POWER 3
The POWER3 processor is a high-performance microprocessor which excels at technical computing. Designed by IBM and deployed in various IBM RS/6000 systems, the Superscalar RISC POWER3 processor boasts many advanced features which give it exceptional performance on challenging applications from the workstation to the supercomputer level. In this paper, we described the micro architectural features of the POWER3 processor, particularly those which are unique or significant to the performance of the chip, such as the data prefetch engine, non-blocking and interleaved data cache, and dual multiply–add-fused floating-point execution units. 

The IBM POWER3 processor is a 64-bit symmetric multiprocessing- enabled superscalar RISC microprocessor which is the heart of a new line of RS/6000* workstations and server products. Designed to run at frequencies up to one-half gigahertz, the POWER3 processor supports even the most challenging technical computing applications. 

This part describes:
· The motivation for the creation of the POWER3 processor.
· The challenges that it addresses.
· The highlights of its micro architecture that is significant to performance.

Product motivation and technological challenges

The POWER3 processor is the successor to the POWER2 processor; it was designed primarily to meet the demands for technical computing which come from a wide variety of customers in nearly every major sector of the market place: automotive, aerospace, pharmaceutical, weather prediction, energy, defense, electronics, chemical processing, bioengineering, environmental, and many areas of research. As with most modern microprocessor design efforts, the POWER3 processor required an enormous investment involving many highly skilled and talented professionals. Such an investment is prudent if and only if it addresses a large and growing market need, as is the case with modern technical computing.

Major design constraints and challenges

The success of the personal computer has profoundly influenced the market for high-performance systems, with the main effect being an extreme sensitivity to price. Since much of the cost of a system is often associated with memory, a decision to use anything other than commodity DRAM, which enjoys the benefits of large scale manufacturing due to the personal computer boom, would drastically increase the price of adequately configured systems. But DRAM-based memories present a difficult challenge to designers attempting to build systems in which performance scales with increasing processor frequency. As processor frequencies have soared, memory latency has decreased only modestly, with the result being that memory latency, in processor cycles, has grown. At the same time, the demand for large parallel machines has increased physical bus length, protocol, and contention. The burden for overcoming these problems falls mainly on the microprocessor. Technical computing applications present computer designers with additional formidable challenges which center on floating-point and fixed-point computational speed, scalability, load/store bandwidth, and cache capacity. The POWER3 processor was designed to meet the rigors of technical computing applications, as well as the more general requirements of the high-performance computing market place, including reliability, ease of programming, addressability, and power and space restrictions.

Overview of the POWER3 processor

The POWER3 processor is a CMOS-based superscalar RISC microprocessor which conforms to the PowerPC Architecture. Its two most fundamental architectural features, symmetric multiprocessing (SMP) systems and 64-bit effective addressing, provide the basic necessary for the contemporary challenges of technical computing. Multiprocessor systems not only increase the computing capacity of the system under a single image; they also allow applications to improve performance by exploiting shared-memory parallelism. The high level of performance that multiple POWER3 processors can produce, along with 64-bit program addressability, allows customers to solve larger three-dimensional simulations that were previously impractical. Because the POWER3 processor is a 64-bit implementation, it supports both the 32-bit and 64-bit modes provided by PowerPC.

The POWER3 processor has also been designed to span several advances in CMOS technology, allowing it to more than double its initial product frequency of 200 MHz over its product lifetime. To date, POWER3 processors have been shipped in RS/6000 products at frequencies ranging up to 450 MHz Applications which are optimized to the POWER3 platform can immediately take advantage of upgrades to faster POWER3 processors. The POWER3 processor is partitioned into seven functional blocks.
· Instruction processing unit (IPU).
· Instruction flow unit (IFU).
· Fixed-point unit (FXU).
· Floating-point unit (FPU).
· Load/store unit (LSU).
· Data cache unit (DCU).
· Bus interface unit (BIU).





 (
Load/store unit
) (
FPU1
) (
FPU0
) (
LSU1
) (
LSU0
) (
GP registers
) (
FXU1
) (
FXU0
) (
FXU2
) (
Fixed-point unit
) (
L2 cache 1–16 MB
) (
Bus interface unit
) (
Data cache unit
(DCU)
) (
FP registers
) (
Floating-point unit
) (
Instruction processing 
unit
 
(IPU)
) (
Instruction flow unit
(IFU)
)











Figure (1), POWER3 processor functional unit block diagram.

