
TE
AM
FL
Y

Team-Fly®

ASP
Programming

JOHN GOSNEY

®

Untitled-10 2/25/03, 10:32 AM1

© 2002 by Premier Press, Inc. All rights reserved.
No part of this book may be reproduced or trans-
mitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or
by any information storage or retrieval system with-
out written permission from Premier Press, except
for the inclusion of brief quotations in a review.

Premier Press and For the Absolute Begin-
ner are registered trademarks of Premier
Press, Inc.

Microsoft, Windows 95, Windows 98, Windows
2000, Windows NT, Internet Explorer, FrontPage,
and VBScript are trademarks or registered trade-
marks of Microsoft Corporation.

Important: Premier Press cannot provide software
support. Please contact the appropriate software
manufacturer’s technical support line or Web site
for assistance.

Premier Press and the author have attempted
throughout this book to distinguish proprietary
trademarks from descriptive terms by following the
capitalization style used by the manufacturer.

Information contained in this book has been ob-
tained by Premier Press from sources believed to
be reliable. However, because of the possibility of
human or mechanical error by our sources, Premier
Press, or others, the Publisher does not guarantee
the accuracy, adequacy, or completeness of any in-
formation and is not responsible for any errors or
omissions or the results obtained from use of such
information. Readers should be particularly aware
of the fact that the Internet is an ever-changing
entity. Some facts may have changed since this book
went to press.

ISBN: 1-931841-01-2

Library of Congress Catalog Card Number:
2001091383

Printed in the United States of America

01 02 03 04 05 RI 10 9 8 7 6 5 4 3 2 1

Publisher:
Stacy L. Hiquet

Marketing Manager:
Heather Buzzingham

Managing Editor:
Sandy Doell

Acquisitions Editor:
Melody Layne

Project Editor:
Heather Talbot

Technical Reviewer:
Chad Beckner

Copy Editor:
Kate Talbot

Interior Layout:
Danielle Foster

Cover Design:
Mike Tanamachi

Indexer:
Katherine Stimson

Proofreader:
Jenny Davidson

Untitled-10 2/25/03, 10:32 AM2

To my father, Richard Gosney, for inspiring my dreams.

To my mother, Marilyn Gosney, for helping me so much

in achieving them. I love you both very much.

Untitled-10 2/25/03, 10:32 AM3

This page intentionally left blank

Acknowledgments

I
have written several books, and I am always struck by the same thought as
the writing process for each one comes to an end: that is, over the course of
a few short months, life can take a fantastic array of twists and turns. Working
on a project like this one provides neat bookends to a beginning and an end,

and always—without fail—forces me to pause and review the previous months of my life.

Sometimes, these periods are filled with joy, as occurred with my last project and my son
being born as the book neared completion. Yet other times, life takes unexpected and
traumatic turns. As I write this, my mind continues to dwell on the tragedy of September
11, 2001, and the thousands of people who have lost their lives. It has been difficult to
accept the events of that day. Moreover, it has marked the ending of this particular project
as indeed one of the darker bookends in my, and the world’s, lifetime.

But as with all things, healing does begin, and the pain (if not the memory) of such a
tragedy is gradually lessened. As befits a computer book, the real promise of technol-
ogy (that is, of making the world a better place) reminds me, as I write this, that there
is still great promise in the world, and that human ingenuity, creativity, perseverance,
and kindness can (and will) prevail. Technology and all the benefits it brings can help
deliver this promise, and it is this thought (among many) that has gotten me through
these sad and mournful days.

That said, there are many people who have worked on this book who, through their
efforts, have kept this promise of technology alive and well, and have in turn helped to
make this book far better than it ever could have possibly been. Once again, Emi Smith
has come through with her fantastic organizational details, always willing to lend a
sympathetic and understanding ear to the trials and tribulations of her authors. Thanks
as well to Heather Talbot who picked up this book after many internal changes, keep-
ing it on track and thus guiding it to the light of day. Also, thanks to Chad Beckner for
ensuring the technical accuracy of the book, and for continuing to answer—always
with good humor—my silly technology questions. And to all the other folks at Premier
Press who, while perhaps going specifically unmentioned, have my enduring grati-
tude for making sure a project is done right, and done well.

Finally, and as always, all my love and thanks to Melissa, Genna, Jackson, and George
who make everything possible and inspire me to always do my best.

Untitled-10 2/25/03, 10:32 AM5

This page intentionally left blank

About the Author

J
ohn W. Gosney is currently Director of Technology Services for the Indiana
University School of Dentistry, Indianapolis. He has also served as a technical
writer and Web development consultant for a major pharmaceutical corporation.
John has worked extensively with Microsoft applications and Web develop-

ment tools for several years, and has experience with ColdFusion and other Web devel-
opment technologies. He is the author of several books, ranging from test preparation
guides to e-business titles. John is also an adjunct instructor for the Community Col-
lege of Indiana.

John received his B.A. in Technical Writing and Psychobiology in 1992 from Purdue
University. In 1996, he was awarded an M.A. in English from Butler University. When
not working (which is rare these days!), John enjoys spending as much time as he can
with his family, cheering for his favorite teams (Pacers, Colts, and Boilermakers) and
furthering his reputation as an expert in all things popular culture.

