et] 'I*
VB.
LANGUAGE

IN A NUTSHELL

Pk O

CRELLY™

VB .NET Language in a Nutshell

Steven Roman

Ron Petrusha

Paul Lomax

Publisher: O'Reilly

First Edition August 2001

ISBN: 0-596-00092-8, 654 pages

Need to make sense of the many changes to Visual Basic for the new .NET platform? VB .NET
Language in a Nutshell introduces the important aspects of the language and explains the .NET
framework. An alphabetical reference covers the functions, statements, directives, objects, and object
members that make up the VB .NET language. To ease the transition, each language element
includes a "VB .NET/VB 6 Differences" section.

P O G e 14

Why ANOther VB BOOK? ... 26
WHhO ThiS BOOK IS FOI ...t 26
Readers New to Visual BaSIC.......c.ccoceieiiiiniieneseneeeeee s 26
VB and VBScript Developers New to VB .NETcccceiiiiiininc v 26
EXisSting VB .NET DeVEIOPEIS ... 27
How This BOOK IS STrUCTUIEdcccviieeee et 27
The Format of the Language Reference........cccccceeviiiiieveccecvee s, 28
Conventions Used in ThiS BOOK........ccccoiiiiiiiinieeeee s 29
HOW O CONTACT US ...t 30
ACKNOWIEAGMENTScoiciieee e an e 30
T O R 8 g T = 7 T (o0 PR 33
Chapter 1. INTrOAUCTIONcc.eiiiieieee et 33
I VY oY AN IS 34
1.2 What IS VB .NET? ettt ettt 37
1.2.1 ODbjJeCt OrieNtatiONcoceviririeieeee s 37
1.2.2 A CommoN TYPE SYSTEMouiiiiiiiciie et 38
1.2.3 Access to System Services: The Framework Class Library 39
1.2.4 A Common Runtime ENVIrONMENTtcocoviriinieninie e 41
1.3 What Can You Do With VB .NET?.......ccciiiienee e 42
Chapter 2. Variables and Data TYPEScccrriierere st 43
2.1 VariabIEs ... s 43
2.1.1 Variable SCOPE ..ottt e 43
2.1.2 Variable LIfetime ... 45
2.2 Declaring Variables and Constants.........ccccccceevieiiicviecce s 47
PG B B L= X = Wl Y/ 01T SRS 48
2.3.1 Value and ReferenCe TYPES......cciirirerinirereeee e 49
2.3.2 VB Data Types: A SUMMAIYcccociriiieiiereeseesieseesreesre e 51
2.3.3 Simple Data Types in Visual BasiC.........ccccecereriieieiiiiene e, 54
2.3.4 Data TYPE CONVEISIONoceiiiiiriiieieesie ettt s 62
2.4 ATTAYS ..ottt r e R r e e R n e ne e neaneenne s 64
2.4.1 DefinitioN OF AFTAYcccoiiiiiiiisieeere e e 64
2.4.2 DIMENSION OF @N AFTAYcoiiiiiieeee ettt st nnee s 64
2.4.3 SIZE Of QN AITAY ...ooeie ettt s nree s 64
2.4.4 Arrays iIN VB .NET ..ottt 65
2.5 Object Variables and Their BiNdiNgccccccvvvieiiiiiicciececee e 67
2.5.1 Late Binding Versus Early BiNdiNg......cccccovveiiiiiieciicsee e 68
2.6 The Collection ODJECT ... 69
2.7 Parameters and ArgUMENTS ... 70
2.7.1 PasSiNg AFQUIMENTS ..ot s 70
2.7.2 PasSING ODJECTScciiiiiisi et s 71
2.7.3 Optional ArQUMENTS.......oociiiieieeeeee e 73
2.7 .4 PATAMATITAY ...oooueeieieeiieesit ettt sttt ss s sseesneene e e sseenesneenneas 73
Chapter 3. Introduction to Object-Oriented Programmingcccceceeevieeieeneeccieesinens 75

3.1 Why Learn Object-Oriented TeChNIQUES?ccceveevreveese e 75

3.2 Principles of Object-Oriented Programming..........ccccocceveieeieesieesieesnnenn 75

1C B0~ NN 0 151 1 = Tox [0] o [PPSO 75
3.2.2 ENCAPSUIATLION ..ottt e 76
0 G B 1 0 =] = Vo =2 77
3.3 Classes and ODJECTS ... e 79
3.3.1 Class Modules iN VB .NET ... 79
10 00 B2 O = 1S =T 0 g1 0T S 79
3.3.3 The Public Interface of a VB .NET Classccccocervvrivrveresiennieennn 81
G T @] o] [T ox SRS P PP RPRRPRRRIN 81
G TG TR S o 0] o 1= i N TSP 82
3.3.6 Instance and Shared Members........cinn 83
3.3.7 ClasS CONSTIUCTONS.......coiiiiiiieieeie et s 84
3.3.8 Finalize, Dispose, and Garbage Collection.........ccccccoecoevviieennnnee. 85
G Lol oT=T) =T Lol = PP 86
3.4.1 Permission tO INNErit ... 88
1 N2 @ L/ =1 o o [[EE OSSP P U RURUR PSRRI 88
3.4.3 Rules Of INNErItaNCe.........ccv e 89
3.4.4 MyBase, MyCIlass, and MEeccccoriiiieeieneee e 89
3.5 Interfaces, Abstract Members, and Classes........cccccvrnneneneneenne, 91
3.5.1 Interfaces REVISITEAccccveerieii e 93
3.6 Polymorphism and Overloadingccccviiieninininieese e 93
G S T B @)Y/ ¢ Lo 7= 1110 T R 93
3.6.2 POlYMOIPRNISM ..o e e 94
3.7 Scope and Accessibility in Class Modules..........ccocoiviiiiieiecciccc e, 95
Chapter 4. The .NET Framework: General CONCEPLS........ccocvrererieeriereneneseseeseenea 97
4.1 NAIMESPACEScooreeieieieeriee e aee e e s sre e s e e sre e ane e e s e e ssnesre e aneeaneesneenareenns 97
4.2 Common Language Runtime (CLR), Managed Code, and Managed
D2 X > TP PR OPRP 97
4.3 Managed EXECUTION ..ot 98
4.4 ASSEMDIIES ... e e 98
4.5 Assemblies and VB .NET ... s 100
Chapter 5. The .NET Framework Class Library.........ccceveorieneneneneseneseseseeens 103
5.1 The System NAMESPACEcccviriirieierere e 104
5.1.1 Data TYPEe CONVEISIONccciiiieiiiirie sttt s 104
5.1.2 The Array ClassS...... ittt 105
5.1.3 The MaAth CIaSS......cooi i e 106
5.1.4 The STHNQ CIASS ..ccciiiieiie ettt st nnee s 107
5.2 Other NAMESPACEScccieiieciiccie ettt esae e sreesneenree s 108
5.2.1 System.CollEeCtIONSccuiiiiececee e 110
5.2.2 SYSTEM.DAL@oooiiieecie e e 110
5.2.3 SYSTEMIL IO ... s 111
5.2.4 System.Text.RegularEXPressionsc.ccccveienenenene e 111
5.2.5 System.WiNdOWS.FOIrMSccoiiiiiiiierenesee e 113
Chapter 6. Delegates and EVENLSccccce et 115
6.1 DEIEQALES ... s 115
6.1.1 Using a Delegate to Call a Method..........cccceoiiiiiinincneneeee, 116
6.1.2 Using a Delegate as a Function Pointercccccvvviviencneneenne, 117

6.2 Events and Event BiNAiNg ... 118

6.2.1 Control-Related EVENTS ... 119
6.2.2 WITNEVENTS ...ttt et 119
(SDZC I [o | o F=Tia o | 1= lr SO S 120
Chapter 7. Error Handling in VB .NET ... 123
7.1 Error Detection and Error Handling........ccccoevveieeiniciecn e 123
7.2 Runtime Error HaANAIiNgG ..ot 124
7.2.1 Unstructured Error HaNdliNgccccevoviiiiicecie e 124
7.2.2 Structured Exception Handling ... 127
7.3 Dealing with Logical ErrOrs.......ine e 131
7.3.1 Detecting Logical ErrOrS.......ccocoiiiiiie s 131
7.3.2 Where to Handle a Logical Error ... 132
7.4 Error CONSTANTSooiiiiieee e sttt nne e 133
Part 111 REFEIENCE ... e 135
Chapter 8. The Language Refer@ncCecccveieieiiie et 135
FECONSE DIFECTIVE ...t bbb 137
#HIf.. Then.. . ZEISe DIreCtiVe ... s 139
#Region...#ENd Region DIreCtiVe ... 141
Y 13 L O o o 0] o 1SS 141
Ao 0 1S U | T3 1 [o PSS 143
AddHandler StatemeENT..........ccoe e 143
AAAreSSOT OPEIatOrcciiiiiiieriesie e s 144
APPACTIVALE PrOCEAUIE ...ttt 145
APPHCALION CIASS.....cc it 147
Application.CompanyName Propertyciieieecieeiee e esessneesneens 148
Application.DoEvents Method.........c.ccccoiiiiiiiiieccs e 149
Application.ExecutablePath Property ... 150
Application.ProductName Property.......iiiieiee e esee e 151
Application.ProductVersion Propertyciiiieiie s eses e 152
ATTAY CIASS ...ttt bbbt e et se e b e b ne e eneas 152
Array.BinarySearch Method ... 153
Array.Copy METNO ... e 156
Array. INdexOf MethOd ... 158
Array.LastindexOf Method..........ccocviiiiiiiie e 159
Array.Reverse Method ... 161
Array.Sort MetROd.........oo e 162
ASC, ASCW FUNCTHIONS ..ottt ettt 164
ASIN FUNCHION ...ttt et 166
ATAN FUNCTION ..ottt bbb e e 167
SEE AlSO . ae e 168

W = 1 D2 U | g T 0 S 168
BEEP PrOCEUUIE ...ttt 169
Call STAEMENT.......e et sae e e eneeneens 170
CallByNamMeE FUNCEION ..ot 172
(04T Yo] I 1 0] o o 1] ISR 174
CBYTE FUNCTION ..ottt st 175

ClNAE FUNCEION . nnnnnnnmnnnnnnnns 176

CDAte FUNCHION ... 177

(019 o1 I =11 o 103 ¥ [0 o 1SS 178
(010 7T o3 = U g (o o [o PSSRSO 179
CeiliNG FUNCHION ..ot 180
(04 o] B T] g =d g0 [T =T (U] =R 181
(01 o] BT gAY/ = e ToT=To 1| /=TT 182
(O g 10 To 1Y =T =l U1 (03 [0 o [0 184
(O o] GO o 1 YAV A = U1 g (03 X0 i [185
(OF g} Al =10 o o [IR 187
Class STAtEMENT ..o e s e sbbe e e s earaeeeens 188
(04 [T0] oTo =T o IO F= T 1TSS 190
Clipboard.GetDataObject Method...........c.cccoeiiiiiiii e 190
Clipboard.SetDataObject Methodc.cccoviiiiiiecii e 192
(@4 1 o o T 1 o o [0 o SRS 192
(1@ o] I =1 U] o T4 1 [0 o ISR SUSPS 194
(070] 1 [=To1 o (o] 1O F= 173 195
Collection.Add METNOdcooeuiiicie e 198
CollectioN.COUNT PrOPEITY ..ottt 199
Collection. Item METNOMooocviieee e 200
Collection.ReEMOVE METNOM.........coocuiiiiiiiicie ettt 202
COlOrDIAlOg CIAsScooiiiiiiesiereeeee et 203
ComMMANA FUNCHIONoveiiictiee ettt st e s e e s enrae e e 205
CONSE STAtEIMENT ...ttt s s s aarr e 207
(OT T o U 1 o (] o [o [PPSO 208
(OT0 1] o T U 1 103 1 0] o 1RO 209
CreateObjJect FUNCHION ..ottt st 210
(0357 g o] g = U] Lo 1 [0] o ISP 212
CSNG FUNCHION ...ttt 214
(O35] 1 gl U [T3 ¥ 0] o 1SR 215
CTYPE FUNCTION ..ttt 216
(G181 B IT g BT o (o3 A 0] i 1 218
[DI=Y (VAN [0 I =0T o (1 o [] o 1 219
(DY (T B i LU 1 (o o] 221
DatePart FUNCTIONoeeii ettt re e e s aba e e 224
DateSerial FUNCHION ...ttt 226
DateString PrOPEILY ..ottt 228
DateValue FUNCHIONccceeie et 229
D F= Y U o T3 1 Lo] o PSP 230
(D] = T o (o3 A [0 o [231
DEDUQG CIASS ...ttt 233
Debug.ASSert MethOd ... s 234
Debug.AULOFIUSN PrOPEertY ... s 235
Debug.Close Method...........oiiiiiiie s 235
Debug.FIuSh Method ... s 236
Debug.INdent Method ... s 236
Debug.IndentLevel Property ...ttt 237
Debug.INdentSize Property ...ttt 237

Debug.LiSteNers PrOoPerty ...ttt 238

Debug.Unindent Method.............ccoo oo 238
Debug.Write MetROd ... 239
Debug.Writelf Method ... 240
Debug.WriteLine Method ... 241
Debug.WriteLinelf Method ... 242
Declare STtatemMENTt ... s 243
Delegate StatemMENT ... e 248
DeleteSetting ProCeAUIE ...t 249
DIm STAtEMENT ... e s 251
DIF FUNCHION ..t e bbb e 256
(D11 =Tl (0] VA O F= 1TSS USRS 259
Directory.CreateDirectory Method............ccccoooeeiiiiiiiie e 260
Directory.Delete Method............coov i 261
Directory.EXIStS MetnOd ... 262
Directory.GetCreationTime Method...........ccociriniiiniiiiseeeeas 263
Directory.GetDirectories Method ... 263
Directory.GetDirectoryRoOOt Method...........coceiiviniiiieesee e 265
Directory.GetFiles MethOd.........cccoiriiiiiiieeeee e 266
Directory.GetFileSystemEntries Method............ccocvoiiiiininnencneneeens 267
Directory.GetLogicalDrives Method...........ccocoviriniiinieiesere e 268
Directory.GetParent Method ... 269
Directory.Move Method........c.coooiiiie e 270
DO...LOOP STAtEMENT........oii i 271
E FIEIA . e e 274
o] =Y (=] 1 4[] 1 SO 274
ENUM STATEMENT.......ee e 276
ENVIFON FUNCTION ...ttt 278
(@ T | o T] o IS 280
Erase STatemMENt.........oo e 281
EF] PrOPEITY .ottt bbb 282
EFT ODJECT ... 283
=8 g @ [=F= T gl Y/ =Y o o Yo S 284
Err.DescCription PrOPEILY ...ttt st 285
Err.GetException Method............ccco e 286
Err.HelpConteXt PrOPEILY ..ottt st 288
Err.HElPFIlE PrOoPertY ..ttt et 289
Err.LastDLLEITOr PrOoPerty ...t 290
Err.NUMDBEr PrOPEITYoi ettt sttt st 291
= g =T EST =Y/ =Y o o T S 293
Err.SOUICE PrOPEITY ... 295
ErrOr STAtemMENTot 295
ErrorTOSTrING FUNCHION ..o 296
EVENT STAtEMENT. ... e 297
EXCEPTION CIASS ..ottt 299
EXIT STAtEMENT.....ooiiie e e e 302

(=D Tq o T ¥ o [o1 1 [0 o [P OSPPRS 303

LT O P T T 304

FIE.EXISTS METNOU ..ottt arae e 305
[VAN o o gl 6] Lo 1 [0 o SRRSO 306
FIlEClOSE PrOCEAUIEcoeieeeeeee ettt e st e st e e s eearaee e e 307
FIleCOPY ProCeAUIE.........ooeee e 308
FIleDateTime FUNCLION. ...ttt s e e s s st e e s s sba e e e s searaee e e 309
FileGet, FileGetObject ProCedUres..........ccocevieveieereeieseere e eee e 310
FIHELEN FUNCTIONiiii ettt ettt e e s st e e s s eba e e e s s e abae e e s snraeeesns 312
FIleOPEN PrOCEAUIE ...t 313
FilePut, FilePutObject ProCedures.........cccoiieiiieiie s 316
FIHEWIATN PrOCEAUIE ...ttt arae e 318
[=T U g [o [1 o O OURRTRORR 319
[DG] To3 1 [0 o [OURRRRUPR 321
[ToTo] gl I Tox 1 0] o SRRSO 322
(o] oY DI F=1 0T T 04 = 11 SRS RR 323
FOr...NeXt STAtEMENT ... 325
For Each...NeXt StatemMeNt.......coii e eaae e 327
(0] g g F= L S U 1 g (1 o [1 o O 329
FormatCurrency, FormatNumber, FormatPercent Functions.............. 341
FormatDateTime FUNCEIONccuveiiieeeee ettt e s rae e 343
[=TS | (ST U T (o o[R 345
Friend KEYWOId.........oi ittt sttt 345
FUNCLION STAtEMENT.....oeeiii et e s arae e 346
[V U 1 g T3 1 [0 i [OURRRROTR 350
GEt STALEMENT ... e e e e e aaarees 352
GetAllSettings FUNCHION ...t st 353
GetAllSettings FUNCHION ..ot st 355
(CTSY 2N n o g L1 103 ¥ 0] o [357
GEtODJECT FUNCTION ..ottt 359
GetSetting FUNCTION ..o 361
(1Yl T ST 1 o 1o o I 363
(CTo N o TRS] =1 {10 ¢ 1] 1 S 364
HanNdles KEYWOId ... 365
[P g = 1 0] (ST O F= XTSI 366
Hashtable.Add MethOd ... 368
Hashtable.Clear Methodooo i 369
Hashtable.ContainsKey Method...........cccoiiiiiicie e 370
Hashtable.ContainsValue Method ... 371
Hashtable.CopyTo Method.........c.coioiiiiiiiiecccecee et s 371
Hashtable.Count Property ... 372
Hashtable. 1tem Property ... s 373
Hashtable.Keys Property ... 374
Hashtable.Remove Method ...t 375
Hashtable.Values Property ... 376
(o (S0 G T U 1 (o 1 [] o 377
(o Lo T8 [gl [g Tox 1 [0 o [P 378
IDataODbject INTErfacCe ... 379

IDataObject.GetData Method ... 379

IDataObject.GetDataPresent Methodc.cccccociieieicicie s, 381
IDataObject.GetFormats Methodcccco e, 383
IEEEREMAINAEr FUNCLION ..ottt e s e s 384
If...Then...EISe StatemeEnt it 384
I O o o [o 389
IMplements KEYWOId.........coiiieeee s 390
IMplements StatemMENT ... s 391
IMPOITS STAEMENT ... e 393
INNETITS STAtEMENT ... e 394
1] 01U L ol oot T (5] S SP 395
INPUEBOX FUNCHION ...ttt st 397
INPULSTIING FUNCHION ..ottt 399
L) (gl] Lo 10 o I 400
INSTIREV FUNCTION ...ttt e e s 402
) o L o [403
INTErTACe STALEMENT ... s s s e e e e s saees 404
1) o L o o] 407
I U] Lo [410
ISR @] o T=T = {0] O TRS PRSP OP PR 411
ISATTAY FUNCTION ..ot 412
ESY B F= L (=T U 1 o (] o [] o O 413
Y] =1 18] | U T (o o o] o 414
K] =t g oY gl (U 1 (o o o] o 415
ISNOTthING FUNCHION ..ot e e 416
]\ [0 1 g T=T o Lo U T g (o o [T o 417
ISREfErenCe FUNCHIONoeiiicee e 417
N Lo 1| 8 T U T (1 o [Y o 1R 419
(L LI e ToT=T o 1] /< 420
(I =710 g Lo [=10 Tox o[o 421
(I OF= oY ST =T U | o [o 1 o] o [423
(ISY 1 L0 Lo T] I 423
(Y o L1 T3 X0 o 1 425
(] GO 01T = 1 (o] USRS 426
LINEINPUL FUNCLION ..ottt st et 427
(I o = U 1 g (4 o [0 1 o [P 429
(I Tod 2 = o YoT=To L | /=IO 430
(L@ T U o o [o IO 431
(o Yo [= U [o3 o] o ISR 432
LOGLO FUNCTION ..ttt bbbt bbb 434
(I T 0 T 1 Lo 1 o] 435
Y/ E= 0 G LT (1 {0 o [436
ME OPEIATON ...ttt ettt r e e n e e ne e re e e nns 437
/1o I T o [) o 438
Y110 I3 =X (=] 0 1]) 440
V1T T U T (o o [O 441

MINUEE FUNCHION ..o 442

IMIERR FUNCHION s mnmnnnnnmnnnnn 443

MKDIT PrOCEAUIE ...ttt ettt et e sne e annas 444
AV oo I @ 0T=] = o] PSP 445
Module...End Module Statement...........ccocoeiieiiiiiee e 446
AV o] o 14 g T L8] o [1 [0 o 1SS 447
MONTANAME FUNCLION........ccii et 448
MSGBOX FUNCHION ... 449
MYBASE KEYWOIU ..ottt 452
MYCIASS KEYWOIT ..ot 453
Namespace StatEMENT.......ccociiiii s 454
L0)YV e 0] 1T o 1Y 2SS 455
L =T a1 o o o o PSP 456
LA T g [1 [] o PP 458
1@ Tox S U 1 o o 1 [0 o USSR 459
ON Error STAtEMENT.......cceie e e sae e sre e 460
OpeNnFIleDialog Class ... e 463
Option Compare STateMENTcccoiiiiee e 466
Option EXPIICIt STAtEMENT......cccooiieeeeeee e 466
OptioN STErict STAtEMENT ..o e 467
Partition FUNCLIONc.ooiie ettt sttt sne e snre e 469
T 1= (o PR 471
(0 0 o U 1o T] SR 472
POW FUNCHION......ciiii ettt et e e ne e ne e snr e 473
PPMT FUNCTION ..ottt sttt anr e 474
Print, PrintLine ProCeAUIES.........cccviiiiiiiie et 476
Private STatemMENTt..........coooiiiieiieceece e e 478
Property StatemMeEnTt... ... e e 480
Protected KEYWOId ..ot s 485
(0] o] [ToRRS] = 1 (=] o = 0| PR 485
AV ¥ o o 1 [0 o PR 438
(0] 2100 (o1 gl = U] o T 1 o o S 490
(@ T BT L= O = LSS 491
Queue.Clear MethOd ... e 493
Queue.Contains MethOd ... 493
Queue.CopyTo MEtNOd.........ccooiiiieece e 494
QUEUE.COUNT PrOPEITY ...ooeiiiie ettt s st s e s snne e 495
Queue.Dequeue MethOd.........cccooiiiiiiiii e 496
Queue.Enqueue Method ... 497
Queue.Peek MEetNOdo e 497
Queue.TOArraY METNOd.........coi i 498
RaiseEvEeNt StatemMeENT.........ccooii i e e 498
RANAOMIZE PrOCEAUIE........ccei ettt s 500
= (= U] o [1T o 1R 501
REDIM STAtEMENT ... e e 503
REM STAtEMENT ... e s e e e s e e 505
RENAME PrOCEAUIE ..ottt enre s 506
(YT o1 = Vot ol U] o T 1 (o] o [SRS 507

10

RESET PrOCEAUIE ... 509

ReSUME STateMENT ... e 510
RetUIN STAtEMENT........coi e sree e 511
RGB FUNCTION.......oiiiiitie ettt ettt s e st e e b e s n e e sraesreesaeeenneenneean 513
RIGNT FUNCTION ... 514
RIMDIE PrOCEAUIE.........oeeeecee ettt sttt et re e sraesbe e reesneennee s 515
RN FUNCTION ...ttt st e sra e ste e neesnneennee s 517
ROUNA FUNCHION ..ottt sttt e e s neennee s 519
RTEIM FUNCHION ..ottt sttt ae e ne e nnee s 520
SaveFIleDIalog CIass ... 521
SaveSetting ProCEAUIE ...ttt 523
SCHPLENGINEG FUNCHION ..ottt 524
ScriptEngineBuildVersion FUNCHION ..o 525
ScriptEngineMajorVersion FUNCLION........ccccviiei v 526
ScriptEngineMinorVersion FUNCLION..........cccccvoiiiie v 527
RETUIN VAIUE.......ooc ettt st re e e neesnee s 527
ST =ToTo] Lo I U ¥ g Tox £ {01 o FON OSSP 528
ST =T Sl U 1 o3 4 o] o OSSP 528
SEEK PrOCEAUIE ...ttt ettt s ebe e s ne e nae e enne s 529
SeleCt Case STateMENT ... e 530
Send, SeNAWait METNOASc.ueiiiiiee et 532
ST STALEMENT ... e s sb e nnreas 535
SETALLN PrOCEAUIE ...ttt 537
ShadowWs KEYWOId........cociiieieeie ettt 539
SHEll FUNCHION ...ttt 541
Yo 1 U T o] PR 544
Y| I U 1 o T] o ISP S 545
SINN FUNCHION ..ot s ae e eare s 546
] I NV 0T o T 1T] OSSP 547
SPACE FUNCTION ..ottt 548
SPC FUNCTION ..ttt 549
SPIT FUNCHION ..o 550
ST FUNCTION ...t sb e 551
STACK ClASS ..ottt e nre e et e e nre e nns 552
Stack.Clear Method ..o e 554
Stack.Contains Method ... 554
Stack.CopyTo MEtNOd..........ocoiiiiceee e 555
15) = 101 @ @0 18] o | Al = €0 0 1= o 1Y 20U 556
Stack.Peek Method ... s 557
Stack.POP MEtNOd ... s 557
Stack.PUSh MeTNOdooeiieeee e 558
Stack. TOArray Method ... s 559
STAtIC STALEMENT.......o e ae e sneenrees 559
STOP STATEMENT ... e 562
] & g 1 g Lo o o OSSP 563
SErCOMP FUNCHION. ...t 564
SErCONVY FUNCLION ..ottt 565

SEIDUP FUNCHION.....ciiie ettt sbe e st e sre e s aeennee s 567

SErREVEISE FUNCLION......ooiiiiie et e 568
Structure...End Structure Statement..........cccooiiinincneeee e 568
ST 8] o IS =1 =] g 1=) S 570
YY1V (o] o T | o T] o S 574
IS 4 2 U o o o S 575
SYNCLOCK STAtEMENT ... 576
SystemTypeName FUNCTION ... 577
JLIE=1 o 0 11 (o T] o 1 579
JLIE= L B 181 (o € o] o TSRS 580
TANN FUNCEION ...ttt e 581
THrOW STAteMENT ... e e 582
TIMEOTDAY PIrOPEITY ..ottt st 582
BT 0 0 L=T g o o] o= PSS URUSRS 583
TimeSerial FUNCLION ..o e 584
TIMESTIING PrOPEITY ..ot 585
TIMEValue FUNCHION........cci e 586
TOAAY PrOPEITY...ouiieiiiieiieeeete sttt sttt b b 587
LI T 1 o T) o 588
Try...Catch...Finally Statement ..o 589
TYPENAME FUNCTION ..ot 591
UBOUNA FUNCEION ..ottt e 593
UCASE FUNCTION ...ttt ettt e nne s 594
UNIOCK PrOCEAUIE ...ttt e 594
Val FUNCHION ...ttt s 596
A= 11D LT ol U | o Tox i (o] o ISR 597
V2= L Y/ o L= = U T3 o o] o ISR 598
VDTypeName FUNCTION ... 599
WeeKday FUNCTIONocoiiiieeee e 601
WeekdayName FUNCTION ... 602
While...End While Statement ... 604
WITh STAtEMENT........ooeeeeee et re e 605
WITNEVENTS KEYWOIUot 606
WIITE PrOCEAUNE ...ttt 608
WIELINE PrOCEAUIE.......ceeieeee e 609
N =T g = U] o [4 0 o SRR 610
Part H: APPENTIXES ..ottt e e bbb ne e 613
Appendix A. What's New and Different in VB .NETcccccoceviieiin i 615
A.1 Language Changes for VB .NET ... 615
N I R D 1= = B I8/ 0 1< U 615
A.1.2 Variables and Their Declaration.........c.cccoceoovveeveeiescenieese e 616
A.1.3 Boolean and Bitwise OPEeratorsScccoerererienenenene s 619
A.1.4 Changes Related to Procedures........cccvviivieciiesee s 620
A.1.5 Miscellaneous Language Changes.........ccccceviviiiiviiccecven e, 621
A.2 Changes to Programming Elements.........ccccccooiiiiiiiiie v 622
AL2.1 CONSTANTS ...t s e e e n e san e e sneeeneas 622
A.2.2 STriNG FUNCLIONS ..ottt 623

11

AL2.3 EMPUINESS ...ttt sttt st re e s nreennee s 623

A.2.4 Graphical FUNCLIONAlITYccccoeiiiiicece e 623
A.2.5 Mathematical Functionality...........ccccooeiiiiiiiiiiicc e 623
A.2.6 DIAGNOSTICS. ..ottt bbb e b b ne e 623
A.2.7 MISCEIIANEOUS ... e 624
A.3 Obsolete Programming Elements..........cccocovirirenininiciencne e 624
A.4 Structured Exception Handling ... 627
A.5 Changes in Object-Orientation ... 627
Tt R 0] g 1=) =T Lo S 628
A.5.2 OVErIoadiNg ...oooiiiececee e 628
NI I @] o] [=Tox a1 =T 1 (o] o [PPSR 628
A58 PrOPEITIES ..ottt sttt ete e e e enreennee s 629
Appendix B. Language Elements by Category........cccoevinirerieieiene e 631
B.1 Array HandliNg.......coooiiiiiiieeee s 631
=022 4 110} o To 1= o H SR 631
(SIS Ofe] | [=Tod o] o I @] o] T=T o1 iR 632
B.4 ComMMON DIAlOQSoooiiiceece ettt 632
B.5 Conditional Compilation..........cccceeiiiiieiiie i 632
S G @01 01V =T] 0] o PSP 633
B.6.1 Data TYPe CONVEISIONcccuviiiieiie et cie ettt sttt e e saee s 633
B.6.2 Other CONVEISIONocveecie ettt e 633
A B = Y (S I= T Lo I I 1 633
B.8 DEDUGQING ...ttt e 634
(SR T B T o] F= Y= 1 0] o 634
B.10 Error HAnNAIINGccooiiiineeeeee e 635
B.L1 FIlESYSTEIM . ..ot st 635
B.12 FINANCIAI ... e 636
B.13 IDataObject INTErfacecccccoviiiiiece e s 636
B.14 INTOrMATION ..o et e e 637
B.15 INPUE/OULPUL ...ttt st nre e 637
B.16 Integrated Development Environment...........cccceoveveeiceccee e csveeene, 638
[A 1 o] (= = Tox £ [0 o PSP 638
B.18 MathRemaATtiCS.......ccceiieeeeeeee e ene 638
B.19 Program Structure and FIOWcccccoiiiiinniee e, 639
B.20 ProgramIMiNgccccoeoiiierieniesieniiseeieee ettt ss s st e sse e 640
B.20.1 Object ProgramimMingccccceeieneneneseseseeeeeesee e 640
B.20.2 Miscellaneous Programmingcccoeiererirnienenese e 640
B.21 REQISTIY .ottt ettt b b et 640
B.22 String ManipulatioN..........ccociiiiiiiiece e 641
APPENTIX C. OPEIALOIS ...ttt et e bbb e b ae e nes 643
C.1 AritNMETIC OPEIATONSociiiirieiieeee e 643
C.2 ASSIGNMENT OPEIALOrS.ciueiiieiieieieiee et 644
C.3 Concatenation OPEratorsSccccceiiieiieiiieree e 646
C.4 CompariSON OPEIFALOrScccviiieiie ettt ere e 646
C.4.1 The IS OPEIALtOr......ccccieeiiecie et sre s 647
C.4.2 The LIKE OPEIaAtOrcccceoiiieiee ettt 647
C.5 Logical and Bitwise OperatorsS.......cccvvceeiieeiiiesee s s 647

12

EQV @NG IMP et 650

C.6 OPErator PreCEUENCE........cocu ittt 650
Appendix D. Constants and ENUMEratioNS...........ccooevereninenenieeese e 653
D.1 Visual Basic INtrinSiC CONSTANTS........ccccceeveieeriere e 653
D.2 CONtrolCNArs ClasS......ccouiiiieiiiiesiee st ee e see et esreene e 656
D.3 Visual BasiC ENUMEIratiONS........ccccevvieiieeieeeeseesie e esee e sae e eee e 656
D.3.1 AppWinStyle ENUMErationccccoveiieiie et 656
D.3.2 CallType ENUMEratioN.........cccouviiieiie ittt 656
D.3.3 CompareMethod EnNUMeration..........cccceveveveeiieciiiesie e 656
D.3.4 DateFormat ENUMErationccoccieiiniinienene e 657
D.3.5 Datelnterval ENUMEration ... 657
D.3.6 DueDate ENUMEratioNcccoriiieieniinieeeee e 657
D.3.7 FileAttribute ENUMEratioNcccccoveevieeiineese e 657
D.3.8 FirstDayOfWeek ENUMErationc.cocvenireriieieenene e 657
D.3.9 FirstWeekOfYear ENUMErationccccccvveeveeieseenieeieseese e 658
D.3.10 MsgBoxResult ENUMErationccocciveninininieeese s 658
D.3.11 MsgBoOXStyle ENUMEratioNcccveiirenininieieee e 658
D.3.12 OpenAccess ENUMErationccocviiirenininieieesese s 658
D.3.13 OpenMode ENUMEratioN.......c.cccceviiiiiieiie et 659
D.3.14 OpenModeTypes Enumeration.........cccceeveeieeccieeceecceesee e 659
D.3.15 OpenShare ENUMEration.........cccocuveiieiie e 659
D.3.16 PrintFlags ENumMerationcccccovviieiie i 659
D.3.17 TriState ENUMEratioNccooiiiiiiiienieeeeee et 659
D.3.18 VariantType ENUMEerationcccoceeiieiieeiiecie e 659
D.3.19 VbStrConVv ENUMErAtiONcccvecvieece et 660
Appendix E. The VB .NET Command-Line COMPIlerccccevvevieiiieeiensieesee e 661
= I @0 T 0 o] 011 [T gl = 7= 1] [SR 661
E.2 Command-Line SWILCNES..........cccco e 661
E.2.1 Output Filename and File TYPe.....ccccciviiieieciecce e 661
E.2.2 INPUL FIlES ..ot e 662
E.2.3 RESOUICES ..ottt sttt b e st be e ne e nbe e saee e 662
|2 N OfeTo [N €T=T o 1T = 1 0] o F SRR 663
[=DZR ST B I=T 018 To [1 8 Te [TSP PR 663
E.2.6 Errors and WarnNiNgS ...t 663
E.2.7 LANQUAGE ... oottt st sne e e nne s 663
E.2.8 MISCEIAaNE@OUS........c.coiiieee e e 664
E.2.9 AGAVANCEA.... .ot ettt e e nae s 664

E.3 UsiNg @ RESPONSE File ... 665
Appendix F. VB 6 Language Elements Not Supported by VB .NETccccoeuenene. 667
(0] 0] o] oo o SRS PRU PSR ASORIN 670

13

VB .NET Languagein a Nutshell

Preface
Why Another VB Book?
Who ThisBook |sFor
How ThisBook |s Structured
Conventions Used in This Book
How to Contact Us
Acknowledgments

|: The Basics

1. Introduction
1.1Why VB .NET?
1.2 What IsVB .NET?
1.3What Can You Do with VB .NET?

2. Variablesand Data Types
2.1 Variables
2.2 Declaring Variables and Constants
2.3 Data Types
2.4 Arrays
2.5 Object Variablesand Their Binding
2.6 The Collection Object
2.7 Parameters and Arguments

3. Introduction to Object-Oriented Programming
3.1 Why Learn Object-Oriented Techniques?
3.2 Principles of Object-Oriented Programming
3.3 Classes and Objects
3.4 Inheritance
3.5 Interfaces, Abstract Members, and Classes
3.6 Polymor phism and Overloading
3.7 Scope and Accessibility in Class M odules

4. The NET Framework: General Concepts
4.1 Namespaces
4.2 Common Language Runtime (CLR), Managed Code, and Managed Data
4.3 Managed Execution
4.4 Assemblies
4.5 Assembliesand VB .NET

5. The .NET Framework ClassLibrary
5.1 The System Namespace
5.2 Other Namespaces

6. Delegates and Events

6.1 Delegates
6.2 Eventsand Event Binding

14

7. Error Handlingin VB .NET

7.1 Error Detection and Error Handling

7.2 Runtime Error Handling
7.3 Dealing with Logical Errors
7.4 Error Constants

Il: Reference

8. The Language Reference
#Const Directive
#If...Then...#Else Directive
#Region... #End Region Directive
Abs Function
Acos Function
AddHandler Statement
AddressOf Operator
AppActivate Procedure
Application Class
Application.CompanyName Property
Application.DoEvents M ethod
Application.ExecutablePath Property
Application.ProductName Property
Application.ProductVersion Property
Array Class
Array.BinarySearch Method
Array.Copy Method
Array.IndexOf Method
Array.LastIndexOf Method
Array.Reverse Method
Array.Sort Method
Asc, AscW Functions
Asin Function
Atan Function
Atan2 Function
Beep Procedure
Call Statement
CallByName Function
CBool Function
CByte Function
CChar Function
CDate Function
CDbl Function
CDec Function
Celling Function
ChDir Procedure
ChDrive Procedure
Choose Function
Chr, ChrW Functions
ClInt Function
Class Statement

15

Clipboard Class
Clipboard.GetDataObject M ethod
Clipboard.SetDataObject Method
CLng Function

CObj Function

Collection Class
Collection.Add Method
Collection.Count Property
Collection.ltem Method
Collection.Remove M ethod
ColorDialog Class
Command Function

Const Statement

Cos Function

Cosh Function
CreateObject Function
CShort Function

CSng Function

CStr Function

CType Function

CurDir Function

DateAdd Function
DateDiff Function
DatePart Function
DateSerial Function
DateString Property
DateValue Function

Day Function

DDB Function

Debug Class

Debug.Assert Method
Debug.AutoFlush Property
Debug.Close M ethod
Debug.Flush Method
Debug.lndent M ethod
Debug.IndentL evel Property
Debug.l ndentSize Property
Debug.Listeners Property
Debug.Unindent M ethod
Debug.Write Method
Debug.Writelf Method
Debug.WriteLine M ethod
Debug.WriteL inel f Method
Declare Statement
Delegate Statement
DeleteSetting Procedure
Dim Statement

Dir Function

Directory Class
Directory.CreateDirectory Method

16

Directory.Delete M ethod
Directory.Exists M ethod
Directory.GetCreationTime M ethod
Directory.GetDirectories M ethod
Directory.GetDirectoryRoot M ethod
Directory.GetFiles Method
Directory.GetFileSystemEntries M ethod
Directory.GetL ogicalDrives M ethod
Directory.GetParent Method
Directory.Move Method

Do...Loop Statement

E Field

End Statement

Enum Statement

Environ Function

EOF Function

Erase Statement

Erl Property

Err Object

Err.Clear Method

Err.Description Property
Err.GetException Method
Err.HelpContext Property
Err.HelpFile Property
Err.LastDLLError Property
Err.Number Property

Err.Raise Method

Err.Source Property

Error Statement

ErrorToString Function

Event Statement

Exception Class

Exit Statement

Exp Function

File Class

File.Exists Method

FileAttr Function

FileClose Procedure

FileCopy Procedure

FileDateTime Function

FileGet, FileGetObject Procedures
FileLen Function

FileOpen Procedure

FilePut, FilePutObject Procedures
Filewidth Procedure

Filter Function

Fix Function

Floor Function

FontDialog Class

For...Next Statement

17

For Each...Next Statement
Format Function
FormatCurrency, FormatNumber, For matPer cent Functions
FormatDateTime Function
FreeFile Function

Friend Keyword

Function Statement

FV Function

Get Statement

GetAllSettings Function
GetAttr Function

GetChar Function

GetObject Function

GetSetting Function

GetTimer Function

GoTo Statement

Handles Keyword

Hashtable Class

Hashtable.Add Method
Hashtable.Clear Method
Hashtable.ContainsK ey M ethod
Hashtable.ContainsvValue Method
Hashtable.CopyTo Method
Hashtable.Count Property
Hashtable.ltem Property
Hashtable.K eys Property
Hashtable.Remove M ethod
Hashtable.Values Property

Hex Function

Hour Function

| DataObject Interface

| DataObject.GetData M ethod

| DataObject.GetDataPresent M ethod
| DataObject.GetFor mats M ethod
|EEERemainder Function
If...Then...Else Statement

[1f Function

Implements K eyword

I mplements Statement

Imports Statement

Inherits Statement

Input Procedure

InputBox Function

InputString Function

InStr Function

InStrRev Function

Int Function

Interface Statement

IPmt Function

IRR Function

18

| s Operator
IsArray Function

| sDate Function
IsDBNull Function
IsError Function

I sNothing Function
| SNumeric Function
| sSReference Function
Join Function

Kill Procedure

L Bound Function
L Case Function

L eft Function

L en Function

Like Operator
Linelnput Function
L oc Function

L ock Procedure

L OF Function

L og Function

L 0og10 Function
LTrim Function
Max Function

Me Operator

Mid Function

Mid Statement
Min Function
Minute Function
MIRR Function
MKkDir Procedure
Mod Operator

Module...End Module Statement

Month Function
MonthName Function
MsgBox Function
MyBase K eyword
MyClass K eyword
Namespace Statement
Now Property

NPer Function

NPV Function

Oct Function

On Error Statement
OpenFileDialog Class
Option Compar e Statement
Option Explicit Statement
Option Strict Statement
Partition Function

Pi Field

Pmt Function

19

Pow Function

PPmt Function

Print, PrintLine Procedures
Private Statement
Property Statement
Protected Keyword
Public Statement

PV Function

QBColor Function
Queue Class
Queue.Clear Method
Queue.Contains M ethod
Queue.CopyTo Method
Queue.Count Property
Queue.Dequeue M ethod
Queue.Enqueue M ethod
Queue.Peek Method
Queue.ToArray Method
RaiseEvent Statement
Randomize Procedure
Rate Function

ReDim Statement

Rem Statement

Rename Procedure
Replace Function

Reset Procedure

Resume Statement
Return Statement

RGB Function

Right Function

RmDir Procedure

Rnd Function

Round Function

RTrim Function
SaveFileDialog Class
SaveSetting Procedure
ScriptEngine Function
ScriptEngineBuildVersion Function
ScriptEngineMajor Version Function
ScriptEngineMinor Version Function
Second Function

Seek Function

Seek Procedure

Select Case Statement
Send, SendWait M ethods
Set Statement

SetAttr Procedure
Shadows Keyword

Shell Function

Sign Function

20

Sin Function

Sinh Function

SL N Function

Space Function

Spc Function

Split Function

Sgrt Function

Stack Class
Stack.Clear M ethod
Stack.Contains Method
Stack.CopyTo Method
Stack.Count Property
Stack.Peek M ethod
Stack.Pop Method
Stack.Push Method
Stack.ToArray Method
Static Statement

Stop Statement

Str Function

StrComp Function
StrConv Function
StrDup Function
StrRever se Function
Structure...End Structure Statement
Sub Statement

Switch Function

SYD Function

SyncL ock Statement
SystemTypeName Function
Tab Function

Tan Function

Tanh Function

Throw Statement
TimeOfDay Property
Timer Property
TimeSerial Function
TimeString Property
TimeValue Function
Today Property

Trim Function
Try...Catch...Finally Statement
TypeName Function
UBound Function
UCase Function
Unlock Procedure

Val Function

ValDec Function
VarType Function
VbTypeName Function
Weekday Function

21

WeekdayName Function
While...End While Statement
With Statement

WithEvents Keyword

Write Procedure

WriteL ine Procedure

Year Function

8. The Language Reference

I11: Appendixes

A. What's New and Different in VB .NET
A.1 Language Changesfor VB .NET
A.2 Changesto Programming Elements
A.3 Obsolete Programming Elements
A.4 Structured Exception Handling
A.5 Changesin Object-Orientation

B. Language Elements by Category
B.1 Array Handling
B.2 Clipboard
B.3 Collection Objects
B.4 Common Dialogs
B.5 Conditional Compilation
B.6 Conversion
B.7 Dateand Time
B.8 Debugging
B.9 Declaration
B.10 Error Handling
B.11 Filesystem
B.12 Financial
B.13 I DataObject Interface
B.14 Information
B.15 Input/Output
B.16 Integrated Development Environment
B.17 Interaction
B.18 Mathematics
B.19 Program Structure and Flow
B.20 Programming
B.21 Registry
B.22 String Manipulation

C. Operators
C.1 Arithmetic Operators
C.2 Assignment Operators
C.3 Concatenation Operators
C.4 Comparison Operators
C.5Logical and Bitwise Operators
C.6 Operator Precedence

22

D. Constants and Enumerations
D.1Visual Basic Intrinsic Constants
D.2 ControlChars Class
D.3 Visual Basic Enumerations

E. TheVB .NET Command-Line Compiler
E.1 Compiler Basics
E.2 Command-Line Switches
E.3 Using a Response File

F. VB 6 Language Elements Not Supported by VB .NET

Colophon

23

24

Preface

Microsoft Visual Basic began its life just over ten years ago as a kind of amalgamation of Microsoft's
QBasic programming language and a graphical interface design program developed in part by Alan
Cooper. Since then, it has become by far the most popular programming language in the world, with
an installed base that is estimated at five to eight million developers worldwide.

The tenth anniversary of Visual Basic coincides with the introduction of Microsoft's new .NET platform,
and with a totally revised and revamped version of VB named Visual Basic .NET. The language has
been streamlined and modernized, and many old "compatibility" elements have been dropped from the
language, while other language elements that were implemented as statements are now either
functions or procedures.

In addition, many of you will be glad to hear that Visual Basic is now a fully object-oriented
programming language, with the inclusion of the long sought-after class inheritance, as well as other
OOP features.

We suspect that many of you will greet with mixed emotions, as do we, the fact that Microsoft's
Component Object Model (COM), the technology that was at the core of Visual Basic since the release
of Version 4.0, has been abandoned in favor of the .NET platform. On the one hand, we find this to be
a great relief, because COM can be so complex and confusing. On the other hand, we find this
somewhat irritating, because we have invested so much time and effort in learning and using COM.
Finally, we find this change somewhat frightening; who knows what pitfalls await us as we become
more familiar with this new technology?

The best news of all is that, whereas in the past, Visual Basic served as a "wrapper" that simplified
and hid much of the complexity of Windows and the Windows operating system, at long last Visual
Basic is an "equal player" in the .NET Framework; Visual Basic programmers have full and easy
access to the features of the .NET platform, just as Visual C++ and C# programmers do.

The extensive changes to the language and the introduction of the .NET platform make a reference
guide to the Visual Basic language more essential than ever. At the same time, they make it easy to
delineate this book's subject matter. This is a book that focuses on the language elements of Visual
Basic .NET?on its statements, functions, procedures, directives, and objects (notably the Err and
Collection objects).

While it's important to emphasize that this book focuses on the Visual Basic language components for
the .NET platform, it's also important to emphasize what this book is not:

It is not a reference guide to Visual Basic for Applications (VBA), the programming language
used in all of the major applications in the Microsoft Office suite, as well as in dozens of other
third-party applications. As you probably know, VBA is the programming language in previous
versions of Visual Basic and in the major Office applications. However, VBA is not the
programming language for VB .NET. Indeed, until VB .NET is incorporated into a release of
Microsoft Office for .NET, the two languages will differ significantly.

Itis not a reference guide to the .NET Base Class Library (the basic set of services provided
by the .NET Framework) or to the .NET Framework Class Library (which consists of the Base
Class Library supplemented by the application services provided by the .NET Framework). To
be sure, the Framework Class Library is discussed in these pages, and a number of its
classes and their members are documented in the book's reference section. But that
documentation just scratches the surface; the Framework Class Library consists of over 90
namespaces (one of which, incidentally, is Microsoft.VisualBasic, the namespace that defines
the objects of the Visual Basic language), several thousand types (classes, interfaces,
delegates, and enumerations), and an enormous number of members. In selecting the .NET
Framework classes to document in this book, we've tried to focus on .NET elements that
replace commonly used features in previous versions of Visual Basic, as well as on .NET
elements that expand and enhance the functionality of existing Visual Basic .NET elements in
significant ways.

25

It is not a guide to developing applications or components using Visual Basic .NET. In
documenting the language, we'll show you some simple code fragments that illustrate the
relevant issues and show you how a language element works. On the other hand, we won't
show you, for example, how to use the Windows Forms package to build a Windows
application, how to develop a web application using ASP.NET, or how to implement a web
service.

Why Another VB Book?

There are literally hundreds of books lining the shelves on how to program using Visual Basic, and
they will no doubt be joined by a flood of books on how to program in VB .NET. The majority of these
books assume that you're a complete novice and slowly introduce you to such concepts as variables,
arrays, and looping structures.

This is a different kind of book, however. It is a detailed, professional reference to the VB .NET
language?a reference that you can turn to if you want to jog your memory about a particular language
element or a particular parameter. You're also looking for a reference that you can turn to when you're
having difficulty programming and need to review the rules for using a particular language element, or
when you want to check that there isn't some "gotcha" you've overlooked that is associated with a
particular language element.

In addition, we believe this book will serve as the main reference for VB 6 programmers who are
upgrading to VB .NET. To this end, we have devoted considerable space to the extensive language
differences between VB 6 and VB .NET. For each relevant language entry, we have included a
"VB .NET/VB 6 Differences" section that details the differences in the operation of the language
element between VB 6 and VB .NET.

Who This Book Is For
Just like any reference (such as a dictionary), this book will be useful to many types of readers:

Developers who have used previous versions of Visual Basic

Developers who are new to Visual Basic, but who have been developing application in other
programming languages, such as C++

Those who are learning VB.NET as their first language and would like to have a definitive
language reference on their shelf

Readers New to Visual Basic

If you are new to the Visual Basic language, then you will want to pay particular attention to the first
half of the book, which discusses many important areas of programming under VB .NET, including
variables, datatypes, the basic principles of object-oriented programming, and error-handling
techniques.

VB and VBScript Developers New to VB .NET

Some critics have argued that VB .NET is an entirely new language. While we wouldn't go quite that
far, we do agree not only that the language changes have been extensive, but that the new .NET
platform will result in a paradigm shift that affects the way we think about application development. So
in many ways, as a VB or VBScript developer new to VB .NET, you may find yourself in a position
similar to that of a developer who is new to all forms of VB .NET.

However, one of our goals was to develop a book that will ease the thorny transition to VB .NET from
earlier versions of VB. In particular, the first seven chapters of the book offer a rapid introduction to
VB .NET and its new features. Appendix A discusses many of the major language changes between
VB 6 and VB .NET, while Appendix E lists VB 6 language elements that are no longer supported in

26

VB .NET. Finally, if version differences exist in a language element, we include a "VB .NET/VB 6
Differences" section that shows you precisely how the behavior of that element has changed from VB
6 to VB .NET.