These functional units are discussed in the following sections.

· Instruction processing unit and instruction flow unit

Processor performance begins with the task of fetching the instructions for an application, partially decoding them, and dispatching them to the proper execution unit. The IPU and IFU are responsible for fetching, caching, and managing the flow of instructions during their tenure in the microprocessor (the tenure of a given instruction begins when it is dispatched to an execution unit and ends when it is completed). Logically, instructions are fetched from memory; however, for performance reasons, the IPU implements a 32-kilobyte (KB) instruction cache and a cache reload buffer (CRB). The instruction cache holds 256 cache lines, each of which is 128 bytes in length, and is organized as two 128-way set-associative arrays. The instruction cache provides single-cycle access. The CRB holds the most recent cache line transferred from memory. To provide support for virtual storage, a 256-entry two-way set-associative instruction translation look aside buffer (ITLB) and a 16-entry instruction segment look aside buffer (ISLB) are also implemented. The IFU attempts to keep as many instructions as possible executing in parallel in the machine, maximizing instruction throughput. Up to eight instructions are fetched per cycle, up to four are dispatched per cycle, and up to four instructions per cycle can be completed. To improve throughput, instructions are dispatched in order, most are allowed to execute and finish out of order, and then all instructions complete in order. (Architectural registers are updated only when an instruction targeting them completes).  Executing and finishing instructions out of order increases the degree of instruction-level parallelism by allowing subsequent operations to execute both in parallel with logically prior long-running operations and ahead of operations which are delayed because of cache misses. Instructions are dispatched to the various functional unit instruction queues and are tracked with an entry in the 32-entry completion queue. These unit instruction queues ensure each functional unit an adequate supply of instructions from which to select for execution; they also provide a place for the instruction flow unit to place instructions so that a stalled instruction does not block dispatching of subsequent instructions. In many designs, dispatch bandwidth is a frequent bottleneck. The robust implementation of the POWER3 processor greatly reduces the likelihood that performance will be affected by dispatch restrictions. Since operand availability is not a requirement for dispatch, availability of space in the instruction queues and in the completion queue are the two primary restrictions on dispatch. The completion block ensures that the architectural state of the processor is always correct, enforcing in-order completion of committed instructions and ensuring that exceptions and interrupts are handled properly and in order. The POWER3 processor uses two mechanisms to improve branch-prediction accuracy. First, by tracking all outstanding condition-code-setting instructions, the CPU can determine when the branch outcome is known at dispatch, obviating the need to guess the direction of a branch. For branches that are unresolved at dispatch, the outcome is guessed and instructions are dispatched speculatively. If it is found that the branch was guessed incorrectly when the condition-code-setting instruction finishes, all instructions beyond the associated branch are canceled, and the correct instructions are then dispatched. The primary method for branch prediction for unresolved branches uses a branch-history table (BHT) containing 2048 prediction fields, each with a two-bit branch-history entry. The two-bit prediction field is a saturating up–down counter with 0 corresponding to strongly not-taken and 3 corresponding to strongly taken. When branches are resolved, the prediction field for that entry is incremented or decremented depending upon whether the branch was taken or not taken, respectively, except when the field is already saturated.

· Fixed-point execution units

The POWER3 processor contains three fixed-point execution units: two single-cycle units and one multicycle unit. The single cycle units execute all single-cycle instructions (arithmetic, shift, logical, compare, trap, and count leading zero) with single-cycle latency (this means that instructions dependent upon the result can execute in the next cycle). All other fixed-point instructions, such as multiply and divide, are handled by the multicycle unit. Since the POWER3 processor is a 64-bit microprocessor, this includes 64-bit as well as 32-bit integer operands. The two single-cycle fixed-point units share a six-entry instruction queue, while the multicycle unit includes a three-entry instruction queue. In contrast to the POWER2 processor, which included two symmetric units that executed both fixed point and load/store instructions, the POWER3 design includes two dedicated load/store units in addition to the three fixed-point units. The independence of the fixed point execution units and the load/store execution units is obviously a large performance benefit for calculations that are predominately integer in nature, such as Monte Carlo simulations. But even in floating-point calculations, this separation can be important. An example of this occurs in a sparse-matrix-vector multiply, which involves address indirection, whereby an integer index must be converted to byte-offset by a fixed-point instruction before it is used by a subsequent floating-point load operation.

