE. As with a user, a role has no privileges when
created, but gets them through one or more GRANTs. One can grant one role to another role to create
a nested network of roles, which gives the database administrator a great deal of flexibility in managing
the security of the system.

The WITH ADMIN OPTION option lets the granted user or role (the grantee) grant the system
privilege or role to other grantees. The grantee can also alter or drop a role granted WITH ADMIN
OPTION.

The second form of the GRANT command grants object privileges, privileges that affect specific
kinds of objects in Oracle databases, to any user or role. object can be a table, view, sequence,
procedure, function, package, materialized view, or a synonym for one of these objects. GRANTs on a
synonym actually become grants on the underlying object that the synonym references. See PRIVILEGE
for a complete list of object privileges and a discussion of which can be granted for the various objects.

If you are granting INSERT, REFERENCES, or UPDATE privileges on a table or view, GRANT can also
specify a list of columns of the table or view to which the GRANT applies. The GRANT applies only to
those columns. If GRANT has no list of columns, the GRANT applies to all columns in the table or view.

PUBLIC grants the privileges to all users present and future.
The WITH GRANT OPTION passes along the right to grant the granted privileges to another user

or role.

GREATEST
SEE ALSO LEAST, LIST FUNCTIONS, MAX, Chapters 9 and 10
FORMAT

GREATEST(value1, value2, ...)

DESCRIPTION GREATEST chooses the greatest of a list of values. These can be columns, literals, or
expressions, and CHAR, VARCHAR2, NUMBER, or DATE datatypes. A number with a larger value is
considered greater than a number with a smaller value. All negative numbers are smaller than all
positive numbers. Thus, –10 is smaller than 10; –100 is smaller than –10. A later date is considered
greater than an earlier date.

Character strings are compared position by position, starting at the leftmost end of the string, up to the
first character that is different. Whichever string has the greater character in that position is considered the
greater string. One character is considered greater than another if it appears after the other in the computer’s
collation sequence. Usually this means that a B is greater than an A, but the value of A compared to a, or
compared to the number 1, will differ by computer.

If two strings are identical through to the end of the shorter one, the longer string is considered
greater. If two strings are identical and the same length, they are considered equal. In SQL, it is important
that literal numbers be typed without enclosing single quotes, as '10' would be considered smaller than
'6', since the quotes will cause these to be regarded as character strings rather than numbers, and the '6'
will be seen as greater than the 1 in the first position of '10'.

Unlike many other Oracle functions and logical operators, the GREATEST and LEAST functions will
not evaluate literal strings that are in date format as dates. In order for LEAST and GREATEST to work
properly, the TO_DATE function must be applied to the literal strings.

GROUP BY
SEE ALSO CUBE, HAVING, ORDER BY, ROLLUP, WHERE, Chapter 12

GROUP BY 1149

1150 Part VIII: Alphabetical Reference

FORMAT

SELECT expression [,expression]...
 GROUP BY expression [,expression]...
HAVING condition
 ...

DESCRIPTION GROUP BY causes a SELECT to produce one summary row for all selected rows that
have identical values in one or more specified columns or expressions. Each expression in the SELECT
clause must be one of these things:

A constant

A function without parameters (SysDate, User)

A group function such as SUM, AVG, MIN, MAX, or COUNT

Matched identically to an expression in the GROUP BY clause

Columns referenced in the GROUP BY clause need not be in the SELECT clause, though they must
be in the table.

You use HAVING to determine which groups the GROUP BY is to include. A WHERE clause, on
the other hand, determines which rows are to be included in groups.

GROUP BY and HAVING follow WHERE, CONNECT BY, and START WITH. The ORDER BY clause
is executed after the WHERE, GROUP BY, and HAVING clauses (which execute in that order). It can
employ group functions or columns from the GROUP BY clause, or a combination. If it uses a group
function, that function operates on the groups, and then the ORDER BY sorts the results of the function
in order. If the ORDER BY clause uses a column from the GROUP BY clause, it sorts the rows that are
returned based on that column. Group functions and single columns can be combined in the ORDER
BY clause (so long as the column is in the GROUP BY clause).

In the ORDER BY clause, you can specify a group function and the column it affects even though
they have nothing at all to do with the group functions or columns in the SELECT, GROUP BY, or
HAVING clause. On the other hand, if you specify a column in the ORDER BY clause that is not part
of a group function, it must be in the GROUP BY clause.
EXAMPLE

select Title, COUNT(*)
 from BOOKSHELF_AUTHOR
 group by Title
having COUNT(*) > 1;

GROUP_ID
SEE ALSO AGGREGATE FUNCTIONS, GROUP BY, GROUPING_ID, Chapter 12
FORMAT

GROUP_ID ()

DESCRIPTION GROUP_ID distinguishes duplicate groups resulting from a GROUP BY
specification.

GROUPING
GROUPING is a function used in conjunction with the ROLLUP and CUBE functions to detect NULLs.
See ROLLUP.

■

■

■

■

GROUPING_ID
GROUPING_ID returns a number corresponding to the GROUPING bit vector associated with a row.
See ROLLUP, CUBE, and Chapter 12.

HAVING
See GROUP BY.

HELP (SQL*Plus)
FORMAT

HELP | ? [topic]

DESCRIPTION The HELP command accesses the SQL*Plus help system. HELP INDEX displays a list
of topics.

HEXTORAW
SEE ALSO RAWTOHEX
FORMAT

HEXTORAW(hex_string)

DESCRIPTION HEXTORAW (HEXadecimal TO RAW) changes a character string of hex numbers
into binary.

HINT
Within a query, you can specify hints that direct the cost-based optimizer in its processing of the query.
To specify a hint, use the following syntax. Immediately after the SELECT keyword, enter the following
string:

/*+

Next, add the hint, such as this:

FULL(bookshelf)

Close the hint with the following string:

*/

See Chapter 46 for a description of the available hints and their impact on query processing.

HOST (SQL*Plus)
SEE ALSO $, !, @, @@, START
FORMAT

HO[ST] command

DESCRIPTION A host is a computer on which the Oracle RDBMS is running. The HOST command
in SQL*Plus passes any HOST command back to the operating system for execution without exiting
SQL*Plus. SQL*Plus permits embedding local or PL/SQL variables in the HOST command string. This
doesn’t work on all hardware or operating systems. HOST is not available within iSQL*Plus.

HOST (SQL*Plus) 1151

1152 Part VIII: Alphabetical Reference

IF
SEE ALSO LOOP, Chapter 32
FORMAT

IF condition
 THEN statement; [statement;]...
 [ELSIF condition THEN statement; [statement;]...
 [ELSIF condition THEN statement; [statement;]...]...]
[ELSE statement; [statement;]...]
END IF;

DESCRIPTION The IF statement will execute one or more statements if condition evaluates to
TRUE, after which the program branches to END IF. If the condition is FALSE, then any number of a
series of optional ELSIF conditions are tested. If any one is TRUE, the associated statements (following
THEN) are executed, and then the program branches to END IF. If none of the ELSIF conditions is
TRUE (and the original IF condition was not TRUE), then the statements following the optional ELSE are
executed. Note that the final ELSE does not have a condition.
EXAMPLE

declare
 pi constant NUMBER(9,7) := 3.1415927;
 area NUMBER(14,2);
 cursor rad_cursor is
 select * from RADIUS_VALS;
 rad_val rad_cursor%ROWTYPE;
begin
 open rad_cursor;
 fetch rad_cursor into rad_val;
 area := pi*power(rad_val.radius,2);
 if area > 30
 then
 insert into AREAS values (rad_val.radius, area);
 end if;
 close rad_cursor;
end;

IN
SEE ALSO ALL, ANY, LOGICAL OPERATORS, WHERE, Chapter 5
FORMAT

WHERE expression IN ({'string' [,'string']... | select...})

DESCRIPTION IN is equivalent to =ANY. In the first option, IN means the expression is equal to
any member of the following list of literal strings. In the second option, it means the expression is equal
to any value in any row selected from the subquery. The two are logically equivalent, with the first
giving a list made of literal strings, and the second building a list from a query.

INDEX
Index is a general term for an Oracle/SQL feature used primarily to speed execution and impose
uniqueness upon certain data. In general, indexes provide a faster access method to table data than
doing a full table scan. An index has an entry for each value found in the table’s indexed field(s)
(except those with a NULL value) and pointer(s) to the row(s) having that value.

INDEX-ORGANIZED TABLE
An index-organized table keeps its data sorted according to the primary key column values for the
table. An index-organized table allows you to store the entire table’s data in an index. A normal index
stores only the indexed columns in the index; an index-organized table stores all of the table’s columns
in the index.

To create an index-organized table, use the ORGANIZATION INDEX clause of the CREATE TABLE
command, as shown in the following example:

create table TROUBLE (
City VARCHAR2(13),
SampleDate DATE,
Noon NUMBER(4,1),
Midnight NUMBER(4,1),
Precipitation NUMBER,
constraint TROUBLE_PK PRIMARY KEY (City, SampleDate))
organization index;

To create TROUBLE as an index-organized table, you must create a PRIMARY KEY constraint on it.
In general, index-organized tables are appropriate for associative tables in many-to-many relationships.

Ideally, an index-organized table will have few (or no) columns that are not part of its primary key.
See Chapter 17 and CREATE TABLE.

INDICATOR VARIABLE
SEE ALSO : (colon, the host variable prefix), Programmer’s Guide to the Oracle Precompilers
FORMAT

:name [INDICATOR] :indicator

DESCRIPTION An indicator variable—used when both name and indicator are host language
variable names—is a data field whose value indicates whether a host variable should be regarded as
NULL. (The INDICATOR keyword is for readability and has no effect.)

name may be any legitimate host variable data name used in the host program and included in the
precompiler’s DECLARE section. indicator is defined in the precompiler’s DECLARE section as a two-
byte integer.

Few procedural languages directly support the idea of a variable with a NULL or unknown
value, although Oracle and SQL do so easily. To extend languages for which Oracle has developed
precompilers to support the NULL concept, an indicator variable is associated with the host variable,
almost like a flag, to indicate whether it is NULL. The host variable and its indicator variable may be
referenced and set separately in the host language code, but are always concatenated in SQL or PL/SQL.
EXAMPLE

BEGIN
 select Title, AuthorName into :Title, :AuthorName:AuthorNameInd
 from BOOKSHELF_AUTHOR;

 IF :AuthorName:AuthorNameInd IS NULL
 THEN :AuthorName:AuthorNameInd := 'No Auth'
 END IF;
END;

Note that both the test to see whether the variable is NULL and, if it is, the assignment of 'No Auth'
to it are done with the concatenated variable name. PL/SQL knows enough to check the indicator in

INDICATOR VARIABLE 1153

1154 Part VIII: Alphabetical Reference

the first case and set the variable value in the second case. The two variables together are treated just
like a single Oracle column. These important points must be noted:

Within any single PL/SQL block, a host variable must either always stand alone or always be
concatenated with its indicator variable.

An indicator variable cannot be referenced alone within PL/SQL, although it can be in the
host program.

When setting host variables within the host program, but outside of PL/SQL, note these points:

Setting the indicator variable equal to –1 will force the concatenated variable to be regarded
within PL/SQL as NULL, both in logic tests and for INSERTs or UPDATEs.

Setting the indicator variable greater than or equal to 0 will force the concatenated variable to
be regarded as equal to the value in the host variable, and NOT NULL.

PL/SQL tests the value of all indicator variables on entering a block, and sets them on exiting
the block.

When loading concatenated host variables within PL/SQL, via a SQL statement with an INTO
clause, the following rules apply when checking the indicator variable within the host program, but
outside of PL/SQL:

The indicator variable will be equal to –1 if the value loaded from the database was NULL.
The value of the host variable is uncertain, and should be treated as such.

The indicator variable will be equal to 0 if the value from the database is loaded completely
and correctly into the host variable.

The indicator variable will be greater than 0 and equal to the actual length of the data in the
database column if only a portion of it could fit in the host variable. The host variable will
contain a truncated version of what was in the database column.

init.ora
The init.ora file is a database system parameter file that contains settings and filenames used when a
system is started using the CREATE DATABASE, STARTUP, or SHUTDOWN command. You can either
use an init.ora file or create a system parameter file via the CREATE SPFILE command. See CREATE
PFILE and CREATE SPFILE.

INITCAP
SEE ALSO CHARACTER FUNCTIONS, LOWER, UPPER, Chapter 7
FORMAT

INITCAP(string)

DESCRIPTION INITCAP (INITial CAPital) changes the first letter of a word or series of words into
uppercase. It also notes the presence of symbols, and will INITCAP any letter that follows a space or a
symbol, such as a comma, period, colon, semicolon, !, @, #, $, and so on.
EXAMPLE

INITCAP('this.is,an-example of!how@initcap#works')

produces this:

This.Is,An-Example Of!How@Initcap#Works

■

■

■

■

■

■

■

■

INPUT (SQL*Plus)
SEE ALSO APPEND, CHANGE, DEL, EDIT, Chapter 6
FORMAT

I[NPUT] [text]

DESCRIPTION INPUT adds a new line of text after the current line in the current buffer. Using
INPUT by itself allows multiple lines to be keyed in after the current line, which stops when the system
encounters ENTER with nothing else on the line. The space between INPUT and text will not be added to
the line but any additional spaces will be. See DEL for a discussion of current line. INPUT is not
available in iSQL*Plus.

INSERT (Form 1—Embedded SQL)
SEE ALSO EXECUTE, CURSOR FOR LOOP, Programmer’s Guide to the Oracle Precompilers
FORMAT

EXEC SQL [AT { db_name | :host_variable }]
 [FOR { :host_integer | integer }]
 INSERT INTO
 [[schema.] { table | view }
 [@db_link | PARTITION (part_name)]]
 [(column) [, (column)]...]
 { VALUES (expr [, expr]...) | subquery }
[{ RETURN | RETURNING } expr [, expr]... INTO
 :host_variable [[INDICATOR] :ind_variable]
 [, :host_variable [[INDICATOR] :ind_variable]]...]

DESCRIPTION db_name is a database other than the user’s default, and host_variable contains the
name of the database. :host_integer is a host value that limits the number of times the INSERT will be
processed (see CURSOR FOR LOOP). table is any existing table, view, or synonym, and db_link is the
name of a remote database where the table is stored. (See the INSERT Form 3 definition for a discussion
of the VALUES clause, columns, and query.) expression here can be an expression or a host variable in
the form :variable[:indicator].

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

INSERT (Form 2—PL/SQL)
SEE ALSO SQL CURSOR, Chapter 32
FORMAT

INSERT INTO [user.]table[@db_link] [(column [,column]...)]
 VALUES (expression [,expression]...) | query...);

DESCRIPTION PL/SQL’s use of INSERT is identical to its general form (Form 3 in the following
section), with these exceptions:

You may use a PL/SQL variable in an expression for the value in the VALUES list.

Each variable will be treated in the same way that a constant, with the value of the variable,
would be treated.

■

■

INSERT (Form 2—PL/SQL) 1155

1156 Part VIII: Alphabetical Reference

If you use the query… version of the INSERT, you cannot use the INTO clause of
the SELECT.

INSERT (Form 3—SQL Command)
SEE ALSO CREATE TABLE, Chapters 5, 15, 38, and 39
FORMAT
insert::=

INSERT
hint single_table_insert

multi_table_insert
;

single_table_insert::=

insert_into_clause
values_clause

returning_clause

subquery

error_logging_clause

insert_into_clause::=

INTO dml_table_expression_clause
t_alias (column

,

)

values_clause::=

VALUES (
expr

DEFAULT

,

)

returning_clause::=

RETURNING expr

,

INTO data_item

,

multi_table_insert::=

ALL insert_into_clause
values_clause error_logging_clause

conditional_insert_clause
subquery

■

conditional_insert_clause::=

ALL

FIRST
WHEN condition THEN insert_into_clause

values_clause

ELSE insert_into_clause
values_clause

DML_table_expression_clause::=

schema . table

partition_extension_clause

@ dblink

view

materialized view

@ dblink

(subquery
subquery_restriction_clause

)

table_collection_expression

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

subquery_restriction_clause::=

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

table_collection_expression::=

TABLE (collection_expression)
(+)

INSERT (Form 3—SQL Command) 1157

1158 Part VIII: Alphabetical Reference

error_logging_clause::=

LOG ERRORS
INTO

schema .
table (simple_expression)

REJECT LIMIT
integer

UNLIMITED

DESCRIPTION INSERT adds one or more new rows to the table or view. The optional schema must
be a user to whose table you have been granted insert authority. table is the table into which rows are
to be inserted. If a list of columns is given, an expression (SQL expression) must be matched for each of
those columns. Any columns not in the list receive the value NULL, and none of them can be defined
NOT NULL or the INSERT will fail. If a list of columns is not given, values must be given for all
columns in the table.

INSERT with a subquery adds as many rows as the query returns, with each query column being
matched, position for position, with columns in the column list. If no column list is given, the tables
must have the same number and type of columns. The USER_TAB_COLUMNS data dictionary view
shows these, as does DESCRIBE in SQL*Plus.
EXAMPLE The following inserts a row into the COMFORT table:

insert into COMFORT values ('KEENE','23-SEP-03',99.8,82.6,NULL);

The following inserts City, SampleDate (both NOT NULL columns), and Precipitation into
COMFORT:

insert into COMFORT (City, SampleDate, Precipitation) values
 ('KEENE','22-DEC-03',3.9);

To copy just the data for the city of KEENE into a new table named NEW_HAMPSHIRE, use this:

insert into NEW_HAMPSHIRE
select * from COMFORT
 where City = 'KEENE';

INSERTCHILDXML
FORMAT

INSERTCHILDXML
 (XMLType_instance, XPath_string, child_expr,
 value_expr [, namespace_string])

DESCRIPTION INSERTCHILDXML inserts a user-supplied value into the target XML at the node
indicated by the XPath expression.

INSERTXMLBEFORE
FORMAT

INSERTXMLBEFORE
 (XMLType_instance, XPath_string,
 value_expr [, namespace_string])

DESCRIPTION INSERTXMLBEFORE inserts a user-supplied value into the target XML before the
node indicated by the XPath expression.

INSTR
SEE ALSO CHARACTER FUNCTIONS, SUBSTR, Chapter 7
FORMAT

INSTR(string,set[,start[,occurrence]])

DESCRIPTION INSTR finds the location of a set of characters in a string, starting at position start in
the string, and looking for the first, second, third, and so on occurrence of the set. This function will
also work with NUMBER and DATE datatypes. start also can be negative, meaning the search begins
with the characters at the end of the string and searches backward.
EXAMPLE To find the third occurrence of “PI” in this string, use this:

INSTR('PETER PIPER PICKED A PECK OF PICKLED PEPPERS','PI',1,3)

The result of this function is 30, the location of the third occurrence of “PI.”

INTEGRITY CONSTRAINT
An integrity constraint is a rule that restricts the range of valid values for a column. It is placed on a
column when the table is created. For the syntax, see CONSTRAINTS.

If you do not name a constraint, Oracle assigns a name in the form SYS_Cn, where n is an integer. An
Oracle-assigned name will usually change during an import, while a user-assigned name will not change.

NULL permits NULL values. NOT NULL specifies that every row must have a non-NULL value for
this column.

UNIQUE forces column values to be unique. There can be only one PRIMARY KEY constraint on a
table. If a column is UNIQUE it cannot also be declared the PRIMARY KEY (PRIMARY KEY also enforces
uniqueness). An index enforces the UNIQUE or PRIMARY KEY, and the USING INDEX clause and its
options specify the storage characteristics of that index. See CREATE INDEX for more information on the
options.

REFERENCES identifies this column as a foreign key from [user.]table [(column)]. Omitting column
implies that the name in the user.table is the same as the name in this table. Note that when REFERENCES
is used in a table_constraint (described shortly), it must be preceded by FOREIGN KEY. This is not used
here, as only this column is referenced; table_constraint can reference several columns for FOREIGN KEY.
ON DELETE CASCADE instructs Oracle to maintain referential integrity automatically by removing foreign
key rows in the dependent tables if you remove the primary key row in this table.

CHECK assures that the value for this column passes a condition such as this:

 Amount number(12,2) CHECK (Amount >= 0)

condition may be any valid expression that tests TRUE or FALSE. It can contain functions, any
columns from this table, and literals.

The EXCEPTIONS INTO clause specifies a table into which Oracle puts information about rows
that violate an enabled integrity constraint. This table must be local.

The DISABLE option lets you disable the integrity constraint when you create it. When the
constraint is disabled, Oracle does not automatically enforce it. You can later enable the constraint
with the ENABLE clause in ALTER TABLE.

You can also create constraints at the table level. Table constraints are identical to column constraints
except that a single constraint can reference multiple columns—for example, in declaring a set of three
columns as a primary or foreign key.

INTEGRITY CONSTRAINT 1159

1160 Part VIII: Alphabetical Reference

INTERSECT
SEE ALSO MINUS, QUERY OPERATORS, UNION, Chapter 13
FORMAT

select...
INTERSECT
select...

DESCRIPTION INTERSECT combines two queries and returns only those rows from the first SELECT
statement that are identical to at least one row from the second SELECT statement. The number of
columns and datatypes must be identical between SELECT statements, although the names of the
columns do not need to be. The data, however, must be identical in the rows produced for the
INTERSECTion to pass them.

INTERVAL DAY TO SECOND
The INTERVAL DAY (day_precision) TO SECOND (second_precision) datatype stores the period of time
in days, hours, minutes, and seconds. You can specify a day_precision as the number of digits in the
DAY datetime field (default is 2) and a second_precision as the number of digits in the fractional part of
the Seconds field (default is 6).

INTERVAL YEAR TO MONTH
The INTERVAL YEAR (precision) TO MONTH datatype stores the period of time in years and months,
where precision is the number of digits in the YEAR datetime field (default is 2).

IS A SET
SEE ALSO IS EMPTY, Chapter 39
FORMAT

nested_table IS [NOT] A SET

DESCRIPTION Use an IS A SET condition to test whether a specified nested table is composed of
unique elements. The condition returns TRUE is the nested table is a set, even if it is a nested table of
length zero, and returns FALSE otherwise. It returns NULL if the nested table is empty.

IS ANY
SEE ALSO SELECT
FORMAT

dimension_column IS ANY

DESCRIPTION The IS ANY clause is relevant only for interrow calculations, and can be used only
in the MODEL clause of a SELECT statement. Use this condition to qualify all values of a dimension
column, including NULL. The condition always returns a Boolean value of TRUE to qualify all values
of the column.

IS EMPTY
SEE ALSO IS A SET, Chapter 39
FORMAT

nested table IS [NOT] EMPTY

DESCRIPTION Use the IS [NOT] EMPTY conditions to test whether a specified nested table is empty,
regardless of whether any elements of the collection are NULL. The condition returns a Boolean value:
TRUE for an IS EMPTY condition if the condition is empty, TRUE for an IS NOT EMPTY condition if the
condition is not empty. If you specify NULL for the nested table or array, the result is NULL.

IS NULL
SEE ALSO LOGICAL OPERATORS, Chapters 5 and 9
FORMAT

WHERE column IS [NOT] NULL

DESCRIPTION IS NULL tests a column (or an expression) for the absence of any data. A NULL test
is distinctly different from a test for equality, because NULL means that the value is unknown or irrelevant,
and it therefore cannot be said to be equal to anything, including another NULL.

IS OF type
SEE ALSO VALUE, Chapter 38
FORMAT
is_of_type_conditions::=

expr IS
NOT

OF
TYPE

(
ONLY schema .

type

,

)

DESCRIPTION Use the IS OF type condition to test object instances based on their specific type
information. The condition evaluates to NULL if expr is NULL. If expr is not null, then the condition
evaluates to TRUE (or FALSE if you specify the NOT keyword) under either of these circumstances:

The most specific type of expr is the subtype of one of the types specified in the type list and
you have not specified ONLY for the type.

The most specific type of expr is explicitly specified in the type list.

The expr frequently takes the form of the VALUE function with a correlation variable.

IS PRESENT
SEE ALSO SELECT
FORMAT

cell_reference IS PRESENT

DESCRIPTION The IS PRESENT condition is relevant only for interrow calculations, and can be
used only in the MODEL clause of a SELECT statement. Use this condition to test whether the cell
referenced is present prior to the execution of the MODEL clause. The condition returns TRUE if the
cell exists prior to the execution of the MODEL clause, and returns FALSE if it does not.

ITERATION_NUMBER
SEE ALSO SELECT
FORMAT

ITERATION_NUMBER

■

■

ITERATION_NUMBER 1161

1162 Part VIII: Alphabetical Reference

DESCRIPTION The ITERATION_NUMBER function is relevant only for interrow calculations. It can
be used only in the MODEL clause of the SELECT statement and then only when ITERATE(number) is
specified in the MODEL RULES clause. It returns an integer representing the completed iteration
through the model rules. The ITERATION_NUMBER function returns 0 during the first iteration. For
each subsequent iteration, the ITERATION_NUMBER function returns the equivalent of iteration_
number plus one.

JOIN
SEE ALSO SELECT, Chapter 5
FORMAT

WHERE TableA.column = TableB.column

or

FROM TableA INNER JOIN TableB
 on TableA.Column = TableB.Column

or

FROM TableA INNER JOIN TableB
using(Column)

or

FROM TableA NATURAL JOIN TableB

DESCRIPTION A join combines columns and data from two or more tables (and, in rare cases, of
one table with itself). The tables are all listed in the FROM clause of the SELECT statement, and the
relationship between the two tables may be specified in the WHERE clause, usually by a simple
equality, such as this:

where BOOK_ORDER.Title = BOOKSHELF.Title

This is often called an equi-join because it uses the equal sign in the WHERE clause. You could
join tables using other forms of equality, such as \>=, \<, and so on, but the results are seldom
meaningful. There also are cases in which one or both sides of the equal sign contain an expression,
perhaps a SUBSTR or a combination of columns, which is used for equality with the other side. This is
a fairly common usage.

Joining two tables together without a join clause—either in the FROM clause or in the WHERE
clause—produces a Cartesian product, which combines every row in one table with every row in the
other table. An 80-row table combined with a 100-row table would produce an 8000-row result
(which is usually quite meaningless).

An outer join is a method for intentionally retrieving selected rows from one table that don’t match
rows in the other table. You can use the ANSI standard outer join syntax options (CROSS JOIN,
NATURAL JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN).

LABEL (PL/SQL)
A label is a word associated with an executable statement, usually for the purpose of being the target of
a GOTO statement.

LAG
SEE ALSO LEAD

FORMAT

LAG (value_expr [, offset] [, default])
 OVER ([query_partition_clause] order_by_clause)

DESCRIPTION LAG provides access to more than one row of a table at the same time without a
self-join. Given a series of rows returned from a query and a position of the cursor, LAG provides
access to a row at a given physical offset prior to that position.

LAST
SEE ALSO DENSE_RANK, FIRST
FORMAT

aggregate_function KEEP
(DENSE_RANK LAST ORDER BY
 expr [DESC | ASC] [NULLS { FIRST | LAST }]
 [, expr [DESC | ASC] [NULLS { FIRST | LAST }]]...
) [OVER query_partition_clause]

DESCRIPTION LAST is both an aggregate and analytic function that operates on a set of values from
a set of rows that rank as the last with respect to a given sorting specification. aggregate_function is one
of the standard numeric grouping functions (such as MIN, MAX, AVG, and STDDEV).

LAST_DAY
SEE ALSO ADD_MONTHS, DATE FUNCTIONS, NEXT_DAY, Chapter 10
FORMAT

LAST_DAY (date)

DESCRIPTION LAST_DAY gives the date of the last day of the month that date is in.
EXAMPLE

LAST_DAY ('05-NOV-04')

produces a result of 30-NOV-04.

LAST_VALUE
SEE ALSO FIRST_VALUE
FORMAT

LAST_VALUE (expr [IGNORE NULLS]) OVER (analytic_clause)

DESCRIPTION LAST_VALUE is an analytic function. It returns the last value in an ordered set of
values. If the last value in the set is null, then the function returns NULL unless you specify IGNORE
NULLS.

LEAD
SEE ALSO LAG
FORMAT

LEAD (value_expr [, offset] [, default])
 OVER ([query_partition_clause] order_by_clause)

LEAD 1163

1164 Part VIII: Alphabetical Reference

DESCRIPTION LEAD provides access to more than one row of a table at the same time without a
self-join. Given a series of rows returned from a query and a position of the cursor, LEAD provides
access to a row at a given physical offset beyond that position.

LEAST
SEE ALSO GREATEST, LIST FUNCTIONS, Chapter 10
FORMAT

LEAST(value1, value2, ...)

DESCRIPTION LEAST is the value of a list of columns, expressions, or values. Values may be
VARCHAR2, CHAR, DATE, or NUMBER datatypes, although LEAST will not properly evaluate literal
dates (such as '20-MAY-04') without the TO_DATE function. See GREATEST for a discussion of
evaluating relative values.

LENGTH
SEE ALSO CHARACTER FUNCTIONS, VSIZE, Chapter 7
FORMAT

LENGTH(string)

DESCRIPTION LENGTH tells the length of a string, number, date, or expression. The string can be
CHAR (returned length will include all trailing blanks), VARCHAR2, NCHAR, NVARCHAR2, CLOB, or
NCLOB. There are several LENGTH functions, all following the same format:

LENGTH calculates the length using characters as defined by the input character set.

LENGTHB uses bytes instead of characters.

LENGTHC uses Unicode complete characters.

LENGTH2 uses UCS2 code points.

LENGTH4 uses UCS4 code points.

LEVEL
SEE ALSO CONNECT BY, PSEUDO-COLUMNS, Chapter 14
FORMAT

LEVEL

DESCRIPTION Level is a pseudo-column, used with CONNECT BY, that is equal to 1 for a root
node, 2 for a child of a root, 3 for a child of a child of a root, and so on. Level tells basically how far
down a tree you’ve traveled.

LIKE
SEE ALSO LOGICAL OPERATORS, Chapter 5
FORMAT

WHERE string LIKE string

DESCRIPTION LIKE performs pattern matching. An underline represents exactly one space. A percent
sign represents any number of spaces or characters, including zero. If LIKE uses either the _ or % in the
first position of a comparison (as in the second and third examples following), any index on the column
is ignored.

■

■

■

■

■

EXAMPLES

Feature LIKE 'MO%' "Feature begins with the letters MO."
Feature LIKE '_ _I%' "Feature has an I in the third position."
Feature LIKE '%0%0%' "Feature has at least two 0's in it."

LIST (SQL*Plus)
SEE ALSO APPEND, CHANGE, EDIT, INPUT, RUN, Chapter 6
FORMAT

L[IST] [n |n m|n*|n LAST|*|*n|*LAST|LAST]

DESCRIPTION LIST lists lines of the current buffer starting at n and ending at m, both of which are
integers. The end line becomes the current line of the buffer, and is flagged with an asterisk. LIST
without n or m lists all lines. LIST with a single number will display just that line. The space between
LIST and n is not necessary but it does help readability. LIST n* lists all lines from n to the end of the
buffer. LIST *n lists all lines from the beginning to the specified line.
EXAMPLE Use this to list the current SQL buffer:

LIST

An asterisk will designate the current line. To list just the second line, use this:

LIST 2

This also makes 2 the current line in the current buffer.

LIST FUNCTIONS
SEE ALSO All other functions, Chapter 10
DESCRIPTION The following is an alphabetical list of all current list functions in the Oracle version
of SQL. Each of these is listed elsewhere in this reference under its own name, with its proper format
and use.

This gives the first non-NULL value in the set:

COALESCE(value1, value2, ...)

This gives the greatest value of a list:

GREATEST(value1, value2, ...)

This gives the least value of a list:

LEAST(value1, value2, ...)

LN
SEE ALSO NUMBER FUNCTIONS, Chapter 9
FORMAT

LN(number)

DESCRIPTION LN is the “natural,” or base e, logarithm of a number. If number is BINARY_FLOAT,
then the function returns BINARY_DOUBLE.

LNNVL
SEE ALSO SELECT
FORMAT

LNNVL (condition)

LNNVL 1165

1166 Part VIII: Alphabetical Reference

DESCRIPTION LNNVL provides a way to evaluate a condition when one or both operands of the
condition may be null. The function can be used only in the WHERE clause of a query. It takes as an
argument a condition and returns TRUE if the condition is FALSE or UNKNOWN and returns FALSE if
the condition is TRUE. LNNVL can be used anywhere a scalar expression can appear, even in contexts
where the IS [NOT] NULL, AND, or OR conditions are not valid but would otherwise be required to
account for potential nulls. LNNVL may show up in explain plans when Oracle internally requires
NOT IN conditions as NOT EXISTS conditions.
EXAMPLES If you want to retrieve all rows for which a column is greater than a given value, the
standard format would be

where column > value

To also return the rows for which column is NULL, use LNNVL:

 where LNNVL(column > value)

LOB
A LOB is a large object. Oracle supports several large object datatypes, including BLOBs (binary large
objects), CLOBs (character large objects), and BFILEs (binary files, stored outside the database). See
Chapter 40 and the LOB clause of CREATE TABLE.

LOCALTIMESTAMP
SEE ALSO DATE FUNCTIONS, Chapter 10
FORMAT

LOCALTIMESTAMP [(timestamp_precision)]

DESCRIPTION LOCALTIMESTAMP returns the current date and time in the session time zone as a
value of datatype TIMESTAMP.
EXAMPLE

SELECT LOCALTIMESTAMP FROM DUAL;

LOCK TABLE
SEE ALSO COMMIT, DELETE, INSERT, ROLLBACK, SAVEPOINT, UPDATE
FORMAT
lock_table::=

LOCK TABLE
schema . table

view

partition_extension_clause

@ dblink

,

IN lockmode MODE

NOWAIT

WAIT integer
;

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

DESCRIPTION LOCK TABLE locks a table in one of several specified modes, allowing it to be
shared, but without loss of data integrity. Using LOCK TABLE allows you to give other users continued
but restricted access to the table. Regardless of which option you choose, the table will remain in that
lock mode until you COMMIT or ROLLBACK your transactions.

Lock modes include ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE, SHARE, SHARE ROW
EXCLUSIVE, and EXCLUSIVE.

EXCLUSIVE locks permit users to query the locked table but not to do anything else. No other user
may lock the table. SHARED locks permit concurrent queries but no updates to the locked table.

With a ROW SHARE or SHARE UPDATE lock, no user can lock the whole table for exclusive
access, allowing concurrent access for all users to the table. The two types of lock are synonymous,
and SHARE UPDATE exists for compatibility with previous versions of Oracle.

ROW EXCLUSIVE locks are similar to ROW SHARE but they prohibit shared locking, so only one
user may access the table at a time.

If a LOCK TABLE command cannot be completed (usually because someone else has executed a
prior and competing LOCK TABLE of some sort), then your LOCK TABLE will wait until it can complete.
If you wish to avoid this, and simply have control returned to you, use the NOWAIT option. Note that
you can lock specific partitions and subpartitions.

As of Oracle Database 11g, you can specify the maximum number of seconds the statement should
wait to obtain a DML lock on the table.

LOG
SEE ALSO NUMBER FUNCTIONS, Chapter 9
FORMAT

LOG(base, number)

DESCRIPTION LOG gives the logarithm of a number for a specified base.
EXAMPLE

LOG(EXP(1),3) = 1.098612 -- log(e) of 3
LOG(10,100) = 2 -- log(10) of 100

LOGICAL OPERATORS
SEE ALSO PRECEDENCE
FORMAT The following lists all current logical operators in the Oracle version of SQL. Most of these
are listed elsewhere in this reference under their own names with their proper format and use. All of
these operators work with columns or literals.

LOGICAL OPERATORS 1167

1168 Part VIII: Alphabetical Reference

Logical Operators That Test a Single Value
= expression is equal to expression
> expression is greater than expression
>= expression is greater than or equal to expression
< expression is less than expression
<= expression is less than or equal to expression
!= expression is not equal to expression
^= expression is not equal to expression
<> expression is not equal to expression

EXISTS (query)
NOT EXISTS (query)

LIKE expression
NOT LIKE expression

expression IS NULL
expression IS NOT NULL

Logical Operators That Test More Than a Single Value
ANY (expression [,expression]... | query)
ALL (expression [,expression]... | query)

ANY and ALL require an equality operator as a prefix, such as \>ANY, =ALL, and so on.

IN (expression [,expression]... | query)
NOT IN (expression [,expression]... | query)

BETWEEN expression AND expression
NOT BETWEEN expression AND expression

Other Logical Operators
+ Addition
- Subtraction
* Multiplication
/ Division
** Exponentiation
|| Concatenation
() Overrides normal precedence rules, or encloses a
 subquery
NOT Reverses logical expression
AND Combines logical expressions
OR Combines logical expressions
UNION Combines results of queries
UNION ALL Combines results of queries without eliminating duplicates
INTERSECT Combines results of queries
MINUS Combines results of queries

LONG DATATYPE
See DATATYPES.

LONG RAW DATATYPE
A LONG RAW column contains raw binary data, but is otherwise the same as a LONG column. Values
entered into LONG RAW columns must be in hex notation.

LOOP
You can use loops to process multiple records within a single PL/SQL block. PL/SQL supports three
types of loops:

Loop Type Description

Simple loops A loop that keeps repeating until an EXIT or EXIT WHEN statement is
reached within the loop

FOR loops A loop that repeats a specified number of times

WHILE loops A loop that repeats until a condition is met

You can use loops to process multiple records from a cursor. The most common cursor loop is a
cursor FOR loop. See CURSOR FOR LOOP and Chapter 32 for details on using loops for both simple
and cursor-based processing logic.

LOWER
SEE ALSO CHARACTER FUNCTIONS, INITCAP, UPPER, Chapter 7
FORMAT

LOWER(string)

DESCRIPTION LOWER converts every letter in a string to lowercase.
EXAMPLE

peninsula

LPAD
SEE ALSO CHARACTER FUNCTIONS, LTRIM, RPAD, RTRIM, Chapter 7
FORMAT

LPAD(string,length [,'set'])

DESCRIPTION Left PAD makes a string a certain length by adding a certain set of characters to the
left of the string. If set is not specified, the default pad character is a space.
EXAMPLE

LPAD('>',11,'- ')

produces

- - - - - >

LTRIM
SEE ALSO CHARACTER FUNCTIONS, LPAD, RPAD, RTRIM, Chapter 7
FORMAT

LTRIM(string [,'set'])

LTRIM 1169

1170 Part VIII: Alphabetical Reference

DESCRIPTION Left TRIM trims all the occurrences of any one of a set of characters off of the left
side of a string.
EXAMPLE

LTRIM('NANCY','AN')

produces this:

CY

MAKE_REF
SEE ALSO Chapter 41
FORMAT

MAKE_REF (table | view , key [,key])

DESCRIPTION MAKE_REF constructs a REF (reference) from the foreign key of a table that
references the base table of an object view. MAKE_REF allows you to construct references
superimposed on existing foreign key relationships. See Chapter 41 for examples.

MAX
SEE ALSO AGGREGATE FUNCTIONS, COMPUTE, MIN, Chapter 9
FORMAT

MAX([DISTINCT | ALL] value) [OVER analytic_clause]

DESCRIPTION MAX is the maximum of all values for a group of rows. MAX ignores NULL values.
The DISTINCT option is not meaningful, since the maximum of all values is identical to the maximum
of the distinct values.

MEDIAN
SEE ALSO AVG, COUNT
FORMAT

MEDIAN (expr) [OVER (query_partition_clause)]

DESCRIPTION MEDIAN takes a numeric or datetime value and returns the middle value or an
interpolated value that would be the middle value once the values are sorted. NULLs are ignored.

MERGE
SEE ALSO INSERT, UPDATE, Chapter 15

FORMAT
merge::=

MERGE
hint

INTO
schema . table

view

t_alias

USING

schema . table

view

subquery

t_alias
ON (condition)

merge_update_clause merge_insert_clause error_logging_clause
;

merge_update_clause::=

WHEN MATCHED THEN UPDATE SET column =
expr

DEFAULT

,

where_clause DELETE where_clause

merge_insert_clause::=

WHEN NOT MATCHED THEN INSERT
(column

,

)

VALUES (
expr

,

DEFAULT
)

where_clause

where_clause::=

WHERE condition

MERGE 1171

1172 Part VIII: Alphabetical Reference

error_logging_clause::=

LOG ERRORS
INTO

schema .
table (simple_expression)

REJECT LIMIT
integer

UNLIMITED

DESCRIPTION MERGE performs updates and inserts of a target table in a single command, based
on a selected set of rows. You specify the conditions to determine whether an insert or update is
performed on a row-by-row basis.

NOTE
Since MERGE performs queries, you can use hints.

You can specify either the UPDATE or the INSERT operation, or both. Also, you can delete rows
from the target table during the UPDATE operation.

As of Oracle Database 11g, you can use the MERGE command on tables with domain indexes.

MIN
SEE ALSO AGGREGATE FUNCTIONS, COMPUTE, MAX, Chapter 9
FORMAT

MIN([DISTINCT | ALL] value) [OVER (analytic_clause)]

DESCRIPTION MIN is the minimum of all values for a group of rows. MIN ignores NULL values.
The DISTINCT option is not meaningful, since the minimum of all values is identical to the minimum
of the distinct values.

MINUS
SEE ALSO INTERSECT, QUERY OPERATORS, UNION, Chapters 13 and 27
FORMAT

select
MINUS
select

within Oracle Text queries against CONTEXT indexes:

select column
 from TABLE
 where CONTAINS(Text,'text MINUS text') >0;

DESCRIPTION MINUS combines two queries. It returns only those rows from the first SELECT
statement that are not produced by the second SELECT statement (the first SELECT MINUS the second
SELECT). The number of columns and datatypes must be identical between SELECT statements, although
the names of the columns do not need to be. The data, however, must be identical in the rows

produced for the MINUS to reject them. See Chapter 13 for a discussion of the important differences
and effects of INTERSECT, MINUS, and UNION.

Within text searches against CONTEXT indexes, MINUS tells the text search of two terms to
subtract the score of the second term’s search from the score of the first term’s search before comparing
the result to the threshold score.

MOD
SEE ALSO NUMBER FUNCTIONS, Chapter 9
FORMAT

MOD(value, divisor)

DESCRIPTION MOD divides a value by a divisor, and gives the remainder. MOD(23,6) = 5 means
divide 23 by 6. The answer is 3 with 5 left over, so 5 is the result of the modulus. value and divisor can
both be any real number, except that divisor cannot be 0.
EXAMPLES

MOD(100,10) = 0
MOD(22,23) = 22
MOD(10,3) = 1
MOD(-30.23,7) = -2.23
MOD(4.1,.3) = .2

The second example shows what MOD does whenever the divisor is larger than the dividend (the
number being divided). It produces the dividend as a result. Also note this important case:

MOD(value,1) = 0

if value is an integer. This is a good test to see if a number is an integer.

MODEL FUNCTIONS
Model functions are relevant only for interrow calculations and can be used only in the MODEL clause
of the SELECT statement. They are nonrecursive. The model functions are CV, ITERATION_NUMBER,
PRESENTNNV, PRESENTV, and PREVIOUS.

MONTHS_BETWEEN
SEE ALSO ADD_MONTHS, DATE FUNCTIONS, Chapter 10
FORMAT

MONTHS_BETWEEN(date2,date1)

DESCRIPTION MONTHS_BETWEEN gives date2 minus date1 in months. The result is usually not
an integer.

NANVL
SEE ALSO LNNVL
FORMAT

NANVL (m, n)

DESCRIPTION NANVL is useful only for floating-point numbers of type BINARY_FLOAT or
BINARY_DOUBLE. Oracle will return an alternative value n if the input value m is not a number;
otherwise it returns m.

NANVL 1173

1174 Part VIII: Alphabetical Reference

NCHAR
NCHAR is a multibyte version of the CHAR datatype. It stores fixed-length character data up to 2000
bytes in length. See DATATYPES.

NCHR
SEE ALSO CHR
FORMAT

NCHR(number)

DESCRIPTION NCHR returns the character having the binary equivalent to number in the national
character set.

NCLOB
The NCLOB datatype is the multibyte version of the CLOB datatype. NCLOB stores character large
objects containing Unicode characters, up to a maximum length of 4GB. See DATATYPES.

NEAR
SEE ALSO CONTAINS, Chapter 27
DESCRIPTION Within CONTEXT indexes, NEAR indicates that a proximity search should be
executed for the specified text strings. If the search terms are “summer” and “lease,” then a proximity
search for the two terms could be

select Text
 from SONNET
 where CONTAINS(Text,'summer NEAR lease') >0;

When evaluating the text search results, text with the words “summer” and “lease” near each other
will have higher scores than text with the words “summer” and “lease” farther apart.

NEW_TIME
See DATE FUNCTIONS.

NEXT_DAY
See DATE FUNCTIONS.

NEXTVAL
See PSEUDO-COLUMNS.

NLS_CHARSET_DECL_LEN
SEE ALSO NCHAR
FORMAT

NLS_CHARSET_DECL_LEN (byte_count , char_set_id)

DESCRIPTION NLS_CHARSET_DECL_LEN returns the declaration width (in number of characters)
of an NCHAR column.

NLS_CHARSET_ID
SEE ALSO NLS_CHARSET_NAME
FORMAT

NLS_CHARSET_ID (text)

DESCRIPTION NLS_CHARSET_ID returns the character set ID number corresponding to the
character set name text.

NLS_CHARSET_NAME
SEE ALSO NLS_CHARSET_ID
FORMAT

NLS_CHARSET_NAME (number)

DESCRIPTION NLS_CHARSET_NAME returns the name of the character set corresponding to ID
number number.

NLS_INITCAP
SEE ALSO CHARACTER FUNCTIONS, INITCAP, Chapter 7
FORMAT

NLS_INITCAP(number[, nls_parameters])

DESCRIPTION NLS_INITCAP is like the INITCAP function except with the addition of a parameter
string. The nls_parameters string, enclosed in single quotation marks, gives a sort sequence for
capitalizing special linguistic sequences. You would usually use INITCAP with the default sort
sequence for the session, but this function lets you specify the exact sort sequence to use.

NLS_LOWER
SEE ALSO CHARACTER FUNCTIONS, LOWER, Chapter 7
FORMAT

NLS_LOWER(number[, nls_parameters])

DESCRIPTION NLS_LOWER is like the LOWER function except with the addition of a parameter
string. The nls_parameters string, enclosed in single quotation marks, gives a sort sequence for
lowercasing special linguistic sequences. You would usually use LOWER with the default sort sequence
for the session, but this function lets you specify the exact sort sequence to use.

NLS_UPPER
SEE ALSO CHARACTER FUNCTIONS, UPPER, Chapter 7
FORMAT

NLS_UPPER(number[, nls_parameters])

DESCRIPTION NLS_UPPER is like the UPPER function except with the addition of a parameter
string. The nls_parameters string, enclosed in single quotation marks, gives a sort sequence for
capitalizing special linguistic sequences. You would usually use UPPER with the default sort sequence
for the session, but this function lets you specify the exact sort sequence to use.

NLS_UPPER 1175

1176 Part VIII: Alphabetical Reference

NLSSORT
SEE ALSO CREATE DATABASE
FORMAT

NLSSORT(character[, nls_parameters])

DESCRIPTION NLSSORT (National Language Support SORT) gives the collating sequence value (an
integer) of the given character based on the National Language Support option chosen for the site. The
nls_parameters string, enclosed in single quotation marks, gives a sort sequence for special linguistic
sequences if you do not want to use the session or database default.

NOAUDIT
SEE ALSO AUDIT, PRIVILEGE
FORMAT
noaudit::=

NOAUDIT

sql_statement_clause

schema_object_clause

NETWORK

WHENEVER
NOT

SUCCESSFUL
;

audit_operation_clause::=

sql_statement_shortcut

ALL

,

system_privilege

ALL PRIVILEGES

,
auditing_by_clause

auditing_by_clause::=

BY

proxy

,

user

,

audit_schema_object_clause::=

sql_operation

,

ALL
auditing_on_clause

auditing_on_clause::=

ON

schema .
object

DIRECTORY directory_name

MINING MODEL
schema .

model

DEFAULT

DESCRIPTION NOAUDIT stops auditing of SQL statements being audited as a result of the AUDIT
command. It stops auditing either a statement (see AUDIT) or a statement authorized by a system
privilege (see PRIVILEGE). If there is a BY clause with a list of users, the command stops the auditing of
statements issued by these users. If there is no BY clause, Oracle stops auditing the statements for all
users. The WHENEVER SUCCESSFUL option stops auditing only for those statements that successfully
complete; WHENEVER NOT SUCCESSFUL stops only for those statements that result in an error.

NOAUDIT also stops the audit for an option of the use of a table, view, or synonym. To stop the audit
of any table, view, or synonym, you must either own them or have DBA authority. option refers to the
options described shortly. user is the username of the object owner. object is a table, view, or synonym.
option specifies what commands the audit should be stopped for. ON object names the object being
audited, and includes a table, view, or synonym of a table, view, or sequence. ALL stops the audits of all
commands on the object.
EXAMPLES The following stops auditing of all attempts at UPDATE or DELETE on the BOOKSHELF
table:

noaudit update, delete on BOOKSHELF;

This stops auditing of all unsuccessful access to BOOKSHELF:

noaudit all on BOOKSHELF whenever not successful;

NOT
SEE ALSO LOGICAL OPERATORS, Chapter 5
DESCRIPTION NOT comes before and reverses the effect of any of these logical operators:
BETWEEN, IN, LIKE, and EXISTS. NOT can also come before NULL, as in IS NOT NULL.

NOT EXISTS
SEE ALSO ALL, ANY, EXISTS, IN, Chapter 13
FORMAT

select ...
where NOT EXISTS (select...);

DESCRIPTION NOT EXISTS returns false in a WHERE clause if the subquery that follows it returns
one or more rows. The SELECT clause in the subquery can be a column, a literal, or an asterisk—it
doesn’t matter. The only part that matters is whether the WHERE clause in the subquery will return a row.
EXAMPLE NOT EXISTS is frequently used to determine which records in one table do not have
matching records in another table. See Chapter 13 for examples of the use of NOT EXISTS.