Untitled-10 2/25/03, 10:32 AM7

Untitled-10 2/25/03, 10:32 AM8Untitled-10 2/25/03, 10:32 AM4

This page intentionally left blank

Contents at a
Glance

Introduction xix

CHAPTER 1 Preparing to Work with ASP 1

CHAPTER 2 Programming ASP Web Pages with VBScript 23

CHAPTER 3 Working with ASP Objects 43

CHAPTER 4 Working with ASP Components 71

CHAPTER 5 Database Access with ADO 83

CHAPTER 6 Using Forms 109

CHAPTER 7 Essential Programming Logic, Part I 143

CHAPTER 8 Essential Programming Logic, Part II 161

CHAPTER 9 Formatting Processed Output 189

CHAPTER 10 ASP and HTML Scripting with FrontPage 2000 215

CHAPTER 11 Looking Back and Looking Forward 261

APPENDIX A VBScript Variable Reference 267

APPENDIX B SQL Reference 277

APPENDIX C Access Essentials 285

Index 301

Untitled-10 2/25/03, 10:32 AM9

This page intentionally left blank

TE
AM
FL
Y

Team-Fly®

Introduction .. xix

Preparing to Work with ASP 1

Understanding ASP and the Web Server 2

The Advantages of Server-Side Processing 2

VBScript, the Heart of ASP ... 3

Configuring Your Web Server for ASP .. 4

Configuring Internet Information Server
with Windows 2000 ... 4

Installing Internet Information Server 5

Confirming Your IIS Installation... 7

Configuring Personal Web Server with Windows 98 10

Installing Personal Web Server ... 10

Confirming Your PWS Installation ... 12

Confirming Your Web Server’s ASP Functionality 13

Displaying Your Web Server’s Default Home Page 15

Displaying the Default IIS Home Page 17

Displaying the Default PWS Home Page 18

Choosing an ASP Application Development Tool 18

Summary ... 20

Programming ASP Web Pages
with VBScript 23

Integrating VBScript with ASP ... 24

Client-Side versus Server-Side Processing 27

Understanding VBScript Variables .. 29

Declaring Constants in VBScript .. 31

Contents

1C H A P T E R

2C H A P T E R

Untitled-10 2/25/03, 10:32 AM11

xii
C

o
n

t e
n

ts

Learning to Program with VBScript ... 32

The IF...THEN Statement .. 33

The FOR...NEXT Statement .. 37

Commenting Your VBScript Code ... 39

The Hello, World! Game ... 40

Summary ... 41

Working with ASP Objects 43

Introducing the Request and Response Objects 44

The Request Object ... 45

Understanding Object Collections ... 47

Introducing the File Object ... 52

The File Object Properties .. 53

The File Object Methods .. 54

A File Object Example .. 54

Introducing the TextStream Object .. 56

Writing to a Text File ... 57

Reading from a Text File ... 59

ASP MadLibs—Working with ASP Objects 61

The Game Data Input Form.. 61

The MadLib Processing Page... 63

The Save Feature: Storing Your ASP MadLibs
to a Text File .. 67

Summary ... 69

Working with ASP Components 71

What Are ASP Components? ... 72

Working with the Content Linking Component 73

The Content Linking Component—An Example 74

Working with the Ad Rotator Component 76

The Ad Rotator Component—An Example 77

Working with the Content Rotator Component 79

The Content Rotator Component—An Example 80

Working with the Page Counter Component 81

3C H A P T E R

4C H A P T E R

Untitled-10 2/25/03, 10:32 AM12

C
o

n
te

n
t s

xiiiThe Page Counter Component—An Example 81

Summary ... 81

Database Access with ADO 83

Understanding ADO .. 84

The ADO Object Collection .. 85

Creating a Data Source Name (DSN) .. 86

Introducing SQL .. 88

The SELECT Statement .. 92

The INSERT Statement ... 97

The UPDATE Statement ... 99

The DELETE Statement .. 102

The Counting Magician: Working with Recordsets 103

Summary ... 105

Using Forms 109

The Memory Game ... 110

Form Essentials: The Response and Request Objects 111

Reading and Manipulating Form Data 113

The Memory Game: A Design Overview 115

The Memory Database ... 116

Establishing Database Permissions
with Windows 2000 .. 119

Programming the Memory Game ... 120

Random Number Generation, Part I 120

Random Number Generation, Part II 124

Understanding the Entire Memory Game Code 126

The Memory_Home.asp Page.. 126

The Memory_Process.asp Page... 127

The Memory_Process.asp Page: Random Number
Generation .. 138

The Memory_Process.asp Page: Winning the Game 138

Summary ... 141

5C H A P T E R

6C H A P T E R

Untitled-10 2/25/03, 10:32 AM13

xiv
C

o
n

t e
n

ts

Essential Programming Logic,
Part I 143

The Fortune Teller Game .. 144

Fortune Teller Basics ... 145

Creating an ODBC Connection for the Fortune.mdb
Database .. 146

Creating the Fortune_Info.asp Data Input Page 148

Working with the If...Then Statement 149

Using the If...Then...Else Statement 149

More Examples of If...Then...Else .. 150

Working with Loops .. 151

Building the Fortune Teller Wizard .. 154

Creating the Fortune_Process.asp Page 154

Fortune_Process.asp—Defining the Page Header
Information .. 156

Fortune_Process.asp—Reading Previous Fortune Entries 156

Fortune_Process.asp—Generating the Magic Number
for the New Fortune.. 157

Fortune_Process.asp—Displaying a New Fortune 158

Summary ... 159

Essential Programming Logic,