· Floating-point execution units

The floating-point unit (FPU) contains two symmetrical floating-point execution units which implement a fused multiply–add pipeline conforming to the PowerPC Architecture. All floating-point instructions pass through both the multiply stage and the add stage. For floating point multiplies, 0 is used as the add operand, and for floating-point adds, 1 is used as the multiplicand. Each floating-point execution unit supports three cycle data forwarding for dependent instructions within the same execution unit when the target of the first instruction feeds either the FRB or the FRC operand of the dependent instruction, where the operation is FRT 4 [(FRA) 3 (FRC)] 1 (FRB). In the case of data forwarding between execution units, or when, on the same execution unit, the first instruction is feeding the FRA operand of the dependent instruction, the latency is four cycles. It is worth noting that, for achieving frequency targets, the pipeline of floating-point register-to-register instructions is broken up into ten stages (Fetch, Dispatch/Decode, Register Access, Execute 1, 2, 3, and 4, Finish, Complete, and Write back), but only the first three Execute stages are exposed for dependent instructions. Most floating-point instructions have single-cycle throughput. Since the POWER3 processor can execute two floating-point multiply–add instructions per cycle, the peak floating-point rate of the machine is four floating point operations per processor cycle. The floating-point arithmetic operations that are not pipelined are square root (fsqrt and fsqrts) and divide (fdiv and fdivs). These operations can use either of the execution units and are assisted by additional logic to handle their numerical algorithms. The POWER3 processor implements the optional PowerPC instructions fres (single-precision floating-point reciprocal estimate) and frsqrte (floating-point reciprocal square-root estimate). These are often useful for boosting performance in applications that do not need the full accuracy provided by the divide and square-root instructions (e.g., some graphic routines). These fast estimate instructions also provide the seed values for iterative divide and square-root routines. The SPPM example in this paper describes software vector versions of these routines, which perform significantly faster than the hardware divide and square-root instructions. The optional floating-point select instruction, fsel, is also implemented to provide for a floating-point conditional instruction with no branching. While this eliminates the chance of incurring the penalty for a mis-predicted branch, the more significant advantage in eliminating the branch is the increased flexibility provided to the compiler in scheduling a group of instructions that includes an fsel. The FPU also includes 32 64-bit floating-point registers and 24 64-bit physical rename registers or “buffers.” All target results of floating-point load and arithmetic instructions are placed in rename registers until the instruction completes (i.e., until the completion stage of the instruction). This method of using rename registers is vital to executing out of order, executing speculatively, and breaking false register dependencies. However, stalls may occur at some point if all rename registers are allocated. The POWER3 processor optimizes the use of its floating-point rename registers, which consume a large piece of premium silicon area on the chip. Typically, for microprocessors which implement register renaming, rename registers are allocated when instructions are dispatched. While the POWER3 processor does allocate from its pool of 32 “virtual” rename registers during the dispatch cycle, it delays allocation of the physical rename registers until the cycle for which they are needed, typically the execute or finish stages. This technique makes better use of the physical rename registers and prevents them from becoming the source of a performance bottleneck. The result is that the POWER3 processor is able to sustain near-peak performance on key application kernels such as rank-n update and matrix–matrix multiply, which presses the execution and completion rate of floating point instructions to the maximum. A central FPU instruction queue above the twin floating-point units can hold up to eight floating-point instructions, helping to maintain a steady flow of work for the FPU. The execution units can pull instructions from the queue in an out-of-order fashion, allowing logically later instructions whose operands are available to bypass other instructions which are waiting for operands. This flexibility provides a performance advantage when executing legacy code scheduled for other micro architectures, or for variable delays such as stalls resulting from cache misses. In addition to out-of-order issue, out-of-order finish capability allows faster but independent instructions to bypass slower ones. A common example is an instruction stream containing a floating-point divide followed by a series of FMAs which are independent of the divide; while one execution unit is executing the divide, the other instructions execute and finish in parallel in the other execution unit.