NOT EXISTS 1177

1178 Part VIII: Alphabetical Reference

NTILE
SEE ALSO WIDTH_BUCKET
FORMAT

NTILE (expr) OVER ([query_partition_clause] order_by_clause)

DESCRIPTION NTILE is an analytic function. It divides an ordered dataset into a number of buckets
indicated by an expression and assigns the appropriate bucket number to each row. The buckets are
numbered and the expression must resolve to a positive constant for each partition.

NULL (Form 1—PL/SQL)
SEE ALSO BLOCK STRUCTURE
FORMAT

NULL;

DESCRIPTION The NULL statement has nothing to do with NULL values. Its main purpose is to
make a section of code more readable by saying, in effect, “do nothing.” It also provides a means of
having a null block (since PL/SQL requires at least one executable statement between BEGIN and
END). It is usually used as the statement following one (usually the last) of a series of condition tests.
EXAMPLE

IF Age > 65 THEN
 ...
ELSEIF AGE BETWEEN 21 and 65 THEN
 ...
ELSE
 NULL;
ENDIF;

NULL (Form 2—SQL Column Value)
SEE ALSO AGGREGATE FUNCTIONS, CREATE TABLE, INDICATOR VARIABLE, NVL, Chapter 5
DESCRIPTION A NULL value is one that is unknown, irrelevant, or not meaningful. Any Oracle
datatype can be NULL. That is, any Oracle column in a given row can be without a value (unless the table
was created with NOT NULL for that column). NULL in a NUMBER datatype is not the same as zero.

Few procedural languages directly support the idea of a variable with a NULL or unknown value,
although Oracle and SQL do so easily. In order to extend languages for which Oracle has developed
precompilers to support the NULL concept, an INDICATOR VARIABLE is associated with the host variable,
almost like a flag, to indicate whether it is NULL. The host variable and its indicator variable may be
referenced and set separately in the host language code, but are always concatenated in SQL or PL/SQL.

You use the NVL function to detect the absence of a value for a column, and convert the NULL value
into a real value of the datatype of the column. For instance, NVL(Name,'NOT KNOWN') converts a NULL
value in the column Name into the words NOT KNOWN. For a non-NULL value (that is, where a name is
present), the NVL function simply returns the name. NVL works similarly with NUMBERs and DATEs.

Except for COUNT(*) and COMPUTE NUMBER, aggregate functions ignore NULL values. Other
functions return a NULL value when a NULL is present in the value or values they are evaluating:

NULL + 1066 is NULL.
LEAST(NULL,'A','Z') is NULL.

Since NULL represents an unknown value, two columns that are each NULL are not equal to each
other. Therefore, the equal sign and other logical operators (except for IS NULL and IS NOT NULL) do
not work with NULL. For example,

where Name = NULL

is not a valid WHERE clause. NULL requires the word IS:

where Name IS NULL

During ORDER BY sorts, NULL values always come first when the order is ascending, and last
when it is descending.

When NULL values are stored in the database, they are represented with a single byte if they fall
between two columns that have real values, and no bytes if they fall at the end of the row (last in the
column definition in the CREATE TABLE). If some of the columns in a table are likely to often contain
NULL values, those columns can be usefully grouped near the end of the CREATE TABLE column list;
this will save a minor amount of disk space.

NULL values do not appear in indexes, except in the single case where all the values in a cluster
key are NULL.

NULLIF
SEE ALSO COALESCE, DECODE, NULL, Chapter 16
FORMAT

NULLIF (expr1 , expr2)

DESCRIPTION NULLIF compares expr1 and expr2. If they are equal, the function returns NULL. If
they are not equal, the function returns expr1. You cannot specify the literal NULL for expr1.

The NULLIF function is logically equivalent to the following CASE expression:

CASE WHEN expr1 = expr2 THEN NULL
ELSE expr1 END

NUMBER DATATYPE
A NUMBER datatype is a standard Oracle datatype that may contain a number, with or without a
decimal point and a sign. Valid values are 0, and positive and negative numbers. NUMBER datatypes
are defined as having precision and scale. Precision can range from 1 to 38; scale can range from –84
to 127.

NUMBER FORMATS
SEE ALSO COLUMN, Chapter 9
DESCRIPTION The following options work with both the SET NUMFORMAT and COLUMN
FORMAT commands:

Option Description
9999990 The count of nines and zeros determines the maximum digits that can be displayed.

999,999,999.99 Commas and decimals will be placed in the pattern shown.

999990 Displays trailing zeroes.

099999 Displays leading zeroes.

$99999 A dollar sign is placed in front of every number.

B99999 Displays a blank for the integer portion of a fixed-point number when the integer is zero.

99999MI If the number is negative, a minus sign follows the number. The default is for the
negative sign to be on left.

S9999 Returns leading + for positive values, – for negative values.

9999S Returns trailing + for positive values, – for negative values.

NUMBER FORMATS 1179

1180 Part VIII: Alphabetical Reference

Option Description
99999PR Negative numbers are displayed within < and >.

99D99 Displays the decimal in the position indicated.

9G999 Displays the group separator in the position shown.

C9999 Displays the ISO currency symbol in this position.

9G999 Returns in the specified position the group separator (the current value of the NLS_
NUMERIC_CHARACTER parameter). You can specify multiple group separators in a
number format model.

L999 Displays the local currency symbol in the position specified.

, Displays a comma.

. Displays a period.

9.999EEEE The display will be in scientific notation (4 Es are required).

999V99 Multiplies number by 10n, where n is the number of digits to the right of V. 999V99
turns 1234 into 123400.

9999RN Displays Roman numeral values, for integer values between 1 and 3999. When
lowercase “rn” is used, the Roman numerals will be displayed in lowercase.

TM Returns the smallest number of characters possible (text minimum).

U999 Returns the Euro or other dual currency symbol in the specified position.

X Returns the hexadecimal value of the specified number of digits.

NUMBER FUNCTIONS
The following is an ordered list of all current single-value number functions in the Oracle version of
SQL. Each of these is listed elsewhere in this reference under its own name, with its proper format and
use. Each can be used as a regular SQL function as well as a PL/SQL function. See AGGREGATE
FUNCTIONS and LIST FUNCTIONS.

Function Definition
value1 + value2 Addition

value1 – value2 Subtraction

value1 * value2 Multiplication

value1 / value2 Division

ABS(value) ABSolute value

ACOS(value) Arc COSine of value, in radians

ASIN(value) Arc SINe of value, in radians

ATAN(value) Arc TANgent of value, in radians

ATAN2(value1, value2) Arc TANgent of value1 and value2, in radians

BITAND (value1, value2) BITwise AND of value1 and value2, both of which must resolve to
nonnegative integers, and returns an integer

CEIL(value) Numeric CEILing: the smallest integer larger than or equal to value

COS(value) COSine of value

COSH(value) Hyperbolic COSine of value

EXP(value) e raised to value EXPonent

Function Definition
FLOOR(value) Largest integer smaller than or equal to value

LN(value) Natural Logarithm of value

LOG(value) Base 10 LOGarithm of value

MOD(value, divisor) MODulus

NANVL(value1,value2) For BINARY_FLOAT and BINARY_DOUBLE numbers, returns value2 if
value1 is not a number

POWER(value, exponent) value raised to an exponent POWER

REMAINDER(value1,value2) Remainder of value1 divided by value2

ROUND(value, precision) ROUNDing of value to precision

SIGN(value) 1 if value is positive, –1 if negative, 0 if zero

SIN(value) SINe of value

SINH(value) Hyperbolic SINe of value

SQRT(value) SQuare RooT of value

TAN(value) TANgent of value

TANH(value) Hyperbolic TANgent of value

TRUNC(value, precision) value TRUNCated to precision

WIDTH_
BUCKET(expr,min,max,num)

Constructs equal-width histograms

NUMTODSINTERVAL
SEE ALSO DATATYPES, Chapter 11
FORMAT

NUMTODSINTERVAL (n , 'char_expr')

DESCRIPTION NUMTODSINTERVAL converts n to an INTERVAL DAY TO SECOND literal. n can
be a number or an expression resolving to a number. char_expr can be of CHAR, VARCHAR2, NCHAR,
or NVARCHAR2 datatype. The value for char_expr specifies the unit of n and must resolve to one of
the following string values: 'DAY', 'HOUR', 'MINUTE', or 'SECOND'.

NUMTOYMINTERVAL
SEE ALSO DATATYPES, Chapter 11
FORMAT

NUMTOYMINTERVAL (n , 'char_expr')

DESCRIPTION NUMTOYMINTERVAL converts number n to an INTERVAL YEAR TO MONTH
literal. n can be a number or an expression resolving to a number. char_expr can be of CHAR,
VARCHAR2, NCHAR, or NVARCHAR2 datatype. The value for char_expr specifies the unit of n,
and must resolve to either 'YEAR' or 'MONTH'.

NVARCHAR2
NVARCHAR2 is the multibyte equivalent of the VARCHAR2 datatype. Its maximum length is 4,000
bytes. See DATATYPES.

NVARCHAR2 1181

1182 Part VIII: Alphabetical Reference

NVL
SEE ALSO AGGREGATE FUNCTIONS, NULL, OTHER FUNCTIONS, Chapter 9
FORMAT

NVL(value, substitute)

DESCRIPTION If value is NULL, this function returns substitute. If value is not NULL, this function
returns value. value can be any Oracle datatype. substitute can be a literal, another column, or an
expression, but must be the same datatype as value.

NVL2
SEE ALSO AGGREGATE FUNCTIONS, NULL, OTHER FUNCTIONS, Chapter 9
FORMAT

NVL2 (expr1 , expr2 , expr3)

DESCRIPTION NVL2 is an extended form of NVL. In NVL2, expr1 can never be returned; either
expr2 or expr3 will be returned. If expr1 is not NULL, NVL2 returns expr2. If expr1 is NULL, NVL2
returns expr3. The argument expr1 can have any datatype. The arguments expr2 and expr3 can have
any datatypes except LONG.

OBJECT NAMES
These database objects may be given names: tables, views, synonyms, aliases, columns, indexes, users,
sequences, tablespaces, and so on. The following rules govern naming objects:

The name of an object can be from 1 to 30 characters long, except for database names, which
are up to eight characters, and host filenames, whose length is operating-system dependent.

A name may not contain a quotation mark.

A name must:
Begin with a letter
Contain only the characters A–Z, 0–9, $, #, and _
Not be an Oracle reserved word (see RESERVED WORDS)
Not duplicate the name of another database object owned by the same user

Object names are not case sensitive. Object names should follow a sensible naming convention.

OBJECT REFERENCE FUNCTIONS
Object reference functions manipulate REFs, which are references to objects of specified object types.
The object reference functions are described under their individual entries in this reference. The
functions are DEREF, MAKE_REF, REF, REFTOHEX, and VALUE.

OID
An OID is an object identifier, assigned by Oracle to each object in a database. For example, each row
object within an object table has an OID value assigned to it; the OID is used to resolve references to
the row objects. Oracle does not reuse OID values after an object is dropped. See Chapter 41.

OPEN
SEE ALSO CLOSE, DECLARE CURSOR, FETCH, LOOP, Chapter 32

■

■

■

FORMAT

OPEN cursor [(parameter[,parameter]...]

DESCRIPTION OPEN works in conjunction with DECLARE CURSOR and FETCH. DECLARE
CURSOR sets up a SELECT statement to be executed, and establishes a list of parameters (PL/SQL
variables) that are to be used in its WHERE clause, but it does not execute the query.

OPEN cursor, in effect, executes the query in the named cursor and keeps its results in a staging
area, where they can be called in, a row at a time, with FETCH, and their column values put into local
variables with the INTO clause of the FETCH. If the cursor SELECT statement used parameters, then
their actual values are passed to the SELECT statement in the parameter list of the OPEN statement.
They must match in number and position and have compatible datatypes.

There is also an alternative method of associating the values in the OPEN statement with those in
the SELECT list:

DECLARE
 cursor mycur(Title, Publisher) is select ...
BEGIN
 open my_cur(new_book => Title, 'PANDORAS' => Publisher);

Here, new_book, a PL/SQL variable, loaded perhaps from a data entry screen, is pointed to Title,
and therefore loads it with whatever is currently in the variable new_book. Publisher is loaded with the
value 'PANDORAS', and these then become the parameters of the cursor my_cur. (See DECLARE
CURSOR for more details on parameters in cursors.)

You also may combine pointed associations with positional ones, but the positional ones must
appear first in the OPEN statement’s list.

You cannot reopen an open cursor, though you can CLOSE it and reOPEN it, and you cannot use a
cursor for which you have a current OPEN statement in a CURSOR FOR LOOP.

OPEN CURSOR (Embedded SQL)
SEE ALSO CLOSE, DECLARE CURSOR, FETCH, PREPARE, Programmer’s Guide to the Oracle
Precompilers
FORMAT

EXEC SQL [FOR { integer | :array_size }]
OPEN cursor
 [USING
 {DESCRIPTOR SQLDBA_descriptor
 | :variable[[INDICATOR]:indicator_variable
 [,:variable[INDICATOR]:indicator_variable]]... }]

DESCRIPTION cursor is the name of a cursor previously named in a DECLARE CURSOR statement.
The optional USING references either the host variable list of variables that are to be substituted in the
statement in the DECLARE CURSOR, based on position (the number and type of variables must be the
same), or a descriptor name that references the result of a previous DESCRIBE.

OPEN cursor allocates a cursor, defines the active set of rows (the host variables are substituted
when the cursor is opened), and positions the cursor just before the first row of the set. No rows are
retrieved until a FETCH is executed. Host variables do not change once they’ve been substituted. To
change them, you must reopen the cursor (you don’t have to CLOSE it first).

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

OPEN CURSOR (Embedded SQL) 1183

1184 Part VIII: Alphabetical Reference

OR
SEE ALSO AND, CONTAINS, Chapters 5 and 27
DESCRIPTION OR combines logical expressions so that the result is TRUE if either logical
expression is true.
EXAMPLE The following will produce data for both KEENE and SAN FRANCISCO:

select * from COMFORT
 where City = 'KEENE' OR City = 'SAN FRANCISCO'

Within CONTEXT queries, an OR operator can be used for searches involving multiple search
terms. If either of the search terms is found, and its search score exceeds the specified threshold value,
the text will be returned by the search.

ORA_HASH
FORMAT

ORA_HASH (expr [, max_bucket [,seed_value]])

DESCRIPTION ORA_HASH computes a hash value for a given expression. This function is useful
for operations such as analyzing a subset of data and generating a random sample. expr is the data for
which Oracle will compute a hash value (usually a column name). max_bucket determines the
maximum bucket value (0 to 4294967295). The seed_value argument (0 to 4294967295) enables
Oracle to produce different results with the same expr.

ORDER BY
SEE ALSO FROM, GROUP BY, HAVING, SELECT, WHERE, Chapter 5
FORMAT

ORDER BY { expression [,expression]... |
 position [,position]... }
 alias [,alias]... }
[ASC | DESC]

DESCRIPTION The ORDER BY clause causes Oracle to sort the results of a query before they are
displayed. This can be done either by expression, which can be a simple column name or a complex
set of functions, an alias (see Note below), or a column position in the SELECT clause (see Note below).
Rows are ordered first by the first expression or position, then by the second, and so on, based on the
collating sequence of the host. If ORDER BY is not specified, the order in which rows are selected from
a table is indeterminate, and may change from one query to the next.

NOTE
Oracle still supports the use of column positions in ORDER BY
clauses, but this feature is no longer part of the SQL standard and is
not guaranteed to be supported in future releases. Use column aliases
instead.

ASC or DESC specifies ascending or descending order, and may follow each expression, position,
or alias in the ORDER BY clause. NULL values precede ascending and follow descending rows in
Oracle.

ORDER BY follows any other clauses except FOR UPDATE OF.
If ORDER BY and DISTINCT are both specified, the ORDER BY clause may refer only to columns

or expressions that are in the SELECT clause.
When the UNION, INTERSECT, or MINUS operator is used, the names of the columns in the first

SELECT may differ from the names in subsequent SELECTs. ORDER BY must use the column name from
the first SELECT.

Only CHAR, VARCHAR2, NUMBER, and DATE datatypes—and the special datatype ROWID—can
appear in an ORDER BY clause.
EXAMPLE

select Title, Publisher from BOOKSHELF
 order by Title;

OTHER FUNCTIONS
This is an alphabetical list of all current functions in the Oracle version of SQL that do not readily fall
into any other function category. Each of these is listed elsewhere in this reference under its own name,
with its proper format and use.

BFILENAME, COALESCE, CV, DECODE, DEPTH, DUMP, EMPTY_BLOB, EMPTY_CLOB,
EXISTSNODE, EXTRACT, EXTRACTVALUE, GREATEST, LEAST, LNNVL, NLS_CHARSET_DECL_LEN,
NLS_CHARSET_ID, NLS_CHARSET_NAME, NULLIF, NVL, NVL2, ORA_HASH, PATH, PRESENTNNV,
PRESENTV, PREVIOUS, SYS_CONNECT_BY_PATH, SYS_CONTEXT, SYS_DBURIGEN, SYS_EXTRACT_
UTC, SYS_GUID, SYS_TYPEID, SYS_XMLAGG, SYS_XMLGEN, UID, UPDATEXML, USER, USERENV,
VSIZE, XMLAGG, XMLCOLATTVAL, XMLCONCAT, XMLFOREST, XMLSEQUENCE, XMLTRANSFORM

PARAMETERS
SEE ALSO &, &&, ACCEPT, DEFINE
DESCRIPTION Parameters allow the execution of a start file with values passed on the SQL*Plus
command line. These are simply spaced apart following the name of the start file. Within the file,
parameters are referenced by the order in which they appeared on the command line. &1 is the first,
&2 the second, and so on. Aside from this rule, the rules for use are the same as for variables loaded
using DEFINE or ACCEPT, and they may be used in SQL statements in the same way.

There is one limitation, however. There is no way to pass a multiple-word argument to a single
variable. Each variable can take only one word, date, or number. Attempting to solve this by putting
the parameters in quotes on the command line results in the words being concatenated.
EXAMPLE Suppose you have a start file named fred.sql that contains this SQL:

select Title, Publisher
 from BOOKSHELF
 where Title > &1;

Starting it with this command line:

start fred.sql M

produces a report of all titles that start with a character > M.

PASSWORD (SQL*Plus)
SEE ALSO ALTER USER, Chapter 19
FORMAT

PASSW[ORD] [username]

PASSWORD (SQL*Plus) 1185

1186 Part VIII: Alphabetical Reference

DESCRIPTION You can use the PASSWORD command in SQL*Plus to change the password on
your account or another account (if you have the ALTER ANY USER privilege). If you use the PASSWORD
command, your new password will not be displayed on the screen as you type. Users with DBA authority
can change any user’s password via the PASSWORD command; other users can change only their own
password.

When you enter the PASSWORD command, you will be prompted for the old and new passwords.
EXAMPLE

password
Changing password for dora
Old password:
New password:
Retype new password:

When the password has been successfully changed, you will receive the feedback:

Password changed

PATH
SEE ALSO DEPTH
FORMAT

PATH (correlation_integer)

DESCRIPTION PATH is an ancillary function used only with the UNDER_PATH and EQUALS_
PATH conditions. It returns the relative path that leads to the resource specified in the parent condition.
The correlation_integer value can be any NUMBER integer. Values less than 1 are treated as 1.

PAUSE (SQL*Plus)
SEE ALSO ACCEPT, PROMPT
FORMAT

PAU[SE] [text];

DESCRIPTION PAUSE is similar to PROMPT, except PAUSE first displays an empty line, then a line
containing text, then waits for the user to press RETURN. If text is not entered, PAUSE displays two empty
lines, then waits for user to press RETURN.

NOTE
PAUSE waits for a RETURN from the terminal even if the source of
command input has been redirected to be from a file, which means
a start file with SET TERMOUT OFF could hang, waiting for a RETURN,
with no message as to why it was waiting (or that it was waiting). Use
PAUSE with caution.

EXAMPLE

prompt Report Complete.
pause Press RETURN to continue.

PERCENT_RANK
SEE ALSO AGGREGATE FUNCTIONS
FORMAT For aggregates:

PERCENT_RANK (expr [, expr]...) WITHIN GROUP
(ORDER BY
 expr [DESC | ASC] [NULLS { FIRST | LAST }]
 [, expr [DESC | ASC] [NULLS { FIRST | LAST }]]...)

For analytics:

PERCENT_RANK () OVER ([query_partition_clause] order_by_clause)

DESCRIPTION As an aggregate function, PERCENT_RANK calculates, for a hypothetical row R
identified by the arguments of the function and a corresponding sort specification, the rank of row R
minus 1 divided by the number of rows in the aggregate group. This calculation is made as if the
hypothetical row R were inserted into the group of rows over which Oracle is to aggregate. The
arguments of the function identify a single hypothetical row within each aggregate group. Therefore,
they must all evaluate to constant expressions within each aggregate group. The constant argument
expressions and the expressions in the ORDER BY clause of the aggregate match by position.
Therefore, the number of arguments must be the same and their types must be compatible.

The range of values returned by PERCENT_RANK is 0 to 1, inclusive. The first row in any set has a
PERCENT_RANK of 0.

As an analytic function, for a row R, PERCENT_RANK calculates the rank of R minus 1, divided by
1 less than the number of rows being evaluated (the entire query result set or a partition).

PERCENTILE_CONT
SEE ALSO AGGREGATE FUNCTIONS, PERCENTILE_DISC
FORMAT

PERCENTILE_CONT (expr) WITHIN GROUP (ORDER BY expr [DESC | ASC])
[OVER (query_partition_clause)]

DESCRIPTION PERCENTILE_CONT is an inverse distribution function that assumes a continuous
distribution model. It takes a percentile value and a sort specification, and returns an interpolated value
that would fall into that percentile value with respect to the sort specification. Nulls are ignored in the
calculation.

The first expr must evaluate to a numeric value between 0 and 1, because it is a percentile value.
This expr must be constant within each aggregation group. The ORDER BY clause takes a single
expression that must be a numeric or datetime value, as these are the types over which Oracle can
perform interpolation.

PERCENTILE_DISC
SEE ALSO AGGREGATE FUNCTIONS, PERCENTILE_CONT
FORMAT

PERCENTILE_DISC (expr) WITHIN GROUP (ORDER BY expr [DESC | ASC])
[OVER (query_partition_clause)]

DESCRIPTION PERCENTILE_DISC is an inverse distribution function that assumes a discrete
distribution model. It takes a percentile value and a sort specification and returns an element from the
set. Nulls are ignored in the calculation.

PERCENTILE_DISC 1187

1188 Part VIII: Alphabetical Reference

The first expr must evaluate to a numeric value between 0 and 1, because it is a percentile value.
This expression must be constant within each aggregate group. The ORDER BY clause takes a single
expression that can be of any type that can be sorted.

For a given percentile value P, PERCENTILE_DISC function sorts the values of the expression in the
ORDER BY clause, and returns the one with the smallest CUME_DIST value (with respect to the same
sort specification) that is greater than or equal to P.

POWER
SEE ALSO SQRT, Chapter 9
FORMAT

POWER(value,exponent)

DESCRIPTION POWER is value raised to an exponent.

POWERMULTISET
SEE ALSO Chapter 39
FORMAT

POWERMULTISET (expr)

DESCRIPTION POWERMULTISET takes as input a nested table and returns a nested table of nested
tables containing all nonempty subsets (called submultisets) of the input nested table. expr can be any
expression that evaluates to a nested table; if that nested table is empty, an error is returned.

POWERMULTISET_BY_CARDINALITY
SEE ALSO POWERMULTISET
FORMAT

POWERMULTISET (expr, cardinality)

DESCRIPTION POWERMULTISET_BY_CARDINALITY takes as input a nested table and returns a
nested table of nested tables containing all nonempty subsets (called submultisets) of the input nested
table of the specified cardinality. expr can be any expression that evaluates to a nested table, and
cardinality can be any positive integer; if that nested table is empty, an error is returned.

PRECEDENCE
SEE ALSO LOGICAL OPERATORS, QUERY OPERATORS, Chapter 13
DESCRIPTION The following operators are listed in descending order of precedence. Operators
with equal precedence are on the same line. Operators of equal precedence are evaluated in
succession from left to right. All ANDs are evaluated before any OR. Each of these is listed and
described separately under its own symbol or name in this Alphabetical Reference.

Operator Function
- SQL*Plus command continuation. Continues a command on the following line.

& Prefix for parameters in a SQL*Plus start file. Words are substituted for &1, &2, and so on.
See START.

& && Prefix for a substitution in a SQL command in SQL*Plus. SQL*Plus will prompt for a value
if an undefined & or && variable is found. && also defines the variable and saves the value;
& does not. See & and &&, DEFINE, and ACCEPT.

Operator Function
: Prefix for a host variable in PL/SQL.

. Variable separator, used in SQL*Plus to separate the variable name from a suffix, so that the
suffix is not considered a part of the variable name.

() Surrounds subqueries or lists of columns.

' Surrounds a literal, such as a character string or date constant. To use a ' in a string
constant, use two ' marks (not a double quotation mark).

" Surrounds a table or column alias that contains special characters or a space.

" Surrounds literal text in a date format clause of TO_CHAR.

@ Precedes a database name in a COPY, or a link name in a FROM clause.

() Overrides normal operator precedence.

+ - Prefix sign (positive or negative) for a number or number expression.

* / Multiplication and division.

+ - Addition and subtraction.

|| Char value concatenation.

NOT Reverses result of an expression.

AND Returns TRUE if both conditions are true.

OR Returns TRUE if either condition is true.

UNION Returns all distinct rows from both of two queries.

INTERSECT Returns all matching distinct rows from two queries.

MINUS Returns all distinct rows in the first query that are not in the second.

PREDICTION
SEE ALSO PREDICTION_COST, PREDICTION_BOUNDS, PREDICTION_SET
FORMAT

PREDICTION (
schema .

model
cost_matrix_clause

mining_attribute_clause)

cost_matrix_clause::=

COST

MODEL
AUTO

(class_value

,

) VALUES ((cost_value

,

)

,

)

PREDICTION 1189

1190 Part VIII: Alphabetical Reference

mining_attribute_clause::=

USING

*

schema .
table . *

expr
AS alias

,

DESCRIPTION The PREDICTION function is for use with models created by the DBMS_DATA_
MINING package or with the Oracle Data Mining Java API. It returns the best prediction for the model.
The datatype returned depends on the target value type used during the build of the model. For
regression models, this function returns the expected value.

PREDICTION_BOUNDS
SEE ALSO PREDICTION, PREDICTION_COST, PREDICTION_SET
FORMAT

PREDICTION_BOUNDS

(
schema .

model
, confidence_level

, class_value

mining_attribute_clause)

mining_attribute_clause::=

USING

*

schema .
table . *

expr
AS alias

,

DESCRIPTION The PREDICTION_BOUNDS function is for use only with generalized linear
models. It returns an object with two NUMBER fields, LOWER and UPPER. For a regression mining
function, the bounds apply to value of the prediction. For a classification mining function, the bounds
apply to the probability value. If the GLM was built using ridge regression, or if the covariance matrix
is found to be singular during the build, then this function returns NULL for both fields.

PREDICTION_COST
SEE ALSO PREDICTION

FORMAT

PREDICTION_COST (
schema .

model
, class

cost_matrix_clause mining_attribute_clause)

cost_matrix_clause::=

COST

MODEL
AUTO

(class_value

,

) VALUES ((cost_value

,

)

,

)

mining_attribute_clause::=

USING

*

schema .
table . *

expr
AS alias

,

DESCRIPTION The PREDICTION_COST function is for use with any classification model created
by the DBMS_DATA_MINING package or with the Oracle Data Mining Java API. It returns a measure
of cost for a given prediction as an Oracle NUMBER.

PREDICTION_DETAILS
SEE ALSO PREDICTION, PREDICTION_BOUNDS, PREDICTION_COST
FORMAT

PREDICTION_DETAILS (
schema .

model mining_attribute_clause)

mining_attribute_clause::=

USING

*

schema .
table . *

expr
AS alias

,

PREDICTION_DETAILS 1191

1192 Part VIII: Alphabetical Reference

DESCRIPTION The PREDICTION_DETAILS function is for use with decision tree models and
single-feature Adaptive Bayes Network (ABN) models created by the DBMS_DATA_MINING package
or with the Oracle Data Mining Java API. It returns an XML string containing model-specific
information related to the scoring of the input row.

PREDICTION_PROBABILITY
SEE ALSO PREDICTION, PREDICTION_BOUNDS, PREDICTION_COST
FORMAT

PREDICTION_PROBABILITY (
schema .

model
, class

mining_attribute_clause)

mining_attribute_clause::=

USING

*

schema .
table . *

expr
AS alias

,

DESCRIPTION The PREDICTION_PROBABILITY function is for use with classification models
created by the DBMS_DATA_MINING package or with the Oracle Data Mining Java API. It is not valid
with other types of models. It returns the probability for a given prediction as an Oracle NUMBER.

PREDICTION_SET
SEE ALSO PREDICTION, PREDICTION_BOUNDS, PREDICTION_COST
FORMAT

PREDICTION_SET (
schema .

model
, bestN

, cutoff

cost_matrix_clause
mining_attribute_clause)

cost_matrix_clause::=

COST

MODEL
AUTO

(class_value

,

) VALUES ((cost_value

,

)

,

)

mining_attribute_clause::=

USING

*

schema .
table . *

expr
AS alias

,

DESCRIPTION The PREDICTION_SET function is for use with classification models created using
the DBMS_DATA_MINING package or with the Oracle Data Mining Java API. It is not valid with other
types of models. It returns a varray of objects containing all classes in a multiclass classification scenario.
The object fields are named PREDICTION, PROBABILITY, and COST. The datatype of the PREDICTION
field depends on the target value type used during the build of the model. The other two fields are both
Oracle NUMBER. The elements are returned in the order of best prediction to worst prediction.

PREPARE (Embedded SQL)
SEE ALSO CLOSE, CURSOR, DECLARE CURSOR, FETCH, OPEN, Programmer’s Guide to the
Oracle Precompilers
FORMAT

EXEC SQL [AT { db_name | :host_variable }] PREPARE statement_id
 FROM { :host_string | 'text' | select_command }

DESCRIPTION PREPARE parses SQL in the host variable :host_string or the literal text. It assigns
a statement_id as a reference to the SQL. If the statement_id has been used previously, this reference
replaces it. The SQL is a SELECT statement, and may include a FOR UPDATE OF clause. :host_string
is not the actual name of the host variable used, but a placeholder. OPEN CURSOR assigns input host
variables in its USING clause, and FETCH assigns output host variables in its INTO clause, based on
position. A statement needs to be PREPAREd only once. It can then be executed multiple times.

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

EXAMPLE

query_string : string(1..100)
get(query_string);
EXEC SQL prepare FRED from :query_string;
EXEC SQL execute FRED;

PRESENTNNV
SEE ALSO PRESENTV
FORMAT

PRESENTNNV (cell_reference, expr1, expr2)

PRESENTNNV 1193

1194 Part VIII: Alphabetical Reference

DESCRIPTION PRESENTNNV is relevant only for interrow calculations. It can be used only in the
MODEL clause of the SELECT statement and then only on the right side of a model rule. It returns expr1
when, prior to the execution of the MODEL clause, cell_reference exists and is not null. Otherwise it
returns expr2.

PRESENTV
SEE ALSO PRESENTNNV
FORMAT

PRESENTV (cell_reference, expr1, expr2)

DESCRIPTION PRESENTV is relevant only for interrow calculations. It can be used only in the
MODEL clause of the SELECT statement and then only on the right side of a model rule. It returns expr1
when, prior to the execution of the MODEL clause, cell_reference exists (but may be null). Otherwise it
returns expr2.

PREVIOUS
SEE ALSO ITERATION_NUMBER
FORMAT

PREVIOUS (cell_reference)

DESCRIPTION PREVIOUS is relevant only for interrow calculations. It can be used only in the
MODEL clause of the SELECT statement and then only in the ITERATE … [UNTIL] clause of the
MODEL RULES clause. It returns the value of cell_reference at the beginning of each iteration.

PRINT
SEE ALSO VARIABLE, Chapter 32
FORMAT

PRI[NT] [variable…]

DESCRIPTION PRINT displays the current value of the specified variable (which is created via the
VARIABLE command). You can print the current values of multiple variables in a single command.

PRIOR
See CONNECT BY.

PRIVILEGE
A privilege is a permission granted to an Oracle user to execute some action. In Oracle, no user can
execute any action without having the privilege to do so.

There are two kinds of privileges: system privileges and object privileges. System privileges extend
permission to execute various data definition and data control commands, such as CREATE TABLE and
ALTER USER, or even to log onto the database. Object privileges extend permission to operate on a
particular named database object.

System privileges in Oracle include CREATE, ALTER, and DROP privileges for the various CREATE,
ALTER, and DROP commands. Privileges with the keyword ANY in them mean that the user can exercise
the privilege on any schema for which the privilege has been granted, not just his or her own schema.
The standard privileges in the list following just give permission to execute the indicated command, and
don’t require further explanation. Some of the privileges aren’t intuitively clear; these are explained here.

System privileges include the following:

Privilege Permission to…
ADVISOR FRAMEWORK

ADVISOR Access the advisor framework through PL/SQL packages including DBMS_
ADVISOR and DBMS_SQLTUNE.

ADMINISTER SQL TUNING SET Create, drop, select, load, and delete a SQL tuning set owned by the grantee
through the DBMS_SQLTUNE package.

ADMINISTER ANY SQL TUNING SET Create, drop, select, load, and delete a SQL tuning set owned by any user
through the DBMS_SQLTUNE package.

CREATE ANY SQL PROFILE Accept a SQL profile recommended by the tuning advisor.

DROP ANY SQL PROFILE Drop an existing SQL profile.

ALTER ANY SQL PROFILE Alter the attributes of an existing SQL profile.

CLUSTERS

CREATE CLUSTER Create clusters in grantee’s schema.

CREATE ANY CLUSTER Create a cluster in any schema. Behaves similarly to CREATE ANY TABLE.

ALTER ANY CLUSTER Alter clusters in any schema.

DROP ANY CLUSTER Drop clusters in any schema.

CONTEXTS

CREATE ANY CONTEXT Create any context namespace.

DROP ANY CONTEXT Drop any context namespace.

 DATABASE

ALTER DATABASE Alter the database.

ALTER SYSTEM Issue ALTER SYSTEM statements.

AUDIT SYSTEM Issue AUDIT statements.

 DATABASE LINKS

CREATE DATABASE LINK Create private database links in grantee’s schema.

CREATE PUBLIC DATABASE LINK Create public database links.

DROP PUBLIC DATABASE LINK Drop public database links.

 DEBUGGING

DEBUG CONNECT SESSION Connect the current session to a debugger.

DEBUG ANY PROCEDURE Debug all PL/SQL and Java code in any database object. Display information
on all SQL statements executed by the application.

 DICTIONARIES

ANALYZE ANY DICTIONARY Analyze any data dictionary object.

 DIMENSIONS

CREATE DIMENSION Create dimensions in the grantee’s schema.

CREATE ANY DIMENSION Create dimensions in any schema.

ALTER ANY DIMENSION Alter dimensions in any schema.

DROP ANY DIMENSION Drop dimensions in any schema.

 DIRECTORIES

CREATE ANY DIRECTORY Create directory database objects.

PRIVILEGE 1195

1196 Part VIII: Alphabetical Reference

Privilege Permission to…
 FLASHBACK DATA ARCHIVES

FLASHBACK ARCHIVE ADMINISTER Create, alter, or drop any flashback data archive.

INDEXTYPES

CREATE INDEXTYPE Create an indextype in the grantee’s schema.

CREATE ANY INDEXTYPE Create an indextype in any schema.

ALTER ANY INDEXTYPE Modify indextypes in any schema.

DROP ANY INDEXTYPE Drop an indextype in any schema.

EXECUTE ANY INDEXTYPE Reference an indextype in any schema.

INDEXES

CREATE ANY INDEX Create in any schema a domain index or an index on any table in any schema.

ALTER ANY INDEX Alter indexes in any schema.

DROP ANY INDEX Drop indexes in any schema.

JOB SCHEDULER OBJECTS

CREATE JOB Create jobs, schedulers, or programs in the grantee’s schema (using DBMS_
SCHEDULER).

CREATE ANY JOB Create, alter, or drop jobs, schedules, or programs in any schema.

EXECUTE ANY PROGRAM Use any program in a job in the grantee’s schema.

EXECUTE ANY CLASS Specify any job class in a job in the grantee’s schema.

MANAGE SCHEDULER Create, alter, or drop any job class, window, or window group.

LIBRARIES

CREATE LIBRARY Create external procedure/function libraries in grantee’s schema.

CREATE ANY LIBRARY Create external procedure/function libraries in any schema.

DROP ANY LIBRARY Drop external procedure/function libraries in any schema.

MATERIALIZED VIEWS

CREATE MATERIALIZED VIEW Create a materialized view in the grantee’s schema.

CREATE ANY MATERIALIZED VIEW Create materialized views in any schema.

ALTER ANY MATERIALIZED VIEW Alter materialized views in any schema.

DROP ANY MATERIALIZED VIEW Drop materialized views in any schema.

QUERY REWRITE This privilege has been deprecated.

GLOBAL QUERY REWRITE Enable rewrite using a materialized view when that materialized view
references tables or views in any schema.

ON COMMIT REFRESH Create a refresh-on-commit materialized view on any table in the database.
Alter a refresh-on-demand materialized view on any table in the database to
refresh-on-commit.

FLASHBACK ANY TABLE Issue a FLASHBACK QUERY on any table, view, or materialized view in any
schema.

MINING MODELS

CREATE MINING MODEL Create mining models.

CREATE ANY MINING MODEL Create mining models in any schema.

Privilege Permission to…
ALTER ANY MINING MODEL Alter any mining model.

DROP ANY MINING MODEL Drop any mining model in any schema.

SELECT ANY MINING MODEL Score or view any model in any schema.

COMMENT ANY MINING MODEL Create a comment on any model in any schema.

OLAP CUBES

CREATE CUBE Create an OLAP cube.

CREATE ANY CUBE Create an OLAP cube in any schema.

ALTER ANY CUBE Alter an OLAP cube in any schema.

DROP ANY CUBE Drop any OLAP cube.

SELECT ANY CUBE Query or view any OLAP cube in any schema.

UPDATE ANY CUBE Update any cube in any schema.

OLAP CUBE MEASURE FOLDERS

CREATE MEASURE FOLDER Create an OLAP measure folder.

CREATE ANY MEASURE FOLDER Create an OLAP measure folder in any schema.

DELETE ANY MEASURE FOLDER Delete from an OLAP measure folder in any schema.

DROP ANY MEASURE FOLDER Drop any measure folder in any schema.

INSERT ANY MEASURE FOLDER Insert a measure into any measure folder in any schema.

OLAP CUBE DIMENSIONS

CREATE CUBE DIMENSION Create an OLAP cube dimension.

CREATE ANY CUBE DIMENSION Create an OLAP cube dimension in any schema.

ALTER ANY CUBE DIMENSION Alter an OLAP cube dimension in any schema.

DELETE ANY CUBE DIMENSION Delete from an OLAP cube dimension in any schema.

DROP ANY CUBE DIMENSION Drop an OLAP cube dimension in any schema.

INSERT ANY CUBE DIMENSION Insert into an OLAP cube dimension in any schema.

SELECT ANY CUBE DIMENSION View or query an OLAP cube dimension.

UPDATE ANY CUBE DIMENSION Update an OLAP cube dimension in any schema.

OLAP CUBE BUILD PROCESSES

CREATE CUBE BUILD PROCESS Create an OLAP cube build process.

CREATE ANY CUBE BUILD PROCESS Create an OLAP cube build process in any schema.

DROP ANY CUBE BUILD PROCESS Drop an OLAP cube build process in any schema.

UPDATE ANY CUBE BUILD PROCESS Update an OLAP cube build process in any schema.

OPERATORS

CREATE OPERATOR Create an operator and its bindings in the grantee’s schema.

CREATE ANY OPERATOR Create an operator and its bindings in any schema.

ALTER ANY OPERATOR Modify an operator in any schema.

DROP ANY OPERATOR Drop an operator in any schema.

PRIVILEGE 1197

1198 Part VIII: Alphabetical Reference

Privilege Permission to…
OUTLINES

CREATE ANY OUTLINE Create public outlines that can be used in any schema that uses outlines.

ALTER ANY OUTLINE Modify outlines.

DROP ANY OUTLINE Drop outlines.

PROCEDURES

CREATE PROCEDURE Create stored procedures, functions, and packages in grantee’s schema.

CREATE ANY PROCEDURE Create stored procedures, functions, and packages in any schema.

ALTER ANY PROCEDURE Alter stored procedures, functions, or packages in any schema.

DROP ANY PROCEDURE Drop stored procedures, functions, or packages in any schema.

EXECUTE ANY PROCEDURE Execute procedures or functions (stand-alone or packaged).
Reference public package variables in any schema.

PROFILES

CREATE PROFILE Create profiles.

ALTER PROFILE Alter profiles.

DROP PROFILE Drop profiles.

ROLES

CREATE ROLE Create roles.

ALTER ANY ROLE Alter any role in the database.

DROP ANY ROLE Drop roles.

GRANT ANY ROLE Grant any role in the database.

ROLLBACK SEGMENTS

CREATE ROLLBACK SEGMENT Create rollback segments.

ALTER ROLLBACK SEGMENT Alter rollback segments.

DROP ROLLBACK SEGMENT Drop rollback segments.

SEQUENCES

CREATE SEQUENCE Create sequences in grantee’s schema.

CREATE ANY SEQUENCE Create sequences in any schema.

ALTER ANY SEQUENCE Alter any sequence in the database.

DROP ANY SEQUENCE Drop sequences in any schema.

SELECT ANY SEQUENCE Reference sequences in any schema.

SESSIONS

CREATE SESSION Connect to the database.

ALTER RESOURCE COST Set costs for session resources.

ALTER SESSION Issue ALTER SESSION statements.

RESTRICTED SESSION Log on after the instance is started using the SQL*Plus STARTUP RESTRICT
statement.

SYNONYMS

CREATE SYNONYM Create synonyms in grantee’s schema.

CREATE ANY SYNONYM Create private synonyms in any schema.

Privilege Permission to…
CREATE PUBLIC SYNONYM Create public synonyms.

DROP ANY SYNONYM Drop private synonyms in any schema.

DROP PUBLIC SYNONYM Drop public synonyms.

TABLES

CREATE TABLE Create tables in grantee’s schema.

CREATE ANY TABLE Create tables in any schema. The owner of the schema containing the table
must have space quota on the tablespace to contain the table.

ALTER ANY TABLE Alter any table or view in any schema.

BACKUP ANY TABLE Use the Export utility to incrementally export objects from the schema of
other users.

DELETE ANY TABLE Delete rows from tables, table partitions, or views in any schema.

DROP ANY TABLE Drop or truncate tables or table partitions in any schema.

INSERT ANY TABLE Insert rows into tables and views in any schema.

LOCK ANY TABLE Lock tables and views in any schema.

SELECT ANY TABLE Query tables, views, or materialized views in any schema.

FLASHBACK ANY TABLE Issue a flashback query on any table, view, or materialized view in any schema.

UPDATE ANY TABLE Update rows in tables and views in any schema.

TABLESPACES

CREATE TABLESPACE Create tablespaces.

ALTER TABLESPACE Alter tablespaces.

DROP TABLESPACE Drop tablespaces.

MANAGE TABLESPACE Take tablespaces offline and online and begin and end tablespace backups.

UNLIMITED TABLESPACE Use an unlimited amount of any tablespace. This privilege overrides any specific
quotas assigned. If you revoke this privilege from a user, the user’s schema
objects remain but further tablespace allocation is denied unless authorized by
specific tablespace quotas. You cannot grant this system privilege to roles.

TRIGGERS

CREATE TRIGGER Create a database trigger in grantee’s schema.

CREATE ANY TRIGGER Create database triggers in any schema.

ALTER ANY TRIGGER Enable, disable, or compile database triggers in any schema.

DROP ANY TRIGGER Drop database triggers in any schema.

ADMINISTER DATABASE TRIGGER Create a trigger on DATABASE. (You must also have the CREATE TRIGGER or
CREATE ANY TRIGGER privilege.)

TYPES

CREATE TYPE Create object types and object type bodies in grantee’s schema.

CREATE ANY TYPE Create object types and object type bodies in any schema.

ALTER ANY TYPE Alter object types in any schema.

DROP ANY TYPE Drop object types and object type bodies in any schema.

PRIVILEGE 1199

1200 Part VIII: Alphabetical Reference

Privilege Permission to…
EXECUTE ANY TYPE Use and reference object types and collection types in any schema, and invoke

methods of an object type in any schema if you make the grant to a specific
user. If you grant EXECUTE ANY TYPE to a role, users holding the enabled role
will not be able to invoke methods of an object type in any schema.

UNDER ANY TYPE Create subtypes under any nonfinal object types.

USERS

CREATE USER Create users. This privilege also allows the creator to:
Assign quotas on any tablespace.
Set default and temporary tablespaces.
Assign a profile as part of a CREATE USER statement.

ALTER USER Alter any user. This privilege authorizes the grantee to:
Change another user’s password or authentication method.
Assign quotas on any tablespace.
Set default and temporary tablespaces.
Assign a profile and default roles.

DROP USER Drop users.

VIEWS

CREATE VIEW Create views in grantee’s schema.

CREATE ANY VIEW Create views in any schema.

DROP ANY VIEW Drop views in any schema.

UNDER ANY VIEW Create subviews under any object views.

FLASHBACK ANY TABLE Issue a SQL Flashback Query on any table, view, or materialized view in
any schema. The privilege is not needed to execute the DBMS_FLASHBACK
procedures.

MERGE ANY VIEW If a user has been granted the MERGE ANY VIEW privilege, then for any
query issued by that user the optimizer can use view merging to improve
query performance without performing the checks that would otherwise be
performed to ensure that view merging does not violate any security intentions
of the view creator.

MISCELLANEOUS

ANALYZE ANY Analyze any table, cluster, or index in any schema.

AUDIT ANY Audit any object in any schema using AUDIT schema_objects statements.

BECOME USER Allow users of the Data Pump Import utility and the original Import utility
to assume the identity of another user in order to perform operations that
cannot be directly performed by a third party. This system privilege allows
Streams administrators to create or alter users in Streams environment. By
default, this privilege is part of the DBA role. Data Vault removes this privilege
from the DBA role. Therefore, this privilege is needed by Streams only in an
environment where Data Vault is installed.

COMMENT ANY TABLE Comment on any table, view, or column in any schema.

EXEMPT ACCESS POLICY Bypass fine-grained access control. This is a very powerful system privilege,
as it lets the grantee bypass application-driven security policies. Database
administrators should use caution when granting this privilege.

Privilege Permission to…
FORCE ANY TRANSACTION Force the commit or rollback of any in-doubt distributed transaction in the

local database. Induce the failure of a distributed transaction.

FORCE TRANSACTION Force the commit or rollback of grantee’s in-doubt distributed transactions in
the local database.

GRANT ANY OBJECT PRIVILEGE Grant any object privilege.

GRANT ANY PRIVILEGE Grant any system privilege.

RESUMABLE Enable resumable space allocation.

SELECT ANY DICTIONARY Query any data dictionary object in the SYS schema. This privilege lets you
selectively override the default FALSE setting of the O7_DICTIONARY_
ACCESSIBILITY initialization parameter.

SYSDBA Perform STARTUP and SHUTDOWN operations.
ALTER DATABASE: open, mount, back up, or change character set.
CREATE DATABASE.
ARCHIVELOG and RECOVER.
CREATE SPFILE.
Includes the RESTRICTED SESSION privilege.

SYSOPER Perform STARTUP and SHUTDOWN operations.
ALTER DATABASE OPEN | MOUNT | BACKUP.
ARCHIVELOG and RECOVER.
CREATE SPFILE.
Includes the RESTRICTED SESSION privilege.

System Roles Use
CONNECT, RESOURCE, and DBA Provided for compatibility with previous versions of Oracle Database

software.

DELETE_CATALOG_ROLE,
EXECUTE_CATALOG_ROLE, SELECT_
CATALOG_ROLE

These roles are provided for accessing data dictionary views and packages.

EXP_FULL_DATABASE, IMP_FULL_
DATABASE

These roles are provided for convenience in using the Import and Export
utilities.

AQ_USER_ROLE, AQ_
ADMINISTRATOR_ROLE

These roles are needed for Oracle Advanced Queueing.

SNMPAGENT This role is used by the Enterprise Manager Intelligent Agent.

RECOVERY_CATALOG_OWNER This role is required for the creation of a recovery catalog schema owner.

HS_ADMIN_ROLE Needed for support of Heterogeneous Services.

SCHEDULER_ADMIN This role allows the grantee to execute the DBMS_SCHEDULER package’s
procedures.

NOTE
For external tables, the only valid privileges are CREATE ANY TABLE,
ALTER ANY TABLE, DROP ANY TABLE, and SELECT ANY TABLE.

Object privileges apply only to certain kinds of objects. The following table shows the relationships
and the grantable object privileges.

PRIVILEGE 1201

1202 Part VIII: Alphabetical Reference

Object
Privilege

Table View Sequence Procedures,
Functions,
Packagesa

Materialized
View

Directory Library User-
defined
Type

Operator Index-
type

ALTER X X

DELETE X X X
b

EXECUTE X
c

X
c

X
c

X
c

X
c

DEBUG X X X X

FLASHBACK X X X

INDEX X

INSERT X X X
b

ON COMMIT
REFRESH

X

QUERY
REWRITE

X

READ X

REFERENCES X X

SELECT X X X X

UNDER X X

UPDATE X X X
b

WRITE X

a Oracle treats a Java class, source, or resource as if it were a procedure for purposes of granting object privileges.
b The DELETE, INSERT, and UPDATE privileges can be granted only to updatable materialized views.
c Job scheduler objects are created using the DBMS_SCHEDULER package. Once these objects are created, you can grant the EXECUTE object privilege on job

 scheduler classes and programs. You can grant the ALTER privilege on job scheduler jobs, programs, and schedules.