Part II 161

Introducing Arrays: Why Do You Need Them? 162

Zero-Based Arrays .. 164

Useful Array Functions ... 165

UBOUND() ... 165

ERASE() ... 166

ISARRAY() ... 166

Useful VBScript Functions ... 167

The Convert Functions ... 167

Mathematical Functions ... 168

The Is Functions .. 169

Time and Date Functions ... 173

Programming the ASP War! Game ... 174

7C H A P T E R

8C H A P T E R

Untitled-10 2/25/03, 10:32 AM14

C
o

n
te

n
t s

xvAnalyzing the Code ... 179

Summary ... 188

Formatting Processed Output 189

HTML Formatting—Beyond the Basics 190

Creating Dynamic Form Elements 194

Creating Dynamic Hyperlinks and QueryStrings 197

Another Look—ASP MadLibs ... 202

Improving ASP MadLibs!: Integrating with a Database 207

Improving ASP MadLibs!: Dynamic Page Formatting 209

Summary ... 213

ASP and HTML Scripting with
FrontPage 2000 215

Building a FrontPage Web .. 216

Naming a FrontPage Web .. 216

Adding New Pages to Your Web ... 218

FrontPage 2000 Basics.. 220

Creating Your First Web Page .. 221

Placing and Formatting Text .. 221

Inserting Graphics... 223

Adding Tables to Organize Your Information 226

Formatting Tables ... 227

Adding Text and Graphics to Your Tables 230

Working with FrontPage Components 231

Saving Your Web Pages ... 234

Validating Forms ... 234

Determining Required Form Fields 235

Testing Form Validation in a Browser 237

Validating Other Form Elements ... 239

Utilizing the FrontPage 2000 Database Results Wizard 240

Viewing the Automatically Generated ASP Code 243

Integrating Forms with the Database Results Wizard 244

9C H A P T E R

10C H A P T E R

Untitled-10 2/25/03, 10:32 AM15

xvi
C

o
n

t e
n

ts

Creating a Database Results Wizard Form
Processing Page .. 246

Working with Frames in FrontPage ... 249

Saving Frame Pages ... 252

Understanding Frame Page Mechanics 253

Integrating E-mail with FrontPage Webs 255

Working with DHTML Effects ... 256

Summary ... 258

Looking Back and
Looking Forward 261

Configuring Your System for ASP ... 262

Working with ASP on the Personal Web Server 262

Working with ASP on the Internet Information Server 262

Working with Other ASP-Related Tools 263

Programming ASP Pages with VBScript 263

Integrating Your ASP Web Pages with a Database 264

Looking Ahead—ASP+.. 264

The Philosophy of Indispensability—Viewing the Web
as an Automobile .. 264

The Promise of ASP+ .. 265

Internet Information on ASP+ .. 266

Summary ... 266

VBScript Variable Reference 267

VBScript and ASP Essentials .. 268

VBScript Variable Subtypes.. 269

Working with String Functions .. 269

Concatenating Strings .. 269

Searching and Replacing Strings .. 270

Comparing One String to Another 272

Extracting Strings ... 274

Replacing Strings .. 275

Working with Date and Time Functions 275

11C H A P T E R

AAPPENDIX

Untitled-10 2/25/03, 10:32 AM16

C
o

n
te

n
t s

xviiSQL Reference 277

The SELECT Command .. 278

The INSERT Command ... 278

The UPDATE Command.. 279

The DELETE Command .. 280

Logical Operators .. 280

The IS NULL Operator .. 280

The BETWEEN Operator ... 281

The IN Operator .. 281

The LIKE Operator ... 282

Useful Data-Sorting Functions ... 283

The COUNT Function.. 283

The SUM Function .. 283

The AVG Function ... 284

The MAX Function .. 284

The MIN Function ... 284

Access Essentials 285

Creating an Access Database ... 286

Creating Tables in Design View.. 287

Entering Data into a Table via the Datasheet View................. 292

Modifying a Table That Contains Data 293

Inserting a New Field into an Existing Table 293

Deleting a Field from an Existing Table 295

Modifying a Field Data Type .. 296

Using the Access 2000 Simple Query Wizard 297

Index 301

BAPPENDIX

CAPPENDIX

Untitled-10 2/25/03, 10:32 AM17

This page intentionally left blank

Introduction

W
elcome to ASP Programming for the Absolute Beginner. By developing an
interest in Active Server Pages (ASP), you stand at the threshold of a very
exciting programming adventure. When first introduced, ASP offered the
promise of an easy, powerful method of breaking through the functional

shackles of the Common Gateway Interface (CGI)—it has delivered on that promise.
Now, several years into its history, ASP technology has become a central component of
the Microsoft development strategy. Moreover, it has become the scripting language of
choice for literally thousands of programmers, so you are in good company in wanting
to learn more.

Although ASP is relatively easy to learn, it does require some degree of general program-
ming knowledge to best utilize its power. Additionally, ASP allows for easy integration of
data sources (Access, SQL Server, and so on), so an understanding of basic database devel-
opment comes into play. Finally, because ASP is, at its core, a Web scripting language,
you should have some basic knowledge of HTML to better understand how ASP can be
used to bring a previously unleashed power and functionality to your Web pages.