Existing VB .NET Developers

As we write this book, VB .Net is brand new (Beta 2 of the .NET Framework has been released), so
existing VB .NET developers are a rarity. But we believe that, given the strengths of VB.NET, this
situation will change quickly. As you continue to develop in VB.NET, we believe you will find that

VB .NET Language in a Nutshell retains its value. As an experienced developer, you can delve into
the book to get the lowdown on a language element that interests you or that seems to be behaving
erratically or unexpectedly in your code. Appendix B details all of the language elements by category
to help you find the relevant entry in the language reference more easily.

How This Book Is Structured

VB .NET Language in a Nutshell is divided into three parts. The first part of the book, The Basics, is an
introduction to the main features and concepts of Visual Basic programming. Given the newness of
VB .NET, even seasoned VB professionals should find items of interest here. If you're new to VB, this
part of the book is essential reading. It's divided into the following chapters:

Chapter 1

In this chapter, you'll see how Visual Basic has evolved into the VB .NET language of today
and get some sense of how and why VB .NET is different from previous versions of Visual
Basic.

Chapter 2

This chapter looks at the standard Visual Basic data types and how you use them. Behind the
scenes, Visual Basic takes advantage of the .NET Framework's common type system, so the
chapter also examines the .NET data types and the way in which VB wraps these data types.

Chapter 3

With the release of its .NET version, Visual Basic finally becomes a fully object-oriented
programming language. This chapter discusses the basic concepts of object-orientated
programming and shows how you implement VB's object-oriented features in your
programming.

Chapter 4
This chapter surveys some of the new features of the .NET Framework that most impact the

VB developer. These include namespaces, the Common Language Runtime (CLR), and
assemblies.

Chapter 5
The .NET Framework Class Library replaces portions of the Win32 API, as well as many of
the individual object models that VB programmers have worked with over the past five years,

with a single class library. This chapter offers a very fast-paced overview of the Framework
Class Library and some of its features.

Chapter 6

27

While handling events was more or less automatic in previous versions of VB and even in
VBScript, you typically have to "wire" events to your code in VB .NET. This chapter shows
how to do that.

Chapter 7

Visual Basic now offers two techniques for error handling. The first, which uses the On Er r or
statement, is termed "unstructured error handling” and is a traditional part of VB. The second,
which uses the Try. .. Cat ch. .. Fi nal | y construct, is termed "structured exception
handling" and is new to VB .NET. In this chapter, we'll show you how to use both.

Part 11 of this book, The Reference, consists of one large chapter, Chapter 8, which thoroughly
details all the functions, statements, directives, objects, and object members that make up the
VB .NET language.

The third and final section, Part 111, consists of the following appendixes:

Appendix A

A discussion of language changes from VB 6 to VB .NET.

Appendix B
A listing of all VB .NET functions, statements, and major keywords by category.

Appendix C

A list of the operators supported by VB .NET, along with a slightly more detailed treatment of
the Boolean and bitwise operators.

Appendix D
A list of VB .NET intrinsic constants, as well as VB .NET enumerations and their members.

Appendix E

For the first time, Visual Basic includes a command-line compiler?you can actually use
NotePad as your primary "development environment" for Visual Basic (although we are not
necessarily recommending this approach) and use the compiler to compile your code. This
appendix documents the operation of the Visual Basic command-line compiler.

Appendix F

A list of the language elements that have dropped out of the Visual Basic language as a result
of its transition to the .NET Framework.

The Format of the Language Reference

The following template has been used in preparing the entries for functions, procedures, statements,
properties, and methods that appear in Chapter 8:

Class

For functions, procedures, classes, or class members, the class to which the item belongs.

28

Named Arguments

Typically, we indicate if a function, procedure, or method does not accept named arguments.
Otherwise, you can assume that the language element supports both named and positional
arguments.

Syntax

This section uses standard conventions to give a synopsis of the syntax used for the language
item. It also lists parameters and replaceable items (and indicates whether they're optional or
not), lists their data types, and provides a brief description.

Return Value

For functions, this section provides a brief description of the value or data type returned by the
function. For properties, it describes the data type of the property.

Description
A short description of what the language element does and when and why it should be used.
Rules at a Glance

This section describes the main points of how to use the function. The dos and don'ts are
presented in the form of a bulleted list to let you quickly scan through the list of rules. In the
vast majority of cases, this section goes well beyond the basic details found in the VB
documentation.

Example

We've tried to avoid the kind of gratuitous examples commonly found in documentation that
only manage to illustrate the obvious. Instead, we've used short code fragments that help to
enhance your understanding of how the language element is used.

Programming Tips and Gotchas

This is the most valuable section of Chapter 8, in our opinion, and it is gained from years of
experience using the VB language in a variety of projects and applications. The information
included here will save you countless hours of head scratching and experimentation. Often,
this is the stuff Microsoft doesn't tell you!

See Also

A simple cross-reference list of related or complimentary language elements.

Conventions Used in This Book
Throughout this book, we've used the following typographic conventions:
Constant width

Constant width in body text indicates a language construct, such as a VB .NET statement (like
For or Do Wi | e), an enumeration, an intrinsic or user-defined constant, a structure (i.e., a
user-defined type), an operator, a declaration, a directive, or an expression (like

dbl El apTi me = Ti ner -dbl St art Ti ne). Code fragments and code examples appear
exclusively in constant-width text. In syntax statements and prototypes, text set in constant

29

width indicates such language elements as the function or procedure name and any invariable
elements required by the syntax.

Constant widthitalic

Constant width italic in body text indicates parameter names. In syntax statements or
prototypes, constant width italic indicates replaceable parameters. In addition, constant width
italic is used in both body text and code fragments to denote variables.

Italic

Italicized words in the text indicate intrinsic or user-defined functions and procedure names.
Many system elements, such as paths and filenames, are also italicized. In addition, URLs
and email address are italicized. Finally, italics are used the first time a term is used.

How to Contact Us

We have tested and verified all the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes). Please let us know about any
errors you find, as well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

You can also send messages electronically. To be put on our mailing list or to request a catalog, send
email to:

nuts@oreilly.com

To ask technical questions or comment on the book, send email to:

bookguestions@oreilly.com

It's our hope that as the Visual Basic language continues to grow and evolve, so too will VB .NET
Language in a Nutshell, and that the book will come to be seen by VB developers as the official (so to
speak) unofficial documentation on the Visual Basic language. To do that, we need your help. If you
see errors here, we'd like to hear about them. If you're looking for information on some VB language
feature and can't find it in this book, we'd like to hear about that, too. And finally, if you would like to
contribute your favorite programming tip or gotcha, we'll do our best to include it in the next edition of
this book. You can request these fixes, additions, and amendments to the book at our web site,
http://www.oreilly.com/catalog/vbdotnetnut/.

In addition, Steven Roman maintains a web site at www.romanpress.com that includes information
on his other books published by O'Reilly (and others), articles on VB/VBA and VB .NET, and a variety
of software.

Acknowledgments

Writing a book always requires a substantial commitment of time and effort, and for that we are
grateful to our spouses and families for their support in helping to bring this project through to
completion. Steve would like to thank Donna; Ron would like to thank Vanessa and Sean; and Paul
would like to thank Deb, Russel, and Victoria.

30

In commemorating the tenth anniversary of Visual Basic, we would also like to acknowledge the
contributions of the designers and developers who transformed Visual Basic from an idea into a reality.
Truly, it has been a monumental accomplishment that has transformed the way in which applications
are created.

We'd also like to thank the book's technical reviewers, Daniel Creeron, Budi Kurniawan, and Matt
Childs, for their thoughtful, careful reviews of our work. We'd also like to thank Alan Carter and Chris
Dias at Microsoft for their help in answering our annoying questions and for reviewing the manuscript.

31

32

Part I: The Basics

This section serves as a general introduction to Visual Basic .NET, Microsoft's version of Visual Basic
for the .NET platform. Taken together, these chapters form an extremely fast-paced introduction to the
most critical VB .NET programming topics. If you're an experienced programmer who is learning

VB .NET as a second (or additional) programming language, the material should familiarize you with
VB .NET in as short a time as possible.

In addition to its role as a tutorial, Chapter 2 is an essential reference to the data types supported by
VB .NET.

Part | consists of the following chapters:

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7

Chapter 1. Introduction

Since its introduction in 1991, Microsoft Visual Basic has enjoyed unprecedented success. In fact, in
slightly more than a decade, it has become the world's most widely used programming language, with
an installed base of somewhere between three and five million developers (depending on the
particular source you use and whether the estimate includes only the retail versions of the Visual Basic
product or the hosted version of Visual Basic for Applications (VBA) as well).

The reason for this success is twofold. First, Visual Basic has excelled as a rapid application
development (RAD) environment for corporate and commercial applications. Second, Visual Basic
offers a programming language and development environment noted for its simplicity and ease of use,
making it an extremely attractive choice for those new to programming.

With the release of its new .NET platform, Microsoft also released a new version of the Visual Basic
language, Visual Basic .NET. VB .NET is a from-the-ground-up rewrite of Visual Basic that not only
adds a number of new features, but also differs significantly from previous versions of Visual Basic.
From a high-level view, two of these differences are especially noteworthy:

Until the release of VB .NET, Microsoft focused on creating a unified version of VBA, the
language engine used in Visual Basic, which could serve as a "universal batch language” for
Windows and Windows applications. With Version 6 of Visual Basic, this goal was largely
successful: VB 6.0 featured VBA 6.0, the same language engine that drives the individual
applications in the Microsoft Office 2000 suite, Microsoft Project, Microsoft FrontPage,
Microsoft Visio, and a host of popular third-party applications such as AutoDesk's AutoCAD
and Corel's WordPerfect Office 2000. With the release of VB .NET, this emphasis on a unified
programming language has, for the moment at least, faded into the background, as the hosted
version of Visual Basic continues to be VBA rather than VB .NET.

Since Version 4, Visual Basic had increasingly been used as a kind of "glue language" to
access COM components and their object models, such as ActiveX Data Objects (ADO),
Collaborative Data Objects (CDO), or the Outlook object model. Although VB .NET supports
COM for reasons of "backward compatibility,” VB .NET is designed primarily to work with

the .NET Framework rather than with COM.

33

You may be wondering why Microsoft would totally redesign a programming language and
development environment that is so wildly successful. As we shall see, there is some method to this
madness.

1.1 Why VB .NET?

When Visual Basic was introduced in 1991, Windows 3.0 was a fairly new operating system in need of
application and utility software. Although Windows 3.0 itself had proven successful, the graphical
applications that offered native support for Windows—and upon whose release the ultimate success or
failure of Windows would depend—were slow in coming. The major problem was that C and C++
programmers, who had produced the majority of applications for the MS-DOS operating system, were
faced with a substantial learning curve in writing Windows applications and adapting to Windows'
event-driven programming model.

The introduction of Visual Basic immediately addressed this problem by offering a programming model
that was thoroughly consistent with Windows' graphical nature. Although Windows marked a radical
change in the way programs were written, C and C++ programmers continued to produce code as
they always had: a text editor was used to write source code, the source code was compiled into an
executable, and the executable was finally run under Windows. Visual Basic programmers, on the
other hand, worked in a programming environment that its critics derisively labeled a "drawing
program." Visual Basic automatically created a form (or window) whenever the developer began a new
project. The developer would then "draw" the user interface by dragging and dropping controls from a
toolbox onto the form. Finally, the developer would write code snippets that responded to particular
events (such as the window loading or the window being resized). In other words, Visual Basic's initial
success was due to its ease of use, which in turn reflected that Visual Basic offered a graphical
programming environment that was entirely consistent with the graphical character of Windows itself.

To get some sense of the revolutionary character of Visual Basic, it is instructive to compare a simple
"Hello World" program for Windows 3.0 written in C (see Example 1-1) with one written in Visual
Basic (see Example 1-2). While the former program is over two pages long, its Visual Basic
counterpart takes only three lines of code—and two of them are provided automatically by the Visual
Basic environment itself.

Example 1-1. "Hello World" in C

/1 "Hello World" exanpl e

/1

/1 The user clicks a command button, and a "Hello Wrl d"
/'l message box appears.

#i ncl ude <w ndows. h>

LRESULT CALLBACK WhdProc (HWAD, U NT, WPARAM LPARAM ;

int W NAPI W nMai n (H NSTANCE hl nst ance, H NSTANCE hPrevl nst ance,
PSTR szCndLi ne, int i CrdShow)
{

static char szAppNanme[] = "SayHell o"
HMWD hwnd ;
M5G nsg

WADCLASSEX wndcl ass ;

wndcl ass. cbSi ze
wndcl ass. styl e

si zeof (wndcl ass)
CS _HREDRAW | CS_VREDRAW ;

wndcl ass. | pf nWhdPr oc WhdPr oc ;
wndcl ass. cbCl sExtra 0 ;

wndcl ass. cbWhdExt r a 0 ;

wndcl ass. hl nst ance hl nst ance ;

wndcl ass. hl con
wndcl ass. hCur sor
wndcl ass. hbr Backgr ound

Loadl con(NULL, | DI _APPLI CATI ON)
LoadCur sor (NULL, | DC ARROW ;
(HBRUSH) Get St ockObj ect (WHI TE_BRUSH)

’

NULL ;
szAppNane ;
Loadl con(NULL, |DI _APPLI CATION) ;

wndcl ass. | pszMenuNane
wndcl ass. | pszC assNane
wndcl ass. hl conSm

Regi st er Cl assEx(&wndcl ass) ;

hwnd = Creat eW ndow(szAppNane, "Hello Wrld",
WS_OVERL APPEDW NDOW
CW USEDEFAULT, CW USEDEFAULT,
CW USEDEFAULT, CW USEDEFAULT,
NULL, NULL, hlnstance, NULL) ;

ShowwW ndow(hwnd, i CdShow) ;
Updat eW ndow(hwnd) ;

whil e (Get Message(&sg, NULL, 0, 0))
{
Transl at eMessage(&sg) ;
Di spat chMessage(&sg) ;
}

return nsg. wParam ;

}

LRESULT CALLBACK WhdProc(HWND hwnd, U NT i Msg, WPARAM wPar am

LPARAM | Par am

{

i nt wNoti fyCode ;

HWD hwndCt| ;

static HAND hwndButton ;
static RECT rect ;

static int cxChar, cyChar ;
HDC hdc ;

PAI NTSTRUCT ps ;

TEXTVMETRIC tm;

switch (iMsgQ)

{
case WM CREATE
hdc = Get DC(hwnd) ;
Sel ect Obj ect (hdc, Get St ockObj ect (SYSTEM FI XED FONT)) ;
Get Text Metrics(hdc, &m ;
cxChar = tmtmAveCharWdth ;
cyChar = tmtnHei ght + tmtnExternal Leadi ng ;
Rel easeDC(hwnd, hdc) ;
GetdientRect(hwnd, &rect) ;

hwndButt on = Creat eW ndow "BUTTON', "&Say Hel |l 0",
W5 CHI LD | W5_VI SIBLE | BS_PUSHBUTTON,
(rect.right-rect.left)/20*9,
(rect.bottomrect.top)/10*4,
14 * cxChar, 3 * cyChar,
(HW\D) hwnd, 1,
((LPCREATESTRUCT) | Param -> hlnstance, NULL)

return O ;

case WM SI ZE :

rect.left = 24 * cxChar ;
rect.top = 2 * cyChar ;
rect.right = LOAORD (| Paranm ;

rect.bottom= H WORD (| Param ;

35

return O ;

case WM PAI NT :
I nval i dat eRect (hwnd, &rect, TRUE) ;

hdc = Begi nPai nt (hwnd, &ps)
EndPai nt (hwnd, &ps)
return O ;

case VWM DRAW TEM :
case VW COMVAND :
wiNot i f yCode = H WORD(wPar am

hwndCtl = (HWD) | Param ;
if ((hwmdCtl == hwndButton) && (wWNotifyCode == BN CLI CKED))
MessageBox(hwnd, "Hello, World!", "Geetings", M_OK)

Val i dat eRect (hwnd, &rect) ;
break ;

case WM DESTROY
Post Qui t Message (0) ;
return O ;

}
return Def WndowProc (hwnd, i Mg, wParam | Param
}

Example 1-2. "Hello World" in Visual Basic
Private Sub Commandl Click()

MsgBox "Hello, World", vbOKOnly O vbExcl amation, "H!"

End Sub

While Version 1.0 of Visual Basic was relatively underpowered, Microsoft displayed a firm commitment
to Visual Basic and worked very hard to increase its power and flexibility with each new release. By
the time Version 3.0 was released, Visual Basic offered a programming paradigm that was completely
intuitive, making it easy for novice programmers to get started and produce simple applications very
quickly. At the same time, particularly through its ability to access the Windows Application
Programming Interface (API) and through its support for add-on controls, Visual Basic had become a
programming tool capable of creating applications of considerable sophistication and complexity.

Like VB .NET, Visual Basic Version 4.0, which was released in 1995 to support Microsoft's 32-bit
family of operating systems, was a complete rewrite of Visual Basic. It featured limited support for
object-oriented programming in the form of class modules (CLS files) and the ability to generate not
only Windows executables, but ActiveX DLLs (also known as COM components) as well.

In the periods shortly before and after the release of VB 4, the character of programming changed
dramatically. The rise of the Internet as an application platform meant that standalone Windows
applications were becoming less and less necessary. The increased prominence of distributed
applications that assumed the presence of the Internet marked another change in programming
paradigms. Yet, Visual Basic's real strength remained as it always had been: a great platform for
developing standalone Windows applications.

This disparity between Visual Basic's strengths and the prevailing programming paradigm, which
emphasized distributed applications and the Internet, created something of a contradiction. On the one
hand, Visual Basic excelled at graphically depicting the Windows interface. On the other hand,
developers were creating fewer and fewer Windows interfaces. Instead, they were now using Visual

36

Basic primarily to write source code that would eventually be compiled into middle-tier components.
Ironically, a programming environment whose real strength and point of departure was its graphical
character was now being used as a text editor, in very much the same way the first generation of
Windows programmers used text editors to create C source code for Windows applications.

Moreover, as the popularity of the Internet grew, it became clearer that Visual Basic was not a
particularly good platform for developing Internet applications. With VB 6, Microsoft introduced Web
Classes as the preferred technology for Internet application development. Yet, the metaphor
presented by Web Classes (which focused on separating a web application's presentation from its
programmatic functionality) was confusing to developers, and as a result, Web Classes never became
popular. While VB remained critically important for developing middle-tier components for distributed
applications, both it and the Visual Basic community that grew up around it remained strangely
isolated from the Internet as an application platform.

Numerous detractors have labeled VB .NET as an entirely new language with little relationship to
previous versions of Visual Basic?a dubious innovation foisted on the Visual Basic community by
Microsoft in an attempt to sell a new version of its development products. However, we don't agree.
Instead, we view the introduction of VB .NET as a logical and even necessary step forward in the
development of Visual Basic as a premier programming language. The goal of VB .NET is to address
the limitations of Visual Basic as a development environment and bring it into the Internet age so that it
can remain the major platform for developing applications of all kinds. Very much like Visual Basic 1.0
offered a graphical interface that was suitable for Windows applications, VB .NET and Visual

Studio .NET aim at providing a graphical interface that is suitable for developing web applications and
for taking full advantage of the Internet as an application-development platform, as well as for
developing Windows applications and components.

1.2 What Is VB .NET?

VB .NET is a programming language designed to create applications that work with Microsoft's

new .NET Framework. The .NET platform in turn aims at addressing many of the limitations of
"classic" COM, Microsoft's Component Object Model, which provided one approach toward application
and component interoperability. These limitations included type incompatibilities when calling COM
components, versioning difficulties ("DLL hell") when developing new versions of COM components,
and the need for developers to write a certain amount of code (mostly in C++) to handle the COM
"plumbing.” In contrast to VB, with its reliance on COM, VB .NET offers a number of new features and
advantages. Let's take a look at some of these.

1.2.1 Object Orientation

With the release of Version 4, Visual Basic added support for classes and class modules and in the
process became an object-oriented programming language. Yet the debate persists about whether
Visual Basic is a "true" object-oriented language or whether it only supports limited features of object
orientation.

The debate centers around Visual Basic's support for inheritance, an object-oriented programming
concept that allows a class to derive its properties and its functionality from another class. Proponents
of the view that Visual Basic is object-oriented point to Visual Basic's support for interface-based
programming and the use of virtual base classes. Yet relatively few VB programmers take advantage
of interface-based programming. And interface-based programming itself does not allow a derived
class to inherit the functionality of a base class; only virtual base classes can be inherited using the

| mpl ement s keyword.

While the object-oriented character of previous versions of VB may be in doubt, there is no question
that VB .NET is an object-oriented programming language. In fact, even if VB .NET is used to write
what appears to be procedural code, it is object-oriented "under the hood," so to speak. Let's take as a
simple example the clearly procedural, nonobject-oriented program shown in Example 1-3. If we use
ILDASM (.NET's intermediate language disassembler) to look at the IL generated for this source code

37

(see Figure 1-1), we see that internally, nodVai n is in fact defined as a class that has two methods,
Increment and Main.

Figure 1-1. A procedural program shown using ILDASM

E \Bouks\WH MET LA \chapll e\ Hodlil cxe [O] =]
Fie Sew He

E\Eson kevB HET B ichap ks R el B o
MEMIFERT
= moiLk
A6 PUBIE & UR0 S 6 fa54 M
oustors nstance void Miorosaf s vl Basic]Maores ot YinmBasic GlokalsEland sdvodeleibeb e - slond= (01 000000}
Ieremeant o%{eckntld)
LA Main vakid

saebly WoLE L=

L E

Example 1-3. A procedural program for VB .NET
Publ i c Modul e nodMai n

Public Sub Main()
Dim x As |nteger
x = 10
MsgBox (| ncrenment (X))
End Sub

Private Function Increnment(iVar As |nteger)
Ret urn(i Var +1)
End Function

End Modul e

1.2.2 A Common Type System

Traditionally, one of the problems of calling routines written in languages from Visual Basic or of
calling Visual Basic routines from other languages is that such inter-language calls presuppose a
common type system. This is the case when calling Win32 API functions from Visual Basic, but it is
also applies to attempts to call methods in a VB COM component from other languages or to call
methods in a hon-VB COM component from VB.

For instance, until the addition of the Addr essOF operator, which allows us to pass a pointer to a
function or subroutine, there was no way to provide a callback function, which is required by most
Win32 API enumeration functions. As another example, it is expected that members of structures
passed to Win32 API functions be aligned on their natural boundaries, something that VB
programmers had great difficulty accomplishing.

Problems of type compatibility tended to occur most often when scripted applications were used to call
and pass arguments to COM components. An excellent example is the attempt to pass an array from
a script written in JScript to a COM component, since COM sees JScript arrays as a string of comma-
delimited values rather than a COM-compatible array (called a SafeArray).

The .NET platform removes these difficulties by providing a common type system. Ultimately, all data
types are either classes or structures defined by or inherited from the .NET Base Class Library. This
common type system means that .NET components will be truly language-independent and that

a .NET component written in one language will be seamlessly interoperable with .NET components
written in any other .NET language. The problem of incompatible types simply disappears.

On the surface, VB has retained its old type system. VB still supports the Long data type, for instance,
although it is now a 64-bit data type instead of the 32-bit data type of VB 4 through VB 6. Casual
inspection of the code shown in Example 1-4 suggests that VB has retained its type system.

38

However, if we use ILDASM to examine the IL generated from this Visual Basic code, we see that VB
data types are merely wrappers for data types provided by the .NET Framework. (See Figure 1-2.)

Figure 1-2. Wrapping the .NET type system

F mad air Main - void]]

Jmechod public atatic wvoid Main() cil managed
i
~Entrypoint

ff Code mizs 20 |0x14)
maxatack 1
LAosale inib (int3dE ¥ 0O,
int5d '|.'_!|..
string V_1I)
IL D000z ldstc "Thi= im a =ktring."™
IL_0005: atloc.2
IL_0006: lde.iB O 3038

IL 000f: s=tloc.l
IL_0010: 1dc.id.a 10
IL 0012: =stloc.O
IL_0013: ret
P AF end of method modMain: :Main

.y By

Example 1-4. Using the Visual Basic type system
Publ i c Modul e nodMai n

Public Sub Main()

Dms As String = "This is a string."
Dml| As Long = 12344

Dmi As Integer = 10

End Sub

End Mbdul e

The simple program in Example 1-5 also supports this conclusion. The program instantiates an
integer of type Long, a standard Visual Basic data type. It then calls the ToString method?a method of
the Int64 class?to convert that number to its string representation. In other words, the variable | in

Example 1-5 is really an Int64 data type masquerading as a traditional VB Long data type.

Example 1-5. Calling .NET type methods from a VB data type
Publ i ¢ Modul e nodMai n

Public Sub Main()

Dim| As Long = 64.31245
Dims As String

s = |.ToString
MsgBox(s)

End Sub

End Mbdul e

1.2.3 Access to System Services: The Framework Class Library

39

Ever since VB added support for calls to routines in the Windows and Win32 APIs, many Visual Basic
programmers came to regard API programming as a kind of black art. Not only were there a confusing
and seemingly limitless array of functions that might be called, but also passing parameters to routines
and receiving their return values often seemed to be a mysterious process. Moreover, with the growing
emphasis on object-oriented programming, the Win32 API, with its function-based approach to
programming, seemed more and more archaic.

Although the Decl ar e statement remains in VB and programmers can still call the Win32 APl and
routines in other external Windows DLLs, many of the common system services provided by the
Win32 API, as well as by some COM components, are now provided by the .NET Framework Class
Library. The Framework Class Library is a collection of types (classes, structures, interfaces,
delegates, and enumerations) organized into namespaces.

To get some sense of the difference in programming style between the Win32 API and the .NET
Framework Class Library, as well as to appreciate the simplicity and ease with which the Framework
Class Library can be accessed, compare Examples 1-6 and 1-7. Example 1-6 is a VB 6 routine that
creates a value entry in the registry to load a particular program on Windows startup. Note that all API
constants must be defined, as must the API functions themselves.

In addition, the API functions must be called correctly. In particular, to avoid passing a BSTR rather
than a C null-terminated string to the RegSetValueEx function, the string must be passed using the
ByVal keyword. This is a common oversight that usually causes an application crash. In contrast,
Example 1-7 shows the comparable VB .NET code that uses the RegistryKey class in the
Microsoft.Win32 namespace of the Framework Class Library. Note that the code is short and simple,
and, therefore, far less error-prone.

Example 1-6. Writing to the registry using the Win32 API
Private Const ERROR SUCCESS = 0&

Private Const HKEY_CLASSES ROOT = &H80000000
Private Const HKEY_ CURRENT_CONFI G = &H80000005
Private Const HKEY_ CURRENT_USER = &H80000001
Private Const HKEY_DYN DATA = &H30000006

Private Const HKEY_LOCAL MACH NE = &H80000002
Private Const HKEY_PERFORMANCE DATA = &H30000004
Private Const HKEY_ USERS = &H30000003

Private Const REG SZ = 1
Private Const KEY_SET VALUE = &H2

Private Declare Function RegCl oseKey Lib "advapi 32.dlI"
(Byval hKey As Long) As Long

Private Declare Functi on RegOpenKeyEx Lib "advapi 32.dl "
Al'i as "RegOpenKeyExXA"
(Byval hKey As Long, ByVal | pSubKey As String, _
ByVal ul Options As Long, ByVal sanmDesired As Long
phkResult As Long) As Long

Private Declare Function RegSetVal uekEx Lib "advapi 32.dl 1"
Ali as "RegSet Val ueExA" _
(Byval hKey As Long, ByVval |pVal ueNane As String, _
ByVal Reserved As Long, ByVal dwType As Long, |pData As Any,
ByVal cbData As Long) As Long

Private Sub LoadByRegistry()
Const cPGM As String = "C \Test\TestStartup. exe"

Di m hKey As Long, nResult As Long

40

nResult = RegOpenKeyEx(HKEY_CURRENT USER, _
" Sof t war e\ M cr osof t \ W ndows\ Cur r ent Ver si on\ Run", O,
KEY_SET_VALUE, hKey)

I f nResult = ERROR _SUCCESS Then
RegSet Val ueEx hKey, "M/VBApp", 0, REG SZ, ByVal cPGVM Len(cPGV)
RegCl oseKey hKey

End | f

End Sub

Example 1-7. Writing to the registry using the Framework Class Library
Private Const cPGM As String = "C \VB Forum startup\Test Startup. exe"

Private Shared Sub LoadByRegistry()

Di m oReg As Regi stryKey = Regi stry. Current User

Di m oKey as Regi stryKey = _
oReg. OpenSubKey (" Sof t war e\ M cr osof t \ W ndows\ Cur r ent Ver si on\ Run",
Tr ue)

oKey. Set Val ue(" MyVBApp", cPGV)

End
Sub

1.2.4 A Common Runtime Environment

Although VB traditionally had shielded the developer from many of the intricacies of Windows as an
operating system or of COM as a method for interoperability, nevertheless, some slight knowledge of
how the system worked was essential, or the developer was sure to run into trouble sooner or later.
For instance, consider the following code fragment for VB 6:

Dim oObj As New cSinpl eCl ass
Set oGbj = Not hi ng

If oCbj Is Nothing Then
Perform cl eanup
End If

Because of an idiosyncrasy of VB, objects declared and instantiated using the New keyword on the
same line of code are not actually created until the first reference to that object. As a result, our
attempt to determine if the object is Not hi ng instead recreates the object, and our cleanup code
never executes.

This, at least, is usually a relatively benign error. Much more pernicious, however, are circular object
references, where COM objects hold references to one another and therefore cannot be released,
even though they've been set to Not hi ng in code. This situation creates a memory leak that
eventually can result in a General Protection Fault.

Under .NET, many problems like these are eliminated because of the .NET platform's Common
Language Runtime (CLR). The CLR, as its name clearly implies, provides a variety of services to
applications and processes running under the .NET platform, regardless of the language in which they
were originally written. These services include memory management and garbage collection. They
also include a unified system of exception handling, which makes it possible to use the same set of
debugging tools on all code, regardless of the particular .NET language in which it was written.

41

1.3 What Can You Do with VB .NET?

With its language enhancements and its tight integration into the .NET Framework, Visual Basic is a
thoroughly modernized language that will likely become the premier development tool for creating a
wide range of .NET applications. In the past, Visual Basic was often seen as a "lightweight" language
that could be used for particular kinds of tasks, but was wholly unsuitable for others. (It was often
argued, sometimes incorrectly, that you couldn't create such things as Windows dynamic link libraries
or shell extensions using Visual Basic.) In the .NET Framework, VB .NET emerges as an equal player;
Microsoft's claim of language independence?that programming language should be a lifestyle choice,
rather than a choice forced on the developer by the character of a project?is realized in the .NET
platform.

This means that VB .NET can be used to create a wide range of applications and components,
including the following:

Windows console mode applications

Standard Windows applications

Windows services

Windows controls and Windows control libraries

Web (ASP.NET) applications

Web services

Web controls and web control libraries

.NET classes and namespaces

Accessing application object models (such as those of the individual applications in the
Microsoft Office suite) using COM automation

Most importantly, for the first time with the release of VB .NET, Visual Basic becomes an all-purpose
development environment for building Internet applications, an area in which it has traditionally been
weak. This means that the release of this newest version should revitalize Visual Basic, allowing it to
remain the tool of choice for developing state-of-the-art software for the next generation of software
development.

42

Chapter 2. Variables and Data Types

Many programmers take the concept of a variable for granted. In this chapter, we take a close look at
variables and their properties, discussing such things as the scope and lifetime of a variable.

2.1 Variables

A variable can be defined as an entity that has the following six properties:

Name

A variable's name is used to identify the variable in code. In VB .NET, a variable name can
start with a Unicode alphabetic character or an underscore, and can be followed by additional
underscore characters or various Unicode characters, such as alphabetic, numeric, formatting,
or combined characters.

Address

Type

Value

Scope

Lifetime

Every variable has an associated memory address, which is the location in memory at which
the variable's value is stored. Note that in many circumstances, the address of a variable will
change during its lifetime, so it would be dangerous to make any assumptions about this
address.

The type of a variable, also called its data type, determines the possible values that the
variable can assume. We discuss data types in detail later in the chapter.

The value of a variable is the contents of the memory location at the address of the variable.
This is also sometimes referred to as the r-value of the variable, since it is what really appears
on the right side of an assignment statement. For instance, in the code:

Dmi As Integer
Dimj As Integer
[5
] [

the final statement can be read as "assign the value of i to memory at the address of |." For
similar reasons, the address of a variable is sometimes called its I-value.

The scope of a variable determines where in a program that variable is visible to the code.
Scope is discussed in detail in Section 2.1.1 later in this chapter.

A variable's lifetime determines when and for how long a particular variable exists. It may or
may not be visible (that is, be in scope) for that entire period. For a detailed discussion of
lifetime, see Section 2.1.2 later in this chapter.

2.1.1 Variable Scope

Variables (and constants) have a scope, which indicates where in the program the variable is
recognized or visible to the code, that is, where it can be referred to in code.

2.1.1.1 Local variables: block-level and procedure-level scope

If a variable is declared inside a code block (a set of statements that is terminated by an End. . .,
Loop, or Next statement), then the variable has block-level scope ; that is, it is visible only within that
block.

For example, consider the following code:

If x <> 0 Then
Dimrec As Integer
rec = 1/x

End If

MsgBox CStr(rec)

In this code, the variable r ec is not recognized outside the block in which it is defined, so the final
statement produces an error.

It is important to note that the lifetime of a variable always refers to the entire procedure, even if the
variable's scope is block-level. (We discuss this in Section 2.1.2 later in this chapter.) This implies
that if a block is entered more than once, a block-level variable will retain its value from the previous
time the block code was executed.

A variable declared using the Di mkeyword within a Visual Basic procedure but not within a code block
has procedure-level scope. Its scope consists of the procedure in which it is declared.

A variable that has block-level scope or procedure-level scope is called a local variable. One of the
advantages of local variables is that the same name can be used in different procedures without
conflict, since each variable is visible only to its own procedure. Another is that the memory allocated
to the variable can be released as soon as control leaves the procedure, making our code easier to
maintain.

2.1.1.2 Module-level and project-level scope

There are differences in the way scope is handled for variables declared in the Declarations section of
a standard module and a class module. We restrict our discussion here to standard modules,
postponing a discussion of class modules until Chapter 3.

We first note that a standard module itself can be declared using one of the access modifiers Publ i ¢,
Friend, or Pri vat e (this is the default). Using such a modifier simply restricts the individual
members to that level of access at most. Thus, for instance, a Publ i ¢ variable declared in a Fri end
module has only Fr i end scope.

2.1.1.2.1 Private access

A variable declared in the Declarations section of a standard module using the Pri vat e access
modifier has module-level scope; that is, it is visible in the entire module, but nowhere else. Using the
Di mkeyword also gives the variable module-level scope, but its use is not as clear and should be
avoided for readability sake.

2.1.1.2.2 Friend access

A variable declared in the Declarations section of a standard module using the Fr i end access
modifier is visible in the entire project and thus has project-level scope. However, it is not visible to
other projects.

2.1.1.2.3 Public access

A variable declared in the Declarations section of a Publ i ¢ standard module using the Publ i ¢
access maodifier is visible not only to the project in which it is declared, but also to any external project
that holds a reference to the project. For instance, consider the following module declared in Projectl.:

Publ i c Modul e Modul el
Publ i c i Modul ePublic As Integer

Friend i Modul eFriend As | nteger
End Modul e

If Project2 has a reference to Projectl, then we can write:

Proj ect 1. Modul el. i Mbdul ePublic

100

However, the code:

Proj ect 1. Modul el. i Modul eFriend = 100

generates a "not accessible" syntax error.

2.1.2 Variable Lifetime

Variables also have a lifetime. The difference between lifetime and scope is quite simple: lifetime
refers to when, or at what time during program execution the variable is valid; scope refers to where in
the program the variable is recognized by (visible to) the code.

To illustrate the difference, consider the following procedure:

Sub ProcedureA()
Di m Local Var As Integer = 0
Call ProcedureB
Local var =1

End Sub

Note that Local Var is a local variable. When the line:
Call ProcedureB

is executed, execution switches to ProcedureB. While the lines of ProcedureB are being executed, the
variable Local Var is out of scope since it is local to ProcedureA. But it is still valid. In other words,
the variable still exists and has a value. It is simply not accessible to the code in ProcedureB. In fact,
ProcedureB could also have a local variable named Local Var , which would have nothing to do with
the variable of the same name in ProcedureA.

Once ProcedureB has completed, execution continues in ProcedureA with the line:

Local var = 1

which is a valid instruction, since the variable Local Var is back in scope.

45

Thus, the lifetime of the local variable Local Var extends from the moment ProcedureA is entered to
the moment it is terminated, including the period during which ProcedureB is being executed as a
result of the call to this procedure, even though during that period, Local Var is out of scope.

We mention again that the lifetime of a block-level variable is the lifetime of the procedure in which it is
defined.

2.1.2.1 Static variables

We have seen that a variable may go in and out of scope during its lifetime. However, once the lifetime
of a variable expires, the variable is destroyed and its value is lost. It is the lifetime that determines the
existence of a variable; its scope determines its visibility.

Thus, consider the following procedures:

Sub ProcedureA()
Cal | ProcedureB
Cal |l ProcedureB
Call ProcedureB
Cal | ProcedureB
Cal | ProcedureB

End Sub

Sub ProcedureB()
Dim x As |nteger
X =5

End Sub

When ProcedureA is executed, it simply calls ProcedureB five times. Each time ProcedureB is called,
the local variable x is created anew and destroyed at the end of that call. Thus, x is created and
destroyed five times.

Normally, this is just what we want. However, there are times when we would like the lifetime of a local
variable to persist longer than the lifetime of the procedure in which it is declared. For example, we
may want a procedure to do something special the first time it is called, but not in subsequent times.

A static variable is a local variable whose lifetime is the lifetime of the entire program. The following VB
code shows how one might use a static variable:

Sub test()
Static bFirstTine As Bool ean = True

If bFirstTinme Then
Debug. WiteLine("first tine")
bFirstTime = Fal se
El se
Debug. WiteLine("not first tine")
End |f

End Sub

Note that we can initialize a static variable, provided that we do so within the variable declaration. The
following code illustrates this point:

Sub StaticTest()
Static st As Bool ean = True "initialize static variable

46

MsgBox(st)
st = Fal se
End Sub

Private Sub buttonl dick(ByVal sender As System Object,
ByVal e As System Event Args) Handl es buttonl. dick
StaticTest()

End Sub

The first time we hit the buttonl command button, StaticTest displays the message Tr ue, because the
static variable st has been initialized to Tr ue. However, all subsequent times we hit the button,
StaticTest returns Fal se. This ability to initialize a static variable was missing and was a very
annoying oversight in earlier versions of VB.

We could accomplish the same effect by using a module-level variable to keep a record of whether the
procedure has been called, instead of a static local variable. However, it is considered better
programming style to use the most restrictive scope possible, which, in this case, is a local variable
with an "extended" lifetime. This helps prevent accidental alteration of the variable in other portions of
the code. (Remember that this code may be part of a much larger code module, with a lot of things
going on.)

2.2 Declaring Variables and Constants

A variable declaration is an association of a variable name with a data type. In and of itself, this does
not imply variable creation. However, for nonobject variables, a variable declaration does create a
variable. A declaration such as:

Dim x As |nteger
creates an Integer variable named x. We can also write:
Dimx As Integer = New Integer()

which emphasizes the role of the constructor function for the Integer data type. (The constructor is the
function that VB .NET uses to create the variable.)

When multiple variables are declared on the same line, if a variable is not declared with an explicit
type declaration, then its type is that of the next variable with an explicit type declaration. Thus, in the
line:

Dmx As Long, i, j, k As Integer, s As String

the variables i , | , and k have type Integer. (In VB 6, the variables i and | would have type Variant,
which is VB 6's default data type.)

VB .NET permits the initialization of variables in the same line as their declaration (at long last!). Thus,
we may write:

Dmx As Integer =5

to declare an Integer variable and initialize it to 5. Similarly, we can declare and initialize more than
one variable on a single line:

Dmx As Integer = 6, y As Integer = 9

47

Note that in this case, each variable that you declare must explicitly be assigned a data type. You
cannot assign each variable an explicit value without explicitly declaring the data type of each variable.

Object variables are declared in the same manner:
Di m obj As Myd ass

However, this declaration does not create an object variable, and the variable is equal to Not hi ng at
this point. Object creation requires an explicit call to the object's constructor, as in:

Dim obj As New MyCl ass()

or:

Dimobj As Myd ass = New Myclass()
or:

Di m obj As Myd ass
obj = New MyCd ass()

Variables and constants can be declared with any of the following access modifiers:

Public

Private

Friend

Pr ot ect ed
Protected Friend

Note also that the Di mkeyword can be used as well, but it often defaults to one of the previously
mentioned access modifiers. This is potentially confusing, so the Di mkeyword should only be used
when required, as it is for local variables.

Access modifiers help to specify the scope and accessibility of the variable. We discuss the meaning
of these access variables in detail in Chapter 3.

Constant declarations are analogous to variable declarations and have the form:
AccessModi fier Const Nane As Type = Val ue

where AccessModi f i er is one of the access modifiers defined earlier. Note that when Opt i on
Strict is On (the default), all constant declarations must have a declared type.

2.3 Data Types

The .NET Common Language Runtime (CLR) includes the Common Type System (CTS), which
defines the data types that are supported by the CLR. Thus, each of the languages in the .NET
Framework (VB, C#, JScript, and Managed C++) implements a subset of a common set of data types.
We say subset because, unfortunately, not all of the CTS types are implemented by VB .NET. For
instance, the CTS includes some unsigned integer data types that are not implemented in VB.

As an aside, it is possible to use the VB-unsupported data types in VB by direct use of the
corresponding Base Class Library class. Here is an example illustrating the ability to use the unsigned
16-bit integer data type, whose range of values is 0 to 65,535. Note the use of the ToUInt16 method of
the Convert class to actually get an unsigned 16-bit integer:

48

Dmui As U ntl16
ui = Convert. ToUl nt 16(65535)
MsgBox(ui . ToStri ng)

Thus, the native VB data types are wrappers for the CTS data types. To illustrate, the VB Integer data
type is a wrapper for the Int32 structure that is part of the .NET Framework's System namespace. One
of the members of the Int32 structure is MaxValue, which returns the maximum value allowed for this
data type. Thus, even though MaxValue is not officially part of VB .NET (nor is it mentioned in the VB
documentation), we can write:

Dimi As Integer
MsgBox (i . Maxval ue) " Displays 2147483647

2.3.1 Value and Reference Types
The types defined in the CTS fall into three categories:

Value types
Reference types
Pointer types
However, pointer types are not implemented in VB, so we will not discuss these types.

The difference between value and reference types is how variables of the corresponding type
represent that type. When a value-type variable is defined, as in:

Dmint As Integer = 5

a memory location is set aside to hold the actual data (in this case the number 5). In contrast, when a
reference-type variable is defined, as in:

Di m obj As New CEnpl oyee

the VB compiler creates the object in memory, but then sets the variable obj to a 4-byte memory
location that contains the address of the object.

In short, value-type variables contain the data, whereas reference-type variables point to the data.

The distinction between value type and reference type has several consequences, one of which is in
the way assignments work. To illustrate, consider the following class, which has a single property:

Public Cdass MyC ass

Public Age As Short
End C ass

and the structure My St r uct , also with a single property:

Structure MyStruct
Public Age As Short
End Structure

Classes are reference types, whereas structures are value types. Now consider the following code,
which is thoroughly commented:

Declare two class variables and two structure vari abl es.
Di m obj Ref1 As Myd ass

49

Di m obj Ref2 As MyC ass
Di m obj Val uel As MyStruct
Di m obj Val ue2 As MyStruct

" Instance the class.

obj Ref1 = New MyCl ass()

' Set the Age property to 20.

obj Ref 1. Age = 20

' Set the second variable to the first variable.
' This is an equating of object *references* because
' classes are reference types.

obj Ref 2 = obj Ref 1

' Set the Age property of objRef2 to 30.

obj Ref 2. Age = 30

' Check the values of the Age property.

Debug. Wit eLi ne(obj Ref 1. Age)

Debug. Wit eLi ne(obj Ref 2. Age)

1

Do the same thing with the structure

' Instance the structure.

obj Val uel = New MyStruct()

' Set the Age property to 20.

obj Val uel. Age = 20

' Set the second variable to the first variable.
" This is an equating of object *val ues* because
" structures are val ue types.

obj Val ue2 = obj Val uel

' Set the Age property of objValue2 to 30.

obj Val ue2. Age = 30

' Check the values of the Age property.

Debug. Wi teline(objVal uel. Age)

Debug. Wi teline(objVal ue2. Age)

Now, the output is:

30
30
20
30

To understand what is happening, we need to realize that the reference assignment:
obj Ref 2 = obj Ref 1

sets both variables to the same value. But that value is the address of the object, and so both
variables point to the same object. Hence, when we change the Age property using the second
variable, this change is also reflected in the first variable.

On the other hand, the value assignment:
obj Val ue2 = obj Val uel

causes a second structure to be created, setting the new structure's properties to the same value as
the original structure. Thus, changing one structure's Age property does not affect the other structure's
Age property.

Note that the VB Array type is also a reference type. To illustrate, consider the following code:

50

DmiArrayl() As Integer = {1, 2, 3}
DmiArray2() As Integer

i Array2 = i Arrayl
i Arrayl(0) = 100
nmsgbox(i Array2(0))

The message box displays 100, indicating that both array variables point to the same array.

The String data type is a reference type, implemented by the String class. However, it has some
characteristics of a value type. To illustrate, consider the following code:

Dimsl, s2 As String

sl ="String 1"
s2 = sl

s2 = "String 2"
MsgBox(s1)

Since this is a reference type, we would expect the last line to produce the message " St ri ng 2", but
instead we get " St ri ng 1" . The reason can be found in Microsoft's documentation:

An instance of String is "immutable" because its value cannot be modified once it has been created.
Methods that appear to modify a String actually return a new instance of String containing the
modification.

Thus, the code:
s2 = sl

points s2 to the same string as s1, as is usual with reference types. Then the attempt to modify the
string in the code:

s2 = "String 2"

does not produce the expected result because strings are immutable. Instead, we get a new string
pointed to by s2, while s1 retains its value.

The following code supports this conclusion:
Dimsl, s2 As String

sl ="String 1"
s2 poitns to sane string as sl

s2 = sl
Show s2 before any changes to the string
MsgBox(s2) " Displays "Stringl"

Change the string
s2 = "String 2"
Set sl1 to Nothing
sl = Not hi ng
Now s1 is nothing and displays accordingly

MsgBox(s1) " Di splays nothing

s2 is a new string
MsgBox(s2) ' Displays "String 2"
Enjoy!

2.3.2 VB Data Types: A Summary

51

The following lists the data types supported by VB .NET, along with their underlying .NET type,
storage requirements, and range of values:

Boolean

Byte

Char

Date

.NET CTS type: System.Boolean
Type: Value (Structure)
Storage: 2 bytes

Value range: Tr ue or Fal se

.NET CTS type: System.Byte
Type: Value (Structure)
Storage: 1 byte

Value range: 0 to 255 (unsigned)

.NET CTS type: System.Char
Type: Value (Structure)
Storage: 2 bytes

Value range: A character code from 0 to 65,535 (unsigned)

.NET CTS type: System.DateTime
Type: Value (Structure)
Storage: 8 bytes

Value range: January 1, 1 CE to December 31, 9999

Decimal

52

.NET CTS type: System.Decimal
Type: Value (Structure)
Storage: 12 bytes

Value range: +/-79,228,162,514,264,337,593,543,950,335 with no decimal point; +/-
7.9228162514264337593543950335 with 28 places to the right of the decimal; smallest
nonzero number is +/-0.0000000000000000000000000001

Double (double-precision floating point)
.NET CTS type: System.Double
Type: Value (Structure)
Storage: 8 bytes

Value range: -1.79769313486231E308 to -4.94065645841247E-324 for negative values;
4.94065645841247E-324 to 1.79769313486232E308 for positive values

Integer

.NET CTS type: System.Int32

Type: Value (Structure)

Storage: 4 bytes

Value range: -2,147,483,648 to 2,147,483,647
Long (long integer)

.NET CTS type: System.Int64

Type: Value (Structure)

Storage: 8 bytes

Value range: -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
Object

.NET CTS type: System.Object

Type: Reference (Class)

Storage: 4 bytes

Value range: Any type can be stored in an Object variable.
Short

.NET CTS type: System.Int16

Type: Value (Structure)

Storage: 2 bytes

Value range: -32,768 to 32,767
Single (single precision floating point)

.NET CTS type: System.Single

53

Type: Value (Structure)
Storage: 4 bytes

Value range: -3.402823E38 to -1.401298E-45 for negative values; 1.401298E-45 to
3.402823E38 for positive values

String (variable-length)

.NET CTS type: System.String

Type: Reference (Class)

Storage: 10 bytes + (2 * string length)

Value range: 0 to approximately 2 billion Unicode characters
User-Defined Type (structure)

.NET CTS type: (inherits from System.ValueType)

Type: Value (Structure)

Storage: Sum of the sizes of its members

Value range: Each structure member has range determined by its data type and is
independent of the ranges of the other members.

Note that the CTS data types are either structures (which are value types) or classes (which are
reference types) and are located within the .NET System namespace.

2.3.3 Simple Data Types in Visual Basic
In this section, we discuss data types in general and VB .NET data types in particular.

Simple data types can be classified into groups as follows. Note that these groups are not mutually
exclusive:

Numeric data type

A data type in which the underlying set is a set of numbers and for which the set of operations
includes the arithmetic operations.

Integer data type

A numeric data type in which the underlying set is a set of integers. (As we will see, VB has
several integer data types.)

Floating-point data type
A noninteger data type whose underlying set is a subset of the rational numbers.
Boolean data type

A data type whose underlying set has size 2. This set is usually thought of as {True, False}.

Character data type

A data type whose underlying set is a set of characters. Of course, each value must be
represented in memory as a binary string, which can also be interpreted as a number.
Nevertheless, this interpretation is not part of a character data type.

Let us consider the Visual Basic .NET data types individually.

2.3.3.1 Boolean data type

The Boolean is a 16-bit data type that can only represent two values: True and False. The VB
keywords Tr ue and Fal se are used to assign these values to a Boolean variable.

When a numeric value is converted to Boolean, any nonzero value is converted to Tr ue, and zero is
converted to Fal se. In the other direction, Fal se is converted to zero, and Tr ue is converted to -1.
(Incidentally, in C, C#, and C++, Tr ue is converted to 1. This change was made in Beta 1 of VB .NET
to bring it in line with the other languages, but was subsequently changed back in Beta 2.)

The underlying .NET data type for Boolean is System.Boolean.