· Load/store execution units

All loading and storing of data is handled by two load/store execution units. Load instructions transfer data from memory to a fixed- or floating-point rename register; store instructions do just the opposite, transferring data from a register to memory. (Since the POWER3 processor is cache-based, data from a load may be found in the L1 or L2 cache, or a cache-line transfer from memory may be initiated as a result of the load.) The performance of store instructions is enhanced by the presence of a store buffer, which are 16 entries deep. Store instructions can finish executing if they have obtained their data; they do not have to wait until the data is written into the data cache. The POWER3 processor also implements load and store update form instructions, which update the general purpose register containing the load or store address as part of the instruction, eliminating the need for a separate add instruction. Using load update forms allows the compiler to generate concise code which maximizes the computational work performed within the four-instruction completion rate per cycle. A common example is a matrix vector multiplication, which primarily consists of two lfdu instructions and two fma instructions per cycle; this sequence will run at the peak flop rate of the processor when its data operands are contained in the L1 cache. The two load/store execution units share a six-entry instruction queue. The out-of-order LSU also permits load instructions to bypass store instructions while keeping track of any data dependencies that might exist, further enhancing performance and instruction scheduling flexibility. Order among store instructions is always maintained in both the execute stage and the store queue.

· Data cache unit

The data cache unit (DCU) consists primarily of the data memory management unit (MMU), the primary (L1) data cache, and the data prefetch unit.

· Memory management unit

The MMU is primarily responsible for address translation of data requests. It includes a 16-entry segment look aside buffer (SLB) and two mirrored 256-entry two-way set associative data translation look aside buffers (DTLB) in support of the dual load/store execution units. For translation misses, the instruction and data share hardware to search the page table for the correct translation. The MMU supports one terabyte (240 bytes) of physical memory, 64-bit effective addressing, and 80-bit virtual addressing.

· L1 data cache

The L1 data cache is 64 KB in size and is designed to provide single-cycle access to the load/store units. The data cache consists of 512 128-byte cache lines organized into four banks. Each bank is 128-way set-associative; that is, any line with the two address bits (A55/A56) set to select a particular bank may reside in any of the 128 cache slots in that bank. Within each bank, there are two sub-banks, one for all even double words and one for all odd double words (selected by address bit A60). The data cache can return the operands for two loads in the same cycle provided they are not both in the same bank and they are also not in the same even or odd double word sub-bank (i.e., if A55, A56, and A60 all match for two loads, a conflict exists). While 128-way set associativity provides performance advantages, it makes a least-recently-used (LRU) replacement algorithm impractical to implement. Hence, the POWER3 processor implements a round-robin replacement scheme for both the L1 instruction cache and the L1 data cache. As data is transferred between memory and the processor, buses of various widths and frequencies are used. To provide a place to reconstruct a cache line, and to accommodate differences in frequencies and bus widths, line width buffers are often inserted in the transfer paths. Between the L1 data cache and the BIU, four cache reload buffers (CRBs) are used to stage data into the L1 data cache (each data cache bank has a dedicated CRB). Outgoing data from the data cache is staged through four cache-store back buffers (CSBs), one per bank. Load hits to data in the CRB are satisfied directly, rather than delayed until the cache line is reloaded into the L1 cache array. The CSB provides a 64-byte interface to the BIU that also facilitates a highly parallel and efficient DCU. The data unit can support up to four outstanding cache misses, providing the basis for reducing the effective latency to memory. When a load misses the L1 data cache, the instruction is placed in a six-entry load-miss queue while the BIU fetches the data. Subsequent loads can continue to execute. If a subsequent load hits the cache, its data is returned immediately. If a subsequent load misses the cache, it is also placed in the load-miss queue. Since the BIU and memory subsystem can overlap the requests to memory for the missed cache lines, the average latency of memory per miss is reduced when there is more than one cache miss outstanding. Only after there are four outstanding misses in the load-miss queue and a fifth miss is encountered does load execution stall until one of the load instructions in the LMQ is serviced. Loads that hit the cache while there are four outstanding cache misses will continue to execute.