This book does assume that you have some working knowledge of HTML. You’ve prob-
ably created a few Web pages, perhaps using a development tool such as Microsoft
FrontPage or Macromedia HomeSite. Maybe you’ve also added some advanced function-
ality to said Web pages, perhaps by adding tables, Cascading Style Sheets (CSS), and forms.
Maybe you’re familiar with another type of scripting language, such as JavaScript.

If you have done this level of Web development, you can build on this experience while
learning to work with ASP. Even if you haven’t done much Web development (again,
aside from having a general understanding of HTML), you can still learn to work with
ASP—and have fun in the process. Don’t be intimidated by the programming aspect of
ASP. Yes, you do have to learn some programming to most effectively work with ASP.
However, I’m assuming from your purchase of this book that you are willing and ready
to dive into the exciting and rewarding world of ASP development. This book shows
you how to do just that.

Why Learn ASP, and What Can You Do
with It?

If you’ve purchased this book or are thinking about purchasing it, you probably have
some interest in advanced Web development. As already mentioned, you don’t need
any prior programming experience to read and learn from this book. However, I am
going to assume that although you might not know much about programming (yet),

Untitled-10 2/25/03, 10:32 AM19

xx
I n

t r
o

d
u

c
ti

o
n

you do have a keen interest in understanding how to utilize ASP in your work and
thus, by default, become a programmer.

Aside from your general interest, why else would you want to learn to work with ASP?
Consider the following compelling reasons:

• Of all the Web scripting languages, ASP is probably the easiest to learn. I talk
more about this issue throughout the book, but the programming language at
the heart of ASP is called Visual Basic Script, or VBScript for short. An extension of
the Visual Basic programming language, VBScript is the programming language
used by ASP to add all the power and functionality to your Web pages.

If you already have a little programming experience, you might recognize the term
BASIC. One of the original, easy-to-learn programming languages, BASIC
(Beginner’s All-Purpose Symbolic Instruction Code) has been developed and im-
proved over the years, gaining power without losing its inherent simplicity.
VBScript benefits from both this power and simplicity, and you will learn how to
program with it to best utilize ASP.

• ASP code is processed on the server (more about this server-side processing later
in the book), so this brings a tremendous amount of freedom to your develop-
ment because you don’t have to be as concerned with how your ASP-enabled Web
pages will appear and function in different browsers. Your code is processed on
the server, and only the results of that processing are sent to the Web browser, in
the form of regular HTML.

Because ASP is a technology developed by Microsoft, it should come as no surprise
that you can gain additional functionality with ASP via the use of the Microsoft Web
browser, Internet Explorer. Although I talk about this extra functionality in various
sections of the book, the primary focus of your learning will be on getting ASP to
work across browsers, regardless of whether they are Microsoft-based. The impor-
tant thing here is that, when developing Web pages, you always keep in mind the
requirement of cross-functionality between different kinds of browsers to ensure
that you don’t alienate potential visitors to your site.

• If you have information stored in a data source, for example, a Microsoft Access
database, you can use ASP to read and manipulate that information inside your
Web pages. You might want to use ASP to build an inventory search form for your
small business so that your customers can quickly and easily browse through your
products while on-line. If your inventory data is stored in a database, you can con-
nect to it via ASP so that customers can search information. This integration of da-
tabase information with Web pages is easily made possible via ASP.

• Aside from integration with a database, you can use ASP to facilitate more ad-
vanced Web page functionality. For example, you can use ASP to process Web
forms so that you can gather and manipulate information entered into your Web
pages and to send information to a Microsoft Word or Excel document, or any text
file, for that matter. I show you how to perform all these advanced functions as
you move through the book.

TRICK

TRAP

Untitled-10 2/25/03, 10:32 AM20

TE
AM
FL
Y

Team-Fly®

In
tro

d
u

c
t io

n

xxi• As with other information technology skills, knowing how to develop with ASP
can be a real boost to your professional career. As I’ve mentioned, ASP is an incred-
ibly popular technology, with literally thousands of developers working on ASP-
enabled applications in a variety of industries. Consider your work through this
book beneficial to not only your interest in computer programming but also, po-
tentially, your career.

What Do You Need to Know First?

Fortunately, you don’t need much prior knowledge to begin working with ASP. In fact,
given the nature of this book, you don’t need any programming background. After all,
the purpose of this book is to show you how to program. However, I am going to as-
sume that you know or have access to a few things:

• A general understanding of the Hypertext Markup Language (HTML). You don’t
need to be an expert Web developer, but you should have some knowledge of the
various codes that make up HTML. Moreover, if you’ve previously created Web
pages, even basic ones, you will benefit greatly from this experience as you learn
to program with ASP.

• A computer. Preferably, you should have at least a 266MHz/Pentium II grade (the
faster the better, of course). Your computer should also have at least 32MB of RAM.
Like processor speed, the more memory you have, the better off you are.

• An operating system (OS). Windows 98, Windows NT 4.0, or Windows 2000.

• A personal Web server. The type depends on which OS you choose. You will, in es-
sence, turn your machine into a complete Web development environment. Don’t
worry about this Web server issue for now. I discuss what you need to load onto
your machine in Chapter 1, “Preparing to Work with ASP.” Regardless of which OS
you use, this Web server component is free. You can download it from the Web or
install it from the CD-ROM that came with your computer and contains your OS.