2.3.3.2 Byte data type

The Byte data type is an 8-bit unsigned data type whose range is the set of integers from 0 to 255.
According to the documentation, the Byte data type "is used for containing binary data." Since ordinary
arithmetic operations can be used with Byte variables, the data type is, in this sense, an integer data
type. Also, there do not appear to be any special operators, such as shift operators, that would give
the type a "binary data" flavor. Oh well.

The underlying .NET data type for Byte is System.Byte.

2.3.3.3 Char data type

The Char data type is a 16-bit character data type with a character code ranging from 0 to 65,535,
which represent a single Unicode character. As a data type, Char is new to VB .NET; there was no
equivalent in previous versions of Visual Basic.

It is important not to confuse the Char and String data types. (We discuss this data type in the "String
data type" section.) A string consisting of a single character is not the same as a Char. To illustrate,
consider defining a new string and initializing it to a sequence consisting of a repeated single
character, for example, "AAAAA." In earlier versions of VB, this was done as follows:

Dms As String
s = String$(5, "A")

In VB .NET, this is done using the String class constructor, which has the syntax:
Dimvariabl e As New String(Character, I|nteger)

If we turn strict type checking on with the Cpt i on St ri ct On statement, the code:
Dms As New String("A",5)

produces the error message, "Option Strict disallows implicit conversions from String to Char.

To get a Char, we must append a c to the end of the string literal. Thus, the following works:

55

Dims As New String("A'c, 5)

The underlying .NET data type for Char is System.Char.

2.3.3.4 Date data type

Date values are stored as IEEE 64-bit long integers that can represent dates in the range January 1,
0001 to December 31, 9999 (which should be plenty), and times from 0:00:00 to 23:59:59.

Literal strings must be enclosed in number signs (#) to be recognized as dates. The VB .NET compiler
changes date formats automatically. For instance, if we enter the code:

Dmd As Date
d = #November 9, 1948#
Msgbox(d)

the compiler changes the second line to:
d = #11/9/ 1948#

or whatever the regional settings on the host system dictate. The .NET equivalent of Date is
System.DateTime.

2.3.3.5 Decimal data type

Values of the Decimal data type are stored as 96-bit (12-byte) signed integers, along with an internal
scale factor ranging from 0 to 28, which is applied automatically when we set a value for a Decimal
variable. This allows us to enter values from a number of different ranges.

For instance, we can use integers (no decimal part) in the range:
+/-79,228,162,514,264,337,593,543,950,335

in which case the scale factor is set to 0. On the other extreme, we can use values in the range:
-7.9228162514264337593543950335 to -0.0000000000000000000000000001
on the negative side, or:

0.0000000000000000000000000001 to 7.9228162514264337593543950335
on the positive side. In this case, the scale factor is set to 28.

To write a literal Decimal, append a D, as in:

123456. 789D

The type identifier for Decimal is the symbol @ as in:

Di m dec@

The underlying .NET data type for Decimal is System.Decimal. This class has some useful members,
such as MaxValue and MinValue, which give the maximum and minimum values of the decimal type.

56

By the way, in previous versions of VB, the Decimal existed only as a Variant data subtype—there
were no variables of type Decimal.

2.3.3.6 Double data type

Values of type Double are IEEE 64-bit (8-byte) floating-point numbers with the range:
-1.79769313486231E308 to -4.94065645841247E-324

on the negative side, and:

4.94065645841247E-324 to 1.79769313486232E308

on the positive side.

To write a literal Double, we must append an R, as in:

12345. 678R

The type identifier for a Double is #, as in:

Di m dbl #

The underlying .NET data type for Double is System.Double.

2.3.3.7 Integer data type

The Integer data type is a 32-bit data type that stores signed integers ranging from:
-2°31 to 2731-1

or:

-2,147,483,648 to 2,147,483,647

Note that this is the native word size on a 32-bit processor, and so the Integer data type provides
superior performance as compared to integer data types of other sizes.

Note also that this data type size is new for VB .NET. In VB 6 and earlier, the Integer data type was a
16-bit data type.

To define a literal Integer, append an | , as in:

1231

The Integer type identifier is the percent sign (%), as in:
Dimint %

The underlying .NET data type for Integer is System.Int32.
2.3.3.8 Long data type

The Long data type is a 64-bit integer data type that stores signed integers ranging from:

57

-2763 to 263-1
or:
-9,223,372,036,854,775,808 t0 9,223,372,036,854,775,807

Note that this data type size is new for VB .NET. In VB 6 and earlier, the Long data type was a 32-bit
data type.

To define a literal Long, append an L, as in:

123L

The Long type identifier is the ampersand sign (&), as in:
Dim | ng&

The underlying .NET data type for Long is System.Int64.

2.3.3.9 Object data type

The Object data type is a pointer data type. That is, a value of type Object is an address that
references the object in memory. In VB .NET, the Object data type is the universal data type; an
Object variable can refer to (point to) data of any other data type. For instance, the following code
places a Long value in an Object variable:

Di m obj As bj ect
obj = 123L

The underlying .NET data type for Object is System.Object.

It is worth noting that when we use variables of type Object, we do pay a performance penalty

because VB .NET cannot bind the object's method invocations to the actual method code until runtime.
This is referred to as late binding. On the other hand, declaring variables of a specific object type
allows early binding at compile time, which is much more efficient. Thus, code such as:

Di m obj As bj ect

obj . AMet hod

is much less efficient than:

Di m obj As System Dat a. Dat aSet
obj . AMet hod

We revisit this issue in more detail later in this chapter.

As we have seen, the Object data type is universal. Just as in VB 6, in which you can use the VarType
function to determine the data subtype of a Variant, in VB .NET you can use the VarType function to
determine the data subtype of an object.

In addition, the Object class in the Base Class Library's System namespace has a method named
GetType that returns an object of type Type. Thus, if obj is a variable of type Object, then the code:

58

obj . Get Type

returns a Type object. In turn, the Type class, which is also a member of the Base Class Library's
System namespace, has two methods that return information about the subtype of the object:

ToString returns a string that describes the subtype of the data. It is roughly equivalent to
calling the VB .NET TypeName function, except that the former method uses the data type
name from the .NET Base Class Library, whereas the latter function uses the Visual Basic
name.

GetTypeCode returns an enumeration value from the TypeCode enumeration. It is roughly

equivalent to calling the VB6 VarType function, which, as we have said, is no longer supported

in VB .NET.

For reference, the following code generates the values in Table 2-1:

Di m obj As bj ect

obj = ?7?

debug. wite(obj. Get Type. ToStri ng)
Debug. Wit e(TypeNane(obj))

debug. witeline(Type. Get TypeCode(obj . Get Type))

Table 2-1. Values of ToString and GetTypeCode

obj =777 ToString TypeName GetType
obj=True System.Boolean Boolean 3
obj = CByte(100) System.Byte Byte 6
obj = #1/1/2000# System.DateTime Date 16
obj = CDec(100) System.Decimal Decimal 15
obj = CDbI(100) System.Double Double 14
obj = CInt(100) System.Int32 Integer 9
obj = CLng(100) System.Int64 Long 11
obj = CShort(100) System.Int16 Short 7
obj = CSng(100) System.Single Single 13
obj = "Donna" System.String String 18

2.3.3.10 Short data type

The Short data type is a 16-bit integer data type that stores signed integers ranging from:

-2"15 to 2715-1

or:

-32,768 to 32,767

Note that in earlier versions of Visual Basic, the Short data type is called the Integer data type.

To define a literal Short, append an S, as in:

123S

The underlying .NET data type for Short is System.Int16.

2.3.3.11 Single data type

59

Values of type Single are IEEE 32-bit (4-byte) floating-point numbers with the range:
-3.402823E38 to -1.401298E-45

on the negative side, and:

1.401298E-45 to 3.402823E38

on the positive side.

To write a literal Single, we must append an F (for floating point), as in:
12345. 678F

The type identifier for a Single is an exclamation point (!), as in:

Di m sng!

The underlying .NET data type for Single is System.Single.

2.3.3.12 String data type

The String data type represents Unicode strings of up to approximately 2 billion characters. The type
identifier for the string data type is a dollar sign ($). The underlying .NET data type for this type is
System.String.

To create a new string, we can declare a variable and assign it a string as follows:

Dim sNanme As String
sName = "Donna"

or equivalently, in one statement:

Dim sNanme As String = "Donna"

The type identifier for a String is a dollar sign ($), as in:
Dmstr$

2.3.3.13 Structure data type: user-defined types

In VB .NET, the Structure type is a powerful data type that has many properties in common with
classes.

To declare a structure, we use the St r uct ur e statement, whose syntax is:

[Public|Private|Friend] Structure StructureNane
Nonmet hod nenber decl arations
Met hod nenber decl arations

End Structure

The members of a structure can be variables, properties, methods, or events. Note, however, that
each member must be declared with an access modifier: Publ i ¢ (or Di), Pri vat e, or Fri end.

60

The simplest and most common use of structures is to encapsulate related variables. For instance, we
might define a structure as follows:

Structure strPerson

Public Nane As String
Public Address As String
Public Gty As String
Public State As String
Public Zip As String

Public Age As Short
End Structure

To define a variable of type st r Per son, we write (as usual):
Di m APerson As strPerson

To access a member of a structure, we use the dot syntax, as in:

APer son. Nane = " Beet hoven"

Note that structure members can be other structures or other objects. Structures can also be passed
as arguments to functions, or as the return type of a function.

As mentioned, structures are similar to classes. For instance, consider the following structure:

Structure strTest
A public nonnet hod nenber
Public Nane As String
A private nenber variable
Private nsProperty As String
A public nethod nmenber
Public Sub AMet hod()
Msgbox(" Structure nethod. Property is: " & nsProperty)
End Sub
A public property nenber
Public Property AProperty() As String
Get
AProperty = nmsProperty
End Get
Set
nmsProperty = Val ue
End Set
End Property
End Structure

Now we can set the structure's property and invoke its method as follows:

Dim str As strTest
str. AProperty = "Donna"
str. AMet hod()

Although structures are similar to classes, they do not support the following class features:

Structures cannot explicitly inherit, nor can they be inherited.

All constructors for a structure must be parameterized.

Structures cannot define destructors.

Member declarations cannot include initializers nor can they use the As New syntax or specify
an initial array size.

61

For a reference to the object-oriented terminology, see Chapter 3.

2.3.4 Data Type Conversion

The process of converting a value of one data type to another is called conversion or casting. A cast
operator can be applied to a literal value or to a variable of a given type. For instance, we have:

Dimlng As Long
Dmint As Integer = 6

Cast an Integer variable to a Long
Ing = CLng(lnt)

Cast a literal integer to a Long
Ing = CLng(12)

A cast can be widening or narrowing. A widening cast is one in which the conversion is to a target data
type that can accommodate all values in the source data type, such as casting from Short to Integer or
Integer to Double. In such a case, no data is ever lost, and the cast will not generate an error. A
narrowing cast is one in which the target data type cannot accommodate all values in the source data
type. In this case, data may be lost, and the cast may not succeed.

Under VB .NET, conversions are made in two ways: implicitly and explicitly. An implicit conversion is
done by the compiler when circumstances warrant it (and if it is legal). For instance, if we write:

Dimlng As Long
Ing = 54

then the compiler casts the Integer 54 as a Long.
The type of implicit conversion that the compiler will do depends in part on the setting of the Opt i on
Strict value. Forinstance, if Opti on Strict is On, only widening casts can be implicit; so then the

following code:

Dim b As Bool ean
b = "True"

generates a type conversion error, whereas if we add the line:
Option Strict Of
to the beginning of the module, then the previous code executes without error.

Explicit conversion requires explicitly calling a conversion function (or cast operator). The type
conversion functions supported by VB .NET all have the form:

Cnane(expressi on)

where expr essi on is an expression that is in the range of the target data type. Specifically, we have
the following conversion functions:

CBool
Converts any valid String or numeric expression to Boolean. When a numeric value is
converted to Boolean, any nonzero value is converted to Tr ue, and zero is converted to
Fal se.

CByte

62

CChar

CDate

CDbl

CDec

Cint

ClLng

CObj

CShort

CSng

CStr

Converts any numeric expression in the range 0 to 255 to Byte, while rounding any fractional
part.

Takes a string argument and returns the first character of the string as a Char data type.

Converts any valid representation of a date or time to Date.

Converts any expression that can be evaluated to a number in the range of a Double to
Double.

Converts any expression that can be evaluated to a number in the range of a Decimal to
Decimal.

Converts any numeric expression in the range of Integer (-2,147,483,648 to 2,147,483,647) to
Integer, while rounding any fractional part.

Converts any expression that can be evaluated to a number in the range of a Long to Long,
while rounding any fractional part.

Converts any expression that can be interpreted as an object to Object. For instance, the code:

D m obj As bj ect
obj = COhj ("test")

casts the string "test" to type Object and places it in the Object variable obj .

Converts any numeric expression in the range -32,768 to 32,767 to Short, while rounding any
fractional part.

Converts any expression that can be evaluated to a number in the range of a Single to Single.
If the numeric expression is outside the range of a Single, an error occurs.

If the expression input to CStr is Boolean, the function returns one of the strings "True" or
"False." For an expression that can be interpreted as a date, the return value is a string

63

representation of that date, in the date format defined by the regional settings of the host
computer. For a numeric expression, the return value is a string representing the number.

CType
A general-purpose conversion function, CType has the following syntax:
CType(expression, typenane)

where expr essi on is an expression or variable, and t ypenane is the data type to which it
will be converted. The function supports conversions to and from the standard data types, as
well as to and from object data types, structures, and interfaces.

2.4 Arrays

The array data type is a fundamental data type in most languages, including Visual Basic. An array is
used to store a collection of similar data types or objects.

Many authors of programming books misuse the terms associated with arrays, so let's begin by
establishing the correct terminology. In fact, if you will indulge us, we would like to begin with a formal
definition of the term array.

2.4.1 Definition of Array

Let S;, S, ..., Sy be finite sets, and let T be a data type (such as Integer). Then an array of type T is a
function:

arr:S; X S, x ... X Sy
-
E
where S; X S, X ... X Sy is the Cartesian product of the sets S;, S, ..., Sy. (This is the set of all n-tuples

whose coordinates come from the sets S;.)

For arrays in VB .NET (and the other languages that implement the Common Language Runtime), the
sets S; must have the form:

S={0,1,...,K}
In other words, each set S; is a finite set of consecutive integers starting with 0.

Each position in the Cartesian product is referred to as a coordinate of the array. For each coordinate,
the integer K; is called the upper bound of the coordinate. The lower bound is O for all arrays in
VB .NET.

2.4.2 Dimension of an Array

The number N of coordinates in the domain of the function arr is called the dimension (or sometimes
rank) of the array. Thus, every array has a dimension (note the singular); it is not correct to refer to the
dimensions of an array (note the plural). An array of dimension 1 is called a one-dimensional array, an
array of dimension 2 is called a two-dimensional array, and so on.

2.4.3 Size of an Array

Along with a dimension, every array has a size. For instance, the one-dimensional array:

64

-

L
has size 6. The two-dimensional array:
arr:{0,1,...,5}x{0,1,...,8}
-

L
has size 6x9. The three-dimensional array:
arr:{0,1,...,5}x{0,1,...,8}x{0, 1}
-

L

has size 6x9x2.

2.4.4 Arrays in VB .NET

In VB .NET, all arrays have lower bound 0. This is a change from earlier versions of VB, where we

could choose the lower bound of an array.

The following examples show various ways to declare a one-dimensional array:

[mplicit constructor: No initial
Dim Days() As Integer

Explicit constructor: No initial

size and no initialization

size and no initialization

Di m Days() As Integer = New Integer() {}

[mplicit constructor: Initial size but no initialization

Di m Days(6) As Integer

Explicit constructor: Initial size but no initialization
DimDays() As Integer = New Integer(6) {}

Implicit constructor: Initial size inplied by initialization

DimDays() As Integer = {1, 2, 3, 4, 5, 6, 7}

Explicit constructor, Initial size and initialization

DimDays() As Integer = New Integer(6) {1, 2, 3, 4, 5 6, 7}

Note that an array declaration can:

Call the array's constructor implicitly or explicitly. (The constructor is the function that VB .NET

uses to create the array.)

Specify an initial size for each dimension or leave the initial size unspecified.

Initialize the elements of the array or not.

It is important to note that in the declaration:

Dim ArrayNane(X) As ArrayType

the number X is the upper bound of the array. Thus, the array elements are ArrayName(0) through

ArrayName(X), and the array has X+1 elements.

65

Multidimensional arrays are declared similarly. For instance, the following example declares and
initializes a two-dimensional array:

DmX(,) As Integer = {{1, 2, 3}, {4, 5, 6}}
and the following code displays the contents of the array:

Debug. Wit e(
Debug. Wit e(
Debug. Wi tel
Debug. Wit e(
Debug. Wit e(
Debug. Wit e(

2))

123
456

In VB .NET, all arrays are dynamic: there is no such thing as a fixed-size array. The declared size
should be thought of simply as the initial size of the array, which is subject to change using the ReDi m
statement. Note, however, that the dimension of an array cannot be changed.

Moreover, unlike with VB 6, the ReDi mstatement cannot be used for array declaration, but can be

used only for array redimensioning. All arrays must be declared initially using a Di m(or equivalent)
statement.

2.4.4.1 Redimensioning arrays

The ReDi mstatement is used to change the size of an array. This is referred to as redimensioning -- a
term no doubt invented by someone who didn't know the difference between the dimension of an array
and the size of an array! In any case, redimensioning changes the size of the array, not its dimension.

In fact, as we have already mentioned, the dimension of an array cannot be changed.

The UBound function returns the upper limit of an array coordinate. Its syntax is:

UBound(MyArray, Coordi nat el ndex)

where Coor di nat el ndex is the index of the coordinate for which we want the upper bound.
Here is an example of array redimensioning:

Dim M/Array(10, 10) As Integer

Msgbox(UBound(MyArray, 2)) " Displays 10
ReDi m MyArray(15, 20)
Msgbox(UBound(MyArray, 2)) " Displays 20

When an array is redimensioned using the ReDi mstatement without qualification, all data in the array
is lost; that is, the array is reinitialized. However, the Pr eser ve keyword, when used with ReDi m
redimensions the array while retaining all current values. Note that when using the Pr eser ve
keyword, only the last coordinate of an array can be changed. Thus, referring to the array defined
earlier, the following code generates an error:

ReDi m Preserve MyArray(50, 20)

You will probably not be surprised to learn that redimensioning an array is a time-intensive process.
Hence, when redimensioning, we face the ubiquitous dichotomy between saving space and saving
time. For instance, consider the code segment used to populate an array:

66

Dim MyArray(100) As I nteger
Dimi As Integer, iNext As Integer

i Next = 0
Do While (Sone condition)
If (sonme condition here) Then
Add elenent to array
[f ubound(MyArray) < iNext Then
ReDi m Preserve MyArray(i Next + 100)

End If
MyArray(i Next) = (whatever)
i Next = i Next + 1

End If

Loop

The key issue here is to decide how much to increase the size of the array each time resizing is
necessary. If we want to avoid using any extra space, we could increase the size of the array by 1
each time:

ReDi m Preserve MyArray(i Next + 1)

But this would be very inefficient. Alternatively, we could kick up the size by 1,000:
ReDi m Preserve MyArray(i Next + 1000)

But this uses a lot of extra space. Sometimes experimentation is required to find the right compromise
between saving space and saving time.

2.5 Object Variables and Their Binding

In VB .NET, classes and their objects are everywhere. Of course, there are the classes and objects
that we create in our own applications. There are also the classes in the .NET Framework Class
Library. In addition, many applications take advantage of the objects that are exposed by other
applications, such as ActiveX Data Objects (ADO), Microsoft Word, Excel, Access, various scripting
applications, and more. The point is that for each object we want to manipulate, we will need to
declare a variable of that class type. For instance, if we create a class named CPerson, then in order
to instantiate a CPerson object, we must declare a variable:

Di m APer son As CPer son

Similarly, if we decide to use the ADO Recordset object, we will need to declare a variable of type
ADO.Recordset:

Dimrs As ADO. Recordset

Even though object variables are declared in the same manner as nonobject variables, there are some
significant differences. In particular, the declaration:

D m obj As Myd ass

does not create an object variable—it only binds a variable name with a class name. To actually
construct an object and set the variable to refer to that object, we need to call the constructor of the
class. This function, discussed in detail in Chapter 3, is responsible for creating objects of the class.

Constructors are called using the New keyword, as in:

Di mobj As MyCd ass = New Mycl ass()

67

or:

Dim obj As Myd ass
obj = New MyCd ass()

VB .NET also provides a shortcut that does not mention the constructor explicitly:

Dim obj As New MyCl ass()

(In earlier versions of VB, we use the Set statement, which is no longer supported.)

2.5.1 Late Binding Versus Early Binding
The object-variable declaration:

Dim obj As C assl

explicitly mentions the class from which the object will be created (in this case it is Classl). Because of
this, VB can obtain and display information about the class members, as we can see in VB's
Intellisense, shown in Figure 2-1.

Figure 2-1. Intellisense showing member list
Dim e As Classl
(=38
T
& aetHashCode
i GElType
ﬂithli&ﬂd
& subProtectedFrisnd
i subPublic
& Tastring
& varFriend
5 warProbectedFriend
g warPublic

As you know, Intellisense also shows the signature of a method, as shown in Figure 2-2.

Figure 2-2. Intellisense showing method signature
m ¢ A= Classl
. ShowSig|
|‘:'1-:|w‘:'4'|;| (H As Inkeger) 45 5 r'r-i

Of course, Intellisense is very helpful during program development. However, more important is that
the previous object-variable declaration allows VB to bind the object's methods to actual function
addresses at compile time. This is known as early binding.

An alternative to using a declaration that specifically mentions that class is a generic object-variable
declaration that uses the As Obj ect syntax:

Dim obj As (bject

While it is true that obj can hold a reference to any object, we pay a major penalty for this privilege.
VB can no longer get information about the class and its members because it does not know which
class the object obj belongs to!

68

As aresult, VB's Intellisense cannot help us with member syntax. More importantly, we pay a large
performance penalty because VB cannot bind any of the classes properties or methods at compile
time—it must wait until runtime. This is referred to as late binding.

In summary, explicit object-variable declarations allow for early binding and thus are much more

efficient than generic declarations, which use late binding. Hence, explicit object-variable declarations
should be used whenever possible.

2.6 The Collection Object

VB .NET implements a special object called the Collection object that acts as a container for objects of
all types. In fact, Collection objects can hold other objects, as well as nonobject data.

In some ways, the Collection object is an object-oriented version of the Visual Basic array. It supports
the following four methods:

Add

Adds an item to the collection. Along with the data itself, you can specify a key value by which
the member can be referenced.

Count
Returns the number of items in the collection.
Item

Retrieves a member from the collection either by its index (or ordinal position in the collection)
or by its key (assuming that a key was provided when the item was added to the collection).

Remove
Deletes a member from the collection using the member's index or key.

For example, the following code defines a collection object named colStates to hold information about
U.S. states and then adds two members to it, using the state's two-letter abbreviation as a key:

Dim col States As New Col | ection
col St at es. Add(" New Yor k", "NY")
col St ates. Add("M chigan", "M")

Like members of an array, the members of a collection can be iterated using the For Each. .. Next
construct. Also like arrays, collection members are accessible by their index value, although the lower
bound of a collection object's index is always 1.

Arrays and collections each have advantages and disadvantages. Some of the advantages of
collections over arrays are:

New collection members can be inserted before or after an existing member in index order.
Moreover, indexes are maintained automatically by VB, so we don't need to adjust the indexes
manually.

Collection members can be referenced by key value. This feature makes collections similar to
associative arrays (which are used by languages such as Perl).

Note that when deleting collection members by index, it is important to iterate though the indexes in
reverse order because member deletion changes the indexes of other members.

69

2.7 Parameters and Arguments

The terms parameter and argument are often used interchangeably, although they have entirely
different meanings. Let us illustrate with an example. Consider the following function, which replicates
a string a given number of times:

Function Repeat String(ByVal slnput As String, ByVal iCount As I|nteger)

As String
Dimi As I|nteger
For i = 1 To i Count
Repeat String = RepeatString & sl nput

Next
End Functi on

The variables s| nput and i Count are the parameters of this function. Note that each parameter has
an associated data type.

Now, when we call this function, we must replace the parameters by variables, constants, or literals,
as in:

S = Repeat String("Donna", 4)

The items that we use in place of the parameters are called arguments.

2.7.1 Passing Arguments

Arguments can be passed to a function in one of two ways: by value or by reference. Incidentally,
argument passing is often called parameter passing, although it is the arguments and not the
parameters that are being passed.

The declaration of RepeatString given earlier contains the keyword By Val in front of each parameter.
This specifies that arguments are passed by value to this function. Passing by value means that the
actual value of the argument is passed to the function. This is relevant when an argument is a variable.
For instance, consider the following code:

Sub I nc(ByVal x As Integer)
X =x + 1
End Sub
Dimi Age As Integer = 20
I nc(i Age)
Msgbox (i Age)
The final line:
Msgbox (i Age)
actually displays the number 20. In other words, the line:
I nc(i Age)
does nothing. The reason is that the argument i Age is passed to the procedure | nc by value. Since
only the value (in this case 20) is passed, that value is assigned to a local variable named x within the

procedure. This local variable is increased to 21, but once the procedure ends, the local variable is
destroyed. The variable | Age is not passed to the procedure, so its value is hot changed.

70

On the other hand, if we modify the definition of the procedure | nc, replacing By Val with ByRef , the
story is different:

Sub I nc(ByRef x As Integer)
X =x + 1
End Sub

In this case, what is passed to the procedure | nc is a reference to the argument i Age. Hence, the
procedure actually operates on the variable passed to it, incrementing the value of i Age to 21. Put
another way, the variable represented by the parameter x is actually the passed variable | Age.

In VB .NET, the default method of argument passing for arguments is by value. This is a change from
earlier versions of VB, in which the default method was by reference.

2.7.2 Passing Objects

There is a subtlety in argument passing with parameters of any object type. Actually, the subtlety
occurs because an object variable is a pointer ; that is, it contains a reference to (or the address of)
the object.

If we pass an object variable by value, we are passing the contents of the variable, which is the
address of the object. Thus, any changes made in the called procedure affects the object itself, not a
copy of the object. This seems like passing by reference, but it is not. Think of it this way: passing the
value of an object's address is passing a reference to the object.

On the other hand, if we pass an object variable by reference, we are passing the address of the
variable. In other words, we are passing the address of the address of the object! In languages that
support pointers, this is referred to as a double pointer.

Let us illustrate with an example. Consider the following code, and imagine that the form containing
this code has two textboxes: TextBox1 with text "TextBox1" and TextBox2 with text "TextBox2":

Public Function GetText(ByVal txt As TextBox) As String
Change reference to textbox
txt = Text box2
End Function

Sub Doi t
Dmt As Text Box
t = Text Box1l

Get Text (t)
nmsgbox(t. Text) " Displays TextBoxl when ByVal,
Text Box2 when ByRef
End Sub

Now, here is what happens when we execute Dolt. Note that the argument is passed to GetText by
value in this case.

The TextBox variable t is assigned to TextBox1, as shown in Figure 2-3.

Figure 2-3. Assigning an object reference
1 aaaa e——»3aaa TexiBoxi
In
Memory

71

GetText is called, passing t by value. Since t contains the address aaaa of the TextBox1
object, the local variable t xt is given the value aaaa, as shown in Figure 2-4.

Figure 2-4. Passing an object by value
t daaa e——3aaa

./ Tex!Bmﬂ
xt aaaa n

Memory

The single line of code in GetText is executed, which now causes t xt to point to TextBox2,
as shown in Figure 2-5.

Figure 2-5. Assigning a new object reference

txt=t aaaa *~—33aa
Te :t_ﬂuﬂ
tut=t bbbb n

Memary

bbbb
TextBox2

in
Memory

Upon return from GetText, t is unaffected, so the MsgBox function displays the string
"TextBox1."

Now suppose we change the ByVal keyword to By Ref in GetText. Here is what happens:

The TextBox variable t is assigned to TextBox1, as shown previously in Figure 2-3.
GetText is called, passing t by reference. Hence, txt is t . This is quite different from t xt and
t containing the same value, as in the ByVal case. The situation is shown in Figure 2-6.

Figure 2-6. Passing an object by reference

txt=t aaaa =—>3aaa
TextBox1
in
Memory

The single line of code in GetText is executed, which now causes t xt (and hence t) to point
to TextBox2, as shown in Figure 2-7.

Figure 2-7. Assigning a new object reference

72

TextBox1

tt=t bbhb Mamary

bbbb
Te:tlﬂnxz

in
Memory

Upon return from GetText, t is now pointing to TextBox2, so the MsgBox function displays the
string "TextBox2."

2.7.3 Optional Arguments

In VB .NET, parameters can be declared as optional using the Opt i onal keyword, as shown in the
following code:

Sub Cal cul ate(Optional ByVal Switch As Bool ean = Fal se)

In VB .NET, all optional parameters must declare a default value, which is passed to the procedure if
the calling program does not supply that parameter.

The following rules apply to optional arguments:

Every optional argument must specify a default value, and this default must be a constant
expression (not a variable).
Every argument following an optional argument must also be optional.

Note that in earlier versions of VB, you could omit the default value and, if the parameter was of type
Variant, you could use the IsMissing function to determine if a value was supplied. This is not possible
in VB .NET, and the IsMissing function is not supported.

2.7.4 ParamArray

Normally, a procedure definition specifies a fixed number of parameters. However, the Par amAr r ay
keyword, which is short for Parameter Array, permits us to declare a procedure with an unspecified
number of parameters. Therefore, each call to the procedure can use a different number of
parameters.

Suppose, for instance, that we want to define a function to take the average of a number of test scores,
but the number of scores may vary. Then we declare the function as follows:

Function GCet Average(ParamArray ByVal Scores() As Single) As Single
Dimi As Integer
For i = 0 To UBound(Scores)
Get Average = Get Average + CSng(Scores(i))
Next
Get Average = Get Average / (UBound(Scores) + 1)
End Function

Now we can make calls to this function with a varying number of arguments:

73

Msgbox(Get Average(l, 2, 3, 4, 5))
Msgbox(Get Average(1l, 2, 3))

The following rules apply to the use of Par amArr ay:

A procedure can only have one parameter array, and it must be the last parameter in the
procedure.

The parameter array must be passed by value, and you must explicitly include By Val in the
procedure definition.

The parameter array must be a one-dimensional array. If the type is not declared, it is
assumed to be Object.

The parameter array is automatically optional. Its default value is an empty one-dimensional
array of the parameter array's data type.

74

Chapter 3. Introduction to Object-Oriented
Programming

In this chapter, we present a brief and succinct introduction to object-oriented programming. Since this
is not a book on object-oriented programming per se, we will confine our attention to those topics that
are important to VB .NET programming.

3.1 Why Learn Object-Oriented Techniques?

As you may know, Visual Basic has implemented some features of object-oriented programming since
Version 4. However, in terms of object-orientation, the move from Version 6 to VB .NET has been
dramatic. Many people did not consider VB 6 (or earlier versions) to be a truly object-oriented
programming language. Whatever your thoughts may have been on this matter, it seems clear that
VB .NET is an object-oriented programming language by any reasonable definition of the term.

You may be saying to yourself: "I prefer not to use object-oriented techniques in my programming."
This is something you could easily have gotten away with in VB 6. But in VB .NET, the structure of

the .NET Framework—specifically the .NET Base Class Library—as well as the documentation, is so
object-oriented that you can no longer avoid understanding the basics of object-orientation, even if you
decide not to use them in your applications.

3.2 Principles of Object-Oriented Programming
It is often said that there are four main concepts in the area of object-oriented programming:

Abstraction
Encapsulation
Inheritance
Polymorphism

Each of these concepts plays a significant role in VB .NET programming at one level or another.
Encapsulation and abstraction are "abstract" concepts providing motivation for object-oriented
programming. Inheritance and polymorphism are concepts that are directly implemented in VB .NET
programming.

3.2.1 Abstraction

Simply put, an abstraction is a view of an entity that includes only those aspects that are relevant for a
particular situation. For instance, suppose that we want to create a software component that provides
services for keeping a company's employee information. For this purpose, we begin by making a list of
the items relevant to our entity (an employee of the company). Some of these items are:

FullName
Address
EmployeelD
Salary
IncSalary
DecSalary

Note that we include not only properties of the entities in question, such as FullName, but also actions
that might be taken with respect to these entities, such as IncSalary, to increase an employee's salary.
Actions are also referred to as methods, operations, or behaviors. We will use the term methods, since
this term is used by VB .NET.

75

Of course, we would never think of including an 1Q property, since this would not be politically correct,
not to mention discriminatory and therefore possibly illegal. Nor would we include a property called
HairCount, which gives the number of hairs on the employee's right arm, because this information is of
absolutely no interest to us, even though it is part of every person's being.

In short, we have abstracted the concept of an employee—we have included only those properties
and methods of employees that are relevant to our needs. Once the abstraction is complete, we can
proceed to encapsulate these properties and methods within a software component.

3.2.2 Encapsulation

The idea of encapsulation is to contain (i.e., encapsulate) the properties and methods of an
abstraction, and expose only those portions that are absolutely necessary. Each property and method
of an abstraction is called a member of the abstraction. The set of exposed members of an abstraction
is referred to collectively as the public interface (or just interface) of the abstraction (or of the software
component that encapsulates the abstraction).

Encapsulation serves three useful purposes:

It permits the protection of these properties and methods from any outside tampering.

It allows the inclusion of validation code to help catch errors in the use of the public interface.
For instance, it permits us to prevent the client of the employee software component from
setting an employee's salary to a negative number.

It frees the user from having to know the details of how the properties and methods are
implemented.

Let us consider an example that involves the Visual Basic Integer data type, which is nicely
encapsulated for us by VB. As you undoubtedly know, an integer is stored in the memory of a PC as a
string of Os and 1s called a binary string. In Visual Basic, integers are interpreted in a form called
two's-complement representation, which permits the representation of both negative and non-negative
values.

For simplicity, let us consider 8-bit binary numbers. An 8-bit binary number has the form
a;asa584838,8,89, Where each of the a;s is a 0 or a 1. We can think of it as appearing in memory as

shown in Figure 3-1.

Figure 3-1. An 8-bit binary number
Ar| As| As| Ag| Ay | A | A [Ay

In the two's-complement representation, the leftmost bit, a; (called the most significant bit), is the sign
bit. If the sign bit is 1, the number is negative. If the sign bit is 0, the number is positive.

The formula for converting a two's-complement representation a;asasasasza,a;a, of a number to a
decimal representation is:

decimal rep. = -128a; + 64a¢ + 32as + 1l6a, + 8az + 4a, + 2a; + ag

To take the negative of a number when it is represented in two's-complement form, we must take the
complement of each bit (that is, change each 0 to a 1 and each 1 to a 0) and then add 1.

At this point you may be saying to yourself, "As a programmer, | don't have to worry about these
details. | just write code like:

-16
- X

<
11

76

and let the computer and the programming language worry about which representation to use and
how to perform the given operations."

This is precisely the point behind encapsulation. The details of how signed integers are interpreted by
the computer (and the compiler), as well as how their properties and operations are implemented, are
encapsulated in the integer data type itself and are thus hidden from us, the users of the data type.
Only those portions of the properties and operations that we need in order to work with integers are
exposed outside of the data type. These portions form the public interface for the Integer data type.

Moreover, encapsulation protects us from making errors. For instance, if we had to do our own
negating by taking Boolean complements and adding 1, we might forget to add 1! The encapsulated
data type takes care of this automatically.

Encapsulation has yet another important feature. Any code that is written using the exposed interface
remains valid even if the internal workings of the Integer data type are changed for some reason, as
long as the interface is not changed. For instance, if we move the code to a computer that stores
integers in one's-complement representation, then the internal procedure for implementing the
operation of negation in the integer data type will have to be changed. However, from the
programmer's point of view, nothing has changed. The code:

-16
- X

X
y

is just as valid as before.

3.2.3 Interfaces

As VB programmers, we must implement encapsulation through the use of software components. For
instance, we can create a software component to encapsulate the Employee abstraction discussed
earlier.

In VB .NET, the methods of an interface are realized as functions. On the other hand, a property, as
we see later in this chapter, is realized as a private variable that stores the property's value together
with a pair of public functions—one to set the variable and one to retrieve the variable. These functions
are sometimes referred to as accessor methods of the property. It is the set of exposed functions
(ordinary methods and accessor methods) that constitute the interface for an abstraction.

In general, a software component may encapsulate and expose more than one abstraction—hence,
more than one interface. For example, in a more realistic setting, we might want a software component
designed to model employees to encapsulate an interface called | | dent i fi cati on (the initial "I" is
for interface) that is used for identification purposes. This interface might have properties such as
Name, Social Security number, Driver's License number, Age, Birthmarks, and so on. Moreover, the
software component might also encapsulate an interface called IEducation for describing the
employee's educational background. Such an interface might implement properties such as Education
Level, Degrees, College Attended, and so on.

The interface of each abstraction exposed by a software component is also referred to as an interface
of the software component. Thus, the Employee component implements at least two interfaces:

I ldentificationandl| Educati on. Note, however, that the term interface is often used to refer to
the set of all exposed properties and methods of a software component, in which case a component
has only one interface.

Referring to our original Employee abstraction, its interface might consist of the functions shown in
Table 3-1. (Of course, this interface is vastly oversimplified, but it is more than sufficient to illustrate
the concepts.)

77

Table 3-1. Members of the Employee interface

Type Name
Property FullName: GetFullName(), SetFullName()
Property Address: GetAddress(), SetAddress()

Property EmployeelD: GetEmployeelD(), SetEmployeelD()
Property Salary: GetSalary(), SetSalary()

Method IncSalary()

Method DecSalary()

Using the term interface as a set of functions, while quite common, poses a problem. Just listing the
functions of the interface by name (as done previously) does not provide enough information to call
those functions. Thus, a more useful definition of interface would be the set of signatures of the public
functions of a software component.

To clarify this, let us discuss one of the most important distinctions in object-oriented programming—
the distinction between a function declaration and an implementation of that function.

By way of example, consider the following sorting function:

Function Sort(a() as Integer, 1Size as Integer) as Bool ean

For i = 1to iSize
For j = i+1 to iSize
If a(j) < a(i) Then swap a(i), a(j)
Next |
Next |

Sort = True
End Functi on

The first line in this definition:

Function Sort(a() as Integer, 1Size as Integer) as Bool ean

is the function declaration. It supplies information on the number and types of parameters and the
return type of the function. The body of the function:

For i = 1to iSize
For j =i+l to iSize
If a(j) < a(i) Then swap a(i), a(j)
Next |
Next i

Sort = True

represents the implementation of the function. It describes how the function carries out its intended
purpose.

Note that it is possible to alter the implementation of the function without changing the declaration. In
fact, the current function implementation sorts the array a using a simple selection-sort algorithm, but
we could replace that sorting method with any one of a number of other methods (bubble sort,
insertion sort, quick sort, and so on).

Now consider a client of the Sort function. The client only needs to know the function declaration in
order to use the function. It need not know (and probably doesn't want to know) anything about the
implementation. Thus, it is the function declaration, and not the implementation, that forms the
interface for the function.

78

The signature of a function is the function name and return type, as well as the names, order, and
types of its parameters. A function declaration is simply a clear way of describing the function's
signature. Note that Microsoft does not consider the return type of a function to be part of the

function's signature. By signature, they mean what is generally termed the function's argument
signature. The reasons for doing this become clearer later in the chapter when we discuss overloading,
although it would have been better (as usual) if they were more careful with their terminology.

Under this more specific definition of interface, the interface for our employee component might be as
follows (in part):

Function Get Ful | Name(| Enpl D As Long) As String
Sub Set Ful | Nanme(| Enpl D As Long, sNane As String)

Sub I ncSal ary(sngPercent As Single)
Sub DecSal ary(sngPercent As Single)

3.3 Classes and Objects

Generally speaking, a class is a software component that defines and implements one or more
interfaces. (Strictly speaking, a class need not implement all the members of an interface. We discuss
this later when we talk about abstract members.) In different terms, a class combines data, functions,
and types into a new type. Microsoft uses the term type to include classes.

3.3.1 Class Modules in VB .NET

Under Visual Studio.NET, a VB class module is inserted into a project using the Add Class menu item
on the Project menu. This inserts a new module containing the code:

Public Cl ass Cl assNanme

End C ass

Although Visual Studio stores each class in a separate file, this isn't a requirement. It is the

Cl ass...End Cl ass construct that marks the beginning and end of a class definition. Thus, the code
for more than one class as well as one or more code modules (which are similarly delimited by the
Mbdul e...End Mbdul e construct) can be contained in a single source code file.

The CPerson class defined in the next section is an example of a VB class module.

3.3.2 Class Members

In VB .NET, class modules can contain the following types of members:
Data members

This includes member variables (also called fields) and constants.
Event members

Events are procedures that are called automatically by the Common Language Runtime in
response to some action that occurs, such as an object being created, a button being clicked,
a piece of data being changed, or an object going out of scope.

Function members

79

This refers to both functions and subroutines. A function member is also called a method. A
class' constructor is a special type of method. We discuss constructors in detail later in this
chapter.

Property members

A property member is implemented as a Private member variable together with a special type
of VB function that incorporates both accessor functions of the property. We discuss the
syntax of this special property function in Section 3.3.5 later in the chapter.

Type members
A class member can be another class, which is then referred to as a nested class.
The following CPerson class illustrates some of the types of members:

Public Cl ass CPerson

1

' Data Menbers

1

' Menber vari abl es
Private msName As String
Private m Age As |nteger

' Menber constant
Publ i c Const MAXAGE As Short = 120

" Menber event
Public Event Testing()

" Function Menbers

' Met hod
Public Sub Test()
Rai seEvent Testing()

End Sub
Property Age() As Integer
Get
Age = ni Age
End Get

Set (ByVal Val ue As | nteger)
' Some validation
If Value < 0 Then
MsgBox(" Age cannot be negative.")

El se
m Age = Val ue
End |f
End Set

End Property
" Property
Property Nane() As String
' Accessors for the property
Get
Name = nmsNane

80

End Get
Set (ByVal Value As String)
nmsNane = Val ue
End Set
End Property

Over | oaded constructor
Overl oads Sub New()

End Sub

Constructor that initializes nane
Over | oads Sub New(ByVal sNewNane As String)
nmsNane = sNewNane
End Sub

Sub Di spose()
' Code here to clean up
End Sub

End C ass

3.3.3 The Public Interface of a VB .NET Class

We have seen that, when speaking in general object-oriented terms, the exposed members of a
software component constitute the component's public interface (or just interface). Now, in VB .NET,
each member of a class module has an access type, which may be Publ i c, Privat e, Friend,
Protect ed, or Prot ect ed Fri end. We discuss each of these in detail later in this chapter. Suffice it
to say, a VB .NET class module may accordingly have Publ i c, Privat e, Fri end, Prot ect ed, and
Prot ect ed Fri end members.

Thus, we face some ambiguity in defining the concept of the public interface of a VB .NET class. The
spirit of the term might indicate that we should consider any member that is exposed outside of the
class itself as part of the public interface of the class. This would include the Pr ot ect ed, Fri end,

and Pr ot ect ed Friend members, as well as the Publ i ¢ members. On the other hand, some might
argue that the members of the public interface must be exposed outside of the project in which the
class resides, in which case only the Publ i ¢ members would be included in the interface. Fortunately,
we need not make too much fuss over the issue of what exactly constitutes a VB .NET class' public
interface, as long as we remain aware that the term may be used differently by different people.

3.3.4 Objects

A class is just a description of some properties and methods and does not have a life of its own (with
the exception of shared members, which we discuss later). In general, to execute the methods and
use the properties of a class, we must create an instance of the class, officially known as an object.
Creating an instance of a class is referred to as instancing, or instantiating, theclass.

There are three ways to instantiate an object of a VB .NET class. One method is to declare a variable
of the class' type:

Di m APerson As CPerson
and then instantiate the object using the New keyword as follows:
APerson = New CPerson()

We can combine these two steps as follows:

81

Di m APerson As New CPerson()
or:
Di m APerson As CPerson = New CPerson()

The first syntax is considered shorthand for the second.

3.3.5 Properties

Properties are members that can be implemented in two different ways. In its simplest implementation,
a property is just a public variable, as in:

Public Cl ass CPerson
Public Age As | nteger

End Cl ass

The problem with this implementation of the Age property is that it violates the principle of
encapsulation; anyone who has access to a CPerson object can set its Age property to any Integer
value, even negative integers, which are not valid ages. In short, there is no opportunity for data
validation. (Moreover, this implementation of a property does not permit its inclusion in the public
interface of the class, as we have defined that term.)

The "proper" object-oriented way to implement a property is to use a Private data member along with a
special pair of function members. The Private data member holds the property value; the pair of
function members, called accessors, are used to get and set the property value. This promotes data
encapsulation, since we can restrict access to the property via code in the accessor functions, which
can contain code to validate the data. The following code implements the Age property.

Private m Age As I|nteger

Property Age() As Integer

Get

Age = m Age
End Get
Set (ByVal Val ue As I nteger)

Sorre validation
If Value < 0 Then
MsgBox(" Age cannot be negative.")

El se
m Age = Val ue
End | f
End Set

End Property

As you can see from the previous code, VB has a special syntax for defining the property accessors.
As soon as we finish typing the line:

Property Age() As Integer
the VB IDE automatically creates the following template:

Property Age() As Integer
Cet

82

End Get
Set (ByVal Val ue As Integer)

End Set
End Property

Note the VVal ue parameter that provides access to the incoming value. Thus, if we write:

Dimcp As New CPerson()
cp. Age = 20

then VB passes the value 20 into the Property procedure in the VVal ue argument.

3.3.6 Instance and Shared Members
The members of a class fall into two categories:
Instance members

Members that can only be accessed through an instance of the class, that is, through an
object of the class. To put it another way, instance members "belong" to an individual object
rather than to the class as a whole.

Shared (static) members

Members that can be accessed without creating an instance of the class. These members are
shared among all instances of the class. More correctly, they are independent of any particular
object of the class. To put it another way, shared members "belong" to the class as a whole,
rather than to its individual objects or instances.

Instance members are accessed by qualifying the member name with the object's name. Here is an
example:

Di m APerson As New CPerson()
APer son. Age = 50

To access a shared member, we simply qualify the member with the class name. For instance, the
String class in the System namespace of the .NET Base Class Library has a shared method called
Compare that compares two strings. Its syntax (in one form) is:

Public Shared Function Conpare(String, String) As Integer

This function returns O if the strings are equal, -1 if the first string is less than the second, and 1 if the
first string is greater than the second. Since the method is shared, we can write:

Dms As String = "steve"
Dmt As String = "donna"
MsgBox(String. Conpare(s, t)) " Displays 1

Note the way the Compare method is qualified with the name of the String class.

Shared members are useful for keeping track of data that is independent of any particular instance of
the class. For instance, suppose we want to keep track of the number of CPerson objects in existence
at any given time. Then we write code such as the following:

Declare a Private shared variable to hold the instance count

83

Private Shared m I nstanceCount As I nteger

I ncrenment the count in the constructor
(I'f there are additional constructors,
this code nust be added to all of them)

Sub new()
m I nstanceCount += 1
End Sub

Supply a function to retrieve the instance count
Shared Function GetlnstanceCount() As Integer
Return m | nst anceCount
End Function

Decrenent the count in the destructor
Overrides Protected Sub Finalize()

m I nstanceCount -= 1
MyBase. Fi nal i ze
End Sub

Now, code such as the following accesses the shared variable:

Dim steve As New CPerson()

MsgBox(CPer son. Get | nst anceCount) ' Displays 1
Di m donna As New CPerson()
MsgBox(CPer son. CGet | nst anceCount) ' Displays 2

3.3.7 Class Constructors

When an object of a particular class is created, the compiler calls a special function called the class’
constructor or instance constructor. Constructors can be used to initialize an object when necessary.
(Constructors take the place of the Class_Initialize event in earlier versions of VB.)

We can define constructors in a class module. However, if we choose not to define a constructor, VB
uses a default constructor. For instance, the line:

Di m APerson As CPerson = New CPerson()

invokes the default constructor of our CPerson class simply because we have not defined a custom
constructor.

To define a custom constructor, we just define a subroutine named New within the class module. For
instance, suppose we want to set the Name property to a specified value when a CPerson object is
first created. Then we can add the following code to the CPerson class:

Cust om construct or
Sub New(ByVal sName As String)
Me. Nane = sNane
End Sub

Now we can create a CPerson object and set its name as follows:
Di m APerson As CPerson = New CPerson("fred")
or:

Di m APerson As New CPerson("fred")

Note that because VB .NET supports function overloading (discussed later in this chapter), we can
define multiple constructors in a single class, provided each constructor has a unique argument
signature. We can then invoke any of the custom constructors simply by supplying the correct number
and type of arguments for that constructor.

Note also that once we define one or more custom constructors, we can no longer invoke the default
(that is, parameterless) constructor with a statement such as:

Di m APerson As New CPerson()

Instead, to call a parameterless constructor, we must specifically add the constructor to the class
module:

Default constructor
Sub New()

End Sub
3.3.8 Finalize, Dispose, and Garbage Collection

In VB 6, a programmer can implement the Class_Terminate event to perform any clean up procedures
before an object is destroyed. For instance, if an object held a reference to an open file, it might be
important to close the file before destroying the object itself.

In VB .NET, the Terminate event no longer exists, and things are handled quite differently. To
understand the issues involved, we must first discuss garbage collection.

When the garbage collector determines that an object is no longer needed (which it does, for instance,
when the running program no longer holds a reference to the object), it automatically runs a special
destructor method called Finalize. However, it is important to understand that, unlike with the
Class_Terminate event, we have no way to determine exactly when the garbage collector will call the
Finalize method. We can only be sure that it will be called at some time after the last reference to the
object is released. Any delay is due to the fact that the .NET Framework uses a system called
reference-tracing garbage collection, which periodically releases unused resources.

Finalize is a Protected method. That is, it can be called from a class and its derived classes, but it is
not callable from outside the class, including by clients of the class. (In fact, since the Finalize
destructor is automatically called by the garbage collector, a class should never call its own Finalize
method directly.) If a class' Finalize method is present, then it should explicitly call its base class'
Finalize method as well. Hence, the general syntax and format of the Finalize method is:

Overrides Protected Sub Finalize()
Cl eanup code goes here
MyBase. Fi nal i ze
End Sub

The benefits of garbage collection are that it is automatic and it ensures that unused resources are
always released without any specific interaction on the part of the programmer. However, it has the
disadvantages that garbage collection cannot be initiated directly by application code and some
resources may remain in use longer than necessary. Thus, in simple terms, we cannot destroy objects
on cue.