For FLASHBACK ARCHIVE, MINING MODEL, and OLAP options, the available privileges are:

FLASHBACK DATA ARCHIVE
PRIVILEGE

The following flashback data archive privilege authorizes operations on
flashback data archives.

FLASHBACK ARCHIVE Used to enable or disable historical tracking for a table.

MINING MODEL PRIVILEGES The following mining model privileges authorize operations on a mining
model. These privileges are not required for models within the user’s own
schema.

ALTER Used to change the mining model name or the associated cost matrix using
the applicable DBMS_DATA_MINING procedures.

SELECT Used to score or view the mining model. Scoring is done with the
PREDICTION family of SQL functions or with the DBMS_DATA_MINING
.APPLY procedure. Viewing the model is done with the DBMS_DATA_
MINING.GET_MODEL_DETAILS_* procedures.

OLAP PRIVILEGES The following object privileges are valid if you are using Oracle Database
with the OLAP option.

INSERT Used to insert members into the OLAP cube dimension or measures into the
measures folder.

ALTER Used to change the definition of the OLAP cube dimension or cube.

DELETE Used to delete members from the OLAP cube dimension or measures from
the measures folder.

SELECT Used to view or query the OLAP cube or cube dimension.

UPDATE Used to update measure values of the OLAP cube or attribute values of the
cube dimension.

PROMPT (SQL*Plus)
SEE ALSO ACCEPT
FORMAT

PRO[MPT] [text]

DESCRIPTION PROMPT displays the text to the user’s screen. If no text is specified, then a blank
line will be displayed. To display a variable, see PRINT.

PSEUDO-COLUMNS
DESCRIPTION A pseudo-column is a “column” that yields a value when selected but is not an
actual column of the table. Here are the current Oracle pseudo-columns:

Pseudo-Column Value Returned
COLUMN_VALUE When you refer to an XMLTable construct without the COLUMNS clause,

or when you use the TABLE function to refer to a scalar nested table type,
the database returns a virtual table with a single column. The name of this
pseudo-column is COLUMN_VALUE.

CONNECT_BY_ISCYCLE Equal to 1 if the current row has a child that is also its ancestor, otherwise 0.

CONNECT_BY_ISLEAF Equal to 1 if the current row is a leaf of the tree defined by the CONNECT BY
condition, otherwise 0.

Level Equal to 1 for a root node, 2 for a child of a root, and so on. Tells basically
how far down a tree you’ve traveled.

sequence.CURRVAL Current value for this sequence name.

sequence.NEXTVAL Next value for this sequence name. Also increments the sequence.

VERSIONS_STARTTIME For flashback version queries, returns the timestamp of the first version of the
rows returned by the query.

VERSIONS_STARTSCN For flashback version queries, returns the SCN of the first version of the rows
returned by the query.

VERSIONS_ENDTIME For flashback version queries, returns the timestamp of the last version of the
rows returned by the query.

VERSIONS_ENDSCN For flashback version queries, returns the SCN of the last version of the rows
returned by the query.

VERSIONS_XID For flashback version queries, for each version of each row, returns the
transaction ID of the transaction that created that row version.

VERSIONS_OPERATION For flashback version queries, for each version of each row, returns a single
character for the operation that caused the row version: I (insert), U (update),
or D (delete).

OBJECT_ID Returns the object identifier of a column of an object table or view.

PSEUDO-COLUMNS 1203

1204 Part VIII: Alphabetical Reference

Pseudo-Column Value Returned
OBJECT_VALUE Returns system-generated names for the columns of an object table, XMLType

table, object view, or XMLType view.

ORA_ROWSCN Returns the conservative upper-bound SCN of the most recent change to
the row, showing approximately when the row was last updated (row-level
dependencies should be created for more fine-grained auditing).

ROWID Returns the row identifier for a row. Use the ROWID in the UPDATE…
WHERE and SELECT…FOR UPDATE. This guarantees that only a certain row
is updated, and no others.

ROWNUM Returns the sequence number in which a row was returned when selected
from a table. The first row ROWNUM is 1, the second is 2, and so on.

XMLDATA Lets you access the underlying XMLType LOB data or object relational column.

PURGE
SEE ALSO Chapter 51
FORMAT
purge::=

PURGE

TABLE table

INDEX index

RECYCLEBIN

DBA_RECYCLEBIN

TABLESPACE tablespace
USER user

;

DESCRIPTION PURGE removes a table or index from your recycle bin and releases all of the space
associated with the object, or removes the entire recycle bin, or removes part or all of a dropped
tablespace from the recycle bin.

NOTE
You cannot roll back a PURGE command. You cannot recover an
object after it is purged.

To see the contents of your recycle bin, query the RECYCLEBIN data dictionary view.
You can use the TABLE or INDEX keywords to specify the name of the object you wish to purge.

Specifying RECYCLEBIN purges all objects in the user’s recycle bin. DBA_RECYCLEBIN purges all
users’ recycle bins. TABLESPACE purges all objects residing in the specified tablespace from the recycle
bin. USER user purges space within a tablespace for a particular user.
EXAMPLE To purge an individual table:

PURGE TABLE bookshelf;

To purge the current user’s recycle bin:

PURGE RECYCLEBIN;

QUERY OPERATORS
The following is an alphabetical list of all current query operators in the Oracle version of SQL.

Each of these is listed elsewhere in this reference under its own name, with its proper format and use.
See also Chapter 13.

Operator Purpose
INTERSECT Returns all matching distinct rows from two queries

MINUS Returns all distinct rows in first query that are not in the second

UNION Returns all distinct rows from both of two queries

UNION ALL Returns all rows from both of two queries

QUIT
SEE ALSO COMMIT, DISCONNECT, EXIT, SET AUTOCOMMIT, START
FORMAT

QUIT

DESCRIPTION QUIT ends a SQL*Plus session and returns the user to an operating system, calling
program, or menu.

RAISE
SEE ALSO EXCEPTION, EXCEPTION_INIT
FORMAT

RAISE [exception]

DESCRIPTION RAISE names the exception flag you want to raise, based on a condition that is
being tested. The exception must be either one you’ve explicitly DECLAREd, or an internal system
exception such as DIVIDE_BY_ZERO (see EXCEPTION for a complete list).

A RAISE statement causes control to be transferred to the EXCEPTION section of the current block,
where you must test to see which exception was raised. If no EXCEPTION section is present, control is
passed to the nearest EXCEPTION section of an enclosing block (basically backward through the
nesting of the blocks). If no logic is found to handle the exception, control is passed from the PL/SQL to
the calling program or environment with an unhandled exception error. (The use of OTHERS can avoid
this. See EXCEPTION.)

RAISE without an explicitly named exception can be used only in one circumstance: within an
EXCEPTION section, to force the current exception to be handled by an enclosing block’s EXCEPTION
section, rather than the current one. If, for instance, a NOT_LOGGED_ON error had occurred, and
your local EXCEPTION section says this:

when not_logged_on
 then raise;

it would pass control back to the EXCEPTION section of the next enclosing block that had one, or to
the program if none was found. That EXCEPTION block could also test for NOT_LOGGED_ON. The
benefit here is that for a certain class of errors, particularly where the recovery, tracing, or error-logging
steps you want to take may be extensive, you can set every nested block’s EXCEPTION section to
simply hand the EXCEPTION backward to a single spot for disposition.

RAISE 1205

1206 Part VIII: Alphabetical Reference

RANK
SEE ALSO ANALYTIC FUNCTIONS
AGGREGATE SYNTAX FORMAT
rank_aggregate::=

RANK (expr

,

) WITHIN GROUP

(ORDER BY expr

DESC

ASC
NULLS

FIRST

LAST

,

)

ANALYTIC SYNTAX FORMAT
rank_analytic::=

RANK () OVER (
query_partition_clause

order_by_clause)

DESCRIPTION RANK calculates the rank of a value in a group of values. The return type is
NUMBER. Rows with equal values for the ranking criteria receive the same rank.

RATIO_TO_REPORT
SEE ALSO AGGREGATE FUNCTIONS
FORMAT

RATIO_TO_REPORT (expr) OVER ([query_partition_clause])

DESCRIPTION RATIO_TO_REPORT is an analytic function. It computes the ratio of a value to the
sum of a set of values. If expr evaluates to NULL, the ratio-to-report value also evaluates to NULL.

RAW DATATYPE
A RAW column contains binary data in whatever form the host computer stores it. RAW columns are
useful for storing binary (noncharacter) data.

RAWTOHEX
SEE ALSO HEXTORAW
FORMAT

RAWTOHEX(binary_string)

DESCRIPTION RAWTOHEX changes a string of binary numbers to a character string of
hexadecimal numbers.

RAWTONHEX
SEE ALSO RAWTOHEX
FORMAT

RAWTONHEX (raw)

DESCRIPTION RAWTONHEX converts raw to an NVARCHAR2 character value containing its
hexadecimal equivalent.

RECORD (PL/SQL)
SEE ALSO TABLE (PL/SQL), DATATYPES
FORMAT

TYPE new_type IS RECORD
 (field {type | table.column%TYPE}[NOT NULL]
 [,field {type | table.column%TYPE}[NOT NULL]...]);

DESCRIPTION A RECORD declaration declares a new type that can then be used to declare variables
of that type. The individual components of the record are fields, and each has its own datatype. That
datatype can be either one of the standard PL/SQL datatypes (including another RECORD but not a
TABLE), or a reference to the type of a particular column in a specific table. Each field also may have
a NOT NULL qualifier that specifies that the field must always have a non-NULL value.

You can refer to the individual fields in a record by using dot notation.

RECOVER
RECOVER is a clause within the ALTER DATABASE command.
SEE ALSO ALTER DATABASE, Chapter 51
FORMAT

RECOVER {general | managed | BEGIN BACKUP | END BACKUP}

where the GENERAL clause has the following syntax:

[AUTOMATIC] [FROM location]
{ {full_database_recovery | partial_database_recovery |LOGFILE filename}
[{TEST | ALLOW integer CORRUPTION | parallel_clause }
[TEST | ALLOW integer CORRUPTION | parallel_clause]...]
|CONTINUE [DEFAULT]|CANCEL}

where the FULL DATABASE RECOVERY clause has the following syntax:

[STANDBY] DATABASE
[{UNTIL {CANCEL | TIME date | CHANGE integer} | USING BACKUP CONTROLFILE}
[UNTIL {CANCEL | TIME date | CHANGE integer} | USING BACKUP CONTROLFILE]...]

where the PARTIAL DATABASE RECOVERY clause has the following syntax:

{TABLESPACE tablespace [, tablespace]... | DATAFILE datafilename [, datafilenumber]...
| STANDBY
{TABLESPACE tablespace [, tablespace]... | DATAFILE datafilename [, datafilenumber]...}
UNTIL [CONSISTENT WITH] CONTROLFILE }

RECOVER 1207

1208 Part VIII: Alphabetical Reference

and the PARALLEL clause has the following syntax:

{NOPARALLEL | PARALLEL [integer]}

and the MANAGED clause has the following syntax:

MANAGED STANDBY DATABASE recover_clause | cancel_clause | finish_clause

and the RECOVER clause has the following syntax:

{{DISCONNECT [FROM SESSION]|{TIMEOUT integer | NOTIMEOUT}}
 |{NODELAY | DEFAULT DELAY | DELAY integer} | NEXT integer
 |{EXPIRE integer | NO EXPIRE} | parallel_clause
 | USING CURRENT LOGFILE | UNTIL CHANGE integer
 | THROUGH {[THREAD integer] SEQUENCE integer
 | ALL ARCHIVELOG | {ALL|LAST|NEXT} SWITCHOVER}}
 [DISCONNECT [FROM SESSION] | {TIMEOUT integer | NOTIMEOUT}
 | {NODELAY|DEFAULT DELAY|DELAY integer}| NEXT integer
 | {EXPIRE integer | NO EXPIRE}| parallel_clause
 | USING CURRENT LOGFILE | UNTIL CHANGE integer
 | THROUGH {[THREAD integer]SEQUENCE integer
 | ALL ARCHIVELOG | {ALL|LAST|NEXT} SWITCHOVER}}

and the CANCEL clause has the following syntax:

CANCEL [IMMEDIATE] [WAIT | NOWAIT]

and the FINISH clause has the following syntax:

[DISCONNECT [FROM SESSION]][parallel_clause]
FINISH [SKIP [STANDBY LOGFILE]][WAIT|NOWAIT]

DESCRIPTION The RECOVER command, like the RECOVER clause of the ALTER DATABASE
command, recovers a database using various options. AUTOMATIC recovery generates the redo log
filenames automatically during recovery. The FROM clause specifies the location of the archived redo
log file group and must be a fully qualified filename. The default is set by the initialization parameter
LOG_ARCHIVE_DEST (or LOG_ARCHIVE_DEST_1).

The DATABASE option recovers the entire database and is the default. The UNTIL CANCEL
alternative recovers the database until you cancel the recovery with the CANCEL option. The UNTIL
TIME alternative recovers up to a specified date and time (in the format YYYY-MM-DD:HH24:MI:SS).
The UNTIL CHANGE alternative recovers up to a system change number (SCN, a unique number
assigned to each transaction) specified by an integer. The USING BACKUP CONTROLFILE alternative
recovers by applying the redo log in a backup control file.

You can perform trial recoveries via the TEST option, and CONTINUE a multi-instance recovery
even after it has been interrupted. The DELAY parameters relate to the application of logs to standby
databases during recovery; by default they are delayed as defined via the LOG_ARCHIVE_DEST_n
parameter values.

RECYCLE BIN
Dropped objects go into a recycle bin by default rather than being immediately dropped. The recycle
bin allows for dropped objects to be restored without the need for a full database recovery. You can
purge specific objects from the recycle bin via the PURGE command. See PURGE.

To see the objects presently in your recycle bin, query the RECYCLEBIN data dictionary view or use
the SHOW RECYCLEBIN command.

REF
SEE ALSO Chapter 41
FORMAT

REF (correlation_variable)

DESCRIPTION REF is a reference function used with object tables; the input correlation variable is
a table alias. REF returns the object instance for that variable. See Chapter 41 for detailed examples.

REFTOHEX
SEE ALSO Chapter 41
FORMAT

REFTOHEX (expr)

DESCRIPTION REFTOHEX converts argument expr to a character value containing its hexadecimal
equivalent. expr must return a REF.

REGEXP_COUNT
SEE ALSO REGEXP_INSTR, Chapter 8
FORMAT

REGEXP_COUNT (source_char , pattern
, position

, match_param

)

DESCRIPTION
REGEXP_COUNT complements the functionality of the REGEXP_INSTR function by returning the
number of times a pattern occurs in a source string. The function evaluates strings using characters as
defined by the input character set. It returns an integer indicating the number of occurrences of pattern.
If no match is found, the function returns 0.

source_char is a character expression that serves as the search value. It is commonly
a character column and can be of any of the datatypes CHAR, VARCHAR2, NCHAR,
NVARCHAR2, CLOB, and NCLOB.

pattern is the regular expression. It is usually a text literal and can be of any of the datatypes
CHAR, VARCHAR2, NCHAR, and NVARCHAR2. It can contain up to 512 bytes. If the
datatype of pattern is different from the datatype of source_char, Oracle Database converts
pattern to the datatype of source_char.

REGEXP_COUNT ignores subexpression parentheses in pattern. For example, the pattern
“(123(45))” is equivalent to “12345”.

position is a positive integer indicating the character of source_char where Oracle should
begin the search. The default is 1, meaning that Oracle begins the search at the first character
of source_char. After finding the first occurrence of pattern, the database searches for a second
occurrence beginning with the first character following the first occurrence.

match_param is a text literal that lets you change the default matching behavior of the
function. You can specify one or more of the following values for match_param:

 'i' specifies case-insensitive matching.

■

■

■

■

■

■

REGEXP_COUNT 1209

1210 Part VIII: Alphabetical Reference

 'c' specifies case-sensitive matching.

 'n' allows the period (.), which is the match-any-character character, to match the newline
character. If you omit this parameter, the period does not match the newline character.

 'm' treats the source string as multiple lines. Oracle interprets the caret (^) and
dollar sign ($) as the start and end, respectively, of any line anywhere in the source
string, rather than only at the start or end of the entire source string. If you omit this
parameter, Oracle treats the source string as a single line.

 'x' ignores whitespace characters. By default, whitespace characters match themselves.

If you specify multiple contradictory values, Oracle uses the last value. For example, if you specify
'ic', Oracle uses case-sensitive matching. If you specify a character other than those just shown, Oracle
returns an error.

If you omit match_param, then

The default case sensitivity is determined by the value of the NLS_SORT parameter.

A period (.) does not match the newline character.

The source string is treated as a single line.

REGEXP_INSTR
SEE ALSO INSTR, Chapter 8
FORMAT

REGEXP_INSTR (source_char , pattern

, position
, occurrence

, return_opt
, match_param

, subexpr

)

DESCRIPTION REGEXP_INSTR extends the functionality of the INSTR function by letting you
search a string for a regular expression pattern. The function evaluates strings using characters as
defined by the input character set. It returns an integer indicating the beginning or ending position of
the matched substring, depending on the value of the return_option argument. If no match is found, the
function returns 0.

See Chapter 8 for examples of the REGEXP functions.
As of Oracle Database 11g, you can target a particular substring of the regular expression being

evaluated.

REGEXP_LIKE
SEE ALSO LIKE, Chapter 8
FORMAT

REGEXP_LIKE(source_string, pattern [match_parameter])

■

■

■

■

■

■

■

DESCRIPTION REGEXP_LIKE extends the functionality of the LIKE operator by letting you search a
string for a regular expression pattern. The function evaluates strings using characters as defined by the
input character set.

See Chapter 8 for examples of the REGEXP functions.

REGEXP_REPLACE
SEE ALSO REPLACE, Chapter 8
FORMAT

REGEXP_REPLACE (source_char , pattern

, replace_string
, position

, occurrence
, match_param

)

DESCRIPTION REGEXP_REPLACE extends the functionality of the REPLACE function by letting you
search a string for a regular expression pattern. By default, the function returns the source_string with
every occurrence of the regular expression pattern replaced with replace_string. The string returned is
in the same character set as source_string. The function returns VARCHAR2 if the first argument is not
a LOB and returns CLOB if the first argument is a LOB.

See Chapter 8 for examples of the REGEXP functions.

REGEXP_SUBSTR
SEE ALSO SUBSTR, Chapter 8
FORMAT

REGEXP_SUBSTR (source_char , pattern

, position
, occurrence

, match_param
subexpr

)

DESCRIPTION REGEXP_SUBSTR extends the functionality of the SUBSTR function by letting you
search a string for a regular expression pattern. It is similar to REGEXP_INSTR but instead of returning
the position of the substring it returns the substring itself. The function returns the string as VARCHAR2
or CLOB data in the same character set as source_string.

See Chapter 8 for examples of the REGEXP functions.
As of Oracle Database 11g, you can target a particular substring of the regular expression being

evaluated.

REGEXP_SUBSTR 1211

1212 Part VIII: Alphabetical Reference

REGR_ (LINEAR REGRESSION) FUNCTIONS
SEE ALSO AGGREGATE FUNCTIONS
FORMAT

REGR_SLOPE

REGR_INTERCEPT

REGR_COUNT

REGR_R2

REGR_AVGX

REGR_AVGY

REGR_SXX

REGR_SYY

REGR_SXY

(expr1 , expr2)
OVER (analytic_clause)

DESCRIPTION The linear regression functions fit an ordinary-least-squares regression line to a set
of number pairs. You can use them as both aggregate and analytic functions. REGR_SLOPE returns the
slope of the line. REGR_INTERCEPT returns the y-intercept of the regression line. REGR_COUNT returns
an integer that is the number of non-NULL number pairs used to fit the regression line. REGR_R2 returns
the coefficient of determination for the regression. REGR_AVGX evaluates the average of the independent
variable (expr2) of the regression line. REGR_AVGY evaluates the average of the dependent variable
(expr1) of the regression line. REGR_SXY, REGR_SXX, and REGR_SYY are auxiliary functions used to
compute various diagnostic statistics.

REMAINDER
SEE ALSO NUMBER FUNCTIONS
FORMAT

REMAINDER (m, n)

DESCRIPTION REMAINDER returns the remainder of m divided by n.

REMARK (SQL*Plus)
SEE ALSO /* */, - -, Chapter 6
FORMAT

REM[ARK] text

DESCRIPTION REMARK begins a single line of remarks, usually documentation, in a start file. It is
not interpreted as a command. REMARK cannot appear within a SQL statement.
EXAMPLE

REM Reduce the default column width for this data field:
column ActionDate format a6 trunc

RENAME
SEE ALSO COPY, CREATE SEQUENCE, CREATE SYNONYM, CREATE TABLE, CREATE VIEW
FORMAT

RENAME old TO new;

DESCRIPTION RENAME changes the name of a table, view, sequence, or synonym from its old
name to a new one. No quotes are used around the names, and the new name must be neither a
reserved word nor the name of an existing object for the user.
EXAMPLE The following changes the BOOKSHELF table to the BOOK table:

rename BOOKSHELF to BOOK;

REPFOOTER (SQL*Plus)
SEE ALSO ACCEPT, BTITLE, DEFINE, PARAMETERS, REPHEADER
FORMAT

REPF[OOTER] [PAGE][option [text|variable]... | OFF|ON]

DESCRIPTION REPFOOTER (REPort FOOTER) puts a footer (may be multiline) on the last page of
a report. OFF and ON suppress and restore, respectively, the display of the text without changing its
contents. REPFOOTER by itself displays the current REPFOOTER options and text or variable. PAGE
begins a new page before printing the specified report footer.

text is a footer you wish to give this report, and variable is a user-defined variable or a system-
maintained variable, including SQL.LNO, the current line number; SQL.PNO, the current page number;
SQL.RELEASE, the current Oracle release number; SQL.SQLCODE, the current error code; and SQL.USER,
the username.

Valid values for option are

COL n skips directly to position n from the left margin of the current line.

S[KIP] n prints n blank lines. If no n is specified, one blank line is printed. If n is 0, no blank
lines are printed and the current position for printing becomes position 1 of the current line
(leftmost on the page).

TAB n skips forward n positions (backward if n is negative).

LE[FT], CE[NTER], and R[IGHT] left-justify, center, and right-justify data on the current line.
Any text or variables following these commands are justified as a group, up to the end of the
command, or a LEFT, CENTER, RIGHT, or COL. CENTER and RIGHT use the value set by the
SET LINESIZE command to determine where to place the text or variable.

BOLD prints data in bold print. SQL*Plus represents bold print on your terminal by repeating
the data on three consecutive lines.

FORMAT string specifies the format model that will control the format of subsequent text
or variables, and follows the same syntax as FORMAT in a COLUMN command, such as
FORMAT A12 or FORMAT $999,990.99. Each time a FORMAT appears, it supersedes the
previous one that was in effect. If no format model has been specified, the one set by SET
NUMFORMAT is used. If NUMFORMAT has not been set, the default for SQL*Plus is used.

Date values are printed according to the default format unless a variable has been loaded with a
date reformatted by TO_CHAR.

■

■

■

■

■

■

REPFOOTER (SQL*Plus) 1213

1214 Part VIII: Alphabetical Reference

REPHEADER (SQL*Plus)
SEE ALSO ACCEPT, BTITLE, DEFINE, PARAMETERS, REPFOOTER
FORMAT

REPH[EADER] [PAGE] [option [text|variable]... | OFF|ON]

DESCRIPTION REPHEADER (REPort HEADER) puts a header (may be multiline) on the first page of
a report. OFF and ON suppress and restore, respectively, the display of the text without changing its
contents. REPHEADER by itself displays the current REPHEADER options and text or variable. PAGE
begins a new page after printing the report header.

text is a header you wish to give this report, and variable is a user-defined variable or a system-
maintained variable, including SQL.LNO, the current line number; SQL.PNO, the current page number;
SQL.RELEASE, the current Oracle release number; SQL.SQLCODE, the current error code; and SQL
.USER, the username.

Valid values for option are

COL n skips directly to position n from the left margin of the current line.

S[KIP] n prints n blank lines. If no n is specified, one blank line is printed. If n is 0, no blank
lines are printed and the current position for printing becomes position 1 of the current line
(leftmost on the page).

TAB n skips forward n positions (backward if n is negative).

LE[FT], CE[NTER], and R[IGHT] left-justify, center, and right-justify data on the current line.
Any text or variables following these commands are justified as a group, up to the end of the
command, or a LEFT, CENTER, RIGHT, or COL. CENTER and RIGHT use the value set by the
SET LINESIZE command to determine where to place the text or variable.

BOLD prints data in bold print. SQL*Plus represents bold print on your terminal by repeating
the data on three consecutive lines.

FORMAT string specifies the FORMAT MODEL that will control the format of subsequent
text or variables, and follows the same syntax as FORMAT in a COLUMN command, such
as FORMAT A12 or FORMAT $999,990.99. Each time a FORMAT appears, it supersedes the
previous one that was in effect. If no FORMAT MODEL has been specified, the one set by SET
NUMFORMAT is used. If NUMFORMAT has not been set, the default for SQL*Plus is used.

Date values are printed according to the default format unless a variable has been loaded with a
date reformatted by TO_CHAR.

REPLACE
SEE ALSO CHARACTER FUNCTIONS, TRANSLATE, Chapter 7
FORMAT

REPLACE(string,if,then)

DESCRIPTION REPLACE replaces a character or characters in a string with zero or more characters.
if is a character or characters. Every time if appears in string, it is replaced by the contents of then.
EXAMPLE

OR
REPLACE('BOB','BO','TA') = TAB

■

■

■

■

■

■

RESERVED WORDS
SEE ALSO OBJECT NAMES
DESCRIPTION A reserved word is one that has a special meaning to SQL, and therefore may not be
used as the name of an object. Contrast this to a keyword, which may be used as an object name, but
may become a reserved word in the future. Not every word is reserved in all products, so this list is
structured to show which products reserve which words. In the following table, the entries with an *
are reserved in SQL and ANSI:

ACCESS ADD * ALL * ALTER * AND *

ANY * AS * ASC * AUDIT BETWEEN *

BY * CHAR * CHECK * CLUSTER COLUMN

COMMENT COMPRESS CONNECT * CREATE * CURRENT *

DATE * DECIMAL * DEFAULT * DELETE * DESC *

DISTINCT * DROP * ELSE * EXCLUSIVE EXISTS

FILE FLOAT * FOR * FROM * GRANT *

GROUP * HAVING * IDENTIFIED IMMEDIATE * IN *

INCREMENT INDEX INITIAL INSERT * INTEGER *

INTERSECT * INTO * IS * LEVEL * LIKE *

LOCK LONG MAXEXTENTS MINUS MLSLABEL

MODE MODIFY NOAUDIT NOCOMPRESS NOT *

NOWAIT NULL * NUMBER OF * OFFLINE

ON * ONLINE OPTION * OR * ORDER *

PCTFREE PRIOR * PRIVILEGES * PUBLIC * RAW

RENAME RESOURCE REVOKE * ROW ROWID

ROWNUM ROWS * SELECT * SESSION * SET *

SHARE SIZE * SMALLINT * START SUCCESSFUL

SYNONYM SYSDATE TABLE * THEN * TO *

TRIGGER UID UNION * UNIQUE * UPDATE *

USER * VALIDATE VALUES * VARCHAR * VARCHAR2

VIEW * WHENEVER * WHERE WITH *

The following table lists the reserved words in PL/SQL:

Begins With: Reserved Words
A ALL, ALTER, AND, ANY, ARRAY, ARROW, AS, ASC, AT

B BEGIN, BETWEEN, BY

C CASE, CHECK, CLUSTERS, CLUSTER, COLAUTH, COLUMNS, COMPRESS,
CONNECT, CRASH, CREATE, CURRENT

D DECIMAL, DECLARE, DEFAULT, DELETE, DESC, DISTINCT, DROP

E ELSE, END, EXCEPTION, EXCLUSIVE, EXISTS

F FETCH, FORM, FOR, FROM

G GOTO, GRANT, GROUP

RESERVED WORDS 1215

1216 Part VIII: Alphabetical Reference

Begins With: Reserved Words
H HAVING

I IDENTIFIED, IF, IN, INDEXES, INDEX, INSERT, INTERSECT, INTO, IS

L LIKE, LOCK

M MINUS, MODE

N NOCOMPRESS, NOT, NOWAIT, NULL

O OF, ON, OPTION, OR, ORDER, OVERLAPS

P PRIOR, PROCEDURE, PUBLIC

R RANGE, RECORD, RESOURCE, REVOKE

S SELECT, SHARE, SIZE, SQL, START, SUBTYPE

T TABAUTH, TABLE, THEN, TO, TYPE

U UNION, UNIQUE, UPDATE, USE

V VALUES, VIEW, VIEWS

W WHEN, WHERE, WITH

The following table lists the keywords within PL/SQL:

Begins With: Keywords
A A, ADD, AGENT, AGGREGATE, ARRAY, ATTRIBUTE, AUTHID, AVG

B BFILE_BASE, BINARY, BLOB_BASE, BLOCK, BODY, BOTH, BOUND, BULK, BYTE

C C, CALL, CALLING, CASCADE, CHAR, CHAR_BASE, CHARACTER, CHARSETFORM,
CHARSETID, CHARSET, CLOB_BASE, CLOSE, COLLECT, COMMENT, COMMIT,
COMMITTED, COMPILED, CONSTANT, CONSTRUCTOR, CONTEXT, CONTINUE,
CONVERT, COUNT, CURSOR, CUSTOMDATUM

D DANGLING, DATA, DATE, DATE_BASE, DAY, DEFINE, DETERMINISTIC, DOUBLE,
DURATION

E ELEMENT, ELSIF, EMPTY, ESCAPE, EXCEPT, EXCEPTIONS, EXECUTE, EXIT, EXTERNAL

F FINAL, FIXED, FLOAT, FORALL, FORCE, FUNCTION

G GENERAL

H HASH, HEAP, HIDDEN, HOUR

I IMMEDIATE, INCLUDING, INDICATOR, INDICES, INFINITE, INSTANTIABLE, INT,
INTERFACE, INTERVAL, INVALIDATE, ISOLATION

J JAVA

L LANGUAGE, LARGE, LEADING, LENGTH, LEVEL, LIBRARY, LIKE2, LIKE4, LIKEC,
LIMIT, LIMITED, LOCAL, LONG, LOOP

M MAP, MAX, MAXLEN, MEMBER, MERGE, MIN, MINUTE, MOD, MODIFY, MONTH,
MULTISET

N NAME, NAN, NATIONAL, NATIVE, NCHAR, NEW, NOCOPY, NUMBER_BASE

O OBJECT, OCICOLL, OCIDATETIME, OCIDATE, OCIDURATION, OCIINTERVAL,
OCILOBLOCATOR, OCINUMBER, OCIRAW, OCIREFCURSOR, OCIREF, OCIROWID,
OCISTRING, OCITYPE, ONLY, OPAQUE, OPEN, OPERATOR, ORACLE, ORADATA,
ORGANIZATION, ORLANY, ORLVARY, OTHERS, OUT, OVERRIDING

P PACKAGE, PARALLEL_ENABLE, PARAMETER, PARAMETERS, PARTITION, PASCAL,
PIPE, PIPELINED, PRAGMA, PRECISION, PRIVATE

Begins With: Keywords
R RAISE, RANGE, RAW, READ, RECORD, REF, REFERENCE, RELIES_ON, REM,

REMAINDER, RENAME, RESULT, RESULT_CACHE, RETURN, RETURNING, REVERSE,
ROLLBACK, ROW

S SAMPLE, SAVE, SAVEPOINT, SB1, SB2, SB4, SECOND, SEGMENT, SELF, SEPARATE,
SEQUENCE, SERIALIZABLE, SET, SHORT, SIZE_T, SOME, SPARSE, SQLCODE, SQLDATA,
SQLNAME, SQLSTATE, STANDARD, STATIC, STDDEV, STORED, STRING, STRUCT,
STYLE, SUBMULTISET, SUBPARTITION, SUBSTITUTABLE, SUBTYPE, SUM, SYNONYM

T TDO, THE, TIME, TIMESTAMP, TIMEZONE_ABBR, TIMEZONE_HOUR, TIMEZONE_
MINUTE, TIMEZONE_REGION, TRAILING, TRANSACTION, TRANSACTIONAL,
TRUSTED, TYPE

U UB1, UB2, UB4, UNDER, UNSIGNED, UNTRUSTED, USE, USING

V VALIST, VALUE, VARIABLE, VARIANCE, VARRAY, VARYING, VOID

W WHILE, WORK, WRAPPED, WRITE

Y YEAR

Z ZONE

REVOKE
SEE ALSO GRANT, PRIVILEGE, Chapter 19
FORMAT
revoke::=

REVOKE
revoke_system_privilege

revoke_object_privileges
;

revoke_system_privileges::=

system_privilege

role

ALL PRIVILEGES

,

FROM grantee_clause

revoke_object_privileges::=

object_privilege

ALL
PRIVILEGES

,

on_object_clause

FROM grantee_clause

CASCADE CONSTRAINTS

FORCE

REVOKE 1217

1218 Part VIII: Alphabetical Reference

grantee_clause::=

user
IDENTIFIED BY password

role

PUBLIC

,

on_object_clause::=

ON

schema . object

DIRECTORY directory_name

JAVA
SOURCE

RESOURCE

schema .
object

DESCRIPTION The REVOKE command takes privileges and roles away from users, or privileges
away from roles. Any system privilege may be revoked; see PRIVILEGE.

If you revoke a privilege from a user, the user can no longer execute the operations allowed by the
privilege. If you revoke a privilege from a role, no user granted the role can execute the allowed operations,
unless they are permitted by another role or directly as a user. If you revoke a privilege from PUBLIC,
no user granted the privilege through PUBLIC can execute the operations allowed by the privilege.

If you revoke a role from a user, the user can no longer enable the role (see ENABLE) but may
continue exercising the privilege in a current session. If you revoke a role from a role, users granted the
role can no longer enable the role but may continue using the privilege during the current session. If
you revoke a role from PUBLIC, users granted the role through PUBLIC can no longer enable the role.

For object access, the REVOKE command takes away object privileges on a specific object from a
user or role. If a user’s privileges are revoked, the user may not execute the operations allowed by the
privilege on the object. If a role’s privileges are revoked, no user granted the role may execute those
operations unless they are granted through another role or directly to the user. If the PUBLIC’s
privileges are revoked, no user granted the privilege through PUBLIC may execute those operations.

The CASCADE CONSTRAINTS clause drops any referential integrity constraints defined by the user
or by users granted the role. This applies to a REFERENCES privilege.

ROLLBACK (Form 1—SQL)
SEE ALSO COMMIT, SET AUTOCOMMIT, Chapter 15
FORMAT

ROLLBACK [WORK] [TO [SAVEPOINT] savepoint | FORCE 'text'];

DESCRIPTION ROLLBACK reverses all changes made to tables in the database since changes were
last committed or rolled back and releases any locks on the tables. An automatic rollback occurs whenever
a transaction is interrupted, such as by an execution error, a power failure, and so on. ROLLBACK
affects not just the last INSERT, UPDATE, or DELETE statement but any that have occurred since the
last COMMIT. This allows you to treat blocks of work as a whole and only COMMIT when all of the
changes you want are completed.

With SAVEPOINT, ROLLBACK goes to a specific, named place in the sequence of transactions
being processed, the SAVEPOINT. It erases any interim SAVEPOINTs and releases any table or row
locks that occurred after the SAVEPOINT was made.

With FORCE, ROLLBACK manually rolls back an in-doubt transaction identified by the literal text,
which is a local or global transaction ID from the data dictionary view DBA_2PC_PENDING.

NOTE
If SET AUTOCOMMIT is ON, every INSERT, UPDATE, or DELETE
immediately and automatically commits the changes to the database.
Typing the word ROLLBACK will produce a “ROLLBACK COMPLETE”
message, but this message won’t mean anything since ROLLBACK
only rolls back to the last COMMIT.

NOTE
All DDL commands cause a COMMIT.

ROLLBACK (Form 2—Embedded SQL)
SEE ALSO COMMIT, SAVEPOINT, SET TRANSACTION, Programmer’s Guide to the Oracle
Precompilers
FORMAT

EXEC SQL [AT {database | :variable }]
ROLLBACK [WORK]
[TO [SAVEPOINT] savepoint] | [FORCE text] | [RELEASE]]

DESCRIPTION ROLLBACK ends the current transaction, reverses any changes resulting from the
current transaction, and releases any locks being held, but does not affect host variables or program
flow. database indicates the name of the database where the ROLLBACK should take effect. Its absence
indicates the default database for the user. SAVEPOINT allows a rollback to a named savepoint that has
been previously declared. (See SAVEPOINT.)

FORCE manually rolls back an in-doubt transaction specified by a literal text containing the
transaction ID from the DBA_2PC_PENDING data dictionary view. WORK is entirely optional and
is for readability only.

Both ROLLBACK and COMMIT have RELEASE options. RELEASE should be specified by one of
them after the last transaction; otherwise locks put on during the program will block other users.
ROLLBACK occurs automatically (with a RELEASE) if the program abnormally terminates.

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

ROLLUP
SEE ALSO GROUPING, CUBE, Chapter 12
FORMAT

GROUP BY ROLLUP(column1, column2)

DESCRIPTION ROLLUP generates subtotals for groups of rows within a query. See Chapter 12.

ROLLUP 1219

1220 Part VIII: Alphabetical Reference

ROUND (Form 1—for Dates)
SEE ALSO DATE FUNCTIONS, ROUND (NUMBER), TRUNC, Chapter 10
FORMAT

ROUND (date, 'format')

DESCRIPTION ROUND rounds date according to format. Without format, date is rounded to the
next day if the time is 12:00:00 P.M. (exactly noon) or later, or to today’s date if before noon; in other
words, it is rounded to the nearest day. The resulting date has its time set to 12 A.M., the very first
instant of the day.
FORMATS AVAILABLE FOR ROUNDING

Format Meaning
CC,SCC Century (rounds up to January 1 of next century, as of midnight exactly on

the morning of January 1 of 1950, 2050, and so on)

SYEAR,SYYY,Y,YY,YYY,YYYY
and YEAR

Year (rounds up to January 1 of the next year as of midnight exactly on the
morning of July 1)

IYYY, IYY, IY, I ISO year

Q Quarter (rounds up in the second month of the quarter as of midnight
exactly on the morning of the 16th, regardless of the number of days in
the month)

MONTH,MON,MM,RM Month (rounds up as of midnight exactly on the morning of the 16th
regardless of the number of days in the month)

WW Same day of the week as the first day of the year

IW Same day of the week as the first day of the ISO year

W Same day of the week as the first day of the month

DDD,DD,J Rounds up to the next day as of noon exactly; the same as ROUND with
no format

DAY,DY,D Starting day of week

HH,HH12,HH24 Hour

MI Minute

When WW and W round, the time of the date being rounded is compared to a date that is set to
12 A.M., the very beginning of the day. The result of ROUND is a new date, which is also set to 12 A.M.

ROUND (Form 2—for Numbers)
SEE ALSO CEIL, FLOOR, NUMBER FUNCTIONS, ROUND (DATE), TRUNC, Chapter 9
FORMAT

ROUND(value,precision)

DESCRIPTION ROUND rounds value to precision, which is an integer and may be positive,
negative, or zero. A negative integer rounds to the given number of places to the left of the decimal
point; a positive integer rounds to the given number of places to the right of the decimal point.
EXAMPLES

ROUND(123.456,0) = 123
ROUND(123.456,-2) = 100
ROUND(-123.456,2) = -123.46

ROW_NUMBER
SEE ALSO ROWNUM
FORMAT

ROW_NUMBER () OVER ([query_partition_clause] order_by_clause)

DESCRIPTION ROW_NUMBER is an analytic function. It assigns a unique number to each row to
which it is applied (either each row in the partition or each row returned by the query), in the ordered
sequence of rows specified in the ORDER BY clause, beginning with 1.

ROWID
ROWID is the logical address of a row, and it is unique within the database.

ROWID can be SELECTed, or used in a WHERE clause, but cannot be changed by an INSERT,
UPDATE, or DELETE. It is not actually a data column, but merely a logical address, made of the
database address information. ROWID is useful when used in a WHERE clause for rapid UPDATEs
or DELETEs of rows. However, it can change if the table it is in is exported and imported.

The ROWID datatype is a hexadecimal string representing the unique address of a row in a table.
This datatype is primarily used for values returned by the ROWID pseudo-column.

ROWIDTOCHAR
SEE ALSO CHARTOROWID, CONVERSION FUNCTIONS
FORMAT

ROWIDTOCHAR(RowId)

DESCRIPTION ROWIDTOCHAR (ROW IDentifier TO CHARacter) changes an internal Oracle row
identifier, or ROWID, to act like a character string. However, Oracle will do this kind of conversion
automatically, so this function isn’t really needed. It seems to be a debugging tool that has made its way
into general availability.

ROWIDTONCHAR
SEE ALSO CHARTOROWID, ROWIDTOCHAR, CONVERSION FUNCTIONS
FORMAT

ROWIDTONCHAR(RowId)

DESCRIPTION ROWIDTONCHAR (ROW IDentifier TO NCHARacter) changes an internal Oracle
row identifier, or ROWID, to an NVARCHAR2 datatype.

ROWNUM
SEE ALSO PSEUDO-COLUMNS
FORMAT

ROWNUM

DESCRIPTION ROWNUM returns the sequence number in which a row was returned when first
selected from a table. The first row has a ROWNUM of 1, the second has a ROWNUM of 2, and so on.
Note, however, that even a simple ORDER BY in the SELECT statement may disorder the ROWNUMs,
which are assigned to the rows before any ordering takes place.

ROWNUM 1221

1222 Part VIII: Alphabetical Reference

RPAD
SEE ALSO CHARACTER FUNCTIONS, LPAD, LTRIM, RTRIM, TRIM, Chapter 7
FORMAT

RPAD(string,length [,'set'])

DESCRIPTION RPAD (Right PAD) makes a string a certain length by adding a certain set of
characters to the right. If set is not specified, the default pad character is a space.
EXAMPLE

select RPAD('HELLO ',24,'WORLD') from DUAL;

produces this:

HELLO WORLDWORLDWORLDWOR

RTRIM
SEE ALSO CHARACTER FUNCTIONS, LPAD, LTRIM, RPAD, TRIM, Chapter 7
FORMAT

RTRIM(string [,'set'])

DESCRIPTION RTRIM (Right TRIM) trims all the occurrences of any one of a set of characters off of
the right side of a string.
EXAMPLE

RTRIM('GEORGE','OGRE')

produces nothing, an empty string with zero length! On the other hand,

RTRIM('EDYTHE','HET')

produces this:

EDY

RUN
SEE ALSO /, @, @@, EDIT, START
FORMAT

R[UN]

DESCRIPTION RUN displays the SQL command in the SQL buffer, and then executes it. RUN is
similar to the / command, except that / doesn’t display the SQL first.

SAVE (SQL*Plus)
SEE ALSO EDIT, GET, Chapter 6
FORMAT

SAV[E] file[.ext] [CRE[ATE] | REP[LACE] | APP[END]]

DESCRIPTION SAVE saves the contents of the current buffer into a host file with the name file. If no
file type (extension) is specified, the file type .sql is added to the filename. This default extension can
be changed with SET SUFFIX. SAVE commits pending work to the database.

If the file already exists, the CREATE option forces SAVE to abort and produces an error message.
The REPLACE option replaces any existing file, or creates a new one if none exists.

The APPEND option adds this file to the end of any existing file, or creates a new one if none exists.
EXAMPLE The following saves the contents of the current buffer into a file named lowcost.sql:

save lowcost

SAVEPOINT
SEE ALSO COMMIT, ROLLBACK, SET TRANSACTION
FORMAT

SAVEPOINT savepoint;

DESCRIPTION A savepoint is a point within a transaction to which you may roll back. Savepoints
allow you to ROLLBACK portions of your current transaction. See ROLLBACK.

The first version shown here is typical of SQL*Plus. The purpose of SAVEPOINT is to be able to
assign a name to the beginning of a group of SQL statements and later, if necessary, roll back to that
name, thus undoing the results of just that group. Savepoints can be nested or sequenced, allowing
great control over recovery from errors. The idea here is to collect together a series of SQL statements
that make up one logical transaction, and hold the COMMIT until all the steps within it have been
completed successfully. An attempted step may fail, but you’ll want to be able to try it again without
having to undo everything else prior to it. Here is an example:

insert into COMFORT
values ('WALPOLE', '22-APR-04',50.1, 24.8, 0);

savepoint A;

insert into COMFORT
values ('WALPOLE', '27-MAY-04',63.7, 33.8, 0);

savepoint B;

insert into COMFORT
values ('WALPOLE', '07-AUG-04',83.0, 43.8, 0);

You can roll back just the last INSERT by returning to savepoint B:

rollback to savepoint B;

This shows that SQL statements, or groups of them, can be collected together and undone in sets or
singly. In a host program, or using PL/SQL or SQL*Plus, you may want to set up savepoints that you can
roll back to, based on the results of your most recent SQL statement or condition test. ROLLBACK allows
you to return to a specific step where you named a savepoint.

If a function, a section of logic, or an attempted SQL statement fails, you can return the data in the
database back to the state it was in before the local step began. You can then try it again.

SAVEPOINT names must be unique to a transaction (defined by where it ends, with either a COMMIT
or an unconditional ROLLBACK) but do not have to be unique to all of your database objects. You can give
a SAVEPOINT the same name as a table, for instance (this might even result in more understandable code
if the SAVEPOINT had the name of the table being updated). Names for SAVEPOINTs follow object
naming conventions.

If you give a new SAVEPOINT the same name as a previous one, the new one replaces the earlier
one. The earlier one is lost, and you can no longer roll back to it.

Once a COMMIT or an unconditional ROLLBACK (not to a savepoint) is issued, all previous
SAVEPOINTs are erased. Recall that all DDL statements (such as DISCONNECT, CREATE TABLE,
CREATE INDEX, and so on) automatically issue an implicit COMMIT, and any severe failure (if the
program terminates abnormally or the computer goes down) will result in an automatic ROLLBACK.

SAVEPOINT 1223

1224 Part VIII: Alphabetical Reference

SCN_TO_TIMESTAMP
SEE ALSO ORA_ROWSCN under PSEUDO_COLUMNS
FORMAT

SCN_TO_TIMESTAMP (number)

DESCRIPTION SCN_TO_TIMESTAMP takes as an argument a number that evaluates to a system
change number (SCN) and returns the approximate timestamp associated with that SCN. The returned
value is of the TIMESTAMP datatype. This function is useful anytime you want to know the timestamp
associated with an SCN. For example, it can be used in conjunction with the ORA_ROWSCN pseudo-
column to associate a timestamp with the most recent change to a row.

SCORE
The SCORE function is used by CONTEXT indexes in Oracle Text to evaluate how well a text string met
the specified search criteria. You can display the score of an individual search; more often, the score is
compared to a threshold value.

SELECT (Form 1—SQL)
SEE ALSO CONNECT BY, DELETE, DUAL, FROM, GROUP BY, HAVING, INSERT, JOIN, LOGICAL
OPERATORS, ORDER BY, QUERY OPERATORS, SUBQUERY, SYNTAX OPERATORS, UPDATE,
WHERE
FORMAT
select::=

subquery_factoring_clause
subquery

for_update_clause
;

subquery::=

query_block

subquery

UNION
ALL

INTERSECT

MINUS

subquery

(subquery)

order_by_clause

query_block::=

SELECT
hint

DISTINCT

UNIQUE

ALL
select_list

FROM

table_reference

join_clause

(join_clause)

,

where_clause hierarchical_query_clause group_by_clause

HAVING condition model_clause

subquery_factoring_clause::=

WITH query_name AS (subquery)

,

select_list::=

*

query_name

schema .
table

view

materialized view

.*

expr

AS
c_alias

,

table_reference::=

ONLY (query_table_expression)

query_table_expression

pivot_clause

unpivot_clause

flashback_query_clause t_alias

SELECT (Form 1—SQL) 1225

1226 Part VIII: Alphabetical Reference

flashback_query_clause::=

VERSIONS BETWEEN
SCN

TIMESTAMP

expr

MINVALUE
AND

expr

MAXVALUE

AS OF
SCN

TIMESTAMP
expr

query_table_expression::=

query_name

schema . table

partition_extension_clause

@ dblink

view

materialized view

@ dblink

sample_clause

(subquery
subquery_restriction_clause

)

table_collection_expression

pivot_clause::=

PIVOT
XML

(aggregate_function (expr)

AS
alias

,

pivot_for_clause pivot_in_clause)

pivot_for_clause::=

FOR

column

(column

,

)

pivot_in_clause::=

IN (

expr

(expr

,

)

AS
alias

,

subquery

ANY

,

)

unpivot_clause::=

UNPIVOT

INCLUDE

EXCLUDE
NULLS

(

column

(column

,

)

pivot_for_clause unpivot_in_clause)

unpivot_in_clause::=

IN (

column

(column

,

)

AS

constant

(constant

,

)

,

)

sample_clause::=

SAMPLE
BLOCK

(sample_percent)
SEED (seed_value)

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

SELECT (Form 1—SQL) 1227

1228 Part VIII: Alphabetical Reference

subquery_restriction_clause::=

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

table_collection_expression::=

TABLE (collection_expression)
(+)

join_clause::=

table_reference
inner_cross_join_clause

outer_join_clause

inner_cross_join_clause::=

INNER
JOIN table_reference

ON condition

USING (column

,

)

CROSS

NATURAL
INNER JOIN table_reference

outer_join_clause::=

query_partition_clause outer_join_type JOIN

NATURAL
outer_join_type

JOIN

table_reference
query_partition_clause

ON condition

USING (column

,

)

query_partition_clause::=

PARTITION BY

expr

,

(expr

,

)

outer_join_type::=

FULL

LEFT

RIGHT

OUTER

where_clause::=

WHERE condition

hierarchical_query_clause::=

CONNECT BY
NOCYCLE

condition
START WITH condition

START WITH condition CONNECT BY
NOCYCLE

condition

group_by_clause::=

GROUP BY

expr

rollup_cube_clause

grouping_sets_clause

,

HAVING condition

rollup_cube_clause::=

ROLLUP

CUBE
(grouping_expression_list)

grouping_sets_clause::=

GROUPING SETS (
rollup_cube_clause

grouping_expression_list

,

)

grouping_expression_list::=

expression_list

,

SELECT (Form 1—SQL) 1229

1230 Part VIII: Alphabetical Reference

expression_list::=

expr

,

(expr

,

)

model_clause::=

MODEL
cell_reference_options return_rows_clause reference_model

main_model

cell_reference_options::=

IGNORE

KEEP
NAV UNIQUE

DIMENSION

SINGLE REFERENCE

return_rows_clause::=

RETURN
UPDATED

ALL
ROWS

reference_model::=

REFERENCE reference_model_name ON (subquery) model_column_clauses
cell_reference_options

main_model::=

MAIN main_model_name
model_column_clauses

cell_reference_options
model_rules_clause

model_column_clauses::=

query_partition_clause
c_alias

DIMENSION BY (model_column

,

) MEASURES (model_column

,

)

model_column::=

expr

AS
c_alias

model_rules_clause::=

RULES

UPDATE

UPSERT
ALL

AUTOMATIC

SEQUENTIAL
ORDER

ITERATE (number)
UNTIL (condition)

(

UPDATE

UPSERT
ALL

cell_assignment
order_by_clause

= expr

,

)

cell_assignment::=

measure_column [

condition

expr

single_column_for_loop

,

multi_column_for_loop

]

single_column_for_loop::=

FOR dimension_column

IN (
literal

,

subquery
)

LIKE pattern
FROM literal TO literal

INCREMENT

DECREMENT
literal

SELECT (Form 1—SQL) 1231

1232 Part VIII: Alphabetical Reference

multi_column_for_loop::=

FOR (dimension_column

,

) IN (
(literal

,

)

,

subquery
)

order_by_clause::=

ORDER
SIBLINGS

BY

expr

position

c_alias

ASC

DESC

NULLS FIRST

NULLS LAST

,

for_update_clause::=

FOR UPDATE
OF

schema . table

view
.

column

,

NOWAIT

WAIT integer

SKIP LOCKED

DESCRIPTION SELECT retrieves rows from one or more tables or views, either as a command, or as
a subquery in another SQL command (within limitations), including SELECT, INSERT, UPDATE, and
DELETE. ALL means that all rows that satisfy the conditions will be returned (this is the default).
DISTINCT means that only rows that are unique will be returned; any duplicates will be weeded out first.