• A Web browser application. Preferably Netscape Navigator or Microsoft
Internet Explorer.

That’s it for the absolute requirements. Unlike many programming languages, ASP
is not compiled, so you don’t need an advanced interface to work with the programs
you develop.

Even though the following items are not required, you will find them useful as you
learn how to program with ASP:

• A direct connection to the Web. This is useful in further testing the Web pages
you develop with ASP.

• A copy of Microsoft Access 2000. One of the major benefits of ASP (which are ex-
plored extensively throughout this book) is the power it brings to you in integrat-
ing your Web pages with a data source, such as an Access database or some other
database engine. Several chapters of this book, including your final game project,
utilize this database-connectivity functionality of ASP. If you have a copy of Access
2000 or are in the position to purchase a copy, you will greatly benefit.

• A copy of Microsoft FrontPage 2000. FrontPage is an HTML editor that aids in the
otherwise rudimentary tasks of Web development. It also comes complete with

Untitled-10 2/25/03, 10:32 AM21

xxii
I n

t r
o

d
u

c
ti

o
n

built-in support for ASP. However, when you are learning any programming lan-
guage, ASP included, it is best to do things by hand, without the aid of an editor
like FrontPage, so that you can be sure to fully understand the central concepts at
the core of the language. After you have a solid grasp of the fundamentals, in
Chapter 10, “ASP and HTML Scripting with FrontPage 2000,” you will take a look at
how using an editor like FrontPage can speed up your ASP development. Other
HTML editors support ASP (one such example is Macromedia HomeSite), so if you
have access to one of these applications, you will benefit from that, too. Here, at
least in Chapter 10, you will be focusing on how to use FrontPage to enhance your
ASP development work.

How to Use This Book

Learning how to program in any language is best done in a step-by-step approach. More-
over, like many advanced topics, you don’t just jump right in the middle of a difficult
concept without first understanding the fundamentals.

It is best to read this book in the order the material is presented. That is, start with
Chapter 1, and work your way through the chapters in numerical order. You might be
tempted to skip ahead—especially if you browse through the book and in later chapters
see the exciting things that are possible with ASP. Try to contain your enthusiasm (at
least in this regard!) and work through the information in the order it is presented.
This will ensure that you don’t miss anything and that you indeed understand all the
basics before moving on to more advanced material.

At the end of each chapter, you will also find a short listing of learning exercises. Use
these exercises to expand your understanding of the material and to challenge (and
inspire!) your own programming creativity. Generally speaking, there are no “right or
wrong” answers to these exercises: rather, they are designed to get you thinking as a
programmer and to give you an opportunity to experiment with what you learn. So,
take advantage of these exercises, using them as a fun way to challenge your under-
standing of the text.

Conventions Used in This Book

The following are all conventions used in this book:

Look to the Trick elements for inside ad-
vice and hints to help you better under-
stand a subject or otherwise gain insight
into a more effective way of working
with the subject.

The Hint elements provide information
that is not commonly known or other-
wise documented in the general refer-
ence material for the subject or the Help
files that accompany the software.

TRICK

HINT

IN THE REAL WORLD

These special elements provide

you with real-world insight into

not only ASP but also other issues

that surround the programmer,

including career development,

project management, customer

relationship management, and

various factors of being an out-

standing ASP developer.

Untitled-10 2/25/03, 10:32 AM22

In
tro

d
u

c
t io

n

xxiiiTraps help you avoid common pitfalls that new programmers often experience. Be
sure to watch out for these special elements because they can save you lots of time
(not to mention headaches) by steering you clear of everyday problems that crop up
as you program with ASP.

TRAP

Untitled-10 2/25/03, 10:32 AM23

This page intentionally left blank

1
Preparing to Work

with ASP

C H A P T E R

I
n this chapter, you will

• Learn what ASP is and how it interacts with

both Web servers and Web browser software.

• Learn which type of server to configure with

ASP, depending on the type of operating sys-

tem you are using, and install the server, learn-

ing its administrative features.

• Learn the various development environments

you can use to program with ASP, such as

Microsoft FrontPage, Macromedia HomeSite,

and even simple text editors such as

Windows Notepad.

Untitled-4 2/25/03, 9:02 AM1

2
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

You’ve made a wise choice in deciding to learn more about Active Server Pages (hence-
forth referred to as ASP). Deceptively simple on the surface, ASP is a powerful element
in any high-powered Web site, enabling you to create dynamic content and provide a
high degree of interactivity to your Web pages.

Before you begin your programming adventure, you need a clear understanding of
how to configure your server to work with ASP. Undoubtedly, you have noticed the
word server in Active Server Pages. Understanding how ASP interacts with—you guessed
it—a server (a Web server, in this case) is critical to your development of Web pages that
utilize ASP.

In this first chapter, you will be doing just that—configuring your Web server to work
with ASP.

Understanding ASP and the Web Server

One great benefit of working with ASP is that the programs you create are processed
on the server, instead of your asking the individual Web browser clients to do any of
the work. When an ASP Web page is loaded into a browser, only the processed HTML is
sent to the browser—all the hard work is performed on the server.

Are you still with me? Although the method by which ASP functions might sound
complicated, it’s quite easy to understand. You will take a closer look at what this
server-side processing means and how it differs from other Web scripting languages,
such as JavaScript.