We should note that not all resources are managed by the Common Language Runtime. These
resources, such as Windows handles and database connections, are thus not subject to garbage
collection without specifically including code to release the resources within the Finalize method. But,
as we have seen, this approach does not allow us or clients of our class to release resources on

85

demand. For this purpose, the Base Class Library defines a second destructor called Dispose. Its
general syntax and usage is:

Cl ass cl assnane
| mpl emrent s | Di sposabl e

Public Sub Di spose() Inplenments |D sposable. D spose

cl eanup code goes here

call child objects' Dispose nethods, if necessary, here
End Sub

O her cl ass code

End Cl ass

Note that classes that support this callable destructor must implement the | Di sposabl e interface—
hence the | mpl enent s statement just shown. | Di sposabl e has just one member, the Dispose
method.

It is important to note that it is necessary to inform any clients of the class that they must call this
method specifically in order to release resources. (The technical term for this is the manual approach!)

3.4 Inheritance
Perhaps the best way to describe inheritance as it is used in VB .NET is to begin with an example.

The classes in a given application often have relationships to one another. Consider, for instance, our
Employee information application. The Employee objects in the class CEmployee represent the
general aspects common to all employees—name, address, salary, and so on.

Of course, the executives of the company will have different perquisites than, say, the secretaries. So
it is reasonable to define additional classes named CExecutive and CSecretary, each with properties
and methods of its own. On the other hand, an executive is also an employee, and there is no reason
to define different Name properties in the two cases. This would be inefficient and wasteful.

This situation is precisely what inheritance is designed for. First, we define the CEmployee class,
which implements a Salary property and an IncSalary method:

Enpl oyee cl ass
Publ i c Cl ass CEnpl oyee
Sal ary property is read/wite
Private ndecSal ary As Deci nal
Property Salary() As Deci nal
Get
Sal ary = ndecSal ary
End Get
Set
ndecSal ary = Val ue
End Set
End Property
Public Overridable Sub IncSal ary(ByVal sngPercent As Single)
ndecSal ary = ndecSalary * (1 + CDec(sngPercent))
End Sub
End C ass

Next, we define the CExecutive class:

Executive Cl ass

86

Public C ass CExecutive
I nherits CEnpl oyee
" Calculate salary increase based on 5% car all owance as wel |
Overrides Sub IncSal ary(ByVal sngPercent As Single)
Me. Salary = Me. Salary * CDec(1l.05 + sngPercent)
End Sub
End d ass

There are two things to note here. First, the line:
I nherits CEnpl oyee

indicates that the CExecutive class inherits the members of the CEmployee class. Put another way, an
object of type CExecutive is also an object of type CEmployee. Thus, if we define an object of type
CExecutive:

Dim ceo As New CExecutive

then we can invoke the Salary property, as in:

ceo. Sal ary = 1000000

Second, the keyword Over ri des in the IncSalary method means that the implementation of IncSalary
in CExecutive is called instead of the implementation in CEmployee. Thus, the code:

ceo. I ncSal ary

raises the salary of the CExecutive object ceo based on a car allowance. Note also the presence of
the Overri dabl e keyword in the definition of IncSalary in the CEmployee class, which specifies that
the class inheriting from a base class is allowed to override the method of the base class.

Next, we define the CSecretary class, which also inherits from CEmployee but implements a different
salary increase for secretary objects:

Secretary C ass
Public C ass CSecretary
| nherits CEnpl oyee
' Secretaries get a 2% overtinme all owance
Overrides Sub IncSal ary(ByVal sngPercent As Single)
Me. Salary = Me. Salary * CDec(1l.02 + sngPercent)
End Sub
End d ass

We can now write code to exercise these classes:

Defi ne new objects

Di m ThePresi dent As New CExecutive()
Dim MySecretary As New CSecretary()
' Set the salaries

ThePresi dent. Sal ary = 1000000
MySecretary. Sal ary = 30000

' Set Enployee to President and inc salary

Debug. Witeline("Pres before: " & CStr(ThePresident. Sal ary))
ThePr esi dent. | ncSal ary(0. 4)

Debug. WiteLine("Pres after: " & CStr(ThePresident. Sal ary))

87

Debug. Witeline("Sec before: " & CStr(MSecretary. Sal ary))
MySecretary. | ncSal ary(0. 3)
Debug. Witeline("Sec after: " & CStr(M/Secretary. Sal ary))

The output in this case is:

Pres before: 1000000
Pres after: 1450000
Sec before: 30000
Sec after: 39600

The notion of inheritance is quite simple, as put forth in Microsoft's documentation:

If Class B inherits from Class A, then any object of Class B is also an object of Class A and so
includes the public properties and methods (that is, the public interface) of Class A. In this case, Class
A is called the base class and Class B is called the derived class. On the other hand, in general, the
derived class can override the implementation of a member of the base class for its own use.

We have seen in the previous example that inheritance is implemented using the | nher i t s keyword.

3.4.1 Permission to Inherit

There are two keywords used in the base class definition that affect the ability to inherit from a base
class:

NotInheritable
When this is used to define a class, as in:
Public Notlnheritable C ass InterfaceExanple
the class cannot be used as a base class.
Mustinherit
When this is used to define a class, as in:
Public Miustlnherit Cl ass |InterfaceExanple

objects of this class cannot be created directly. Objects of a derived class can be created,
however. In other words, Must | nher it classes can be used as base classes and only as
base classes.

3.4.2 Overriding

There are several keywords that control whether a derived class can override an implementation in the
base class. These keywords are used in the declaration of the member in question, rather than in the
class definition:

Overridable

Allows but does not require a member to be overridden. Note that the default for a Publ i ¢
member is Not Over ri dabl e. Here is an example:

Public Overridable Sub IncSalary()

88

NotOverridable
Prohibits overriding of the member. This is the default for Publ i ¢ members of a class.
MustOverride

Must be overridden. When this keyword is used, the member definition is restricted to just the
declaration line, with no implementation and no End Sub or End Funct i on line. For example:

Public MustOverride Sub IncSalary()

Note also that when a class module contains a Must Over ri de member, then the class itself
must be declared as Vust | nherit.

Overrides

Unlike the other modifiers, this modifier belongs in the derived class and indicates that the
modified member is overriding a base class member. For example:

Overrides Sub IncSalary()

3.4.3 Rules of Inheritance

In many object-oriented languages, such as C++, a class can inherit directly from more than one base
class. This is referred to as multiple inheritance . VB .NET does not support multiple inheritance, and
so0 a class can inherit directly from at most one other class. Thus, code such as the following is not
permitted:

Executive C ass
Public Cl ass CExecutive "| NVALI D
I nherits CEnpl oyee
| nherits CWrker
End d ass
On the other hand, Class C can inherit from Class B, which, in turn, can inherit from Class A, thus

forming an inheritance hierarchy. Note also that a class can implement multiple interfaces through the
I nt er f ace keyword. We discuss this issue later in this chapter.

3.4.4 MyBase, MyClass, and Me

The keyword My Base provides a reference to the base class from within a derived class. If you want to
call a member of the base class from within a derived class, you can use the syntax:

MyBase. Menber Nane

where Menber Namne is the name of the member. This will resolve any ambiguity if the derived class
also has a member of the same name.

The MyBase keyword can be used to call the constructor of the base class in order to instantiate a
member of that class, as in:

MyBase. New(. . .)

Note that MyBase cannot be used to call Pri vat e class members.

89

Visual Basic looks for the most immediate version in parent classes of the procedure in question. Thus,
if Class C derives from Class B, which derives from Class A, a call in Class C to:

MyBase. AProc

first looks in Class B for a matching procedure named AProc. If none is found, then VB looks in Class
A for a matching procedure. (By matching, we mean a method with the same argument signature.)

The keyword My Cl ass provides a reference to the class in which the keyword is used. It is similar to
the Ve keyword, except when used to call a method. To illustrate the difference, consider a class
named Class1 and a derived class named Class1Derived. Note that each class has an IncSalary
method:

Public C ass C assl

Public Overridabl e Function IncSal ary(ByVal sSalary As Single)
As Single
IncSalary = sSalary * CSng(1l.1)
End Function

Public Sub Showl ncSal ary(ByVal sSalary As Single)
MsgBox(Me. I ncSal ary(sSal ary))
MsgBox(MyCl ass. I ncSal ary(sSal ary))

End Sub

End C ass
Public Class C asslDerived
Inherits Cl assl
Public Overrides Function IncSal ary(ByVal sSalary As Single)
As Single
IncSalary = sSalary * CSng(1l.2)

End Functi on
End Cl ass

Now consider the following code, placed in a form module:

Dmcl As New O assl()
Dimc2 As New C asslDerived()

Dimclvar As C assl

clvar = cl
clvar.lncSal ary(10000) ' Shows 11000, 11000

clvar = c2
clvar.lncSal ary(10000) ' Shows 12000, 11000

The first call to IncSalary is made using a variable of type Class1 that refers to an object of type
Classl. In this case, both of the following calls:

Me. | ncSal ary
MyCl ass. I ncSal ary

return the same value, because they both call IncSalary in the base class Class1.

90

However, in the second case, the variable of type Class1 holds a reference to an object of the derived
class, Class1Derived. In this case, Ve refers to an object of type Class1Derived, whereas MyCl ass
still refers to the base class Class1 wherein the keyword My Cl ass appears. Thus,

Me. I ncSal ary

returns 12000 whereas the following:

MyCl ass. | ncSal ary

returns 10000.

3.5 Interfaces, Abstract Members, and Classes

We have alluded to the fact that a class may implement all, some, or none of the members of the
interfaces that it defines. Any interface member that does not have an implementation is referred to as
an abstract member. The purpose of an abstract member is to provide a member signature (a
template, if you will) that can be implemented by one or more derived classes, generally in different
ways.

Let us clarify this with an example. Recall from our discussion of inheritance that the CEmployee class
defines and implements an IncSalary method that increments the salary of an employee. Recall also
that the CExecutive and CSecretary derived classes override the implementation of the IncSalary
method in the base class CEmployee.

Suppose that, in a more complete employee model, there is a derived class for every type of
employee. Moreover, each of these derived classes overrides the implementation of the IncSalary
method in the base class CEmployee. In this case, the implementation of IncSalary in the base class
will never need to be called! So why bother to give the member an implementation that will never be
used?

Instead, we can simply provide an empty IncSalary method, as shown here:

Empl oyee cl ass
Public C ass CEnpl oyee

Public Overridable Sub IncSal ary(ByVal sngPercent As Single)
End Sub

End C ass

Alternatively, if we want to require that all derived classes implement the IncSalary method, we can
use the Must Overri de keyword, as shown here:

Empl oyee cl ass
Public Mustinherit C ass CEnpl oyee

Public MiustOverride Sub IncSal ary(ByVal sngPercent As Single)

End C ass

As mentioned earlier, when using Must Over ri de, there is no End Sub statement associated with the
method. Note also that when using the Must Over r i de keyword, Microsoft requires that the class be

91

declared with the Must | nheri t keyword. This specifies that we cannot create objects of type
CEmployee.

In each of the previous cases, the IncSalary member of the base class CEmployee is an abstract
member.

Any class that contains at least one abstract member is termed an abstract class. (Thus, the
CEmployee class as defined earlier is an abstract class.) This terminology comes from the fact that it
is not possible to create an object from an abstract class because at least one of the object's methods
would not have an implementation.

There are also situations where we might want to define a class in which all members are abstract. In
other words, this is a class that only defines an interface. We might refer to such a class as a pure
abstract class, although this terminology is not standard.

For example, imagine a Shape class called CShape that is designed to model the general properties
and actions of geometric shapes (ellipses, rectangles, trapezoids, etc.). All shapes need a Draw
method, but the implementation of the method varies depending on the type of shape—circles are
drawn quite differently than rectangles, for example. Similarly, we want to include methods called
Rotate, Translate, and Reflect, but, as with the Draw method, each of these methods require a
different implementation based on the type of shape.

Thus, we can define the CShape class in either of the following ways:

Public C ass C ass?

Public Overridable Sub Draw)
End Sub

Public Overridabl e Sub Rotate(ByVal sngDegrees As Single)
End Sub

Public Overridable Sub Transl ate(ByVal x As Integer,
ByvVal y As Integer)
End Sub

Public Overridable Sub Reflect(ByVal iSlope As |Integer, _
ByVal ilntercept As |nteger)
End Sub

End Cl ass

or:

Public Mustlnherit C ass CShape

Public Must Override Sub Draw()
Public Must Override Sub Rotate(ByVal sngDegrees As Single)
Public Must Override Sub Transl ate(ByVal x As Integer,
ByvVal y As Integer)
Public Must Override Sub Reflect(ByVal iSlope As Integer, _
ByVal ilntercept As |nteger)

End Cl ass

Now we can define derived classes such as CRectangle, CEllipse, CPolygon, and so on. Each of
these derived classes will (or must, in the latter case) implement the members of the base class
CShape. (We won't go into the details of such an implementation here, since it is not relevant to our
discussion.)

92

3.5.1 Interfaces Revisited

We have seen that interfaces can be defined in class modules. VB .NET also supports an additional
method of defining an interface, using the | nt er f ace keyword. The following example defines the
IShape interface:

Public Interface | Shape
Sub Draw()
Sub Rot at e(ByVal sngDegrees As Single)
Sub Transl ate(ByVal x As Integer, ByVal y As |nteger)
Sub Refl ect(ByVal iSlope As Integer, _
ByVal ilntercept As Integer)
End Interface

Note that we cannot implement any of the members of an interface defined using the | nt er f ace
keyword, that is, not within the module in which the interface is defined. However, we can implement
the interface using an ordinary class module. Note the use of the | npl enent s statement (which was
also available in VB 6, but could be applied only to external interfaces):

Public C ass CRectangl e

| mpl ement the interface | Shape
| mpl ement s | Shape

Public Overridable Sub Draw() Inplenents | Shape. Draw
code to inplenment Draw for rectangles
End Sub

Public Overridable Sub Spin() Inplenents | Shape. Rotate
code to inplenment Rotate for rectangles
End Sub

End d ass

Note also the use of the | npl enent s keyword in each function that implements an interface member.
This keyword allows us to give the implementing function any name—it does not need to match the
name of the method (see the Spin method earlier in this section, which implements the | Shape
interface's Rotate method). However, it is probably less confusing (and better programming practice)
to use the same name.

The main advantage of using the | npl enent s keyword approach to defining an interface is that a
single class can implement multiple interfaces, whereas VB .NET does not permit a single class to
inherit directly from multiple base classes. On the other hand, the main disadvantage of the

I nt er f ace keyword approach is that no implementation is possible in the module that defines the
interface. Thus, all interface members must be implemented in every class that implements the
interface. This can mean code repetition if an interface member has the same implementation in more
than one implementing class.

3.6 Polymorphism and Overloading

Fortunately, we don't need to go into the details of polymorphism and overloading, which is just as well,
because they tend to be both confusing and ambiguous. For instance, some computer scientists say
that overloading is a form of polymorphism, whereas others say it is not. We will discuss only those
issues that are directly relevant to the .NET Framework.

3.6.1 Overloading

93

Overloading refers to an item being used in more than one way. Operator names are often overloaded.
For instance, the plus sign (+) refers to addition of integers, addition of singles, addition of doubles,
and concatenation of strings. Thus, the plus symbol (+) is overloaded. It's a good thing, too; otherwise,
we would need separate symbols for adding integers, singles, and doubles.

Function names can also be overloaded. For instance, the absolute value function, Abs, can take an
integer parameter, a single parameter, or a double parameter. Because the name Abs represents
several different functions, it is overloaded. In fact, if you look at the documentation for the Abs
member of the Math class (in the system namespace of the Base Class Library), you will find the
following declarations, showing the different functions using the Abs name:

Over | oads Pub
Over | oads Pub
Over| oads Pub
Over| oads Pub
Over| oads Pub
Over | oads Pub
Over | oads Pub

Shared Function Abs(Decimal) As Deci mal
Shar ed Functi on Abs(Doubl e) As Doubl e
Shared Function Abs(Integer) As Short
Shared Function Abs(Integer) As I|nteger
Shared Function Abs(Long) As Long
Shared Function Abs(SByte) As SByte
Shared Function Abs(Single) As Single

OO0 000O0

Note the use of the Over | oads keyword, which tells VB that this function is overloaded.

Specifically, a function name is overloaded when two defined functions use the same name but have
different argument signatures. For instance, consider a function that retrieves a current account
balance. The account could be identified either by the person’'s name or by the account number. Thus,
we might define two functions, each called GetBalance:

Over | oads Function CetBal ance(sCustNanme As String) As Deci nal
Over | oads Function CetBal ance(sAccount Nunber As Long) As Deci nal

Note also that VB .NET permits function overloading only because the argument signatures of the two
functions are different, so that no ambiguity can arise. The function calls:

Get Bal ance("John Snith")
Get Bal ance(123456)

are resolved by the compiler without difficulty, based on the data type of the argument. This type of
overloading is often referred to as overloading the function GetBalance. On the other hand, there are
two different functions here, so it seems more appropriate to say that the function name is being
overloaded. Overloading is very common and not exclusive to object-oriented programming.

3.6.2 Polymorphism

The term polymorphism means having or passing through many different forms. In the .NET
Framework, polymorphism is tied directly to inheritance. Again, let us consider our Employee example.
The function IncSalary is defined in three classes: the base class CEmployee and the derived classes
CExecutive and CSecretary. Thus, the IncSalary function takes on three forms. This is polymorphism,
VB .NET style.

In case you are interested, many computer scientists would not consider this to be polymorphism.
They would argue that the function IncSalary takes on only one form. It is the implementation that
differs, not the function. They would refer to the situation described here for IncSalary as function
overloading. The main point here is that there is a lot of confusion as to how Microsoft and others use
the terms overloading and polymorphism, so you should be on guard when reading documentation.

94

3.7 Scope and Accessibility in Class Modules

The notion of scope in class modules is more involved than it is in standard modules. As far as local
variables (block-level and procedure-level) are concerned, there is no difference—we have block
scope and procedure-level scope.

However, variables declared in the Declarations section of a class module can be assigned one of the
following access modifiers:

Public

Private

Fri end

Pr ot ect ed

Pr ot ect ed Fri end

(For standard modules, only Publ i ¢, Pri vat e, and Fri end are allowed.)

Note that class modules themselves can be declared with any one of the three access modifiers:
Public, Private,orFriend(Protectedis notallowed). When a class module declaration
specifies one of these access modifiers, this simply restricts all of its members to that level of access,
unless a member's access is further restricted by the access modifier on the member declaration itself.
For instance, if the class has Fr i end access, no member can have Publ i ¢ access. (Put another way,
the Publ i ¢ access is overridden by the Fri end class access.)

On the other hand, all four access modifiers apply to members of the class module?that is, to variable,
constant, enum, and procedure declarations within the class module.

The complications come because there are actually three types of access to a class member, and
these generally have different scopes. To clarify, let's make the following definitions, which are not
standard but descriptive. For example, consider a variable declaration in the Declaration section of a
class module named Class1:

AccessModi fier classvariable As |Integer

This variable can be accessed in the following ways:

Direct access
Refers to accessing the member without any qualification, as in:
cl assvariable = 100

When attempting to access a variable using direct access (that is, without qualification), the
variable's scope takes one of three forms:

The declaring class only
The declaring class and its derived classes within the declaring project only

The declaring class and its derived classes, in any project that holds a reference to
the declaring project

Class/object access

Refers to accessing the member through qualification, either with the class name or the name
of an object of that class.

95

As we have discussed, if a member variable is declared using the Shar ed keyword, then it is
shared by all objects in the class. More accurately, the member exists independently of any
object of the class. In this case, the member can be accessed (within its scope) through
qualification by the class name, as in:

Cl assl.cl assvariable = 100

Note that the member can also be accessed through qualification by an object name, but this
has the same effect as access through qualification by the class hame—there is only one copy
of the member.

If the member is declared without using the Shar ed keyword, then class/object access refers
to accessibility through qualification by the name of an existing object, as in:

Dimc As New Cl assl
c.classvariable = 100

The scope for class/object access can be one of the following:

The declaring class only

The declaring project

The declaring project and any external software component that holds a reference to
the declaring project

Table 3-2 describes the effects of the various access modifiers.

Table 3-2. Access modifiers in class modules

Direct-access scope Class/object scope
Private Declaring class Declaring class
Protected All derived classes Declaring class
Friend Derived in-project classes Declaring project
Protected Friend All derived classes Declaring project
Public All derived classes All projects

Unfortunately, it does not seem possible to make a simple statement about the effect of the access
modifiers Fri end and Pr ot ect ed independently. It would have been much clearer to have separate
sets of access modifiers for direct-access scope and class/object scope, instead of intertwining the
concepts as shown in Table 3-2. Oh well.

96

Chapter 4. The .NET Framework: General Concepts

In this chapter, we discuss some of the main concepts in the .NET Framework. This is intended as a
general overview, just to give you the "lay of the .NET land," so to speak. For more information, see
Thuan Thai and Hoang Q. Lam's .NET Framework Essentials (O'Reilly, 2001).

4.1 Namespaces

The notion of a namespace plays a fundamental role in the .NET Framework. In general, a
namespace is a logical grouping of types for the purpose of identification. For example, imagine that in
a certain business there is an executive named John Smith, a secretary named John Smith, and a
custodian named John Smith.

In this case, the name John Smith is ambiguous. When the paymaster stands on a table and calls out
the names of people to receive their pay checks, the executive John Smith won't be happy if he rushes
to the table when the paymaster calls out his name and the envelope contains the custodian John
Smith's pay check.

To resolve the naming ambiguity, the business can simply define three namespaces: Executive,
Secretarial, and Custodial. Now the three individuals can be unambiguously referred to by their fully
qualified names:

Executive.John Smith
Secretarial.John Smith
Custodial.John Smith

The .NET Framework Class Library (FCL), which we look at in more detail in Chapter 5, consists of
several thousand classes and other types (such as interfaces, structures, and enumerations) that are
divided into over 90 namespaces. These namespaces provide basic system services, such as:

Basic and advanced data types and exception handling (the System namespace)

Data access (the System.Data namespace)

User-interface elements for standard Windows applications (the System.Windows.Forms
namespace)

User-interface elements for web applications (the System.Web.Ul hamespace)

In fact, the VB .NET language itself is implemented as a set of classes belonging to the
Microsoft.VisualBasic namespace. (The C# and JScript languages are also implemented as a set of
classes in corresponding namespaces.)

For information on accessing the members of a namespace, see Section 4.5 later in this chapter.

Namespaces are not necessarily unigue to the Framework Class Library; you can also create your
own namespaces by using the Nanespace statement at the beginning of a code file.

4.2 Common Language Runtime (CLR), Managed Code, and Managed
Data

The Common Language Runtime (CLR) is an environment that manages code execution and provides
application-development services. Compilers such as VB .NET expose the CLR's functionality to
enable developers to create applications. Code that is created under this environment is called
managed code . Note that COM components are not managed code, although they (as well as other
unmanaged code) can be used in applications that are built under the CLR.

97

The output of a compiler includes metadata, which is information that describes the objects that are
part of an application, such as:

Data types and their dependencies

Objects and their members

References to required components

Information (including versioning information) about components and resources that were
used to build the application

Metadata is used by the CLR to do such things as:

Manage memory allocations

Locate and load class instances

Manage object references and perform garbage collection

Resolve method invocations

Generate native code

Make sure that the application has the correct versions of hecessary components and
resources

Enforce security

The metadata in a compiled software component makes the component self-describing. This implies
that components, even those written in another language, can interact with the given component
directly.

Objects that are managed by the CLR are referred to as managed data. (It is also possible to use
unmanaged data in applications.)

4.3 Managed Execution

Managed execution is the name given for the process of creating applications under the .NET
Framework. The steps involved are as follows:

1. Write code using one or more .NET compilers. Note that for software components to be
useable by components that are written in other languages, these components must be written
using only language features that are part of the Common Language Specification (CLS).

2. Compile the code. The compiler translates source code to Microsoft Intermediate Language
(MSIL) and generates the necessary metadata for the application.

3. Run the code. When code is executed, the MSIL is compiled into native code (which is CPU-
specific code that runs on the same computer architecture as the compiler) by a Just In Time
(JIT) compiler. If required, the JIT checks the code for type safety. If the type-safety check fails,
an exception is thrown.

Code that cannot access invalid memory addresses or perform other illegal operations that may result
in an application crash is called type-safe code. Code that is verified to be type-safe by the JIT is
called verifiably type-safe code. Due to limitations in the verification process, code can be type-safe
and yet not be verifiably type-safe.

4.4 Assemblies

The purpose of an assembly is to specify a logical unit, or building block, for .NET applications that
encapsulate certain properties.

The term assembly refers to both a logical construct and a set of physical files. To draw an analogy on
the logical side, we might use the term neighborhood to refer to a zip code, a neighborhood name, and
a list of street addresses. On the physical side, a neighborhood consists of the actual houses that are

98

located at those addresses. Thus, we can speak of physically moving (i.e., deploying) the
neighborhood.

A .NET application consists of one or more assemblies. Logically speaking, an assembly is just a set
of specifications. In particular:

An assembly specifies the (MSIL) code that is associated with the assembly. This code lies in
a Portable Executable (PE) file. (PE files are the traditional file types for Microsoft's code, but
the format is extended for .NET applications.)

An assembly specifies security permissions for itself, if any.

An assembly specifies a list of data types and provides scoping for those types. Every data
type in a .NET application must specify the assembly to which it belongs. The scoping
provided by an assembly means that different types may have the same name, as long as
they belong to different assemblies and can therefore be distinguished by means of the
assembly to which they belong. Microsoft refers to this by saying that an assembly provides
atype boundary.

An assembly specifies rules for resolving external types and external references, including
references to other assemblies. In this way, assemblies form a reference scope boundary.
Included in this information are any version dependencies for the external references.

An assembly specifies which of its parts are exposed outside the assembly and which are
private to the assembly itself.

In addition to these specifications listed, an assembly is an object (or logical unit) that possesses
certain properties:

An assembly has version properties. This includes a major and minor version number, as well
as a revision and build number. Indeed, an assembly is the smallest unit that has versioning
properties. Put another way, all elements of an assembly (types and resources) are versioned
as a unit—they are assigned the version numbers of the assembly to which they belong. In
other words, an assembly is a versioning unit.

An assembly forms a deployment unit. More specifically, at any given time, a .NET application
only needs access to the assemblies that specify the code under execution. Other assemblies
that make up the application need not be present if the code they specify is not currently
needed for execution. These assemblies can be retrieved upon demand, so that the
downloading of applications can be more efficient.

Finally, we note that multiple versions of a single assembly can be run at the same time, on the same
system, or even in the same process. This is referred to as side-by-side execution.

The specifications in an assembly are collectively referred to as the assembly's manifest. The data in
the manifest is also called metadata. Specifically, the manifest contains:

The name of the assembly

Version information for the assembly

Security information for the assembly

A list of all files that are part of the assembly

Type reference information for the types specified in the assembly

A list of other assemblies that are referenced by the assembly

Custom information, such as a user-friendly assembly title, description, and product
information (company name, copyright information, and so on)

Physically, an assembly consists of one or more files—files that contain code, as well as resources,
such as bitmaps. The assembly's manifest can be a separate file or part of another file in the assembly.

99

45 Assemblies and VB .NET

To a VB .NET programmer, an assembly is similar to a traditional DLL or EXE file, except that it
contains additional information, such as reference and type information (which in COM was often
contained in a separate OLB or TLB file, called a type library). When a VB .NET application is
compiled, the compiler creates an assembly for the target EXE or DLL.

In the .NET environment, namespaces are part of assemblies. An assembly can contain many
namespaces, and namespaces can be nested.

For instance, the System namespace is the fundamental namespace in the .NET environment. This is
not the time to go into details, but one example will be useful. The System namespace identifies the
Array class (Microsoft likes to say that the namespace contains classes.) One of the members of the
Array class is the Copy method, which copies a portion of one array to another array. Thus, we can
write code such as the following:

| mports System " Optional since Systemis always inported
Dmarrayl() As Integer = {1, 2, 3, 4}

Dimarray2(3) As |nteger

Array. Copy(arrayl, array2, 3)

To use an existing assembly in a VB .NET project, you must do two things:

Add a reference to the assembly to your project. There are two exceptions to this rule,
however. A reference to the assembly containing the System namespace (mscorlib.dll) is
added automatically, as is a reference to the assembly containing the language being used
(for VB .NET, this is Microsoft.VisualBasic.dll).

Access the member or members of the namespace, as described later in this section.

To access a member of a namespace, you can use its fully qualified name. For example, to create an
instance of the Timers class, which is found in the System.Timers namespace, you can use a code
fragment like the following:

Dim oTi mer As New System Ti ners. Ti mer (2000)

Since using fully qualified names tends to be relatively cumbersome, you can include an | nports
statement at the beginning of a code file, before any references to variables or classes. Its syntax is:

I mports [aliasname =] nanespace

where al | asnane is an optional alias for the namespace, and nanespace is its fully qualified name.
For example, if you import the System.Timers namespace as follows:

| mports System Tinmers
you do not have to qualify a reference to the Timer class, which can be instantiated as follows:

Dim oTi mer As New Ti mer (2000)

In the event that there is a naming conflict (either two namespaces have identically named types, or a
named type conflicts with a name in your project), you can specify an alias for the namespace, as
follows:

I mports Tl = System Ti mers

and then instantiate a Timer object as follows:

100

Di m oTi ner As New TI. Ti ner (2000)

o &
i 30

L L
[T

TSN

If you're using the Visual Basic command-line compiler, you have
to explicitly import the Microsoft.VisualBasic namespace, or your
code will not compile. If you're using Visual Studio, VB's language
elements are accessed automatically without your having to
import the namespace.

101

102

Chapter 5. The .NET Framework Class Library

VB .NET is about classes, classes, and more classes. Even something as simple as a string is
implemented in a class (the String class of the System namespace). As we mentioned in Chapter 4,
the .NET Framework defines an extensive network of classes and hamespaces called the Framework
Class Library (FCL). This consists of a set of namespaces called the Base Class Library (BCL) that
provide basic system services (like the System namespace, whose classes define .NET data types,
provide exception handling, and handle garbage collection, among other things). It also includes
additional namespaces, such as System.Data, System.Windows.Forms, and System.Web.UI, which
provide application services. In total, there are over 90 namespaces containing several thousand
classes, interfaces, structures, enumerations, and other items (such as delegates) in the .NET
Framework Class Library.

The System namespace is at the top of the namespace hierarchy, and the Object class is at the top of
the object hierarchy. All types in the .NET Framework Class Library derive from the Object class.

The .NET Framework Class Library is sufficiently extensive to require an entire book for its description.
In this chapter, we provide just a brief introduction and some examples. This should prepare you to
dive into the Microsoft Class Library documentation. Note also that the reference portion of this book,
Chapter 8, documents selected language elements from the Base Class Library that seem
particularly useful to VB programmers. For more on which classes are included in the reference
section, see its introduction.

Before becoming intimidated by the size of the Framework Class Library, we should also keep in mind
that VB .NET provides wrappers for much of the Base Class Library in particular, so we can often just
call a VB function rather than resort to accessing the classes in the Base Class Library directly. More
generally, while the class library does have much to offer a VB programmer and should not be ignored,
it can be studied and used on an "as needed" basis.

Let us illustrate a simple case in which the BCL has something to offer. We mentioned in Chapter 2
that the built-in VB data types are wrappers for a corresponding BCL class (for reference types) or
structure (for value types). However, the Visual Basic language typically does not implement all of the
members of the BCL class. For instance, if we want to verify that a user has entered a number that lies
within the range of type Integer, we can use code such as the following:

Dms As String
Dmi As Integer
s = I nput Box("Enter an integer")
I f IsNuneric(s)
[f (CDbl(s) >=i.MnValue) And (CDbl (s) <= i.MaxVal ue) Then

i = CInt(s)
El se
Debug. WiteLine("lInvalid nunber")
End If
El se
Debug. Wit eLi ne(" Non-nuneric val ue")
End If

Because the VB Integer data type is a wrapper for the BCL's Int32 structure, the MinValue and
MaxValue properties of the Int32 data type are accessible to the Integer variable i . Incidentally,
because the MaxValue and MinValue members are shared, we could also have written:

I f IsNuneric(s)
If (CDbl(s) >= Integer.M nVal ue) _
And (CDbl (s) <= Integer.MuxVal ue) Then

103

which, in my opinion, is more readable.

In order to prevent a compiler error when compiling this code with Option Strict On, we've converted
the String s to a Double before comparing its value with the Integer class's MinValue and MaxValue
properties. This is because a Double is the least restrictive numeric data type, and we want to be sure
that the numeric equivalent of the String s is within the range of a more restrictive numeric (integer)
data type.

5.1 The System Namespace
The System namespace contains classes for such broad ranging things as:

Data types

Data type conversions
Method-parameter manipulation
Events and event handlers
Mathematics

Program invocation
Application-environment management

5.1.1 Data Type Conversion

To illustrate data type conversion, the System namespace defines a class called Convert. If you check
the documentation, you'll find that one of the methods of the Convert class is ToBoolean. The
documentation lists the following for ToBoolean:

Over| oads Publ i
Over| oads Publ i
Over | oads Publ i
Over | oads Publ i
Over| oads Publ i
Over| oads Publ i
Over| oads Publ i
Over | oads Publ i
Over | oads Publ i

Shared Function ToBool ean(String) As Bool ean
Shared Functi on ToBool ean(Doubl €) As Bool ean
Shared Functi on ToBool ean(Si ngl e) As Bool ean
Shared Function ToBool ean(Char) As Bool ean
Shared Function ToBool ean(Byte) As Bool ean
Shared Function ToBool ean(Obj ect) As Bool ean
Shared Function ToBool ean(Bool ean) As Bool ean
Shared Functi on ToBool ean(Long) As Bool ean
Shared Functi on ToBool ean(l nteger) As Bool ean

OO0O0O0O0O0000OO0

As you can see, there are many ToBoolean functions?each one with a different argument signature?to
take care of converting various data types to Boolean.

Now, just for exercise, we can write:

Dms As String

Dim b As Bool ean

s = "fal se"

b = System Convert. ToBool ean(s)
nmsghbox(b)

Because the System namespace is always available (or if we are programming outside of Visual
Studio, we can import it using the | npor t s statement), we can omit the System qualifier and write:

b = Convert. ToBool ean(s)

Of course, we can also use the built-in VB .NET function CBool.

104

The Convert class contains methods for converting data to the standard Visual Basic data types, as
well as to the data types supported by the .NET Framework but not wrapped by Visual Basic, such as
the unsigned-integer data types. The most important of these methods are shown in Table 5-1.

Table 5-1. Members of the System.Convert class

Method Description
ToBoolean Converts a value to a Boolean
ToByte Converts a value to a Byte
ToChar Converts a value to a Char
ToDateTime Converts a value to DateTime (Date in Visual Basic)
ToDecimal Converts a value to Decimal
ToDouble Converts a value to Double
Tolntl6 Converts a value to Int16 (Short in Visual Basic)
Tolnt32 Converts a value to Int32 (Integer in Visual Basic)
Tolnt64 Converts a value to Int64 (Long in Visual Basic)
ToSByte Converts a value to SByte, the unsigned-byte data type in the BCL
ToSingle Converts a value to Single
ToString Converts a value to String
ToUInt16 Converts a value to UInt16, an unsigned 16-bit integer
ToUInt32 Converts a value to UInt32, an unsigned 32-bit integer
ToUInt64 Converts a value to UInt64, an unsigned 64-bit integer

5.1.2 The Array Class

The Array class contains useful methods for dealing with arrays. For instance, the Array object has a
Sort method (at last) that sorts the elements of an array. Here is an example:

Sub sortArray()

Dimi As Integer

DmintArray() As Integer = {9, 8, 12, 4, 5}

For i =0 To 4
console.WiteLine(CStr(intArray(i)))

Next

Array. Sort (i ntarray)

Consol e. WiteLine("Sorted:")

For i =0 To 4
console.WiteLine(intArray(i))

Next

End Sub

The output is:

9
8
12
4
5
Sort ed:
4
5
8
9
12

105

Some of the more important methods of the Array class are shown in Table 5-2.

Table 5-2. Some members of the System.Array class

Method

Description

BinarySearch|Searches a sorted one-dimensional array for a value

IndexOf Returns the first occurrence of a particular value in a one-dimensional array

LastindexOf |Returns the last occurrence of a particular value in a one-dimensional array

Reverse

Reverses the order of the elements in a one-dimensional array or a portion of a one-
dimensional array

Sort Sorts a one-dimensional array

5.1.3 The Math Class

The Math class has a number of mathematical-function methods (such as trigonometric functions), as
well as some more useful methods, such as Max and Min. Therefore, we can just write:

MsgBox (Mat h. Max(4, 7))

Table 5-3 shows the members of the Math class.

Table 5-3. The members of the Math class

Topic

Description

Abs function

Absolute value

Acos function

Arccosine

Asin function

Arcsine

Atan function

Arctangent; returns the angle whose tangent is a specified number

Atan?2 function

Arctangent; returns the angle whose tangent is the quotient of two specified
numbers

Ceiling function

Returns the smallest integer greater than or equal to the argument number

Cos function

Cosine

Cosh function

Hyperbolic cosine

E field

The natural number e

Exp function

Exponential function

Floor function

Returns the largest integer less than or equal to the argument number

IEEERemainder
function

Returns the remainder after dividing x by y

Log function

Natural (base e) logarithm

Log10 function

Common (base 10) logarithm

Max function

Maximum

Min function

Minimum

Mod operator

Returns the modulus, that is, the remainder when numberl is divided by
number2

Pi field

Pi, the ratio of the circumference of a circle to its diameter

Pow function

Generalized exponential function

Randomize statement

Initializes the random number generator

Rnd function

Returns a random number

Round function

Rounds a given number to a specified number of decimal places

106

Sign function

Determines the sign of a number

Sin function Sine

Sinh function

Hyperbolic sine

Sqrt function

Square root

Tan function

Tangent

Tanh function

Hyperbolic tangent

5.1.4 The String Class

The String class implements a collection of methods for string manipulation, including methods for
locating substrings, concatenation, replacement, padding, trimming, and so on. One interesting
method is Insert, which inserts a new string into an existing string.

The VB .NET String data type is equivalent to the System.String class, so we can apply the methods
of System.String directly to VB strings, as in:

Dms As String = "To be to be"

nsgbox(s. I nsert(6, "or

not "))

This displays the message "To be or not to be." Table 5-4 shows the members of the String class.

Table 5-4. The members of the String class

Topic

Description

Asc, AscW functions

Returns an Integer representing the character code for the first
character of the string passed to it. All other characters in the string
are ignored.

Chr, ChrW functions

Returns the character represented by the character code.

Filter function

Produces an array of matching values from an array of source
values that either match or do not match a given filter string.

Format function

Allows you to use either predefined or user-defined formats to create
various ways to output string, numeric, and date/time data.

FormatCurrency,
FormatNumber, FormatPercent
functions

Used to format currency, numbers, and percentages.

FormatDateTime function

Formats a date or time expression based on the computer's regional
settings.

GetChar function

Returns the Char that is at a given position index within a given
string.

InStr function

Finds the starting position of one string within another.

InstrRev function

Determines the starting position of a substring within a string by
searching from the end of the string to its beginning.

Join function

Concatenates an array of values into a delimited string using a
specified delimiter.

LCase function

Converts a string to lowercase.

Left function

Returns a string containing the leftmost length characters of string.

Len function

Counts the number of characters within a string or the size of a
given variable.

Like operator

If string matches pattern, results in Tr ue; otherwise, results in
Fal se.

LTrim function

The Me operator represents the current instance of a class from
within the class module. (Since a form is a class, this includes forms

107

as well.)

Mid function

Returns a substring of a specified length from a given string.

Mid statement

Replaces section of a string with characters from another string.

Replace function

Replaces a given number of instances of a specified substring in
another string.

Right function

Returns a string containing the rightmost length characters of string.

RTrim function

Removes any trailing spaces from stringexp.

Space function

Creates a string containing number spaces.

Split function

Parses a single string containing delimited values into an array.

StrComp function

Determines whether two strings are equal and, if not, which of the
two strings has the greater value.

StrConv function

Performs special conversions on a string.

StrDup function

Returns a string that consists of the first character of string
duplicated a number of times.

StrReverse function

Returns a string that is the reverse of the string passed to it. For
example, if the string "and" is passed to it as an argument,
StrReverse returns the string "dna.”

Trim function

Removes both leading and trailing spaces from a given string.

UCase function

Converts a string to uppercase.

5.2 Other Namespaces

Nested just below the System namespace are a number of second-level namespaces, which contain

such classes as:

System.CodeDOM

Contains classes representing the elements and structure of a source code document.

System.Collections

Contains interfaces and classes that define various collections of objects, such as lists,
gueues, arrays, hashtables, and dictionaries.

System.ComponentModel

Contains classes that are used to implement the runtime and design-time behavior of
components and controls.

System.Configuration

Contains classes that allow the creation of custom installers for software components.

System.Data

Consists mostly of the classes that constitute the ADO.NET architecture and are used for

database connectivity.

System.Diagnostics

Contains classes that allow debugging of applications and code tracing.

System.DirectoryServices

108

Contains classes that provide access to the Active Directory from managed code.
System.Drawing

Contains classes that provide access to GDI+ basic graphics functionality. (More advanced
functionality is provided in the System.Drawing.Drawing2D, System.Drawing.Imaging, and
System.Drawing.Text namespaces.)

System.lO

Contains classes that allow synchronous and asynchronous reading from and writing to data
streams and files.

System.Net

Contains classes that provide a simple programming interface to many of the common
network protocols, such as FTP and HTTP. (The System.Net.Sockets namespace provides
lower-level network access control.)

System.Reflection

Contains classes and interfaces that provide a managed view of loaded types, methods, and
fields, with the ability to create and invoke types dynamically.

System.Resources
Contains classes for managing resources (culture-specific resources and resource files).
System.Security

Contains classes that provide access to the underlying structure of the .NET Framework
security system.

System.ServiceProcess

Contains classes that allow us to install and run services. (Services are long-running
executables that run without a user interface.)

System.Text

Contains classes representing ASCII, Unicode, UTF-7, and UTF-8 character encodings, as
well as abstract base classes for converting blocks of characters to and from blocks of bytes,
and more.

System.Text.RegularExpressions

Contains classes that provide access to the .NET Framework regular expression engine.
System.Threading

Provides classes and interfaces that enable multithreaded programming.

System.Timers

109

Contains classes that provide the Timer component, which allows you to raise an event on a
specified interval.

System.Web and related namespaces

Contain classes and interfaces that enable browser/server communication and that allow you
to develop ASP.NET applications and web services.

System.Windows.Forms

Contains classes for creating Windows-based applications that take full advantage of the rich
user-interface features available in the Microsoft Windows operating system. In this
namespace, you will find the Form class and many other controls that can be added to forms
to create user interfaces.

System.Xml
Contains classes that provide standards-based support for processing XML.

Let's take a look at some of these other classes in the BCL.

5.2.1 System.Collections

This namespace contains classes for implementing a variety of collection types, such as stacks and
gueues. As you may know, a queue is a first-in, first-out data structure. The following code illustrates
the use of the Queue class:

Dms As String
Dim g As New Col | ections. Queue()
g. Enqueue(" To")

g. Enqueue(" be")
g. Enqueue("or™)
g. Enqueue("not ")

Do Wiile g.Count > O

s =s &" " & CStr(qg. Dequeue)
Loop
nsghbox('s)

The output is "To be or not."

5.2.2 System.Data

System.Data and its nested namespaces, notably System.Data.OleDb and System.Data.SqlClient,
provide data access using ADO.NET. The OleDb and SqlClient namespaces are responsible for
defining data providers that can connect to a data source, retrieve data from a data source, write data
back to a data source, and execute commands against the data source. The most important class in
each of these namespaces is a data adapter class (in the OleDb namespace, it's the
OleDbDataAdapter class; in the SqlClient namespace, it's the SqlDataAdapter class) which is
responsible for retrieving data from a data source and writing it to a dataset. A dataset in turn is a
collection of related data that's disconnected from its original data source.

- ADO.NET is not the same thing as ADO, nor is ADO.NET a new
= version of ADO. Instead, ADO (or ActiveX Data Objects) is a
COM-based object model for data access. ADO.NET is an entirely

110

new model for data access that is based on the disconnected
dataset.

5.2.3 System.IO

The System.lO namespace contains classes that provide a variety of input/output functionality, such
as:

Manipulating directories (Directory class) and files (File class)

Monitoring changes in directories and files (FileSystemWatcher class)

Reading and writing single bytes, mulitbyte blocks, or characters to and from streams
Reading and writing characters to and from strings (StringReader and StringWriter)
Writing and reading data types and objects to and from streams (BinaryWriter and
BinaryReader)

Providing random access to files (FileStream)

It appears that, for VB programmers, the System.lO namespace and its classes are intended to take
the place of the FileSystemObject object model that is part of the Microsoft Scripting Runtime. The
System.lO namespace is certainly much more extensive. The File and Directory classes duplicate the
functionality of the FileSystemObject. For more on these classes, see their entries in this book's
reference section.

5.2.4 System.Text.RegularExpressions

The System.Text.RegularExpressions namespace contains classes that provide access to the .NET
Framework's regular expression engine. This is not the place to go into details about regular
expressions, but we can make a few comments.

In its simplest form, a regular expression is a text string that represents a pattern that other strings
may or may not match. In this way, regular expressions form a very powerful method of string
matching. In more complicated forms, a regular expression is a kind of programming statement. For
instance, the expression:

s/ ab*c/ def
says to match the given string against the regular expression ab* ¢ (strings that start with ab and end
with ¢). If a match exists, then replace the given string with the string def . Here are some simple
regular expressions for pattern matching:
Single character
This is matched only by itself.
Dot (.)
This is matched by any character except the newline character.
[string of characters]
This matches any single character that belongs to the string of characters. For example, [abc]
matches the single character a, b, or c. A dash can also be used in the character list, for
instance, [0- 9] matches any single digit. We can also write [0- 9a- z] to match any single

digit or any single lowercase character, and [a- zA- Z] to match any single lower- or
uppercase character.

111

The ~ symbol can be used to negate the match. For instance, [#0- 9] matches any character
except a digit.

Special match abbreviations
\ d matches any single digit; \ D matches any single nondigit.

\'wis equivalentto [a- zA- Z |, thus matching any letter or underscore; \ \Wis the negation of
\ w.

Asterisk (*)

The occurrence of an asterisk within a regular expression gives a match if and only if there are
zero or more repeated instances of the single character preceding the asterisk. For example,
the regular expression \ da*\ d is matched by any string beginning with a single digit,
continuing with zero or more as and ending with a single digit, as with 01 or Oaaal.

Plus sign (+)

The occurrence of a plus sign within a regular expression gives a match if and only if there are
one or more repeated instances of the single character preceding the plus sign. For example,
the regular expression \ da+\ d is matched by any string beginning with a single digit,
continuing with one or more as and ending with a single digit, as with Oaaal (but not 01).

Question mark (?)

The occurrence of a question mark within a regular expression gives a match if and only if
there are zero or one instances of the single character preceding the question mark. For
example, the regular expression \ da?\ d is matched by any string beginning with a single digit,
continuing with zero or one as and ending with a single digit, as with 01 and Oal.

General multiplier

The occurrence of the substring { x, v}, where x and y are nonnegative integers within a
regular expression, gives a match if and only if there are at least x but at most y instances of
the single character preceding the opening bracket. For example, the regular expression

\ da{5, 10} \ d is matched by any string beginning with a single digit, continuing with at least 5
but at most 10 as and ending with a single digit, as with Oaaaaaal.

Note that you can leave out one of x or y. Thus, { x, } means "at least x," and {, y} means
"at most y."

The System.Text.RegularExpressions namespace has a Regex class, whose objects represent
regular expressions. Here is a simple example of the use of the Regex class:

Define a new Regex object with pattern \da{3,5}\d
Dimrx As New System Text. Regul ar Expressi ons. Regex("\da{3, 5}\d")

Do sonme mat chi ng

MsgBox(rx. I sivatch("0al")) " Displays Fal se
MsgBox(rx. | svat ch("0Oaaal")) " Displays True

The System.Text.RegularExpressions namespace contains classes for string replacement as well, but
we do not go into these matters in this brief introduction.

112

5.2.5 System.Windows.Forms

This namespace is the mother of all namespaces for creating Windows applications. To quote the
documentation:

The System.Windows.Forms namespace contains classes for creating Windows-based applications
that take full advantage of the rich user interface features available in the Microsoft Windows operating
system. In this namespace you will find the Form class and many other controls that can be added to
forms to create user interfaces.

In fact, each new form added to a VB .NET project contains the line:
| nports System W ndows. For ns

Fortunately, Visual Studio provides the functionality of the System.Windows.Forms namespace to us
as VB programmers, so we don't need to program directly against this namespace.

113

114

Chapter 6. Delegates and Events

In this chapter, we discuss delegates and events, two additional .NET framework topics that are
important to VB programmers.

6.1 Delegates

In a never-ending effort to deny VB programmers the right to use pointers, Microsoft has implemented
a feature called delegates that, according to the documentation, provide a safe alternative to function
pointers.

As you may know, a pointer variable (or pointer) is simply a variable whose value is interpreted by the
compiler as a memory address. The address to which the pointer points is the target of the pointer,
and we say that the pointer variable points to that target address. If the target address is a variable of
data type Integer, for example, then we say that the pointer is of type Integer or is an Integer pointer.
Thus, the type of a pointer is the type of the target variable. (We have seen that, as reference types,
variables of type Object and String are both pointers; i.e., their values point to the address of the data
in memory.)

A pointer can also point to a function, that is, contain the address of a function. Even though a function
is not a variable, it does have a physical location in memory and so can be the target of a pointer.
(Actually, it's reasonable to think of a function as a type of variable, but that is another story.) In this
case, we have a function pointer.

Function pointers are very useful in certain situations for calling or specifying functions. This is
commonly done in the C++ programming language, where function pointers are supported directly.

One area in which function pointers are used is in the context of callback functions. To illustrate, if we
want to enumerate all of the fonts on a given system, the Windows API provides a function called
EnumFontFamiliesEx, defined as follows:

Public Decl are Function Enunfont Fanmi|iesEx Lib "gdi 32"
Ali as "Enunfont Fani | i esExA" (
ByVal hdc As Long, _
| pLogFont As LOGFONT,
ByVal | pEnunfont Proc As Long,
ByVal | Param As Long,
ByVal dw As Long)
As Long

The third parameter requires the address of a function we must declare, called a callback function.
The reason for this term is that Windows will call our callback function for each font in the system,
passing information about the font in the parameters of the function. According to the documentation,
the callback function must have a particular form:

Publ i c Function Enunfont FanExProc(ByVal |pelfe As Long,
ByVal |pntne As Long,
ByVal Font Type As Long,
ByRef | Param As Long) As Long

The point here is that to use EnumFontFamiliesEx, we need to pass the address of a function as one
of the parameters.

As you may know, this is done in VB using the Addr essOF operator. In earlier versions of VB, this
operator is described as follows:

115

A unary operator that causes the address of the procedure it precedes to be passed to an API
procedure that expects a function pointer at that position in the argument list.