An * (asterisk) by itself results in all columns from all tables in the FROM clause being displayed.
table.* means that all columns from this table will be displayed. An asterisk by itself cannot be combined
with any other columns, but a table.* can be followed by column names and expressions, including
ROWID.

select_list can include any form of a column. This could be a column name, a literal, a mathematical
computation, a function, or several functions combined. The most common version is a simple column
name, or a column name prefixed by a table name or table alias. c_alias is a renaming of the column
or expression. The column alias can be preceded by the word AS. The column alias will become the
column heading in the display, and may be referenced by the COLUMN, TTITLE, and BTITLE commands
in SQL*Plus. The column alias may be used in the ORDER BY clause. If it is more than one word, or will
contain characters that are neither numbers nor letters, it must be enclosed in double quotation marks.

schema, table, and dblink denote the table or view from which the rows will be drawn. schema
and dblink are optional, and their absence makes Oracle default to the current user. However, specifying
the user in a query may reduce Oracle’s overhead and make the query run more quickly. A subquery
can be specified in the FROM clause. Oracle will execute the subquery and the resulting rows will be
treated as if they came from a view.

A table t_alias here will rename the table for this query. This alias, unlike the expression alias, can
be referenced elsewhere within the SELECT statement itself, for instance as a prefix to any column name
coming from that table. In fact, if a table has an alias, the alias must be used whenever a column from

that table has a table name prefix. Tables are typically aliased when two tables with long names are
joined in a query, and many of their columns have the same name, requiring them to be unambiguously
named in the SELECT clause. Aliases are also commonly used in correlated subqueries, and when a
table is being joined to itself.

condition may be any valid expression that tests true or false. It can contain functions, columns (from
these tables), and literals. position allows the ORDER BY clause to identify the expressions based on their
relative position in the SELECT clause, rather than on their names. This is valuable for complicated
expressions. You should discontinue the use of ordinal positions in ORDER BY clauses; column aliases
may be used in their place. The current SQL standard does not include support for ordinal positions in
ORDER BY clauses, and Oracle may not support them in the future. ASC and DESC specify whether it is
an ascending or descending sequence for each expression in the ORDER BY clause.

column is a column in a table listed in the FROM clause. This cannot be an expression, but must
be a real column name. NOWAIT means that a SELECT … FOR UPDATE attempt that encounters a
locked row will terminate and return immediately to the user, rather than wait and attempt to update
the row again in a few moments.

The FOR UPDATE OF clause puts locks on the rows that have been selected. SELECT … FOR
UPDATE OF should be followed immediately by an UPDATE … WHERE command, or, if you decide
not to update anything, by a COMMIT or ROLLBACK. The FOR UPDATE OF clause also includes the
actions of INSERT and DELETE. Once you have locked a row, other users cannot update it until you
free it with a COMMIT command (or AUTOCOMMIT) or ROLLBACK. SELECT … FOR UPDATE OF
cannot include DISTINCT, GROUP BY, UNION, INTERSECT, MINUS, or any group function such as
MIN, MAX, AVG, or COUNT. The columns named have no effect and are present for compatibility
with other dialects of SQL. Oracle will lock only the tables that appear in the FOR UPDATE clause. If
you don’t have an OF clause listing any tables, Oracle will lock all the tables in the FROM clause for
update. All the tables must be on the same database, and if there are references to a LONG column or
a sequence in the SELECT, the tables must be on the same database as the LONG or the sequence.

If you are querying from a partitioned table, you can list the name of the partition you are querying
as part of the FROM clause of the query. See Chapter 18.

The other individual clauses in the SELECT statement are all described under their own names
elsewhere in this reference. The AS OF {TIMESTAMP|SCN} clause for flashback queries was introduced
in Oracle9i Release 2. The VERSIONS BETWEEN clause for flashback version queries was introduced in
Oracle Database 10g.

As of Oracle Database 11g, you can use the new PIVOT and UNPIVOT operations to rotate rows
into columns.
Other Notes Clauses must be placed in the order shown, except for these:

CONNECT BY, START WITH, GROUP BY, and HAVING, which may be in any order in
relation to each other.

ORDER BY and FOR UPDATE OF, which may be in any order in relation to each other.

SELECT (Form 2—Embedded SQL)
SEE ALSO CONNECT, DECLARE CURSOR, DECLARE DATABASE, EXECUTE, FETCH, FOR,
PREPARE, UPDATE (Form 1), WHENEVER SQLERROR, Programmer’s Guide to the Oracle
Precompilers
FORMAT

EXEC SQL [AT { db_name | :host_variable }]
 SELECT select_list INTO
 :host_variable [[INDICATOR] :indicator_variable]
 [, :host_variable [[INDICATOR] :indicator_variable]]...
 FROM table_list [WHERE condition]

■

■

SELECT (Form 2—Embedded SQL) 1233

1234 Part VIII: Alphabetical Reference

 { [START WITH condition] CONNECT BY condition
 | CONNECT BY condition [START WITH condition]
 | GROUP BY expr [, expr]... [HAVING condition] }
 [[START WITH condition] CONNECT BY condition
 | CONNECT BY condition [START WITH condition]
 | GROUP BY expr [, expr]... [HAVING condition]]...
 [WITH READ ONLY | WITH CHECK OPTION]
 [{ UNION | UNION ALL | INTERSECT | MINUS } SELECT command]
[ORDER BY
 { expr | position } [ASC | DESC]
 [, { expr | position } [ASC | DESC]]...
 | FOR UPDATE
 [OF [[schema.] { table. | view. | materialized view. }] column
 [, OF [[schema.] { table. | view. | materialized view. }] column]...]
 [NOWAIT]]
 [ORDER BY
 { expr | position } [ASC | DESC]
 [, { expr | position } [ASC | DESC]]...
 | FOR UPDATE
 [OF [[schema.] { table. | view. | materialized view. }] column
 [, OF [[schema.] { table. | view. | materialized view. }] column]...]
 [NOWAIT]]...

DESCRIPTION See the description of the various clauses in SELECT (Form 1). The following are the
elements unique to embedded SQL:

AT database optionally names a database from a previous CONNECT statement, for a
database name from a previous DECLARE DATABASE statement.

INTO :host_variable [,:host_variable] is the list of host variables into which the results of the
SELECT statement will be loaded. If any variable in this list is an array, all of the variables in
the list must be arrays, though they need not all be the same size arrays.

The WHERE clause may reference nonarray host variables.

The SELECT clause may reference host variables anywhere a constant would have been used.

You can use the embedded SQL SELECT with variable arrays to return multiple rows with a single
FETCH. You also can use it to either DECLARE CURSOR or PREPARE statements for use with a later
FETCH, and may include the FOR UPDATE OF clause. The later UPDATE statement can then reference
the columns named in the FOR UPDATE OF clause using its own CURRENT OF clause. See DECLARE
CURSOR and UPDATE (Form 2).

If the embedded SELECT returns no rows, SQLCODE is set to +100, and the host variables are left
unchanged. In that case, WHENEVER lets you change the program flow.

All rows that meet the SELECT criteria are locked at the OPEN. COMMIT releases the locks, and no
further FETCHing is permitted. This means you must FETCH and process all of the rows you wish to
update before you issue a COMMIT.

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

■

■

■

■

SELECT … INTO
SEE ALSO %ROWTYPE, %TYPE, DECLARE CURSOR, FETCH
FORMAT

SELECT expression [,expression]...
 INTO {variable [,variable]... | record}
 FROM [user.]table [,[user.]table]...
 [where...][group by... [having...]] [order by...];

DESCRIPTION This is not the form of the SELECT statement used in DECLARE CURSOR. This form
utilizes the implicit cursor named SQL, executes within an execution section of a block (between BEGIN
and END), and copies the values from a single row being returned into either a string of named variables
or a record whose structure is declared by %ROWTYPE to be just like the columns being selected. If
the form that uses variables is used, they must each be DECLAREd and have compatible datatypes with
those being retrieved. The order in which they appear in the INTO clause must correspond to the order
of the associated columns in the SELECT clause.

This SELECT may be used in a loop with PL/SQL variables appearing in the WHERE clause (or
even acting like constants in the SELECT clause), but each time the SELECT executes, it must return
only one row. If it produces more than one row, the TOO_MANY_ROWS exception will be RAISEd,
and SQL%ROWCOUNT will be set to 2 (see EXCEPTION for details). SQL%FOUND will be TRUE.

If it produces no rows, the NO_DATA_FOUND exception is RAISEd, and SQL%ROWCOUNT will
be set to 0. SQL%FOUND will be FALSE.

SESSIONTIMEZONE
SEE ALSO Chapter 10
FORMAT

SESSIONTIMEZONE

DESCRIPTION SESSIONTIMEZONE returns the value of the current session’s time zone.
EXAMPLE

select SESSIONTIMEZONE from DUAL;

SET (SQL*Plus)
SEE ALSO SET TRANSACTION, SHOW, Chapter 6
FORMAT

SET feature value

where feature and value are from the following list. The default values are underlined.

APPI[NFO]{ON|OFF|text } enables the registering of command files via the DBMS_
APPLICATION_INFO package. The registered name appears in the Module column of the
V$SESSION dynamic performance table.

ARRAY[SIZE] { 15|n} sets the size of the batch of rows that SQL*Plus will fetch at one time.
The range is 1 to 5000. Larger values improve the efficiency of queries and subqueries where
many rows will be fetched but use more memory. Values above 100 generally do not produce
much improvement. ARRAYSIZE has no other effect on the workings of SQL*Plus.

AUTO[COMMIT]{ON|OFF|IMM[EDIATE]|n} makes SQL immediately commit any pending
changes to the database upon the completion of every SQL command. n allows you to specify

■

■

■

SET (SQL*Plus) 1235

1236 Part VIII: Alphabetical Reference

the number of commands after which a commit will occur. OFF stops automatic committing,
and you must instead commit changes intentionally with the COMMIT command. Many
commands, such as QUIT, EXIT, and CONNECT, and all DDL commands will cause a
COMMIT of any pending changes.

AUTOP[RINT] {ON|OFF } sets whether SQL*Plus automatically displays bind variables used
in a PL/SQL block or EXECUTEd procedure.

AUTORECOVERY [ON|OFF] tells the RECOVER command to automatically apply the default
filenames of archived redo log files needed during recovery.

AUTOT[RACE] {ON|OFF|TRACE[ONLY]} [EXP[LAIN]] [STAT[ISTICS]] allows you to see the
execution path for a query after the query has completed. To see the execution path, you first
must have the PLAN_TABLE table created in your schema (it can be created by running the
utlxplan.sql file in the /rdbms/admin directory under your Oracle software directory).

BLO[CKTERMINATOR] { .|c|ON|OFF} sets the symbol used to denote the end of a PL/SQL
block. This cannot be a letter or a number. To execute the block, use RUN or / (slash).

CMDS[EP] {;|c|ON|OFF } sets the character used to separate multiple SQL*Plus commands
entered on a line. ON and OFF control whether or not multiple commands may be entered on
a line.

COLSEP { _|text} sets a value to be printed between columns.

COM[PATIBILITY]{V7|V8|NATIVE } specifies the version of Oracle to which you are
currently connected.

CON[CAT] { .|c|ON|OFF} sets a symbol that may be used to terminate or delimit a user
variable that is followed by a symbol, character, or word that would otherwi se be interpreted
as a part of the user variable name. Setting CONCAT ON resets its value to a period (.).

COPYC[OMMIT] { 0|n} commits rows to the destination database on a cycle of n batches
of rows (the number of rows in a batch is SET by ARRAYSIZE). Valid values are 0 to 5000. If
value is 0, a commit will occur only at the end of a COPY operation.

COPYTYPECHECK { ON|OFF} enables the suppression of datatype checks when using the
COPY command.

DEF[INE] { &|c|ON|OFF} determines whether SQL*Plus will look for and substitute
commands for substitution variables and load them with their DEFINEd values.

DESCRIBE [DEPTH { 1|n|ALL}][LINENUM {ON|OFF }][INDENT {ON|OFF }] sets the depth
of the level to which you can recursively describe an object. The valid range of the DEPTH
clause is from 1 to 50.

ECHO {ON|OFF } in SQL*Plus echoes (displays) commands to the screen as they execute
from a start file. OFF makes SQL*Plus execute them without displaying them. The results of
the commands, on the other hand, are controlled by TERMOUT.

EDITF[ILE] file_name[.ext] sets the default filename created by the EDIT command.

EMB[EDDED] {ON|OFF } allows a new report in a series of reports to begin anywhere on a page,
just after the previous one ended. OFF forces the new report to start at the top of a new page.

ERRORL[OGGING] {ON | OFF } [TABLE [schema.]tablename] [TRUNCATE] [IDENTIFIER
identifier] enables error logging of SQL, PL/SQL, and SQL*Plus errors. Errors from queries are
written to a default table, SPERRORLOG, in the current schema by default.

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

ESC[APE] { \|c|ON|OFF } defines the character you enter as the escape character. OFF
undefines the escape character. ON enables the escape character. ON changes the value of c
back to the default, \. You can use the escape character before the substitution character (set
through SET DEFINE) to indicate that SQL*Plus should treat the substitution character as an
ordinary character rather than as a request for variable substitution.

ESCCHAR [@ | ? | % | $ | OFF] enables specific characters in filenames to be escaped.

FEED[BACK] { 6|n|ON|OFF} makes SQL*Plus show “records selected” after a query if
at least n records are selected. ON and OFF turn this display on and off, respectively. SET
FEEDBACK to 0 is the same as OFF.

FLAGGER { OFF|ENTRY |INTERMED[IATE]|FULL} sets the FIPS level for SQL92 compliance.

FLU[SH] { ON|OFF} is used when a start file can be run without needing any display or
interaction until it has completed. OFF lets the operating system avoid sending output to
the display. ON restores output to the user’s display. OFF may improve performance.

HEA[DING] { ON|OFF} suppresses the headings, both text and underlines, that normally
appear above columns. ON allows them to be displayed.

HEADS[EP] { | |c|ON|OFF} defines the character you enter as the heading separator
character. ON and OFF turn heading separation on and off, respectively.

INSTANCE [instance_path|LOCAL] changes the default instance for your session to the
specified instance path. Using the SET INSTANCE command does not connect to a database.
The default instance is used for commands when no instance is specified.

LIN[ESIZE] { 80|n} sets the line width, the total number of characters on a line that can be
displayed before wrapping down to the next line. This number is also used when SQL*Plus
calculates the proper position for centered or right-aligned titles. The maximum value of n is
999. In iSQL*Plus, the default is 150.

LOBOF[FSET] {n|1 } sets the starting position from which CLOB and NCLOB data is retrieved
and displayed.

LOGSOURCE [pathname] specifies the location from which archive logs are retrieved during
recovery. The default value is set by the LOG_ARCHIVE_DEST initialization parameter in the
Oracle initialization file. Using the SET LOGSOURCE command without a pathname restores
the default location.

LONG { 80|n} is the maximum width for displaying or copying (spooling) LONG, CLOB, and
NCLOB values. n may range from 1 to 2GB.

LONGC[HUNKSIZE] { 80|n} sets the size, in characters, of the increments in which SQL*Plus
retrieves a LONG, CLOB, or NCLOB value.

MARK[UP] HTML [ON|OFF] [HEAD text] [text] [TABLE text] [ENTMAP { ON|OFF}] [SPOOL
{ON|OFF }] [PRE[FORMAT] {ON|OFF }] outputs HTML marked-up text. SET MARKUP only
specifies that SQL*Plus output will be HTML encoded. You must use SET MARKUP HTML
ON SPOOL ON and the SQL*Plus SPOOL commands to create and name a spool file, and
to begin writing HTML output to it. SET MARKUP has the same options and behavior as
SQLPLUS -MARKUP.

NEWP[AGE] { 1|n|NONE} sets the number of blank lines to be printed between the bottom of
one page and the top title of the next. A 0 (zero) sends a form feed at the top of each page. If
the output is being displayed, this will usually clear the screen.

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

SET (SQL*Plus) 1237

1238 Part VIII: Alphabetical Reference

NULL text sets the text that will be substituted when SQL*Plus discovers a null value. NULL
without text displays blanks.

NUMF[ORMAT] format sets the default number format for displaying number data items. See
NUMBER FORMATS for details.

NUM[WIDTH] { 10|n} sets the default width for number displays.

PAGES[IZE] { 14|n} sets the number of lines per page.

PAU[SE] {ON|OFF|text } makes SQL*Plus wait for you to press RETURN after it displays each
page of output. OFF means no pause occurs between pages of display. text is the message
SQL*Plus will display at the bottom of the screen as it waits for you to press the RETURN key.
PAUSE will wait before the very first page is displayed; you’ll have to press RETURN to see it.

RECSEP { WR[APPED]|EA[CH]|OFF} specifies the row wrapping rules for query results.
Each row SQL*Plus brings back can be separated from other rows by a character, defined by
RECSEPCHAR. By default, the character is a space, and this only happens for records (and
therefore columns) that wrap.

RECSEPCHAR works with RECSEP. The default is a space, but you can set it to another symbol
if you wish.

SERVEROUT[PUT] {ON|OFF } [SIZE n] [FOR[MAT] {WRA[PPED] | WOR[D_
WRAPPED]|TRU[NCATED]}] allows you to display the output of PL/SQL procedures (from
the DBMS_OUTPUT package—see the Application Developer’s Guide). WRAPPED, WORD_
WRAPPED, TRUNCATED, and FORMAT determine the formatting of the output text.

SHIFT[INOUT] {VIS[IBLE]|INV[ISIBLE] } allows correct alignment for terminals that display
shift characters. Use VISIBLE for terminals that display shift characters as a visible character (for
example, a space or a colon). INVISIBLE is the opposite and does not display any shift characters.

SHOW[MODE] {ON|OFF } makes SQL*Plus display the old and new settings of a SET feature
and its value when it is changed. OFF stops the display of both of these.

SQLBL[ANKLINES] {ON|OFF } controls whether SQL*Plus allows blank lines within a SQL
command or script. ON interprets blank lines and new lines as part of a SQL command or script.
OFF, the default value, does not allow blank lines or new lines in a SQL command or script.

SQLC[ASE] { MIX[ED]|LO[WER]|UP[PER]} converts all the text, including literals and
identifiers, in either SQL or PL/SQL blocks, before it is executed by Oracle. MIXED leaves
case just as it is typed. LOWER converts everything to lowercase; UPPER converts it all to
uppercase.

SQLCO[NTINUE] {> |text } sets the character sequence to be displayed as a prompt for a long
line that must continue on the next line. When you enter a - (hyphen) at the end of a SQL*Plus
command line, the SQLCONTINUE symbols or text will prompt you from the left of the next
screen line.

SQLN[UMBER] { ON|OFF}tells SQL*Plus that lines of SQL beyond the first one you enter will
have line numbers as prompts. If this is OFF, the SQLPROMPT will appear only on additional
lines.

SQLPLUSCOMPAT[IBILITY] {x.y[.z]} sets the behavior or output format of VARIABLE to that
of the release or version specified by x.y[.z], where x is the version number, y is the release
number, and z is the update number. In later releases, SQLPLUSCOMPATIBILITY may affect
features other than VARIABLE. Setting the value of SQLPLUSCOMPATIBILITY to a version
less than 9.0.0 will result in the VARIABLE definition of NCHAR or NVARCHAR2 datatypes

■

■

■

■

■

■

■

■

■

■

■

■

■

■

■

reverting to Oracle8i behavior, whereby the size of the variable is in bytes or characters
depending on the chosen national character set.

SQLPRE[FIX] { #|c} sets the SQL*Plus prefix character. While you are entering a SQL command
or PL/SQL block, you can enter a SQL*Plus command on a separate line, prefixed by the
SQL*Plus prefix character. SQL*Plus will execute the command immediately without affecting
the SQL command or PL/SQL block that you are entering. The prefix character must be a
nonalphanumeric character.

SQLP[ROMPT] { SQL>|text } sets the SQL*Plus command prompt.

SQLT[ERMINATOR] {;|c|ON|OFF} sets the character used to end and execute SQL
commands to c.

SUF[FIX] { SQL|text } sets the default file extension that SQL*Plus uses in commands that refer
to command files. SUFFIX does not control extensions for spool files.

TAB { ON|OFF } determines how SQL*Plus formats white space in terminal output. OFF uses
spaces to format white space in the output. ON uses the tab character. Tab settings are every
eight characters.

TERM[OUT] { ON|OFF } enables or suppresses the display so that you can spool output from a
command file without seeing the output on the screen. ON displays the output.

TI[ME] {ON|OFF } displays the current time before each command prompt. OFF suppresses
the time display.

TIMI[NG] {ON|OFF } displays timing statistics on each SQL command or PL/SQL block run.
OFF suppresses timing of each command.

TRIM[OUT] { ON|OFF} removes blanks at the end of each line, improving performance
especially when you access SQL*Plus from a slow communications device. OFF allows
SQL*Plus to display trailing blanks.

TRIMS[POOL] {ON|OFF } removes blanks at the end of each line. OFF allows SQL*Plus to
include trailing blanks.

UND[ERLINE] { -|c|ON|OFF} sets the character used to underline column headings in
SQL*Plus reports.

VER[IFY] { ON|OFF} controls whether SQL*Plus lists the text of a SQL statement or PL/SQL
command before and after SQL*Plus replaces substitution variables with values. ON lists the
text; OFF suppresses the listing.

WRA[P] { ON|OFF} controls whether SQL*Plus truncates the display of a SELECTed row if it is
too long for the current line width. OFF truncates the SELECTed row; ON allows the SELECTed
row to wrap to the next line.

DESCRIPTION SET turns a SQL*Plus feature ON or OFF or to a certain value. All of these features
are changed with the SET command and displayed with the SHOW command. SHOW will display a
particular command if its name follows the word SHOW, or all commands if SHOW is entered by itself.

SET (function)
SEE ALSO IS A SET, Chapter 39
FORMAT

SET (nested_table)

■

■

■

■

■

■

■

■

■

■

■

■

■

SET (function) 1239

1240 Part VIII: Alphabetical Reference

DESCRIPTION SET converts a nested table into a set by eliminating duplicates. The function returns
a nested table whose elements are distinct from one another. The returned nested table is of the same
type as the input nested table.

SET CONSTRAINTS
SEE ALSO INTEGRITY CONSTRAINT
FORMAT

SET { CONSTRAINT | CONSTRAINTS }
{ constraint [, constraint]... | ALL }
{ IMMEDIATE | DEFERRED };

DESCRIPTION SET CONSTRAINTS DEFERRED tells Oracle not to check the validity of a constraint
until the transaction is committed. This allows you to temporarily defer integrity checking of data.
Deferred constraints are usually used when performing DML against multiple related tables when you
cannot guarantee the order of the transactions. You must either own the table modified by the constraint
or have SELECT privilege on the table.

The default setting is SET CONSTRAINTS IMMEDIATE, in which case the constraints are checked
as soon as a record is inserted into the table.

SET ROLE
SEE ALSO ALTER USER, CREATE ROLE, Chapter 20
FORMAT

SET ROLE
{ role [IDENTIFIED BY password] [, role [IDENTIFIED BY password]]...
| ALL [EXCEPT role [, role]...]
| NONE };

DESCRIPTION SET ROLE enables or disables roles granted to a user for the current SQL session.
The first option lets the user enable specific roles, optionally giving a password if the role has one (see
CREATE ROLE). The second option lets the user enable ALL roles EXCEPT for specific ones; these roles
must be directly granted to the user, not roles granted through other roles. The ALL option does not
enable roles with passwords. The third option, NONE, disables all roles for the current session.

SET TRANSACTION
SEE ALSO COMMIT, ROLLBACK, SAVEPOINT, TRANSACTION, Chapter 51
FORMAT

SET TRANSACTION
{ { READ { ONLY | WRITE }
 | ISOLATION LEVEL { SERIALIZABLE | READ COMMITTED }
 | USE ROLLBACK SEGMENT rollback_segment }
 [NAME 'test']
| NAME 'test' } ;

DESCRIPTION SET TRANSACTION starts a transaction. The standard SQL transaction guarantees
statement-level read consistency, making sure that the data from a query is consistent while the statement
is executing. But some transactions need a stronger guarantee that a series of SELECT statements,
accessing one or more tables, will see a consistent snapshot of all the data in one instant in time. SET
TRANSACTION READ ONLY specifies this stronger read consistency. No changes to the queried data by

other users will affect the transaction’s view of the data. In a read-only transaction, you can use only the
SELECT, LOCK TABLE, SET ROLE, ALTER SESSION, and ALTER SYSTEM commands.

For transactions that include INSERT, UPDATE, or DELETE commands, Oracle assigns a rollback
segment to the transaction. SET TRANSACTION USE ROLLBACK SEGMENT specifies that the current
transaction will use a specific rollback segment.

SET TRANSACTION must be the first SQL statement in a transaction. Placing a COMMIT just
before SET TRANSACTION assures that this is true. The COMMIT at the end releases the snapshot
of the data. This is important because the database needs to release the resources it has set aside to
maintain consistency.

SHOW (SQL*Plus)
SEE ALSO SET
FORMAT

SHO[W] { option }

option may be any parameter set via the SET command or the following:

system_variable
ALL
BTI[TLE]
ERR[ORS] [{ FUNCTION | PROCEDURE | PACKAGE | PACKAGE BODY |
 TRIGGER| VIEW | TYPE | TYPE BODY | DIMENSION | JAVA CLASS } [schema.]name]
LNO
PARAMETERS [parameter_name]
PNO
RECYC[LEBIN] [original_name]
REL[EASE]
REPF[OOTER]
REPH[EADER]
SGA
SPOO[L]
SQLCODE
TTI[TLE]
USER

DESCRIPTION SHOW displays the value of a feature of SET, or ALL features of SET, or of the other
SQL*Plus items. More than one of these (including more than one SET feature) can follow the word
SHOW, and each will be displayed on a separate line. The rows returned will be ordered
alphabetically. The features that can be shown are:

system_variable is any variable set with the SET command.

BTI[TLE] displays the current BTITLE definition.

ERR[ORS] shows the latest errors encountered with the compilation of a stored object.

LNO shows the current line number (the line in the current page being displayed).

PARAMETERS shows the setting of a specific parameter, or all if none is specified.

PNO displays the page number.

RECYC[LEBIN] shows the names of objects in the recycle bin that can be reverted with the
FLASHBACK TABLE BEFORE DROP command.

REL[EASE] gives the release number of this version of Oracle.

■

■

■

■

■

■

■

■

SHOW (SQL*Plus) 1241

1242 Part VIII: Alphabetical Reference

REPF[OOTER] shows the report footer.

REPH[EADER] shows the report header.

SGA shows the current memory allocations for the SGA.

SPOO[L] tells whether output is being spooled (ON or OFF). See SPOOL.

SQLCODE shows the error message number of the most recent Oracle error.

TTI[TLE] displays the current TTITLE definition.

USER shows the user’s ID.

SHUTDOWN
SEE ALSO STARTUP, RECOVER, Chapter 51
FORMAT

SHUTDOWN [ABORT|IMMEDIATE|NORMAL|TRANSACTIONAL [LOCAL]]

DESCRIPTION SHUTDOWN shuts down an instance, optionally closing and dismounting it. If
ABORT is used, uncommitted transactions are not rolled back. NORMAL (the default) prohibits further
connections but waits for all current users to disconnect from the database. IMMEDIATE does not wait
for current calls to complete or users to disconnect. TRANSACTIONAL performs a shutdown while
allowing active transactions to complete. TRANSACTIONAL LOCAL specifies a transactional shutdown
in the local instance only.

You must be connected AS SYSDBA or AS SYSOPER to use SHUTDOWN.

SIGN
SEE ALSO +, PRECEDENCE, Chapter 9
FORMAT

SIGN(value)

DESCRIPTION SIGN equals 1 if value is positive, –1 if negative, 0 if zero.
EXAMPLE

SIGN(33) = 1
SIGN(-.6) = -1
SIGN(0) = 0

SIN
SEE ALSO ACOS, ASIN, ATAN, ATAN2, COS, COSH, NUMBER FUNCTIONS, SINH, TAN, Chapter 9
FORMAT

SIN(value)

DESCRIPTION SIN returns the sine of an angle value expressed in radians.
EXAMPLE

select SIN(30*3.141593/180) Sine -- sine of 30 degrees in radians
from DUAL;

SINH
SEE ALSO ACOS, ASIN, ATAN, ATAN2, COS, NUMBER FUNCTIONS, SIN, TAN, Chapter 9

■

■

■

■

■

■

■

FORMAT

SINH(value)

DESCRIPTION SINH returns the hyperbolic sine of an angle value.

SOUNDEX
SEE ALSO LIKE, Chapters 7 and 27
FORMAT

SOUNDEX(string)

DESCRIPTION SOUNDEX finds words that SOUND like an EXample string. SOUNDEX makes
certain assumptions about how letters and combinations of letters are usually pronounced. The two
words being compared must begin with the same letter. You can perform SOUNDEX searches of
individual words within text strings in CONTEXT indexes.
EXAMPLE

select LastName, FirstName, Phone
 from ADDRESS
 where SOUNDEX(LastName)=SOUNDEX('SEPP)

LASTNAME FIRSTNAME PHONE
------------------------- ------------------------- ------------
SZEP FELICIA 214-555-8383
SEP FELICIA 214-555-8383

SPOOL (SQL*Plus)
SEE ALSO SET, Chapter 6
FORMAT

SPO[OL] [file[.ext][CRE[ATE]|REP[LACE]|APP[END]]|OFF|OUT]

DESCRIPTION SPOOL starts or stops spooling (copying) of SQL*Plus output to a host system file or
the system printer. SPOOL file makes SQL*Plus spool all output to the named file. If the file type is not
specified, SPOOL adds a default, similar to what SAVE does, usually .lst, but with some variation by
host. OFF stops spooling. OUT stops spooling and sends the file to the printer. REPLACE replaces the
contents of an existing file with the same name. To spool output to a file without displaying it, SET
TERMOUT OFF in the start file prior to the SQL statement, but before the SPOOL command. SPOOL
by itself shows the name of the current (or most recent) spool file.

SQL CURSOR
SEE ALSO %FOUND, %ISOPEN, %NOTFOUND, %ROWCOUNT, Chapter 32
DESCRIPTION SQL is the name of the cursor opened implicitly anytime the SQL statement being
processed is not part of an explicitly named and opened cursor (see DECLARE). There is only one of
these cursors at any time. The cursor attributes %FOUND and %NOTFOUND can be tested by
checking SQL%FOUND and SQL%NOTFOUND before or after an INSERT, UPDATE, or DELETE
(which are never associated with an explicit cursor) or a single-row SELECT that happened to be
executed without an explicit cursor.

See %FOUND for details on these tests. See %ROWCOUNT for details on the values this attribute
has under different conditions. SQL%ISOPEN always evaluates to FALSE because Oracle closes the
SQL cursor automatically after executing the SQL statement.

SQL CURSOR 1243

1244 Part VIII: Alphabetical Reference

SQLCODE
SEE ALSO EXCEPTION, SQLERRM
FORMAT

variable := SQLCODE

DESCRIPTION SQLCODE is an error function that returns the latest error number, but outside of an
exception handler (see EXCEPTION) always returns 0. This is because the occurrence of an exception
(that is, when SQLCODE would be nonzero) is expected to immediately transfer control to the
EXCEPTION part of the PL/SQL block. Once there, SQLCODE can be tested for its value, or used
to assign a value to a variable.

SQLCODE cannot be used as a part of a SQL statement (such as to insert the value of the error
code into an error table). However, you can set a variable equal to SQLCODE, and then use the
variable in a SQL statement:

sql_error := sqlcode;
insert into PROBLEMLOG values (sql_error);

SQLERRM
SEE ALSO EXCEPTION, EXCEPTION_INIT, SQLCODE
FORMAT

SQLERRM[(integer)]

DESCRIPTION Without integer supplied, SQLERRM returns the error message related to the current
SQLCODE. With an integer supplied, it returns the error message related to that integer value. Like
SQLCODE, this function cannot be used directly in a SQL statement, but can be used in an assignment:

error_message := sqlerrm;

or to retrieve the error message associated with the error code 1403:

error_message := sqlerrm(1403);

Outside of an exception handler (see SQLCODE), this function without an integer argument will
always return “normal, successful completion.” In an exception handler, you will get one of these
messages:

The message associated with an Oracle error

The words “User-defined exception” for an explicitly raised user exception where you did not
assign a message text

A user-defined message text, loaded using the PRAGMA EXCEPTION_INIT

SQLLDR
SEE ALSO Chapter 24
FORMAT The following are the command-line parameters for the SQLLDR command:

■

■

■

Userid Username and password for the load, separated by a slash.

Control Name of the control file.

Log Name of the redo log file.

Bad Name of the bad file.

Data Name of the datafile.

Discard Name of the discard file.

Discardmax Maximum number of rows to discard prior to stopping the load. Default is to
allow all discards.

Skip Number of logical rows in the input file to skip prior to starting to load data.
Usually used during reloads from the same input file following a partial load.
Default is 0.

Load Number of logical rows to load. Default is all rows.

Errors Number of errors to allow. Default is 50.

Rows Number of rows to commit at a time. Use this parameter to break up the
transaction size during the load. Default for conventional path loads is 64,
and for Direct Path loads is all rows.

Bindsize Size of conventional path bind array, in bytes. Default is operating system
dependent.

Silent Y/N flag to suppress messages during the load.

Direct Uses Direct Path loading. Default is FALSE.

Parfile Name of the parameter file that contains additional load parameter
specifications.

Parallel Performs parallel loading. Default is FALSE.

File File to allocate extents from (for parallel loading).

Skip_Unusable_Indexes Allows loads into tables that have indexes in unusable states. Default is FALSE.

Skip_Index_Maintenance Stops index maintenance for Direct Path loads, leaving them in unusable
states. Default is FALSE.

Commit_Discontinued Commits loaded rows when load is discontinued. Default is FALSE.

Readsize Size of the Read buffer, in bytes; default is 1048576.

External_Table Uses external table for load. Default is NOT_USED; other values are
GENERATE_ONLY and EXECUTE.

ColumnArrayRows Number of rows for Direct Path column array. Default is 5000.

StreamSize Size of Direct Path stream buffer, in bytes. Default is 256000.

Multithreading Uses multithreading in Direct Path.

Resumable Enables or disables Resumable for current session; default is FALSE.

Resumable_Name Text string used to identify resumable statements.

Resumable_Timeout Wait time, in seconds, for Resumable. Default is 7200.

Date_Cache Size (in entries) of data conversion cache. Default is 1000.

SQLLDR 1245

1246 Part VIII: Alphabetical Reference

DESCRIPTION SQLLDR loads data from external files into tables in the Oracle database. See
Chapter 23 for examples. The syntax for the control file is as follows:
Options clause

OPTIONS (options)

Load statement

UNRECOVERABLE

RECOVERABLE LOAD

CONTINUE_LOAD

DATA CHARACTERSET char_set_name

LENGTH
SEMANTICS

BYTE

CHAR

CHARACTER
BYTEORDER

BIG

LITTLE

ENDIAN

BYTEORDERMARK
CHECK

NOCHECK

infile_clause

,

READSIZE size READBUFFERS integer

INSERT

APPEND

REPLACE

TRUNCATE

concatenate_clause PRESERVE BLANKS
into_table_clause

,
BEGINDATA

infile_clause

INFILE
*

input_filename

os_file_proc_clause BADFILE filename

DISCARDFILE filename

DISCARDS

DISCARDMAX
integer

"

var

fix

str

’string’

X’hex_string

integer

"

concatenate_clause

CONCATENATE
integer

(integer)

CONTINUEIF

THIS

NEXT PRESERVE (
pos_spec

LAST
PRESERVE (operator

str

X’hex_str’

)

SQLLDR 1247

1248 Part VIII: Alphabetical Reference

into_table_clause

INTO TABLE name
SORTED

INDEXES
(name

,

)

SINGLEROW
(

PARTITION name

SUBPARTITION name
)

RESUME

YES

NO
REPLACE

INSERT

REPLACE

USING
DELETE

TRUNCATE

TRUNCATE

APPEND

OPTIONS (STORAGE=(storage_spec) , FILE=database_filename)

EVALUATE CHECK_CONSTRAINTS

REENABLE
DISABLED_CONSTRAINTS EXCEPTIONS table

WHEN field_condition

OID_spec

SID_spec

XMLTYPE_spec FIELDS
delim_spec

TRAILING
NULLCOLS

SKIP n
field_list

field_condition

(full_fieldname

pos_spec
operator

’char_string’

X’hex_string’

BLANKS

)

AND

delim_spec

enclosure_spec

termination_spec

OPTIONALLY
enclosure_spec

full_fieldname

full_fieldname

termination_spec

TERMINATED
BY

WHITESPACE

X’hexstr’

’string’

EOF

enclosure_spec

ENCLOSED
BY

’string’

X’hexstr’
AND

’string’

X’hexstr’

oid_spec

OID (fieldname)

sid_spec

SID (
fieldname

CONSTANT SID_val
)

xmltype_spec

XMLTYPE (fieldname)

SQLLDR 1249

1250 Part VIII: Alphabetical Reference

field_list

(column_name

dgen_fld_spec

scalar_fld_spec

col_obj_fld_spec

collection_fld_spec

filler_fld_spec

,

)

dgen_fld_spec

RECNUM

SYSDATE

CONSTANT val

SEQUENCE (

COUNT

MAX

integer

, incr
)

REF_spec

SID_spec

BFILE_spec

init_spec

EXPRESSION " sql_string "

ref_spec

REF (
fieldname

CONSTANT val

,

)

init_spec

NULLIF

DEFAULTIF
field_condition

bfile_spec

BFILE (
fieldname

CONSTANT val
,

fieldname

CONSTANT val
)

filler_fld_spec

FILLER

BOUNDFILLER

pos_spec datatype_spec PIECED

scalar_fld_spec

LOBFILE_spec

POSITION pos_spec
datatype_spec PIECED

init_spec " sql_string "

lobfile_spec

LOBFILE (
fieldname

CONSTANT filename

CHARACTERSET name

LENGTH
SEMANTICS

BYTE

CHAR

CHARACTER
BYTEORDER

BIG

LITTLE

ENDIAN

BYTEORDERMARK
CHECK

NOCHECK
)

pos_spec

(

start

*
+integer

:

–
end

)

SQLLDR 1251

1252 Part VIII: Alphabetical Reference

datatype_spec

delim_spec

INTEGER

(length)

SIGNED

UNSIGNED

EXTERNAL
(length) delim_spec

FLOAT
EXTERNAL

(length) delim_spec

DECIMAL

ZONED

EXTERNAL
(length) delim_spec

(precision
, scale

)

DOUBLE

BYTEINT

SMALLINT

SIGNED

UNSIGNED

RAW
(length)

GRAPHIC
EXTERNAL (graphic_char_length)

VARGRAPHIC

VARCHAR

(max_length)

datatype_spec_cont

datatype_spec_cont

CHAR
(length) delim_spec

VARCHARC (length_of_length
, max_size_bytes

)

VARRAWC (length_of_length
, max_size_bytes

)

LONG
VARRAW

(max_bytes)

DATE
EXTERNAL (length) "mask" delim_spec

TIME

TIMESTAMP

fractional_second_precision WITH
LOCAL

TIME ZONE "mask"

INTERVAL

YEAR
year_precision

TO MONTH

DAY
day_precision

TO SECOND
fractional_second_precision

col_obj_fld_spec

COLUMN OBJECT
TREAT AS typename init_spec

field_list
sql_string_spec

collection_fld_spec

nested_table_spec

BOUNDFILLER
varray_spec

nested_table_spec

NESTED TABLE

SDF_spec count_spec init_spec

count_spec field_list

delim_spec

SQLLDR 1253

1254 Part VIII: Alphabetical Reference

varray_spec

VARRAY

SDF_spec count_spec init_spec

count_spec field_list

delim_spec

sdf_spec

SDF (

field_name

CONSTANT filename os_file_proc_clause READSIZE size

CHARACTERSET name

LENGTH
SEMANTICS

BYTE

CHAR

CHARACTER

BYTEORDER
BIG

LITTLE

ENDIAN
BYTEORDERMARK

CHECK

NOCHECK delim_spec
)

count_spec

COUNT (
fieldname

CONSTANT positive_integer
)

SQLPLUS
SEE ALSO Chapter 6
FORMAT

SQLPLUS [user[/password][@database] [@file]] [-SILENT] |
 [/NOLOG] [-SILENT] | [-?]

DESCRIPTION SQLPLUS starts up SQL*Plus. Entering both your username and password will log you
onto your default database. Entering just your username will cause SQL*Plus to prompt you for your
password, which will not be displayed as you enter it. Entering @database will connect you to the named
database instead of your default. The @database can be anywhere, so long as the computer you are
logging onto is connected to it through Oracle Net. There must be no space between password and
@database. For more information about Oracle Net, see Chapter 23. @file will run the start file
immediately after SQL*Plus is loaded. There must be a space before @file. If the username and password
are not entered on the command line with SQLPLUS, they must be the first line in the file. If they are in
the file, and you enter them on the command line, you’ll get an error message but the start file will run
correctly anyway. To put user and password at the top of the file, separate them with a slash (/):

GEORGE/MISTY

/NOLOG makes SQL*Plus start, but does not log you onto the Oracle database. You must then use
CONNECT to attach to Oracle. (See CONNECT.)

-SILENT suppresses all of SQL*Plus’s screen displays, including the command prompts and even
the SQL*Plus logon and copyright information. It makes the use of SQL*Plus by another program
invisible to the program’s user.

-? displays the current version and level number for SQL*Plus without actually starting it up.
EXAMPLE Normal startup of SQL*Plus follows:

sqlplus george/misty

To start up on the database EDMESTON, use this:

sqlplus george/misty@EDMESTON

To start the report file REPORT6, which includes the name and password as its first line, use this:

sqlplus @report6

To start the report file REPORT6, which includes the name and password as its first line, on the
database EDMESTON, use this:

sqlplus george/misty@EDMESTON @report6

SQRT
SEE ALSO POWER
FORMAT

SQRT(value)

DESCRIPTION SQRT finds the square root of value.
EXAMPLES

SQRT(64)=8

The square root of negative numbers is not available in Oracle.

START (SQL*Plus)
SEE ALSO @, @@, ACCEPT, DEFINE, SPOOL, Chapter 6
FORMAT

STA[RT] {url|file[.ext]} [parameter] [parameter]...

DESCRIPTION START executes the contents of the specified start file (so called because it is started
by this command). The file may contain any SQL*Plus commands. If no file type is specified, START
assumes it is .sql. Any parameters following the filename are substituted into variables in the start file;
the variables must be named &1, &2, &3, and so on, and will receive the parameters in order, from left
to right. Every occurrence in the start file of &1 will get the first parameter. Parameters consisting of
more than one word may be enclosed in single quotes (' '); otherwise, parameters are limited to a
single word or number each.
EXAMPLE

start checkout INNUMERACY

where the file checkout.sql contains a variable named &1, into which the string 'INNUMERACY' will
be substituted.

START (SQL*Plus) 1255

1256 Part VIII: Alphabetical Reference

STARTUP
SEE ALSO SHUTDOWN, RECOVER, Chapter 50
FORMAT

STARTUP options | upgrade_options

where options has the following syntax:

 [FORCE][RESTRICT][PFILE=filename][QUIET][MOUNT[dbname]|
[OPEN [open_options][dbname]]|NOMOUNT]

where open_options has the following syntax:

READ {ONLY | WRITE [RECOVER]} | RECOVER

and upgrade_options has the following syntax:

[PFILE=filename]{UPGRADE|DOWNGRADE} [QUIET]

DESCRIPTION STARTUP starts an instance. FORCE shuts down a running instance with
SHUTDOWN ABORT prior to starting it. RESTRICT allows only privileged users to log in. The PFILE
option allows you to specify an init.ora file to use during startup (in place of the standard spfile).
STARTUP RECOVER has the same effect as executing RECOVER DATABASE and starting an instance.
UPGRADE starts the database in OPEN UPGRADE mode and should be used only when a database is
first started with a new version of the Oracle software.

STATS_BINOMIAL_TEST
FORMAT

STATS_BINOMIAL_TEST (expr1 , expr2 , p

,

TWO_SIDED_PROB

EXACT_PROB

ONE_SIDED_PROB_OR_MORE

ONE_SIDED_PROB_OR_LESS
)

DESCRIPTION STATS_BINOMIAL_TEST is an exact probability test used for dichotomous variables,
where only two possible values exist. It tests the difference between a sample proportion and a given
proportion.

STATS_CROSSTAB
FORMAT

STATS_CROSSTAB (expr1 , expr2

,

CHISQ_OBS

CHISQ_SIG

CHISQ_DF

PHI_COEFFICIENT

CRAMERS_V

CONT_COEFFICIENT

COHENS_K
)

DESCRIPTION STATS_CROSSTAB takes three arguments: two expressions and a return value of type
VARCHAR2. expr1 and expr2 are the two nominal variables being analyzed. The function returns one
number, determined by the value of the third argument. Values for the third argument are CHISQ_OBS,
CHISQ_SIG, CHISQ_DF, PHI_COEFFICIENT, CRAMERS_V, CONT_COEFFICIENT, and COHENS_K.

STATS_F_TEST
FORMAT

STATS_F_TEST (expr1 , expr2

,

STATISTIC

DF_NUM

DF_DEN

ONE_SIDED_SIG

, expr3

TWO_SIDED_SIG
)

DESCRIPTION STATS_F_TEST tests whether two variances are significantly different. The observed
value of f is the ratio of one variance to the other, so values very different from 1 usually indicate
significant differences.

STATS_KS_TEST
FORMAT

STATS_KS_TEST (expr1 , expr2

,
STATISTIC

SIG
)

DESCRIPTION STATS_KS_TEST is a Kolmogorov-Smirnov function that compares two samples to
test whether they are from the same population or from populations that have the same distribution. It
does not assume that the population from which the samples were taken is normally distributed.

STATS_KS_TEST 1257

1258 Part VIII: Alphabetical Reference

STATS_MODE
FORMAT

STATS_MODE (expr)

DESCRIPTION STATS_MODE takes as its argument a set of values and returns the value that occurs
with the greatest frequency. If more than one mode exists, Oracle chooses one and returns only that
one value.

STATS_MW_TEST
FORMAT

STATS_MW_TEST (expr1 , expr2

,

STATISTIC

U_STATISTIC

ONE_SIDED_SIG , expr3

TWO_SIDED_SIG
)

DESCRIPTION A Mann-Whitney test compares two independent samples to test the null hypothesis
that two populations have the same distribution function against the alternative hypothesis that the two
distribution functions are different.

STATS_ONE_WAY_ANOVA
FORMAT

STATS_ONE_WAY_ANOVA (expr1 , expr2

,

SUM_SQUARES_BETWEEN

SUM_SQUARES_WITHIN

DF_BETWEEN

DF_WITHIN

MEAN_SQUARES_BETWEEN

MEAN_SQUARES_WITHIN

F_RATIO

SIG
)

DESCRIPTION STATS_ONE_WAY_ANOVA is a one-way analysis of variance function. It tests
differences in means for statistical significance by comparing two different estimates of variance (mean
square error and mean squares between). The function returns one number, determined by the value of
the third argument (default is SIG, for significance).