Imagine that you are interested in purchasing a new music CD. Because your favorite
record store has a Web site, you go on-line to purchase the disc. You are quickly becom-
ing a savvy Web developer, so you notice that the home page of the record store Web
site has an .asp extension (short for Active Server Pages).

You are probably familiar with the typical .html extension on Web pages (for ex-
ample, http://www.somewebsite.com/homepage.html). As you know, html is short for
Hypertext Markup Language. With ASP-enabled pages, the usual .html extension is
replaced with .asp. You will learn more about the differences between regular .html
and .asp pages in Chapter 2, “Programming ASP Web Pages with VBScript.”

Because in ASP all the code processing is performed on the Web server, only the results
are sent to the Web browser. Even though you’d like to see how the record store home
page has been programmed, you realize that the ASP code has already been processed
on the server.

The Advantages of Server-Side Processing

You might be asking yourself: What are the advantages of this server-side processing?
There are several answers.

One of the biggest reasons for server-side processing is that it allows a wide variety of
Web browsers to display the information because they are being sent only the processed

HINT

Untitled-4 2/25/03, 9:02 AM2

C
h

a
p

te
r

1
P

re
p

a
ri n

g
 to

 W
o

rk
 w

it h
A

S
P

3HTML. When you utilize ASP, you don’t have to worry about how different Web browsers,
such as Internet Explorer and Netscape Communicator, will display the information. If
the browser is capable of displaying regular HTML (it wouldn’t be a Web browser if it
couldn’t handle that task), it can handle the results of an ASP-processed Web page.

Compare ASP to a scripting language, such as JavaScript. In JavaScript, the code
processing is done within the Web browser. As you might guess, various Web brows-
ers interpret, and thus process, JavaScript code differently, which leads to your
Web pages being displayed inconsistently. Worse, your JavaScript can work in one
type of browser but fail in another.

This is not meant to belittle the power of a well-programmed JavaScript Web page,
but you should realize that ASP provides you with a certain freedom from the poten-
tial differences in how Web browsers process code.

Even though ASP code is processed on the server, you should still be aware that
some elements of your Web page—such as table layout, cascading style sheets,
and other DHTML elements—can and do appear differently, depending on the type
of Web browser used to view your pages. As with any Web development, be sure to
take the time to load your pages into a variety of browsers to ensure the greatest
level of cross-compatibility.

Another advantage of server-side processing is security. Because only the results of
your code processing are sent to the Web browser, you can keep confidential informa-
tion—passwords, credit card numbers, and even your own code—on the server.

Finally, having code processed on the server can increase how fast your Web pages
perform. This is somewhat dependent on the power of the Web server, the amount of
processing being performed, and your connection speed. Still, you can usually expect
ASP pages to perform more quickly than JavaScript-enabled pages because the code
processing is not performed on the client’s machine.

VBScript, the Heart of ASP

ASP is not a scripting language in and of itself but rather a mechanism for integrating
a scripting language into your Web pages. This scripting language is VBScript, short
for Visual Basic Script.

Developed by Microsoft, VBScript is closely related to its big brother programming
language, Visual Basic. Like JavaScript, VBScript can be executed directly within the
Web browser, but only if that browser is Microsoft Internet Explorer.

Processing VBScript directly within the Web browser (in this case, Internet Explorer)
can produce some stunningly powerful Web pages. However, to focus your atten-
tion exclusively on ASP and how it is processed on a Web server, I do not discuss
client-side VBScript in this book.

HINT

HINT

TRAP

Untitled-4 2/25/03, 9:02 AM3

4
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The focus of this book is to show how VBScript is processed on the Web server, in other
words, ASP.

You will really be learning how to program with VBScript in this book. However, be-
cause the processing of that VBScript is performed on a Web server, you can more
accurately say that you are learning how to program with ASP.

Configuring Your Web Server for ASP

At this point, you should have a good idea of what ASP is and how it functions in con-
junction with a Web server. It’s time to configure your Web server to work with ASP.

Depending on the type of Windows operating system you are using (98, NT, 2000), you
already have a Web server available for your use, but it might not be loaded or config-
ured on your machine. The following sections show you how to determine which type
of Web server to use and how to configure it for use with ASP.

ASP functionality is available with Web servers other than those manufactured by
Microsoft, for example, Apache. For the sake of simplicity and to ensure that you are
getting as well rounded an overview of ASP as possible, I focus on the Microsoft
Web servers that can be used with Windows 98, NT, and 2000.

If the phrase configure your Web server sounds complicated, let me reassure you. It is an
easy task to get your computer ready to work with ASP. As mentioned, you might already
have a Web server installed on your computer without your realizing it. Regardless, the
following sections take you through the steps of locating (if necessary), installing, and
configuring a Web server that you can use on your own machine to work with ASP.

At this point, you might be asking, “I know that my Internet service provider allows
me to develop Web pages utilizing ASP, so why can’t I just use its servers rather
than worry about configuring one on my own computer?”

That’s a great question, and for all intents and purposes, you can use your ISP to
develop your ASP-enabled Web pages. To see immediate results of your work and
learn more about how ASP functions, however, it is essential that you make your
own computer a development machine, complete with its own Web server, which
you can use to build and test your ASP Web pages quickly.

It is easy and in your best interests to have a Web server running on your own computer.