Put another way, the Addr essOf operator is implemented in VB 6 for the express purpose of passing
function addresses to API functions.

In VB .NET, the Addr essOF operator returns a delegate, which is, as the documentation states:
A unary operator that creates a procedure delegate instance that references the specific procedure.

So let us discuss delegates. We begin with a rather unhelpful definition: a delegate is an object of a
class derived from either the Delegate class or the MulticastDelegate class. These two classes are
abstract, so no objects of these classes can be created. Nevertheless, other classes can be derived
from these classes, and objects can be created from these derived classes.

In VB .NET, delegates can be used to call methods of objects or to supply callback functions. In
addition, VB .NET uses delegates to bind event handlers to events. Fortunately, VB .NET also
supplies tools (such as the AddHandler method) to automate this process, so we don't need to use
delegates directly for this purpose.

A delegate object inherits a number of properties and methods from the Delegate or MulticastDelegate
class. In particular, a delegate object has:

A Target property that references the object or objects whose method or methods are to be
called.

A Method property that returns a MethodInfo object that describes the method or methods
associated with the delegate.

An Invoke method that invokes the target method or methods.

By now you have probably guessed that there are two delegate classes because delegates derived
from the Delegate class can only call a single method, whereas delegates derived from
MulticastDelegate can call multiple methods.

6.1.1 Using a Delegate to Call a Method

To call a method using a delegate, we call the Invoke method of the delegate. To illustrate, consider
the class module with a simple method:

Public Cass O assl
Public Sub AMet hod(ByVal s As String)
Msghbox(s)
End Sub
End C ass

Now, in a module with a Windows Form (referred to as a form module in earlier versions of VB), we
declare a (single cast) delegate with the same parameters as the target method we wish to call:

Del egat e Sub ADel egate(ByVal s As String)

The following code then uses the delegate to call the AMethod of Class1:

Protected Sub Forml Click(ByVal sender As bject, _
ByVal e As System Event Args)
Handl es MyBase. C i ck
Obj ect of type Cassl _
Dimobj As New Cl assl()

116

Decl are a new del egate
Di m del g As ADel egat e

Define the del egate, passing the address
of the object's nethod
del g = New ADel egat e(AddressOF obj . AMet hod)

Now call the nethod using the del egate's |nvoke nethod
del g. I nvoke("test")

End Sub

Note that the documentation describes the delegate constructor as taking two parameters, as in:

del g = New ADel egat e(Tar get Obj ect, Poi nter ToMet hodOf Obj ect)

However, Visual Basic is not capable of handling the second parameter, so VB supports the special
syntax:

del g = New ADel egat e(Addr essCf obj . AMet hod)

We point this out only to warn you about the documentation on the delegate class constructor.

6.1.2 Using a Delegate as a Function Pointer

The following example illustrates the use of a delegate in the context of a callback function. In this
example, we want to create a generic sort function for sorting integer arrays. The function uses the
bubble sort algorithm for sorting, but it's generic in the sense that one of its parameters is a compare
function that is used to do the comparison of adjacent integers. Thus, by varying the external
comparison function, we can change the type of sorting (ascending, descending, or some other
method) without changing the main sort function. The compare function is a callback function, since it
is a function we supply that is called by the main sort function. (In this case, the callback function is not
supplying us with information, as in the font enumeration case described earlier. Instead, it is called to
help the sort function do its sorting.)

First, we declare a delegate. As part of the declaration of a delegate, we must specify the signature of
the method that is associated with the delegate, which, in our case, is the compare function. Since the
compare function should take two (adjacent) integers and return Tr ue if and only if we need to swap
the integers in the bubble sort algorithm, we declare the delegate as follows:

Returns True if need to swap
Del egat e Functi on ConpareFunc(ByVal x As Integer,
ByVal y As Integer)
As Bool ean

Here are two alternative target methods for the delegate—one for an ascending sort and one for a
descending sort:

Function SortAscendi ng(ByVal x As Integer, ByVal y As Integer) As Bool ean
If y < x Then
Sort Ascendi ng = True
End | f
End Function

Function SortDescendi ng(ByVal x As I|nteger,

ByVal y As I|nteger) As Bool ean
If y > x Then

117

Sort Descendi ng = True
End If
End Function

Now we can define the sort routine. Note the call to the Invoke method of the delegate:

Sub Bubbl eSort (ByVal ConpareMet hod As Compar eFunc,
Byval IntArray() As Integer)

Dmi, j, tenp As |nteger
For i = 0 To Ubound(IlntArray)
For | =i + 1 To Ubound(IlntArray)

I f ConpareMet hod. I nvoke(lntArray(i), IntArray(j)) Then
Tenp = IntArray(j)

IntArray(j) = IntArray(i)
IntArray(i) = Tenp
End If
Next |
Next i
End Sub

Here is some code to exercise this example:

Protected Sub Buttonl Click(ByVal sender As Object, _
ByVal e As System Event Args)
Dimi As Integer
DmiArray() As Integer = New Integer() {6, 2, 4, 9}
Bubbl eSort (AddressOf Sort Ascendi ng, 1 Array)
For i =0 To 3
Debug. WiteLine(CStr(iArray(i)))
Next
Debug. Wi teLi ne
Bubbl eSort (AddressO Sort Descendi ng, i Array)

For i =0 To 3
Debug. WiteLine(CStr(iArray(i)))
Next
End Sub

The output is, as you would expect:

O©CoR~N

N~ O©

6.2 Events and Event Binding

An event is an action that occurs. This action can take place on the part of the user of an application
(such as when the user clicks a command button), on the part of application code (such as when a
change is made to a record in a recordset), or on the part of the operating system (such as a timer
event). When an event occurs, we say that the event is raised, or fired.

Each event has a source. This is the object to which the action is applied, such as the button that was
clicked. The source is responsible for alerting the operating system that an event has occurred. It does

118

so by sending an event naotification message, generally to its parent or container window. For this
reason, Microsoft refers to the event source as the sender.

An event often has an event argument, which is simply data that pertains to the event. For instance,
the press of a keyboard key generates an event that includes event arguments describing the keycode
of the key pressed and information on the state of modifier keys (the Shift, Alt, and Ctrl keys). The
event arguments are part of the message sent by the event source.

An event handler is a procedure (or method) that is executed as a result of event notification. The
process of declaring an event handler for an event is called binding the procedure to the event.

6.2.1 Control-Related Events

Most controls have a large number of built-in events associated with them. For instance, the textbox
control has events associated with changing the text in the textbox, hitting a key while the textbox has
the focus, clicking on the textbox with the mouse, dragging the mouse over the textbox, and more.

The VB IDE can be used to insert an empty event handler, complete with the proper event parameters,
for any built-in control. The procedure is simply to select the control, then click the Events button in the
Properties window. This displays a list of built-in events for the control. Selecting one of these events
causes the VB IDE to insert an empty event handler for that event into the code editor window.

Note that each control has a default event. For instance, the default event for the command button is

the Click event. As a shortcut, we can get the VB IDE to insert an empty event handler for the default
event simply by double clicking the control. For instance, double clicking a command button produces
the following code:

Private Sub buttonl dick(ByVal sender As System (bject,
ByVal e As System Event Ar gs)
Handl es buttonl. dick
End Sub

The sender variable is the source of the event. The second parameter is an object whose properties
describe the event arguments.

As another example, double clicking a Windows form causes the VB IDE to insert the following empty
event handler:

Protected Sub Fornil_Cick(ByVal sender As Object, _
ByVal e As System Event Args)

End Sub

6.2.2 WithEvents

To define a custom event in a class module, we can use the W t hEvent s keyword. To illustrate with
a very simple example, suppose we create the class module shown here:

Public Class C assl

Decl are an event
Public Event AnEvent (ByVal EventParam As |nteger)

Met hod to raise the event
Publ i c Sub Rai seTheEvent (ByVal i Event Nunmber As | nteger)
Rai seEvent AnEvent (i Event Nunber)
End Sub

119

End Cl ass

In a class module with a Windows form, we declare a variable of type Classl using the W t hEvent s
keyword to hook the class' events:

Public WthEvents ev As Cl assl

This automatically causes the VB IDE to add the variable name ev to the left-hand drop-down list
above the code window. When we select this variable, the right-hand drop-down list displays the
events for this class. In this case, the list contains only the ev_AnEvent event. Selecting this event
places an empty event shell in the code editor window (to which we have added a single line of code):

Public Sub ev_AnEvent (ByVal EventParam As System | nt eger)
Handl es ev. AnEvent
MsgBox(" Event raised: " & EventParan

End Sub

Finally, in a button click event, we can place code to implement our simple example:

Protected Sub Buttonl Click(ByVal sender As Object, _
ByVal e As System Event Args)
Handl es Buttonl. dick
Define a new C assl instance
ev = New Cl ass1()
Rai se the event
ev. Rai seTheEvent (7)
End Sub

We should note that the W t hEvent s keyword approach to event handling has one slight drawback.
Namely, we cannot use the New keyword with W t hEvent s, as in:

Public WthEvents ev As New Cl assl

Thus, the object must be instantiated separately from the variable declaration, as we did in the
previous example.

6.2.3 AddHandler

The AddHandl er statement can be used to bind an event handler to a built-in or custom event using
code. This makes it possible to bind several event handlers to a single event. To illustrate, proceed as
follows. Add the default event handler for a form's Click event:

Protected Sub Fornil_Cick(ByVal sender As Object, _
ByVal e As System Event Args)
nsgbox("Default Cick Event")
End Sub

Next, add another procedure with the same signature as the default event handler:

Protected Sub FornldC ick(ByVal sender As bject, _
ByVal e As System Event Args)
nmsgbox (" Custom Cl i ck Event")
End Sub

Finally, to bind the function Form1Click to the Click event, we use the AddHandl er statement:

120

AddHandl er Formil. C ick, AddressOf Me. For mid i ck

This is actually shorthand for:

AddHandl er Fornil. d ick, New Event Handl er (AddressOf Me. For nilCl i ck)
In general, the AddHand! er statement has the following syntax:

AddHandl er NanmeOf Event Sender, AddressOf NaneOf Event Handl er

121

122

Chapter 7. Error Handling in VB .NET

In this chapter, we take a concise look at error-handling techniques in VB .NET. Note that the terms
exception and error are used synonymously throughout the VB .NET documentation, and so we use
them interchangeably in this chapter.

VB .NET supports the On Er r or Got o style of error handling, which is supported by earlier versions of
Visual Basic (with some new wrinkles). This type of error handling is referred to as unstructured error
handling. However, unlike earlier versions of Visual Basic, VB .NET also supports the structured
exception handling technique familiar to C++ programmers, which is now the preferred method of error
handling in VB .NET.

7.1 Error Detection and Error Handling

Let us begin by clarifying some terminology. We agree to say that handling an error means responding
to a detected error. Thus, there is a clear distinction between error detecting and error handling. The
reason for this distinction is that these processes can take place at different times and in different
locations within the code of an application. We also agree to refer to the procedure (or module) in
which an error occurs as the offending procedure (or module).

There are two types of errors that can occur in a running program. (We will not discuss compile-time or
syntax errors.) A runtime error occurs when Visual Basic attempts to perform an operation that is
impossible to perform, such as opening a file that does not exist or dividing by 0. Visual Basic
automatically takes care of error detection for runtime errors because it has no other choice. On the
other hand, proper error handling of runtime errors is up to the programmer, for otherwise Visual Basic
itself handles the error by presenting an error message and terminating the application, which is not a
good solution to the problem.

A logical error is often defined as the production of an unexpected result. It might be better to define it
as the production of an unexpected and incorrect result (although even this is still somewhat
ambiguous). For instance, consider a function that returns the IQ for an individual based on a set of IQ
test scores. If the individual is very smart, we might expect an IQ in the range of 120 or more. A result
of 100 might be unexpected, but it is not necessarily an error. On the other hand, if the function returns
an 1Q of -350, that is a logical error.

Visual Basic (or, for that matter, any other language) does not provide error detection for logical errors,
because to Visual Basic, no error has occurred. However, a logical error may subsequently result in a
runtime error, which Visual Basic will certainly recognize. For instance, code that is intended to
retrieve a positive integer for later use in an integer variable may instead retrieve 0. This is a logical
error. But if that integer is later used as a denominator in some other part of the application, we can
surely expect a runtime error.

Thus, it is up to the programmer to anticipate logical errors and provide both error detection and error
handling. From this perspective, logical errors are far more serious and much more difficult to deal with
than runtime errors. After all, a runtime error won't be completely overlooked—at least Visual Basic will
do something about it, even if that consists only of presenting an error message to the user and
terminating the application.

The problem with an overlooked logical error is that it may give the user specious information (that is,
invalid information that looks valid). This is no doubt the most insidious behavior a program can
produce. If we are lucky, a logical error will generate a runtime error at some later time, but we may
still have great difficulty determining the location of the logical error from the runtime error message.

123

7.2 Runtime Error Handling

As we have mentioned, VB currently supports both unstructured and structured error handling. Let us
first look at unstructured error handling.

7.2.1 Unstructured Error Handling

Error-handling techniques that revolve around the various On Er r or ... statements are referred to as
unstructured error-handling techniques. These techniques generally use the Err object and the Visual
Basic call stack.

7.2.1.1 The Err object

Visual Basic's built-in error object, called Err, is one of the main tools for unstructured error handling.
This object has several properties and methods, as shown in Tables 7-1 and 7-2, respectively.

Table 7-1. Properties of the Err object

Property Description

Description |A short string describing the error.

HelpContext |The context ID for a help topic associated with the error.

HelpFile The fully qualified filename of the associated help file, if any.

The return code from a call made to a function in an external DLL. Note, however, that
this property may change value at any time, so it is wise to store the current value in a
LastDLLError|variable immediately upon return from the DLL call. Note also that even if the DLL call
resulted in an error, this is not considered an error by VB. (VB has no way of knowing

the meaning of return values from external functions, after all.)

Number This is the error number of the error.

A string that specifies the object that generated the error. When the error is generated
within your application, the Source property is the project's name, which is more or less
useless. (It would have been nice to get the name of the offending procedure.)
However, when the error is generated by an external COM component, the Source
property returns the programmatic ID of that component, which has the form
application.obj ectnanme, asin Excel . Appl i cati on, for example.

Source

Table 7-2. Methods of the Err object

Method Description

Clears the values of all properties of the Err object. Its syntax is:

Err().Clear()
Clear
Note that the Clear method is called implicitly when any of the following statements is
executed: a Resune statement of any type; an Exi t Sub, Exi t Functi on, or Exi t
Property statement; or any On Er r or statement.

Causes Visual Basic to generate a runtime error and sets the properties of the Err object to
the values given by the parameters of the Raise method. Its syntax is:

Err. Rai se(Nunmber, Source, Description,

Raise Hel pFil e, Hel pCont ext)

where all but the first named argument is optional. Each parameter corresponds to the
property of the same name.

124

7.2.1.2 Dealing with runtime errors

Visual Basic detects a runtime error as soon as it occurs, sets the properties of the Err object, and
directs the flow of execution to a location that the programmer has specified by the most recent On
Er ror ... line. This location can be one of the following:

The line of code immediately following the line that caused the error.

Another location within the offending procedure.

The procedure that called the offending procedure, if there is one. If not, VB issues an error
message itself and terminates the application.

Let us take a closer look at each of these possibilities.

7.2.1.2.1 In-line error handling

Code execution will be "redirected" to the line following the offending line of code (that is, execution
will continue immediately following the offending line) if the most recent preceding On Er r or
statement is:

On Error Resume Next

This is referred to as in-line error handling. Here is an example that involves renaming a file. Note the
typical use of a Sel ect Case statement to handle the error based on the value of Err.Number.
Incidentally, one way to obtain error numbers is to deliberately invoke a particular error and break
execution (with a breakpoint) to examine Err.Number:

Di m sO dNanme, sNewNane As String
On Error Resune Next

Ask for an existing file nane
sO dNane = | nputBox("Enter the file nanme to renane")

Ask for new nane
sNewNane = | nput Box("Enter the new file nane")

Renane file
Renanme("c:\" & sO dNane, "c:\" & sNewNane)

Deal with error
[f Err().Nunber = 53 Then
File not found error
MsgBox("File " & sO dNane & " not found")

Exit Sub
El se
All other errors
MsgBox(Err (). Nunber & ": " & Err(). Description)
Exit Sub
End If

7.2.1.2.2 Centralized error handling

While in-line error handling does have its uses, there is much to be said for centralizing error handling
within a procedure. (This often improves readability and makes code maintenance easier.) We can
direct code execution to a central error handler using the code:

On Error Goto | abel

125

This is outlined in the following code shell:

Sub Exanple()
On Error CGoto ErrHandl er

If run-tine error occurs here
Vi sual Basic directs execution to ErrHandl er

Exit Sub
Er r Handl er:

Code can be placed here to handle errors

or pass themup the calls |ist.

We have know edge of Err().Nunber, Err().Description,
and Err(). Source.

End Sub

Once the On Error Got o | abel line is executed, we say that the error handler beginning at the label
Err Handl er is active.

Once code execution is directed to the error handler, there are several possibilities for dealing with the
error. The most common possibility is simply to handle the error in the active error handler, perhaps by
displaying an error message asking the user to take corrective action.

Another common (and useful) approach is passing information about an error to the calling procedure
with parameters or with the return value of the offending function. For instance, if a function is
designed to rename a file, the function might return an integer error code indicating the success or
failure of the operation. This is quite common among the Win32 API functions. In particular, the error
code might be 0 for success, -1 if the file does not exist, -2 if the new filename is invalid, and so on.

A third possibility is to pass the error to the calling procedure by invoking the Err.Raise method within
the active error handler, as in:

Err. Rai se(Err. Nunber, Err.Source, Err.Description,
Err.Hel pFile, Err.Hel pContext)

This triggers the calling procedure's error handler (or more precisely, the next enabled error handler in
the calls list). This process is called regenerating or reraising the error.

Note that it is possible to deactivate an active error handler using the line:

On Error Goto O

If there is no active error handler, then VB reacts to errors just as though no error handler existed in
the procedure. We describe this situation in the next section.

7.2.1.2.3 No enabled error-handler

If there is no enabled error handler in the offending procedure, either because there is no

OnEr r or statement in the procedure or because error handling has been disabled with an On Er r or
CGot o O statement, then Visual Basic automatically sends the error to the calling procedure's error
handler. If the calling procedure has no error handler, the error continues up the calls list until it
reaches an enabled error handler. If none is found, then Visual Basic handles the error by displaying
an error message and terminating the application.

126

7.2.2 Structured Exception Handling

Structured exception handling uses a Try...Cat ch...Fi nal | y structure to handle errors. As we will
see, VB .NET's structured exception handling is a much more object-oriented approach, involving
objects of the Exception class and its derived classes.

7.2.2.1 Try...Catch...Finally

The syntax of the Tr y...Cat ch...Fi nal | y construct is given here:

Try
tryStatenents

[Catchl [exception [As type]] [Wien expression]
catchSt at enent sl
[Exit Try]

Catch2 [exception [As type]] [Wen expression]
cat chSt at enent s2
[Exit Try]

.Cafc.hn [exception [As type]] [Wien expression]
cat chSt at enent sn]
[Exit Try]

[Finally
finallyStatenents]
End Try

Thet rySt at enent s (which are required) constitute the Tr y block and are the statements that are
monitored for errors by VB. Within the Tr y block, we say that error handling is active.

The Cat ch blocks (of which there can be more than one) contain code that is executed in response to
VB "catching" a particular type of error within the Tr y block. Thus, the Cat ch blocks consist of the
error handlers for the Tr y block.

The phrases exception [As type] and [Wien expressi on] are referred to as filters in the

VB .NET documentation. In the former case, except i on is either a variable of type Exception, which
is the base class that "catches" all exceptions, or a variable of one of Exception's derived classes. (We
provide a list of these classes a bit later.) For instance, the variable declared as:

Catch e As Exception
will catch (that is, handle) any exception. The variable declared as:
Catch e As Argunment Nul | Excepti on

catches (handles) any exception of class ArgumentNullException. In short, t ype is the name of one of
the exception classes.

The \When filter is typically used with user-defined errors. For instance, the code in the following Tr vy
block raises an error if the user does not enter a number. The Cat ch block catches this error:

Try
Dim sl nput As String
sl nput = I nputbox("Enter a nunber.")

127

If Not IsNuneric(slnput) Then
Err. Rai se(1)
End If
Catch When Err. Nunmber =1
Msgbox (" Error1")
End Try

Note that code such as:

Dim x As |nteger
Try
X =5
Catch When x = 5
MsgBox(x)
End Try

does not work (that is, the Cat ch statements are never executed) because no error was generated.

The Exi t Try statement is used to break out of any portion of a Tr y...Cat ch...Fi nal | y block. The
optional f i nal | ySt at enent s code block is executed regardless of whether an error occurs (or is
caught), unless an Exi t Try statement is executed. This final code can be used for cleanup in the
event of an error. (By placing an Exi t Try at the end of the Tr y block, the fi nal | ySt at enent s are
not executed if no error occurs.)

As with unstructured error handling, VB may pass an error up the call stack when using structured
error handling. This happens in the following situations:

If an error occurs within a Tr y block that is not handled by an existing Cat ch block
If an error occurs outside any Tr vy block (provided, of course, that no On Er r or -style error
handlers are active).

7.2.2.2 Exception classes

The System namespace contains the Exception class, which is the base class for a substantial
collection of derived exception classes, listed as follows. Note that the indentation indicates class
inheritance. For example, EntryPointNotFoundException (the fifth from the last entry in the list) inherits
from TypeLoadException.

Exception
Appl i cati onException
Syst enExcepti on
AccessException
Fi el dAccessExcepti on
Met hodAccessException
M ssi ngMenber Excepti on
M ssi ngFi el dExcepti on
M ssi ngMet hodExcepti on
AppDomai nUnl oadedExcepti on
AppDomai nUnl oadl nPr ogr essExcepti on
Ar gunent Excepti on
Argunment Nul | Excepti on
Ar gunent Qut OF RangeExcepti on
Dupl i cat eWai t Obj ect Excepti on
Arithmeti cException
Di vi deByZer oExcepti on
Not Fi ni t eNunber Excepti on
Overfl owExcepti on

128

ArrayTypeM snat chExcepti on
Badl nageFor mat Excepti on
Cannot Unl oadAppDomai nExcepti on
Cont ext Mar shal Excepti on
Cor eException

Execut i onEngi neExcepti on

I ndexQut OF RangeExcepti on

St ackOver f | owExcepti on
Execut i onEngi neExcepti on
For mat Excepti on
I nval i dCast Excepti on
I nval i dOper ati onExcepti on
Mul ti cast Not Support edExcepti on
Not | npl ement edExcepti on
Not Support edExcepti on

Pl at f or mNot Support edExcepti on
Nul | Ref er enceExcepti on
Qut O Menor yExcepti on
RankExcepti on
Servi cedConponent Excepti on
Typelnitializati onException
TypelLoadExcepti on

Ent r yPoi nt Not FoundExcepti on
TypeUnl oadedExcepti on
Unaut hori zedAccessExcepti on
WeakRef er enceExcepti on

URI For mat Excepti on

As Microsoft states: "Most of the exception classes that inherit from Exception do not implement
additional members or provide additional functionality." Thus, it is simply the class name that
distinguishes one type of exception from another. The properties and methods applied to an exception
object are inherited from the Exception base class.

When writing Cat ch blocks, we always face the question of whether to simply trap the generic
exception class, as in:

Sub test()
Try

Catch e As Exception
End Try
End Sub

or whether to trap specific exception classes. Of course, the time to trap specific exception classes is
when we want to handle errors differently based on their class. For instance, this may take the form of
issuing different custom error messages for different exception types.

Also, there are occasions when we may want to take advantage of members of a particular exception
class that are not implemented in the Exception base class. For instance, the ArgumentException
class has a ParamName property that returns the name of the parameter that causes the exception.
Now, if we simply trap the generic Exception class, as in the following code:

Sub test()
Try
Dims, d As String
s = "c:\tenp.txt"
Attenpt to copy a file to a nonvalid target

129

Fi | eCopy(s, d)
Catch e As Exception
MsgBox(e. Message)
End Try
End Sub

then we cannot take advantage of the ParamName property. On the other hand, if we specifically trap
the ArgumentException class, as in the following code:
Sub test1()
Try
Dms, d As String
s = "c:\tenp.txt"
Attenpt to copy a file to a nonvalid target
Fi | eCopy(s, d)
Catch e As Argument Exception
MsgBox(e. Message & " Paraneter: " & e.ParanmName)

End Try
End Sub

then we can retrieve the name of the offending parameter.
Now let us take a look at some of the members of the Exception class:
Message property
A string containing an error message.
Source property
A string that describes the application or object that threw the exception.
StackTrace property

A string that contains the stack trace immediately before the exception was thrown. We
provide an example of this in a moment.

TargetSite property
A string that gives the method that threw the exception.
ToString method

A string that returns the fully qualified name of the exception, possibly the error message, the
name of the inner exception, and the stack trace. Its syntax is simply:

ToString()

The best way to get a feel for these members is with an example. Consider the following code, which
consists of three subroutines. The first subroutine, ExceptionO, contains a Tr y...Cat ch... statement. In
the Tr y code block, the subroutine ExceptionO calls the subroutine Exceptionl, which simply calls
Exception2.

Sub ExceptionO()
Dms As String
Try
Exceptionl()

130

Catch e As Exception
S = "Message: " & e.Message
s =s & Control Chars. O Lf &
s = s & Control Chars. O Lf &
s =s & Control Chars. CrLf &
s =s & Control Chars. CrLf &
debug. witeline(s)
End Try
End Sub
Sub Exceptionl()
Exception2()
End Sub
Sub Exception2()
Thr ow New Argunent Nul | Excepti on(
End Sub

"Source: " & e.Source
"Stack: " & e.StackTrace
"Target: " & e.TargetSite. Nanme
"ToString: " & e.ToString

)

In Exception2, there is a single line of code that executes the Thr ow statement, which throws an
exception. This is similar to raising an error with the Err.Raise method. However, as you can see by
the New keyword, the Thr ow statement actually creates an object of one of the exception types.

The output from the call to Exception0 is:

Message: argunent can't be null
Sour ce:
Stack: at WndowsApplication3. Forml.

in C\VBNET\ Fornml. vb: li ne
W ndowsAppl i cati on3. For nil.
in C\VBNET\ Forml. vb: li ne
at W ndowsApplication3. Forml.

in C\VBNET\ Fornml. vb: li ne

at

Exception2()

68
Exceptionl()
66
ExceptionO()
53

Target: Exception2
ToString: System Argunent Nul | Exception: argunment can't be null
at W ndowsAppl i cati on3. Forml. Exception2()
in C\VBNET\ Fornil. vb:line 68
at W ndowsAppl i cation3. Fornil. Exceptionl()
in C\VBNET\ Fornil. vb:line 66

at W ndowsAppl i cation3. Forml. Excepti on0()
in
C.\ VBNET\ For niL. vb: I i ne 53

7.3 Dealing with Logical Errors

Since Visual Basic makes the handling of runtime errors a relatively straightforward process, it seems
reasonable to try to mimic this process for logical errors.

7.3.1 Detecting Logical Errors

To detect a logical error, we place error-detection code immediately following the potential offender.
For instance, consider the following procedure shell for getting a sequence of positive integers from
the user, starting with the number of integers:

Public Sub Get SoneData()
Di m DataCt As | nteger
Dat aCt = Clnt (I nput Box("Enter of

nunber itens."))

131

Code here to get the individual data values ...
End Sub

The proper place for error-detecting code is immediately following the InputBox function, where we
can check for a nonpositive integer:

Public Sub Get SomeData()
Di m Dat aCt As | nteger
DataCt = Clnt (Il nputBox("Enter nunmber of items."))
Check for error
If DataCt < = 0 then
somet hi ng here
End If
Code here to get the individual data values ...
End Sub

Note that the alternative to immediate detection of logical errors is to place the error-detecting code
just prior to using the value of Dat aCt , but this is both dangerous and inefficient. It is dangerous since
we might forget to place the code, and it is inefficient since we may use Dat aCt in a variety of
locations in the program, each of which would require error-detecting code.

7.3.2 Where to Handle a Logical Error

Once a logical error is detected, we have three choices as to where to handle that error.

7.3.2.1 Handling the error on the spot
A logical error can be handled at the location where it was detected. Here is an example:

Public Sub Get SoneData()
TryAgai n:
DataCt = Clnt (Il nputBox("Enter nunmber of itens."))
Check for error
If DataCt < = 0 then
I f MsgBox("Number must be a positive integer." & _

Try again or cancel.", vbQuestion+vbOKCancel)
= vbOK t hen
Goto TryAgain
El se
Exit Sub
End |f
End If
Code here to get the individual data values ...
End Sub

Handling a logical error on the spot may be appropriate when the required code is short. It is also
appropriate in Property procedures, which often amount to little more than a single line that sets a
private instance variable, preceded by data validation, which is essentially logical-error detection.

7.3.2.2 Handling the error in the offending procedure's error handler

We can duplicate the procedure that Visual Basic uses for runtime errors simply by raising our own
runtime error. Here is an example using structured exception handling:

Try
Dim DataCt As Integer = CInt(lnputBox("Enter number of itens."))
Check for error

132

If DataCt <= 0 Then
Throw an exception
Throw New Exception("Mist enter a positive nunber.")
End | f
Catch ex As Exception
MsgBox(ex. Message)
End Try

Note that the Exception class constructor (in one of its overloaded forms) is:

Overl oads Public Sub New(String)
where St ri ng is the error message to be associated with the error.

Here is an example of error raising using unstructured error handling:

Public Sub Get SoneData()
On Error Goto ErrCet SoneDat a
DataCt = Clnt (Il nputBox("Enter nunber of itens."))

Check for error
If DataCt < = 0 then
Rai se an error
Err(). Raise Nunmber:= ErrBadDat aCt
End If
Code here to get the individual data values ...
Exit Sub

Error - handl er
Er r Get SoneDat a:
Sel ect Case Err(). Nunber
Case ErrBadDat aCt
Deal with this error by displaying
nessage and getting help from user
Case Else
"' Deal with other errors
End Sel ect
Exit Sub

End Sub
7.3.2.3 Passing the error to the calling procedure

As with runtime errors, passing the error to the calling procedure can be done in a parameter of the
offending procedure or as the return value of the offending function. Also, the calling procedure's error
handler can be called by throwing (or raising) an error.

7.4 Error Constants

To raise our own errors using the Err.Raise method, we need error numbers that do not conflict with
those used by Visual Basic. The Visual Basic documentation says that error numbers in the range
vbOhj ect Error tovbObj ect Error + 65535, where vbObjectError is a built-in constant whose
value is the signed integer - 2147220991 (or &430040000 as an unsigned hexadecimal integer), are
designed to signal an error generated by an object.

133

It further says that error numbers below vbObj ect Err or + 512 may conflict with values reserved for
OLE, so these numbers are verboten. Thus, we are left with numbers in the range vbObj ect Error +
512 to vbOhj ect Error + 65535, which should be plenty.

Many programmers like to assign symbolic constants to error numbers, since it tends to improve
readability and cut down on the need for comments. For instance, we could add the line:

Public Const ErrBadDataCt = vbObjectError + 1024

in a standard module.

134

Part II: Reference

This section consists only of one very long chapter (Chapter 8), which contains an alphabetic
reference to VB .NET language elements.

The chapter documents the following:

Statements, such as AddHandl er or St ructure. .. End Structure.
Procedures, such as AppAct i vat e or Renane. These were statements in previous
versions of Visual Basic, but now they are methods of one class or another within the
Microsoft.VisualBasic namespace. The official documentation describes them as
functions, but since they don't return a value, we've chosen to describe them as
procedures.

Functions, such as Format or IsReference.

Compiler directives, such as #Const or #| f .

Visual Basic classes and their members. The two intrinsic objects available in Visual
Basic are the Col | ect i on object and the Er r object.

Selected classes in the .NET Framework Class Library, along with their members.
Documentation of the Framework Class Library, however, is highly selective; we've
chosen classes and their members either because they replace language elements
that were present in VB 6, or because they provide much needed functionality that
supplements existing language elements.

When you're looking for a particular language element but don't quite remember what it's called, an
alphabetic reference is of little value. For this reason, we've included Appendix B.

Finally, two language elements are covered in the appendixes rather than in Part 1. With a few
exceptions (notably, Li ke and | s) that are documented in Part 11, Visual Basic operators are
covered in Appendix C. And Visual Basic constants and enumerations are listed in Appendix D.

Chapter 8. The Language Reference

This long chapter documents VB .NET language elements. To help you speed the process of finding
the right element to perform a particular task, you can use Appendix B to determine what language
elements are available for the purpose you require. If you're using Visual Studio .NET, you can also
make use of its Object Browser to browse the Microsoft.VisualBasic namespace.

In documenting the VB .NET language, we've tried to provide a consistent and uniform treatment of
particular types of language elements. These language elements are:

Functions

The entry for each function provides the standard information that you'd expect for a function:
its syntax, parameters (if it has any), return value, and description. In addition, we list rules for
using the function (see Rules at a Glance), discuss tips and tricks related to the function
(see Programming Tips and Gotchas), frequently provide examples, and list related
language elements.

In addition, each VB .NET function is in fact a method, since it is a member of a particular
class in the Microsoft.VisualBasic namespace. In each case, we've listed the class to which
the function belongs.

For the first time, Visual Basic supports both named and positional arguments for all functions,
procedures, and methods, with just a few exceptions. Functions, procedures, or methods that
accept parameter arrays as arguments don't accept named arguments if the ParamArray

135

parameter is present. And "functions" that are actually resolved by the compiler at compile
time (the conversion functions fall into this category) do not accept named arguments. To see
how named arguments work, let's look at the syntax of the Mid function:

Md(Str As String, Start As Integer, Length As Integer)
Using positional arguments, you might call the function as follows:

i Pos = Md(strNane, 12, 10)

The same function call using named arguments might appear as follows:

i Pos = Md(start:=12, str:=strNane, |ength:=10)

Since hamed arguments are nearly universally accepted, we only note when you can't use
named arguments with a particular function. The name of each argument is provided in the
function's syntax statement.

Finally, we've noted any differences between the operation of the function under previous
versions of Visual Basic and under VB .NET.

Procedures

Procedures are really functions that don't return a value to the caller. Consequently, except for
the absence of a return value, the same information is presented for procedures as for
functions.

Procedures are interesting as a separate language category. Under previous versions of
Visual Basic, they were statements. With the rationalization and streamlining of Visual Basic
for its .NET version, they were moved into classes in the Microsoft.VisualBasic namespace
and became procedures. The official documentation describes them as functions, although
they do not return a value.

Statements

Visual Basic statements are not class members, don't support named arguments, and don't
return a value. Aside from these three items, the same information is presented for statements
as for procedures and functions.

Directives

Visual Basic directives are really statements that provide instructions to the VB .NET compiler
or to a .NET development environment like Visual Studio. Like statements, they are not class
members, don't support named arguments, and don't return a value. In general, the same
information is presented for directives as for statements.

Classes and Objects

Entries for classes and objects identify the namespace to which the class belongs (something
that is particularly important in the case of the Framework Class Library) and indicate whether
the class is creatable. If a class is createable, a new instance of that class can be created by
using the New keyword, as in:

Dimcol States As New Col | ecti on

136

In some cases, the entry for the class or object also includes a summary listing of the class'
members, along with their syntax and a brief description.

Class Members (Properties, Methods, and Events)

When the members of a class seem to be particularly interesting or important, we've devoted
separate entries to each. These contain the same items of information as functions.

#Const Directive

Syntax
#Const constant nane = expression
const ant nanme

Use: Required

Data Type: String literal

Name of the constant
expression

Use: Required

Data Type: Literal

Any combination of literal values, other conditional compilation constants defined with the
#Const directive, and arithmetic or logical operators except | s

Description
Defines a conditional compiler constant.

By using compiler constants to create code blocks that are included in the compiled application only
when a particular condition is met, you can create more than one version of the application using the
same source code. This is a two-step process:

Defining the conditional compiler constant. This step is optional; conditional compiler
constants that are not explicitly defined by the #Const directive, but are referenced in code,
default to a value of Nothing.

Evaluating the constant in the conditional compiler #| f . . . Then statement block.

A conditional compiler constant can be assigned any string, numeric, or logical value returned by an
expression. However, the expression itself can only consist of literals, operators other than | s, and
another conditional compiler constant.

When the constant is evaluated, the code within the conditional compiler #1 f . . . Then block is

compiled as part of the application only when the expression using the conditional compiler constant
evaluates to Tr ue.

137

Rules at a Glance

Conditional compiler constants are evaluated by the conditional compiler #| f . . . Then
statement block.

You can use any arithmetic or logical operator in the expression except | s.

You cannot use other constants defined with the standard Const statement in the expression.
You cannot use intrinsic functions or variables in expr essi on.

Constants defined with #Const can only be used in conditional code blocks.

You can place the #Const directive anywhere within a source file. If placed outside of all
modules, the defined constant is visible throughout the source file, but is not visible to any
other source files in the project. If placed in a module, the scope of the constant is that module.
If placed in a procedure, the scope is that procedure and all called procedures.

The #Const directive must be the first statement on a line of code. It can be followed only by
a comment. Note that the colon, which is used to combine two complete sets of statements
onto a single line, cannot be used on lines that contain #Const .

Programming Tips and Gotchas

Conditional compiler constants help you debug your code, as well as provide a way to create
more than one version of your application. You can include code that only operates when run
in debug mode. The code can be left in your final version and does not compile unless running
in the debugger. Therefore, you don't need to keep adding and removing debugging code.
Conditional compiler constants may be defined in terms of other conditional compiler
constants. For example, the following code fragment works as expected:

#Const Flagl =1

#Const Flag2 =1
#Const Flags = Flagl + Fl ag2

A conditional compiler constant can be defined at the command line using the / def i ne or/ d
switch.
It is important to remember that the constant defined by #Const is evaluated at compile time
and therefore does not return information about the system on which the application is running.
For example, the intent of the following code fragment is to test for a sound card and, if one is
present, to include code to take advantage of the system's enhanced sound capabilities:

I f waveCQut Get NumDevs > 0 Then

#Const ccSoundEnabl ed = True
Endi f

#1f ccSoundEnabl ed Then
I ncl ude code for sound-enabl ed systens
#El se

I ncl ude code for systenms without a sound card
#End | f

However, the code does not work as expected, since it includes or excludes the code
supporting a sound card based on the state of the machine on which the program is compiled,
rather than the machine on which the application is run.

See Also

#I1f...Then...#Else Directive

138

#If... Then...#Else Directive

Syntax

#1f expression Then
statenents

[#El self furtherexpression Then
[el seifstatenments]]

[#El se
[el sestat enment s]]

#End | f

expression

Use: Required

An expression made up of literals, operators, and conditional compiler constants that will
evaluate to Tr ue or Fal se

statenents
Use: Required

One or more lines of code or compiler directives, which is executed if expr essi onevaluates
to True

furtherexpression
Use: Optional

An expression made up of literals, operators, and conditional compiler constants that will
evaluate to Tr ue or Fal se. furt herexpressi on is only evaluated if the preceding
expression evaluates to Fal se

el sei fstatenents
Use: Optional

One or more lines of code or compiler directives, which is executed if f ur t her expr essi on
evaluates to Tr ue

el sestatenents
Use: Optional

One or more lines of code or compiler directives, which are executed if expr essi on or
furtherexpressi on evaluates to Fal se

Description

Defines a block or blocks of code that are only included in the compiled application when a particular
condition is met, allowing you to create more than one version of the application using the same
source code.

139

Conditionally including a block of code is a two-step process:

Use the #Const directive to assign a value to a conditional compiler constant.
Evaluate the conditional compiler constant using the #1 . . . Then. . . #End | f statement
block.

Only code blocks whose expressions evaluate to Tr ue are included in the executable. You can use
the #EI se statement to execute code when the #1 f . . . Then expression evaluates to Fal se. You
can also use an #El sel f statement to evaluate more expressions if previous expressions in the
same block have evaluated to Fal se.

Some uses of conditional compilation code are:

To provide blocks of debugging code that can be left within the source code and switched on
and off using a conditional constant. Since debug statements such as Debug.Write have no
effect in compiled executables, they do not need to be included in conditional compilation
code for the purpose of removing them from the final executable.

To provide blocks of code that can perform different functions based on the build required by
the developer. For example, you may have a sample version of your application that offers
less functionality than the full product. This can be achieved using the same source code and
wrapping the code for menu options, etc., within conditional compiler directives.

To provide blocks of code that reference different components depending upon the build
criteria of the application.

Rules at a Glance

Unlike the normal | . . . Then statement, you cannot use a single-line version of the

#1 ... Then statement.

All expressions are evaluated using Opt i on Conpar e Text , regardless of the setting of
Opti on Conpare.

If a conditional compiler constant is undefined, comparing it to Not hi ng, 0, Fal se, or an
empty string (" ") returns Tr ue.

Example

#Const
Privat

ccVersion = 2.5
e oTest as (bject

Sub CGetCorrect Gbject()

#lf ccVersion = 2.5 Then

Set oTest = New MyQhj ect. MyCl ass
#El se

Set oTest = New MyQt her Obj ect. MyCl ass
#End | f
End Sub

Programming Tips and Gotchas

140

You can negate the evaluation of the expression in the #1 f . . . Then or #El sel f . .. Then
statements by placing the Not operator before the expression. For example, #| f Not
ccVersi on =5 Then forces the code after this line to compile in all situations where
ccVer si on does not equal 5.

Conditional compilation helps you debug your code, as well as provides a way to create more
than one version of your application. You can include code that will only operate when run in

debug mode. The code can be left in your final version and will not compile unless running in
the debugger; therefore, you don't need to keep adding and removing code.

See Also

#Const Directive

#Region...#End Region Directive

Syntax

#Regi on "identifier_string"
code goes here

#End Regi on

identifier_string

Use: Required
Data Type: String literal

The title of the code block (or region)

Description

Marks a block of code as an expandable and collapsible region or code block in the Visual
Studio .NET editor

Rules at a Glance

Code blocks delineated with the #Regi on...#End Regi on directive are collapsed by default.
identifier_string serves as the title to identify the region when it is collapsed.

Code blocks defined by other directives (such as #| f) must be entirely contained within the
#Regi on...#End Regi on block.

Abs Function

Class

System.Math

Syntax
Mat h. Abs(val ue)
val ue

Use: Required

141

Any valid numeric expression

A number whose absolute value is to be returned

Return Value

The absolute value of val ue. The data type is the same as that of the argument passed to the
function.

Description

Returns the absolute value of val ue. If val ue is an uninitialized variable, the return value is 0

Rules at a Glance

Only numeric values can be passed to the Abs function.
This is a Shared member of the Math class, so it can be used without creating any objects.

Example

In this example, the LineLength function is used to determine the length of a line on the screen. If the
line runs from left to right, X1 is less than X2, and the expression X2 - X1 returns the length of the line.
If, however, the line runs from right to left, X1 is greater than X2, and a negative line length is returned.
As you know, in most circumstances it does not matter which way a line is pointing; all you want to
know is how long it is. Using the Abs function allows you to return the same figure whether the
underlying figure is negative or positive:
Function LineLength(X2 as Integer) as |nteger

Dim X1 As | nteger

X1 = 100
Li neLength = Mat h. Abs(X2 - X1)

End Function
Programming Tips and Gotchas

Because the Abs function can only accept numeric values, you may want to check the value you pass
to Abs using the IsNumeric function to avoid generating an error. This is illustrated in the following
code snippet:

If IsNumeric(sExtent) Then
Mat h. Abs(sExt ent)

End | f
VB .NET/VB 6 Differences

In VB 6, Abs is an intrinsic VB function. In the .NET platform, it is a member of the Math class in the
Syst emnamespace, and so it is not part of the VB .NET language.

See Also

142

Sign Function

Acos Function

Class

System.Math

Syntax
Mat h. Acos(d)
d

Use: Required

Data Type: Double or any valid numeric expression

A cosine, which is a number greater than or equal to -1 and less than or equal to 1

Return Value

A Double between 0 and pi that is the arccosine of d in radians

Description

Returns the arccosine of d in radians

Rules at a Glance

If d is out of range (less than -1 or greater than 1), Acos returns Nal.

This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

To convert from radians to degrees, multiply by 180/pi.

VB .NET/VB 6 Differences

The Acos function did not exist in VB 6.

See Also

Asin Function, Atan Function, Atan2 Function

AddHandler Statement

143

Syntax
AddHandl er NanmeOf Event Sender, AddressOF NaneOf Event Handl er
NanmeCOf Event Sender

Use: Required

Type: String literal

The name of a class or object instance and its event, such as Buttonl.Click
NameOf Event Handl er

Use: Required

Type: String literal

The name of a subroutine that is to serve as the event handler for NameOf Event Sender

Description

Binds an event handler to a built-in or custom event. This makes it possible to bind several event
handlers to a single event.

Event NanmeOf Sender takes the form cl ass. event orobj ect. event.
You can stop handling events defined by the AddHand! er statement by calling the
RenoveHand!| er statement.

Example

For an illustration, see Section 6.2.3 in Chapter 6.

Programming Tips and Gotchas

The W t hEvent s keyword can be used to receive event notification for the lifetime of an object. In
contrast, AddHandl er and RenoveHand!| er can be used to dynamically add and remove event
notification at runtime.

AddressOf Operator

Syntax
Addr essOF procedur enane
pr ocedur enane

Use: Required

The name of a procedure that is referenced by the procedure delegate

Description

144

The Addr essOF operator returns a procedure delegate instance that references a specific procedure.

The Addr essOF operator is used in the following situations:

If a parameter to a procedure (a VB procedure or a Win32 API function) requires a function
pointer (the address of a function), then we can pass the expression:

AddressOf functi onnane

where f unct i onnane is the name of the function. This function is called a callback function.
AddressOf is also used to create delegate objects, as in:

del g = New ADel egat e(Addr essCf obj . AMet hod)

Addr essOf is used to bind event handlers to events through the AddHand| er statement:

AddHandl er Forml. Click, AddressOF Me. Formld i ck

Examples of all three applications of Addr essOF can be found in Section 6.1 in Chapter 6.

VB .NET/VB 6 Differences

In VB 6, the Addr essOF operator can only be used in a call to a Windows API function. Moreover, the
argument passed to Addr essOf must be the name of a procedure in a standard code module.
However, in VB .NET these restrictions no longer apply.

AppActivate Procedure

Class

Microsoft.VisualBasic.Interaction

Syntax
[I nteraction.] AppActivate(title)
title

Use: Required

Data Type: String or Integer

The name of the application as currently shown in the application window title bar. This can
also be the task ID returned from the Shell function.

Description

Activates a window based on its caption

Rules at a Glance

145

AppAct i vat e performs a case-insensitive search on all top-level windows for a window
caption that matches t i t | e. If an exact match is found, the window is activated. If no match
is found, then the window captions are searched for a prefix match (1 i t | e matches the
beginning of the window caption). For example, thetitl e "M crosoft Word" matches

“M crosoft Word - MyDocunent . doc". If a prefix match is found, the window is activated.
Note that if multiple prefix matches are found, there is no way to predict which matching
window will be activated.

The window state (Maximized, Minimized, or Normal) of the activated application is not
affected by AppAct i vat e.

If a matching application cannot be found, an exception of type System.ArgumentException is
raised, and runtime error 5, "Invalid procedure call or argument,” is generated.

Example

Private Sub Button2 Cick(ByVal sender As System Cbject, _
ByVal e As System Event Args) _
Handl es Button2.d i ck

Di m bVoi d As Bool ean
bVoi d = ActivateAnApp("M crosoft Excel™)

End Sub
Function Activat eAnApp(vAppTitle As String) As Bool ean
On Error GoTo Activate Err

Acti vat eAnApp = Fal se
AppActi vate(vAppTitle)
Acti vat eAnApp = True

Exit Function

Activate Err:
MsgBox ("Application " & vAppTitle & _
" could not be activated")

End Function
Programming Tips and Gotchas

AppAct i vat e searches only top-level windows.
You can also use the task ID returned by the Shell function with the AppAct i vat e statement,
as this simple example demonstrates:

Option Explicit

Private vAppl D

Private Sub Buttonl Cdick(ByVal sender As System bject,
ByVal e As System Event Args)
Handl es Buttonl. dick

VAppl D = Shel | ("C:\ Program Fi | es\ | nt ernet
Expl orer\ | EXPLORE. EXE")

End Sub

Private Sub Button2 Cick(ByVal sender As System bject,
ByVal e As System Event Args)
Handl es Button2. dick

AppActivate vAppl D
End Sub

146

AppAct i vat e is very difficult to use with applications whose application titles change to
reflect the state or context of the application. Microsoft Outlook illustrates an excellent
example of this problem. If the user has Outlook in the Calendar section, the title bar reads
"Calendar - Microsoft Outlook," whereas if in the Inbox section, the title bar reads "Inbox -
Microsoft Outlook." In situations such as this, we must resort to other techniques, such as
using Win32 APl methods, to enumerate all windows and check the captions directly.
AppAct i vat e is often used to give the focus to a particular window before keystrokes are
sent to it using the SendKeys statement, which sends keystrokes to the active window only.

VB .NET/VB 6 Differences

In VB 6, AppAct i vat e has a second optional parameter, wai t , a Boolean that determines whether
the application calling AppAct i vat e must have the focus for the window indicated by t i t | e to be
activated. In VB .NET, wai t is not supported.

See Also

Shell Function

Application Class

Namespace

System.Windows.Forms

Createable

No

Description

The Application object provides a diverse range of functionality, including support for multithreaded
programming, access to the system registry, and support for subclassing (intercepting messages sent
to application windows). It also includes a variety of informational functions, such as properties to
retrieve the company name, to retrieve the application's executable path, and to retrieve the
application's name and version.

Application objects can be created as follows:
Di m obj As Application

However, because all of the Application object's members are shared, you do not need to instantiate
the Application object to access its properties and methods. Hence, you can retrieve the executable
path of your application, for instance, with the code fragment:

DimsPath As String = Application. Execut abl ePat h

Application class members marked with a plus sign (+) are discussed in detail in their own entries.

Public Shared Properties

147

AllowQuit
CommonAppDataPath
CommonAppDataRegistry
CompanyName +
CurrentCulture
CurrentlnputLanguage
ExecutablePath +
LocalUserAppDataPath
MessageLoop
ProductName +
ProductVersion +
SafeToplLevelCaptionFormat
StartupPath
UserAppDataPath
UserAppDataRegistry

Public Shared Methods

AddMessageFilter
DoEvents +

Exit

ExitThread
OleRequired
OnThreadException
RemoveMessageFilter
Run

Public Shared Events

ApplicationExit
Idle
ThreadException
ThreadExit

See Also

Application.CompanyName Property, Application.DoEvents Method,
Application.ExecutablePath Property, Application.ProductName Property,

Application.ProductVersion Property

Application.CompanyName Property

Class

System.Windows.Forms.Application

Syntax
Appl i cation. ConpanyNanme()

Return Value

A String containing the company name for the application

148

Description
Gets the company name for the application. This is a read-only property.