STATS_T_TEST_* FUNCTIONS
FORMAT
stats_t_test::=

STATS_T_TEST_INDEP

STATS_T_TEST_INDEPU

STATS_T_TEST_ONE

STATS_T_TEST_PAIRED

(expr1 , expr2

,

STATISTIC

ONE_SIDED_SIG
, expr3

TWO_SIDED_SIG

DF
)

DESCRIPTION The t-test measures the significance of a difference of means. You can use it to
compare the means of two groups or the means of one group with a constant. The STATS_T_TEST_*
functions take three arguments: two expressions and a return value of type VARCHAR2. The functions
return one number, determined by the value of the third argument (default is TWO_SIDED_SIG).

The tests are as follows:

STATS_T_TEST_ONE A one-sample t-test

STATS_T_TEST_PAIRED A two-sample, paired t-test

STATS_T_TEST_INDEP A t-test of two independent groups with the same variance

STATS_T_TEST_INDEPU A t-test of two independent groups with unequal variance

The values for the third argument are as follows:

STATISTIC The observed value of t

DF Degree of freedom

ONE_SIDED_SIG One-tailed significance of t

TWO_SIDED_SIG Two-tailed significance of t

STATS_WSR_TEST
FORMAT

STATS_WSR_TEST (expr1 , expr2

,

STATISTIC

ONE_SIDED_SIG

TWO_SIDED_SIG
)

■

■

■

■

■

■

■

■

STATS_WSR_TEST 1259

1260 Part VIII: Alphabetical Reference

DESCRIPTION STATS_WSR_TEST is a Wilcoxon Signed Ranks test of paired samples to determine
whether the median of the differences between the samples is significantly different from zero. If you
do not specify the third argument, it defaults to TWO_SIDED_SIG.

STDDEV
SEE ALSO AGGREGATE FUNCTIONS, VARIANCE, Chapter 9
FORMAT

STDDEV([DISTINCT | ALL] value) [OVER (analytic_clause)]

DESCRIPTION STDDEV gives the standard deviation from the norm of values in a group of rows. It
ignores NULL values in its calculation.

STDDEV_POP
SEE ALSO AGGREGATE FUNCTIONS, STTDEV, STDDEV_SAMP
FORMAT

STDDEV_POP (expr) [OVER (analytic_clause)]

DESCRIPTION STDDEV_POP computes the population standard deviation and returns the square
root of the population variance.

STDDEV_SAMP
SEE ALSO AGGREGATE FUNCTIONS, STTDEV, STDDEV_POP
FORMAT

STDDEV_SAMP (expr) [OVER (analytic_clause)]

DESCRIPTION STDDEV_SAMP computes the cumulative sample standard deviation and returns
the square root of the sample variance.

STORAGE
SEE ALSO CREATE CLUSTER, CREATE INDEX, CREATE ROLLBACK SEGMENT, CREATE
MATERIALIZED VIEW, CREATE MATERIALIZED VIEW LOG, CREATE TABLE, CREATE TABLESPACE,
as well as the ALTER statement for each of these

FORMAT
storage_clause::=

STORAGE (

INITIAL size_clause

NEXT size_clause

MINEXTENTS integer

MAXEXTENTS
integer

UNLIMITED

maxsize_clause

PCTINCREASE integer

FREELISTS integer

FREELIST GROUPS integer

OPTIMAL

size_clause

NULL

BUFFER_POOL

KEEP

RECYCLE

DEFAULT

ENCRYPT

)

maxsize_clause::=

MAXSIZE
UNLIMITED

size_clause

DESCRIPTION The STORAGE clause is optional in any of the CREATE and ALTER statements listed
under the preceding SEE ALSO section. STORAGE is not a SQL statement, and cannot stand alone. In
the following paragraphs, a block is a database block (see BLOCK) with a size depending on the operating
system and the database initialization parameters.

INITIAL allocates the first extent of space to the object. If INITIAL is not specified, it defaults to five
data blocks. The smallest initial extent you can allocate is two data blocks, and the largest depends on
your operating system. You can express these numbers either as a simple integer or as an integer followed
by K or M to indicate kilobytes or megabytes, respectively.

STORAGE 1261

1262 Part VIII: Alphabetical Reference

NEXT is the size of the extent allocated after the initial extent has been filled. If not specified, it
defaults to five data blocks. The smallest next extent you can allocate is one data block, and the largest
depends on the operating system. You can use K and M for kilobytes and megabytes.

PCTINCREASE controls the rate of growth of extents beyond the second. If set to 0, every additional
extent will be the same size as the second extent, specified by NEXT. If PCTINCREASE is a positive
integer, each succeeding extent will be that percentage larger than the preceding one. For example, if
PCTINCREASE is 50 (the default, if it is not specified), each additional extent will be 50 percent larger
than the previous one. PCTINCREASE cannot be negative. The minimum PCTINCREASE is 0, and the
maximum depends on the operating system. Oracle rounds the extent size up to the next multiple of the
operating system block size.

MINEXTENTS defaults to 1 (or 2 for a rollback segment) if it is not specified, meaning that when
the object is created, only the initial extent is allocated. A number larger than 1 will create that many
total extents (which don’t need to be contiguous on disk, as each extent itself does), and the size of
each of them will be determined by the values set with INITIAL, NEXT, and PCTINCREASE. All of these
will be allocated when the object is created.

MAXEXTENTS sets the limit on the total number of extents that can be allocated. The minimum
limit is 1, with the default and maximum depending on the operating system. You can specify a
MAXEXTENTS value of UNLIMITED.

OPTIMAL sets an optimal size in bytes for a rollback segment. Oracle will dynamically deallocate
extents in the rollback segment to maintain the optimal size. NULL means that Oracle never deallocates
the rollback segment extents, and this is the default behavior. You must supply a size greater than or
equal to the initial space allocated for the rollback segment by the MINEXTENTS, INITIAL, NEXT, and
PCTINCREASE parameters.

FREELIST GROUPS gives the number of groups of free lists, with a default value of 1. This setting
applies to the Real Application Clusters option of Oracle for tables, clusters, or indexes.

FREELISTS sets the number of free lists for each free list group.
BUFFER_POOL sets the buffer pool into which the table’s blocks will be read. By default, all blocks

are read into the DEFAULT pool. You can create separate pools for blocks you want to keep in memory
longer (the KEEP pool) or for those you wish to age out of memory quickly (the RECYCLE pool).

For most applications, you should use Oracle’s space management automation features, including
locally managed tablespaces. In a locally managed tablespace, you define the storage parameters once
and Oracle manages the space for the objects created within the tablespace.

STORE (SQL*Plus)
SEE ALSO SAVE, START, Chapter 6
FORMAT

STORE SET file[.ext] [CRE[ATE] | REP[LACE] | APP[END]]

DESCRIPTION STORE saves all of your SQL*Plus environment settings to a file.
EXAMPLE The following command saves the current SQL*Plus environment settings to a file named
settings.sql:

store settings.sql

SUBQUERY
A query (that is, a SELECT statement) may be used as a part of another SQL statement (called the parent, or
outer statement), including CREATE TABLE, DELETE, INSERT, SELECT, and UPDATE, or in the SQL*Plus
COPY command, in order to define the rows or columns that the parent will use in its execution. The
results of the child query (also called a subquery) are not themselves displayed, but are passed to the
parent SQL statement for its use. The following rules apply:

In an UPDATE or CREATE TABLE command, the subquery must return one value for each
column to be inserted or updated. The value or values are then used by the parent SQL
statement to INSERT or UPDATE the rows.

A subquery cannot contain ORDER BY and FOR UPDATE OF clauses.

A “correlated” subquery is used in the WHERE clause of a SELECT statement, and references
an alias for the table used by the parent SELECT command. It is tested once for each row
evaluated for selection by the parent SELECT statement (a standard subquery evaluated just
once for the parent query). See Chapter 13 for further details.

Other than these restrictions, normal rules for a SELECT statement apply.

SUBSTITUTION
See &, &&, ACCEPT, and DEFINE.

SUBSTR
SEE ALSO ||, CHARACTER FUNCTIONS, INSTR, Chapter 7
FORMAT
substr::=

SUBSTR

SUBSTRB

SUBSTRC

SUBSTR2

SUBSTR4

(char , position
, substring_length

)

DESCRIPTION SUBSTR clips out a piece of a string beginning at start and going for count
characters. If count is not specified, the string is clipped from start and goes to the end of the string.

There are multiple SUBSTR functions: SUBSTR calculates length using characters as defined by the
input character set. SUBSTRB uses bytes instead of characters. SUBSTRC uses Unicode complete sets.
SUBSTR2 uses UCS2 code points. SUBSTR4 uses UCS4 code points.
EXAMPLE

SUBSTR('NEWSPAPER',5)

produces this:

PAPER

SUM
SEE ALSO COMPUTE, AGGREGATE FUNCTIONS, Chapter 9
FORMAT

SUM([DISTINCT | ALL] value) [OVER (analytic_clause)]

DESCRIPTION SUM is the sum of all values for a group of rows. DISTINCT makes SUM add each
unique value to the total only once; this is usually not very meaningful.

■

■

■

SUM 1263

1264 Part VIII: Alphabetical Reference

SYNTAX OPERATORS
SEE ALSO LOGICAL OPERATORS, PRECEDENCE
DESCRIPTION Syntax operators have the highest precedence of all operators, and may appear
anywhere in a SQL statement. Here they are listed in descending order of precedence. Operators of
equal precedence are evaluated from left to right. Most of these are listed and described separately
under their own symbols.

Operator Function
- SQL*Plus command continuation. Continues a command on the following line.

& Prefix for parameters in a SQL*Plus start file. Words are substituted for &1, &2, and so on.
See START.

& && Prefix for a substitution variable in a SQL command in SQL*Plus. SQL*Plus will prompt for
a value if an undefined & or && variable is found. && also defines the variable and saves
the value; & does not. See & and &&, DEFINE, and ACCEPT.

: Prefix for a variable in SQL*FORMS and for a host variable in PL/SQL.

. Variable separator, used in SQL*Plus to separate the variable name from a suffix so that the
suffix is not considered a part of the variable name, and used in SQL between user, table,
and column names.

() Surrounds subqueries and lists of columns, or controls precedence.

' Surrounds a literal, such as a character string or date constant. To use a ' in a string
constant, use two ' marks (not a double quotation mark).

" Surrounds a table or column alias that contains special characters or a space.

" Surrounds literal text in a date format clause of TO_CHAR.

@ Precedes a database name in a COPY, or a link name in a FROM clause.

SYS_CONNECT_BY_PATH
SEE ALSO CONNECT BY, Chapter 14
FORMAT

SYS_CONNECT_BY_PATH (column, char)

DESCRIPTION SYS_CONNECT_BY_PATH is valid only in hierarchical queries. It returns the path of
a column value from root to node, with column values separated by char for each row returned by the
CONNECT BY condition.

SYS_CONTEXT
SEE ALSO CREATE CONTEXT
FORMAT

SYS_CONTEXT (namespace , parameter [, length])

DESCRIPTION SYS_CONTEXT returns the value of parameter associated with the context
namespace.

SYS_DBURIGEN
SEE ALSO Chapter 52

FORMAT

SYS_DBURIGEN
({ column | attribute } [rowid]
 [, { column | attribute } [rowid]]...
 [, 'text()'])

DESCRIPTION SYS_DBURIGEN takes as its argument one or more columns or attributes, and
optionally a ROWID, and generates a URL of datatype DBUriType to a particular column or row
object. You can then use the URL to retrieve an XML document from the database.

All columns or attributes referenced must reside in the same table. They must perform the function
of a primary key. That is, they need not actually match the primary keys of the table, but they must
reference a unique value. If you specify multiple columns, all but the final column identify the row in
the database, and the last column specified identifies the column within the row.

By default the URL points to a formatted XML document. If you want the URL to point only to the
text of the document, specify the optional 'text()'. (In this XML context, the lowercase 'text' is a keyword,
not a syntactic placeholder.)

SYS_EXTRACT_UTC
SEE ALSO Chapter 10
FORMAT

SYS_EXTRACT_UTC (datetime_with_timezone)

DESCRIPTION SYS_EXTRACT_UTC extracts the UTC (Coordinated Universal Time) from a datetime
with time zone displacement.

SYS_GUID
FORMAT

SYS_GUID ()

DESCRIPTION SYS_GUID generates and returns a globally unique identifier (RAW value) made up
of 16 bytes. On most platforms, the generated identifier consists of a host identifier and a process or
thread identifier of the process or thread invoking the function, and a nonrepeating value (sequence of
bytes) for that process or thread.

SYS_TYPEID
SEE ALSO Chapter 38
FORMAT

SYS_TYPEID (object_type_value)

DESCRIPTION SYS_TYPEID returns the type ID of the most specific type of the operand. This value is
used primarily to identify the type-discriminant column underlying a substitutable column. For example,
you can use the value returned by SYS_TYPEID to build an index on the type-discriminant column.

SYS_XMLAGG
SEE ALSO SYS_XMLGEN, Chapter 45
FORMAT

SYS_XMLAGG (expr [fmt])

SYS_XMLAGG 1265

1266 Part VIII: Alphabetical Reference

DESCRIPTION SYS_XMLAGG aggregates all of the XML documents or fragments represented by
expr and produces a single XML document. It adds a new enclosing element with a default name
ROWSET. If you want to format the XML document differently, specify fmt, which is an instance of
the SYS.XMLGenFormatType object.

SYS_XMLGEN
SEE ALSO SYS_XMLAGG, Chapter 52
FORMAT

SYS_XMLGEN (expr [fmt])

DESCRIPTION SYS_XMLGEN takes an expression that evaluates to a particular row and column of
the database, and returns an instance of type SYS.XMLType containing an XML document. The expr can
be a scalar value, a user-defined type, or an XMLType instance.

If expr is a scalar value, the function returns an XML element containing the scalar value. If expr
is a type, the function maps the user-defined type attributes to XML elements. If expr is an XMLType
instance, then the function encloses the document in an XML element whose default tag name is ROW.

By default the elements of the XML document match the elements of expr. For example, if expr
resolves to a column name, the enclosing XML element will be the same column name. If you want to
format the XML document differently, specify fmt, which is an instance of the SYS.XMLGenFormatType
object.

SYSDATE
SEE ALSO Chapter 10
FORMAT

SYSDATE

DESCRIPTION SYSDATE returns the current date and time.
EXAMPLE

select SYSDATE from DUAL;

SYSTIMESTAMP
SEE ALSO Chapter 10
FORMAT

SYSTIMESTAMP

DESCRIPTION SYSTIMESTAMP returns the current date and time.
EXAMPLE

select SYSTIMESTAMP from DUAL;

TABLE (PL/SQL)
SEE ALSO DATATYPES, RECORD (PL/SQL)
FORMAT

TYPE new_type IS TABLE OF
{type | table.column%TYPE}[NOT NULL]
INDEX BY BINARY_INTEGER;

DESCRIPTION A TABLE declaration declares a new type that can then be used to declare variables
of that type. A PL/SQL table has one column and an integer key and can have any number of rows. The
datatype of the column can be either one of the standard PL/SQL datatypes (including another RECORD
but not a TABLE) or a reference to the type of a particular column in a specific database table. Each
field may also have a NOT NULL qualifier that specifies that the field must always have a non-NULL value.

The INDEX BY BINARY_INTEGER clause is required and reminds you that the index is an integer.
You can refer to any row of the table with the index in parentheses.

If you refer to an index to which you have not assigned any data, PL/SQL raises the NO_DATA_
FOUND exception.

TAN
SEE ALSO ACOS, ASIN, ATAN, ATAN2, COS, COSH, NUMBER FUNCTIONS, SIN, TANH, Chapter 9
FORMAT

TAN(value)

DESCRIPTION TAN returns the tangent of an angle value expressed in radians.
EXAMPLE

select TAN(135*3.141593/180) Tan -- tangent of 135 degrees in radians
from DUAL;

TANH
SEE ALSO ACOS, ASIN, ATAN, ATAN2, COS, COSH, NUMBER FUNCTIONS, SIN, TAN, Chapter 9
FORMAT

TANH(value)

DESCRIPTION TANH returns the hyperbolic tangent of an angle value.

TIMESTAMP
The TIMESTAMP (fractional_seconds_precision) datatype records year, month, and day values of date,
as well as hour, minute, and second values of time, where fractional_seconds_precision is the number
of digits in the fractional part of the SECOND datetime field. Accepted values of fractional_seconds_
precision are 0 to 9. The default is 6. See DATATYPES and Chapter 10.

TIMESTAMP WITH TIME ZONE
The TIMESTAMP (fractional_seconds_precision) WITH TIME ZONE datatype records year, month, and
day values of date, as well as hour, minute, and second values of time, where fractional_seconds_
precision is the number of digits in the fractional part of the SECOND datetime field. Accepted values
of fractional_seconds_precision are 0 to 9. The default is 6.

TIMESTAMP WITH LOCAL TIME ZONE
The TIMESTAMP (fractional_seconds_precision) WITH LOCAL TIME ZONE datatype records the
TIMESTAMP WITH TIME ZONE values, normalized to the database time zone when the data is stored.
When the data is retrieved, users see the data in the session time zone.

TIMESTAMP WITH LOCAL TIME ZONE 1267

1268 Part VIII: Alphabetical Reference

TIMING (SQL*Plus)
SEE ALSO CLEAR, SET
FORMAT

TIMI[NG] [START area | STOP | SHOW];

DESCRIPTION TIMING keeps track of elapsed time from START to STOP by area name. START
opens a timing area and makes area its title. area must be a single word. Several areas may exist at once.
The most recently created one is the current timing area until it is deleted, when the previously created
one becomes current. Timing areas are, in effect, nested. The most recently created will always show the
least amount of time, because the elapsed time of those before it will be, by definition, longer. Total time
for any timing area is its own net time plus those of all the timing areas that followed it.

SHOW gives the current timing area’s name and elapsed time.
STOP gives the current timing area’s name and elapsed time, deletes the area, and makes the one

previous to it (if there was one) the current timing area. See the SQL*Plus User’s Guide and Reference
for your host operating system for details on the precise meaning of time on your machine.
EXAMPLE To create a timing area named 1, you enter this:

timing start 1

To see the current timing area’s name and time, but allow it to continue running, enter the
following:

timing show

To see the current timing area’s name and accumulated time, stop it, and make the previous one
current, use this:

timing stop

TO_BINARY_DOUBLE
SEE ALSO TO_BINARY_FLOAT
FORMAT

TO_BINARY_DOUBLE (expr [,fmt [,'nlsparam']])

DESCRIPTION TO_BINARY_DOUBLE returns a double-precision floating-point number. expr can
be a character string or a numeric value of type NUMBER.

TO_BINARY_FLOAT
SEE ALSO TO_BINARY_DOUBLE
FORMAT

TO_BINARY_FLOAT (expr [,fmt [,'nlsparam']])

DESCRIPTION TO_BINARY_FLOAT returns a single-precision floating-point number. expr can be a
character string or a numeric value of type NUMBER.

TO_CHAR (character formats)
SEE ALSO TO_CHAR (date and number formats)
FORMAT

TO_CHAR (nchar | clob | nclob)

DESCRIPTION The TO_CHAR (character) function converts NCHAR, NVARCHAR2, CLOB, or
NCLOB data to the database character set.
EXAMPLE

SELECT TO_CHAR(Title) FROM BOOKSHELF;

TO_CHAR (date and number formats)
SEE ALSO DATE FORMATS, DATE FUNCTIONS, NUMBER FORMATS, TO_DATE, Chapter 10
FORMAT

TO_CHAR(date|interval,'format'[,'nlsparam'])
TO_CHAR(number,'format'[,'nlsparam'])

DESCRIPTION TO_CHAR reformats number or date according to format. date must be a column
defined as an Oracle DATE datatype. It cannot be a string even if it is in the default date format of DD-
MON-YY. The only way to use a string in which date appears in the TO_CHAR function is to enclose it
within a TO_DATE function. The formats possible for this function are numerous. They are listed under
NUMBER FORMATS and DATE FORMATS.
EXAMPLE Note the format in the following example. This is necessary in SQL*Plus to avoid the
current default date width produced by TO_CHAR, which is about 100 characters wide:

column Formatted format a30 word_wrapped heading 'Formatted'

select BirthDate, TO_CHAR(BirthDate,'MM/DD/YY') Formatted
 from BIRTHDAY
 where FirstName = 'VICTORIA';

BIRTHDATE Formatted
--------- ------------------------------
20-MAY-49 05/20/49

TO_CLOB
SEE ALSO Chapter 40
FORMAT

TO_CLOB (lob_column | char)

DESCRIPTION TO_CLOB converts NCLOB values in a LOB column or other character strings to
CLOB values. char can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB,
or NCLOB. Oracle executes this function by converting the underlying LOB data from the national
character set to the database character set. Note that LONG values can be converted directly to CLOB
columns via ALTER TABLE.

TO_DATE
SEE ALSO DATE FORMATS, DATE FUNCTIONS, TO_CHAR, Chapter 10
FORMAT

TO_DATE(string,'format'[,'nlsparam'])

DESCRIPTION TO_DATE converts a string in a given format into an Oracle date. It also will accept
a number instead of a string, with certain limits. string is a literal string, a literal number, or a database
column containing a string or a number. In every case but one, the format must correspond to that

TO_DATE 1269

1270 Part VIII: Alphabetical Reference

which is described by format. Only if a string is in the format 'DD-MON-YY' can the format be
omitted. Note that format is restricted. See DATE FORMATS for a list of acceptable formats for TO_
DATE.
EXAMPLE

select TO_DATE('02/22/04','MM/DD/YY') from DUAL;

TO_DATE('

22-FEB-04

TO_DSINTERVAL
SEE ALSO DATATYPES
FORMAT

TO_DSINTERVAL (char ['nlsparam'])

DESCRIPTION TO_DSINTERVAL converts a character string of CHAR, VARCHAR2, NCHAR,
or NVARCHAR2 datatype to an INTERVAL DAY TO SECOND type. char is the character string to be
converted. The only valid NLS parameter you can specify in this function is NLS_NUMERIC_CHARACTERS.
This argument can have the form NLS_NUMERIC_CHARACTERS = "dg " where d and g represent the
decimal character and group separator, respectively.

TO_LOB
SEE ALSO INSERT, Chapter 40
FORMAT

TO_LOB(long_column)

DESCRIPTION TO_LOB converts LONG values in long_column to LOB values. You can apply this
function only to a LONG column, and only in the SELECT list of a subquery in an INSERT command.

TO_MULTI_BYTE
SEE ALSO CONVERSION FUNCTIONS, Chapter 11
FORMAT

TO_MULTI_BYTE(string)

DESCRIPTION TO_MULTI_BYTE converts the single-byte characters in a character string to their
multibyte equivalents. If a character has no multibyte equivalent, the function returns the character
unconverted.

TO_NCHAR (character)
SEE ALSO CONVERSION FUNCTIONS, TRANSLATE … USING
FORMAT

TO_NCHAR ({char | clob | nclob} [, fmt [, 'nlsparam']])

DESCRIPTION TO_NCHAR (character) converts a character string, CLOB, or NCLOB from the
database character set to the national character set. This function is equivalent to the TRANSLATE …
USING function with a USING clause in the national character set.

TO_NCHAR (datetime)
SEE ALSO CONVERSION FUNCTIONS
FORMAT

TO_NCHAR ({ datetime | interval } [, fmt [, 'nlsparam']])

DESCRIPTION TO_NCHAR (datetime) converts a character string of DATE, TIMESTAMP,
TIMESTAMP WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL MONTH TO
YEAR, or INTERVAL DAY TO SECOND datatype from the database character set to the national
character set.

TO_NCHAR (number)
SEE ALSO CONVERSION FUNCTIONS
FORMAT

TO_NCHAR (n [, fmt [, 'nlsparam']])

DESCRIPTION TO_NCHAR (number) converts a number to a string in the NVARCHAR2 character
set. The optional fmt and nlsparam corresponding to n can be of DATE, TIMESTAMP, TIMESTAMP
WITH TIME ZONE, TIMESTAMP WITH LOCAL TIME ZONE, INTERVAL MONTH TO YEAR, or
INTERVAL DAY TO SECOND datatype.

TO_NCLOB
SEE ALSO CONVERSION FUNCTIONS, Chapter 40
FORMAT

TO_NCLOB (lob_column | char)

DESCRIPTION TO_NCLOB converts CLOB values in a LOB column or other character strings to
NCLOB values. char can be any of the datatypes CHAR, VARCHAR2, NCHAR, NVARCHAR2, CLOB,
or NCLOB. Oracle implements this function by converting the character set of the LOB column from
the database character set to the national character set.

TO_NUMBER
SEE ALSO CONVERSION FUNCTIONS, Chapter 11
FORMAT

TO_NUMBER(string [, fmt [, 'nlsparam']])

DESCRIPTION TO_NUMBER converts a character string to a NUMBER datatype. It requires that the
characters in the string be a properly formatted number with only the characters 0–9, –, +, and . included.
This function is largely unnecessary due to automatic data conversion done by Oracle, except when
used for a character column containing numbers in an ORDER BY or a comparison.
EXAMPLE

TO_NUMBER('333.46')

TO_SINGLE_BYTE
SEE ALSO CONVERSION FUNCTIONS, Chapter 11
FORMAT

TO_SINGLE_BYTE(string)

TO_SINGLE_BYTE 1271

1272 Part VIII: Alphabetical Reference

DESCRIPTION TO_SINGLE_BYTE converts the multibyte characters in a character string to their
single-byte equivalents. If a multibyte character has no single-byte equivalent, the function returns the
character unconverted.

TO_TIMESTAMP
SEE ALSO CONVERSION FUNCTIONS, TO_CHAR, TIMESTAMP, TO_TIMESTAMP_TZ
FORMAT

TO_TIMESTAMP (char [, fmt ['nlsparam']])

DESCRIPTION TO_TIMESTAMP converts char of CHAR, VARCHAR2, NCHAR, or NVARCHAR2
datatype to a value of TIMESTAMP datatype, using a fmt format if char is not in the default format of the
TIMESTAMP datatype. The optional nlsparam has the same purpose in this function as in the TO_CHAR
function for date conversion.

TO_TIMESTAMP_TZ
SEE ALSO CONVERSION FUNCTIONS, TO_TIMESTAMP, TIMESTAMP WITH TIME ZONE
FORMAT

TO_TIMESTAMP_TZ (char [, fmt ['nlsparam']])

DESCRIPTION TO_TIMESTAMP_TZ converts char of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype to a value of TIMESTAMP WITH TIME ZONE datatype.

TO_YMINTERVAL
SEE ALSO CONVERSION FUNCTIONS, INTERVAL YEAR TO MONTH
FORMAT

TO_YMINTERVAL (char)

DESCRIPTION TO_YMINTERVAL converts a character string of CHAR, VARCHAR2, NCHAR, or
NVARCHAR2 datatype to an INTERVAL YEAR TO MONTH type, where char is the character string to
be converted.

TRANSLATE
SEE ALSO REPLACE, Chapter 11
FORMAT

TRANSLATE(string,from,to)

DESCRIPTION TRANSLATE looks at each character in string, and then checks from to see if that
character is there. If it is, TRANSLATE notes the position in from where it found the character, and then
looks at the same position in to. Whatever character it finds there, it substitutes for the character in string.
EXAMPLE

select TRANSLATE('I LOVE MY OLD THESAURUS','AEIOUY','123456')
from DUAL;

TRANSLATE('ILOVEMYOLDTH

3 L4V2 M6 4LD TH2S15R5S

TRANSLATE … USING
SEE ALSO CONVERSION FUNCTIONS, CONVERT, TO_NCHAR, UNISTR
FORMAT

TRANSLATE (text USING { CHAR_CS | NCHAR_CS })

DESCRIPTION TRANSLATE … USING converts text into the character set specified for conversions
between the database character set and the national character set. The text argument is the expression
to be converted.

Specifying the USING CHAR_CS argument converts text into the database character set. The
output datatype is VARCHAR2.

Specifying the USING NCHAR_CS argument converts text into the national character set. The
output datatype is NVARCHAR2.

This function is similar to the Oracle CONVERT function, but must be used instead of CONVERT if
either the input or the output datatype is being used as NCHAR or NVARCHAR2. If the input contains
UCS2 code points or backslash characters (\), use the UNISTR function.

TREAT
SEE ALSO DEREF, REF, Chapter 41
FORMAT

TREAT (expr AS [REF] [schema.] type)

DESCRIPTION TREAT changes the declared type of an expression.
If the declared type of expr is source_type, then type must be some supertype or subtype of source_

type. If the most specific type of expr is type (or some subtype of type), then TREAT returns expr. If the
most specific type of expr is not type (or some subtype of type), then TREAT returns NULL.

If the declared type of expr is REF source_type, then type must be some subtype or supertype of
source_type. If the most specific type of DEREF(expr) is type (or a subtype of type), TREAT returns expr.
If the most specific type of DEREF(expr) is not type (or a subtype of type), then TREAT returns NULL.

TRIM
SEE ALSO LTRIM, RTRIM, Chapter 7
FORMAT

TRIM
([{ { LEADING | TRAILING | BOTH } [trim_character])
 | trim_character
 } FROM] trim_source)

DESCRIPTION TRIM enables you to trim leading or trailing characters (or both) from a character
string. If trim_character or trim_source is a character literal, you must enclose it in single quotes.

If you specify LEADING, Oracle removes any leading characters equal to trim_character. If you
specify TRAILING, Oracle removes any trailing characters equal to trim_character. If you specify
BOTH or none of the three, Oracle removes leading and trailing characters equal to trim_character.

If you specify only trim_source, Oracle removes leading and trailing blank spaces. If either trim_
source or trim_character is a NULL value, then the TRIM function returns a NULL.
EXAMPLE

select TRIM('”' from Title) from MAGAZINE;
select TRIM(leading '”' from Title) from MAGAZINE;
select TRIM(trailing '”' from Title) from MAGAZINE;

TRIM 1273

1274 Part VIII: Alphabetical Reference

TRUNC (Form 1—for Dates)
SEE ALSO COLUMN, DATE FUNCTIONS, TRUNC (Form 2), Chapter 10
FORMAT

TRUNC(date,'format')

DESCRIPTION TRUNC truncates date according to format. Without a format, date is truncated to
12 A.M. (midnight), with the first moment of the new day, today’s date, for any time up to and including
11:59:59 P.M. (just before midnight). See ROUND (Form 1) for valid date format values.

The result of TRUNC is always a date with its time set to 12 A.M., the first moment of the day.

TRUNC (Form 2—for Numbers)
SEE ALSO COLUMN, NUMBER FUNCTIONS, TRUNC (Form 1), Chapter 9
FORMAT

TRUNC(value,precision)

DESCRIPTION TRUNC is value truncated to precision.
EXAMPLES

TRUNC(123.45,0) = 123
TRUNC(123.45,-1) = 120
TRUNC(123.45,-2) = 100

TRUNCATE CLUSTER
SEE ALSO CREATE CLUSTER, DELETE, DROP TABLE, Chapter 17
FORMAT

TRUNCATE CLUSTER [schema.] cluster
 [{DROP | REUSE} STORAGE] ;

DESCRIPTION
Use the TRUNCATE CLUSTER statement to remove all rows from a cluster. By default, Oracle Database
also performs the following tasks:

Deallocates all space used by the removed rows except that specified by the MINEXTENTS
storage parameter

Sets the NEXT storage parameter to the size of the last extent removed from the segment by
the truncation process

Removing rows with the TRUNCATE statement can be more efficient than dropping and re-creating
a cluster. Dropping and re-creating a cluster invalidates dependent objects of the cluster, requires you
to regrant object privileges on the cluster, and requires you to re-create the indexes and cluster on the
table and respecify its storage parameters. Truncating has none of these effects.

Removing rows with the TRUNCATE CLUSTER statement can be faster than removing all rows with
the DELETE statement, especially if the cluster has numerous indexes and other dependencies.

NOTE
You cannot roll back a TRUNCATE statement.

To truncate a cluster, the cluster must be in your schema or you must have the DROP ANY TABLE
system privilege.

■

■

TRUNCATE TABLE
SEE ALSO CREATE TABLE, DELETE, DROP TABLE, Chapter 17
FORMAT

TRUNCATE TABLE [schema.] table
 [{PRESERVE | PURGE} MATERIALIZED VIEW LOG]
 [{DROP | REUSE} STORAGE] ;

DESCRIPTION
TRUNCATE removes all the rows from a table. If you add the DROP STORAGE option, TRUNCATE will
deallocate the space from the deleted rows; if you add the REUSE STORAGE option, TRUNCATE will
leave the space allocated for new rows in the table. DROP STORAGE is the default.

The TRUNCATE command is faster than a DELETE command because it generates no rollback
information, does not fire any DELETE triggers (and therefore must be used with caution), and does not
record any information in a materialized view log. In addition, using TRUNCATE does not invalidate
the objects depending on the deleted rows, or the privileges on the table.

NOTE
You cannot roll back a TRUNCATE statement.

TTITLE (SQL*Plus)
SEE ALSO ACCEPT, BTITLE, DEFINE, PARAMETERS, REPFOOTER, REPHEADER
FORMAT

TTI[TLE] [option [text|variable]... | OFF | ON]

DESCRIPTION TTITLE (Top TITLE) puts a title (may be multiline) at the top of each page of a report.
OFF and ON suppress and restore the display of the text without changing its contents. TTITLE by itself
displays the current TTITLE options and text or variable.

text is a title you wish to give this report, and variable is a user-defined variable or a system-maintained
variable, including SQL.LNO, the current line number; SQL.PNO, the current page number; SQL.RELEASE,
the current Oracle release number; SQL.SQLCODE, the current error code; and SQL.USER, the username.

SQL*Plus uses TTITLE in the new form if the first word after TTITLE is a valid option. The valid
options are

COL n skips directly to position n from the left margin of the current line.

S[KIP] n prints n blank lines. If no n is specified, one blank line is printed. If n is 0, no blank
lines are printed and the current position for printing becomes position 1 of the current line
(leftmost on the page).

TAB n skips forward n positions (backward if n is negative).

BOLD prints the output data in bold print.

LE[FT], CE[NTER], and R[IGHT] left-justify, center, and right-justify data on the current line.
Any text or variables following these commands are justified as a group, up to the end of the
command, or a LEFT, CENTER, RIGHT, or COL. CENTER and RIGHT use the value set by the
SET LINESIZE command to determine where to place the text or variable.

FORMAT string specifies the FORMAT MODEL that will control the format of subsequent
text or variables, and follows the same syntax as FORMAT in a COLUMN command, such
as FORMAT A12 or FORMAT $999,990.99. Each time a FORMAT appears, it supersedes the
previous one that was in effect. If no FORMAT MODEL has been specified, the one set by SET
NUMFORMAT is used. If NUMFORMAT has not been set, the default for SQL*Plus is used.

■

■

■

■

■

■

TTITLE (SQL*Plus) 1275

1276 Part VIII: Alphabetical Reference

Date values are printed according to the default format unless a variable has been loaded with a
date reformatted by TO_CHAR.

Any number of options, pieces of text, and variables may be used in a single TTITLE. Each is
printed in the order specified, and each is positioned and formatted as specified by the clauses that
precede it.

TYPE (Embedded SQL)
SEE ALSO Programmer’s Guide to the Oracle Precompilers
FORMAT

EXEC SQL TYPE type IS datatype

DESCRIPTION PL/SQL lets you assign an Oracle external datatype to a user-defined datatype. The
datatype may include a length, precision, or scale. This external datatype is equivalenced to the user-
defined type and assigned to all host variables assigned to the type. For a list of external datatypes, see
the Programmer’s Guide to the Oracle Precompilers.

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

TZ_OFFSET
SEE ALSO SESSIONTIMEZONE, DBTIMEZONE
FORMAT

TZ_OFFSET
({ 'time_zone_name'
 | '{ + | - } hh : mi'
 | SESSIONTIMEZONE
 | DBTMEZONE
 })

DESCRIPTION TZ_OFFSET returns the time zone offset corresponding to the value entered based
on the date the statement is executed. You can enter a valid time zone name, a time zone offset from
UTC (which simply returns itself), or the keyword SESSIONTIMEZONE or DBTIMEZONE. For a listing
of valid values, query the TZNAME column of the V$TIMEZONE_NAMES dynamic performance view.

UID
FORMAT

UID

DESCRIPTION UID returns an integer that uniquely identifies the session user (the user who
logged on).

UNDEFINE (SQL*Plus)
SEE ALSO ACCEPT, DEFINE, PARAMETERS
FORMAT

UNDEF[INE] variable

DESCRIPTION UNDEFINE deletes the definition of a user variable that has been defined by
ACCEPT, DEFINE, or as a parameter to the START command. You can UNDEFINE the current values
of multiple variables in a single command. The format is shown in the following listing:

undefine variable1 variable2 ...

EXAMPLE To UNDEFINE a variable named Total, use this:

undefine Total

UNION
SEE ALSO INTERSECT, MINUS, QUERY OPERATORS, Chapter 13
FORMAT

select...
 UNION [ALL]
select...

DESCRIPTION UNION combines two queries. It returns all distinct rows for both SELECT
statements or, when ALL is specified, all rows regardless of duplication. The number of columns and
datatypes must be identical between SELECT statements, although the names of the columns do not
need to be. See Chapter 13 for a discussion of the important differences and effects of INTERSECT,
UNION, and MINUS, and the role that precedence plays in the results.

UNISTR
SEE ALSO CONVERSION FUNCTIONS, CONVERT, TRANSLATE … USING
FORMAT

UNISTR ('string')

DESCRIPTION UNISTR takes as its argument a string in any character set and returns it in Unicode
in the database Unicode character set. To include UCS2 codepoint characters in the string, use the
escape backslash (\\) followed by the next number. To include the backslash itself, precede it with
another backslash (\\\\).

This function is similar to the TRANSLATE … USING function, except that UNISTR offers the
escape character for UCS2 codepoints and backslash characters.

UPDATE (Form 1—Embedded SQL)
SEE ALSO EXECUTE IMMEDIATE, FOR, PREPARE, SELECT (Form 2), Programmer’s Guide to the
Oracle Precompilers
FORMAT

EXEC SQL [AT { dbname | :host_variable }]
 [FOR { :host_integer | integer }]
 UPDATE
 [(subquery)
 | [schema.] { table | view } [@db_link | PARTITION (part_name)]]
 SET
 { column = { expr | (subquery_2) }
 | (column [, column]...) = (subquery_1) }
 [, { column = { expr | (subquery_2) }
 | (column [, column]...) = (subquery_1) }]...

UPDATE (Form 1—Embedded SQL) 1277

1278 Part VIII: Alphabetical Reference

 [WHERE { condition | CURRENT OF cursor }]
 [{ RETURN | RETURNING } expr [, expr]... INTO
 :host_variable [[INDICATOR] :ind_variable]
 [, :host_variable [[INDICATOR] :ind_variable]]...]

DESCRIPTION See the description of the various clauses in UPDATE (Form 3). The elements
unique to Embedded SQL follow:

AT dbname optionally names a database from a previous CONNECT statement for a database
name from a previous DECLARE DATABASE statement.

FOR :host_integer sets the maximum number of rows that can be fetched. integer is a named
host variable.

expr may include a host :variable[:indicator].

The WHERE clause may include host variables or arrays.

CURRENT OF updates the last row fetched for the named cursor. However, the cursor must
be open and positioned on the row. If it isn’t, the CURRENT OF clause, which is a part of the
WHERE clause, causes the WHERE to find no rows, and none will be updated. The cursor
must have previously been named in a DECLARE CURSOR statement with a SELECT … FOR
UPDATE OF.

If any host variable in either the SET or WHERE is an array, then all host variables in both must be
arrays, though they do not all need to be the same size arrays. If they are arrays, UPDATE is executed
once for each set of components in the array, and may update zero or more rows. The maximum
number depends on either the size of the smallest array or the integer value in the FOR clause, if one
is specified. See CURSOR FOR LOOP for additional details.

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

UPDATE (Form 2—PL/SQL)
SEE ALSO DECLARE CURSOR, SUBQUERY
FORMAT

UPDATE [user.]table[@dblink]
SET { column = expression | column = (select expression...)
 [[,column = expression]... |
 [,column = (select
expression...)]...] |
 (column [,column]...) = (subquery)}
 [WHERE {condition | CURRENT OF cursor}];

DESCRIPTION UPDATE in PL/SQL works identically to the normal SQL UPDATE statement, with
the exception of the alternative WHERE clause, WHERE CURRENT OF cursor. In this instance, the
UPDATE statement affects just the single row currently in the cursor as a result of the last FETCH. The
cursor SELECT statement must have included the words FOR UPDATE.

Like INSERT, DELETE, and SELECT … INTO, the UPDATE statement always uses the implicit
cursor named SQL. This is never declared (although the SELECT … FOR UPDATE statement must be
DECLAREd in a cursor for the WHERE CURRENT OF cursor to be used). Its attributes are set as follows:

■

■

■

■

■

SQL%ISOPEN is irrelevant.

SQL%FOUND is TRUE if one or more rows are updated, FALSE if no rows are updated.
SQL%NOTFOUND is the opposite of SQL%FOUND.

SQL%ROWCOUNT is the number of rows updated.

UPDATE (Form 3 —SQL Command)
SEE ALSO DELETE, INSERT, SELECT, SUBQUERY, WHERE, Chapter 15
FORMAT
update::=

UPDATE
hint dml_table_expression_clause

ONLY (dml_table_expression_clause)

t_alias

update_set_clause
where_clause returning_clause error_logging_clause

;

DML_table_expression_clause::=

schema . table

partition_extension_clause

@ dblink

view

materialized view

@ dblink

(subquery
subquery_restriction_clause

)

table_collection_expression

partition_extension_clause::=

PARTITION

(partition)

FOR (partition_key_value

,

)

SUBPARTITION

(subpartition)

FOR (subpartition_key_value

,

)

■

■

■

UPDATE (Form 3—SQL Command) 1279

1280 Part VIII: Alphabetical Reference

subquery_restriction_clause::=

WITH

READ ONLY

CHECK OPTION
CONSTRAINT constraint

table_collection_expression::=

TABLE (collection_expression)
(+)

update_set_clause::=

SET

(column

,

) = (subquery)

column =

expr

(subquery)

DEFAULT

,

VALUE (t_alias) =
expr

(subquery)

where_clause::=

WHERE condition

returning_clause::=

RETURNING expr

,

INTO data_item

,

error_logging_clause::=

LOG ERRORS
INTO

schema .
table (simple_expression)

REJECT LIMIT
integer

UNLIMITED

DESCRIPTION UPDATE changes the values in the listed columns in the specified table. The WHERE
clause may contain a correlated subquery. A subquery may select from the table that is being updated,
although it must return just one row. Without a WHERE clause, all rows will be updated. With a WHERE
clause, only those rows it selects will be updated. The expressions are evaluated as the command is
executed, and their results replace the current values for the columns in the row(s).

A subquery must select the same number of columns (with compatible datatypes) as are in parentheses
on the left side of the SET clause. Columns that are set to equal an expression may precede columns in
parentheses set equal to a subquery, all within a single UPDATE statement.
EXAMPLE To set NULL all Publisher values:

update BOOKSHELF set Publisher = NULL ;

The following will update the city of Walpole in the COMFORT table, setting the precipitation for
all Walpole rows to NULL, the noon temperature equal to that in Manchester, and the midnight
temperature equal to the noon temperature minus 10 degrees:

update COMFORT set Precipitation = NULL,
 (Noon, Midnight) =
 (select Temperature, Temperature - 10
 from WEATHER
 where City = 'MANCHESTER')
 where City = 'WALPOLE';

UPDATEXML
SEE ALSO Chapter 52
FORMAT

UPDATEXML (XMLType_instance,
[Xpath_string , value_expr [,Xpath_string , value_expr ...]
[, namespace_string])

DESCRIPTION UPDATEXML takes as arguments an XMLType instance and an XPath value pair
and returns an XMLType instance with the updated value. If Xpath_string is an XML element, then the
corresponding value_expr must be an XMLType instance. If Xpath_string is an attribute or text node,
then the value_expr can be any scalar datatype. The datatypes of the target of each Xpath_string and its
corresponding value_expr must match. The optional namespace_string must resolve to a VARCHAR2
value that specifies a default mapping or namespace mapping for prefixes, which Oracle uses when
evaluating the XPath expressions.

UPPER
SEE ALSO LOWER, Chapter 7
FORMAT

UPPER(string)

DESCRIPTION UPPER converts every letter in string into uppercase.
EXAMPLE

upper('Look what you''ve done!')

produces this:

LOOK WHAT YOU'VE DONE!

UPPER 1281

1282 Part VIII: Alphabetical Reference

UROWID
UROWID (Universal RowID) is the datatype for index-organized tables’ primary keys. The maximum
and default size is 4000 bytes. See DATATYPES and CREATE TABLE.

USER
SEE ALSO UID
FORMAT

USER

DESCRIPTION USER is the name by which the current user is known to Oracle. USER is a function,
and as such can be queried in any SELECT statement.
EXAMPLE

select USER from DUAL;

USERENV
SEE ALSO CHARACTER FUNCTIONS
FORMAT

USERENV(option)

DESCRIPTION USERENV is a legacy function, replaced by SYS_CONTEXT’s UserEnv namespace.
The options and their return values are as follows:

'CLIENT_INFO' Returns up to 64 bytes of user session information that can be stored by an application
using the DBMS_APPLICATION_INFO package.

'ENTRYID' Returns available auditing entry identifier. You cannot use this attribute in distributed
SQL statements. To use this keyword in USERENV, the initialization parameter AUDIT_
TRAIL must be set to TRUE.

'ISDBA' Returns 'TRUE' if the user has been authenticated as having DBA privileges through
either the operating system or a password file.

'LANG' Returns the ISO abbreviation for the language name, a shorter form than the existing
'LANGUAGE' parameter.

'LANGUAGE' Returns the language and territory currently used by your session along with the
database character set in this form: language_territory.characterset

'SESSIONID' Returns your auditing session identifier. You cannot use this attribute in distributed SQL
statements.

'TERMINAL' Returns the operating system identifier for your current session’s terminal. In distributed
SQL statements, this attribute returns the identifier for your local session. In a
distributed environment, this is supported only for remote SELECT statements, not for
remote INSERT, UPDATE, or DELETE operations.

VALUE
SEE ALSO DEREF, REF, Chapter 41
FORMAT

VALUE (correlation_variable)

DESCRIPTION In a SQL statement, VALUE takes as its argument a correlation variable (table alias)
associated with a row of an object table and returns object instances stored in the object table. The
type of the object instances is the same type as the object table. See Chapter 41.

VAR (Embedded SQL)
SEE ALSO SELECT (Form 2), VARIABLE DECLARATION, Programmer’s Guide to the Oracle
Precompilers
FORMAT

EXEC SQL VAR host_variable
 { IS dtyp [({ length | precision, scale })]
 [CONVBUFSZ [IS] (size)]
 | CONVBUFSZ [IS] (size) }

DESCRIPTION PL/SQL lets you override the default datatype assignment of a variable via the VAR
command. Once a variable has been declared, it uses the datatype assigned to it in the DECLARE
command. VAR allows you to change the datatype of a declared variable within a PL/SQL block.

NOTE
See the Programmer’s Guide to the Oracle Precompilers for a full list
of all commands. This reference does not contain all of the possible
precompiler commands.

VAR_POP
SEE ALSO AGGREGATE FUNCTIONS, VAR_SAMP, VARIANCE
FORMAT

VAR_POP (expr) [OVER (analytic_clause)]

DESCRIPTION VAR_POP returns the population variance of a set of numbers after discarding the
NULLs in this set.

VAR_SAMP
SEE ALSO AGGREGATE FUNCTIONS, VAR_POP, VARIANCE
FORMAT

VAR_SAMP (expr) [OVER (analytic_clause)]

DESCRIPTION VAR_SAMP returns the sample variance of a set of numbers after discarding the
NULLs in this set.

VARCHAR2
See DATATYPES.

VARIABLE
SEE ALSO PRINT
FORMAT

VAR[IABLE] [variable_name [NUMBER|CHAR|CHAR (n{CHAR|BYTE])|NCHAR|NCHAR(n)
|VARCHAR2 (n[CHAR|BYTE]) | NVARCHAR2(n) | CLOB | NCLOB | REFCURSOR
|BINARY_FLOAT | BINARY_DOUBLE

DESCRIPTION VARIABLE declares a bind variable that can be referenced in PL/SQL. Each variable
is assigned a variable_name and a type (NUMBER or CHAR). For CHAR variables, a maximum length
(n) can be specified. VARIABLE followed by a variable name lists that variable.

VARIABLE 1283

1284 Part VIII: Alphabetical Reference

EXAMPLES In the following example, a variable named bal is created and is set equal to the result
of a function:

variable bal NUMBER
begin
 :bal := LATE_FEE('DORAH TALBOT');
end;

VARIABLE DECLARATION (PL/SQL)
FORMAT

variable [CONSTANT]
{type | identifier%TYPE | [user.]table%ROWTYPE}
 [NOT NULL]
 [{DEFAULT | :=} expression];

DESCRIPTION PL/SQL lets you declare variables in a PL/SQL block. If you declare the variable to
be CONSTANT, you must initialize the variable with a value in the declaration and you cannot assign a
new value to the variable.

The type of the variable can be a PL/SQL type (see DATATYPES), the type of another PL/SQL variable
or database column given by an identifier, or a ROWTYPE (see %ROWTYPE) that lets you refer to a
record corresponding to a database table.

If you add NOT NULL to the declaration, you cannot assign a NULL to the variable and you must
initialize the variable. The initialization (following a DEFAULT or assignment :=) expression is any valid
PL/SQL expression that results in a value of the type declared.

VARIANCE
SEE ALSO ACCEPT, AGGREGATE FUNCTIONS, COMPUTE, DEFINE, PARAMETERS, STDDEV,
VAR_POP, VAR_SAMP, Chapter 9
FORMAT

VARIANCE ([DISTINCT | ALL] expr) [OVER (analytic_clause)]

DESCRIPTION VARIANCE gives the variance of all values for a group of rows. Like other group
functions, VARIANCE ignores NULL values.