Configuring Internet Information Server
with Windows 2000

Windows 2000 provides a major advance in the Windows operating system. For the
first time, you have access to a full-featured, robust Web server (the Microsoft Internet
Information Server, or IIS for short) via the typical Windows client. Utilizing IIS on
your own Windows 2000 machine, you can see the power and experience the fun of
working with ASP.

HINT

HINT

Untitled-4 2/25/03, 9:02 AM4

C
h

a
p

te
r

1
P

re
p

a
ri n

g
 to

 W
o

rk
 w

it h
A

S
P

5Better still, IIS is incredibly easy to install and configure with Windows 2000. This
section takes you through the steps of installing and configuring IIS and shows you
how to administer the Web server via an easy-to-use interface.

Installing Internet Information Server

Before you configure and work with IIS, you need to install it. Here’s how you do it.

To load IIS on your computer, you must use the professional client edition of Win-
dows 2000. Earlier versions of Windows (for example, Windows NT 4.0) do not sup-
port IIS on the client machine. Instead, you have to have access to the Windows NT
server to work with IIS.

Be sure to note the difference between client and server in this context. By loading
IIS onto your Windows 2000 client machine, you eliminate the need to connect to an
external computer (server) because you have everything necessary on your own
machine. Again, this is a major benefit to having a Web server on your own com-
puter, as opposed to using an external source, such as your ISP.

To install IIS, follow these steps:

1. From the Start menu, select Settings, Control Panel. In the Control Panel dialog
box, select the icon Add/Remove Programs (see Figure 1.1).

2. Within the Add/Remove Programs dialog box, click the icon Add/Remove Win-
dows Components (see Figure 1.2).

HINT

FIGURE 1.1

Select Add/Remove
Programs as a first
step in installing IIS
on your Windows

2000 client
computer.

Untitled-4 2/25/03, 9:02 AM5

6
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

3. The Windows Components Wizard dialog box opens. Select the Internet Informa-
tion Server (IIS) option (see Figure 1.3).

4. Click the Details button to get a better idea of what you will be installing along
with IIS (see Figure 1.4).

5. Leave all the options checked for installation. This ensures that you have com-
plete IIS functionality.

When installing IIS, be sure to disable the FTP Server option. Leaving it on can pose
some very serious security breaches.

6. Click Install. Note that you might be asked to provide your Windows 2000
CD-ROM to complete the installation process.

FIGURE 1.2

Click Add/Remove
Windows

Components to gain
access to the IIS

installation features.

FIGURE 1.3

Note the
Description

information shown
when you click the
IIS option. Along

with general details
about the

component option,
total disk space
required for the

installation is
displayed.

TRAP

Untitled-4 2/25/03, 9:02 AM6

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

1
P

re
p

a
ri n

g
 to

 W
o

rk
 w

it h
A

S
P

7

Confirming Your IIS Installation

Although I’ll talk much more about working with your Web server when I begin the
discussion of manipulating Web page files (in the next chapter), there are a few things
you can look at now to get a better idea of how IIS functions on your machine:

1. Open the Windows 2000 Explorer, and navigate to your C: drive. Find the folder
Inetpub and select it (see Figure 1.5).

2. Note that below the Inetpub folder are several subfolders (AdminScripts, ftproot,
iissamples, and so on). These folders correspond to additional IIS components
placed on your computer during the installation process described in the preced-
ing section.

FIGURE 1.4

Various components
are installed with

IIS, including ways
for administering

IIS, FrontPage 2000
Server Extensions,

and other tools.

FIGURE 1.5

The Inetpub folder is
the central storage
location for all the

Web pages you
create and

administer with IIS.

Untitled-4 2/25/03, 9:02 AM7

8
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Think of the Inetpub folder as your central location for storing, manipulating,
and displaying your Web pages via IIS (Web pages of all kinds, not just ASP-
enabled Web pages). As you begin to develop Web pages, you will become quite
familiar with the Inetpub folder, as well as its subfolders.

3. Aside from the creation of the Inetpub folder, take a look at the tools used to ad-
minister IIS on your computer. Again, from the Start menu, select Settings, Con-
trol Panel. Then, click the icon Administrative Tools (see Figure 1.6).

4. In the Administrative Tools screen, you notice a few icons that deal specifically
with IIS (see Figure 1.7).

5. Double-click the Internet Services Manager icon to gain access to the Internet In-
formation Services control panel. Throughout this book, I’ll be talking more
about administering the Web pages you create via the aid of your Web server of
choice. For now, just note the availability and location of these administration
services. Close the Internet Information Services control panel.

6. Now, in the Administrative Tools screen (refer to Figure 1.7), double-click the Per-
sonal Web Manager icon. The Personal Web Manager control panel appears (see
Figure 1.8).

7. Note the information immediately available to you on this Main screen. You can
gain quick access to your home page and home directory (note the location of
your home directory within the Inetpub folder). You can also view statistics
about your Web site, such as the number of active connections and the number
of visitors.

Take a look at the address of your home page (refer to Figure 1.8). This address will
differ, depending on the configuration of your machine. If your home address doesn’t
look like the one shown here (and, indeed, it shouldn’t!), that is completely normal.

FIGURE 1.6

Click Administrative
Tools to gain access
to IIS administrative

features.