The value of the CompanyName property can be defined by including the <Assenbl yConpany>
attribute in the AssemblyInfo file for the application. Its syntax is:

<Assenbl y: Assenbl yConpany("sConpany") >
where sConpany is a string literal containing the company name.
See Also

Application Class, Application.ProductName Property, Application.ProductVersion Property

Application.DoEvents Method

Class

System.Windows.Forms.Application

Syntax
Application. DoEvents()

Description
Allows the operating system to process events and messages waiting in the message queue.

For example, you can allow a user to click a Cancel button while a processor-intensive operation is
executing. In this case, without DoEvents, the click event is not processed until after the operation had
completed. With DoEvents, Windows allocates time for the Cancel button's Click event to fire and the
event handler to execute.

Example

The following example uses a form with two command buttons to illustrate DoEvents. Suppose the
user clicks CommandButtonl. Then the Do loop in the click event executes indefinitely. However, if the
user clicks CommandButton2, its click event is processed when the DoEvent s statement in
CommandButtonl_Click is executed. This sets the Boolean flag to Fal se, which terminates the Do
loop.

Option Explicit
Private I ngCr As Long
Private bl nFl ag As Bool ean

Private Sub Buttonl Cick(ByVal sender As System Object,

ByVal e As System Event Args)
Handl es Buttonl. dick

149

bl nFl ag = True

Do

VWi | e bl nFl ag
[ngCtr = 1ngCr + 1
DoEvents()

Loop
MsgBox("Loop interrupted after " & IngCr & _

iterations.")

End Sub

Privat

e Sub CommandButton2 dick()

bl nFl ag = Fal se

End Sub

Programming Tips and Gotchas

While DoEvents can be indispensable for increasing the responsiveness of your application, it
should at the same time be used judiciously, since it entails an enormous performance penalty.
For example, the following table compares the number of seconds required for a simple

For. .. Next loop to iterate one million times when DoEvents isn't called, on the one hand,
and when it's called on each iteration of the loop, on the other.

Without DoEvents 0.01 seconds

With DoEvents 49.26 seconds

If most of a procedure's processing occurs inside of a loop, one way to avoid too many calls to
DoEvents is to call it conditionally every ten, hundred, or thousand iterations of the loop. For
example, the following code calls DoEvents every thousand iterations:
DmlICr As Long
For I1Ctr = 0 To 1000000
If (I1Cr Md 1000) = 0 Then
DoEvent s
End If
Next

DoEvents should not be used in any event procedure or callback routine that is invoked
automatically by the operating system. Doing so causes re-entrance problems. (The event or
routine may be called again during the processing of the DoEvents method.) For the same
reason, DoEvents should not be used in in-process COM objects created with Visual Basic.

See Also

Application Class

Application.ExecutablePath Property

Class

System.

150

Windows.Forms.Application

Syntax
Appl i cation. Execut abl ePat h()

Return Value

A String containing the complete path of the executable file for the application

Description

Gets the complete path of the executable file for the application. This is a read-only property.

VB .NET/VB 6 Differences

The ExecutablePath property in the .NET Framework corresponds to the App.Path property in VB 6.
See Also

Application Class

Application.ProductName Property

Class

System.Windows.Forms.Application

Syntax
Appl i cation. Product Nanme()

Return Value

A String containing the product name of the application
Description

Gets the product name of the application. This is a read-only property.

The value of the ProductName property can be defined by including the <Assenbl yProduct >
attribute in the application's AssemblylInfo file. Its syntax is:

<Assenbly: Assenbl yProduct (" sProduct") >

where sProduct is a string literal containing the product name.

VB .NET/VB 6 Differences

The ProductName property in the .NET Framework corresponds to the App.ProductName property in
VB 6.

151

See Also

Application Class, Application.CompanyName Property, Application.ProductVersion
Property

Application.ProductVersion Property

Class

System.Windows.Forms.Application

Syntax
Application. Product Version()

Return Value

A String containing the product version of the application

Description

Gets the product version of the application. This is a read-only property. The product version typically
has the form:

Maj or Ver si onNunber . M nor Ver si onNunber . Bui | dNurnber . Pri vat ePart Nunber

Its default value is " 1. 0. *", which indicates that Visual Studio maintains default build and revision
numbers.

The value of the ProductVersion property can be defined by including the <Assenbl yVer si on>
attribute in the application's Assemblylinfo file. Its syntax is:

<Assenbly: AssenblyVersion("maj.mn.bld. rev")>

where nmaj is the major version number, ni n is the minor version number, bl d is the build number,
and r ev is the revision number.

VB .NET/VB 6 Differences

The ProductVersion property in the .NET Framework corresponds to the App.Major, App.Minor, and
App.Revision properties in VB 6.

See Also

Application Class, Application.CompanyName Property, Application.ProductName Property

Array Class

152

Namespace

System

Createable

Yes

Description

An Array object (that is, an instance of the Array class) that represents an array.

Arrays defined in VB .NET are Array objects, so they support the members of the Array class. Array

class members marked with a plus sign (+) are discussed in detail in their own entries.

Public Instance Properties

IsFixedSize
IsReadOnly
IsSynchronized
Length

Rank
SyncRoot

Public Shared Methods

BinarySearch +
Clear

Copy +
Createlnstance
IndexOf +
LastindexOf +
Reverse +

Sort +

Public Instance Methods

Clone

CopyTo

Equals
GetEnumerator
GetHashCode
GetLength
GetLowerBound
GetType
GetUpperBound
GetValue
Initialize
SetValue
ToString

Array.BinarySearch Method

153

Class

System.Array

Syntax

Array. Bi narySearch(array, value, [comparer])
Array. Bi narySearch(array, index, |ength, value, [comparer])
array

Use: Required

Data Type: Any array

The one-dimensional array to be searched
val ue

Use: Required in first overloaded function

Data Type: Any

The value to search for in ar r ay
i ndex

Use: Required in second overloaded version

Data Type: Integer

The array element at which the search is to start
[ength

Use: Required in second overloaded version

Data Type: Integer

The number of array elements to be searched
conpar er

Use: Optional

Data Type: | Conpar er

A BCL or user-defined class implementing the | Conpar er interface that determines how two
items are compared for equality.

Return Value

An Integer representing the zero-based ordinal position of the element matching val ue

154

Description

This method provides a quick way to search for a value in a sorted one-dimensional array, returning
the smallest index whose element is that value. It uses a binary search algorithm, which tends to take
log,(n) comparisons to find an item in an array of length n. For example, if n = 100,000, the number of
comparisons is on the order of 17.

To illustrate, if ar r is an array of names in alphabetical order, then the code:

Array. Bi narySearch(arr, "steve")

returns the smallest index with element "steve." If no such element exists, BinarySearch returns the
negative number whose bitwise complement is the index of the first element that is larger than "steve."

Rules at a Glance

The array must be a one-dimensional array sorted in ascending order.
If val ue is not found in the array, the method returns a negative number, which is the bitwise
complement of the index of the first element that is larger than val ue. To extract this value,
you can use the Not operator, as in the following code fragment:
i Result = Array. Bi narySearch(l Arr, | Search)
if iResult >= 0 Then
MsgBox (i Resul t)

El se
MsgBox(i Result & vberlf & Not i Result)
End If

By default, the System.Collections.Comparer class is used to compare val ue with the
members of ar r ay. This means that string comparisons are case sensitive.

Programming Tips and Gotchas

If an array contains Boolean values, the method fails to correctly identify the position of the
first Fal se value in the array.

In addition to the Comparer class, you can also pass an instance of the
System.Collections.CaselnsensitiveComparer class as the conpar er argument. It provides
for case-insensitive comparisons. For example:

DmsArr() As String = {"Al aska", "ALASKA', "M chigan",
"M CHI GAN',

"New Yor k", "NEW YORK"}
Dim sSearch As String
Dim Il Result As Long
Di m oConp As New Casel nsensi ti veConpar er

sSearch = "M CH GAN'
i Result = Array. Bi narySearch(sArr, sSearch, oConp)

In this case, because of the case-insensitive comparison, the value of | Resul t is 2.
See Also

Array.IndexOf Method, Array.LastindexOf Method, Array.Sort Method

155

Array.Copy Method

Class

System.Array

Syntax
Array. Copy(sourceArray, destinationArray, |ength)

Array. Copy(sourceArray, sourcelndex, destinationArray,
desti nati onl ndex, | ength)
sour ceArray

Use: Required

Data Type: Any array

The array to be copied
sour cel ndex

Use: Required in second overloaded version

Data Type: Integer

The index in sour ceAr r ay at which copying begins
destinati onArray

Use: Required

Data Type: Any array

The target array
desti nati onl ndex

Use: Required in second overloaded version

Data Type: Integer

The index in dest i nat i onAr r ay where the first element is to be copied
| engt h

Use: Required

Data Type: Integer

The number of elements to copy

156

Return Value

None

Description
Makes a copy of all or part of an array.

Since arrays are reference types, when we set one array variable equal to another, we are just
assigning a new reference to the same array. For instance, consider the following code:

Dma() As Integer = {1, 2, 3}
Dimb() As Integer
Array assi gnnent
b =a
Change b
b(0) = 10
" Check a
MsgBox(a(0)) "Di splays 10

The fact that changing b(0) also changes a(0) shows that a and b point to the same array.
Rules at a Glance

Using the first syntax, you can copy a range of values from the beginning of sour ceArray to
the beginning of dest i nat i onArr ay. Using the second syntax, you can copy a range of
values from anywhere in dest i nat i onArray to anywhere int ar get Arr ay.

sour ceArray and dest i nat i onArray must have the same number of dimensions.

| engt h is the total number of elements to be copied. If sArrl is a two-dimensional array, for
example, the statement:

Array. Copy(sArrl, 0, sArr2, 0, 3)

copies the values from sArr(0,0), sArr(0,1), and sArr(1,0) to sArr2.

To copy all elements, you can supply UBound(sour ceArray) + 1 as an argument to

| engt h.

If sour ceArray and dest i nati onArray are the same, and dest i nat i onl ndex lies
within the range of values being copied (that is, if the source and target ranges overlap), no
data will be lost. The method behaves as if it copies | engt h elements from sour ceArray to
a temporary buffer, then copies from the temporary buffer to dest i nat i onArray.

Example
Dma() As Integer = {1, 2, 3}
Dmc() As Integer
Array copy
ReDi m c(UBound(a) + 1)
Array. Copy(a, c, UBound(a) + 1)
' Change c
c(0) = 20
' Check a
MsgBox(a(0)) "Displays 1

VB .NET/VB 6 Differences

157

Since arrays were not a reference type in VB 6, you could simply create a copy of an existing array
through assignment, thus eliminating the need for a Copy method.

Array.IndexOf Method

Class

System.Array

Syntax
Array. | ndexOf (Array, Value[, startlndex[, count]])
Array

Use: Required

Data Type: Any array

The array to be searched
Val ue

Use: Required

Data Type: Any

The object that is searched for
startl ndex

Use: Optional

Data Type: Integer

The index at which to start the search
count

Use: Optional

Data Type: Integer

The number of items to search

Return Value

The index of the first occurrence of VVal ue in Array, or -1

Description

158

Returns an Integer representing the index of the first occurrence of obj ect in Array

Rules at a Glance

Ar ray must be a one-dimensional array.

By default, the IndexOf method searches for VVal ue from the beginning to the end of Arr ay.
If st art | ndex is provided without count , IndexOf searches from st ar t | ndex to the last
element of Ar r ay.

If both st art | ndex and count are provided, the method searches count elements starting
atst art | ndex. In other words, it searches from array(start| ndex) to
array(startlndex + count - 1).

If st art| ndex is present and is outside of the range of the elements in array, the method
returns -1.

If count is presentand st art | ndex + count - 1 exceeds the total number of elements in
arr ay, the method call generates an ArgumentOutOfRangeException exception.

Example
The following code searches for a value in an Integer array:

Dimi As Integer
Dim a(99999) As Integer
For i = 0 To 99999
a(i) = Cnt(Rrd() * 100000)
Next
MsgBox(Array. | ndexOf (a, 36500))

You can also specify the starting index for the search, as well as the number of elements to search.
For example:

Array. | ndexOf (array: =a, val ue: =136500, startlndex: =100,
count : =1000)

Array.LastindexOf Method

Class

System.Array

Syntax
Array. Lastl ndexOr (Array, Value[, startlndex, count])
Array

Use: Required

Data Type: Any array

The array to be searched

Val ue

159

Use: Required
Data Type: Any

The object that is searched for

start| ndex

count

Use: Optional
Data Type: Integer

The index at which to start the search

Use: Optional
Data Type: Integer

The number of elements to search

Return Value

An Integer containing the index of the last occurrence of Obj ect in Array

Description

Returns the index of the last occurrence of Cbj ect in Array

Rules at a Glance

Array must be a one-dimensional array.

The LastindexOf method has the same syntax as the IndexOf method and works the same
way as IndexOf, except that it searches from the end of the array and returns the largest index
of a matching element.

By default, the LastindexOf method searches for VVal ue from the end to the beginning of
Array.

If st art | ndex is provided without count , LastindexOf searches from st ar t | ndex to the
first element of Array.

If both st art | ndex and count are provided, the method searches count elements
backward starting at st ar t | ndex. In other words, it searches from array(start | ndex) to
array(startlndex - count + 1).

If st art | ndex is present and is outside of the range of the elements in ar r ay, the method
returns -1.

If count is presentand st art | ndex < count - 1,the method call generates an
ArgumentOutOfRangeException exception.

Example

The following code searches for a value in an Integer array:

Dm i

As | nt eger

Di m a(100000) As Integer

160

For i = 0 To 99999

a(i) = Cnt(Rrd() * 100000)
Next
MsgBox(Array. Last | ndexCf (a, 36500))

You can also specify the starting index for the search, as well as the number of elements to search.

For example:

Array. Lastl ndexOf (array: =a, val ue: =136500,
count : =50)

See Also

Array.IndexOf Method

Array.Reverse Method

start | ndex: =100,

Class

System.Array

Syntax

Array. Reverse(array[, startindex, endindex])

array
Use: Required
Data Type: Any array
The array to be reversed
startl ndex
Use: Optional
Data Type: Integer
The index at which to start the reversal process
endl ndex
Use: Optional
Data Type: Integer

The index at which to end the reversal process

Return Value

None

161

Description

Reverses a portion of or all of the elements of an array.

Example
Dma() As Integer = {1, 2, 3, 4, 5}
Dimi As Integer
array. Reverse(a, 1, 3)
For i = 0 To 4
debug. Wite(a(i))
Next

This code prints the sequence 14325, which is the original array 12345 with the middle section from
index 1 to index 3 reversed.

Array.Sort Method

Class

System.Array

Syntax

Array. Sort (array)

Array. Sort (array, conparer)

Array. Sort (array, index, |ength)

Array. Sort (array, index, |ength, conparer)

Array. Sort (keys, itens)
Array. Sort (keys, itens, conparer)
Array. Sort (keys, itens, index, |ength)

Array. Sort (keys, itens, index, |ength, conparer)
array

Use: Required
Data Type: Any array

The array of objects to be sorted

keys

Use: Required

Data Type: Any array

The array of keys to use for sorting. This array is also sorted.
itens

Use: Required

162

Data Type: Any array

A parallel array of values to be sorted in the order of keys, their corresponding keys

i ndex

Use: Required

Data Type: Integer

The index at which to start the sort
| engt h

Use: Required

Data Type: Integer

The index at which to end the reversal process
conpar er

Use: Required

Data Type: | Conpar er interface

An object implementing the | Conpar er interface to be used for sorting. If Not hi ng, then the
| Conpar abl e implementation of each element (in the case of arrays of keys) or value type

(in the case of arrays).
Return Value
None

Description

Sorts a portion of, or sorts an entire one-dimensional array, with an optionally specified key array and

an optionally specified | Conpar er interface

Example

Sub sortArray()

Dimi As Integer

DmintArray() As Integer = {9, 8, 12,

For i =0 To 4
console.WiteLine(CStr(intArray(i)))

Next

System Array. Sort (i ntarray)

Consol e. WiteLine("Sorted:")

For i =0 To 4
console.WiteLine(CStr(intArray(i)))

Next

End Sub

The output is:

5}

163

2

9
8
1
4
5
Sort ed:
4
5
8
9

12
Asc, AscW Functions

Class

Microsoft.VisualBasic.Strings

Syntax

Asc(string)
AscW(str)
string,str

Use: Required
Data Type: String or Char

Any expression that evaluates to a nonempty string

Return Value

An Integer that represents the character code of the first character of the string. The range for the
returned value is 0 - 255 on nonDBCS systems, but -32768 to 32767 on DBCS systems.

Description

Returns an Integer representing the character code for the first character of the string passed to it. All
other characters in the string are ignored

Rules at a Glance

The string expression passed to the function must contain at least one character or a runtime
error is generated.
Only the first character of the string is evaluated by Asc or AscW.

Example

Dim sChars As String
Di m i Char Code As | nteger

sChars = Text Box1l. Text
If Len(sChars) > 0 Then

164

i Char Code = Asc(sChars)
[f i CharCode >= 97 And i Char <= 122 Then
MsgBox "The first character nust be uppercase"
End | f
End If

Programming Tips and Gotchas

Check that the string you are passing to the function contains at least one character using the
Len function, as the following example shows:
If Len(sMyString) > 0 Then
i Char Code = Asc(sMWString)
El se

MsgBox (" Cannot process a zero-length string")
End If

Use Asc within your data-validation routines to determine such conditions as whether the first
character is upper- or lowercase and whether it is alphabetic or numeric, as the following
example demonstrates:
Private Sub Buttonl Cick(ByVal sender As System bject,
ByVal e As System Event Args)
Handl es Buttonl. dick

Dim sTest As String
Dimi Char As Integer

sTest = Text Box1l. Text

If Len(sTest) > 0 Then
i Char = Asc(sTest)
[f iChar >= 65 And i Char <= 90 Then
MsgBox "The first character is UPPERCASE"
El self iChar >= 97 And i Char <= 122 Then
MsgBox "The first character is | owercase"”

El se
MsgBox "The first character isn't al phabetical”
End If
El se
MsgBox " Pl ease enter sonething in the text box"
End If
End Sub

Use the Asc function and the related Chr function to create rudimentary encryption methods.

Once you have obtained the character code for a particular character, you can perform

calculations on this code to come up with a different number and then convert this to a

character using the Chr function. To decrypt your string, simply reverse the calculation. You

may want to avoid character codes less than 20, however, since these can be interpreted as

special nonprinting characters and cause undesirable effects if displayed or printed.
Private Sub CommandButton2 dick()

Dim MyEncryptedString, MyDecryptedString As String

Dim MyName As String = "Paul Lomax"
Dimi As Integer

165

For i = 1 To Len(My/Nane)
MyEncryptedString = MyEncryptedString & _
Chr (Asc(M d(MyNane, i, 1)) + 25)
Next i

MsgBox("Hello, nmy name is " & MyEncryptedString)
For i = 1 To Len(My/Nane)
MyDecryptedString & Chr(Asc(M d(M/EncryptedString, i, 1)) - 25)
Next i

MsgBox("Hello, nmy name is " & MyDecryptedString)
End Sub

See Also

Chr, ChrW Functions

Asin Function

Class

System.Math

Syntax

Mat h. Asi n(d)
d

Use: Required

Data Type: Double or any valid numeric expression

A number representing a sine, which can range from -1 to 1
Return Value
A Double between -pi/2 and pi/2 that is the arcsine of d in radians
Description
Returns the arcsine of d, in radians
Rules at a Glance

If d is out of range, the function returns Na.
This is a Shared member, so it can be used without creating any objects.

Programming Tips and Gotchas

166

To convert from radians to degrees, multiply by 180/pi.

VB .NET/VB 6 Differences

The Asin function did not exist in VB 6.

See Also

Acos Function, Atan Function, Atan2 Function

Atan Function

Class

System.Math

Syntax
Mat h. At an(d)
d
Use: Required

Data Type: Double or any valid numeric expression

A number representing a tangent

Return Value

A Double that is the arctangent in radians of d, in the range -pi/2 to pi/2

Description

Takes the ratio of two sides of a right triangle (d) and returns the corresponding angle in radians. The
ratio is the length of the side opposite the angle divided by the length of the side adjacent to the angle.

Rules at a Glance

If d is out of range, the function returns Nal.
This is a Shared member, so it can be used without creating any objects.

Example

Private Sub Main()
Di m dbl Si deAdj As Doubl e
Di m dbl Si deCpp As Doubl e
Di m dbl Rati o As Doubl e
Di m dbl At angent As Doubl e

dbl Si deAdj = 50. 25

167

dbl Si deCpp = 75.5

dbl Rati o = dbl Si deCpp / dbl Si deAdj

dbl At angent = Mat h. Atan(dbl Rati o)
‘convert fromradians to degrees

dbl Degrees = dbl Atangent * (180 / 3.142)
MsgBox dbl Degrees & " Degrees”

End Sub
Programming Tips and Gotchas

To convert radians to degrees, multiply radians by 180/pi.
Do not confuse Atan with the cotangent. Atan is the inverse trigonometric function of Tan,
whereas the cotangent is the reciprocal of the tangent.

VB .NET/VB 6 Differences

The Atan function corresponds to the VB 6 Atn intrinsic function.

See Also

Acos Function, Asin Function, Atan2 Function

Atan2 Function

Class

System.Math

Syntax

Mat h. At an2(y, Xx)

X
Use: Required
Data Type: Double

The x coordinate of a point

Use: Required
Data Type: Double

The y coordinate of a point

Return Value

168

A Double that is the arctangent of the ratio x/y, in radians

Description

Returns the angle in the Cartesian plane formed by the x-axis and a vector starting from the origin (0,0)
and terminating at the point (X, y). More specifically, the return value ¢ satisfies the following:

For (x, y) in quadrant 1, 0 < g < pi/2.
For (x, y) in quadrant 2, pi /2 < g < pi.
For (%, y) in quadrant 3, -pi < g < -pi /2.
For (x,y) in quadrant 4, -pi /2 <q<0.
Rules at a Glance
This is a Shared member, so it can be used without creating any objects.
VB .NET/VB 6 Differences
The Atan2 function does not exist in VB 6.

See Also

Acos Function, Asin Function, Atan Function

Beep Procedure

Class

Microsoft.VisualBasic.Interaction

Syntax
Beep

Description

Sounds a tone through the computer's speaker

Example

Private Sub Main()
i Void = DoSoneLongFunction()
Beep
MsgBox " Fi ni shed!"

End Sub

Programming Tips and Gotchas

169

We have found the Beep statement to be completely unreliable, and therefore we never use it
in applications intended for distribution.
If you do decide to use the Beep statement, please remember that its overuse will not endear
you to your users!
The frequency and duration of the tone depends on the computer's hardware. Bear in mind
that on some systems, a mouse click is louder than the beep!
Since the successful operation of the Beep statement does not require the presence of any
multimedia hardware (such as a sound card, for example), it can be used when a system is
not configured to support sound. For example, if the following is defined in the declarations
section of a code module:
Decl are Function waveQut Get NunDevs Lib "winmmdll" () As Long
Decl are Function PlaySound Lib "winmmdll" _
Al'ias "PlaySoundA" (ByVal |pszNanme As String,
ByVval hMbdul e As Long, ByVal dwrFl ags As Long)
As Long

Publ i c Const SND_APPLI CATI ON = &H80
Public Const SND ASYNC = &H1

Publ i c Const SND _FI LENAVE = &H20000
Publ i c Const SND NODEFAULT = &H2

Publ i ¢ HasSound As Bool ean

Publ i c Function |IsSoundSupported() As Bool ean
If (waveQut Get NunDevs > 0) Then _

| sSoundSupported = True
End Function

then the following procedure takes advantage of any existing sound hardware to play a wave
file or simply beeps the built-in PC speaker if no sound hardware is found.

Private Sub Form Load(ByVal sender As System bject,
ByVal e As System Event Args)
Handl es MyBase. Load
DmintCr As |nteger
HasSound = | sSoundSupported()
| f HasSound Then
Call Pl aySound("c:\w ndows\ nedi a\t ada. wav", O,
SND _FI LENAVE Or SND_NODEFAULT)

El se
For intCr =0 To 3
Beep
Next
End If
End Sub

Call Statement

Syntax

[Call]

procedur enane[(argunent|list)]

pr ocedur enane

170

Use: Required

Data Type: N/A

The name of the subroutine being called
argunent | i st

Use: Optional

Data Type: Any

A comma-delimited list of arguments to pass to the subroutine being called

Description

Passes execution control to a procedure, function, or dynamic-link library (DLL) procedure or function
Rules at a Glance

Use of the Cal | keyword is optional.

Regardless of whether the Cal | keyword is used, ar gunent | i st , if it is present, must be
enclosed in par ent heses.

If you use Cal | to call a function, the function's return value is discarded.

Example
Call nyProcedure(True, i Mlnt)

Sub nyProcedure(bl nFl ag as Bool ean, i Nunber as |nteger)
End Sub
Programming Tips and Gotchas

To pass a whole array to a procedure, use the array name followed by empty parentheses.
Some programmers suggest that code is more readable when the Cal | keyword is used to
call subroutines.

VB .NET/VB 6 Differences

In VB 6, parentheses had to be omitted if the Cal | keyword was omitted and

procedur ename had more than one argument. In VB .NET, parentheses are required
whenever arguments are present.

InVB 6, if ar gunent | i st consisted of a single argument, enclosing it in parentheses and
omitting the Cal | statement reversed the method by which the argument was passed to the
called function. Thus, an argument ordinarily called by value would be called by reference,
and vice versa. In VB .NET, this confusing behavior is not supported.

In VB 6, when calling an external routine defined using the Decl ar e statement, you can
override the default method of passing an argument by specifying the By Val or By Ref
keywords before the argument. In VB .NET you cannot change whether an argument is
passed by value or by reference in the call to the routine.

See Also

CallByName Function

171

CallByName Function

Class
Microsoft.VisualBasic.Interaction
Named Arguments

Yes, if Args() is omitted

Syntax
Cal | ByNanme(Qbj ect, ProcNane, UseCall Type, Args())
bj ect

Use: Required

Data Type: Object

A reference to the object containing the procedure being called.
Pr ocNane

Use: Required

Data Type: String

The name of the procedure to call.
UseCal | Type

Use: Required

Data Type: Cal | Type Constant

A constant of the type Cal | Type indicating what type of procedure is being called. Cal | Type
constants are listed in the following table.

Constant Value Description
Met hod 1 The called procedure is a method.
Get 2 The called procedure retrieves a property value.
Let 4 The called procedure sets the value of a property.
Args
Use: Optional

Data Type: Any

A ParamArray argument representing the arguments required by the procedure being called.

172

Return Value

Depends on the return value (if any) of the called procedure

Description
Provides a method for calling a class member by name.

Since Pr ocNane is a string expression, rather than the literal name of a routine, it is possible to call
routines dynamically at runtime using a string variable to hold the various procedure names.

Rules at a Glance

The return type of CallByName is the return type of the called procedure.

Pr ocName is not case sensitive.

UseCal | Type can either be a numeric value or a constant of the Cal | Type enumeration. In
the latter case, the enumeration name must be specified along with the constant name, as in
CallType.Method.

Args() must be a parameter array. A parameter array is an array used to contain function,
procedure, or property arguments that can have a variable number of elements.

Programming Tips and Gotchas

Since the member to be called is not known at compile time, the performance of CallByName
is inferior to calling members directly by literal name.
Using CallByName does not necessarily require that Opt i on St ri ct be set Off.

Example

The following example uses a parameter array to call the Multiply method of a class named Math:

I mports M crosoft. Vi sual Basi c
| nports System

Modul e nobdMai n
Public Sub Main()

Di m ovat h As New Mat h
DimdArr() As Double = {1, 2, 3}

Cal | using ParamArray
MsgBox(Cal | ByNane(oMat h, "Miltiply", Call Type. Met hod, dArr))

End Sub

End Modul e

Public Cl ass Math

Public Function Miultiply(a() As Double) As Double
Dimresult as double = 1.0

DmintCr As |nteger
Dimintlndex As Integer = 0

173

for intlndex = 0 to ubound(a)
result = result * a(intlndex)

next

Mul tiply = result

End Functi on

End C ass
VB .NET/VB 6 Differences

In VB 6, you don't have to specify VbCal | Type as the name of the enumeration to access its
constants. In VB .NET, you must specify Cal | Type as the name of the enumeration to access its
constants.

See Also

Call Statement

CBool Function

Named Arguments

No
Syntax
CBool (expressi on)
expression
Use: Required
Data Type: String or Numeric
Any numeric expression or a string representation of a numeric value

Return Value

expressi on converted to Boolean data type (Tr ue or Fal se)
Description

Casts expr essi on as a Boolean data type

Rules at a Glance

When a numeric value is converted to Boolean, any nonzero value is converted to Tr ue, and zero is
converted to Fal se.

174

If the expression to be converted is a string, the string must be capable of being evaluated as a
number, or it must be " True” or " Fal se". Any other string generates a runtime error. For example,
CBool ("one") results in a type mismatch error, whereas CBool (" 1") is converted to Tr ue, and
CBool (" True") is converted to Tr ue.

Programming Tips and Gotchas

You can check the validity of the expression prior to using the CBool function by using the
IsNumeric function.

Like most of the conversion functions, CBool is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

CByte Function

Named Arguments

No

Syntax
CByt e(expressi on)
expression

Use: Required

Data Type: Numeric or String

A string or numeric expression that evaluates to a number between 0 and 255

Return Value

expressi on converted to Byte data type

Description

Converts expr essi on to a Byte data type
Rules at a Glance

If the expression to be converted is a string, the string must be capable of conversion to a
numeric expression; this can be checked using the IsNumeric function.

If expressi on evaluates to less than 0 or more than 255, a runtime error is generated.
If the value of expr essi on is not a whole number, CByte rounds the number prior to
conversion.

Example

I f IsNumeric(sMy/Nunber) Then
I f val (sMyNunmber) >= 0 and val (sMyNunber) <= 255 Then
Byt MyNunber = CByt e(sM/Nunber)

175

End If

End If

Programming Tips and Gotchas

Check that the value you pass to CByte is neither negative nor greater than 255.

Use IsNumeric to ensure that the value passed to CByte can be converted to a numeric
expression.

When using CByte to convert floating point numbers, fractional values up to but not

including .5 are rounded down, while values above but not including .5 are rounded up. Values
whose fractional component is exactly equal to .5 are rounded up if their integral component is
odd and down if their integral component is even.

The CByte function converts an expression to an unsigned byte data type. To convert

expr essi on to a signed byte data type, create an instance of the SByte class and call its
Parse method.

Like most of the conversion functions, CByte is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

CChar Function

Named Arguments

No

Syntax

CChar (

expressi on)

expression

Use: Required
Data Type: String

Any string expression

Return Value

A value

of type Char

Description

Converts the first character in a string expr essi on to a Char data type

Rules at a Glance

CChar extracts the first character of expression and converts it to a Char data type.

Example
MsgBox(CChar ("abc")) " Displays a
MsgBox(CChar (" 56")) " Displays 5

176

Programming Tips and Gotchas

If you wish to convert a numeric code to its corresponding Char data type, use the Chrw
function.

Like most of the conversion functions, CChar is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

See Also

Chr, ChrW Functions

CDate Function

Named Arguments

No

Syntax
CDat e(expr essi on)
expression

Use: Required

Data Type: String or Numeric

Any valid representation of a date and time

Return Value

expr essi on converted into a Date data type.

Description
Converts expr essi on to a Date data type.

The format of expr essi on—the order of day, month, and year—is determined by the locale setting of
the local computer. To be certain a date is recognized correctly by CDate, the month, day, and year
elements of expr essi on must be in the same sequence as the local computer's regional settings;
otherwise, the CDate function has no idea, for example, that 4 was supposed to be the fourth day of
the month, not the month of April.

Rules at a Glance

You can use any of the date delimiters specified in your computer's regional settings; for most
systems, this includes , ,/,-,and.

The earliest date that can be handled by the Date data type is 01/01/100. The latest date that
can be handled by the Date data type is 12/31/9999.

177

Programming Tips and Gotchas

Use the IsDate function to determine if expr essi on can be converted to a date or time.

If you pass an empty string to CDate, an error is generated.

A modicum of intelligence has been built into the CDate function. It can determine the day and
month from a string, regardless of their position in the string; this applies only where the day
number is larger than 12, which automatically distinguishes it from the number of the month.
For example, if the string "30/12/97" is passed into the CDate function on a system expecting
a date format of 1 dd/ yy, CDate sees that 30 is too large to represent a month and thus
treats it as the day. This can lead to problems because if we accidentally pass a string such as
"30/12/97" instead of the intended "3/12/97," then VB does not issue an error message!

If we pass a string whose year specification is less than three characters in length, then VB
interprets the year as belonging to the twenty-first century. For instance, the string "1/1/1" is
interpreted as "1/1/2001."

If you do not specify a year, the CDate function uses the year from the current date on your
computer.

Like most conversion functions, CDate is not actually a function in the Microsoft.VisualBasic
namespace. Instead, it is similar to a Visual C++ macro; the compiler translates the function
call into inline code.

CDbl Function

Named Arguments

No

Syntax

CDbl (expressi on)
expression

Use: Required
Data Type: Numeric or String

-1.79769313486232E308 to -4.94065645841247E-324 for negative values, and
4.94065645841247E-324 to 1.79769313486232E308 for positive values

Return Value

expressi on cast as a Double data type.

Description

Converts expr essi on to a Double data type

Rules at a Glance

178

If the value of expr essi on is outside the range of the double data type, an overflow error is
generated.

expr essi on must evaluate to a numeric value; otherwise, a type-mismatch error is
generated.

Example

Di m dbl MyNunber as Doubl e
[f IsNumeric(sMyNunber) then

dbl MyNunber = CDbl (sMyNunber)
End If

Programming Tips and Gotchas

When converting a string representation of a number to a numeric value, the data type
conversion functions, such as CDbl, are preferable to the older function, Val. This is because
the data type conversion functions take account of the system's regional settings, whereas Val
recognizes only the period as a decimal separator. For example, if a user inputs a value of
6,231,532.11, CDbl correctly converts it to a double with a value of 6231532.11, while Val
returns a value of 6.

Use IsNumeric to test whether expr essi on evaluates to a number.

Like most conversion functions, CDbl is not actually a function in the Microsoft.VisualBasic
namespace. Instead, it is similar to a Visual C++ macro; the compiler translates the function
call into inline code.

See Also

CSng Function

CDec Function

Named Arguments

No

Syntax
CDec(expressi on)
expression

Use: Required

Data Type: Numeric or String

The range is +/-79,228,162,514,264,337,593,543,950,335 for numbers with no decimal places.
The range is +/-7.9228162514264337593543950335 for numbers with up to 28 decimal
places. The smallest possible nonzero number is 0.0000000000000000000000000001.

Return Value

expressi on cast as a Decimal type

Description

179

This function casts expr essi on as a Decimal value.

Rules at a Glance

If the value of expr essi on is outside the range of the Decimal data type, an overflow error is
generated.

expr essi on must evaluate to a numeric value; otherwise a type-mismatch error is generated.
To prevent this, it can be tested beforehand with the IsNumeric function.

Example

Di m decMyNunber As Deci nal
I f IsNumeric(sMyNunber) then
decMyNunber = CDec(sM/Number)

End If

Programming Tips and Gotchas

The Decimal data type replaces the VB 6 Currency data type and is appropriate for very large,
very small, or very high precision numbers.

Use IsNumeric to test whether expr essi on evaluates to a number.

When converting a string representation of a number to a numeric, you should use the data
type conversion functions—such as CDec—instead of Val, because the data type conversion
functions take account of the system's regional settings. In particular, the CDec function
recognizes the thousands separator if it is encountered in the string representation of a
number. For example, if the user inputs the value 1,827,209.6654, CDec converts it to a the
decimal value 1827209.6654, while Val converts it to a Double value of 1.

Like most of the conversion functions, CDec is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

Ceiling Function

Class

System.

Math

Syntax
Mat h. Cei | i ng(a)

a

Use: Required

Data Type: Double

Return Value

A Double containing the smallest integer greater than or equal to the argument a.

Description

180

Returns the smallest integer greater than or equal to the argument a.

Example

Consol e. WiteLine(Math. Ceiling(12.1)) " Returns 13
Consol e. WiteLine(Math. Ceiling(12.5)) ' Returns 13
Consol e. WiteLine(Math. Ceiling(-12.5)) " Returns -12
Consol e. WiteLine(Math. Ceiling(-12.8)) " Returns -12

Rules at a Glance

Because this function can only accept numeric values, you may want to check the value you

pass using the IsNumeric function to prevent generating an error.
This is a Shared member, so it can be used without creating any objects.

VB .NET/VB 6 Differences

The Ceiling function is new to the .NET Framework.
See Also

Floor Function

ChDir Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax
ChDi r (pat h)
pat h
Use: Required
Data Type: String
The path of the directory to set as the new default directory

Description

Changes the current working (default) directory.
Rules at a Glance

pat h can be an absolute or relative reference.

Changing the default directory does not change the default drive; it only changes a particular

drive's default directory.

181

Example

ChDir("c:\programfiles\ny folder\")
ChDir("..") "c:\programfiles is now the default directory.

Programming Tips and Gotchas

The single dot (" . ") represents the current directory and the double dot (*. . ") represents
the parent of the current directory. If the root directory is the current directory, the statement:

ChDir("..")

does not change the current directory and does not produce a syntax error.

If pat h is not found, or a FileNotFoundExeception exception, 76, "Path not found," is
generated. However, if pat h refers to another machine on the network, error 75, "Path/File
access error," is generated.

Although you can use a network path such as \NTSERV1\d$\TestDir\ to change the current
directory on the network admin share \NTSERV1\d$, you can't access this drive using
ChDrive without having the drive mapped to a drive letter, which makes using network paths
with ChDir a little pointless!

Use CurDir to determine the current directory for a particular drive.

VB .NET/VB 6 Differences

In VB .NET, ChDir is implemented as a procedure (a method of the FileSystem class). In VB 6, it is
implemented as a statement. As a result, the VB .NET version requires parentheses around the pat h
argument.

See Also

ChDrive Procedure, CurDir Function

ChDrive Procedure

Class

Microsoft.VisualBasic.FileSystem

Syntax
ChDrive(drive)
drive
Use: Required
Data Type: String or Char

The letter of the drive (A-Z) to set as the new default drive

Description

182

Changes the current working (default) disk drive
Rules at a Glance

If a zero-length string is supplied, the drive is not changed.
If drivel etter consists of more than one character, only the first character is used to
determine the drive.

Example

The following example demonstrates a utility function that uses ChDrive to determine if a given drive is
available. By centralizing the test, this reduces the amount of coding required each time you need to
use ChDrive.

Private Function |IsAvail abl eDrive(sDrive As String)
As Bool ean

"if an error occurs goto to the next line of code
On Error Resune Next

DimsCurDrv As String

‘get the letter of the current drive
sCurDrv = Left$(CurDir, 1)

"attenpt to change the drive
ChDrive(sDrive)

"did an error occur?
I f Err.Nunber = 0 Then
'no - this drive is K to use
| sAvai |l abl eDrive = True
El se
'yes - don't use this drive
| sAvai | abl eDrive = Fal se
End If
"set the drive back to what it was
ChDri ve(sCurDrv)

End Function
The following code snippet shows how this function could be implemented within your application:

I f IsAvail abl eDrive(sDrv) Then

ChDrive(sDrv)
El se

MsgBox (" Cannot use Drive " & sDrv & ":\")
End | f

Programming Tips and Gotchas

The current directory is unaffected by the ChDrive procedure.

Since ChDrive only processes the first letter of the dr i ve string, it's not possible to supply a
piped name as a network drive name (for example, \NTServen\). Instead, the machine on
which your program runs must have a drive letter mapped to the network resource using
Explorer or other network commands. If dr i ve is specified as a UNC path, the function raises
error number 5, "Invalid procedure call or argument,” or generates an ArgumentException
exception.

183

If dri ve is invalid, the function returns error number 68, "Device unavailable," or generates an
IOException exception.
To determine which drive is current, call the CurDir function with no arguments. Then use the
Left function to extract its first character, as the following code fragment illustrates:
DimsDrive As String = Left(CurDir(), 1)

VB .NET/VB 6 Differences

In VB .NET, ChDrive is implemented as a procedure (a method of the FileSystem class). In VB 6, it is
implemented as a statement. As a result, the VB .NET version requires parentheses around the
dri ve argument.

See Also

ChDir Procedure, CurDir Function

Choose Function

Class

Microsoft.VisualBasic.Interaction

Named Arguments

No

Syntax
Choose(index, iteml1[,item?2, ...[, itemn]])
i ndex
Use: Required
Data Type: Single
An expression that evaluates to the (1-based) index of the object to choose from the list
iteml-itemn
Use: Required

Data Type: Any

A comma-delimited list of values from which to choose, or a ParamArray containing values
from which to choose

Return Value

The object chosen from the list.

184

Description

Programmatically selects an object from a predefined list of objects (which are passed as parameters
to the function) based on its ordinal position in the list. Using Choose is a simpler alternative to
populating an array with fixed values.

Rules at a Glance

The list of items is based from 1, rather than the more usual VB default base of 0.

Because the list consists of objects, you can mix data types within the list; you are not forced
to use the same data type for each item in the list. For example, i t em 1 can be a string, while
It em 2 can be along integer, and i t em 3 can be a floating point number.

If the rounded value of i ndex does not correspond to an item in the list, the function returns a
null string.

Programming Tips and Gotchas

If i ndex is not a whole number, it is rounded before being used.
It is important to note that all items in the list are evaluated. Thus, if we use functions or
expressions as parameters, all of the functions are called or all of the expressions are
evaluated.
By providing i t em 1 through i t em n in the form of a ParamArray, the list of values can be
expanded or contracted programmatically at runtime.
You can save memory and create more efficient and self-documenting code by using the
Choose function instead of creating an array and populating it with fixed values each time the
program executes. As the following example illustrates, you can turn several lines of code into
one:

Dim vM/Array(3)

vM/Array(1l) = "This"
vWarray(2) = "That"
VMW/Array(3) = "The O her"

Sub chooseFromArray(il ndex as Integer)
VResult = viWArray(il ndex)
End Sub

Sub chooseFrontChoose(sgl | ndex as Single)

vResult = Choose(sgl I ndex, "This", "That", "The O her")
End Sub

VB .NET/VB 6 Differences

INnVB 6,1t em 1 through i t em n must only take the form of a comma-delimited list. In
VB .NET, these arguments can also take the form of an array. This allows the list of choices to
be modified dynamically at runtime.

In VB 6, | dx must be greater than .5 and less than .5 plus the number of items in the list, or a
runtime error results. In VB .NET, if | dx is out of range, the function returns a null string.

See Also

Switch Function

Chr, ChrW Functions

185

Class

Microsoft.VisualBasic.Strings

Syntax

Chr (char code)
Chr W char code)

char code

Use: Required

Data Type: Integer

An expression that evaluates to a Unicode character code

Return Value

A Char that contains the character represented by char code

Description

Returns the character represented by the char code

Programming Tips and Gotchas

Use Chr (34) to embed quotation marks inside a string, as shown in the following example:

sSQL = "SELECT *
where nyCol um ="

FROM nyTabl e
& Chr(34) & sValue & Chr(34)

The following table lists some of the more commonly used character codes that are supplied
in the call to the Chr function:

Code Constant Description

0 vbNul | Char fe?rmci:rg;+sts;::ggrt;1r§rti|r?gss, the null character required to
8 vbBack A backspace character

9 vbTab A tab character

10 |vbLf A linefeed character

13 |vbCr A carriage return character

34 |Control Chars. Quot e|A quotation mark

VB .NET/VB 6 Differences

The ChrB function is no longer supported.
The VB 6 version of the Chr function returns a String; the VB .NET version returns a Char.

See Also

186

Asc, AscW Functions

Cint Function

Named Arguments

No

Syntax
Cl nt (expressi on)
expression

Use: Required
Data Type: Numeric or String

The range of expr essi on is -2,147,483,648 to 2,147,483,647; fractions are rounded.

Return Value

expressi on cast as an Integer

Description

Converts expr essi on to an Integer; any fractional portion of expr essi on is rounded.
Rules at a Glance

expr essi on must evaluate to a numeric value; otherwise, a type-mismatch error is
generated.

If the value of expr essi on is outside the range of the Integer data type, an overflow error is
generated.

When the fractional part of expr essi on is exactly .5, CInt always rounds it to the nearest
even number. For example, .5 rounds to 0, and 1.5 rounds to 2.

Example
Di mi MyNunber as I nteger
I f IsNumeric(sMyNunber) then
i MyNurmber = CI nt (sMyNumnber)
End If

Programming Tips and Gotchas

When converting a string representation of a number to a numeric data type, you should use
the data type conversion functions—such as Cint—instead of Val, because the data type
conversion functions take into account the system's regional settings. In particular, Cint
recognizes the thousands separator if it's present in expr essi on, whereas Val does not. For
example, if expr essi on is 1,234, then Cint successfully converts it to the integer value 1234,
while Val converts it to 1.

187

Use IsNumeric to test whether expr essi on evaluates to a number before performing the
conversion.

Cint differs from the Fix and Int functions, which truncate, rather than round, the fractional part
of a number. Also, Fix and Int always return the same type of value as was passed in.

Clnt converts an expression to a signed 32-bit integer. To convert an expression to an
unsigned 32-bit integer, create an instance of the UInt32 structure, and call its Parse method.
Like most of the conversion functions, Cint is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

VB .NET/VB 6 Differences

The VB .NET Cint function actually corresponds to the VB 6 CLng function, since both return 32-bit
integers.

See Also

CLng Function, CShort Function

Class Statement

Syntax

[accessnodifier] [inheritability] C assNane
statenments

End d ass

accessnodi fi er

Use: Optional
Type: Keyword

The possible values of accessnodi f i er are Publ i ¢, Privat e, and Fri end. For more
information, see Section 3.7 in Chapter 3.

inheritability
Use: Optional
Type: Keyword

One of the keywords, Must | nherit or Not | nherit abl e, must be used. Must | nheri t
specifies that objects of this class cannot be created, but that objects of derived classes can
be created. Not | nher i t abl e specifies that this class cannot be used as a base class.

Cl assNane
Use: Required
Type: String literal

This is the name of the class.

188

Description

Defines a class and delimits the statements that define that class' variables, properties, and methods.
For a detailed discussion with examples, see Chapter 3.

Rules at a Glance

Cl assNane follows standard Visual Basic variable-naming conventions.

Within a class code block, members are declared as Publ i ¢, Pri vat e, Prot ect ed,
Friend, or Protected Fri end. The Di mkeyword is equivalent to Pri vat e when used in
class modules (but it is equivalent to Publ i ¢ in structures). Property declarations are
automatically Publ i c.

The Cl ass. .. End Cl ass construct can include the following elements:

Private variable or procedure declarations
These items are accessible within the class, but do not have scope outside of the class.
Public variable or procedure declarations

Publ i c variables are public properties of the class; Publ i ¢ procedures are public methods
of the class.

Property declarations

These are the public properties of the class. Default properties can be declared by using the
Def aul t keyword.

To define a custom constructor within a class module, define a subroutine called New. Note
that the New subroutine (like any other procedure) can be overloaded.
To define a destructor within a class module, define a function called Destruct. Destructors
cannot be overloaded.
To create an object of a class, use syntax such as:

Dim oCbj As Cd ass

obj = New Cd ass(argunents_for_constructor)

or:

Dim oObj = New CO ass(argunents_for_constructor)
or:

Dim oObj As CC ass = New CC ass(argunents_for_constructor)
Programming Tips and Gotchas

A property defined as a simple public variable cannot be designated the class' default member.
According to accepted object-oriented programming practices, public properties should be
defined using the Pr oper t y statement, since this allows the value of a property to be

modified in a controlled and predictable way. It allows you to validate data and allows your
program to know when a property value is being changed. Because this is not possible using
simple public variables, defining a public variable that is accessible outside of the class is
considered poor programming practice.

The Me or MyCl ass keywords can be used within the Cl ass. . . End Cl ass construct to
reference the class.

189

VB .NET/VB 6 Differences

The Cl ass. . . End Cl ass construct is new to VB .NET. In VB 6, each class was defined in its own
class module, which corresponded to a separate CLS file.

See Also

Property Statement, Structure...End Structure Statement

Clipboard Class

Namespace

System.Windows.Forms

Createable

No

Description

The Clipboard object represents the Windows Clipboard, an object that allows data to be shared
across processes. The members of the Clipboard class allow data to be placed in and retrieved from
the Clipboard.

The Clipboard object can be created as follows:
Dimobj As Cipboard

However, because the Clipboard object's members are shared, you do not need to instantiate the
Clipboard object to access its properties and methods. Hence, you can place data on the Clipboard,
for instance, with the following code fragment:

Cl i pboard. Set Dat aObj ect (st r Dat a)

Application class members marked with a plus sign (+) are discussed in detail in their own entries.

Public Shared Methods
GetDataObject +

SetDataObject +

See Also

Clipboard.GetDataObject Method, Clipboard.SetDataObject Method

Clipboard.GetDataObject Method

190

Class

System.Windows.Forms.Clipboard

Syntax
Cl i pboard. Get Dat aChj ect ()

Return value

An | Dat aObj ect object that represents the data currently on the clipboard

Description

Retrieves data from the Clipboard
Rules at a Glance

If the Clipboard contains no data, the GetDataObject method returns Not hi ng.

Once you have an | Dat aCbj ect object, you can use the members of the IDataObject class
to get information about the Clipboard data, as shown in the following example. The relevant
IDataObject members for Clipboard manipulation in VB are GetData, GetDataPresent, and
GetFormats.

Example

The following example extracts the text that is currently on the Clipboard:

Decl are | Dat aCbj ect variable and get clipboard | DataObject
Dimdi As | DataObject = Cipboard. Get Dat aCbj ect

Di m obj As (bj ect

Fire GetData nethod of |DataCbject object to get clipboard data
obj = di. Get Dat a(Dat aFor mat s. Text, Fal se)

Show the text, if any
If obj Is Nothing Then

MsgBox("No text on clipboard.")
El se

MsgBox(CStr (obj))
End | f

VB .NET/VB 6 Differences

While the .NET Base Class Library uses the GetDataObject method to retrieve all data from the
Clipboard, the Clipboard object in VB 6 included the GetFormat, GetData, and GetText methods to
retrieve Clipboard data.

See Also

Clipboard Class, Clipboard.SetDataObject Method, IDataObject Interface

191

Clipboard.SetDataObject Method

Class

System.Windows.Forms.Clipboard

Syntax
Set Dat aObj ect (dat a)
dat a
Use: Required
Data Type: Any
Data to place on the Clipboard

Description
Places data on the Clipboard
Example

The following example places text on the clipboard:

Dms As String = "donna"
cl i pboard. Set Dat albj ect ('s)

VB .NET/VB 6 Differences

While the .NET Base Class Library uses the SetDataObject method to place all data on the Clipboard,
the Clipboard object in VB 6 includes two methods, SetData and SetText, depending on the format of
the data to be placed on the Clipboard.