VARRAY
VARRAY is a clause within the CREATE TYPE command that tells the database the limit to the number
of entries within the varying array. See CREATE TYPE for syntax information.

VSIZE
SEE ALSO CHARACTER FUNCTIONS, LENGTH, NUMBER FUNCTIONS, Chapter 9
FORMAT

VSIZE(value)

DESCRIPTION VSIZE is the storage size of value in Oracle. For numbers it is usually smaller than
the apparent length, because less space is required to store numbers in the database.

WHENEVER
SEE ALSO EXECUTE, FETCH

FORMAT

EXEC SQL WHENEVER {NOT FOUND | SQLERROR | SQL WARNING}
 {CONTINUE |
 GOTO label |
 STOP |
 DO routine |
 DO BREAK |
 DO CONTINUE}

DESCRIPTION WHENEVER is not an executable SQL statement, but rather an instruction to the
Oracle language processor to embed an IF condition THEN GOTO label statement after every SQL
statement to follow. As each SQL statement executes, its results are tested to see if they meet the
condition. If they do, the program branches to the label.

WHENEVER may be used with CONTINUE or a different label for each of the three possible
conditions. Each of these will be in effect for all subsequent SQL statements. A new WHENEVER with
one of these conditions will completely replace its predecessor for all subsequent SQL statements.

The NOT FOUND condition is raised any time SQLCODE is 100, meaning, for instance, that a
FETCH failed to return any rows (this includes subqueries in INSERT statements).

SQLERROR occurs whenever SQLCODE is less than 0. These are typically fatal errors and require
serious error handling.

SQLWARNING occurs when a nonfatal “error” occurs. These include truncation of character
strings being loaded into host variables, a select list of columns that doesn’t match the INTO list of
host variables, and DELETE or UPDATE statements without WHERE clauses.

Usually, initial branching, continuation, stopping, or routine execution is set up at the very
beginning of a program, before any executable SQL statements. However, within particular blocks of
logic in the body of the program, any or all of these could be replaced depending upon local needs.
Note that WHENEVER knows nothing about the host language’s scoping rules, calls, or branching.
From the moment a WHENEVER is asserted, its rules remain in effect until another WHENEVER (with
the same condition) replaces it. On the other hand, your program must obey language scoping rules
with regard to the GOTO and label.

The STOP option stops program execution; the DO option calls a host language routine of some
kind, the syntax of which depends on your host language. DO BREAK performs a break from a loop;
DO CONTINUE performs a continue statement from a loop when the condition is met.

Lastly, in an error-handling routine, particularly one that may contain SQL statements, WHENEVER
SQLERROR should probably contain CONTINUE or STOP or should call an exit routine in order to
avoid an infinite loop back into the same error-handling routine.

WHENEVER OSERROR (SQL*Plus)
SEE ALSO WHENEVER SQLERROR
FORMAT

WHENEVER OSERROR
{EXIT [SUCCESS|FAILURE|n|variable|:BindVariable] [COMMIT|ROLLBACK]
|CONTINUE [COMMIT|ROLLBACK|NONE]}

DESCRIPTION WHENEVER OSERROR handles processing logic within SQL*Plus if an operating
system error occurs. EXIT directs SQL*Plus to exit, and CONTINUE turns off EXIT. COMMIT tells
SQL*Plus to issue a COMMIT prior to exiting, and ROLLBACK tells it to issue a ROLLBACK before
exiting. The default behavior is NONE.

WHENEVER OSERROR (SQL*Plus) 1285

1286 Part VIII: Alphabetical Reference

WHENEVER SQLERROR (SQL*Plus)
SEE ALSO WHENEVER OSERROR
FORMAT

WHENEVER SQLERROR
{EXIT [SUCCESS|FAILURE|WARNING|n|variable|:BindVariable]
[COMMIT|ROLLBACK]|CONTINUE [COMMIT|ROLLBACK|NONE]}

DESCRIPTION WHENEVER SQLERROR handles processing logic within SQL*Plus if a SQL
command or a PL/SQL block encounters an error. EXIT directs SQL*Plus to exit, and CONTINUE turns
off EXIT. COMMIT tells SQL*Plus to issue a COMMIT prior to exiting, and ROLLBACK tells it to issue a
ROLLBACK before exiting. The default behavior is NONE.

NOTE
SQL and PL/SQL errors initiate WHENEVER SQLERROR processing.
SQL*Plus errors do not.

You may place WHENEVER SQLERROR in a start file in front of as many SQL statements as you
wish. Each WHENEVER SQLERROR will supersede the one before, and will remain in effect until it is
itself superseded.
EXAMPLE When the CREATE TABLE command in the following example fails because the literal
KEENE is not enclosed in single quotation marks, the subsequent UPDATE and SELECT will never even
execute. The WHENEVER SQLERROR will exit SQL*Plus immediately, and pass the SQL.SQLCODE
back to the host:

WHENEVER SQLERROR EXIT SQL.SQLCODE;

create table KEENE as
select * from COMFORT
 where City = KEENE;

update KEENE set Noon = 75;

select * from KEENE;

WHERE
SEE ALSO DELETE, LOGICAL OPERATORS, PRECEDENCE, SELECT, SYNTAX OPERATORS,
UPDATE
FORMAT

DELETE FROM [user.]table ...
 [WHERE condition]
SELECT ...
 [WHERE condition]
UPDATE [user.]table [alias] ...
 [WHERE condition]

DESCRIPTION WHERE defines those logical conditions that will control which rows a SELECT
statement will return, a DELETE statement will delete, or an UPDATE statement will update.

A condition may be defined in one of several ways:

A comparison between expressions (=, \>, !=, and so on)

A comparison between an expression and a query

■

■

A comparison between a list of expressions and a list of expressions from a query

A comparison between an expression and ANY or ALL members of a list or between an
expression and the values brought back from a query

A test to see if an expression is IN or NOT IN a list, or the results of a query

A test for being BETWEEN or NOT BETWEEN one value and another

A test to see if an expression IS NULL or IS NOT NULL

A test to see if there EXISTS (or NOT EXISTS) any results for a query

A combination of any of the above, using the conjunctions AND and OR

EXAMPLES

where Section =ANY ('A','C','D');
where City !=ALL (select City from LOCATION);
where Section IN ('A','C','D');
where City NOT IN (select City from LOCATION);
where Page BETWEEN 4 and 7;
where Skill IS NULL;
where EXISTS (select * from WORKER where Age \> 90);
where Section = 'A' or Section = 'B' and Page = 1;

WHILE (PL/SQL)
See LOOP, Chapter 34

WIDTH_BUCKET
SEE ALSO NTILE
FORMAT

WIDTH_BUCKET (expr , min_value , max_value , num_buckets)

DESCRIPTION WIDTH_BUCKET constructs equiwidth histograms, in which the histogram range is
divided into intervals that have identical size. (Compare this function with NTILE, which creates
equiheight histograms.) Ideally, each bucket is a “closed-open” interval of the real number line. For a
given expression, WIDTH_BUCKET returns the bucket number into which the value of this expression
would fall after being evaluated. expr is the expression (a number or datetime value) for which the
histogram is being created. If expr evaluates to NULL, the expression returns NULL. min_value and
max_value are expressions that resolve to the end points of the acceptable range for expr. Both of these
expressions must also evaluate to number or datetime values, and neither can evaluate to NULL.
num_buckets is an expression that resolves to a constant that indicates the number of buckets. This
expression must evaluate to a positive integer.

XMLAGG
SEE ALSO SYS_XMLAGG
FORMAT

XMLAGG (XMLType_instance [order_by_clause])

DESCRIPTION XMLAGG is an aggregate function. It takes a collection of XML fragments and
returns an aggregated XML document. Any arguments that return NULL are dropped from the result.

■

■

■

■

■

■

■

XMLAGG 1287

1288 Part VIII: Alphabetical Reference

XMLAGG is similar to SYS_XMLAGG except that XMLAGG returns a collection of nodes.
XMLAGG does not accept formatting using the XMLFORMAT object. Also, XMLAGG does not
enclose the output in an element tag as SYS_XMLAGG does.

XMLCAST
SEE ALSO Chapter 52
FORMAT

XMLCAST (value_expression AS datatype)

DESCRIPTION XMLCAST casts value_expression to the scalar SQL datatype specified by datatype.
The value_expression argument is a SQL expression that is evaluated. The datatype argument can be of
datatype NUMBER, VARCHAR2, or any of the datetime datatypes.

XMLCDATA
SEE ALSO Chapter 52
FORMAT

XMLCDATA (value_expr)

DESCRIPTION XMLCData generates a CDATA section by evaluating value_expr. The value_expr
must resolve to a string.

XMLCOLATTVAL
SEE ALSO Chapter 52
FORMAT

XMLCOLATTVAL (value_expr [AS c_alias] [, value_expr [AS c_alias]])

DESCRIPTION XMLCOLATTVAL creates an XML fragment and then expands the resulting XML so
that each XML fragment has the name column with the attribute name. You can use the AS c_alias
clause to change the value of the name attribute to something other than the column name.

You must specify a value for value_expr. If value_expr is NULL, no element is returned.

XMLCONCAT
SEE ALSO XMLSEQUENCE
FORMAT

XMLCONCAT (XMLType_instance [, XMLType_instance])

DESCRIPTION XMLCONCAT takes as input a series of XMLType instances, concatenates the series
of elements for each row, and returns the concatenated series. XMLCONCAT is the inverse of
XMLSEQUENCE.

XMLDIFF
SEE ALSO Chapter 52
FORMAT

XMLDiff (XMLType_document, XMLType_document [, integer, string])

DESCRIPTION The XMLDiff function is the SQL interface for the XmlDiff C API. This function
compares two XML documents and captures the differences in XML conforming to an Xdiff schema.
The diff document is returned as an XMLType document.

XMLELEMENT
SEE ALSO SYS_XMLGEN
FORMAT

XMLELEMENT (

ENTITYESCAPING

NOENTITYESCAPING

NAME
identifier

EVALNAME value_expr

, XML_attributes_clause , value_expr
AS c_alias

)

XML_attributes_clause::=

XMLATTRIBUTES

(

ENTITYESCAPING

NOENTITYESCAPING

SCHEMACHECK

NOSCHEMACHECK
value_expr

AS
c_alias

EVALNAME value_expr

,

)

DESCRIPTION XMLELEMENT takes an element name for identifier, an optional collection of
attributes for the element, and arguments that make up the content of the element. It returns an instance
of XMLType. XMLELEMENT is similar to SYS_XMLGEN except that XMLELEMENT can include attributes
in the XML returned. XMLELEMENT does not accept formatting using the XMLFORMAT object.

XMLEXISTS
SEE ALSO Chapter 52
FORMAT

XMLEXISTS (XQuery_string
XML_passing_clause

)

XML_passing_clause::=

PASSING
BY VALUE

expr
AS identifier

,

XMLEXISTS 1289

1290 Part VIII: Alphabetical Reference

DESCRIPTION XMLExists checks whether a given XQuery expression returns a nonempty XQuery
sequence. If so, the function returns TRUE; otherwise, it returns FALSE. The argument XQuery_string is
a literal string, but it can contain XQuery variables that you bind using the XML_passing_clause.

The expr in the XML_passing_clause is an expression returning an XMLType or an instance of a
SQL scalar datatype that is used as the context for evaluating the XQuery expression. You can specify
only one expr in the PASSING clause without an identifier. The result of evaluating each expr is bound
to the corresponding identifier in the XQuery_string. If any expr is not followed by an AS clause, the
result of evaluating that expression is used as the context item for evaluating the XQuery_string.

XMLFOREST
SEE ALSO XMLCONCAT
FORMAT

XMLFOREST (value_expr [AS c_alias] [, value_expr [AS c_alias]])

DESCRIPTION XMLFOREST converts each of its argument parameters to XML, then returns an XML
fragment that is the concatenation of these converted arguments.

XMLPARSE
SEE ALSO Chapter 52
FORMAT

XMLPARSE
 ({ DOCUMENT | CONTENT } value_expr [WELLFORMED])

DESCRIPTION XMLParse parses and generates an XML instance from the evaluated result of value_
expr. The value_expr must resolve to a string. If value_expr resolves to null, the function returns null.

XMLPATCH
SEE ALSO Chapter 52
FORMAT

XMLPatch (XMLType_document, XMLType_document)

DESCRIPTION The XMLPatch function is the SQL interface for the XmlPatch C API. This function
patches an XML document with the changes specified. A patched XMLType document is returned.

XMLPI
SEE ALSO Chapter 52
FORMAT

XMLPI
 ({ [NAME] identifier
 | EVALNAME value_expr } [, value_expr])

DESCRIPTION XMLPI generates an XML processing instruction using identifier and optionally the
evaluated result of value_expr. A processing instruction is commonly used to provide to an application
any information that is associated with all or part of an XML document. The application uses the
processing instruction to determine how best to process the XML document.

You must specify a value for Oracle Database to use the enclosing tag. You can do this by specifying
identifier, which is a string literal, or by specifying EVALNAME value_expr. In the latter case, the value

expression is evaluated and the result, which must be a string literal, is used as the identifier. The
identifier can be up to 4000 characters and does not have to be a column name or column reference.
It cannot be an expression or null.

XMLQUERY
SEE ALSO Chapter 52
FORMAT

XMLQUERY

(XQuery_string
XML_passing_clause

RETURNING CONTENT
NULL ON EMPTY

)

XML_passing_clause::=

PASSING
BY VALUE

expr
AS identifier

,

DESCRIPTION XMLQUERY lets you query XML data in SQL statements. It takes an XQuery expression
as a string literal, an optional context item, and other bind variables and returns the result of evaluating
the XQuery expression using these input values.

XMLROOT
SEE ALSO Chapter 52
FORMAT

XMLROOT
 (value_expr, VERSION
 { value_expr | NO VALUE }
 [, STANDALONE { YES | NO | NO VALUE }])

DESCRIPTION XMLROOT lets you create a new XML value by providing version and standalone
properties in the XML root information (prolog) of an existing XML value. If the value_expr already has
a prolog, the database returns an error. If the input is null, the function returns null.

XMLSEQUENCE
SEE ALSO XMLCONCAT
FORMAT

XMLSEQUENCE ({ XMLType_instance | sys_refcursor_instance [,fmt] })

DESCRIPTION XMLSEQUENCE has two forms:

The first form takes as input an XMLType instance and returns a varying array of the top-level
nodes in the XMLType.

The second form takes as input a REFCURSOR instance, with an optional instance of the
XMLFORMAT object, and returns as an XMLSEQUENCE type an XML document for each
row of the cursor.

■

■

XMLSEQUENCE 1291

1292 Part VIII: Alphabetical Reference

XMLSERIALIZE
SEE ALSO Chapter 52
FORMAT

XMLSERIALIZE
 ({ DOCUMENT | CONTENT } value_expr [AS datatype]
 [ENCODING xml_encoding_spec]
 [VERSION string_literal]
 [NO INDENT | { INDENT [SIZE = number] }]
 [{ HIDE | SHOW } DEFAULTS]
)

DESCRIPTION XMLSERIALIZE creates a string or LOB containing the contents of value_expr.

If you specify document, then the value_expr must be a valid XML document.

If you specify content, then the value_expr need not be a singly rooted XML document.
However it must be valid XML content.

The datatype specified can be a string type (VARCHAR2 or VARCHAR, but not NVARCHAR or
NVARCHAR2), BLOB, or CLOB. The default is CLOB.

If datatype is BLOB, then you can specify the encoding clause to use the specified encoding in
the prolog.

Specify the version clause to use the version you provide as string_literal in the XML
declaration (\<?xml version="…" …?\>).

Specify no indent to strip all insignificant whitespace from the output. Specify indent size =
N, where N is a whole number, for output that is pretty-printed using a relative indentation of
N spaces. If N is 0, then pretty-printing inserts a newline character after each element, placing
each element on a line by itself, but omitting all other insignificant whitespace in the output.
If indent is present without a size specification, then 2-space indenting is used. If you omit this
clause, then the behavior (pretty-printing or not) is indeterminate.

hide defaults and show defaults apply only to XML schema–based data. If you specify show
defaults and the input data is missing any optional elements or attributes for which the XML
schema defines default values, then those elements or attributes are included in the output
with their default values. If you specify hide defaults, then no such elements or attributes are
included in the output. hide defaults is the default behavior.

XMLTABLE
SEE ALSO Chapter 52
FORMAT

XMLTABLE (
XMLnamespaces_clause

XQuery_string XMLTABLE_options)

■

■

■

■

■

■

■

XMLnamespaces_clause::=

XMLNAMESPACES (

XMLNamespace_URI AS identifier

DEFAULT XMLNamespace_URI

NO DEFAULT

,

)

XMLTABLE_options::=

XML_passing_clause COLUMNS XML_table_column

,

XML_passing_clause::=

PASSING
BY VALUE

expr
AS identifier

,

XML_table_column::=

column

FOR ORDINALITY

datatype
PATH string DEFAULT expr

DESCRIPTION XMLTable maps the result of an XQuery evaluation into relational rows and
columns. You can query the result returned by the function as a virtual relational table using SQL.

The xmlnamespaces clause contains a set of XML namespace declarations. These declarations are
referenced by the XQuery expression (the evaluated XQuery_string), which computes the row, and by
the XPath expression in the PATH clause of XML_table_column, which computes the columns for the
entire XMLTable function. If you want to use qualified names in the path expressions of the columns
clause, then you need to specify the xmlnamespaces clause.

XQuery_string is a complete XQuery expression and can include prolog declarations.
The expr in the XML_passing_clause is an expression returning an XMLType or an instance of a

SQL scalar datatype that is used as the context for evaluating the XQuery expression. You can specify
only one expr in the passing clause without an identifier. The result of evaluating each expr is bound to
the corresponding identifier in the XQuery_string. If any expr is not followed by an AS clause, then the
result of evaluating that expression is used as the context item for evaluating the XQuery_string.

The optional columns clause defines the columns of the virtual table to be created by XMLTable.

XMLTABLE 1293

1294 Part VIII: Alphabetical Reference

XMLTRANSFORM
SEE ALSO Chapter 52
FORMAT

XMLTRANSFORM (XMLType_instance ,XMLType_instance)

DESCRIPTION XMLTRANSFORM takes as arguments an XMLType instance and an XSL style sheet,
which itself is a form of XMLType instance. It applies the style sheet to the instance and returns an
XMLType.

XMLType
XMLType is a datatype available to store and query XML data in the database. As a type, XMLType has
member functions to access, extract, and query XML data using a class of operations known as XPath
expressions. The SYS_XMLGEN, SYS_XMLAGG, and DBMS_XMLGEN packages create XMLType values
from existing object-relational data. When you designate a column as using the XMLType datatype,
Oracle will internally store the data in a CLOB datatype.

The following listing shows the creation of a table using the XMLType datatype:

create table MY_XML_TABLE
(Key1 NUMBER,
Xml_Column SYS.XMLTYPE);

insert into MY_XML_TABLE (Key1, Xml_Column)
values (1, SYS.XMLTYPE.CREATEXML
 ('<book>
 <title>Complete Reference</title>
 <chapter num= "48">
 <title>Ending</title>
 <text>This is the end of the book.</text>
 </chapter>
</book>'));

select M.Xml_Column.GETCLOBVAL() as XML_Data
 from MY_XML_TABLE M
 where Key1 = 1;

See Chapter 52 for additional details on XMLType and its related methods.

Index

Symbols
! (exclamation mark), 903
!= (not equal to), 75
' (single quotation marks), 907
" (double quotation mark)
:= (set equal to), 911
- (hyphen), 908–909
-- (comment), 909
 – (subtraction)

arithmetic functions, 157–158
reference for, 908

& or && (ampersand or double
ampersand), 907

(pound sign), 904
$ (dollar sign), 904
% (percent)

LIKE operator and, 77–78
reference for, 905
wildcard searches, 459

%FOUND, 905
%ISOPEN, 905
%NOTFOUND, 905
%ROWCOUNT, 906
%ROWTYPE, 906
%TYPE, 906–907
() (parentheses)

operator precedence and,
173–174

reference for, 908
* (multiplication)

arithmetic functions, 157–158

COUNT function and,
169–170

reference for, 908
** (exponentiation), 908
. (period or dot), 909–910
. (period or dot), SQL*Plus, 909
/ (division), 157–158, 910
/ (slash), SQL*Plus, 102–103, 910
: (colon), host variable prefix,

910–911
; (semicolon), 911
? (question mark), 904
@ (at sign)

reference for, 911–912
SQL*Plus, 911

@@ (double at sign), SQL*Plus, 912
^= (not equal to), 75
_ (underscore)

reference for, 903
text searches, 459

_ _ (two underscores), LIKE
operator and, 77–78

_EDITOR. See edit
{} (curly braces)

Java vs. PL/SQL, 685
reference for, 912

| (vertical bar), 912–913
reference for, 904
string literals and, 198

|| (concatenation)
reference for, 913
strings and, 117–118

+ (addition)
arithmetic functions,

157–158
reference for, 908

++ (unary operator), Java, 686
< (less than)

DECODE function and, 285–
286

single-value tests and, 75
<> (not equal to), 75
<<>> (PL/SQL label name

delimiter), 911
<= (less than or equal to), 75
= (equals), 75
> (greater than)

DECODE function and, 285–
286

single-value tests and, 75
>= (greater than or equal to), 75

AA

abbreviations
application planning and,

43–44
difficulties with, 49–50

ABOUT operator, thematic
searches with, 463

ABS (absolute value) function
absolute values, 159–160
reference for, 913
SIGN compared with, 163

1295

1296 Oracle Database 11g: The Complete Reference

abstract datatypes
reference for, 913
USER_TYPES, 747–749

ACCEPT, 913–914
access parameters, external tables,

474–477
account lock/unlock clauses, alter

user command, 334
account management, separation

of duties and, 840
ACCUMULATE, 455–456, 914
ACOS

reference for, 914
trigonometric functions, 164

active session history (ASH), 770
active tables, separating active and

static tables, 382
adapter services, URM (Universal

Records Manager), 846
ADD_FILTER procedure, DBMS_

WORKLOAD_CAPTURE,
503–504

addition (+)
arithmetic functions, 157–158
reference for, 908

ADDM (Automatic Database
Diagnostic Monitor), 770

ADD_MONTHS
combining with LAST_DAY

function, 182–183
date functions, 178–179
reference for, 914

ADD_POLICY, DBMS_RLS, 361,
363

administration. See also database
administration

separation of duties, 840
user security, 844

Advanced Replication Guide, 432
advisors, data dictionary, 768
AFTER triggers, 551, 553
aggregate functions

AVG, COUNT, MAX, MIN,
and SUM, 166–167

combining single-value
functions with, 167–169

DISTINCT in, 169–170
examples of, 165–166
NULLs in, 164–165

number functions, 164
overview of, 156
reference for, 914–915
STDDEV and VARIANCE, 169

aliases
reference for, 915
views and, 215–216

ALL operator, 916
alphanumeric datatypes, 114
alter cluster, 916–918
alter database

flashback off, 500
flashback on, 498
open resetlogs, 497
reference for, 918–927
renaming databases, 859

alter dimension, 927–929
alter diskgroup, 929–933
alter flashback archive, 933–934
alter function, 586, 934–935
alter index

creating invisible indexes, 317
rebuild online clause, 319,

544
rebuilding text indexes, 451
reference for, 935–940

alter indextype, 940–941
alter java, 941
alter materialized view

consider fresh clause, 444
reference for, 941–948
syntax, 448

alter materialized view log, 948–
949

alter operator, 950–951
alter outline, 809, 951
alter package, 586, 951–952
alter procedure, 586, 952
alter profile

modifying password
lifetime, 335

reference for, 952–953
alter resource cost, 954
alter role

adding passwords to a role,
347

reference for, 954
removing passwords from a

role, 347

alter rollback segment, 954–955
alter sequence, 955–956
alter session

close database link, 419
globalization support, 767
overview of, 306
reference for, 956

alter system
closing TDE wallets, 370
overview of, 306
reference for, 956–960
set encryption key, 372
switch logfile, 542
UNDO_RETENTION

parameter, 380
alter table

altering actively used tables,
306, 544

buffer_pool clause, 808
cascade constraints clause,

308, 548
drop clause for dropping

columns, 307–308
encrypt option, 370
encrypting/decrypting

columns, 371
exchange partition, 330, 831
external tables access

parameters, 479–480
making tables read-only, 306
managing partitioned

tables, 329
move clause, 373, 633
move online option, 311, 545
NOT NULL and, 302–305
partition clause, 545
reference for, 960–989
segment space management,

872–873
use of, 295

alter tablespace
creating read-only tablespaces,

379–380
reference for, 990–993
renaming tablespaces, 376,

862
alter trigger

compile command, 567
debug command, 567

Index 1297

enable/disable clauses, 567
reference for, 993

alter type
for managing methods, 624
reference for, 994–997

alter user
account lock/unlock

clauses, 334
changing passwords, 333
default role clause, 348
quota parameter, 352
re-enabling expired

accounts, 335
reference for, 998–999
tablespace settings, 377

alter view, 999
analytic functions, 1000
analyze

list chained rows into
clause, 765

reference for, 1000–1001
statistics and, 745

AND operator
combination operators

compared with, 239
combining logical expressions,

81–82
exact match searches and,

454–457
precedence rules,

173–174
reference for, 1001

anonymous blocks, PL/SQL, 514
ANSI SQL standard, for outer

joins, 231
ANY operator, 1001–1002
APIs (application programming

interfaces)
direct invocation of static Java

stored procedures, 718
manipulating LOB

values, 643
append command, 105

SQL*Loader, 388
SQL*Plus, 1002

APPEND function, DBMS_LOB
package, 658–660

APPEND hint, 260–261
APPENDCHILDXML, 1002

application context, creating in
VPD, 357–359

application-killing queries, tuning
case study 2, 827–830

application programming
interfaces (APIs)

direct invocation of static Java
stored procedures, 718

manipulating LOB values, 643
applications

atomic data models, 57
avoiding unnecessary trips to

database, 773–774
brevity vs. clarity, in

naming, 61
business model and, 57–58
capitalization and, 51
codes, abbreviations, and

naming standards, 43–44
commandments for humane

design, 62
cooperative approach, 33
data and, 56–57
data entry and, 58
eliminating logical

reads, 772
environments and, 42–43
everyday examples of

relational databases, 39–41
foreign keys, 60
human factor in good

design, 52
in/keep/out approach to

managing data, 34
intelligent keys and column

values, 61–62
level-name integrity, 59
natural language names

(English) for tables and
columns, 49–50

natural language queries, 42
natural language words

(English) for data, 50
normalization and, 44–49,

51–52
object names, 59, 61
overview of, 32–33
queries and reports and,

58–59

relationships as basis for
relational databases,
38–39

risks related to relational
databases, 41–42

simple query example,
36–37

singular names, 60–61
SQL (Structured Query

Language) and, 35–36
tables of information and, 35
tasks and, 52–56
transparent application

failover, 854–855
architecture

choosing, 9–10
data storage, 7–8
databases and instances, 5
indexes supported, 6–7
privileges, 8
programmatic structures for

accessing, 8–9
tables supported, 5–6

architecture, advanced, 836–846
Oracle Content Database

Suite, 842–845
Oracle Database Vault. See

Oracle Database Vault
Oracle Records Database,

845–846
ARCHIVE LOG

ARCHIVELOG mode, 395–396
online backups and, 877–879
reference for, 1002–1003
switchovers and, 540

arithmetic, date arithmetic, 176
arithmetic functions

addition (+), subtraction (–),
multiplication (*), and
division (/), 157–158

NULL values and, 158
arithmetic operators

Java, 686
precedence rules, 173–174

arrays, varying. See varying arrays
AS

reference for, 1003
renaming columns with

aliases, 215

1298 Oracle Database 11g: The Complete Reference

as of timestamp, flashback
queries, 485

as table of, create type, 632
as varray(), create type, 626
ASCII

converting numeric values to/
from strings, 133

editing in SQL*Plus and, 107
reference for, 1003

ASCIISTR, 1003
ASH (active session history), 770
ASIN function

reference for, 1004
trigonometric functions, 164

ASM (Automatic Storage
Management)

advantages of, 871
bigfile tablespaces and, 381
configuring, 872
data storage options, 7
installing in $ORACLE_HOME

directory, 849
RAC and, 848
redundancy and, 849–850

ASMM (Automatic Shared Memory
Management), 861–862

associate statistics, 1004–1005
ATAN function, 164, 1005
ATAN2 function, 164, 1005
atomic business model, 57
atomic data models, 57
atomic tasks, 55
attributes

datatype, 748
SQL*Plus, 1006
XML, 884–887

audit
data dictionary views, 764
reference for, 1006–1009

audit logs, 556–557
AUM (Automatic Undo

Management)
data storage options, 7
flashback queries and, 484
flashback table and, 494
overview of, 866
tablespaces and, 380

authentication, 573
authid option, create procedure, 573
authorization, multifactor, 837

autocommit feature
JDBC and, 703
of set, 261

automated SQL tuning, 770
Automated Workload Repository.

See AWR (Automated Workload
Repository)

automatic conversion, of datatypes
overview of, 202–204
warning regarding, 204–205

Automatic Database Diagnostic
Monitor (ADDM), 770

automatic refresh, materialized
views, 444–445

Automatic Shared Memory
Management (ASMM), 861–862

Automatic Storage Management.
See ASM (Automatic Storage
Management)

Automatic Undo Management.
See AUM (Automatic Undo
Management)

averages, compute avg, 99
AVG function

combining single-value
functions with group-value
functions, 168

NULLs in group-value
functions, 165

number functions, 166–167
reference for, 1009

AWR (Automated Workload
Repository)

baselines, 771
capturing workload and, 503
DBMS_WORKLOAD_

CAPTURE package, 506
DBMS_WORKLOAD_REPLAY

package, 509
exporting AWR data, 506, 509
RAC installation and, 849
wait time statistics,

824–825, 827

BB

B*-tree indexes
indexes supported by

Oracle 11g, 6
use of, 317

backing up
Data Pump for, 875–876
offline, 876–877
online, 877–880
overview of, 875

badfile clause, SQL*Loader, 387
baselines

AWR (Automated Workload
Repository), 771

SQL plan baselines, 771
batches, long running (case study 3),

830–833
BEFORE triggers, 551, 553
begin

Java vs. PL/SQL, 685
PL/SQL Executable

Commands, 514, 518
reference for, 1009

BETWEEN operator
automatic conversion

and, 202
date arithmetic and, 192
reference for, 1009

BFILE (Binary File)
BFILENAME procedure, 646,

664, 1009–1010
functions and procedures,

663–664
LOB datatypes, 640
Oracle datatypes, 114

BFILENAME, 646, 664,
1009–1010

bigfile tablespace, 7, 381
Binary File. See BFILE (Binary File)
Binary LOBs. See BLOBs

(Binary LOBs)
binary operators, 686
BINARY_DOUBLE datatype,

1010
BINARY_FLOAT datatype, 1010
bind variables

application-killing queries
(case study 2), 828

BIND_VARIABLE and BIND_
ARRAY functions in DBMS_
SQL package, 594

dynamic SQL and,
591–592

BIND_ARRAY function, DBMS_
SQL, 594

Index 1299

BIND_VARIABLE function,
DBMS_SQL, 594

BIN_TO_NUM function
reference for, 1010
specialized conversion

functions, 205
BITAND, 1010
bitmap clause, create index, 316
bitmap indexes

column alternatives, 317
creating, 315–316
indexes supported by

Oracle 11g, 6
reverse keyword, 314

BLOBs (Binary LOBs)
as LOB datatypes, 640
maximum size, 649
Oracle datatypes, 114
reference for, 1010

blocks
Java vs. PL/SQL, 684
PL/SQL, 514
procedures and, 573–574
reference for, 1010–1011
storing data at block

level, 777
blocksize, sizing/managing

memory areas, 860
Boolean logic, 454–457
break clause, Java, 688
break, SQL*Plus commands,

98–99, 1011–1012
btitle, SQL*Plus, 110, 1012
buffer, wait times (case study 1),

824–825
buffer_pool clause, create table or

alter table, 808
bulk operations, PL/SQL

bulk collect, 607–608
forall operator, 1507
overview of, 605

business models/process
application planning and, 57–58
as focus of design, 772

CC

cache. See also SQL Result Cache
disk caching, 777
LOB storage, 643

OCI client query cache,
821–822

querying result caches, 771
sizing/managing memory

areas, 860
tuning and, 808

call
calling functions, 579
calling procedures within

triggers, 560
executing Java classes, 717
reference for, 1013

candidate keys, 299
capitalization, 51
CARDINALITY

nested tables and varying
arrays and, 636

reference for, 1014
cascade constraints clause,

308, 548
cascade option, drop user

command, 338
case clause, Java, 688–689
CASE function

as alternative to DECODE,
286–289

executing complex logical
tests with, 278

case sensitivity
capitalization in names and

data, 51
functions (UPPER, LOWER,

INITCAP), 123–125
REGEXP_SUBSTR searches

with case-sensitivity
matching, 145

SQL*Plus, 67–68
strings and, 116

case statements, PL/SQL, 519–520,
529–530

CAST, 1014–1015
catalogs, USER_CATALOG (CAT),

730–731
catch block, exception handling in

Java, 693
CATSEARCH function

ABOUT operator, 463
ACCUM (accumulate) operator

and, 456

Boolean logic in exact match
searches, 456–457

exact match searches for a
phrase, 457–458

exact match searches for a
single word, 453–454

exact match searches for
multiple words, 454–457

index sets and, 464–465
options, 463
reference for, 1015
text queries and, 452

CBO (cost-based optimizer), 776
CEIL function

overview of, 160
reference for, 1015

centuries
multiple, 193
TO_DATE function and, 192

CHAINED_ROWS, data dictionary
views, 765

change
SQL*Plus, 1015–1016
start and end markers

(delimiters), 104
change category clause, alter

outline, 809
CHAR datatype

automatic conversion and, 202
character width and NUMBER

precision, 295
converting/transforming, 198
Oracle datatypes, 114
overview of, 114–115
reference for, 1016
RPAD and LPAD functions,

118–119
SUBSTR function and, 128

character classes, 143–144
character data, 630
character functions, 1016–1018
Character LOBs. See CLOBs

(Character LOBs)
character strings. See also strings

converting DATE or NUMBER
to, 202

overview of, 114
TO_CHAR function for

converting date into
character string, 184–188

1300 Oracle Database 11g: The Complete Reference

TO_DATE function for
converting character string
into date, 184

CHARTOROWID, 1018
CHECK constraint, 301
CHR function

converting numeric values to/
from strings, 133

reference for, 1018–1019
CIS (Content Integration

Suite), 843
classes

accessing Java classes,
716–718

Java, 694–698
JDBC, 700–704
loading Java classes into

database, 711, 715–716
number function, 156

clauses, 74
clear

breaks, 111
columns, 111
computes, 111
SQL*Plus, 1019

client query cache, 821–822
CLOBs (Character LOBs)

as LOB datatypes, 640
longer list of values and, 450
maximum size, 649
Oracle datatypes, 114
reference for, 1019
returning data in CLOB

format, 894
CLOSE

CLOSE_CURSOR function,
DBMS_SQL, 596

reference for, 1019
Cluster Ready Services (CRS), 849
clustered tables, 6
CLUSTER_ID, 1020
CLUSTER_PROBABILITY, 1020
clusters. See also RAC (Real

Application Clusters)
overview of, 320–321
USER_CLU_COLUMNS, 747
USER_CLUSTERS (CLU),

746–747

CLUSTER_SET, 1021
COALESCE function

executing complex logical
tests with, 278

list functions, 171
reference for, 1021
returning non-NULL values, 285

code
errors (USER_ERRORS), 754
size (USER_OBJECT_SIZE), 755
why use code instead of

English, 43–44
cold backups, 876–877
COLLECT, 1021
collection functions, 626–638

accessing remote. See remote
access

location of data, 638
nested tables. See nested

tables
reference for, 1021
types of, 624
USER_COLL_TYPES, 749
variability in, 637
varying arrays. See varying

arrays
column command

listing all columns with,
109–110

SQL*Plus commands, 97–98
column-level VPD, 363
column objects, 666
column value histograms, 735
column values, 61–62
columns

add column clause, 479
cluster columns (USER_CLU_

COLUMNS), 747
comments (USER_COL_

COMMENTS), 742
constraints, 299, 740–743
DEFINE_COLUMN

function, 595
dictionary views (USER_TAB_

COLUMNS), 734–735
dropping, 307–308, 547–548
encrypting/decrypting,

370–371
English names for, 49–50

headings, 103
indexed, 317
indexed columns (USER_IND_

COLUMNS), 745–746
joining, 220–221
listing all, 109–110
loading variable-length data,

387–388
NOT NULL columns, 544
partitions and subpartitions

and, 760
precision of NUMBER

columns, 296–297
privileges (USER_COL_

PRIVS), 762
reference for, 1022–1023
rules for adding/modifying,

305–306
singular names, 60–61
table characteristics, 35
virtual, 306–307, 543–544
when to use indexes, 789–791
width options, 295

COLUMN_VALUE, DBMS_SQL,
595–596

combination operators, 239
command line editor

append command, 105–106
change command, 104
del command, 105–106
SQL*Plus, 103–106

command-line parameters
Data Pump export, 402
Data Pump import, 408–410

command rules, 836–837,
841–842

commands, Java, 686–687
commands, SQL*Plus

/**/, 102–103
break on, 98–99
building reports, 94
column, 97–98
compute avg, 99–100
define_editor command, 108
edit, 107–108
host, 108
list of basic, 93
rem, 94–97
save, 107

character strings (continued)

Index 1301

set headsep (heading
separator), 97

set linesize, 100
set newpage, 100–101
set pagesize, 100
set pause, 106–107
spool, 101–103
start, 96, 109
store, 107
ttitle and btitle, 97

comments
column comments (USER_

COL_COMMENTS), 742
comment command, 742–743
reference for, 1024
table comments (USER_TAB_

COMMENTS), 742
commit

implicit commit, 263
inserting, deleting, and

updating data and, 261
recovery and, 268
reference for, 1024

COMPARE function, DBMS_LOB
package, 655–657

compile clause, 586
complex groups, 242–243
complex logic, DECODE function

and, 285–286
COMPOSE, 1024
compound triggers, 552,

565–566
compute, SQL*Plus

computing averages, 99–100
reference for, 1025

compute statistics clause, create
index, 776, 788

concatenate clause, within control
file, 391–392

concatenation (||)
reference for, 913
strings, 117–118

concurrent users, wait times (case
study 1), 830–833

conditional logic
Java, 687–690
PL/SQL, 519–520

configuration files, checking
following upgrade, 29

connect
moving privileges to another

user, 340–343
SQL*Plus, 1025–1026

connect as SYSDBA, 858
connect by clause

excluding individuals and
branches of family trees,
251–252

family trees and, 248–251
order of execution and, 255
reference for, 1026

connection objects, JDBC, 703
consider fresh clause, alter

materialized views, 444
constant keyword, declaring

variables in PL/SQL, 515–516
constraint clause, create table, 301
constraints

cascade constraints clause, 308
CHECK constraint, 301
create table, 299–300
EXCEPTIONS table, 741–742
foreign key constraints,

300–301
naming, 301
reference for, 1026–1029
USER_CONS_COLUMNS,

740–742
USER_CONSTRAINTS,

739–740
consumers, user security, 844
CONTAINS function

ABOUT operator, 463
exact match searches for a

phrase, 457–458
exact match searches for a

single word, 453–454
exact match searches for

multiple words, 454–457
fuzzy matches, 460–461
options, 462
proximity searches for,

458–459
reference for, 1030
sounds like searches,

461–463
stem-based searches, 460
text queries and, 452

types of text searches possible
with, 453

wildcard searches, 459
Content Integration Suite (CIS), 843
contents, of tablespaces, 376–378
CONTEXT text index

ABOUT operator and, 463
exact match searches for a

phrase, 457–458
exact match searches for a

single word, 453–454
exact match searches for

multiple words, 454–457
fuzzy matches, 460–461
index synchronization and,

463–464
proximity searches for,

458–459
sounds like searches, 461–463
stem-based searches, 460
types of text indexes, 451
wildcard searches, 459

continue clause, loops, 692
continue, PL/SQL

conditional logic, 519
continue when statements,

528–529
continueif clause,

SQL*Loader, 392
contributors, user security

and, 844
control files

concatenate clause within,
391–392

create controlfile, 1036–1038
DTDs compared with, 886
SQL*Loader, 386–387,

392–394
conversion functions, 198–206

automatic conversion of
datatypes, 202–204

elementary conversion
functions, 200–202

list of, 198–200
reference for, 1030–1031
specialized conversion

functions, 205–206
warning regarding automatic

conversion, 204–205

1302 Oracle Database 11g: The Complete Reference

CONVERT, 1031–1032
COPY procedure, DBMS_LOB

package, 661–662
COPY, SQL*Plus, 1032–1033
CORR, 1033
correlated subqueries

EXISTS and, 227–229
overview of, 224–225

CORR_K, 1033
CORR_S, 1033
COS

reference for, 1033
trigonometric functions, 164

COSH
reference for, 1033
trigonometric functions, 164

cost-based optimizer (CBO), 776
COUNT function

DISTINCT and, 169–170
examples of single-value and

group-value functions,
166–167

group by clause and, 210
grouping rows and, 795
NULLs in group-value

functions, 165
number functions, 166–167
reference for, 1034
REGEXP_COUNT compared

with, 152–153
COVAR_POP, 1034
COVAR_SAMP, 1034
CPUs

performance and, 778
wait times and, 826

create cluster
create table compared with,

320
reference for, 1034–1036
storage clause, 863–865

create context
application context, 357–359
reference for, 1036

create controlfile, 1036–1038
create database

overview of, 20
reference for, 1038–1041
SYSDBA and, 858

create database link
creating database links, 750
overview of, 423
reference for, 1041–1042
shared keyword, 424

create dimension, 437,
1042–1044

create directory
accessing external data

and, 468
creating directories, 5,

400, 750
creating workload

directory, 503
reference for, 1044

create diskgroup, 872
reference for, 1044–1045

create function
reference for, 1046–1047
syntax, 575–576

create global temporary table,
6, 243

create index
bitmap clause, 316
compute statistics clause,

776, 788
encrypted columns and, 371
local and global options, 329
materialized views, 437
nonunique indexes and, 788
object type attributes, 616
overview of, 314
rebuild clause, 319
reference for, 1048–1054
storage clause, 863–865
tablespace keyword, 318
text indexes, 451

create indextype, 1054–1055
create java, 1055–1056
create library, 767, 1056
create materialized view

automatic refresh, 444–445
overview of, 432–434
reference for, 1056–1063
refresh interval, 441

create materialized view log,
446–447, 1063–1065

create operator, 767, 1065–1066

create or replace
functions, 576, 579
overview of, 586
package bodies, 583
procedures, 573
views, 89, 312

create outline, 809, 1066–1067
create package

reference for, 1067
syntax, 582–585

create package body, 583, 1067
create pfile

reference for, 1067–1068
from spfile, 862

create procedure
accessing Java classes

and, 716
reference for, 1068–1069
syntax, 573–575

create profile
password management

and, 333
reference for, 1069–1071
resource limits and, 761

create restore point, 1071
create role, 1071
create rollback segment, 1072
create schema, 1072
create sequence, 321–322,

1072–1073
create spfile, 862, 1073–1074
create synonym

database links for
synonyms, 420

overview of, 343
reference for, 1074
x for y, 614

create table
constraints on, 299–300
create cluster compared with,

320–321
creating new table from

existing, 308–310
creating tables, 5
degree of parallelism and, 808
enforcing constraints and,

299–300
external tables, 469–472

Index 1303

LOBs (large objects),
641–642

naming constraints, 301
NEWSPAPER table example, 68
nologging keyword, 309–310
object tables, 667
organization external

clause, 469
organization index clause, 310
overview of, 294
partition by hash clause,

325–326
partition by range clause,

324–325
primary keys and,

299–300, 788
reference for, 1074–1093
rounding off during insertion

of values, 297–298
as select, 308–310
storage clause, 863–865

create table as select
data-copying upgrade

method, 23
encrypting tablespaces, 373
loading external tables on

creation, 477–478
create tablespace

blocksize specification
with, 860

creating tablespaces, 376
Data Pump Import utility

executing, 28
encrypting tablespaces,

371–373
reference for, 1093–1095

create temporary tablespace,
380, 867

create trigger
creating compound triggers,

565–566
overview of, 552–553
reference for, 1096–1098

create type
as table of clause, 632
as varray() clause, 626
reference for, 1098–1102
security and, 613

specifying tablepaces for
nested tables, 633

syntax for, 623–624
working with object types, 612

create type body
creating methods and, 622
methods defined with, 747
reference for, 1102–1104
syntax of, 623

create undo tablespace, 380
create unique index, 315
create user

account lock, 335
overview of, 332–333
password expire clause, 336
quota parameter, 352
reference for, 1104–1105

create view
aliases and, 215–216
creating/replacing views, 89
creating views, 311
database links for views, 420
generating OIDs, 676
implementing object

views, 618
listing column names in

header of, 736
MAKE_REF function, 676–677
order by clause and, 312–313
with read only clause, 313
reference for, 1105–1107

CREATE_ERROR_LOG, 274
CREATE_POLICY_GROUP,

DBMS_RLS, 365
crosstab reports

DECODE function for,
280–281

PIVOT and UNPIVOT
operators and, 289

CRS (Cluster Ready Services), 849
CTXCAT text index

ABOUT operator and, 463
exact match searches for a

phrase, 457–458
exact match searches for a

single word, 453–454
exact match searches for

multiple words, 454–457

index sets and, 464–465
types of text indexes, 451

CTX_DDL package, 463–464
CTXRULE text index, 451
CUBE

grouping operations,
244–248

reference for, 1107
CUBE_TABLE, 1107–1108
CUME_DIST, 1108
curly braces ({})

Java vs. PL/SQL, 685
reference for, 912

CURRENT_DATE
date functions, 176–177
reference for, 1108

CURRENT_TIMESTAMP, 1108
cursor FOR loop

overview of, 525–526
reference for, 1109

cursors
CLOSE_CURSOR

function, 596
cursor FOR loops,

525–526, 1109
cursor loops, 522–524
Java loops and, 692
OPEN_CURSOR function, 593
PL/SQL, 1108–1109

CURSOR_SHARING, 828
CurVal, sequences and, 322
cutting and pasting strings, 118

LTRIM, RTRIM, and TRIM
functions, 119–120

RPAD and LPAD functions,
118–119

CV, 1109

DD

dangling REF, 673
data

accessing external, 468–469
accessing remote. See remote

access
atomic data models, 57
capitalization and, 51
English words for, 50

1304 Oracle Database 11g: The Complete Reference

in/keep/out approach, 34
JDBC for manipulating,

704–707
maintaining duplicated data,

556–557
manipulating with object

views, 619–620
testing large volumes, 779
understanding, 56–57

data-copying method
choosing upgrade

method, 23
performing upgrade with, 28
upgrade options, 22

data dictionary cache, 861
data dictionary views. See

dictionary views
data entry, application planning

and, 58
Data Guard

configuration, 538
data protection modes,

537–538
physical vs. logical standby

databases, 537
standby databases supported

by, 536
data loading. See SQL*Loader
data mining functions, 1109
Data Pump, 400–415

backing up with, 875–876
backup options, 503
choosing upgrade method, 23
creating a dictionary, 400
export options, 400–403,

405–407
exporting from another

database, 405
generating SQL, 413–415
import options, 407–410, 412
overview of, 400
performing upgrade with,

27–28
programmatic access methods

supported by Oracle 11g, 9
starting export job, 403–404
stopping/restarting export jobs,

404–405

stopping/restarting import jobs,
411–412

transforming imported objects,
412–413

upgrade options, 22
data segments, 865
data sets, manipulating, 794
data storage, 7–8. See also storage
database administration

ASM (Automatic Storage
Management), 871–872

backing up databases, 875
creating databases, 858
Data Pump, 875–876
free space, 868
index segments, 865
initialization parameter

file, 862
managing tablespaces,

862–863
monitoring undo

tablespaces, 871
object sizes, 868–871
OEM (Oracle Enterprise

Manager) for, 858–859
offline backups, 876–877
online backups, 877–880
overview of, 858
RMAN (Recovery Manager),

880–881
segment space management,

872–873
sizing/managing memory

areas, 860–861
SMU (system-managed

undo), 866
starting/stopping databases,

859–860
storage parameters for

segments, 863–865
table segments, 865
temporary segments, 867
transporting tablespaces,

873–875
database administrators. See DBAs

(database administrators)
Database Configuration Assistant.

See DBCA (Database
Configuration Assistant)

database-level triggers
creating event triggers,

564–565
overview of, 552

database links
how they work, 418–419
login options, 422–423
materialized views and, 430
overview of, 418
private vs. public, 422
for remote queries, 419–420
for remote updates, 421
shared, 424
SQL replay and, 502
for synonyms and views, 420
USER_DB_LINKS, 750–752

database replay, 771
Database Upgrade Assistant. See

DBUA (Database Upgrade
Assistant)

databases
adding text to, 450–451
architecture of, 5
avoiding repeated connections

to, 774
avoiding unnecessary trips to,

773–774
highly available, 536
indexes placed in, 318
maximizing block size, 777
objects in, 679–680
Oracle Content Database, 843
remote access. See remote

access
standby. See standby databases
tablespaces and, 376
telling database what it needs

to know, 776
data files

assigning to tablespaces, 376
creating tablespaces and, 862

datatypes. See also by individual
datatype

attributes (USER_TYPE_
ATTRS), 748

avoid dynamic datatype
conversions, 599

conversion. See conversion
functions

data (continued)

Index 1305

Java, 686
logical standby databases and,

538–539
methods (USER_TYPE_

METHODS and USER_
METHOD_PARAMS), 748

object types. See object types
Oracle, 114
other possibilities, 749
PL/SQL, 516
reference for, 1110
transformation of, 206–208
USER_TYPES, 747–749
XML, 895–897

DATE. See also date functions
automatic conversion and, 202
converting/transforming, 198
as Oracle datatypes, 114
overview of, 176
reference for, 1111

date arithmetic, 176
date formats, 1111–1112
date functions

adding months, 178
combining, 182–183
date arithmetic and, 176
difference between two dates,

177–178
EXTRACT function, 194
GREATEST and LEAST

functions, 179–180
LAST_DAY function, 181–182
MONTHS_BETWEEN

function, 182
multiple centuries, 193
NEW_TIME function, 189
NEXT_DAY function,

180–181
overview of, 176
reference for, 1112–1114
ROUND and TRUNC and,

183–184
subtracting months, 178–179
SYSDATE, CURRENT_DATE,

and SYSTIMESTAMP,
176–177

TIMESTAMP datatype and,
194–195

TO_CHAR errors, 188–189

TO_DATE and TO_CHAR
formatting, 184–188

TO_DATE calculations,
190–191

where clauses and, 192–193
days

LAST_DAY function, 181–182
NEXT_DAY function, 180–181

DBA_AUDIT_TRAIL, 764
DBA_RECYCLEBIN, 738
DBA_ROLE_PRIVS, 763
DBAs (database administrators).