· Data prefetching

One of the most effective and innovative features of the POWER3 processor is its hardware data prefetch capability. The POWER3 processor prefetches data by monitoring data cache-line misses and detecting patterns. When a pattern, herein called a stream, is detected, the POWER3 processor speculatively prefetches cache lines in anticipation of their use. With memory latency improving at a slower pace than processor cycle time, data prefetching is extremely advantageous in hiding the memory latency in order to achieve adequate bandwidth for data-hungry applications. Prefetched streams have data storage patterns that reference consecutive cache lines, either in order of increasing addresses or decreasing addresses. It has been observed by the authors and by others that a high percentage of data reference patterns in engineering/scientific applications conform to this pattern. Because of the economies of cache-based processors, new and rewritten applications give preference to such consecutive data access patterns. Even many so-called sparse data structures store the bulk of data in a stride-1 fashion, while the indirect addressing associated with the sparsity is contained within a cacheable region. Cache-miss patterns that are random or at a stride (in cache lines) greater than one (e.g., every fourth line) will not cause hardware prefetches, and attempting to prefetch the latter case would greatly increase the complexity of the hardware; such patterns are already handled adequately by the multiple outstanding miss capability of the POWER3 processor (since each access would be a distinct cache line). The POWER3 processor prefetch engine includes a ten entry stream filter and a stream prefetcher (Figure 2). The purpose of the stream filter is to observe all data cache line misses, in the form of real addresses (RA in Figure 2) and to detect possible streams to prefetch. The stream filter records data cache-line miss information; the real address of the cache line is incremented or decremented (depending upon the offset within the line corresponding to load operand), and this “guess” is placed in the FIFO filter. As new cache misses occur, if the real address of a new cache miss matches one of the guessed addresses in the filter queue, a stream has been detected. If the stream prefetcher has fewer than four streams active, the stream is installed, and a prefetch to the line anticipated next in the stream is sent out via the BIU. Once placed in the stream prefetcher, a stream remains active until it is aged out. Normally a stream is aged out when the stream reaches its end and other cache misses displace its entry in the stream filter. When a stream is being prefetched, the prefetcher tries to stay two cache lines ahead of the current line (i.e., the line whose elements are currently being accessed by a load). The cache line that is one line ahead of the current line is prefetched into the L1 cache, and the line which is two ahead of the current line is prefetched into a special prefetch buffer in the BIU. Hence, the prefetch engine can concurrently prefetch four streams, each of which may be up to two lines ahead of the current line, for a total of eight prefetches per processor. The prefetch engine monitors all load addresses from the LSU (EA0 and EA1 in Figure 3). When the LSU finishes with the current line and advances to the next line (which is already in the L1 cache because of prefetching), the prefetch hardware transfers the line which is in the prefetch buffer to the L1 and prefetches the next line into the buffer. In this way, the prefetching of lines is automatically paced by the rate at which elements in the stream are consumed.

· Bus interface unit

The bus interface unit (BIU) provides the interface between the processor bus and the other processor units: the instruction processing unit, the data cache unit, the prefetch engine, and the L2 cache. Its memory bus interface is 128 bits (16 bytes) wide and supports a variety of processor-to-bus clock ratios.

· L2 cache

The POWER3 processor supports a private, either direct mapped or set-associative, unified instruction and data secondary (L2) cache with sizes from 1 MB to 16 MB. The private bus to the L2 is 32 bytes wide, and cache-line transfers of the supported 128-byte line are performed in a burst operation of four cycles. For the 375-MHz RS/6000 44P Model 270, which runs the L2 interface at a ratio of 3:2 with the processor, this produces a burst rate of 8 GB/s. The 43P Model 270 also has load-use latency (L1 miss, L2 hit instance) of approximately twelve cycles. The wide high-speed L2 cache interface provides ample bandwidth for processor requests as well as for snoop traffic from other processors or node controllers in the system.









 (
Load miss queue
) (
Stream
 
prefetch control
) (
Stream
a
llocation Control
 
) (
Stream filter
) (
Bus interface unit
) (
Prefetch guess
logic
) (
Stream prefetcher
)







	RA
	

Figure (2) the prefetch engine.