See Also

Clipboard Class, Clipboard.GetDataObject Method, IDataObject Interface

CLng Function

Named Arguments

No

Syntax

CLng(expressi on)

192

expression
Use: Required
Data Type: Numeric or String

Ranges from -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807; fractions are
rounded.

Return Value

expressi on cast as a Long data type

Description

Converts expr essi on to a long integer; any fractional element of expr essi on is rounded.
Rules at a Glance

expr essi on must evaluate to a numeric value; otherwise, a type-mismatch error is
generated.

If the value of expr essi on is outside the range of the Long data type, an overflow error is
generated.

When the fractional part is exactly .5, CLng always rounds it to the nearest even number. For
example, .5 rounds to 0, and 1.5 rounds to 2.

Example

D m | ngMyNunber as Long
[f IsNumeric(sMyNunber) then

| ngMyNunber = CLng(sM/Nunber)
End If

Programming Tips and Gotchas

When converting a string representation of a number to a numeric, you should use the data
type conversion functions—such as CLng—instead of Val, because the data type conversion
function takes into account the system's regional settings. In particular, CLng is able to
recognize the thousands separator if it's included in expr essi on, while Val cannot. For
example, if a user enters a value of 1,098,234 into a textbox, CLng converts it to the long
integer 1098234, but Val converts it to a value of 1.

Use IsNumeric to test whether expr essi on evaluates to a number.

CLng differs from the Fix and Int functions, which truncate, rather than round, the fractional
part of a number. Also, Fix and Int always return the same type of value as was passed in.
CLng converts an expression to a signed long integer. To convert an expression to an
unsigned long integer, create an instance of the UInt64 structure and call its Parse method.
Like most of the conversion functions, CLng is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

VB .NET/VB 6 Differences

The VB .NET CLng function returns a 64-bit integer, whereas the VB 6 CLng function returns a 32-bit
integer.

193

See Also

Cint Function , CShort Function

CObj Function

Named Arguments

No

Syntax
CObj (expressi on)
expression
Use: Required
Data Type: Any

Return Value

expressi on cast as an Object data type

Description

Converts any expression that can be interpreted as an object to Object
Rules at a Glance

expressi on can be any data type, including a strongly typed object, as the following code fragment
illustrates:

Di m oSonmeCl ass As New CSoneCl ass
Dim oCbhj As bj ect
oGbj = CObj (0Soned ass)

Example

The following code:

Di m obj As Obj ect
obj = COhj ("test")

casts the string "t est " to type Object and places it in the Object variable obj .
Programming Tips and Gotchas

The operation of the CObj function is possible because all VB .NET data types are either
structures or objects.

194

Once a data type is converted to type Object, you can display its value by calling its ToString
method, as in the following code fragment:
Di m bFl ag As Bool ean = True

oCbj = Cnj (bFl ag)
MsgBox(oCbj . ToStri ng)

Instead of using the CODbj function to convert a strongly typed object to a generic Object data
type, you can also use simple assignment, as the following code fragment illustrates:

Di m oSoneCl ass As New CSoneC ass

Dim oObj As bj ect
oObj = oSoned ass

Like most of the conversion functions, CObj is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

VB .NET/VB 6 Differences

The CObj function is new to VB .NET. The closest equivalent in VB 6 is CVar, which converts a data
type to a Variant.

Collection Class

Namespace

Microsoft.VisualBasic

Createable

Yes

Syntax
Di m obj ectvariable As [New] Coll ection
obj ectvari abl e

Use: Required

Data Type: Collection

The name of the Collection object

Description

A Collection object allows you to store members of any data type, including object data types or even
other collection objects, and to retrieve them using a unique key.

Collection objects allow us to create a form of associative array, which is an array whose members are
indexed by something more meaningful than an integer. The real power of a collection comes by using
collections with class objects. The Collection object is discussed in more detail in Chapter 2.

195

Collection objects are created in exactly the same way as other objects, as in:

Di m obj As New Col | ection

or:

Di m obj As Coll ection
obj = New Col | ection

In the former syntax, the Collection object is created at the time that the obj variable is declared,
which may be sooner than you actually need the Collection object. The latter syntax gives you more
control over the creation process.

Rules at a Glance

You can use a Collection object to store data of any data type, including object types and even
other Collection objects.

The Add method of the Collection object is used to add items to the collection (see the
Collection.Add entry).

Members of a collection can be accessed using either their ordinal number or their key,
assuming that one was assigned at the time that the member was added to the collection (see
the Collection.ltem entry).

The first member in a collection is stored at ordinal position 1 (not at 0, as with arrays).

The Count method returns the number of members in the collection (see the Collection.Count
entry).

The Remove method removes items from a collection (see the Collection.Remove entry).

Example

This example shows how you can nest one collection within another collection. We create 10
instances of col SubCol | ect i on, each containing two integer values. These col SubCol | ecti on
objects are stored in the collection named col Mai nCol | ect i on. The code also shows how to read
the values of col Vai nCol | ecti on and col SubCol | ecti on.

Sub testCollection()
"decl are objects for the main and sub col |l ections
"creating a new instance of the nmain collection
"in the process
Di m col Mai nCol | ecti on As New Col | ection
Di m col SubCol I ection As Col |l ection
Dimi As I|nteger

For i =1 To 10
‘"create a new instance of the sub collection object
col SubCol I ecti on = New Col | ection
"popul ate the sub collection with two integer val ues
col SubCol I ection. Add(ltem=i + 6, _
Key: =" MWSi xPl usVal ")
col SubCol I ection. Add(ltem =i + 3, _
Key: ="MyThr eePl usVval ")
"now add the sub collection to the main collection
'using the count converted to a string as the key
col Mai nCol | ecti on. Add(Item =col SubCol | ecti on,
Key: =CStr(i))
"destroy the reference the sub collection
col SubCol I ecti on = Not hi ng
Next i

196

MsgBox(col Mai nCol | ecti on. Count)

For i = 1 To col Mai nCol | ecti on. Count
‘use the Itemnethod to obtain a reference to the
"subcol | ection
col SubCol | ection = _
col Mai nCol l ection. Item(CStr(i))
"display the values held in the sub collection

Console. WiteLine("6 +" &i &" =" & _
col SubCol | ection.Iten("MSi xPl usVval "))
Console. WiteLine("3 +" &i &" =" &

col SubCol | ection.lten("MyThreePl usVval "))
"destroy the reference to the sub collection
col SubCol | ecti on = Not hi ng
Next i
End Sub

Programming Tips and Gotchas

A highly efficient method of enumerating the members of a collection is to use the For
Each. .. Next loop, as the following example shows:

Di m col MyCol | ection As New Col | ection

Di m col SubCol | ection As Col |l ection

For i =1 To 10
Set col SubCol I ection = New Col | ection
col SubCol l ection. Add Item=i + 6, _
Key: ="M/Si xPl usVval "
col SubCol l ection. Add Item=i + 3, _
Key: =" MyThr eePl usVal "
col MyCol | ection. Add Item =col SubCol | ecti on,
Key: =CStr (i)
Set col SubCol | ecti on = Not hi ng
Next i

For Each col SubCol I ection In col MyCol | ection

MsgBox col SubCol | ection. Item("MSixPl usVal ")
Next

Interestingly, although most Visual Basic data types are merely wrappers for data types in the
Base Class Library, the Collection object is a "native" VB data type that's derived from
System.Object and implements the | Col | ecti on, | Enuner abl e, and | Li st interfaces.
This can be seen from the following code fragment:

DimoColl As New Col | ection

Dim oType As Type, olnt As Type

oType = oCol | . Get Type()

Consol e. WiteLine("Type: " & oType. ToString)

Consol e. WitelLine("Base Type: " & oType.BaseType. ToStri ng)
Dim oTypes() As Type = oType. GetlInterfaces

For Each olnt in oTypes

Console. WiteLine("Interface: " & olnt.ToString)
Next

See Also

197

Collection.Add Method, Collection.Count Property, Collection.ltem Method,
Collection.Remove Method, Hashtable Class, Queue Class, Stack Class

Collection.Add Method

Class

Microsoft.VisualBasic.Collection

Syntax
obj ectvariable. Add item [, key, before, after]
obj ectvari abl e
Use: Required
Data Type: Collection Object
The name of the Collection object to which an item is to be added
item
Use: Required

Data Type: Object

An object of any type that specifies the member to add to the collection

key
Use: Optional
Data Type: String
A unique string expression that specifies a key string that can be used, instead of a positional
index, to access a member of the collection
bef ore
Use: Optional
Data Type: Object
The member to be added placed in the collection before the member identified by the bef or e
argument (more on this in Rules at a Glance)
after

Key: Optional

Data Type: Object

198

The member to be added placed in the collection after the member identified by the af t er
argument (more on this in Rules at a Glance)

Description

Adds an object to a collection

Rules at a Glance

If you do not specify a bef or e or af t er value, the member is appended to the end of the
collection (in index order).
If you do not specify a key value, you cannot access this member using a key, but instead
must access it either by using its ordinal number or by enumerating all the members of the
collection with the For Each. .. Next construct. Thus, keys are highly recommended.
The bef or e or af t er argument can refer to an index or a key. For instance, consider the
following code:

Dimc As New Col l ection()

c. Add("donna", "111")

c. Add("steve", "222")

"c. Add("bill", "333", "222")

"c.Add("bill", "333", 2)
MsgBox(c.lten(2))

Both of the commented lines of code adds the item "bill" between "donna" and "steve." The
first line uses the key to specify the bef or e object, and the second line specifies the ordinal
position of the bef or e object.

Key values must be unique or an error (runtime error 457, "This key is already associated with
an element of this collection") is generated.
You can specify a bef or e or af t er position, but not both.

Example

col Conposers. Add(Item
Key:

"Ludwi g von Beet hoven"
" Beet hoven")

Programming Tips and Gotchas

Using named parameters helps to self-document your code:
col MyCol | ection. Add Item ="VB . NET Language in a Nutshell"
Key: ="Title"

If your key parameter is a value being brought in from outside your program, you must ensure
that each value is always unique. One method for doing this is illustrated in the entry for the
Collection.ltem Method.

See Also

Collection Class, Collection.Count Property, Collection.ltem Method, Collection.Remove
Method

Collection.Count Property

199

Class

Microsoft.VisualBasic.Collection

Syntax
obj ect vari abl e. Count
obj ectvari abl e
Use: Required
Data Type: Collection Object

Object variable referring to a Collection object
Description
Returns an Integer containing the number of members in the collection.
Rules at a Glance

Collections are 1-based; that is, the index of the first element of a collection is 1. In contrast, arrays are
0-based; the index of the first element of an array is 0.

Example

For i = 1 To col MyCol | ecti on. Count
Set col SubCol | ection = col MyCol | ection.ltenm(CStr(i))
MsgBox col SubCol | ection.lten " Nanme")
Set col SubCol | ecti on = Not hi ng

Next i

Programming Tips and Gotchas

Because collections are 1-based, you can iterate the members of a collection by using index values
ranging from 1 to the value of obj ect vari abl e. Count .

See Also

Collection Class, Collection.Add Method, Collection.ltem Method, Collection.Remove
Method

Collection.ltem Method

Class

Microsoft.VisualBasic.Collection

200

Syntax

obj ectvari abl e. I ten(i ndex)
obj ectvari abl e

i ndex

Use: Required
Data Type: Collection Object

An object variable of type Collection

Use: Required
Data Type: Integer or String

Either the index (the ordinal position) of the object in the collection, or the unique key name
belonging to the object

Description

Returns the member of the collection for the specified key or ordinal position.

Programming Tips and Gotchas

When writing wrapper classes for collections, you can make your object model more readable
by making the name of the property that wraps the Item method the same as the name of the
object obtained from the collection. For example, if your collection class is called Employees
and is a collection of Employee records, your object model reads much better to have an
Employee Property procedure, as follows:
Public Property Enpl oyee(vKey as hject) As Bool ean
Cet
Enpl oyee = ntol Enpl oyees. | t en(vKey)
End Get

End Property

Note that in the previous Property procedure, the parameter is passed as an object so that the
argument can be either a string (the item's key) or an integer (the item's ordinal position).

There is no Exists method in the Collection object, so you cannot find out in advance if a
particular key exists within the collection. However, you can create an Exists function by
calling the Item method with a given key and returning an appropriate value based on whether
an error occurred, as the following code shows:
Publ i c Function Exists(ByVal oKey As Ohject) As Bool ean
Try
noVal ue = nCol | ecti on. |t en(oKey)
Exi sts = True
Catch e As Nul | Ref erenceException
Exi sts = Fal se
End Try
End Function

201

The Item method is the default member of the Collection object, and since it is parameterized,
we do not need to include an explicit call to the Item method. The following two statements, for
example, are identical to one another:

set obj Menber = obj Col |l ection.Iten(6)
set obj Menmber = obj Col | ecti on(6)

See Also

Collection Class, Collection.Add Method, Collection.Count Property, Collection.Remove
Method

Collection.Remove Method

Class

Microsoft.VisualBasic.Collection

Syntax

obj ectvari abl e. Renove (i ndex)
or:

obj ectvari abl e. Renmove (key)
obj ectvari abl e

Use: Required

Data Type: Collection Object

An object variable of the Collection type
i ndex

Use: Required

Data Type: Integer

The ordinal position of the item to remove

key

Use: Required

Data Type: String

The key of the item to remove
Description

Removes a member from a collection.

202

Example
col MyCol | ecti on. Renove (" Name")

Programming Tips and Gotchas

Members of the collection that follow the removed member are automatically moved
downward by one ordinal position; therefore, no gaps are left in the collection.
Because the collection is reindexed after each deletion, you should be sure not to delete a
member of the collection based on a stored numeric value of i ndex, since this value could
change. Instead, you should either delete the member by key or retrieve the index value just
before calling the Remove method.
If you are deleting multiple members of a collection by numeric index value, you should delete
them backwards—from highest index value to lowest—because the collection is reindexed
after each deletion.
If you are using a collection as the basis for a class module, or if you are using functions in
your application to wrap and enhance the limited functionality of a collection, you can include a
Clear method to remove all the members in your collection. The method should be written to
remove the member in position 1 until no members are left, as the following code
demonstrates:

Public Sub Clear()

Dimi As Integer

For i = 1 To ntol WCol | ecti on. Count
ncol MyCol | ecti on. Renove(1)
Next i
End Sub

Alternately, you could do the same thing by working from the end of the collection forward, as
the following code illustrates:
DmintCr As |nteger

For intCtr = objCollec.Count To 1 Step -1
obj Col | ec. Renove(intCtr)
Next

When using named arguments, providing an index value with the key: = keyword or providing
a key name with the | ndex: = keyword generates a runtime error.

See Also

Collection Class, Collection.Add Method, Collection.Count Property, Collection.ltem Method

ColorDialog Class

Namespace

System.Windows.Forms

203

Createable

Yes

Description
Represents a common dialog box for selecting a color.

The ColorDialog object has properties for setting the initial appearance and functionality of the color
dialog box, a property for returning the color selected by the user, and a method for showing the dialog
box.

Selected ColorDialog Members
The following provides a brief description of the more important members of the ColorDialog class:
AllowFullOpen property

Returns or sets a Boolean value indicating whether the user can use the dialog box to define
custom colors. The default is Tr ue.

AnyColor property

Returns or sets a Boolean value indicating whether the dialog box displays all available colors,
although in Beta 2 of VB .NET, this property seems to have no effect. The default is Fal se.

Color property

Returns an instance of a Color structure, which contains information about the color selected
by the user. The Color structure, which is a type belonging to the System.Drawing namespace,
has a number of members, among which are:

Over 140 named color properties, from Red, Green, and Blue, to PapayaWhip,
MistyRose, and MediumSeagreen. These properties return a Color structure.

The Name property, which returns the name of the color, or its ARGB value for
custom colors. (The A component is the alpha component of the color, which
determines the color's opacity.)

The R property, G property, and B property, which return a byte specifying the red,
green, or blue color component of the RGB color value, respectively.

The IsknownColor, IsNamedColor, and IsSystemColor properties, which give
information about the color.

CustomColors property

Represents an array of Integers used to set or return the set of custom colors that will be
shown in the ColorDialog dialog box.

FullOpen property

Represents a Boolean property that sets or retrieves the value indicating whether the dialog
box is opened with the controls used to create custom visible controls. (The default is Fal se,
but the user can always click the Custom Colors button to display the custom colors controls.)

Reset method

204

Resets the dialog box by setting all options and custom colors to their default values and
setting the selected color to black.

SolidColorOnly property

For systems displaying 256 colors or less, if this property is set to Tr ue, restricts the dialog
box to solid colors only, that is, to colors that are not composites of other colors.

VB .NET/VB 6 Differences

While the ColorDialog class is implemented in the .NET Base Class Library, VB 6 offered the
CommonDialog custom control. Although the two offer similar functionality, their public interfaces are
almost completely different.

Example

The following code asks the user for a color and displays that color:

Dimcd As New Col orDial og()

Dmc As New Color()

I f cd. ShowDi al og() = Di al ogResult.OK Then
Debug. Wit eLi ne(cd. Col or. ToStri ng)
Debug. Wit eLi ne(cd. Col or. Nane)

El se
Debug. Wi teLi ne("No col or chosen")

End If

Note the use of the Di al ogResul t enumeration to check user action on the dialog box. Here is the
precise output if red is selected:

Col or [Al pha=255, Red=255, G een=0, Bl ue=0]
ffff0000

Command Function

Class

Microsoft.VisualBasic.Interaction

Syntax
Command()

Return Value

A String containing the command-line arguments

Description

Returns the arguments used when launching VB or an application created with VB.

205

Rules at a Glance

For applications created with VB and compiled into an EXE, Command returns a string
containing everything entered after the executable filename.

If the executable has been launched with no command-line arguments, Command returns a
null string.

Example

The following example demonstrates how to parse command-line arguments to set up a series of
options in your executable. This example (which is bereft of all error handling) looks for a hyphen or a
forward slash in the command-line arguments and assumes that the character following it is a
command-line switch. Given the command-line arguments:

-d:50 -f -g -k
the program displays the following in the Immediate window:

Got option d
Option d Parameter = 50
CGot option f
Got option g
Got option k

The source code is as follows:

Private Sub ParseComrandLi ne()

Dimi As I|nteger
Dims, sChar, sParam As String
DimsPattern As String = "[-/]"

For i = 1 To Len(Comrand)
sChar = m d(Command, i, 1)
If sChar = "-" or sChar = "/" Then
s = Md(Comand, i + 1, 1)
Sel ect Case s
Case "d"
Consol e. WiteLine("Got option d")
sParam = M d(Command, i + 3, 2)

Console. WiteLine("Option d Parameter =" & _
sPar am
Case "f"
Consol e. WiteLine("Got option f")
Case "g"
Consol e. WiteLine("Got option g")
Case "k"
Consol e. WiteLine("Got option k")
Case "I ™"
Consol e. WiteLine("Got option |")
End Sel ect
End If
Next |
End Sub

Programming Tips and Gotchas

206

During the development phase, you can pass arguments to your program using the Command
Line Arguments textbox, which can be found on the Property Pages dialog box for the project
(right-click the project name in the Solution Explorer window). In particular, the textbox is
found under Start Options in the Debugging subnode of the Configuration Properties node.

To handle command-line arguments, you must write a routine similar to the one shown earlier
to parse the string returned by Command, since the function only returns a single string
containing all input after the name of the executable file.

Command-line arguments are ideal for specifying various options on unattended applications.

Const Statement

Syntax

[accessnodifier] Const constantnane [As type] = constantval ue
accessnodi fier

Use: Optional
Type: Keyword

One of the keywords Publ i ¢, Privat e, Prot ect ed, Fri end, or Prot ect ed Fri end. For
more information, see Section 3.7 in Chapter 3.

const ant nane

type

Use: Required
Type: String Literal

The name of the constant.

Use: Optional
Type: Keyword
The data type; it can be Byt e, Bool ean, Char, Short, | nt eger, Long, Si ngl e, Doubl e,

Deci el , Dat e, or St ri ng, as well as any of the data types defined in the Base Class
Library.

const ant val ue

Use: Required
Data Type: Numeric or String

A literal, constant, or any combination of literals and constants that includes arithmetic or
logical operators, except | s.

Description

207

Associates a constant value with a name. This feature is provided to make code more readable. The
name is referred to as a symbolic constant.

Rules at a Glance

The rules for const ant nane are the same for those of any variable: the name can be up to
255 characters in length and can contain any alphanumeric character, although it must start
with an alphabetic character. In addition, the name can include almost any other character
except a period or any of the data type definition characters ($, &, %, !).
The const ant val ue expression cannot include any of the built-in functions or objects,
although it can be a combination of absolute values and operators. The expression can also
include previously defined constants. For example:

Private Const CONST ONE = 1

Private Const CONST _TWO = 2
Private Const CONST _THREE = CONST_ONE + CONST_TWD

Scoping rules are the same as for variables. For more on scope, see Chapter 3.
If Option Strict ison, the data type of the constant must be defined by using the As t ype
clause.

Example
Private Const MY_CONSTANT = 3.1417

Programming Tips and Gotchas

Your code may be more readable if you take advantage of the fact that VB allows lengthy
constant (and variable) names. This allows you to choose these names in a more meaningful
way.

If you are building a large application with many different modules, you may find your code
easier to maintain if you create a single separate code module to hold your Publ i ¢ constants.
If two or more constants are related, you should define them as members of an enumeration
using the Enumstatement.

See Also

Enum Statement

Cos Function

Class

System.Math

Syntax
Mat h. Cos(d)
d
Use: Required

Data Type: Double or numeric expression

208

An angle in radians
Return Value
A Double data type denoting the cosine of an angle

Description

Takes an angle specified in radians and returns a ratio representing the length of the side adjacent to

the angle divided by the length of the hypotenuse

Rules at a Glance

The cosine returned by the function is between -1 and 1.

This is a Shared member, so it can be used without creating any objects.

Example

Di m dbl Cosi ne as Doubl e

dbl Cosi ne = Mat h. Cos(dbl Radi ans)
Programming Tips and Gotchas

To convert degrees to radians, multiply degrees by pi/180.
To convert radians to degrees, multiply radians by 180/pi.

VB .NET/VB 6 Differences

In VB 6, Cos was an intrinsic VB function. In the .NET platform, it is a member of the Math class in the

System namespace, and so it is not part of the VB .NET language.

See Also

Cosh Function, Sin Function, Tan Function

Cosh Function

Class

System.Math

Syntax
Mat h. Cosh(val ue)
val ue

Use: Required

Data Type: Double or numeric expression

209

An angle in radians
Return Value
A Double denoting the hyperbolic cosine of the angle.
Description
Returns the hyperbolic cosine of an angle.
Rules at a Glance
This is a Shared member, so it can be used without creating any objects.

VB .NET/VB 6 Differences

The Cosh function is new to the .NET platform; it did not exist in VB 6.

See Also

Cos Function, Sinh Function, Tanh Function

CreateObject Function

Class

Microsoft.VisualBasic.Interaction

Named Arguments

No

Syntax
obj ectvariable = CreateCbject(progid [, servernane])
obj ectvari abl e

Use: Required

Data Type: Object

A variable to hold the reference to the instantiated object
progi d

Use: Required

Data Type: String

210

The programmatic identifier (or ProgID) of the class of the object to create
server nane

Use: Optional

Data Type: String

The name of the server on which the object resides

Return Value

A reference to a COM or ActiveX object.

Description
Creates an instance of an OLE Automation (ActiveX) object.

Prior to calling the methods, functions, or properties of a COM or ActiveX object, you are required to
create an instance of that object. Once an object is created, reference it in code using the object
variable you defined.

Rules at a Glance

If your project does not include a reference to the object, you must declare the object variable
type as Object; this allows the variable to reference any type of object.

If an instance of the ActiveX object is already running, CreateObject may start a new instance
when it creates an object of the required type.

CreateObject can only be used to create instances of COM (or ActiveX) objects; it cannot be
used to instantiate .NET components.

Example

The following routine defines a generic Object variable, as well as an Excel application object. It then
uses the Timer function to compare the performance of the code fragment that uses late binding to
instantiate the Excel application object with the one that uses early binding. (For a discussion of late
and early binding, see the second item under Programming Tips and Gotchas.)

Private Sub TestBindi ng()

Di m dbl Ti mre As Doubl e
DimstrMsg As String

Calculate tinme for late binding
dbl Time = Tinmer()
Di m obj Excel Late As (bj ect
obj Excel Late = Creat eObj ect ("excel . application")
obj Excel Late = Not hi ng
strMsg &= "Late Bound: " & Tiner() - dblTine
strMsg &= vbCrlLf

Calculate tinme for early binding
dbl Tinme = Tinmer()
Di m obj Excel Early As Excel . Application
obj Excel Early = Excel . Application
obj Excel Early = Not hi ng

211

strMsg & "Early Bound: " & Tinmer() - dblTinme
MsgBox (strMsg, vbOKOnly, "Late and Early Bi nding")

End Sub
Programming Tips and Gotchas

The ProglID is defined in the system registry and usually takes the form | i brary. cl ass or
application.cl ass.
The Object data type is the most generic of Visual Basic objects. When an object variable has
been defined as type Object, CreateObject performs what is termed late binding. This means
that, because the precise object type is unknown at compile time, the object cannot be bound
into your program when it is compiled. Instead, this binding occurs only at runtime, when the
program is run on the target system and the CreateObject function is executed. This need to
determine the object type by referencing the relevant interfaces at runtime is time-consuming
and results in poor performance. You can vastly improve this performance by utilizing early
binding. Early binding necessitates adding a reference to the required object to your project.
The ser ver nanme parameter permits the specification of the name of the server on which the
ActiveX object is registered. This means that you could even specify different servers
depending upon prevailing circumstances, as this short example demonstrates:

Di m sMai nServer As String

Di m sBackUpServer As String

sMai nServer = "NTPROD1"
sBackUpServer = "NTPROD2"

[f 1sOnline(sMainServer) Then
Creat enj ect (" Sal es. Cust onmer ", sMai nSer ver)
El se

Creat e(nj ect (" Sal es. Cust oner ", sBackUpSer ver)
End If

To use a current instance of an already running ActiveX object, use the GetObject function.

If an object is registered as a single-instance object—i.e., an out-of-process ActiveX EXE—
only one instance of the object can be created. Regardless of the number of times
CreateObiject is executed, you will obtain a reference to the same instance of the object.

It is considered good programming practice (and often a necessary one) to tidy up after you
have finished using an object by setting obj ect vari abl e to Not hi ng. This has the effect of
freeing the memory taken up by the instance of the object, and, if there are no other "live"
references to the object, shutting it down. For example:

obj ectvari abl e = Not hi ng
See Also

GetObject Function

CShort Function

Named Arguments

212

No

Syntax
CShort (expressi on)
expression

Use: Required
Data Type: Numeric or String

The range of expr essi on is -32,768 to 32,767, fractions are rounded.

Return Value

expressi on cast as a Short

Description

Converts expr essi on to a Short value; any fractional portion of expr essi on is rounded.
Rules at a Glance

expr essi on must evaluate to a numeric value; otherwise, a type-mismatch error is
generated.

If the value of expr essi on is outside the range of the Short data type, an overflow error is
generated.

When the fractional part of expr essi on is exactly .5, CShort always rounds it to the nearest
even number. For example, .5 rounds to 0, and 1.5 rounds to 2.

Example

Dimi MyNunber as Short
[f IsNumeric(sMy/Nunber) then

i MyNunber = CShort (sMyNunber)
End If

Programming Tips and Gotchas

When converting a string representation of a hnumber to a numeric, you should use the data
type conversion functions—such as CShort—instead of Val, because the data type conversion
functions take into account the system's regional settings. In particular, CShort recognizes the
thousands separator if it's present in expr essi on, whereas Val does not. For example, if
expressi onis 1,234, CShort successfully converts it to the integer value 1234, while Val
converts it to 1.

Use IsNumeric to test whether expr essi on evaluates to a number before performing the
conversion.

CShort differs from the Fix and Int functions, which truncate, rather than round, the fractional
part of a number. Also, Fix and Int always return the same type value as was passed in.

Like most of the conversion functions, CShort is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

VB .NET/VB 6 Differences

213

The CShort function is new to VB .NET. However, it corresponds directly to the VB 6 Clint function,
since both return 16-bit integers.

See Also

Cint Function, CLng Function

CSng Function

Named Arguments

No

Syntax
CSng(expr essi on)
expression
Use: Required
Data Type: Numeric or String

The range of expr essi on is -3.402823E38 to -1.401298E-45 for negative values, and
1.401298E-45 to 3.402823E38 for positive values.

Return Value

expressi on cast as a Single data type
Description

Returns a single-precision number
Rules at a Glance

expr essi on must evaluate to a numeric value; otherwise, a type-mismatch error is
generated.

If the value of expr essi on is outside the range of the Double data type, an overflow error is
generated.

Example

Di m sngMyNunmber As Single

If IsNumeric(sMy/Nunber) Then
sngMyNunber = CSng(sMNunber)

End If

Programming Tips and Gotchas

You can use IsNumeric to test an expression before passing it to CSng.

214

When converting a string representation of a number to a numeric, you should use the data
type conversion functions—such as CSng—instead of Val, because the data type conversion
functions take into account the computer's regional settings. The thousands separator is the
most important of these regional settings. For example, if the value of expr essi on is the
string 1,234.987, CSng converts it to 1234.987, while Val incorrectly converts it to 1.

Like most of the conversion functions, CSng is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

See Also

CDbl Function

CStr Function

Named Arguments

No

Syntax
CStr (expression)
expression
Use: Required
Data Type: Any
Any numeric, date, string, or Boolean expression

Return Value

expr essi on converted to a string.

Description

Returns a string representation of expr essi on.

Rules at a Glance

If expr essi on is Boolean, the function returns one of the strings " Tr ue" or " Fal se". For an
expression that can be interpreted as a date, the return value is a string representation of that date, in
the short date format of the host computer. For a numeric expression, the return is a string
representing the number.

Example
DmsMWString as String
sMyString = CStr(100)

Programming Tips and Gotchas

215

The string representation of Boolean values is either " Tr ue" or " Fal se", as opposed to their
underlying values of 0 and -1.

Uninitialized numeric data types passed to CStr return "0."

An uninitialized date variable passed to CStr returns "12:00:00AM."

Like most of the conversion functions, CStr is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

See Also

Str Function

CType Function

Named Arguments

No

Syntax
CType(e_xpressi on, typenane)
expressi on
Use: Required
Data Type: Any
The data item to be converted
t ypenane
Use: Required
Type: Keyword
The data type, object type, structure, or interface to which expr essi on is to be converted

Return Value

expressi on castas atypenane interface, object, structure, or data type.

Description

Converts any expression that can be interpreted as an object to Object.
Rules at a Glance

expr essi on can be any data, object, structure, or interface type.

216

t ypenane can be any data type (such as Bool ean, Byt e, Deci mal , Long, Short, String,
etc.), structure type, object type, or interface that can be used with the As clause ina Di m

Sstatement.

If the function fails, or if the converted value of expr essi on is outside the range allowed by
t ypenane, an InvalidCastException exception occurs.

Example

Option Strict On
I mports M crosoft. Vi sual Basi c
I nports System

I nterface | Enpl oyee
Property Name(
Property Sal ary(

End Interface

) As String
) As Deci mal

Public Class CSal ari ed
| mpl enent s | Enpl oyee

Dim sNane As String
Di m decSal ary AS DEeci nal

Public Property Nane() As String
Get
Nanme = sNane
End Get
Set
sName = Val ue
End Set
End Property
Public Property Salary() As Decinal
Get
Sal ary = decSal ary
End Get
Set
decSal ary = Val ue
End Set

End Property

End C ass

Modul e nmodMai n
Public Sub Main()

Di m oSal As New CSal ari ed
Dim oSal 2 As CSal ari ed
Di m oEnp As | Enpl oyee

oSal . Name = "John Doe"
oSal . Sal ary = 30000
console.witeline(oSal. Nane)

OEnmp = CType(oSal, | Enpl oyee)
consol e.witeline(oEnp. Nane)

oSal 2 = CType(oEnp, CSal ari ed)
console.witeline(oSal 2. nane)

| mpl enent s | Enpl oyee. Nane

| mpl enent s | Enpl oyee. Sal ary

217

End Sub

End Modul e
Programming Tips and Gotchas

CType can perform the same conversions as the individual conversion functions and raises a
runtime error if it is asked to perform a conversion that an individual conversion function
cannot perform. For example, in the function call:

bval = CType(Varl, Bool ean)

Var 1 can be any numeric value, any numeric string, or a string whose value is either " Tr ue"
or" Fal se".

Like most of the conversion functions, CType is not actually a function in the
Microsoft.VisualBasic namespace. Instead, it is similar to a Visual C++ macro; the compiler
translates the function call into inline code.

In part, CType is a "convenience function” that provides the functionality of the entire set of
conversion functions in a single function. Its real significance, however, comes when you want
to convert a derived object to the type of its base class, or when you want to convert an object
to the type of its virtual base class (that is, its interface).

Upcasting a derived object to its parent object type can be done implicitly. However,
downcasting back from the base class type to the derived object type cannot be done implicitly
if Opt 1 on Strict isOn. Instead, CType can be used to perform this conversion. This is
illustrated in the example.

VB .NET/VB 6 Differences
The CType function is new to VB .NET.
See Also

CBool Function, CByte Function, CChar Function, CDate Function, CDbl Function, CDec
Function, CInt Function, CLng Function, CObj Function, CShort Function, CSng Function,
CStr Function

CurDir Function

Class

Microsoft.VisualBasic.FileSystem

Syntax
CurDir[(drive)]
drive

Use: Optional

Data Type: String or Char

218

The name of the drive

Return Value

A String containing the current path.

Description

Returns the current directory of a particular drive or the default drive.

Rules at a Glance

If no drive is specified or if dr i ve is a zero-length string ("), CurDir returns the path for the
current drive.

dri ve can be the single-letter drive name with or without a colon (i.e., both "C" and "C:" are
valid values for dr i ve).

If dri ve is invalid, the function will generate runtime error 68, "Device unavailable."
Because CurDir can only accept a single-character string, you cannot use network drive
names, share names, or UNC drive names.

Example

Sub TestCurDir()
MsgBox CurDir("C")
End Sub

See Also

ChDir Procedure, ChDrive Procedure, MkDir Procedure, RmDir Procedure

DateAdd Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax
Dat eAdd(i nterval, nunber, dateval ue)
i nterval

Use: Required
Data Type: String or Dat el nt er val enum
A String expression (see the first item in Rules at a Glance) or a member of the

Dat el nt er val enumeration (see the second item in Rules at a Glance) that specifies the
interval of time to add.

nunber

219

Use: Required
Data Type: Double

An expression denoting the number of time intervals you want to add (it can be positive or
negative

dat eval ue
Use: Required
Data Type: Date, or an expression capable of conversion to a date

Date representing the starting date to which the interval is to be added
Return Value
A past or future Date that reflects the result of the addition

Description

Returns a Date representing the result of adding (or subtracting, if nunber is negative) a given
number of time periods to or from a given date. For instance, you can calculate the date 178 months
before today's date, or the date and time 12,789 minutes from now.

Rules at a Glance

i nterval can be one of the following literal strings:

String Description

Year

<
<
<
<

Quarter

Month

Day of year

Day

Weekday

Week

Hour

Minute

m3:§§Q~<gn

Second

i nterval can also be a member of the Dat el nt er val enum:
Enum Dat el nt er val
Day
DayOf Year
Hour
M nut e
Mont h
Quarter
Second
Week
Weekday

220

WeekOf Year
End Enum

If number is positive, the result will be in the future; if nunber is negative, the result will be in
the past. (The meaning of "future” and "past" here is relative to dat eval ue).

The DateAdd function has a built-in calendar algorithm to prevent it from returning an invalid
date. For example, you can add 10 minutes to 31 December 1999 23:55, and DateAdd
automatically recalculates all elements of the date to return a valid date, in this case 1 January
2000 00:05. This includes leap years: the calendar algorithm takes the presence of 29
February into account for leap years.

Example
Dat eAdd(Dat el nterval . Day, 120, #3/3/2001#) " Returns 7/1/2001

Programming Tips and Gotchas

You can check that a date is valid using the IsDate function prior to passing it as a parameter
to the function.

To add a number of days to dat eval ue, use either the day of the year ("y" or

Dat el nt erval . DayOf Year), the day ("d" or Dat el nt er val . Day), or the weekday ("wW" or
Dat el nt er val . Weekday).

DateAdd generates an error if the result does not lie in the range of dates of the Date data
type.

If nunber contains a fractional value, it is rounded to the nearest whole number before being
used in the calculation.

You can also use the members of the Dat eTi ne structure of the BCL to manipulate dates
and times.

VB .NET/VB 6 Differences

VB 6 lacks the Dat el nt er val enumeration and therefore only accepts a string as the i nt er val
argument.

See Also

DateDiff Function

DateDiff Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax
DateDi ff(interval, datel, date2[, dayofweek[, weekofyear]])
i nterval

Use: Required

Data Type: String or Dat el nt er val enum

221

A String expression (see the first item in Rules at a Glance) or a member of the
Dat el nt er val enumeration (see the second item in Rules at a Glance) that specifies the
units of time used to express the difference between dat el and dat e2

datel, date2

Use: Required

Data Type: Date or a literal date

The starting and ending dates, whose difference is computed as dat e2- dat el
dayof week

Use: Optional

Data Type: Fi r st DayOf Week enum

A member of the Fi r st Day Of WWeek enum
weekof year

Use: Optional

Data Type: Fi r st WeekOf Year enum

A member of the Fi r st WeekOf Year enum
Return Value
A Long specifying the number of time intervals between the two dates
Description

Calculates the number of time intervals between two dates. For example, you can use the function to
determine how many days there are between 1 January 1980 and 31 May 1998.

Rules at a Glance

i nterval can be one of the following literal strings:

String Description

yyyy Year

Quarter

Month

Day of year

Day

Weekday

Week

Hour

33§§Q~<3Q

Minute

222

S |Second

i nt erval can also be a member of the Dat el nt er val enum:
Enum Dat el nt er val
Day
Day O Year
Hour
M nut e
Mont h
Quarter
Second
Week
Weekday

WeekOF Year
End Enum

To calculate the number of days between dat el and dat e2, you can use either of the

Dat el nt erval constants, Day O Year or Day, or the string literals " y" or " d" .

When i nt erval is\WWekday or " w', DateDiff returns the number of weeks between the two
dates. If dat el falls on a Monday, DateDiff counts the number of Mondays until dat e2. It
counts dat e2, but not dat el. If i nt er val is ek or " ww', however, DateDiff returns the
number of calendar weeks between the two dates. It counts the number of Sundays between
dat el and dat e2. DateDiff counts dat e2 if it falls on a Sunday, but it doesn't count dat e1,
even if it does fall on a Sunday.

The Day O \\eek argument affects calculations that use the \\eek or " w' and \\éekday or
“ww' i nterval settings only.

Example

Dat eDi ff (Dat el nterval . Day, #1/1/1945#, #3/3/2001#, _
Fi rst DayOr Week. System Fi r st WeekOf Year . Syst em)

Programming Tips and Gotchas

When working with dates, always check that a date is valid using the IsDate function prior to
passing it as a function parameter.

If dat el or dat e2 is enclosed in double quotation marks (" ") and you omit the year, the
current year is inserted in your code each time the dat el or dat e2 expression is evaluated.
This makes it possible to write code that can be used in different years.

When comparing December 31 to January 1 of the immediately succeeding year, DateDiff
with | nt er val setequalto Year, or"yyyy" returns 1 even though only a day has elapsed.
DateDiff considers the four quarters of the year to be January 1-March 31, April 1-June 30,
July 1-September 30, and October 1-December 31. Consequently, when determining the
number of quarters between March 31 and April 1 of the same year, for example, DateDiff
returns 1, even though the latter date is only one day after the former.

If i nterval isMont h or " ', DateDiff simply counts the difference in the months in which
the respective dates fall. For example, when determining the number of months between
January 31 and February 1 of the same year, DateDiff returns 1, even though the latter date is
only one day after the former.

In calculating the number of hours, minutes, or seconds between two dates, if an explicit time
is not specified, DateDiff provides a default value of midnight (00:00:00).

VB .NET/VB 6 Differences

223

VB 6 lacks the Dat el nt er val enumeration and therefore only accepts a string as the i nt er val
argument.

See Also

DateAdd Function

DatePart Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Dat ePart (i nterval, dateval ue[, firstdayofweekval ue[,
firstweekofyearval ue]])
i nterval

Use: Required
Data Type: String or a member of the Dat el nt er val enum

A String literal (see the second item in Rules at a Glance) or a constant of the
Dat el nt er val enum (see the third item in Rules at a Glance) that defines the part of the
date/time to extract from dat eval ue

dat eval ue

Use: Required

Data Type: Date, literal date, or an expression capable of conversion to a date

The Date value to evaluate
firstdayofweekval ue

Use: Optional

Data Type: Fi r st DayOf WWeek enum

A member of the Fi r st DayOf V\ieek enum
firstweekofyearval ue

Use: Optional

Data Type: Fi r st WeekOf Year enum

A member of the Fi r st Week OF Year enum

224

Return Value

An Integer containing the specified part

Description

Extracts an individual component of the date or time (like the month or the second) from a date/time

value

Rules at a Glance

The DatePart function returns an Integer containing the specified portion of the given date.
DatePart is a single function encapsulating the individual Year, Month, Day, Hour, Minute, and

Second functions.
i nterval can be one of the following literal strings:

String

Description

<
<
<
<

Year

Quarter

Month

Day of year

Day

Weekday

Week

Hour

Minute

m:::rgga*<3n

Second

i nt erval can also be a member of the Dat el nt er val enum:
Enum Dat el nt er val

Day

DayOr Year
Hour

M nut e
Mont h
Quarter
Second
Week
Weekday
WeekOF Year

End Enum

The f i rstdayof weekval ue argument can be any of the following members of the
Fi rst DayO Week enumeration:
Enum Fi r st DayOf Week

System "uses first day of week setting on local system
Sunday

Monday

Tuesday

Wednesday

Thur sday

225

Fri day
Sat ur day
End Enum

The f i rst dayof weekval ue argument affects only calculations that use either the \\éek (or
“w')or Weekday (or"ww') i nterval values.

The firstweekof yearval ue argument can be any of the following members of the

Fi rstWeekOr Year enumeration:

FirstWeekOfYear -
Value Description
constant
System 0 Uses the local system setting
Janl 1 Starts with the week in which January 1 occurs (the default value)
Fi r st Four Days 5 Starts with the first week that has at least four days in the new
year
Fi rst Ful | \eek 3 Starts with the first full week of the year
Example
MsgBox("Current hour: " & DatePart(Datelnterval.Hour, Now))

Programming Tips and Gotchas

When working with dates, always check that a date is valid using the IsDate function prior to
passing it as a function parameter.

If you attempt to extract the hours, minutes, or seconds, but dat eval ue does not contain the
necessary time element, the function assumes a time of midnight (0:00:00).

If you specify dat eval ue within quotation marks (* ") and omit the year, the year is assumed
to be the current year taken from the computer's date. For example:

Consol e. WiteLine(DatePart (Datelnterval.Year, cDate("01/03")))

VB .NET/VB 6 Differences

VB 6 lacks the Dat el nt er val enumeration and therefore only accepts a string as the

i nterval argument.

VB 6 supports a number of constants beginning with vb... as values for the
firstdayofweekval ueandfirstweekofyearval ue argunents. While these are still
supported in VB .NET, VB .NET has also added the Fi r st DayOf Week and

Fi rstWeekO Year enumerations.

See Also

DateSerial Function, DateString Property, DateValue Function

DateSerial Function

Class

Microsoft.VisualBasic.DateAndTime

226

Syntax
Dat eSeri al (year, nonth, day)

year

nont h

day

Use: Required
Data Type: Integer

Number between 100 and 9999, inclusive, or a numeric expression

Use: Required
Data Type: Integer

Any numeric expression to express the month between 1 and 12

Use: Required
Data Type: Integer

Any numeric expression to express the day between 1 and 31

Return Value

A Date representing the date specified by the arguments

Description

Returns a Date whose value is specified by the three date components (year, month, and day).

For the function to succeed, all three components must be present, and all must be numeric values.
The value returned by the function takes the short date format defined by the Regional Settings applet
in the Control Panel of the client machine.

Rules at a Glance

If the value of a particular element exceeds its normal limits, DateSerial adjusts the date
accordingly. For example, if you tried Dat eSer i al (96, 2, 31) —February 31, 1996—
DateSerial returns March 2, 1996.

You can specify expressions or formulas that evaluate to individual date components as
parameters to DateSerial. For example, Dat eSeri al (98, 10+9, 23) returns 23 March 1999.
This makes it easier to use DateSerial to form dates whose individual elements are unknown
at design time or that are created on the fly as a result of user input.

Example

Dimi Year As Integer = 1987
DmiMnth As Integer = 3 + 11
Dmiday As Integer = 16

MsgBox(Dat eSeri al (i Year, iMonth, iday))

227

Programming Tips and Gotchas

If any of the parameters exceed the range of the Integer data type (-32,768 to 32,767), an
error (runtime error 6, "Overflow") is generated.

DateSerial handles two-digit years in the same way as other Visual Basic date functions. A
year argument between 0 and 29 is taken to be in the 21st century (2000 to 2029); year
arguments between 30 and 99 are taken to be in the 20th century (1930 to 1999). Of course,
the safest way to specify a year is to use the full four digits.

See Also

DatePart Function, DateString Property, DateValue Function

DateString Property

Class

Microsoft.VisualBasic.DateAndTime

Syntax
DateString()

Return Value
A String representing the current system date
Description

Returns or sets a string representing the current system date in the format "mm-dd-yyyy"

Rules at a Glance

The allowed formats for setting the date are "m-d-yyyy," "m-d-y," "m/d/yyyy," and "m/d/y.
Programming Tips and Gotchas

To get or set the current system time as a String, use the TimeString property.
To access the current system date as a Date, use the Today property.

VB .NET/VB 6 Differences

The DateString property is new to VB .NET. It is a replacement for the VB 6 Dat e statement, which
sets the system date, and the Date and Date$ functions, which retrieve the system date.

See Also

Now Property, TimeString Property, Today Property

228

DateValue Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax

Dat eVal ue(stringdat e)
stringdate

Use: Required
Data Type: String

A string containing any of the date formats recognized by IsDate

Return Value

A Date that represents the date specified by the st ri ngdat e argument

Description
Returns a Date containing the date represented by st ri ngdat e.

The date value is formatted according to the short date setting defined by the Regional Settings applet
in the Control Panel. DateValue can successfully recognize a st ri ngdat e in any of the date formats
recognized by IsDate. DateValue does not return time values in a date/time string; they are simply
dropped. However, if st r i ngdat e includes a valid date value but an invalid time value, a runtime
error results.

Rules at a Glance

The order of the day, month, and year within st r i ngdat e must be the same as the sequence
defined by the computer's regional settings.

Only those date separators recognized by IsDate can be used.

If you don't specify a year in your date expression, DateValue uses the current year from the
computer's system date.

Example
Di m sDat eExpression As String
sDat eExpression = 10 & "/" & "March" & "/" & 1998
| f |sDate(sDat eExpression) Then

Consol e. Wit eLi ne(Dat eVal ue(sDat eExpr essi on))
El se

Consol e. WiteLine("invalid date")
End If

Programming Tips and Gotchas

229

When working with dates, always check that a date is valid using the IsDate function prior to
passing it as a function argument.

If st ri ngdat e includes time information as well as date information, the time information is
ignored; however, if only time information is passed to DateValue, an error is generated.
DateValue handles two-digit years in the following manner: Year arguments between 0 and
29 are taken to be in the 21st century (2000 to 2029), while year arguments between 30 and
99 are taken to be in the 20th century (1930 to 1999). Of course, the safest way to specify a
year is to use the full four digits.

On Windows NT/2000 systems, the date formats are held as string values in the following
registry keys:

Date Separator

HKEY_CURRENT_USER\ Cont r ol Panel \ I nt er nati onal , sDat e value entry

Long Date

HKEY CURRENT_USER\ Cont r ol Panel \ I nt er nati onal , sLongDat e value entry
Short Date

HKEY CURRENT USER\ Cont r ol Panel \ | nt er nati onal , sShort Dat e value entry

The more common approach to date conversion is to use the CDate function. Microsoft also
recommends using the C... conversion functions due to their enhanced capabilities and their
locale awareness.

See Also

DatePart Function, DateSerial Function, DateString Property

Day Function

Class

Microsoft.VisualBasic.DateAndTime

Syntax
Day(dat eval ue)
dat eval ue
Use: Required
Data Type: Date or literal date

Return Value

An Integer from 1 to 31, representing the day of the month

Description

230

Returns an Integer ranging from 1 to 31, representing the day of the month of dat eval ue

Rules at a Glance

The range of dat eval ue is 1/1/1 to 12/31/9999.

Programming Tips and Gotchas

When working with dates, always check that a date is valid using the IsDate function prior to

passing it as a function parameter.

With Opti on Strict On, you must first convert dat eval ue to a Date data type before
passing it to the Day function. You can use the CDate function for thi s purpose.

If the day portion of dat eval ue is outside of its valid range, the function regenerates runtime

error 13, "Type mismatch." This is also true if the day and month portion of dat eval ue is

2/29 for a non-leap year.

To return the day of the week, use the WeekDay function.

See Also

DatePart Function, WeekdayName Function

DDB Function

Class

Microsoft.VisualBasic.Financial

Syntax
DDB(cost, salvage, |life, period[, factor])
cost

Use: Required

Data Type: Double

The initial cost of the asset.
sal vage

Use: Required

Data Type: Double

The value of the asset atthe end of | i f e.
life

Use: Required

231

Data Type: Double

Length of life of the asset.
peri od

Use: Required

Data Type: Double

Period for which the depreciation is to be calculated.
factor

Use: Optional

Data Type: Variant

The rate at which the asset balance declines. If omitted, 2 (double-declining method) is
assumed. However, the documentation doesn't mention what other values are supported or
what they mean.

Return Value

Double representing the depreciation of an asset

Description

Returns a Double representing the depreciation of an asset for a specific time period. This is done
using the double-declining balance method or another method that you specify using the f act or
argument.

The double-declining balance calculates depreciation at a differential rate, which varies inversely with
the age of the asset. Depreciation is highest at the beginning of an asset's life and declines over time.

Rules at a Glance

|1 feandperi od must be specified in the same time units. In other words, both must be
expressed in units of months, or both must be years.
All arguments must be positive numbers.