See also database administration
auditing views, 764
configuring TDE, 368
data dictionary views, 766
functions of, 858
managing standby

databases, 536
Oracle Net and, 418
Oracle recommendations

regarding account access,
840

SQL replay and, 503
DBCA (Database Configuration

Assistant)
creating databases, 858
creating initial database, 17–18
launching at conclusion of

Oracle software
installation, 14

launching manually, 20
DBMS_ADVISOR, 438–441
DBMS_FLASHBACK, 484
DBMS_LOB

APPEND function, 658–660
COMPARE function, 655–657
COPY procedure, 661–662
ERASE procedure, 660–661
GETLENGTH function, 655
INSTR function, 653–655
list of functions and

procedures, 644–645
overview of, 648–649
READ procedure, 649–652
SUBSTR function, 652–653
TRIM procedure, 661
WRITE procedure, 657–658

DBMS_OUTPUT, 649–650

DBMS_PROFILER, 599–604
DBMS_REDEFINITION, 545–547
DBMS_RESULT_CACHE, 819–820
DBMS_RLS

ADD_POLICY procedure,
361, 363

CREATE_POLICY_GROUP
procedure, 365

DROP_POLICY procedure, 363
initial configuration of VPD

and, 356
list of procedures, 364

DBMS_SQL
BIND_VARIABLE and BIND_

ARRAY, 594
CLOSE_CURSOR function, 596
DEFINE_COLUMN

function, 595
EXECUTE function, 594
FETCH_ROWS, EXECUTE_

AND_FETCH, and
COLUMN_VALUE
functions, 595–596

OPEN_CURSOR function, 593
overview of, 592–593
PARSE procedure, 594

DBMS_STATS, 480
DBMS_STATS.GATHER_

DICTIONARY_STATS, 25
DBMS_WORKLOAD_CAPTURE

functions and parameters, 504
overview of, 503

DBMS_WORKLOAD_REPLAY,
506–508

DBMS_XMLQuery, 894
DBTIMEZONE, 1114
DBUA (Database Upgrade

Assistant)
choosing upgrade method, 23
performing upgrade with,

25–26
upgrade options, 22

ddl_lock_timeout parameter, 306
DDLs, 543–548

adding NOT NULL
columns, 544

altering actively used
tables, 544

creating virtual columns,
543–544

1306 Oracle Database 11g: The Complete Reference

dropping columns, 547–548
event triggers, 560–564
online object reorganizations,

544–547
operations, 552

debugging procedures, 577–578
Declarations section, PL/SQL,

514–518
DECLARE cursor (Form 1,

Embedded SQL), 1114–1115
DECLARE cursor (Form 2,

PL/SQL), 1115
DECLARE database, Embedded

SQL, 1115
declare keyword, PL/SQL, 514
DECLARE statement, Embedded

SQL, 1115
DECLARE table, 1116
declaring variables, Java, 685
DECODE

CASE function used in place
of, 286–289

format of, 278
greater than and less than in,

285–286
overview of, 278–281
PIVOT and UNPIVOT

operators and, 289–292
placing within other DECODE

function calls, 282–285
query using to perform

calculations, 280
reference for, 1116
replacing values with, 281–

282
ternary operator compared

with, 689
transformation functions,

207–208
DECOMPOSE, 1117
decrypt option, alter table, 371
default directory clause, alter table

command, 479
default directory, external tables,

473–474
default keyword, PL/SQL variable

declaration, 515–516
default login, database links,

422–423

default role clause, alter user, 348
default storage clause, create

tablespace, 371
DEFINE_COLUMN, in

DBMS_SQL, 595
define_editor, SQL*Plus, 108
degree of parallelism, 808
del command, 105
DEL, SQL*Plus, 1117
delete

Embedded SQL reference,
1120

Java stored procedures and, 711
object tables, 669
overview of, 66
PL/SQL reference, 1118
records, 311
removing row or rows with,

267–268
rows in a view, 311
SQL reference, 1118–1120
truncate command compared

with, 268
XSU for processing, 892

DELETE_FILTER, in DBMS_
WORKLOAD_CAPTURE, 504

DELETEXML, 1120
delimiters, change command

and, 104
DENSE_RANK, 1120–1121
DEPTH, 1121
DEPTREE object, 766
DEREF

object views and, 675
overview of, 670–672
reference for, 1121

desc keyword, Oracle queries, 74
describe

column definitions, 734
Embedded SQL reference,

1121
LOBs (large objects) and, 750
SQL*Plus, 70
SQL*Plus reference, 1121
viewing datatypes with, 634

design
commandments for humane

design, 62
human factor in good

design, 52

DICT_COLUMNS, 729–730
dictionaries, creating, 400
DICTIONARY, 729–730
dictionary-managed tablespaces,

7, 378
dictionary tables, SQL Result

Cache, 821
dictionary views

abstract datatypes, 747–749
advisors, 768
auditing, 764
catalogs, 730–731
CHAINED_ROWS, 765
clusters, 746–747
column privileges, 762
columns, 734–735
comments, 742–743
constraints, 739–742
database links, 750–752
DBA-only views, 766
dimensions, 755–756
extents, 757–758
free space, 761
Globalization Support

parameters, 767
heterogeneous services, 767
indexes, 743–746
indextypes and operators, 767
interdependencies, 766
libraries, 767
LOBS, 749–750
materialized views, 751–753
new views in Oracle 11g,

725–728
nomenclature and, 724–725
objects, 731
Oracle Label Security and, 766
outlines, 768
overview of, 724
partitions and subpartitions,

758–760
PLAN_TABLE, 765–766
procedures, functions, and

packages, 753–755
Recycle Bin, 738
resource limits, 761–762
road maps (DICTIONARY and

DICT_COLUMNS), 729–730
roles, 763–764
schedulers, 768

DDLs (continued)

Index 1307

segments, 757–758
sequences, 738
space quotas, 757
SQL Result Cache, 821
SQL*Loader and, 766–767
synonyms, 737–738
system privileges, 762–763
table privileges, 762
tables, 731–733
tablespaces, 756–757
triggers, 753
users, 761
V$ performance tables, 765
views, 735–737

dimensions, 755–756
direct path loading, SQL*Loader,

396–398
direct upgrades, 22
directories

create directory command, 5
creating a workload

directory, 503
external tables, 473–474

DISASSOCIATE_STATISTICS, 1122
disconnect

from session clause, 539
SQL*Plus, 1122–1123

disk caching, 777
disk space, throughput and, 777
diskgroups, configuring ASM

and, 872
DISTINCT function

in group functions, 169–170
reference for, 1123

distinct keyword, 795
division

division (/), 157–158, 910
MOD (modulus) function and,

160–161
DML statements

BEFORE and AFTER triggers
and, 551

combining trigger types,
554–556

DO-WHILE loops, 690–691
document management, Oracle

Content Database Suite, 843–844
Document Type Definitions. See

DTDs (Document Type
Definitions)

double quotation mark (")
reference for, 904
string literals and, 198

drop cluster, 1123
drop column clause, alter

table, 479
drop context, 1123
drop database, 1123
drop database link, 1123–1124
drop dimension, 1124
drop directory, 1124
drop diskgroup, 1124
drop flashback archive, 1125
drop function, 587, 1125
drop index, 1125
drop indextype, 1125
drop java, 1125
drop library, 1126
drop materialized view,

448, 1126
drop materialized view log,

448, 1126
drop operator, 1126
drop outline, 810, 1127
drop package, 587, 1127
drop procedure, 587, 1127
drop profile, 1127
drop restore, 1127–1128
drop role, 349, 1128
drop rollback segment, 1128
drop sequence, 1128
drop synonym, 1128
drop table

flashback and, 494
overview of, 302
reference for, 1129
triggers and, 564

drop tablespace, 1129
drop trigger, 567, 1129
drop type, 1129
drop type body, 1130
drop user, 338, 1130
drop view, 1130
DROPJAVA, 1130
dropped tables

recovering, 494–496
tables supported by

Oracle 11g, 6
DROP_POLICY, in DBMS_RLS, 363
DTDs (Document Type Definitions)

compared with control file
specifications, 886

syntax of XML tags, 884
well-formed documents

and, 885
XML Schema as alternative

to, 887
XSU and, 890

DUAL table
for quick tests and

calculations, 178
reference for, 1130

DUMP, 133, 1130–1131
dynamic performance views

(V$), 765
Dynamic SQL

JDBC and, 700
programmatic access methods

supported by Oracle 11g, 8

EE

edit
reference for, 1131
SQL*Plus commands,

107–108
editions, Oracle 11g, 13
elements, XML, 884–887
else

CASE function and,
286, 288

conditional logic in Java, 688
conditional logic in

PL/SQL, 519
DECODE function and, 284

else if
conditional logic in Java, 688
conditional logic in

PL/SQL, 519, 688
embedded objects, 666
EMPTY_BLOB, 1131
EMPTY_CLOB, 1131
enable/disable clauses, alter

trigger, 567
encrypt keyword, 371–373
encrypt option, alter table,

370–371
encrypted tablespace, 381
encryption. See TDE (Transparent

Data Encryption)

1308 Oracle Database 11g: The Complete Reference

end
CASE function and, 286
Java vs. PL/SQL, 685
reference for, 1131–1132
terminating PL/SQL blocks, 514

end if, Java, 688
end loop clause, 521
English. See also natural language

code vs., 43–44
names for tables and columns,

49–50
SQL and, 35–36
words for data, 50

environments
changing environments as

benefit to application
design, 42–43

checking SQL*Plus
environment, 109–111

maximizing throughput, 776
equality, 791–792
equals (=), 75
ERASE, in DBMS_LOB, 660–661
errors

handling, 273–275
procedures and, 580–581
triggers and, 558–559

events
database event triggers,

564–565
DDL event triggers, 560–564
system-defined event

attributes, 561–563
exact match searches

for multiple words, 454–457
for a phrase, 457–458
for single word, 453–454

EXCEPTION_HINT, 1135
exceptions

customizing error
conditions, 581

handling in Java, 693
handling in PL/SQL, 514,

531–533
reference for, 1132–1135
triggers and, 558–559

EXCEPTIONS table, constraints,
741–742

exchange partitions, 831–832

EXCLUDE option, for Data Pump
export jobs, 405–407

EXCLUDE option, for Data Pump
import jobs, 412

executable commands
Java, 686–687
PL/SQL, 518–519

execute
in DBMS_SQL, 594
Dynamic Embedded SQL,

1136
procedures and functions,

571, 585
reference for, 1135–1136

EXECUTE IMMEDIATE, Dynamic
Embedded SQL, 590–591, 1136

EXECUTE_AND_FETCH, in
DBMS_SQL, 595–596

EX_FULL_DATABASE, 402
exist when clause, loops, 521
EXISTS

correlated subqueries and,
227–229

reference for, 1137
EXISTSNODE, 1137
exit

implicit commit and, 263
PL/SQL reference, 1137
SQL*Plus reference,

1137–1138
exit condition, FOR loops, 524
EXP

number functions, 161–162
reference for, 1138

explain plan
overview of, 765–766
queries and, 829
reference for, 1138
set autotrace on command

compared with, 782
showing execution path for a

query, 785–786
explicit login, database links, 423
export, Data Pump

command-line
parameters, 402

EXCLUDE, INCLUDE, and
QUERY options for export
jobs, 405–407

exporting from another
database, 405

list of options, 400–403
starting export job, 403–404
stopping/restarting export jobs,

404–405
EXPORT_AWR

DBMS_WORKLOAD_
CAPTURE, 506

DBMS_WORKLOAD_
REPLAY, 509

eXtensible Markup Language. See
XML (eXtensible Markup
Language)

extents
creating tablespaces and, 863
free extents, 868
impact of extent size on

performance, 869–870
storage parameters,

863–864
USER_EXTENTS, 757–758

external procedures, 575
external programs, 9
external tables, 468–481

access parameters,
474–477

accessing external data, 5,
468–469

altering, 478–480
creating, 469–472
data loading and, 398
default directory, 473–474
limitations, benefits, and uses

of, 480–481
loading on creation, 477–478
location of, 477
long running batches and, 831
overview of, 468
tables supported by

Oracle 11g, 5
type declaration, 472–473

EXTRACT
dates and, 194
reference for, 1138–1139
TO_CHAR function vs., 185
TO_DATE function and, 191
XML reference, 1139

EXTRACTVALUE, 1139

Index 1309
FF

failover, transparent application,
854–855

family trees
basic rules, 255
connect by clause and,

248–251
excluding individuals and

branches, 251–252
moving backward toward

roots, 253–254
fast refresh, materialized views, 444
FEATURE_ID, 1139–1140
FEATURE_SET, 1140
FEATURE_VALUE, 1140–1141
FETCH

Embedded SQL reference, 1141
PL/SQL reference, 1141–1142

FETCH_ROWS, in DBMS_SQL,
595–596

fields terminated by ",",
SQL*Loader, 387

file_specification, 1142–1143
filters, SQL replay, 503–504
finally block, exception handling

in Java, 693
FINISH_CAPTURE, in DBMS_

WORKLOAD_CAPTURE,
505–506

FIRST, 1143–1144
First Normal Form, 45
FIRST_VALUE, 1144
flashback database, 497–500

flashing back to SCN or
timestamp, 498

overview of, 497–500
recovery area, 498–499
reference for, 1144–1145
reverting database to prior

point in time, 381
tablespace support for, 381
verifying flashback status, 500

FLASHBACK object privileges, 494
flashback queries, 484–491

overview of, 8, 484
planning for, 457
saving data to separate table,

485–486

SCN-based flashback,
486–487

SCN row associations,
488–489

SQL Result Cache and, 821
time-based flashback, 484–

485
version queries, 455–457
what if it fails, 488

flashback table, 494–497
enabling/disabling Recycle

Bin, 496
flashing back to SCN or

timestamp, 496–497
indexes and statistics and, 497
overview of, 494
privileges required, 494
recovering dropped tables,

494–496
recovery from Recycle

Bin, 738
reference for, 1145–1146
undo tablespace and, 498

flashback table to before drop
freeing space, 868
overview of, 6
recovering dropped

tables, 495
tablespaces, 378

flashback version queries, 8
FLOOR

NUMBER datatype and, 203
overview of, 160
reference for, 1146

footers, SQL*Plus reports, 97
for each row clause, row-level

triggers and, 553
for keyword

FOR loops and, 524, 691
reference for, 1146

FOR loops
Java, 691
PL/SQL, 524–525

forall operator, PL/SQL bulk
operations, 607

foreign keys
column names and, 60
referential integrity

constraints, 300

tablespace constraints,
300–301

USER_CONSTRAINTS view
and, 740

formats
date formats and TO_CHAR

function, 186–188
date formats and TO_DATE

function, 191–192
reference for, 1146

free extents, tablespaces, 868
free space, USER_FREE_SPACE,

761
from

DECODE function and, 283
Oracle queries, 36–37, 72
order of execution, 255
performing outer joins, 231
reference for, 1146
referencing table

names, 419
select command and, 730

FROM_TZ, 1146–1147
Full exports, Data Pump, 402
function-based indexes

application-killing queries
and, 828

creating, 319–320
indexes supported by

Oracle 11g, 6
functions

calling own, 579
compiling, 586
data dictionary views,

753–755
dropping, 587
naming, 581–582
overview of, 570
procedures compared

with, 572
replacing, 586
SQL Result Cache and, 821
syntax of create function

command, 575–576
tuning PL/SQL, 598
USER_SOURCE, 753–754
viewing source code, 585

fuzzy match searches, Oracle Text,
460–461

1310 Oracle Database 11g: The Complete Reference

GG

generations, family trees, 249
GET, SQL*Plus, 1147
GETLENGTH, in DBMS_LOB, 655
GET_SYSTEM_CHANGE_

NUMBER, in DBMS_
FLASHBACK, 486

GET_XML, 894
global keyword, 329
Globalization Support views, data

dictionary, 767
goals, hints and, 805
goto

Java, 688–689
reference for, 1147

grant
column privileges, 762
giving others access to your

tables, 339
with grant option, 340,

344–345
privileges, 337
privileges for executing

procedures, 570–571
privileges to a role,

345–346
public access and, 351
reference for, 1148–1149
resource limits, 761
roles, 346–347

granules, cache size, 860–861
graphical user interface

(GUI), 858
greater than (>)

DECODE function and,
285–286

single-value tests and, 75
greater than or equal to (>=), 75
GREATEST

dates and, 179–180
list functions, 171
reference for, 1149
ternary operator compared

with, 690
grep command, UNIX, 140
Grid environments, OEM for

managing, 850, 859

group by
collecting “like items,” 212
combining single-value

functions with group-value
functions, 169

materialized views, 435
order by clause used

with, 220
order of execution, 213–214
reference for, 1150
rows, 795–796
summary tables and, 430
use of, 210–211
views, 800

group-value functions
AVG, COUNT, MAX, MIN,

and SUM, 166–167
combining single-value

functions with, 167–169
DISTINCT and, 169–170
examples of, 165–166
NULL values and, 164–165
number functions, 165–166
overview of, 156, 164
STDDEV and VARIANCE, 169

GROUP_ID, 1150
GROUPING

operations, 247–248
reference for, 1150

GROUPING_ID, 1151
groups

complex, 242–243
group by and having clauses

and, 210–211
joining columns, 220–221
logic in having clause,

218–220
order by clause used with

having clause and group by
clause, 212–213, 220

order of execution,
213–214

other possibilities, 221
ROLLUP, GROUPING, and

CUBE functions, 244–248
views. See views, of groups

GUI (graphical user interface), 858

HH

HASH JOIN, 804
hash partitions, 325–326
having clause

logic in, 218–220
order by clause used with,

212–213, 220
order of execution,

213–214
use of, 210–211

headers, SQL*Plus reports, 97
headings

column, 97, 103
set headsep command, 97

HELP, SQL*Plus, 1151
heterogeneous services, data

dictionary, 767
HEXTORAW, 1151
high availability, 536
high-water mark, tables, 261, 397
hints

goals and, 805
indexes, 793
joins and, 804–807
methods and, 805
query execution paths

and, 776
reference for, 1151
syntax for specifying, 787
tuning and, 787

histograms
column value histograms, 735
partitions and subpartitions

and, 760
host, SQL*Plus, 108, 1151
HTML (Hypertext Markup

Language), 884

II

I/O (input/output)
calibration, 771
enhanced statistics for, 771
long running batches and, 831
wait times, 824–826

identified keyword, alter role, 347
IDEPTREE object, 766

Index 1311

if
Java, 688
nesting, 519–520
PL/SQL, 519
reference for, 1152

if, then, else, 278. See also
DECODE

import, Data Pump, 407–410
command-line parameters,

408–410
EXCLUDE, INCLUDE, and

QUERY options for import
jobs, 412

stopping/restarting import jobs,
411–412

transforming imported objects,
412–413

in clause, subqueries and,
238–239

in/keep/out approach, data
management, 34

IN operator
combination operators

compared with, 239
reference for, 1152
TO_DATE function and, 192

INCLUDE option
Data Pump export,

405–407
Data Pump import, 412

index-organized tables
creating, 310–311
reference for, 1153
tables supported by

Oracle 11g, 5
INDEX RANGE SCAN, 789–790
index segments, 865
index sets, 464–465
index synchronization, 463–464
index tablespace, 300
INDEX UNIQUE SCAN, 788
indexes

bitmap indexes, 315–316
creating, 314, 451–452, 774
enforcing uniqueness, 315
flashback table command

and, 497
function-based, 319–320

hints, 793
how many to use on a

table, 318
invisible indexes, 317
materialized views, 436–437
object type attributes,

615–617
operations, 787–789
overview of, 313–314
partitions and subpartitions

and, 329, 760
placing in database, 318
rebuilding, 319
reference for, 1152
separating from tables in

tablespaces, 382
testing impact on load

time, 779
tuning, 793–794
types supported, 6–7
unique indexes, 315
USER_IND_COLUMNS,

745–746
USER_INDEXES (IND),

743–745
variety in indexed

columns, 317
when to create, 316–317
when to use, 789–794

indextypes and operators, data
dictionary views, 767

INDICATOR variable, 1153
indirect upgrades, 23
information, data vs., 34
infoset, XML and, 884
INITCAP

case functions for strings,
123–125

how it works, 202–203
manipulating LOB values, 648
reference for, 1154

initial extent, disk space
allocation, 376

initialization parameters
file of, 862
RAC (Real Application

Clusters), 850–852
init.ora, 1154

inner joins, 234–235
input/output. See I/O (input/output)
INPUT, SQL*Plus, 1155
insert

APPEND hint for improving
performance, 260–261

auto rollback, 263
Embedded SQL reference,

1155
error handling, 273, 275
implicit commit, 263
Java stored procedures

and, 711
merge command and, 270
multiple inserts, 263–267
overview of, 258
PL/SQL reference,

1155–1156
records, 311
records into nested tables,

633–634
records into varying arrays,

628–629
REF function and, 671
rollback, commit, and

autocommit, 261
rounding off and, 297–298
rows into object tables,

667–668
rows into views, 311
savepoints and, 262
select and, 259–260
SQL commands, 66
SQL reference, 1156–1158
SQL*Loader, 388
subqueries and LOBs and, 647
TABLE function, 635
time values, 258–259
triggers for setting inserted

values, 556
XSU for processing, 891

insert as select
data-copying upgrade method,

23, 28
long running batches

and, 832
INSERTCHILDXML, 1158
INSERTXMLBEFORE, 1158–1159

1312 Oracle Database 11g: The Complete Reference

insider threats, Oracle Database
Vault and, 836

installing Oracle 11g, 12–20
configuration assistants, 17–18
edition options and

licensing, 13
Oracle Administration

Assistant, 19–20
OUI (Oracle Universal

Installer), 13–17
overview of, 12–13
password management, 19

installing RAC (Real Application
Clusters)

overview of, 849–850
preinstallation steps, 848–849

instances, architecture and, 5
INSTEAD OF triggers, 551, 553,

620–622
INSTR

DBMS_LOB package,
653–655

reference for, 1159
REGEXP_INSTR compared

with, 146
regular expression support, 137
strings, 129–133
where clause and, 134–135

integrity constraints
level-name, 59
reference for, 1159
referential, 300

intelligent keys, 61–62
Interactive Mode

Data Pump export, 403
Data Pump import, 410

interdependencies, data dictionary
views, 766

interim tables, 545–546
intersect

combining lists, 235–238
operations that manipulate

data sets, 794
processing/comparing results

of multiple queries, 798
reference for, 1160
restrictions on, 235–238
SORT UNIQUE NOSORT

operation, 795

INTERVAL DAY TO SECOND,
1160

interval partitions, 327–329
INTERVAL YEAR TO MONTH,

1160
invisible indexes, 317
IS A SET, 1160
IS ANY, 1160
IS EMPTY, 1160–1161
IS NULL, 79, 1161
IS PRESENT, 1161
isolation and links, SQL replay,

502–503
ITERATION_NUMBER,

1161–1162

JJ

Java
accessing XSU, 890
classes, 694–698
conditional logic, 687–690
datatypes, 686
declaring variables, 685
exception handling, 693
executable command,

686–687
JDK (Java Development

Kit), 685
loops, 690–692
overview of, 684
PL/SQL compared with,

684–685
programmatic access methods

supported by Oracle 11g, 9
reserved words, 694
stored procedures. See stored

procedures, Java
Java Development Kit (JDK), 685
java.sql classes, 703
JDBC (Java Database Connectivity),

700–707
classes, 700–704
data manipulation,

704–707
overview of, 700
programmatic access methods

supported by Oracle 11g, 9
JDK (Java Development Kit), 685

joins
advanced subqueries and, 224
column, 220–221
correlated subqueries,

224–225
HASH JOIN, 804
hints, 804–807
MERGE JOIN, 802–803
natural or inner, 234–235
NESTED LOOPS, 803–804
outer. See outer joins
overview of, 801
reference for, 1162

KK

key-based encryption. See TDE
(Transparent Data Encryption)

keys, intelligent, 61–62
keywords

clauses, 74
Oracle queries, 36–37
SQL, 72–73

Kofax Release script, 844

LL

labels, PL/SQL, 1162
LAG, 1162–1163
language java clause, create

procedure, 716
LAST, 1163
LAST_DAY function

combining with ADD_
MONTHS function,
182–183

date functions, 181–182
reference for, 1163

LAST_VALUE function, 1163
LEAD, 1163–1164
leading clause, TRIM function, 123
LEAST

dates and, 179–180
list functions, 171
reference for, 1164

leaves/leaf nodes, family trees, 248
LENGTH

reference for, 1164
strings, 125

Index 1313

less than (<)
DECODE function and,

285–286
single-value tests and, 75

less than or equal to (<=), 75
LEVEL, 1164
level-name integrity, 59
libraries

data dictionary, 767
JDBC-related in Oracle 11g

installation, 700
library cache, 861
licensing, installing Oracle 11g

and, 13
LIKE

overview of, 77–78
pattern matching and, 75
reference for, 1164–1165

lines, set linesize, 100
list chained rows into clause, of

analyze command, 765
list functions, 170–172

finding rows with MAX or
MIN, 172–173

overview of, 156, 170–172
precedence rules and,

173–174
reference for, 1165

lists
list partitions, 326–327
SQL*Plus reference, 1165
UNION, INTERSECT, and

MINUS for combining,
235–238

LN
number functions, 161–162
reference for, 1165

LNNVL, 1165–1166
load time, 779
loaders. See SQL*Loader
Loadjava Utility options,

712–715
lob clause, create table command,

641–642
LOBs (large objects)

APPEND function, 658–660
BFILE functions and

procedures, 663–664
COMPARE function, 655–657

converting LONG to LOB,
305–306

COPY procedure, 661–662
datatypes supported, 640–641
DBMS_LOB package for

manipulating LOB values,
648–649

deleting, 664
ERASE procedure, 660–661
GETLENGTH function, 655
initializing values, 645–647
insert and, 647
INSTR function, 653–655
manipulating and selecting,

643–644
out-of-line data for

storing, 638
overview of, 9, 640
READ procedure, 649–652
reference for, 1166
storing, 641–643
string functions for

manipulating, 647–648
SUBSTR function, 652–653
TRIM procedure, 661
updating, 647
USER_LOBS, 749–750
WRITE procedure, 657–658

local keyword, create index
command, 329

locally managed tablespaces,
7, 378

LOCALTIMESTAMP function, 1166
location clause, external

tables, 477
location transparency, synonyms

for, 424–425
locator values, LOBs and,

645–646
lock table, 1166–1167
LOG, 161–162
log errors clause, error

handling, 274
LOG_ARCHIVE_DEST, 540
logic

combining (AND and OR),
81–82

coordinating logical tests,
226–227

having clause and,
218–220

value and, 74
logical backups, Data Pump,

875–876
logical model, normalization

and, 45
logical operators

precedence rules, 173–174
reference for, 1167–1168
simple tests against a list of

values, 79–81
single-value tests and,

74–75
where keyword and, 74

logical reads, application design
and, 772

logical records, SQL*Loader,
391–392

logical standby databases
creating, 538–539
physical standby databases

compared with, 537
switchovers to, 542

logical volume management
(LVM), 850

login options, database links,
422–423

login.sql, 108
logon trigger, 359–360
logs

LOB storage, 643
materialized view, 446–447,

752–753
reference for, 1166–1167

LONG
LOB datatypes in place

of, 640
Oracle datatypes, 114
Oracle support for changing to

LOB, 305–306
reference for, 1168
set long command, 735–736

LONG RAW
LOB datatypes in place of, 640
reference for, 1169

long running batches, tuning case
study 3, 830–833

loop keyword, 521

1314 Oracle Database 11g: The Complete Reference

loops, 690–692
Cursor FOR loops, 525–526
cursor loops, 522–524
cursors and, 692
DO-WHILE loops, 690–691
FOR loops, 524–525, 691
overview of, 521
reference for, 1169
simple, 521
WHILE loops, 527–528,

690–691
LOWER

case functions for strings,
123–125

reference for, 1169
LPAD

cutting and pasting strings,
118–119

family trees and, 249–251
NUMBER datatype and, 203
reference for, 1169

LTRIM
combining two functions,

120–122
cutting and pasting strings,

119–120
manipulating LOB values, 647
reference for, 1169–1170

LVM (logical volume
management), 850

MM

MAKE_REF
create view command,

676–677
reference for, 1170

manual refresh, materialized view,
445–446

manual upgrade
choosing upgrade method, 23
performing, 26
upgrade options, 22

many-to-many relationships,
normalization and, 46

map method, 624
master encryption key, 372
match_parameter variable,

144–145

materialized views, 430–448
altering, 448
automatic refresh,

444–445
DBMS_ADVISOR and,

438–441
divide and conquer approach

to data, 778
dropping, 448
fast refresh, 444
functionality of, 430
indexing, 436–437
log syntax, 446–447
manual refresh, 445–446
overview of, 430
prebuilt tables and, 436
query execution paths and,

437–438
read-only vs. updatable,

431–432
refreshing, 441–444
RowID vs. primary

key-based, 436
syntax for creating, 432–435
system privileges required,

430–431
table privileges required, 431
tables supported by

Oracle 11g, 6
types of, 435–436
USER_MVIEW, 751–752
USER_MVIEW_LOGS,

752–753
MAX

combining single-value
functions with group-value
functions, 168

examples of single-value and
group-value functions,
166–167

finding rows with, 172–173
grouping rows and, 795
indexes supporting, 317
NULLs in group-value

functions, 165
number functions,

166–167
reference for, 1170
when to use indexes, 792

maxvalue option, partitioned
tables, 325

MEDIAN, 1170
memory areas, sizing/managing,

860–861
merge

error handling, 275
overview of, 66
reference for, 1170–1172
update command and,

270–273
MERGE JOIN, 802–803
metadata, object, 7
methods

alter type command for
managing, 624

defining with create type body
command, 747

hints and, 805–807
Java class, 695
objects, 622
syntax for create type

command, 623–624
USER_TYPE_METHODS

and USER_METHOD_
PARAMS, 748

MIN
combining single-value

functions with group-value
functions, 168

examples of single-value and
group-value functions,
166–167

finding rows with, 172–173
grouping rows and, 795
indexes supporting, 317
NULLs in group-value

functions, 165
number functions, 166–167
reference for, 1172
when to use indexes, 792

minus
combining lists, 235–238
operations that manipulate

data sets, 794
processing/comparing results

of multiple queries, 797–798
reference for, 1172–1173
restrictions on, 235–238

Index 1315

SORT UNIQUE NOSORT
operation, 795

MOD (modulus) function
division and, 160–161
reference for, 1173

model functions, 1173
modify column clause, alter table

command, 479
monitoring, real-time SQL

monitoring, 771
months

adding, 178
MONTHS_BETWEEN function,

182, 204, 1173
subtracting, 178–179

MONTHS_BETWEEN
automatic conversion

and, 204
date functions, 182
reference for, 1173

move clause, alter table command,
373, 633

move online option, alter table
command, 311, 545

MTU settings, RAC installation
and, 848–849

multifactor authorization, 837
multimaster configuration,

materialized views and, 431
multimaster replication, 432
multiple inserts, 263–267
multiplication (*), 157–158
MULTISET functions, 636

NN

name clause, create procedure
command, 716

names
brevity vs. clarity, in

naming, 61
capitalization and, 51
constraints, 301
English names for tables and

columns, 49–50
normalizing, 51–52
object name normalization,

58–59
object name thesaurus, 61

procedures and functions,
581–582

singular names, 60–61
standards, 43–44
table characteristics, 35
triggers, 560

NANVL, 1173
National Language Support, for

strings, 136
native dynamic SQL

bind variables, 591–592
DBMS_SQL and, 592
EXECUTE IMMEDIATE,

590–591
natural keyword, 234–235
natural language

names (English) for tables and
columns, 49–50

queries, 42
words (English) for data, 50

NCHAR
National Language

Support, 136
reference for, 1174

NCHR, 1174
NCLOB

LOB datatypes, 640
reference for, 1174

NEAR
CONTEXT text index, 458
reference for, 1174

NESTED LOOPS, 803–804
nested tables, 632–638

additional functions for,
636–637

as collector, 624
create type command, 637
inserting records into,

633–634
management issues, 637
overview of, 632–633
specifying tablepaces

for, 633
USER_NESTED_TABLES, 749
variability in, 637
working with, 634–636

network access, user
security, 844

NETWORK_LINK parameter, 405

NEW_TIME
reference for, 1174
for switching time zones, 189

next extent, disk space allotted for
tablespace, 376

NEXT_DAY
date functions, 180–181
reference for, 1174

NEXTVAL
reference for, 1174
sequences and, 322

NLS_CHARSET_DECL_LEN, 1174
NLS_CHARSET_ID, 1175
NLS_CHARSET_NAME, 1175
NLS_INITCAP, 1175
NLS_LOWER, 1175
NLSSORT, 1176
NLS_UPPER, 1175
NOARCHIVELOG mode,

395–396
noaudit, 1176–1177
nodes

adding to cluster, 854–855
RAC (Real Application

Clusters), 855–856
nologging

create table command,
309–310

long running batches and, 832
tablespaces, 380

nonunique indexes, 787
normalization, 44–49

as analysis, not design, 52
defined, 41
logical model and, 45
of names, 51–52
navigating through data and,

46–49
of objects, 59
overview of, 44–45
process of, 45–46

not equal operator (!=), 75
NOT EXISTS

reference for, 1177
replacing NOT IN with,

232–233
NOT IN

NOT EXISTS replacing,
232–233

1316 Oracle Database 11g: The Complete Reference

outer joins replacing,
232–233

NOT NULL
adding NOT NULL

columns, 544
alter table command and,

302–305
logical operators and, 75
overview of, 78–79
rule, 70
table constraints and, 299
when to use indexes, 791

NOT operator, 1177
notation

number functions, 156–157
string concatenation, 117–118
strings, 116

notification services, Universal
Records Manager (URM), 845

NTILE, 1178
NULL, 70

arithmetic functions and, 158
DECODE function and, 285
in group-value functions,

164–165
locator values compared

with, 645
logical operators and, 75
NVL (NULL value

substitution), 158
overview of, 78–79
PL/SQL reference, 1178
SQL column value reference,

1178–1179
synonyms and, 737
update command and, 270
when to use indexes, 791

NULL value substitution. See NVL
(NULL value substitution)

NULLIF
DECODE function and, 285
reference for, 1179

NUMBER
automatic conversion and, 202
converting/transforming, 198
Oracle datatypes, 114
precision of NUMBER

columns, 296–297

reference for, 1179
strings compared with, 114

number formats,
1179–1180

number functions, 156–174
ABS function, 159–160
addition (+), subtraction (–),

multiplication (*), and
division (/), 157–158

aggregate functions, 164
AVG, COUNT, MAX, MIN,

and SUM, 166–167
CEIL function, 160
classes of, 156
combining group-value and

single-value functions,
167–169

DISTINCT in group functions,
169–170

examples of single-value and
group-value functions,
165–166

EXP, LN, and LOG functions,
161–162

finding rows with MAX or
MIN, 172–173

FLOOR function, 160
list functions, 170–172
MOD function, 160–161
notation, 156–157
NULL values and, 158
NULLs in group-value

functions, 164–165
NVL function, 158–159
POWER function, 161
precedence rules and,

173–174
reference for, 1180–1181
ROUND and TRUNC,

162–163
SIGN, 163
SIN, SINH, COS, COSH, TAN,

TANH, ACOS, ATAN,
ATAN2, and ASIN, 164

single-value functions, 157
SQRT function, 161
STDDEV and VARIANCE, 169

NUMTODSINTERVAL, 1181
NUMTOYMINTERVAL, 1181

NVARCHAR2
National Language

Support, 136
reference for, 1181

NVL (NULL value substitution)
DECODE function and, 285
null value substitution,

158–159
reference for, 1182

NVL2, 1182

OO

object identifiers. See OIDs (object
identifiers)

object names
normalizing, 59
reference for, 1182
thesaurus, 61

object-orientation, advanced
concepts, 666–680

DEREF function, 670–672
inserting rows into object

tables, 667–668
invalid references, 673
object PL/SQL, 677–679
object tables and OIDs,

666–667
object views with REFs,

673–677
objects in database, 679–680
overview of, 666
REF function, 669–670
row objects vs. column

objects, 666
selecting values from object

tables, 668
updates and deletes from

object tables, 669
VALUE function, 672–673

object-oriented programming
(OOP), 666

object PL/SQL, 677–679
object-relational databases

collectors. See collection
functions

large objects. See LOBs (large
objects)

methods. See methods

NOT IN (continued)

Index 1317

object types. See object types
object views. See object views
Oracle database as, 33
programmatic access methods

supported by Oracle 11g, 9
object-relational tables, 5
object tables

inserting rows into, 667–668
OIDs and, 666–667
selecting values from, 668
updates and deletes, 669

object types
alter type command for

managing methods, 624
indexing object type attributes,

615–617
security for, 612–615
syntax for create type

command, 623–624
working with, 612

object views, 673–677
generating OIDs, 675–676
generating references,

676–677
implementing, 617–619
manipulating data via,

619–620
overview of, 673–674
querying, 677
REFs and DEREFs and,

674–675
using INSTEAD OF triggers on

object views, 620–622
objects

alter type command for
managing methods, 624

in database, 679–680
embedded objects and column

objects, 666
methods, 622
online object reorganizations,

544–547
physical storage, 7
revoking privileges, 349
row objects vs. column

objects, 666
separating application tables

from core objects in
tablespaces, 383

separating large and small
objects in
tablespaces, 383

sizing, 868–871
syntax for create type

command, 623–624
USER_AUDIT_OBJECT, 764
USER_OBJECTS (OBJ), 731
viewing source code of

procedural objects, 585
occurrence variable, REGEXP_

SUBSTR, 144
OCI (Oracle Call Interface)

client query cache,
821–822

manipulating LOB values, 643
OEM (Oracle Enterprise Manager)

database administration with,
858–859

Grid Control options, 850
starter database and, 13
workload capture, 503

offline backups, 876–877
OIDs (object identifiers)

generating, 675–676
object tables and, 666–667
reference for, 1182

on clause, performing outer
joins, 231

on commit
delete rows, 243–244
preserve rows, 243

on delete cascade, 301
on prebuilt table clause, create

materialized view
command, 432

online applications, upgrading. See
upgrading online applications,
PL/SQL

online backups, 877–880
OOP (object-oriented

programming), 666
OPEN, 1182–1183
OPEN cursor

DBMS_SQL, 593
reference for, 1183

operators
binary, 686
Java arithmetic, 686

ternary, 689
unary, 686

optimizers
enhanced statistics for, 771
SQL commands, 260

OR
combination operators

compared with, 239
combining logical expressions,

81–82
exact match searches and,

454–457
precedence rules, 173–174
reference for, 1184

or replace clause, create type
command, 613

Oracle Administration Assistant,
19–20

Oracle Call Interface. See OCI
(Oracle Call Interface)

Oracle Content Database, 843
Oracle Content Database Portlet

Suite, 843
Oracle Content Database Suite,

842–845
document management,

843–844
overview of, 842–843
repository, 843
user security, 844–845

Oracle Content Desktop, 843
Oracle Content Integration Suite

(CIS), 843
Oracle Content Server, 843
Oracle data dictionary. See

dictionary views
Oracle Data Guard. See Data

Guard
Oracle Database JDBC

Developer’s Guide and
Reference, 707

Oracle Database Upgrade
Guide, 26

Oracle Database Utilities, 386
Oracle Database Vault

disabling, 837–838
enabling, 838–839
installation notes,

839–842

1318 Oracle Database 11g: The Complete Reference

new concepts in, 836–837
overview of, 836

Oracle Drive, 843
Oracle Dynamic Converter, 843
Oracle Enterprise Manager. See

OEM (Oracle Enterprise
Manager)

Oracle Label Security, 766
Oracle Net, 418
Oracle Net Configuration

Assistant, 17
Oracle Real Application Clusters.

See RAC (Real Application
Clusters)

Oracle Records Database,
845–846

Oracle Text, 450–465
adding text to database,

450–451
application-killing queries

and, 828
creating index sets, 464–465
creating queries and indexes,

451–452
exact matches of a phrase,

457–458
exact matches of multiple

words, 454–457
exact matches of single word,

453–454
fuzzy matches, 460–461
index synchronization,

463–464
overview of, 450
proximity searches for words,

458–459
sounds like searches,

461–463
stem-based searches, 460
thematic searches with

ABOUT operator, 463
using text queries, 452–453
wildcard searches, 459

Oracle Universal Installer. See OUI
(Oracle Universal Installer)

Oracle Universal Records Manager
(URM), 845–846

ORA_HASH, 1184
order by

create view command and,
312–313

eliminating unnecessary sorts,
775–776

group by clause and, 220
having clause and,

212, 220
indexes supporting, 317
Oracle queries, 36–37, 72
order of execution, 213, 255
ordering rows, 794–795
RANK function and, 243
reference for, 1184
strings and, 134–135
views and, 217–218,

312–313
order method, 624
order of execution, having clause

and group by clause,
213–214

organization external clause,
create table command, 469

organization index clause, create
table command, 310

OUI (Oracle Universal Installer),
13–17

initial screen, 14
installation prerequisite

check, 15
installing CRS (Cluster Ready

Services), 849
list of products to install and

status bar for install
process, 16

registration and Metalink
account setup, 15

out-of-line data, storing LOBs,
638, 641

outer joins, 804
current syntax, 231–232
overview of, 229
pre-Oracle9i syntax for,

229–231
processing, 804
replacing NOT IN with,

232–233

outlines
data dictionary, 768
implementing stored, 808–810

overloaded keys, 61–62

PP

packages
compiling, 586
data dictionary views,

753–755
dropping, 587
procedures compared

with, 572
replacing, 586
syntax of create package

command, 582–585
USER_SOURCE, 753–754
viewing source code, 585

pages
set newpage, 100–101
set pagesize, 100

parallel clause, alter table
command, 479

parallelism
divide and conquer approach

to data, 778
long running batches and, 831
tuning and, 808

parameter files, checking following
upgrade, 29

parameters, 1185
parentheses (())

operator precedence and,
173–174

reference for, 908
PARSE, in DBMS_SQL, 594
partition by hash clause, create

table command, 325–326
partition by range clause, create

table command, 324–325
partitioned indexes, 6
partitioned tables

creating, 324–326
defined, 324
managing, 329–330
tables supported by

Oracle 11g, 6

Oracle Database Vault (continued)

Index 1319

partitions, 324–330
alter table command, 545
creating partitioned table,

324–326
data dictionary views,

758–760
defined, 324
divide and conquer approach

to data, 778
indexing, 329
list partitions, 326–327
managing partitioned tables,

329–330
overview of, 324
range and interval partitions,

327–329
subpartitions, 327

password expire clause, create
user command, 336

passwords
enforcing expiration,

334–336
enforcing reuse

limitations, 336
installing Oracle 11g and, 19
managing, 333–336
roles and, 347
SQL*Plus reference,

1185–1186
pasting strings. See cutting and

pasting strings
PATH, 1186
pattern matching, 75
pattern variable,

REGEXP_SUBSTR, 144
PAUSE, 1186
pctfree values, 777
PERCENTILE_DISC,

1187–1188
PERCENTILT_CONT, 1187
PERCENT_RANK, 1187
performance. See also tuning

divide and conquer (atomic)
approach to, 775

impact of extent size on,
869–870

index-organized tables
and, 310

Java stored procedures
and, 719

procedures and, 570
Physical Records Manager

(PRM), 845
physical records, SQL*Loader,

391–392
physical standby databases

logical standby databases
compared with, 537

switchovers to, 542
PIVOT, 289–292
PL/SQL, 514–533

accessing XSU, 890
bulk collect, 607–608
bulk operations, 605
case statements, 529–530
conditional logic, 519–520
continue and continue when

statements, 528–529
cursor FOR loops, 525–526
Declarations section,

514–518
exception handling, 531–533
Executable Commands

section, 518–519
forall operator, 1507
Java compared with, 684–685
loops, 521–522
FOR loops, 524–525
object PL/SQL, 677–679
overview of, 514
programmatic access methods

supported by Oracle 11g, 8–9
simple cursor loops,

522–524
trigger body and, 554
upgrading online applications.

See upgrading online
applications, PL/SQL

WHILE loops, 527–528
PL/SQL tuning, 598–608

DBMS_PROFILER for
identifying problems,
599–604

steps in, 598–599
tuning SQL, 598

planning flashback queries, 491

PLAN_TABLE, 765–766
policy groups, in VPD, 365–366
position markers, LIKE operator

and, 77
position variable,

REGEXP_SUBSTR, 144
POSIX operators, 142–143
post-increment operators, 686
POWER

exponential powers and, 161
reference for, 1188

POWERMULTISET, 1188
POWERMULTISET_BY_

CARDINALITY, 1188
pre-increment operators, 686
Pre-Upgrade Information Tool

checking output, 25
running, 24

prebuilt tables, 436
precedence

reference for, 1188–1189
rules, 173–174

precision, of NUMBER columns,
296–297

predefined users, user security, 844
PREDICTION, 1189–1190
PREDICTION_BOUNDS, 1190
PREDICTION_COST, 1190–1191
PREDICTION_DETAILS,

1191–1192
PREDICTION_PROBABILITY, 1192
PREDICTION_SET, 1192–1193
PREPARE, Embedded SQL, 1193
PRESENTNNV, 1193–1194
PRESENTV, 1194
PREVIOUS, 1194
primary key clause, create index

command, 315
primary keys

designating index
tablespaces, 300

enforcing uniqueness and,
310, 315

exceptions and, 741
indexes and, 743
normalization and, 45–46
table constraints and, 299
unique indexes and, 788

1320 Oracle Database 11g: The Complete Reference

PRINT, 1194
PRIOR, 1194
prior clause

moving backward through
family tree toward roots,
253–254

rules for tree reports, 255
private database links, 422
privileges

data dictionary views, 762–763
flashback database command

and, 497
flashback table command

and, 494
granting, 337
granting role privileges,

345–346
guarding data and, 8
moving to another user,

340–343
overview of, 332
passing, 343–345
reference for, 1194–1203
revoking, 338
revoking object privileges, 349
revoking role privileges,

348–349
sessions, 763–764
synonym as means of

granting, 343
system privileges required for

materialized views,
430–431

table privileges required for
materialized views, 431

ungranted, 343
UPDATE privilege, 349
user ability to grant, 338–340

PRM (Physical Records
Manager), 845

procedure calls, within
triggers, 560

procedures. See stored procedures
processing data, 34
processors. See CPUs
programmatic structures, 8–9
project column clause, alter table

command, 480

PROMPT, SQL*Plus, 1203
proximity searches, for words,

458–459
pseudo-columns, 1203–1204
public access, security and, 351
public database links, 422
public, Java classes, 695
purge

drop table command, 302
emptying Recycle Bin,

496, 738
freeing space, 868
reference for, 1203–1204
tablespaces, 378–379

PUT_LINE, 630

QQ

queries
altering execution paths with

materialized views, 437–438
application-killing (case study

2), 827–830
application planning and,

58–59
converting SQL queries to

XML, 890
database links for remote

queries, 419–420
displaying execution path,

781–785
eliminating need to query

undo segments, 776
facilitating query

execution, 774
hints for execution paths, 776
keywords, 36–37
natural language for, 42
reference for query operators,

1205
result cache, 771
simple query example, 36–37
SQL Result Cache and, 821
views and, 798–800
XML for customizing, 894–895

queries, text
creating, 451–452
using, 452–453

QUERY option
Data Pump export, 405–407
Data Pump import, 412

query rewrite feature, materialized
views, 431, 437–438

quit
implicit commit and, 263
reference for, 1205
SQL*Plus commands, 108

quota parameter, granting limited
resources, 352

RR

RAC (Real Application Clusters),
848–856

adding nodes and instances to
cluster, 855–856

configuring TDE and,
369–370

flashback database command
and, 500

high availability and, 536
initialization parameters,

850–852
installing, 849–850
OEM for managing, 859
overview of, 848
preinstallation steps, 848–849
SRVCTL command options,

853–854
starting/stopping RAC

instances, 852–853
transparent application

failover, 854–855
RAISE, 1205
range partitions, 324–325,

327–329
RANK

within group and order by
clauses and, 243

reference for, 1206
RATIO_TO_REPORT, 1206
RAW

Oracle datatypes, 114
reference for, 1206

RAWTOHEX, 1206
RAWTONHEX, 1207

Index 1321

RDBMS (relational database
management system)

cooperative approach, 33
everyday examples of,

39–41
in/keep/out approach to

data, 34
level-name integrity, 59
navigating through data,

46–49
Oracle based on relational

model, 32
relationships as basis for,

38–39
risks related to, 41–42
using Oracle as, 33

read consistency
flashback queries and, 484
maintaining, 394

READ, in DBMS_LOB, 649–652
read-only

materialized views, 431–432
tables, 306
tablespaces, 379–380
views, 313

read write clause, alter table
command, 306

Real Application Clusters. See RAC
(Real Application Clusters)

real-time apply, standby databases
and, 539–540

real-time SQL monitoring, 771
realms, new concepts in Oracle

Database Vault, 836
rebuild clause, alter outline

command, 809
rebuild clause, create index

command, 319
rebuild online clause, alter index

command, 319
records

inserting into nested tables,
628–629

inserting into varying arrays,
628–629

PL/SQL reference, 1207
Records Manager (RM), 845
recover clause, 1207–1208

recovery area, flashback database
command, 498–499

Recovery Manager. See RMAN
(Recovery Manager)

RECYCLEBIN space, 378–379
Recycle Bin

enabling/disabling, 496
purge command, 8, 496
reference for, 1208
USER_RECYCLEBIN and

DBA_RECYCLEBIN, 738
redo log entries, 309
redundancy, 849–850, 872
REF

object views and, 673–677
overview of, 669–670
reference for, 1209
USER_REFS, 749

reference partitions, 327
referenced objects

DEREF function, 670–672
generating references,

676–677
invalid references, 673
object views with REFs,

673–677
overview of, 666
REF function, 669–670

references clause, remote tables
and, 300–301

referential integrity constraint,
foreign keys, 300

refresh interval, materialized views
create materialized view

command, 441
overview of, 430

refresh options, materialized
views

automatic refresh,
444–445

fast refresh, 444
manual refresh, 445–446
overview of, 433, 441–444

REFTOHEX, 1209
REGEXP_COUNT

reference for, 1209–1210
searching for regular

expressions, 152–153

REGEXP_INSTR, 145–146, 1210
REGEXP_LIKE

reference for, 1210–1211
supporting use of regular

expressions within where
clauses, 146

REGEXP_REPLACE
reference for, 1211
searching for regular

expressions, 148–152
REGEXP_SUBSTR

reference for, 1211
search strings, 144–145
searching for regular

expressions, 140–141
REGR_ (linear regression)

functions, 1212
regular expression search strings

application-killing queries
and, 828

overview of, 140–141
REGEXP_COUNT function,

152–153
REGEXP_INSTR function,

145–146
REGEXP_LIKE function, 146
REGEXP_SUBSTR function,

144–145
REPLACE and REGEXP_

REPLACE functions,
147–152

strings and, 137
regular expressions

list of operators, 142–143
searching for, 140–153

reject limit clause
alter table command, 480
error handling, 274

relational database management
system. See RDBMS (relational
database management system)

relational models, 39
relational tables

managing data
relationships, 637

tables supported by
Oracle 11g, 5

relational views, 620–622

1322 Oracle Database 11g: The Complete Reference

REMAINDER, 1212
remark (rem)

overview of, 94–97
SQL*Plus reference for, 1212

remote access, 418–427
database links for remote

queries, 419–420
database links for remote

updates, 421
database links for synonyms

and views, 420
how database links work,

418–419
synonyms for location

transparency, 424–425
syntax of database links,

421–424
User pseudo-column in views,

425–427
remote connections, service names

and, 423–424
remote queries, database links for,

419–420
remote tables, 576–577
remote updates, 421
REMOTE_CONNECT. See database

links
rename

alter outline command, 809
reference for, 1213

rename to clause, alter table
command, 480

rename to clause, flashback table
command, 496

repfooter, SQL*Plus commands,
97, 1213

repheader, SQL*Plus commands,
97, 1214

replace command,
SQL*Loader, 388

REPLACE function
reference for, 1214
regular expressions supported

by, 137
replacing string values,

147–148
replace (rep) option, of save

command, 107

replay clients, 507
replay, SQL. See SQL replay
replicas. See materialized views
replicated databases, 536
replication

maintaining duplicated data,
556–557

multimaster, 432
reports

application planning and,
58–59

storing data to facilitate query
execution, 774

reports, SQL*Plus
/**/, 102–103
break on, 98–99
column, 97–98
compute avg, 99–100
remark, 94–97
set headsep (heading

separator), 97
set linesize, 100
set newpage, 100–101
set pagesize, 100
spool, 101–102
ttitle and btitle, 97

repository, Oracle Content
Database Suite, 843

reserved words
Java, 694
reference for, 1215–1217
SQL, 295

resource limits, USER_RESOURCE_
LIMITS, 761–762

resource quotas, granting, 352
RESULT_CACHE

hints, 813–814, 819
MAX_RESULT

parameter, 819
MODE parameter, 818
REMOTE_EXPIRATION

parameter, 819
resume options, SQL*Loader, 398
return keyword

create function command
and, 575

functions and, 572
reuse storage, 302

reverse key indexes, 6
reverse keyword, create index

command, 314
revoke

object privileges, 349
privileges, 338
reference for, 1217–1218
role privileges, 348–349

RM (Records Manager), 845
RMAN (Recovery Manager)

backup options, 503
OEM as interface with, 859
online backups and,

877–880
overview of, 880–881
starter database and, 13

roles
adding/removing

passwords, 347
creating, 345
data dictionary views,

763–764
dropping, 349
enabling/disabling, 348
granting, 346–347
granting privileges, 345–346
overview of, 332
revoking privileges, 348–349
sessions, 763–764
standard, 336–337

rollback
auto rollback of uncommitted

work, 263
delete actions, 267–268
Embedded SQL reference,

1219
flashback queries and, 484
overview of, 261–262
SQL reference, 1218–1219

ROLLUP
grouping operations, 244–248
reference for, 1219

root account, 840
root nodes

family trees, 248
moving backward through

family tree toward roots,
253–254

Index 1323

ROUND
dates and, 183–184, 1220
numbers and, 162–163, 1220
rounding off during insertion

of values, 297–298
row-level triggers, 550–551, 553
row objects, 666. See also object

tables
ROWID

materialized views and, 436
reference for, 1221
TABLE ACCESS BY INDEX

ROWID, 787
ROWIDTOCHAR, 1221
ROWNUM, 1221
ROW_NUMBER, 1221
rows

FETCH_ROWS, 595
finding with MAX or MIN,

172–173
grouping, 795–796
inserting into object tables,

667–668
ordering, 794–795
SCNs and, 488–489
table characteristics, 35

RPAD
cutting and pasting strings,

118–119
reference for, 1222

“RR” format, dates, 193
RTRIM

combining two functions,
120–122

cutting and pasting strings,
119–120

elementary conversion
functions and, 201–202

reference for, 1222
RUN, 1222

SS

salt/no salt, encryption options, 370
save

SQL*Plus commands, 107
SQL*Plus reference, 1222–

1223

savepoints
reference for, 1223
rollback and, 262

schedulers, data dictionary, 768
Schema exports, Data Pump, 402
schema-level triggers, 552
SCNs (system change numbers)

converting to timestamp
values, 206

database flashing back to, 498
rows associated with,

488–489
SCN-based flashback,

486–487
table flashing back to,

496–497
SCN_TO_TIMESTAMP, 206,

489, 1224
scope, variable, 685
SCORE

reference for, 1224
text searches, 453–454

searches. See regular expression
search strings

Second Normal Form, 46
security

adding/removing passwords
to/from roles, 347

creating synonym as means of
granting privileges, 343

creating roles, 345
creating users, 332–333
dropping roles, 349
enabling/disabling roles, 348
granting privileges, 337
granting privileges to roles,

345–346
granting resource quotas, 352
granting roles, 346–347
granting UPDATE

privilege, 349
installing Oracle 11g and, 18
managing passwords,

333–336
moving privileges to another

user, 340–343
object types and, 612–615
overview of, 332

passing privileges, 343–345
public access and, 351
revoking object privileges, 349
revoking privileges, 338
revoking privileges from a role,

348–349
separation of duties, 840
standard roles, 336–337
transparent data encryption.

See TDE (Transparent Data
Encryption)

ungranted privileges, 343
user ability to grant privileges,

338–340
user security, 332,

349–351, 844
VPD (Virtual Private

Database). See VPD (Virtual
Private Database)

security groups, 844
security policies, VPD

adding to tables, 361
creating, 360–361

segments
avoiding use of temporary, 777
index segments, 865
space management, 872–873
storage parameters for,

863–865
table segments, 865
tablespaces and, 376, 863
temporary segments, 867
USER_SEGMENTS, 757–758

select
as of timestamp and as of scn

clauses, 485
combining tables and, 87
create table command as

select, 308–310
DECODE function and, 283
embedded select used with

update, 269–270
Embedded SQL reference,

1233–1234
from, where, and order by

keywords, 72, 730
hints, 787
insert used with, 259–260

1324 Oracle Database 11g: The Complete Reference

list of values from a
subquery, 85

Oracle queries, 36–37, 72
order of execution, 255
single values from a subquery,

83–84
SQL, 66, 96, 1224–1233
SQL*Plus, 96, 106
values from object tables, 668
versions between clause,

490–491
views, 89

SELECT_INTO, 1235
separation of duties, Oracle

Database Vault and, 840
sequences

create sequence command,
321–322

SQL Result Cache and, 821
USER_SEQUENCES (SEQ), 738

servers, Oracle Content
Server, 843

service names, remote connections
and, 423–424

SESSION_PRIVS, 763–764
SESSION_ROLES, 763–764
sessions

alter session command, 306
roles and privileges, 763

SESSIONTIMEZONE, 1235
set autocommit feature, 261
set autotrace off, 782
set autotrace on, 781–785
SET CONSTRAINTS, 1240
set describe depth command,

SQL*Plus, 615, 634
set equal to (:=), 911
SET function, 1239–1240
set headsep (heading separator),

SQL*Plus commands, 97
set linesize, SQL*Plus

commands, 100
set long command, 735–736, 894
set newpage, SQL*Plus commands,

100–101
set pagesize, SQL*Plus commands,

69, 100

set pause, SQL*Plus commands,
106–107

set role, 348, 1240
set, SQL*Plus, 70, 1235–1239
SET TRANSACTION,

1240–1241
SGA (System Global Area)

instances and, 5
sizing/managing memory

areas, 861
SQL Result Cache in Shared

Pool, 812, 819
shared keyword, 424
Shared Pool, of SGA, 812,

819, 861
SHARED_POOL_SIZE, 819
show errors command

code errors and, 754–755
for debugging procedures,

577–578
object types and, 613

show, SQL*Plus, 1241–1242
shutdown

backups and, 876
reference for, 1242
stopping databases, 860
stopping RAC instances, 852

SIGN
number functions, 163
reference for, 1242
using DECODE function in

numeric comparisons,
285–286

SIN
reference for, 1242
trigonometric functions, 164

single quotation marks ('), 907
single-value functions

ABS function, 159–160
addition (+), subtraction (–),

multiplication (*), and
division (/), 157–158

CEIL function, 160
combining group-value

functions with, 167–169
examples of, 165–166
EXP, LN, and LOG functions,

161–162

FLOOR function, 160
MOD function, 160–161
NULL values and, 158
number functions, 165–166
NVL function, 158–159
overview of, 156–157
POWER function, 161
ROUND and TRUNC,

162–163
SIGN, 163
SIN, SINH, COS, COSH, TAN,

TANH, ACOS, ATAN,
ATAN2, and ASIN, 164

SQRT function, 161
SINH

reference for, 1242–1243
trigonometric functions, 164

smallfile tablespaces, 381
SMU (system-managed undo)

monitoring undo
tablespaces, 871

setting undo retention/creating
undo tablespace, 866

supporting flashback
queries, 484

tablespaces and, 380
SORT UNIQUE NOSORT

operation, 795
sorts, eliminating unnecessary,

775–776
SOUNDEX function

overview of, 135–136
reference for, 1243
sounds like searches,

461–463
source code, of procedural

object, 585
space calculation rule, 869
space quotas, 757
specialized conversion functions,

205–206
spool, SQL*Plus, 101–103, 1243
spooling, file storage and,

101–103
SQL Access Advisor, 438–441
SQL buffer, SQL*Plus, 103
SQL CODE, 1244
SQL CURSOR, 1243

select (continued)

Index 1325

SQL Performance Analyzer, 771
SQL replay, 502–509

capturing the workload, 503
controlling and starting the

replay clients, 507
creating a workload

directory, 503
defining filters, 503–504
exporting AWR data,

506, 509
high-level configuration, 502
initializing and running the

replay, 507–509
isolation and links, 502–503
overview of, 502
processing the workload, 506
replaying the workload,

506–507
starting the capture, 505
stopping the capture,

505–506
SQL Result Cache

additional uses, 821
database parameter settings,

818–819
DBMS_RESULT_CACHE

package, 819–820
dictionary views, 821
how it works, 812–813
overview of, 812
querying, 771
RESULT_CACHE hints,

813–814
table updates and, 815–816

SQL (Structured Query Language)
combining logic (AND and

OR), 81–82
combining tables, 86–87
command rules, 841–842
creating tables, 68
creating views, 88–90
DBMS_SQL package. See

DBMS_SQL
dynamic SQL. See native

dynamic SQL
expanding views, 90
generating SQL as alternative

to importing, 413–415

JDBC for executing SQL
statement in Java
programs, 700

keywords, 72–73
LIKE operator, 77–78
list of values from a subquery,

84–86
logic and value and, 74
NULL and NOT NULL,

78–79
optimizers, 260
overview of, 35–36, 66–67
plan baselines, 771
real-time SQL monitoring, 771
selecting data from tables,

68–72
simple query example,

36–37
simple tests against a list of

values, 79–81
single value tests, 74–77
single values from a subquery,

83–84
SQL*Plus and, 96
style, 67–68
subqueries, 82–83
terminators, 72
tuning, 598, 770–771
wait times and command

execution, 826
SQL test case builder, 771
SQL Tuning Advisor, 770
SQLERRM, 1244
SQLFILE, 413–415
sqlldr

direct keyword, 390
direct path loading, 397
list of options, 388–389
reference for, 1244–1254
repeating data loads, 395
silent keyword, 390
userid keyword, 389

SQL*Loader, 386–398
additional features, 398
control file, 386–387
control file syntax, 392–394
data dictionary views,

766–767

direct path loading, 396–398
loading variable-length data,

387–388
logical and physical records,

391–392
managing data loads, 394
overview of, 386
programmatic access methods

supported by Oracle 11g, 9
repeating data loads, 394–395
starting, 388–391
tuning data loads, 395–396

SQL*Plus
command line editor, 103–106
commands. See commands,

SQL*Plus
overview of, 92
programmatic access methods

supported by Oracle 11g, 8–9
queries and reports and, 58
reference for, 1254–1255
running from desktop client

machine, 66
selecting data from tables,

68–72
show errors command for

debugging procedures,
577–578

SQL and, 96
SQL buffer, 103
style, 67–68

SQRT
reference for, 1255
square roots, 161

SRVCTL command options,
853–854

standard deviance, 169
standby databases

configuration, 538
creating logical standby

databases, 538–539
enabling real-time apply to

standby databases, 539–540
high availability and, 536
switchovers to logical standby

database, 542
switchovers to physical

standby database, 540–542

1326 Oracle Database 11g: The Complete Reference

start
reference for, 1255
SQL*Plus commands,

96, 109
start with clause, order of

execution, 255
START_CAPTURE, in DBMS_

WORKLOAD_CAPTURE, 505
startup

reference for, 1256
starting databases, 859
starting RAC instances, 852

startup upgrade command, 26
statement-level triggers,

551, 553
statements, Java, 687
static methods, Java classes, 695
static tables, 382
statistics

analyze command and, 745
column statistics, 734–735
flashback table command

and, 497
how often to gather, 776
new tuning features in Oracle

11g, 771
partitions and subpartitions

and, 760
wait times (case study 1),

824–825, 827
Statpack, 824. See also AWR

(Automated Workload
Repository)

STATS_BINOMIAL_TEST, 1256
STATS_CROSSTAB, 1257
STATS_F_TEST, 1257
STATS_KS_TEST, 1257
STATS_MODE, 1258
STATS_MW_TEST, 1258
STATS_ONE_WAY_ANOVA, 1258
STATS_T_TEST_*FUNCTIONS,

1259
STATS_WSR_TEST, 1259–1260
STDDEV

NULLs in group-value
functions, 165

number functions, 169
reference for, 1260

STDDEV_POP, 1260
STDDEV_SAMP, 1260
stem-expansion searches, Oracle

Text, 460
STOCK_TRX_INSERT_SECURITY,

361
STOCK_TRX_SELECT_SECURITY,

361
storage

create table command,
641–642

data storage architecture, 7–8
LOBs (large objects),

641–643
reference for, 1260–1262
segment storage parameters,

863–865
tablespaces, 378

storage parameters, for segments,
863–865

store, SQL*Plus, 107, 1262
stored outlines, 808–810
stored procedures

compiling, 586
customizing error conditions,

580–581
data dictionary views,

753–755
debugging, 577–578
dropping, 587
external procedures, 575
functions compared with, 572
naming, 581–582
overview of, 570
packages compared with, 572
referencing remote tables,

576–577
replacing, 586
syntax of create function

command, 575–576
syntax of create package

command, 582–585
syntax of create procedure

command, 573–575
system privileges required,

570–572
table privileges required, 572
tuning PL/SQL, 598

USER_SOURCE, 753–754
viewing source code of

procedural objects, 585
stored procedures, Java,

710–719
accessing classes, 716–718
calling directly, 718
command implementation

options, 718–719
loading class into database,

711, 715–716
Loadjava Utility options,

712–715
overview of, 710–711

strings
adding functions, 123
ASCII and CHR functions, 133
combining two functions,

120–122
concatenation (||), 117–118
cutting and pasting, 118
datatypes and, 114
INSTR function, 129–133
LENGTH function, 125
list of string functions, 115
LOWER, UPPER, and INITCAP

functions, 123–125
LTRIM, RTRIM, and TRIM

functions, 119–120
manipulating LOB values,

647–648
National Language

Support, 136
notation, 116
order by and where keywords

used with, 134–135
overview of, 114–115
regular expression search

strings, 140–141
regular expression support, 137
RPAD and LPAD functions,

118–119
SOUNDEX function,

135–136
SUBSTR function, 125–129
TO_CHAR function for

converting date into
character string, 184–188

Index 1327

TO_DATE function for
converting character string
into date, 184

working with TRIM function,
122–123

Structured Query Language. See
SQL (Structured Query
Language)

style, SQL, 67–68
sub-administrators, 844
subpartitions

creating, 327
data dictionary views,

758–760
subqueries

advanced, 224
in clause and, 238–239
combination operators in,

238–239
coordinating logical tests,

226–227
correlated, 224–225
EXISTS and correlated

subquery, 227–229
list of values from, 84–86
overview of, 82–83
reference for, 1262–1263
selecting from, 800
single values from, 83–84
SQL Result Cache

and, 821
SUBSTITUTION, 1263
SUBSTR

DBMS_LOB package,
652–653

elementary conversion
functions and, 200–201

manipulating LOB
values, 648

reference for, 1263
REGEXP_SUBSTR compared

with, 144
regular expression support, 137
strings, 125–129

SUBSTR2, 136
SUBSTR4, 136
SUBSTRB, 136
SUBSTRC, 136

subtraction (–)
arithmetic functions,

157–158
reference for, 908

SUM
combining single-value

functions with group-value
functions, 168

examples of single-value and
group-value functions,
166–167

NULLs in group-value
functions, 165

number functions, 166–167
reference for, 1263

switch clause, Java, 688–689
switchovers

to logical standby
database, 542

overview of, 540
to physical standby database,

540–542
Switchover_Status Values, 541

synonyms
database links for, 420
granting privileges via, 343
for location transparency,

424–425
for objects, 614
USER_SYNONYMS (SYN),

737–738
syntax

control file, 392–394
create function command,

575–576
create package command,

582–585
create procedure command,

573–575
create type command,

623–624
database links, 421–424
materialized views,

432–435
operators, 1264
outer joins, 229–232
triggers, 552–554

SYS account, 18

SYSAUX tablespace
overview of, 376
permanent objects, 377

SYS_CONNECT_BY_PATH,
1264

SYS_CONTEXT
reference for, 1264
VPD configuration and, 359

SYS_DATE
date functions, 176–177
reference for, 1266
ROUND and TRUNC and,

183–184
SYSDBA

configuring VPD (Virtual
Private Database), 356

create database command
and, 858

flashback database
command, 497

Oracle recommendations
regarding account
access, 840

SYS_DBURIGEN, 1264–1265
SYS_EXTRACT_UTC, 1265
SYS_GUID, 1265
system

Oracle recommendations
regarding account access
and, 840

SYSDATE function, 176
unlocked accounts during

installation, 18
system change numbers. See SCNs

(system change numbers)
system-defined event attributes,

561–563
System Global Area. See SGA

(System Global Area)
system-managed undo. See SMU

(system-managed undo)
system managers, Oracle Net

and, 418
system privileges

granting, 337
materialized views and,

430–431
procedures, 570–572

1328 Oracle Database 11g: The Complete Reference

triggers, 550
USER_SYS_PRIVS, 762–763

SYSTEM tablespace
overview of, 376
permanent objects, 377

system users, 840
SYSTIMESTAMP

date functions, 176–177
populating TIMESTAMP table,

194–195
reference for, 1266

SYS_TYPEID, 1265
SYS_XMLAGG, 1265–1266
SYS_XMLGEN, 1266

TT

TABLE ACCESS BY INDEX
ROWID, 787

TABLE ACCESS FULL, 786
table constraints, 299
Table exports, Data Pump, 402
TABLE function, 634–636
table privileges

materialized views and, 431
procedures, 572
triggers, 550
USER_TAB_PRIVS, 762

table segments, 865
tables

adding VPD security policy to,
365–366

altering, 302–305
altering actively used, 306
of clusters, 320–321
combining, 86–87
comments (USER_TAB_

COMMENTS), 742
constraints on create table,

299–300
creating, 294–295
creating index-organized table,

310–311
creating new table from

existing, 308–310
creating partitioned table,

324–326

creating virtual columns,
306–307

deciding on proper column
width, 295

dropping, 302
dropping columns,

307–308
English names for, 49–50
granting access to, 339
high-water mark, 261
information stored in, 35
interim, 545–546
managing partitioned tables,

329–330
nested. See nested tables
partitions and subpartitions

and, 760
PL/SQL, 1266–1267
prebuilt tables and

materialized views, 436
precision of NUMBER

columns, 296–297
read-only, 306
recovering dropped tables,

494–496
referencing remote tables,

576–577
relational model, 39
rounding off during insertion

of values, 297–298
rules for adding/modifying

columns, 305–306
saving flashback data to

separate table, 485–486
selecting data from, 68–72
separating active and static

tables, 382
separating application tables

from core objects in
tablespaces, 382

separating indexes and tables
in tablespaces, 382

temporary, 243–244
types supported, 5–6
USER_TABLES (TABS),

731–733
tablespace clause, create table

command, 641–642

Tablespace exports, Data
Pump, 402

tablespace option, create index
command, 318

tablespaces, 376–383
active and static tables

and, 382
bigfile, 381
CHECK constraint, 301
contents of, 376–378
data storage and, 7
database structure and, 376
designating index

tablespace, 300
encrypting, 371–373, 381
flashback database

support, 381
foreign key constraints,

300–301
free extents, 868
managing, 862–863
monitoring undo

tablespaces, 871
naming constraints, 301
nologging mode, 380
read-only, 379–380
RECYCLEBIN space,

378–379
separating application tables

from core objects, 383
separating indexes and

tables, 382
separating large and small

objects, 383
SMU (system-managed

undo), 380
specifying for nested tables,

633
temporary, 380, 867
transporting, 382,

873–875
USER_TABLESPACES,

756–757
TAF (transparent application

failover), 854–855
TAN

reference for, 1267
trigonometric functions, 164

system privileges (continued)

Index 1329

TANH
reference for, 1267
trigonometric functions, 164

tasks, 52–56
format of task document, 55
insights resulting from task

document, 55–56
outlining in task document,

54–55
understanding application

tasks, 52–54
TCP/IP (Transmission Control

Protocol/Internet Protocol), 848
TDE (Transparent Data

Encryption), 365
columns, 368–369
encrypting/decrypting

columns, 370–371
encrypting tablespaces,

371–373, 381
opening/closing wallet, 370
overview of, 368
RAC databases and, 369–370

temporary segments
avoiding use of, 777
overview of, 867

temporary tables
long running batches and, 831
SQL Result Cache and, 821
tables supported by

Oracle 11g, 6
using, 243–244

temporary tablespaces, 380, 867
terminators, SQL, 72
ternary operator, Java, 689
testing

best practices for tuning,
779–781

VPD (Virtual Private
Database), 361–363

text, adding to database,
450–451

text indexes
application-killing queries

and, 828–829
indexes supported by

Oracle 11g, 7
overview of, 451

text queries, 452–453. See also
Oracle Text

text strings. See strings
thematic searches, with ABOUT

operator, 463
then

CASE function and, 286
if...then, 520
Java, 688

thesaurus, 61
Third Normal Form, 46
throughput, 776–778
throw clause, Java, 693
time-based flashback queries,

484–485
time values, inserting, 258–259
time zones

CURRENT_DATE function
and, 176–177

NEW_TIME function for
switching between, 189

timestamp
database flashing back to, 498
dates and, 194–195
Oracle datatypes, 114
reference for, 1267
SYSTIMESTAMP function, 177
table flashing back to,

496–497
TIMESTAMP_TO_SCN, 206
TIMESTAMPWITHLOCAL-

TIMEZONE, 1267
TIMESTAMPWITHTIMEZONE,

1267
timing, SQL*Plus, 1268
titles, top and bottom, 97
to clause, grant command,

345–346
to scn clause

flashback database
command, 498

flashback table command,
496–497

to timestamp clause
flashback database

command, 498
flashback table

command, 496

TO_BINARY_DOUBLE, 205,
1268

TO_BINARY_FLOAT, 205,
1268

TO_CHAR
character format reference,

1268–1269
converting date into character

string, 184
date and number format

reference, 1269
dealing with multiple

centuries, 193
elementary conversion

functions, 200
errors, 188–189
EXTRACT function

and, 194
formatting conventions,

185–188
NEW_TIME function

combined with, 189
printing character data

and, 630
TO_CLOB, 1269
TO_DATE

automatic conversion
and, 202

converting character string
into date, 184

converting literals into DATE
format, 179–180

elementary conversion
functions, 200

formatting conventions,
190–191

inserting time values and,
258–259

reference for, 1269–1270
TO_DSINTERVAL, 1270
TO_LOB, 1270
TO_MULTI_BYTE, 1270
TO_NCHAR

character reference,
1270

datetime reference, 1271
number reference, 1271

TO_NCLOB, 1271

1330 Oracle Database 11g: The Complete Reference

TO_NUMBER
elementary conversion

functions, 200
errors, 205
failing due to punctuation

mark, 147
reference for, 1271

TOOLS_VA, 626–629
TO_SINGLE_BYTE, 1271–1272
TO_TIMESTAMP

elementary conversion
functions, 200

reference for, 1272
TO_TIMESTAMP_TZ, 1272
TO_YMINTERVAL, 1272
trace events, 829–830
trailing clause, TRIM function, 123
transformation functions,

206–208
DECODE function, 207–208
TRANSLATE function,

206–207
transforming imported objects,

Data Pump, 412–413
TRANSLATE

reference for, 1272
transformation functions,

206–207
TRANSLATE...USING, 1273
Transmission Control Protocol/

Internet Protocol (TCP/IP), 848
transparent application failover

(TAF), 854–855
Transparent Data Encryption. See

TDE (Transparent Data
Encryption)

transportable tablespaces
Data Pump export

and, 402
generating, 873–874
overview of, 382
plugging into target database,

874–875
TREAT, 1273
triggers, 550–567

calling procedures within, 560
combining DML trigger types,

554–556

creating compound triggers,
565–566

creating database event
triggers, 564–565

creating DDL event triggers,
560–564

creating logon trigger, 359–360
customizing error conditions,

558–559
dropping, 567
enabling/disabling, 566–567
maintaining duplicated data,

556–557
naming, 560
privileges required, 550
replacing, 567
setting inserted values, 556
syntax, 552–554
types of, 550–552
USER_TRIGGERS, 753

trigonometric functions, 164
TRIM

cutting and pasting strings,
119–120

DBMS_LOB package, 661
reference for, 1273
working with, 122–123

TRUNC
dates, 183–184, 1274
numbers, 162–163, 1274

truncate
delete compared with, 268
drop table command and, 302
resetting table high-water

mark, 261
SQL*Loader, 388

TRUNCATE CLUSTER, 1274
TRUNCATE TABLE, 1275
truncated command, SQL*Plus

reports, 98
trunk, family trees, 248
try block, Java, 693
ttitle

reference for, 1275–1276
SQL*Plus commands, 97, 110

tuning
application-killing queries

(case study 2), 827–830

best practices, 772
data set manipulation, 794
do as little as possible,

772–774
do it as simply as possible,

775–776
explain plans and, 785–786
grouping rows, 795–796
HASH JOIN, 804
hints and, 787, 804–807
index operations, 787–789
index uses, 789–794
join operations, 801
long running batches (case

study 3), 830–833
maximize throughput,

776–778
MERGE JOIN, 802–803
NESTED LOOPS, 803–804
new to Oracle Database 11g,

770–771
ordering rows, 794–795
outer joins and, 804
parallelism and caching

and, 808
PL/SQL, PL/SQL tuning
set autotrace on command,

781–785
SQL, 598
stored outlines and,

808–810
subqueries and, 800
TABLE ACCESS BY INDEX

ROWID, 787
TABLE ACCESS FULL, 786
tell database what it needs to

know, 776
testing and, 779–781
union, minus, and intersect

clauses, 796–798
views and, 798–800
wait times (case study 1),

824–827
type declaration, external tables,

472–473
TYPE, Embedded SQL,

1275, 1276
TZ_OFFSET, 1276

Index 1331
UU

UID, 1276
unary operator (++), Java, 686
undefine, SQL*Plus, 1276–1277
underscore (_)

reference for, 903
text searches, 459

underscores (_ _), LIKE operator
and, 77–78

undo retention, 866
undo segments

Automatic Undo
Management, 7

eliminating need to query, 776
undo tablespace

creating, 866
flashback queries failing

and, 488
flashback table command

and, 498
monitoring, 871

UNDO_RETENTION
parameter, 489

Unicode
National Language

Support, 136
SQL*Loader support for, 398

UNION
combining lists, 235–238
reference for, 1277
restrictions on, 239
of subqueries, 238–239

union clause
eliminating unnecessary

sorts, 776
operations that manipulate

data sets, 794
processing/comparing results

of multiple queries, 796–797
SORT UNIQUE NOSORT

operation, 795
UNIQUE constraint

creating for tables, 299
designating index

tablespaces, 300
enforcing uniqueness

and, 310

indexes and, 743
unique indexes and, 788

unique indexes
creating, 315
overview of, 787

UNISTR, 1277
Universal Records Manager

(URM), 845–846
UNIX, grep command, 140
UNPIVOT operator, 289–292
updatable columns,

histograms, 735
updatable materialized views,

431–432, 434
update command

database links for remote
updates, 421

embedded select and,
269–270

Embedded SQL reference,
1277–1278

error handling, 275
Java stored procedures

and, 711
LOB values, 647
merge command and, 270
NULL and, 270
object tables, 669
overview of, 66, 268–269
PL/SQL reference,

1278–1279
records, 311
rows in a view, 311
SQL reference, 1279–1281
TABLE function, 635

UPDATE privilege, granting, 349
updates

database links for remote
updates, 421

triggers for setting update
values, 556

updating data via object
views, 619

UPDATEXML, 1281
upgrading online applications,

PL/SQL, 536–548
adding NOT NULL

columns, 544

altering actively used
tables, 544

creating logical standby
databases, 538–539

creating standby database
configuration, 538

creating virtual columns,
543–544

Data Guard architecture and,
537–538

DDL changes, managing, 543
dropping columns,

547–548
enabling real-time apply to

standby databases,
539–540

highly available databases
and, 536

online object reorganizations,
544–547

overview of, 536
switchovers, 540
switchovers to logical standby

database, 542
switchovers to physical

standby database, 540–542
upgrading, to Oracle 11g, 22–29

checking configuration and
parameter files following
upgrade, 29

data-copying method, 28
Data Pump Export and Import,

27–28
DBUA (Database Upgrade

Assistant), 25–26
manual upgrade, 26
methods, 23
overview of, 22
Pre-Upgrade Information Tool,

24–25
preparation for, 24

UPPER function
case functions for strings,

123–125
reference for, 1281

URM (Universal Records
Manager), 845–846

UROWID, 1282

1332 Oracle Database 11g: The Complete Reference

USER, 1282
User pseudo-column, in views,

425–427
user variable, JDBC, 703
USER_AUDIT_OBJECT, 764
USER_AUDIT_SESSION, 764
USER_AUDIT_STATEMENT, 764
USER_AUDIT_TRAIL, 764
USER_CATALOG (CAT), 730–731
USER_CLU_COLUMNS, 747
USER_CLUSTERS (CLU), 746–747
USER_COL_COMMENTS,

742–743
USER_COLL_TYPES, 749
USER_COL_PRIVS, 762
USER_CONS_COLUMNS,

740–742
USER_CONSTRAINTS,

739–740
USER_DB_LINKS, 750–752
USER_DEPENDENCIES, 766
USER_DIMENSIONS, 755–756
USERENV, 1282
USER_ERRORS, 754
USER_EXTENTS, 757–760
USER_EXTERNAL_TABLES,

471–472
USER_FREE_SPACE, 761
USER_IND_COLUMNS,

745–746
USER_INDEXES (IND), 743–745
USER_IND_PARTITIONS, 760
USER_IND_SUBPARTITIONS, 760
USER_LOBS, 749–750
USER_MVIEW, 751–752
USER_MVIEW_LOGS, 752–753
USER_NESTED_TABLES, 749
USER_OBJECTS (OBJ), 731
USER_OBJECT_SIZE, 755
USER_PART_COL_STATISTICS, 760
USER_PART_HISTOGRAMS, 760
USER_PART_KEY_COLUMNS, 760
USER_PART_TABLES, 758–759
USER_RECYCLEBIN, 738
USER_REFS, 749
USER_RESOURCE_LIMITS,

761–762
USER_ROLE_PRIVS, 763

users
ability to grant privileges,

338–340
accounts, 840
constraints, 740–742
creating, 332–333
feedback from, 44
granting roles to, 345–346
moving privileges between,

340–343
Oracle Content Database

Suite, 844–845
overview of, 332
password management,

333–336
security and, 349–351
testing with many

concurrent, 779
USER_USERS, 761

USERS tablespace, 376, 377
USER_SEGMENTS, 757–760
USER_SEQUENCES (SEQ), 738
USER_SOURCE, 753–754
USER_SUBPART_HISTOGRAMS,

760
USER_SUBPART_KEY_COLUMNS,

760
USER_SYNONYMS (SYN),

737–738
USER_SYS_PRIVS, 762–763
USER_TAB_COL_STATISTICS, 760
USER_TAB_COLUMNS (COLS),

734–735
USER_TAB_COMMENTS, 742
USER_TABLES (TABS), 731–733
USER_TABLESPACES, 376,

756–757
USER_TAB_PARTITIONS,

759–760
USER_TAB_PRIVS, 762
USER_TAB_SUBPARTITIONS, 760
USER_TRIGGERS, 753
USER_TS_QUOTAS, 757
USER_TYPE_ATTRS, 748
USER_TYPES, 747–749
USER_USERS, 761
USER_VIEWS, 735–737
using clause, 231

using index clause, 318
using index tablespace

clause, 300
UTL_MAIL, 9

VV

V$ performance tables
dictionary views, 765
SQL Result Cache, 821

VALUE
function, 672–673
reference for, 1282

values
DECODE function for

replacing, 281–282
list of values from a subquery,

84–86
logic and, 74
simple tests against a list of

values, 79–81
single value tests, 74–77
single values from a subquery,

83–84
VAR, Embedded SQL, 1283
VARCHAR2

automatic conversion and, 202
character width and NUMBER

precision, 295
converting/transforming, 198
LOB datatypes and, 643
Oracle datatypes, 114
overview of, 115
reference for, 1283
RPAD and LPAD functions,

118–119
SUBSTR function and, 128
tuning PL/SQL and, 599

variables
bind variables in dynamic

SQL, 591–592
declaring in Java, 685
declaring in PL/SQL, 515–516,

1284
evaluating using expressions

and statements, 687
Java vs. PL/SQL, 685
reference for, 1283–1284

Index 1333

VARIANCE
NULLs in group-value

functions, 165
number functions, 169
reference for, 1284

VAR_POP, 1283
VARRAY, 1284
VAR_SAMP, 1283
varying arrays

additional functions for,
636–637

as collector, 624
creating, 626–627
describing, 627–628
inserting records into,

628–629
location of data, 638
overview of, 626
selecting data from,

629–632
variability in, 637

V$DATABASE, 500
versions between clause, select

command, 490–491
versions, flashback queries,

489–491
views

creating, 88–90, 311
database links for, 420
expanding, 90
implementing object views,

617–619
manipulating data via object

and relational views,
619–620

materialized. See materialized
views

object. See object views
order by clause used with,

312–313
queries and, 798–800
read-only, 313
stability of, 311–312
User pseudo-column in,

425–427
USER_VIEWS, 735–737

views, of groups
aliases and, 215–216

order by used in views,
217–218

overview of, 214–215
power of, 216–217

virtual columns, 306–307,
543–544

Virtual Private Database. See VPD
(Virtual Private Database)

void, Java keywords, 695
volatility, measuring, 167
VPD (Virtual Private Database),

356–366
adding security policy to

tables, 361
creating application context,

357–359
creating logon trigger,

359–360
creating security policy,

360–361
disabling, 363–364
guarding data and, 8
implementing column-level

VPD, 363
initial configuration,

356–357
overview of, 356
testing, 361–363
using policy groups, 365–366

VSIZE, 1284
V$UNDOSTAT, 871

WW

wait times, tuning case study 1,
824–827

wallet, TDE, 370
Web browsers, XML vs. HTML, 884
well-formed documents, XML, 885
when

CASE function and, 286–287
PL/SQL Exception

Handling, 531
WHENEVER, 1284–1285
WHENEVER OSERROR, SQL*Plus,

1285
WHENEVER SQLERROR,

SQL*Plus, 1286

where
advanced subqueries and, 224
column definitions, 734
combining tables and, 87
correlated subqueries and,

224–225
create table command as

select, 309
creating view and, 89
dates and, 192–193
DECODE function and, 283
expanding views and, 90
indexes supporting, 317
logical operators and, 74
Oracle queries, 36–37, 72
order of execution, 213, 255
reference for, 1286–1287
REGEXP_LIKE supporting

regular expressions within
where clauses, 147

selecting values from object
tables, 668

SOUNDEX function and, 135
strings and, 134–135
subqueries and, 82–83

while clause, 690–691
WHILE loops

Java, 690–691
PL/SQL, 527–528, 1287

whole primary key, 46
wildcards (%)

LIKE operator and, 77–78
Oracle Text, 459

with admin options
privileges, 762
roles, 763

with grant option, 340,
344–345

with object identifier clause, create
view command, 676

with read only clause, create view
command, 313

within group clause, RANK
function and, 243

word wrapping, SQL*Plus
reports, 98

workload
capturing, 503

1334 Oracle Database 11g: The Complete Reference

creating a workload
directory, 503

processing the, 506
replaying the, 506–507
starting the capture, 505
stopping the capture, 505–506

WRITE, in DBMS_LOB, 657–658

XX

XML (eXtensible Markup
Language), 884–897

customizing query process,
894–895

DTDs, elements, and
attributes, 884–887

other features, 897
overview of, 884

programmatic access methods
supported by Oracle 11g, 9

XML Schema, 887–890
XMLType, 895–897
XSU and Java, 892–893
XSU (XML-SQL Utility) for

managing XML values,
890–892

XML Schema, 887–890
XML-SQL Utility (XSU), 890–893
XMLAGG, 1287–1288
XMLCAST, 1288
XMLCDATA, 1288
XMLCOLATTVAL, 1288
XMLCONCAT, 1288
XMLDIFF, 1288–1289
XMLELEMENT, 1289
XMLEXISTS, 1289–1290
XMLFOREST, 1290

XMLPARSE, 1290
XMLPATCH, 1290
XMLPI, 1290–1291
XMLQUERY, 1291
XMLROOT, 1291
XMLSEQUENCE, 1291
XMLSERIALIZE, 1292
XMLTABLE, 1292–1293
XMLTRANSFORM, 1294
XMLType, 895–897, 1294
XSU (XML-SQL Utility), 890–893

YY

“YY” format, dates, 193

ZZ

zero-level tasks, 55

workload (continued)

If there are other Oracle users at
your location who would like to
receive their own subscription to
Oracle Magazine, please photo-
copy this form and pass it along.

Three easy ways to subscribe:

Web
 oracle.com/oraclemagazine

Fax

+1.847.763.9638

Mail

P.O. Box 1263, Skokie, IL 60076-8263

1

2

3

FREE SUBSCRIPTIONGET
Y O U R

TO ORACLE MAGAZINE
Oracle Magazine is essential gear for today’s information technology professionals.

Stay informed and increase your productivity with every issue of Oracle Magazine.

Inside each free bimonthly issue you’ll get:

Copyright © 2008, Oracle and/or its affiliates. All rights reserved. Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

WHAT IS THE PRIMARY BUSINESS ACTIVITY
OF YOUR FIRM AT THIS LOCATION? (check
one only)

o 01 Aerospace and Defense Manufacturing
o 02 Application Service Provider
o 03 Automotive Manufacturing
o 04 Chemicals
o 05 Media and Entertainment
o 06 Construction/Engineering
o 07 Consumer Sector/Consumer Packaged

Goods
o 08 Education
o 09 Financial Services/Insurance
o 10 Health Care
o 11 High Technology Manufacturing, OEM
o 12 Industrial Manufacturing
o 13 Independent Software Vendor
o 14 Life Sciences (biotech, pharmaceuticals)
o 15 Natural Resources
o 16 Oil and Gas
o 17 Professional Services
o 18 Public Sector (government)
o 19 Research
o 20 Retail/Wholesale/Distribution
o 21 Systems Integrator, VAR/VAD
o 22 Telecommunications
o 23 Travel and Transportation
o 24 Utilities (electric, gas, sanitation, water)
o 98 Other Business and Services _________

WHICH OF THE FOLLOWING BEST DESCRIBES
YOUR PRIMARY JOB FUNCTION?
(check one only)

CORPORATE MANAGEMENT/STAFF
o 01 Executive Management (President, Chair,

CEO, CFO, Owner, Partner, Principal)
o 02 Finance/Administrative Management

(VP/Director/ Manager/Controller,
Purchasing, Administration)

o 03 Sales/Marketing Management
(VP/Director/Manager)

o 04 Computer Systems/Operations
Management
(CIO/VP/Director/Manager MIS/IS/IT, Ops)

IS/IT STAFF
o 05 Application Development/Programming

Management
o 06 Application Development/Programming

Staff
o 07 Consulting
o 08 DBA/Systems Administrator
o 09 Education/Training
o 10 Technical Support Director/Manager
o 11 Other Technical Management/Staff
o 98 Other

WHAT IS YOUR CURRENT PRIMARY OPERATING
PLATFORM (check all that apply)

o 01 Digital Equipment Corp UNIX/VAX/VMS
o 02 HP UNIX
o 03 IBM AIX
o 04 IBM UNIX
o 05 Linux (Red Hat)
o 06 Linux (SUSE)
o 07 Linux (Oracle Enterprise)
o 08 Linux (other)
o 09 Macintosh
o 10 MVS
o 11 Netware
o 12 Network Computing
o 13 SCO UNIX
o 14 Sun Solaris/SunOS
o 15 Windows
o 16 Other UNIX
o 98 Other
99 o None of the Above

DO YOU EVALUATE, SPECIFY, RECOMMEND,
OR AUTHORIZE THE PURCHASE OF ANY OF
THE FOLLOWING? (check all that apply)

o 01 Hardware
o 02 Business Applicat ions (ERP, CRM, etc.)
o 03 Applicat ion Development Tools
o 04 Database Products
o 05 Internet or Int ranet Products
o 06 Other Sof tware
o 07 Middleware Products
99 o None of the Above

IN YOUR JOB, DO YOU USE OR PLAN TO PUR-
CHASE ANY OF THE FOLLOWING PRODUCTS?
(check all that apply)

SOFTWARE
o 01 CAD/CAE/CAM
o 02 Collaboration Software
o 03 Communications
o 04 Database Management
o 05 File Management
o 06 Finance
o 07 Java
o 08 Multimedia Authoring
o 09 Networking
o 10 Programming
o 11 Project Management
o 12 Scientific and Engineering
o 13 Systems Management
o 14 Workflow

HARDWARE
o 15 Macintosh
o 16 Mainframe
o 17 Massively Parallel Processing

o 18 Minicomputer
o 19 Intel x86(32)
o 20 Intel x86(64)
o 21 Network Computer
o 22 Symmetric Multiprocessing
o 23 Workstation Services

SERVICES
o 24 Consulting
o 25 Education/Training
o 26 Maintenance
o 27 Online Database
o 28 Support
o 29 Technology-Based Training
o 30 Other
99 o None of the Above

WHAT IS YOUR COMPANY’S SIZE?
(check one only)

o 01 More than 25,000 Employees
o 02 10,001 to 25,000 Employees
o 03 5,001 to 10,000 Employees
o 04 1,001 to 5,000 Employees
o 05 101 to 1,000 Employees
o 06 Fewer than 100 Employees

DURING THE NEXT 12 MONTHS, HOW MUCH
DO YOU ANTICIPATE YOUR ORGANIZATION
WILL SPEND ON COMPUTER HARDWARE,
SOFTWARE, PERIPHERALS, AND SERVICES FOR
YOUR LOCATION? (check one only)

o 01 Less than $10,000
o 02 $10,000 to $49,999
o 03 $50,000 to $99,999
o 04 $100,000 to $499,999
o 05 $500,000 to $999,999
o 06 $1,000,000 and Over

WHAT IS YOUR COMPANY’S YEARLY SALES
REVENUE? (check one only)

o 01 $500, 000, 000 and above
o 02 $100, 000, 000 to $500, 000, 000
o 03 $50, 000, 000 to $100, 000, 000
o 04 $5, 000, 000 to $50, 000, 000
o 05 $1, 000, 000 to $5, 000, 000

WHAT LANGUAGES AND FRAMEWORKS DO
YOU USE? (check all that apply)

o 01 Ajax o 13 Python
o 02 C o 14 Ruby/Rails
o 03 C++ o 15 Spring
o 04 C# o 16 Struts

o 05 Hibernate o 17 SQL
o 06 J++/J# o 18 Visual Basic
o 07 Java o 98 Other
o 08 JSP
o 09 .NET
o 10 Perl
o 11 PHP
o 12 PL/SQL

WHAT ORACLE PRODUCTS ARE IN USE AT YOUR
SITE? (check all that apply)

ORACLE DATABASE
o 01 Oracle Database 11g
o 02 Oracle Database 10g
o 03 Oracle9i Database
o 04 Oracle Embedded Database

(Oracle Lite, Times Ten, Berkeley DB)
o 05 Other Oracle Database Release

ORACLE FUSION MIDDLEWARE
o 06 Oracle Applicat ion Server
o 07 Oracle Por tal
o 08 Oracle Enterpr ise Manager
o 09 Oracle BPEL Process Manager
o 10 Oracle Ident ity Management
o 11 Oracle SOA Suite
o 12 Oracle Data Hubs

ORACLE DEVELOPMENT TOOLS
o 13 Oracle JDeveloper
o 14 Oracle Forms
o 15 Oracle Repor ts
o 16 Oracle Designer
o 17 Oracle Discoverer
o 18 Oracle BI Beans
o 19 Oracle Warehouse Builder
o 20 Oracle WebCenter
o 21 Oracle Applicat ion Express

ORACLE APPLICATIONS
o 22 Oracle E-Business Suite
o 23 PeopleSof t Enterpr ise
o 24 JD Edwards Enterpr iseOne
o 25 JD Edwards World
o 26 Oracle Fusion
o 27 Hyperion
o 28 Siebel CRM

ORACLE SERVICES
o 28 Oracle E-Business Suite On Demand
o 29 Oracle Technology On Demand
o 30 Siebel CRM On Demand
o 31 Oracle Consult ing
o 32 Oracle Educat ion
o 33 Oracle Suppor t
o 98 Other
99 o None of the Above

YOU MUST ANSWER ALL 10 QUESTIONS BELOW.

1

2

3

4

5

6

7

8

9

08
01
40
04

s i g n a t u r e (r e q u i r e d) d a t e

x
From time to time, Oracle Publishing allows our partners
exclusive access to our e-mail addresses for special promo-
tions and announcements. To be included in this program,
please check this circle. If you do not wish to be included, you
will only receive notices about your subscription via e-mail.

Oracle Publishing allows sharing of our postal mailing list with
selected third parties. If you prefer your mailing address not to
be included in this program, please check this circle.

If at any time you would like to be removed from either mailing list, please contact
Customer Service at +1.847.763.9635 or send an e-mail to oracle@halldata.com.
If you opt in to the sharing of information, Oracle may also provide you with
e-mail related to Oracle products, services, and events. If you want to completely
unsubscribe from any e-mail communication from Oracle, please send an e-mail to:
unsubscribe@oracle-mail.com with the following in the subject line: REMOVE [your
e-mail address]. For complete information on Oracle Publishing’s privacy practices,
please visit oracle.com/html/privacy/html

n a m e t i t l e

c o m p a n y e - m a i l a d d r e s s

s t r e e t / p . o . b o x

c i t y / s t a t e / z i p o r p o s t a l c o d e t e l e p h o n e

c o u n t r y f a x

Want your own FREE subscription?

Yes, please send me a FREE subscription Oracle Magazine. No.

Would you like to receive your free subscription in digital format instead of print if it becomes available? Yes No

To receive a free subscription to Oracle Magazine, you must fill out the entire card, sign it, and date
it (incomplete cards cannot be processed or acknowledged). You can also fax your application to
+1.847.763.9638. Or subscribe at our Web site at oracle.com/oraclemagazine

10