Example

DimdblInitial Cost As Double = 2000

Di m dbl Sal vageVal ue As Doubl e = 50

Di m dbl Useful Life As Double = 12

Di m dbl Tot Depreci ati on As Double = 0

Di m dbl Peri od, dbl Thi sPeri odDepr As Doubl e

For dblPeriod = 1 To 12
dbl Thi sPeri odDepr = DDB(dblInitial Cost, _
dbl Sal vageVal ue, dbl Useful Li fe, dbl Peri od)
dbl Tot Depreci ati on = dbl Tot Depreci ation + _
dbl Thi sPeri odDepr
Console. WiteLine("Month " & dblPeriod & ": " &
dbl Thi sPeri odDepr)

232

Next dbl Peri od

Consol e. WitelLine("TOTAL: " & dbl Tot Depreci ati on)
Programming Tips and Gotchas

The double-declining balance depreciation method calculates depreciation at a higher rate in
the initial period and a decreasing rate in subsequent periods.
The DDB function uses the following formula to calculate depreciation for a given period:

Depreciation / period = ((cost - salvage) * factor) / life

Debug Class

Namespace
System.Diagnostics
Createable

No

Description

The Debug object is used to send messages to the Output window (formerly called the Immediate
window). The Debug object can also send output to other targets, such as text files, referred to as
listeners. See the Debug.Listeners Property entry. The Debug class also allows you to check
program logic with assertions.

Because the Debug class' members are shared, you do not need to instantiate the Debug object
before accessing its members. The following code fragment, for instance, illustrates a call to the
Debug object's WriteLine method:

Debug. WiteLine(intCount & " iteration through the |oop")

Debug class members marked with an plus sign (+) are discussed in detail in their own entries.

Public Shared Properties

AutoFlush +
IndentLevel +
IndentSize +
Listeners +

Public Shared Methods

Assert +
Close +
Fail

Flush +
Indent +
Unindent +
Write +
Writelf +

233

WriteLine +
WriteLinelf +

VB .NET/VB 6 Differences

The VB 6 Debug object has only two methods, Assert and Print. The VB .NET Assert method is similar
to the VB 6 method, except that the latter displays a message if an expression is Fal se, while the
former suspends program execution. In VB .NET, the VB 6 Print method is gone, replaced by the
Write, Writelf, WriteLine, and WriteLinelf methods.

See Also

Debug.Assert Method, Debug.Write Method, Debug.WriteLine Method

Debug.Assert Method

Class

System.Diagnostics.Debug

Syntax
Debug. Assert (bool eanexpression[[, stringl], string2])
bool eanexpressi on

Use: Required

Data Type: Boolean

Expression that evaluates to a Boolean value.
stringl

Use: Required

Data Type: String

String to output if bool eanexpressi on is Fal se.
string2

Use: Required

Data Type: String

Detailed string to output. If bool eanexpressi onis Fal se, st ri ng2 is output to Output
window.

Return Value

None

234

Description

Outputs messages to the Output window if the condition is Fal se

Rules at a Glance

bool eanexpr essi on must evaluate to a Boolean value.

Programming Tips and Gotchas

Assert is typically used when debugging to test an expression that should evaluate to Tr ue.
Debug.Assert executes only when an application is run in the design-time environment; the
statement has no effect in a compiled application. This means that Debug.Assert will never
produce a runtime error if the call to it is inappropriate, nor will it suspend program execution
outside of the VB IDE. Because of this, you do not have to remove Debug.Assert statements
from finished code or separate them with conditional #| f . . . Then statements.

Debug.AutoFlush Property

Class

System.Diagnostics.Debug

Syntax
Debug. Aut oFl ush

Return Value
Boolean
Description

Sets or returns a Boolean value indicating whether each Write should be automatically followed by a
Flush operation. By default, its value is Fal se.

See Also

Debug.Flush Method

Debug.Close Method

Class

System.Diagnostics.Debug

235

Syntax
Debug. Cl ose()

Return Value

None

Description

Flushes the output buffer and closes the listeners (except for the default Output window)

Debug.Flush Method

Class

System.Diagnostics.Debug

Syntax
Debug. Fl ush()

Return Value

None

Description

Flushes the output buffer, which causes all pending data to be written to the listeners

Debug.Indent Method

Class

System.Diagnostics.Debug

Syntax
Debug. I ndent ()

Description

Increases the current IndentLevel by 1. The property is useful for improving the readability of output
sent to the Output window.

See Also

236

Debug.IndentLevel Property, Debug.lndentSize Property, Debug.Unindent Method

Debug.IndentLevel Property

Class

System.Diagnostics.Debug

Syntax
Debug. I ndent Level ()

Return Value
An Integer specifying the indent level. The default is 0.
Description

Sets or retrieves the current indent level for the Debug object. The property is useful for improving the
readability of output sent to the Output window.

See Also

Debug.IndentSize Property, Debug.Unindent Method

Debug.IndentSize Property

Class

System.Diagnostics.Debug

Syntax
Debug. I ndent Si ze

Return Value
An Integer specifying the number of spaces per indent level. The default is 4.
Description

Sets or retrieves the current indent-size setting, which is the number of spaces per indent level. The
property is useful for improving the readability of output sent to the Output window.

See Also

237

Debug.IndentlLevel Property, Debug.Unindent Method

Debug.Listeners Property

Class

System.Diagnostics.Debug

Syntax
Debug. Li steners

Description

Retrieves the TraceListenerCollection collection of all TraceListener objects that monitor the debug
output.

Example

The following code adds a text file to the listeners collection. As a result, all Debug.Write... methods
will not only send the output to the Output window (the default listener) but also to the text file:

Define a new Text WiterTracelLi stener
Dimtrace As New TextWiterTracelListener()

Define a new Fil eStream obj ect
Dmfs As FileStream = New FileStream("c:\log.txt", FileMde. Append,
Fi | eAccess. Wite)

Set the Witer property to a new StreanWiter for this FileStream
trace. Witer = New StreanWiter(fs)

Add | i stener
Debug. Li steners. Add(trace)

Qut put
Debug. Wi t eLi ne(" xxxxx")
Debug. Wi teLi ne("yyyyy")

Cl ose up
Debug. Cl ose()
fs.Cose()

Rermove |i stener
Debug. Li st eners. Renove(trace)

This goes only to Qut put w ndow
Debug. WiteLine("zzzzz")

Debug.Unindent Method

238

Class

System.Diagnostics.Debug

Syntax
Debug. Uni ndent ()

Description

Decreases the current IndentLevel by 1. The property is useful for improving the readability of output
sent to the Output window.

See Also

Debug.Indent Method, Debug.IndentlLevel Property

Debug.Write Method

Class

System.Diagnostics.Debug

Syntax
Debug. Wite(Qutput[, Category])
CQut put

Use: Required

Data Type: String or Object

The string to be sent to the Output window, or the object whose name is to be sent to the
Output window

Cat egory

Use: Optional

Data Type: String

A category name used to group output messages
Description
Prints text in the Output window in the design-time environment
Rules at a Glance

If Qut put is a string, the string is printed to the Output window.

239

If Cut put is a nonstring object, the ToString property of the Obj ect object is invoked. This
just outputs a string version of the name of the object.

Supplying a Cat egor y argument is useful when you want to organize the output from several
Debug. Wi t e statements by category. Output from the method then takes the form:

Cat egory: Qutput

if Qut put is a string, and:

Cat egory: Qutput.ToString

if Output is a honstring object.

Programming Tips and Gotchas

In Visual Basic applications, Debug.Write executes only when an application is run in the design-time
environment; the statement has no effect in a compiled application.

See Also

Debug.Writelf Method, Debug.WriteLine Method, Debug.WriteLinelf Method

Debug.Writelf Method

Class

System.Diagnostics.Debug

Syntax
Debug. Witelf(condition, nessage[, Category])

or:

Debug. Witel f(condition, value[, Category])
condi tion

Use: Required

Data Type: Boolean

Condition required for output to proceed
message

Use: Required

Data Type: String

The string to be sent to the Output window, or the object whose name is to be sent to the
Output window

240

val ue

Use: Required

Data Type: Any

An object whose name is to be sent to the Output window
Cat egory

Use: Optional

Data Type: String

A category name used to group output messages
Description

Prints text in the Output window in the design-time environment, provided that condi t i onis Tr ue

Rules at a Glance

This method behaves identically to Debug.Write, with the exception that nothing is output unless
condi tionisTrue.

See Also

Debug.Write Method, Debug.WriteLine Method, Debug.WriteLinelf Method

Debug.WriteLine Method

Class

System.Diagnostics.Debug

Syntax
Debug. Wi teLi ne(Qutput[, Category])
CQut put

Use: Required

Data Type: String or Object

The string to be sent to the Output window, or the object whose name is to be sent to the
Output window

Cat egory

Use: Optional

241

Data Type: String

A category name used to group output messages
Description
Prints text, followed by a newline command, in the Output window in the design-time environment
Rules at a Glance

This method is identical to Debug.Write except that a newline command is sent to the Output window
after any text is written.

See Also

Debug.Write Method, Debug.Writelf Method, Debug.WriteLinelf Method

Debug.WriteLinelf Method

Class

System.Diagnostics.Debug

Syntax
Debug. Wit e(bool eanexpressi on, Qutput[, Category])
bool eanexpr essi on
Use: Required
Data Type: Boolean
Condition required for output to be produced
Qut put
Use: Required

Data Type: String or Object

The string to be sent to the Output window, or the object whose name is to be sent to the
Output window

Cat egory
Use: Optional
Data Type: String

A category name used to group output messages

242

Description

Prints text followed by a newline character in the Output window in the design-time environment,
provided that bool eanexpressi onis Tr ue

Rules at a Glance

This method behaves identically to Debug.WriteLine, except that nothing is output unless
bool eanexpr essi onis Tr ue.

See Also

Debug.Write Method, Debug.Writelf Method, Debug.WriteLine Method

Declare Statement

Syntax
Syntax for subroutines:

[accessnodifier] Declare [Ansi| Unicode| Auto] Sub nane Lib "libnanme"
[Alias "aliasnane"] [([arglist])]

Syntax for functions:

[accessnodifier] Declare [Ansi| Unicode| Auto] Function name _
Lib "l'ibname"” [Alias "aliasname"] [([arglist])] [As type]
accessnodi fier

Use: Optional

Type: Keyword

accessnodi fi er can be any one of the following: Publ i c, Pri vat e, Prot ect ed, Fri end,
or Prot ect ed Fri end. The following table describes the effects of the various access

modifiers. Note that Direct Access refers to accessing the member without any qualification,
as in:

cl assvariable = 100

and Class/Object Access refers to accessing the member through qualification, either with the
class name or the name of an object of that class.

Direct Access scope Class/Object Access scope
Private Declaring class Declaring class
Protected All derived classes Declaring class
Friend Derived in-project classes Declaring project
Protected Friend All derived classes Declaring project
Public All derived classes All projects

243

For more information, see Section 3.7 in Chapter 3.

Ansi

Use: Optional

Type: Keyword

Converts all strings to ANSI values.
Unicode

Use: Optional

Type: Keyword

Converts all strings to Unicode values.
Auto

Use: Optional

Type: Keyword

Converts the strings according to .NET rules based on the name of the method (or the alias
name, if specified). If no modifier is specified, Aut o is the default.

nane
Use: Required
Type: String literal
Any valid procedure name. Note that DLL entry points are case sensitive. If the al | asnane
argument is used, nane represents the name by which the function or procedure is referenced
in your code, while al i asnamne represents the name of the routine as found in the DLL.
Lib
Use: Required
Type: Keyword
Indicates that a DLL or code resource contains the procedure being declared.
i bname
Use: Required
Type: String literal
Name of the DLL or code resource that contains the declared procedure.

Alias

244

Use: Optional
Type: Keyword

Indicates that the procedure being called has another name in the DLL. This is useful when
the external procedure name is the same as a keyword. You can also use Al | as when a DLL
procedure has the same name as a public variable, constant, or any other procedure in the
same scope. Al | as is also useful if any characters in the DLL procedure name aren't allowed
by VB .NET naming conventions.

al i asnane

Use: Optional
Type: String literal
Name of the procedure in the DLL or code resource. If the first character is not a number sign

(#), al I asnane is the name of the procedure's entry point in the DLL. If # is the first character,
all characters that follow must indicate the ordinal number of the procedure's entry point.

argli st

Use: Optional

List of variables representing arguments that are passed to the procedure when it is called.

type
Use Optional
Type: Keyword
Data type of the value returned by a Function procedure; may be Byt e, Bool ean, Char,
Short, I nt eger, Long, Si ngl e, Doubl e, Deci nal , Dat e, Stri ng, Obj ect, or any user-
defined type. Arrays of any type cannot be returned, but an Object containing an array can.
Description

Used at module level to declare references to external procedures in a dynamic-link library (DLL)

Rules at a Glance

argli st is optional and has the following syntax:

[ByVal | ByRef] varnanme[()] [As type]
ByVal

Use: Optional
Type: Keyword

The argument is passed by value; that is, a local copy of the variable is assigned the value of
the argument. ByVal is the default method of passing arguments.

245

ByRef
Use: Optional
Type: Keyword

The argument is passed by reference; that is, the local variable is simply a reference to the
argument being passed. All changes made to the local variable are reflected in the calling
argument.

var name
Use: Required

Type: String literal

The name of the local variable containing either the reference or value of the argument.
type

Use: Optional

Type: Keyword

The data type of the argument. Can be Byte, Boolean, Char, Short, Integer, Long, Single,
Double, Decimal, Date, String, Object, or any user-defined type, object type, or data type
defined in the BCL.

The number and type of arguments included in ar gl i st are checked each time the
procedure is called.

The data type you use in the As clause following ar gl i st must match that returned by the
function.

Example

The following example retrieves the handle of a window from its title bar caption. This is done using
the FindWindow API function.

Decl are Function Fi ndWndow Lib "user32" Alias "Fi ndWndowA" (
ByVal | pCl assNane As String, _
ByVal | pW ndowNane As String _
) As | nteger

Private Sub Get WndowHandl e()
MsgBox(Fi ndW ndow(vbNul | String, "Document - WrdPad"))
End Sub

Programming Tips and Gotchas

Using an Al i as is useful when the name of an external procedure conflicts with a Visual
Basic keyword or with the name of a procedure within your project, or when the name of the
procedure in the code library is not allowed by Visual Basic naming conventions. In addition,
al i asnane is frequently used with functions in the Win32 API that have string parameters,
where the "official" documented name of the function is used in code to call either of two "real
functions—one an ANSI and the other a Unicode version. For example:

Decl are Functi on ExpandEnvironnment Strings _

246

Lib "kernel 32" Alias "ExpandEnvironment Stri ngsA"
(ByVval |pSrc As String, ByVal |pDst As String,
ByVal nSize As Long) As Long

defines the documented Win32 function ExpandEnvironmentStrings to a VB application.
However, although calls to the function take the form:

| ngByt es = ExpandEnvironnent Strings(strOriginal,
strCopy, |en(strCopy))

the actual name of the function as it exists in Kernel32.dll is ExpandEnvironmentStringsA.
(Windows. API functions ending in "A" are the ANSI string versions, and those ending in "W"
(for Wide) are the Unicode string versions.)

You can use the # symbol at the beginning of al | asnane to denote that al i asnane is in fact
the ordinal number of a procedure within the DLL or code library. In this case, all characters
following the # sign and composing the al i asnanme argument must be numeric. For example:
Decl are Function Get ForegroundW ndow Li b "user 32"
Alias "#237" () As Long

Remember that DLL entry points are case sensitive. In other words, either nane or

al i asnane (if it is present and does not represent a routine's ordinal position) must
correspond in case exactly to the routine as it is defined in the external DLL. Otherwise, VB
displays runtime error 453, "Specified DLL function not found." If you aren't sure how the
routine name appears in the DLL, use the DumpBin.exe utility to view its export table. For
instance, the following command displays the export table of advapi32.dll, one of the Windows
system files:

dunmpbi n /exports c:\w ndows\ systenB2\ advapi 32. dl |

| i bname can include an optional path that identifies precisely where the external library is
located. If the path is not included along with the library name, VB by default searches the
current directory, the Windows directory, the Windows system directory, and the directories in
the path, in that order.

If the external library is one of the major Windows system DLLs (such as Kernel32.dll or
Advapi32.dll), | i bnane can consist of only the root filename, rather than the complete
filename and extension.

One of the most common uses of the Dec| ar e statement is to make routines in the Win32
API accessible to your programs. For more on this topic, see Win32 API Programming with
Visual Basic by Steven Roman (O'Reilly 1999).

In addition to the standard VB data types, you can also include BCL data types that are not
wrapped by VB in ar gl i st. Most useful are the unsigned integers, UShort, UInt16, and
Uint32.

In many cases, you can use routines available in the .NET Base Class Library or Framework
Class Library instead of calling the Win32 API.

VB .NET/VB 6 Differences

In VB 6, it is possible to declare the data type of an argument as Any, which suspends
typechecking by the VB runtime engine. In VB .NET, this usage is not supported.

In VB 6, if ByVal or ByRef is not specified, an argument is passed to the calling procedure by
reference. In VB .NET, arguments are passed by value by default.

In VB 6, it is possible to override the method in which an argument is passed to an external
function within the call itself by specifying either ByVal or ByRef before the argument. In

VB .NET, this usage is not permitted.

247

The size of the integer data types in VB 6 and VB .NET are different, making it necessary to
rewrite any ar gl i st that has a data type of Integer or Long in VB 6. The VB 6 Integer data
type is equivalent to the VB .NET Short data type. The VB 6 Long data type is equivalent to
the VB .NET Integer data type.

VB 6 lacks a signed 8-bit integer data type and unsigned data types to correspond to the
Integer and Long types. In the .NET platform, unsigned data types are available for 16-bit
integers (UInt16), 32-bit integers (UInt32), and 64-bit integers (UInt64). A signed byte data
type (SByte) is also available. All are BCL classes not wrapped by VB .NET.

Delegate Statement

Syntax

[AccessModi fier] Delegate Sub nane [([arglist])])
[AccessModi fier] Del egate Function name [([arglist])]) As type
AccessModi fier

Use: Optional
Data Type: Keyword

Specifies scope/accessibility the same as when declaring a subroutine or function. Can be
one of Publ i c, Pri vat e, Prot ect ed, Fri end, Prot ect ed Fri end, or Shadows.

name
Use: Required
Type: String literal
The name of the delegate class.
argli st
Use: Optional
The argument list; it has the same syntax as when defining a subroutine or function.
Description

Declares the parameters and return type of a delegate class. Note that the syntax is the same as that
used when declaring a subroutine or function, with the addition of the keyword Del egat e.

Rules at a Glance

Any procedure whose argument list and return type matches that of a declared delegate class
can be used to create an instance of this delegate class, as the upcoming example illustrates.
For more information on delegates, see Section 6.1 in Chapter 6.

Example

248

Consider the following method:

Public Cass Cassl
Public Sub AMet hod(ByVal s As String)
Msgbox('s)
End Sub
End d ass

Consider the following delegate declaration:
Del egate Sub ADel egate(ByVal s As String)

The following code uses the delegate to call the AMethod of Class1:

Protected Sub Fornil_dick(ByVal sender As Ohject, _
ByVal e As System Event Args) _
Handl es MyBase. i ck

' (bject of type Cassl
Dimobj As New C assl()
" Declare a new del egate
Di m del g As ADel egate
" Define the del egate, passing the address of the object's nethod
del g = New ADel egat e(AddressOf obj . AMet hod)

" Call the nethod using the Invoke nethod of the del egate
del g. I nvoke("test")

End Sub
DeleteSetting Procedure

Class

Microsoft.VisualBasic.Interaction

Syntax
Del et eSetti ng(appnane[, section[, key]])
appnane

Use: Required

Data Type: String

The name of the application. This must be a subkey of the
HKEY_CURRENT_USER!\ Sof t war e\ VB and VBA Pr ogr amSet t i ngs registry key.

section

Use: Optional

249

Data Type: String

The name of the application key's subkey that is to be deleted. sect i on can be a single key
or a registry path separated with backslashes.

key

Use: Optional

Data Type: String

The name of the value entry to delete.
Description

Deletes a complete application key, one of its subkeys, or a single value entry from the Windows
registry

Rules at a Glance

sect i on can contain a relative path (similar to that used to describe the folders on a hard
drive) to navigate from the application key to the subkey to be deleted. For example, to delete
the value entry named Test Key in the registry key HKEY CURRENT USER\ Sof t war e\ VB
and VBA ProgramSettings\ RegTest er\ BranchOne\ Br anchTwo, you would use:

Del eteSetting "RegTester", "BranchOne\BranchTwo",
"Test Key"

You cannot use Del et eSet t i ng to delete entries from registry keys that are not subkeys of
HKEY_CURRENT_USER!\ Sof t war e\ VB and VBA ProgramSetti ngs.

If key is supplied, only the value entry named key and its associated value are deleted.

If key is omitted, the subkey named sect i on is deleted.

If sect i on is omitted, the entire application key named appnane is deleted.

Example

Sub Test TheReg()
SaveSetting("MyReal GoodApp", _
"Test Branch\ SoneSect i on\ Anot her Secti on",
"Test key", "10")
MsgBox("Now | ook in RegEdit")
End Sub

Sub TestDelete()
If CGetSetting("MReal GoodApp", _
"Test Branch\ SoneSecti on\ Anot her Secti on",

"TestKey") <> "" Then

Del et eSetti ng(" MyReal GoodApp", _
"Test Branch\ SoneSecti on\ Anot her Secti on",

"Test Key")
MsgBox("Look again!")
End If
End Sub

Programming Tips and Gotchas

250

Del et eSet t 1 ng was designed to operate on initialization files in 16-bit platforms and on the
registry in 32-bit platforms. But the terminology used to describe the statement in the official
documentation is based on initialization files, rather than on the registry. In particular, what is
described as a key is a named key in an initialization file and a value entry in the registry.

The behavior of the Del et eSet t i ng statement differs under Windows 95 and Windows NT
when it is used to remove a key from the registry. Under Windows 95, if the statement is used
to delete either appnane or sect i on, all subkeys belonging to the key to be deleted will also
be deleted. Under Windows NT, on the other hand, the keys appnane and sect i on are only
deleted if they don't contain subkeys.

Del et eSet t i ng cannot be used to delete the default value (i.e., the unnamed value entry)
belonging to any key. If you're using only the VB registry functions, though, this isn't a serious
limitation, since SaveSet t | ng does not allow you to create a default value.

Unless you are quite sure about what you're doing, you should only delete registry settings
that have been placed in the registry by your own code. Inadvertently deleting the wrong
entries can have disastrous consequences. However, because this statement only gives you
access to the subkeys of HKEY CURRENT USER\ Sof t war e\ VB and VBA Program

Set ti ngs, the potential damage is minimized.

Never assume that the key you want to delete is necessarily present in the registry.

Del et eSet t i ng deletes a user key (that is, a subkey of HKEY CURRENT _USER); except on
Windows 95 systems that are not configured to support multiple users, the user key is formed
from a file that reflects only the present user's settings. This means that when one user runs
an application, user settings are stored in his registry key. But when a second user runs the
application for the first time, settings for that user are not likely to be present. Attempting to
delete a nonexistent key produces runtime error 5, "Invalid procedure call or argument.” To
prevent the error, you should first test for the presence of the registry key, as shown in the
earlier example.

Rather than rely on the relatively underpowered registry-access functionality available in
Visual Basic, we highly recommend that you instead use the Registry and RegistryKey
classes available in the BCL's M cr osof t . W n32 namespace.

See Also

GetAllSettings Function, GetSetting Function, SaveSetting Procedure

Dim Statement

Syntax
[Overrides] [Shadows] Dim[WthEvents] varnane[([subscripts])]
[As [New] type] [= initexpr]
Overrides
Use: Optional

Type: Keyword

In a derived class definition, indicates that a variable overrides a similar variable in a base
class

Shadows

Use: Optional

251

Type: Keyword

In a derived class definition, indicates that calls to derived class members that are made
through a base class ignore the shadowed implementation

WithEvents

Use: Optional

Type: Keyword

In an object variable definition, indicates that the object will receive event notification
var nane

Use: Required

Your chosen name for the variable
subscripts

Use: Optional

Dimensions of an array variable
New

Use: Optional

Type: Keyword

Keyword that creates an instance of an object
type

Use: Optional

The data type of var nane
initexpr

Use: Optional

Any expression that provides the initial value to assign to the variable; cannot be used if an As
New clause is used

Description

Declares and allocates storage space in memory for variables. The Di mstatement is used either at
the start of a procedure or the start of a module to declare a variable of a particular data type.

Rules at a Glance

Object is the default data type created when no data type is explicitly declared.

252

The declaration of a nonobject variable actually creates the variable. For an object variable,
the variable is not created unless the optional New statement is used. If not, then the object
variable is set to Not hi ng and must be assigned a reference to an existing object at some
later point in the code.

When multiple variables are declared on the same line, if a variable is not declared with an
explicit type declaration, then its type is that of the next variable with an explicit type
declaration. Thus, in the line:

Dmx As Long, i, j, k As Integer, s As String
the variables i , | , and k have type Integer. (In VB 6, the variables i and | have type Variant.)

VB .NET permits the initialization of variables in the same line as their declaration (at long
last!). Thus, we may write:

Dmx As Integer =5

to declare an Integer variable and initialize it to 5. Similarly, we can declare and initialize more
than one variable on a single line:

Dmx As Integer = 6, y As Integer = 9

Variables that are not explicitly initialized by the Di mstatement have the following default
values:

Data type Initial value
All numeric types 0
Boolean Fal se
Date 01/01/0001 12:00:00 AM
Decimal 0
Object Not hi ng
String Zero-length string (")

Local variables can have procedure-level scope or block-level scope. A variable that is
declared using the Di mkeyword within a Visual Basic procedure but not within a code block
has procedure-level scope; that is, its scope consists of the procedure in which it is declared.
On the other hand, if a variable is declared inside a code block (i.e., a set of statements that is
terminated by an End. . . , a Loop, or a Next statement), then the variable has block-level
scope; that is, it is visible only within that block.
A variable cannot be declared using the Di mstatement with W t hEvent s within a method,
function, or procedure, since this creates a local variable with procedure-level scope only.
In VB .NET, all arrays have a lower bound of 0. This is a change from earlier versions of VB,
where we could choose the lower bound of an array.
To declare a one-dimensional array variable, use one of the following example syntaxes:

"Inmplicit constructor: No initial size & no initialization

Dim Arraynane() As Integer

"Explicit constructor: No initial size & no initialization

Dim Arraynane() As Integer = New Integer() {}

"Inmplicit constructor: Initial size but no initialization
Di m Arraynane(6) As |nteger

"Explicit constructor: Initial size but no initialization
Dim Arraynane() As Integer = New Integer(6) {}

253

Inmplicit constructor: Initial size inplied by initialization
Dim Arrayname() As Integer = {1, 2, 3, 4, 5, 6, 7}

"Explicit constructor, Initial size and initialization
Dim Arraynane() As Integer = New Integer(6) {1, 2, 3, 4, 5, 6, 7}

To declare a multidimensional array, use one of the following example syntaxes:

" Two-di mensi onal array of unknown size

Dim arraynanme(,) As |nteger

" Two-di mensi onal array of unknown size
Dimarraynane(,) As Integer = New Integer(,) {}
" Two-di mensional array of size 3 by 2
Di marraynanme(3, 2) As I|nteger
" Two-di mensi onal array of size 3 by 2
Dimarrayname(,) As Integer = New Integer (3, 2) {}
' Two-di mensional array of size 3 by 2, initialized
Dim arrayname(,) As Integer = {{1, 4}, {2, 5}, {3, 6}}
" Two-di mensional array of size 3 by 2, initialized
Dim arrayname(,) As Integer = New Integer(3, 2) {{1, 4},

{2, 5}, {3, 6}}

The Wt hEvent s keyword cannot be used when declaring an array.
You can set or change the number of elements of an array using the ReDi mstatement.
The maximum allowed dimensions for an array are 60.

Programming Tips and Gotchas

254

When you declare an object reference as \W t hEvent s, that object's events can be handled
within your application. Object variables must be declared W t hEvent s at the module level to
allow you to provide an error handler.

When you declare an object variable as \W t hEvent s in the declarations section of the
module, the name of the object variable appears in the Object drop-down list at the top left of
your code window. Select this and note that the events exposed by the object are available in
the Procedure drop-down list at the top right of the code window. You can then add code to
these event procedures in the normal way, as shown here:

Private WthEvents oEnp As Enpl oyee

Private Sub oEnp_CanDat aChange(Enpl oyeeCode As String
Cancel As Bool ean)
"event handling code goes here
End Sub

Private Sub oEnp_Dat aChanged(Enpl oyeeCode As Stri ng)
"event handling code goes here
End Sub

For a fuller description and discussion of the uses of W t hEvent s, Event , and Rai seEvent,
see the Event, RaiseEvent, and WithEvents entries.

One word of warning when using the W t hEvent s keyword: if you are building a client-server
system using a W t hEvent s object reference, you must ensure that the client machine gives
permission for the server machine to create processes on it. Otherwise, even though the client
can create instances of the object on the server, the server will not be able to call back to the
client with event notifications. In fact, your application will not even launch before a
"Permission Denied" or similar error is generated. You can alter the permissions on the client
using the DCOM Config utility.
The way in which you declare an Object variable with the Di mstatement dictates whether your
application uses early binding or late binding. Early binding allows object references to be
resolved at compile time. Late binding resolves an object reference at runtime, which has a
negative impact on runtime efficiency. To optimize the performance, you should use early
binding whenever possible. For more information on this, see the discussion of binding in
Chapter 2.
When you declare an array without dimensioning it, you risk an ArgumentNullException
exception if you attempt to iterate the array, as in the following code fragment:

Dimalnts(), iCr As Integer

For iCtr = 0 To UBound(alnts)

Console. WiteLine(alnts(iCtr)) ' Rai ses exception
Next

One workaround is to declare an empty array as having -1 element, as the following code
fragment illustrates:

Dimalnts(-1) As Integer

For iCtr = 0 to UBound(alnts) " For | oop never executed
Console. WitelLine(alnts(iCtr))

Next

VB .NET/VB 6 Differences

In VB 6, all variables declared using Di mwithout specifying a specific data type are created as
Variants. In VB .NET, all variables whose data type is not specified are Objects.

When multiple variables are declared on a single line of code in VB 6, variables not explicitly
assigned a data type are cast as variants. For example, in the statement:

DimVarl, Var2, Var3 As String

both Var 1 and Var 2 are variants rather than strings. In VB .NET, the type declaration applies
to all undeclared variables since the last explicit type declaration. So the previous statement in
VB .NET would cast Var 1, Var 2, and Var 3 as strings.

In VB 6, variables cannot be initialized at the same time they are declared. In VB .NET,
variables can be assigned an initial value when they are declared.
In VB 6, all variables defined within a procedure using the Di mkeyword have procedure-level
scope. In VB .NET, variables defined using Di min code blocks (such as loops) have block-
level scope and are not accessible throughout the procedure. Hence, code such as the
following works under VB6 but may fail to compile under VB .NET:
DmiCr As Integer
"Nested | oop
For iCtr = 0 To 10000
DmiCr2 As Integer
For iCtr2 = 0 To 10000

255

Next
Next

Reinitialize iCr2
ictr2 =0

End Sub

VB 6 supports fixed-length strings, but they are not supported in VB .NET.
In VB 6, if an object is instantiated using the New keyword as part of a Di mstatement, testing
for the validity of the object reference with a statement such as:

If obj Is Nothing Then

always fails, since the statement itself reinstantiates the object if it is Not hi ng. In VB .NET,
this undesirable behavior has been changed, and setting the object to Not hi ng destroyes the
object.

In VB 6, you could instantiate an object instantiated using the New keyword as part of a Di m
statement, release the object reference by setting it to nothing, then reinstantiate the object by
referencing it or its members. In VB.NET, setting the object reference to Not hi ng destroys
the object; subsequent attempts to reference the object generate a NullReferenceException
exception.

In VB 6, arrays could be either fixed length or dynamic; in VB .NET, all arrays are dynamic.
VB 6 allows you to define the lower bound of an array when it is initialized. In VB .NET, all
arrays have a lower bound of 0. For example, the VB 6 syntax:

Dimarray(1 To 20) As String
is not supported in VB .NET.

In VB .NET, an array cannot be declared using the New keyword. Practically, this means that
you cannot create an array of creatable objects, and must instead use a collection. VB 6, in
contrast, allows arrays of objects.

See Also

Private Statement, Public Statement, ReDim Statement, Static Statement, WithEvents
Keyword

Dir Function

Class

Microsoft.VisualBasic.FileSystem

Syntax

Di r[(pathname[, attributes])]
pat hnane

256

Use: Optional
Data Type: String

A string expression that defines a path, which may contain a drive name, a folder name, and a
filename

attri butes

Use: Optional
Data Type: Numeric or Constant of the Fi | eAt t ri but e enumeration

A Fi | eAttribut e enumeration constant or numeric expression specifying the file attributes
to be matched

Return Value

String

Description

Returns the name of a single file or folder matching the pattern and attribute passed to the function

Rules at a Glance

A zero-length string (") is returned if a matching file is not found.
Possible values for at t r i but es are:

FileAttribute enumeration |Value Description
Nor el 0 Normal (not hidden and not a system file)
ReadOnl y 1 Read-only file
Hi dden 2 Hidden
System 4 System file
Vol une 8 Volume label; if specified, all other attributes are ignored
Di rectory 16 Directory or folder
Ar chi ve 32 Archive
Ali as 64 Alias or link

The at t ri but es constants can be Or ed together to create combinations of attributes to
match; e.g., Fi |l eAttribute. H dden O FileAttribute. D rectory will match hidden
directories.

If at t ri but es is not specified, files matching pat hnane are returned regardless of
attributes.

You can use the wildcard characters * and ? within pat hnane to return multiple files.
Although pat hnane is optional, the first call you make to Dir must include it. pat hnanme must
also be specified if you are specifying at t r i but es. In addition, once Dir returns a zero-
length string, subsequent calls to Dir must specify pathname, or runtime error 5, "Invalid
procedure call or argument,” results.

A call to Dir with no arguments continues the search for a file matching the last used

pat hname argument (and at t r i but e argument, if it was supplied).

257

Example
Private Sub Buttonl O ick(ByVal sender As System Cbject,

ByVal e As System Event Args)
Handl es Buttonl. dick

Dim sFil eNane As String
DimsPath As String = "c:\w ndows\ *.txt"

sFil eName = Dir(sPath)

Do While sFileName > ""
Li st Box1. | tens. Add(sFi | eNane)
sFileName = Dir()

Loop

End Sub

Programming Tips and Gotchas

258

Dir can only return one filename at a time. To create a list of more than one file that matches
pat hnane, you must first call the function using the required parameters, then make
subsequent calls using no parameters. When there are no more files matching the initial
specification, a zero-length string is returned. Once Dir has returned a zero-length string, you
must specify a pat hnane in the next call, or an error is generated.

In previous versions of Visual Basic, the Dir function was commonly employed to determine
whether a particular file existed. Although it can still be used for this purpose, the use of the
BCL System.IO namespace's File.Exists method is more straightforward. Since Exists is a
shared public member of the File class, it can be called as follows:

If File. Exists("c:\wi ndows\ network.txt")

The Dir function returns filenames in the order in which they appear in the file-allocation table.
If you need the files in a particular order, you should first store the names in an array before
sorting. Note that an array can be easily sorted using the Array object's Sort method; the Array
class is part of the BCL's System namespace.

The Dir function saves its state between invocations. This means that the function cannot be
called recursively. For example, if the function returns the name of the directory, you cannot
then call the Dir function to iterate the files in that directory and then return to the original
directory.

If you are calling the Dir function to return the names of one or more files, you must provide an
explicit file specification. In other words, if you want to retrieve the names of all files in the
Windows directory, for instance, the function call:

strFile = Dir("C\Wndows", FileAttribute.Nornmal)
necessarily fails. Instead, the Dir function must be called with pat hnane defined as follows:

strFile = Dir("C\Wndows*.*", FileAttribute.Normal)

A major limitation of Dir is that it returns only the filename; it does not provide other
information, such as the size, date, and timestamp, or attributes of a file.

Many difficulties with the Dir function result from not fully understanding how various

at tri but es constants affect the file or files returned by the function. By default, Dir returns a
"normal” file (i.e., a file whose hidden or system attributes are not set). Hi dden returns a
normal file or a hidden file, but not a system file and not a system file that is hidden. Syst em
returns a normal file or a system file, but not a hidden file, including a system file that is hidden.

FileAttribute. SystemO FileAttribute. H dden returns any file, regardless of
whether it is normal, hidden, system, or system and hidden.

Directory Class

Namespace

System.lO

Createable

No

Description

The Directory class represents a directory or folder. (It appears that Microsoft is retreating from the
term folder, in favor of the legacy term directory.) The Directory class has a number of methods that
allow you to retrieve information about the directory's system properties, to move and delete a
directory, and to create a new directory. (Unfortunately, however, the Directory class lacks a Copy
method.)

All of the members of the Directory class are shared methods, so they can be called without
instantiating any objects. For example, you can call the CreateDirectory method as follows:

Directory.CreateDirectory("C: \projects\projectl")

This syntax may seem a bit awkward, especially to those familiar with earlier version of VB. Rather
than the Directory object itself representing a directory, as it does in the case of a Folder object in the
VB 6 FileSystemObject object model, the Directory class is simply a means to access a set of
directory-related functions.

Directory class members marked with a plus sign (+) are discussed in further detail in their own entries.

Public Shared Methods

CreateDirectory +
Delete +

Exists +
GetCreationTime +
GetCurrentDirectory
GetDirectories +
GetDirectoryRoot +
GetFiles +
GetFileSystemEntries +
GetLastAccessTime
GetLastWriteTime
GetLogicalDrives +
GetParent +

Move +
SetCreationTime
SetCurrentDirectory
SetLastAccessTime
SetLastWriteTime

259

VB .NET/VB 6 Differences

The Di r ect or y object loosely corresponds to the Fol der object in the FileSystemObject object
model. (The Fi | eSyst enCbj ect object and its child objects are implemented in the Microsoft
Scripting Runtime Library in the file scrrun.dll.) There is, however, a significant difference in the
members of each class, and in some cases, methods with similar functionality have different names.

See Also

File Object

Directory.CreateDirectory Method

Class

System.|O.Directory

Syntax
Directory. CreateDi rectory(path)

pat h

Use: Required
Data Type: String

The path of the new directory

Return Value

None

Description

Creates a new directory

Rules at a Glance

260

pat h must represent a legal path.
pat h can be an absolute or a relative path. For example:

Directory.CreateDirectory("C \ Tenp")
specifies an absolute path (it begins with a drive's root directory), while:

Directory.CreateDi rectory("..\Chapter2")

is a relative path that begins from the current directory. Relative paths can make use of the "."

and ".." characters, which represent the current directory and the parent of the current
directory, respectively.

The CreateDirectory method creates all directories required to create a specified path. For
example, the code:

Directory.CreateDirectory("c:\NewDirectory\NewSubDi rectory")

will create the NewDirectory folder if it does not exist and then the newSubDirectory folder if it
does not exist.

pat h can be either a path on the local system, the path of a mapped network drive, or a UNC
path.

Programming Tips and Gotchas

The CreateDirectory method does not raise an error if the directory to be created already exists.

Directory.Delete Method

Class

System.lO.Directory

Syntax
Directory. Del ete(path [, recursive])
pat h

Use: Required

Data Type: String

The path of the folder to delete.
recursive

Use: Optional

Data Type: Boolean

Indicates whether the folder and its contents are to be deleted if the folder is not empty. Its
default value is Fal se.

Return Value

None

Description

Removes or deletes an existing directory

Rules at a Glance

261

If pat h does not exist, the method generates a runtime error.

If recursi ve is setto Fal se (its default value), the directory must be empty to be
successfully deleted; otherwise, a runtime error will be generated.

If recursi ve is setto Tr ue, the method will delete not only the final directory in pat h, but
also of its files and all of its subdirectories, as well as all nested subdirectories and nested files.
pat h can be either an absolute path (a complete path from the root directory to the directory
whose existence is to be confirmed) or a relative path (starting from the current directory to the
path whose existence is to be confirmed).

pat h can be either a path on the local system, the path of a mapped network drive, or a UNC
path.

pat h cannot contain wildcard characters.

Programming Tips and Gotchas

The Delete method permanently deletes directories and their contents. It doesn't move them
to the Recycle Bin.

Care must be taken when setting r ecur si ve to Tr ue due to the danger of accidentally
removing files, especially since the method does not prompt whether it should delete any
folders or files.

If the user has adequate rights, the source or destination can be a network path or share

name. For example:
Di rectory. Del et e("\\ NTSERV1\ d$\ Root Two")
Directory.Del ete("\\ Root Test")

Directory.Exists Method

Class

System.lO.Directory
Syntax
Di rectory. Exi st s(pat h)
pat h
Use: Required
Data Type: String
The path of the directory whose existence is to be determined
Return Value
Tr ue if the specified path exists; Fal se otherwise
Description

Determines whether a given directory exists

Rules at a Glance

262

pat h can be either an absolute path (a complete path from the root directory to the directory
whose existence is to be confirmed) or a relative path (starting from the current directory to the
path whose existence is to be confirmed).

pat h can be either a path on the local system, the path of a mapped network drive, or a UNC
path.

pat h cannot contain wildcard characters.

Directory.GetCreationTime Method

Class

System.lO.Directory

Syntax
Directory. Get CreationTi ne(pat h)
pat h

Use: Required

Data Type: String

A valid path
Return Value
A Date value indicating the creation date and time of the directory
Description
Indicates when a given directory was created
Rules at a Glance

pat h can be either an absolute path (a complete path from the root directory to the directory

whose creation time is to be retrieved) or a relative path (starting from the current directory to
the directory whose creation time and existence is to be retrieved).

pat h can be either a path on the local system, the path of a mapped network drive, or a UNC
path.

pat h cannot contain wildcard characters.

Directory.GetDirectories Method

Class

System.|O.Directory

263

Syntax
Directory.GetDirectories(path [, searchpattern])
pat h
Use: Required
Data Type: String
A valid path to a directory
searchpattern
Use: Optional

Data Type: String

A directory specification, including wildcard characters

Return Value

An array of strings, each element of which is the name of a subdirectory

Description

Returns the names of the subdirectories in a particular directory
Rules at a Glance

pat h can be either an absolute path (a complete path from the root directory to the directory
whose subdirectories are to be retrieved) or a relative path (starting from the current directory
to the directory whose subdirectories are to be retrieved).

pat h can be either a path on the local system, the path of a mapped network drive, or a UNC
path.

pat h cannot contain wildcard characters.

If sear chpat t er n is specified, the method returns only those directories whose names
match the string, which can contain wildcard characters. Otherwise, sear chpat t er n returns
the names of all the subdirectories in the target directory specified by pat h.

If the directory specified by pat h has no subdirectories, or if no directories match

sear chpat t er n, an empty array is returned.

Example
The following code displays all subdirectories of c:\ whose names start with the letter P:

DmsDirs() As String
Dimi As Integer

sDirs = Directory. GetDirectories("c:\", "P*")
For i = 0 To UBound(sDirs)

Consol e. WiteLine(sDirs(i))
Next

Programming Tips and Gotchas

264

Since GetDirectories can return an empty array, you can prevent an array access error in either of two
ways: you can iterate the returned array using the For Each. .. Next construct, or you can retrieve
the value of the UBound function, which is -1 in the case of an uninitialized array.

See Also

Directory.GetFiles Method, Directory.GetFileSystemEntries Method

Directory.GetDirectoryRoot Method

Class

System.lO.Directory

Syntax
Directory. Get Di rect or yRoot (pat h)
pat h

Use: Required

Data Type: String

A valid path to a directory

Return Value

A String containing the name of the root directory of pat h

Description

Returns the name of the root directory of the drive on which pat h resides (assuming that pat h is
valid). For example, the code:

Directory. GetDirectoryRoot ("c:\programfil es\accessories")

returns the string C: \ as the root directory.

Rules at a Glance

pat h can be either an absolute path (a complete path from the root directory to the target
directory) or a relative path (starting from the current directory to the target directory).

pat h can be either a path on the local system, the path of a mapped network drive, or a UNC
path. For example, the code:

Directory. GetDirect oryRoot ("\\Pentium C\ AFol der")

returns \ \ Pent i um C, and if the folder \Pentium\C\AFolder maps to the network drive Z,
then:

265

Directory. GetDirectoryRoot ("Z:\tenp")
returns Z: \ .
pat h cannot contain wildcard characters.

See Also

Directory.GetParent Method

Directory.GetFiles Method

Class

System.|O.Directory

Syntax
Directory. GetFiles(path [, searchpattern])
pat h
Use: Required
Data Type: String
A valid path to a directory
searchpattern
Use: Optional

Data Type: String

A file specification, including the wildcard characters * and ?
Return Value
An array of strings, each element of which contains the name of a file
Description
Returns the names of the files in a specified directory
Rules at a Glance

pat h can be either an absolute path (a complete path from the root directory to the directory
whose filenames are to be retrieved) or a relative path (starting from the current directory to
the directory whose filenames are to be retrieved).

pat h can be either a path on the local system, the path of a mapped network drive, or a UNC
path.

266

pat h cannot contain wildcard characters.

If sear chpat t er n is specified, the method returns only those files whose names match the
string, which can contain wildcard characters. Otherwise, the function returns the names of all
the files in the pat h directory.

If the directory specified by pat h has no files, or if no files match sear chpat t er n, an empty
array is returned.

Example
The following code displays all files in c:\ that have the extension .txt:

DmsFiles() As String
Dimi As Integer

SFiles = Directory. GetFiles("c:\", "*.txt")
For i = 0 To UBound(sFil es)

Console. WitelLine(sFiles(i))
Next

Programming Tips and Gotchas

Since GetFiles can return an empty array, you can prevent an array-access error in either of two ways:
you can iterate the returned array using the For Each. .. Next construct, or you can retrieve the
value of the UBound function, which is -1 in the case of an uninitialized array.

See Also

Directory.GetDirectories Method, Directory.GetFileSystemEntries Method

Directory.GetFileSystemEntries Method

Class

System.lO.Directory

Syntax
Directory. GetFil eSystenkEntries(path [, searchpattern])
pat h
Use: Required
Data Type: String
A valid path to a directory
sear chpattern

Use: Optional

Data Type: String

267

A file specification, including wildcard characters

Return Value

An array of strings, each element of which contains the name of a filesystem entry (that is, a file or
directory) in the pat h directory

Description

Returns the names of the filesystem entries (that is, of files and directories) in a specified directory
Rules at a Glance

pat h can be either an absolute path (a complete path from the root directory to the directory
whose entries are to be retrieved) or a relative path (starting from the current directory to the
directory whose entries are to be retrieved).

pat h can be either a path on the local system, the path of a mapped network drive, or a UNC
path.

pat h cannot contain wildcard characters.

If sear chpat t er n is specified, the method returns only those filesystem entries whose
names match the string, which can contain wildcard characters. Otherwise, the function
returns the names of all the filesystem entries in the target directory specified by pat h.

If the directory specified by pat h has no filesystem entries, or if no filesystem entries match
sear chpat t er n, an empty array is returned.

Example
The following code displays all filesystem entries in c:\:

DimsEntries() As String
Dimi As I|nteger
SEntries = Directory. GCetFil eSystenEntries("c:\")
For i = 0 To UBound(sEntries)
Console. WiteLine(sEntries (i))
Next

Programming Tips and Gotchas

The GetFileSystemEntries method combines the functionality of the GetDirectories and
GetFiles methods.

Since GetFileSystemEntries can return an empty array, you can prevent an array-access error
in either of two ways: you can iterate the returned array using the For Each. .. Next
construct, or you can retrieve the value of the UBound function, which is -1 in the case of an
uninitialized array.

See Also

Directory.GetDirectories Method, Directory.GetFiles Method

Directory.GetLogicalDrives Method

268

Class

System.lO.Directory

Syntax
Directory. GetLogi cal Drives()

Return Value

An array of strings, each element of which contains the name of the root directory on each logical drive
on a system

Description

Retrieves the names of all logical drives and root directories on a system

Rules at a Glance

In the case of a mapped network drive, GetLogicalDrives returns the letter to which the drive is
mapped. For instance, if the folder \\Pentium\C\AFolder is mapped to the Z drive, then
GetLogicalDrives will return Z: \ for this logical drive.

Example

DimsDrives() As String
Dimi As Integer
sDrives = Directory. GetLogi cal Drives()
For i = 0 To UBound(sDrives)
Consol e. WiteLine(sDrives(i))
Next

On my system, this code displays the following:

@mMmoo>»

Directory.GetParent Method

Class

System.|O.Directory

Syntax
Get Par ent (pat h)
pat h

Use: Required

269

Data Type: String

A valid path to a directory
Return Value

A Directorylnfo object representing the parent directory of pat h (assuming that pat h is valid).
Rules at a Glance

pat h can be either an absolute path (a complete path from the root directory to the directory
whose filenames are to be retrieved) or a relative path (starting from the current directory to
the directory whose filenames are to be retrieved).

pat h can be either a path on the local system, the path of a mapped network drive, or a UNC
path.

pat h cannot contain wildcard characters.

Programming Tips and Gotchas

The DirectorylInfo object has properties Name and ToString (among others). The Name property
returns only the name of the directory, while the ToString property returns its absolute path. Thus, the
following code displays the string pr ogr amf i | es:

MsgBox(Di rectory. Get Parent ("c:\program fil es\accessori es"). Nane)
whereas the following code displays the string c: \ programfi | es:
MsgBox(Directory. Get Parent ("c:\programfil es\accessories"). ToStri ng)

See Also

Directory.GetDirectoryRoot Method

Directory.Move Method

Class

System.|O.Directory

Syntax
Di rectory. Move(sour cedi rnanme, destdirnamne)
sour cedi r nane

Use: Required

Type: String

The name of the directory to be moved

270

dest di r nane
Use: Required
Data Type: String

The location to which the source drive and its contents are to be moved

Return Value

None

Description

Moves a directory and all its contents, including nested subdirectories and their files, to a new location
Rules at a Glance

sour cedi r name can be either an absolute path (a fully qualified path from the root directory
to the directory to be moved) or a relative path (starting from the current directory to the
directory to be moved).

sour cedi rname and dest di r nanme can be either a path on the local system, the path of a
mapped network drive, or a UNC path.

Neither sour cedi r name nor dest di r nane can contain wildcard characters.

dest di r name must be either a fully qualified path or a relative path.

dest di r name can also be an absolute path or a relative path, except that it must include the
name to be assigned to the moved directory. This allows you to rename the directory at the
same time as you move it.

If the directory indicated by dest di r nane already exists, an error occurs.

Example

Suppose that the C drive contains the following folders:

c:\docs\letters
c:\ Docunents and Settings

Moving the letters folder to make it a subdirectory of c:\Documents and Settings is done by the
following code:

Directory. Move("c:\docs\letters", _
"c:\Docunents and Settings\letters")

Thus, the first argument is the fully qualified name of the folder to move. The second argument is the
path that results after the move is