HINT

Untitled-4 2/25/03, 9:02 AM8

C
h

a
p

te
r

1
P

re
p

a
ri n

g
 to

 W
o

rk
 w

it h
A

S
P

9

FIGURE 1.7

Several icons under
Administrative Tools

deal specifically
with IIS, or

configuring data
sources, which I’ll

discuss specifically
in Chapter 5,

“Database Access
with ADO.”

FIGURE 1.8

The Personal Web
Manager control
panel provides a
quick overview of

the general features
of your computer’s

Web server.

8. For more general information on IIS, click the Tour icon in the Personal Web
Manager control panel. You are then given a guided tour through the features of
IIS (see Figure 1.9).

Take a closer look at Figure 1.9. Note the text Or, use IIS as a development staging
platform before uploading your site to an Internet provider. As discussed earlier, you
can use your ISP’s servers to develop your Web site (assuming that it offers support
for ASP). However, by utilizing the power of IIS, you have a convenient staging plat-
form for developing your Web pages before you deploy them for public consumption
(thus ensuring that they appear and function as you intend). This holds true whether
you are planning on making your Web pages available on the World Wide Web or
within the confines of a corporate intranet.

TRICK

Untitled-4 2/25/03, 9:02 AM9

10
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Again, I talk more about the administration of your Web pages via IIS in later chapters.
For now, just familiarize yourself with the location of these administrative tools.

Configuring Personal Web Server
with Windows 98

Although Windows 2000 offers a full-featured Web server in the IIS, you can load a
functional Web server on your computer if you are using Windows 98. This Web server
is the Personal Web Server (PWS) and is just as easy to install and configure as IIS is
with Windows 2000. Also, it offers full support for ASP.

If you have upgraded from Windows 98 to Windows 2000, the IIS described in the
preceding section should already be installed on your computer.

Installing Personal Web Server

To begin the discussion of the PWS, you will first install it on your computer:

1. Place your Windows 98 CD-ROM into your computer.

2. Click the Windows Start button, and choose Run. In the Run dialog box, type
d:\add-ons\pws\setup.exe (substituting the letter of your computer’s CD-ROM
drive for the letter d, if necessary). Then click OK.

3. The PWS installation procedure begins. You are first greeted with the Microsoft
Personal Web Server setup greeting (see Figure 1.10). Click Next.

4. On the next screen, click the option Add/Remove (see Figure 1.11).

5. The next screen asks you which components you want to install. Be sure that the
following items are checked for installation (see Figure 1.12):

• Common Program Files

• FrontPage 98 Server Extensions

• Microsoft Data Access Components 1.5

• Personal Web Server

FIGURE 1.9

The Tour option
presents a general

overview of the
features and

benefits of working
with IIS on your own

computer.

TRICK

Untitled-4 2/25/03, 9:02 AM10

C
h

a
p

te
r

1
P

re
p

a
ri n

g
 to

 W
o

rk
 w

it h
A

S
P

11

You don’t have to install all the options presented in Figure 1.12. You don’t need them
to use the PWS effectively. Also, they take up precious space on your computer.

6. Click Next. When the installation process is complete, a message appears, asking
you to restart your computer. Go ahead and restart your machine at this time.

Given that you are a savvy computer user, what I’m about to say will come as no
surprise, but I’m going to say it anyway: the Windows operating system (any flavor
of it) can be a fickle, frustrating piece of software to work with. That said, you may
notice—from time to time—that after you install the PWS in Windows 98, you may
experience slow startups, or startup may hang. If the latter occurs, press
Ctrl+Alt+Delete and see if any files are not responding. If they are, go ahead and
stop them and then see if Windows finishes the startup process (it probably will).
Chances are good that you won’t have this problem (especially if you are running on
a Pentium III machine or higher, with at least 64MB of memory). If you continue to
have problems, consult http://www.microsoft.com/support, for the latest product/
troubleshooting updates.

FIGURE 1.10

The Personal Web
Server installation
welcome screen.

FIGURE 1.11

Regardless of
whether you have

installed PWS in the
past, click Add/

Remove.

TRICK

HINT

Untitled-4 2/25/03, 9:02 AM11

12
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Confirming Your PWS Installation

After your computer restarts, the PWS icon appears in your Windows taskbar (in the
status area of your screen).

When you click the PWS icon, you are presented with the Personal Web Manager con-
trol panel, shown in Figure 1.13.

Take a quick look at some of the Personal Web Manager features so that you have an
idea of how to work with the PWS. In later chapters, as you start developing your ASP
pages, you will learn in detail how to work with these features.

Notice the address of your home page (refer to Figure 1.13). This address will differ,
depending on the configuration of your machine. If your home address doesn’t match
the one shown here (and it shouldn’t), that is completely normal.

FIGURE 1.12

Be sure to select
only the necessary

components for
installation of

the PWS.

FIGURE 1.13

The Personal Web
Manager offers

convenient, easy
access to a variety

of PWS
administrative

features.

HINT

Untitled-4 2/25/03, 9:02 AM12

C
h

a
p

te
r

1
P

re
p

a
ri n

g
 to

 W
o

rk
 w

it h
A

S
P

13• Publish. This button calls up the Publishing Wizard, which is one way to Web-
enable your pages (ASP or otherwise). Although it is easy to use, I don’t discuss
this feature in this book.

• Web Site. This button brings forth the Home Page Wizard, which guides you
through the creation of a simple home page for display in conjunction with PWS.
Again, our focus here is the creation of far more robust Web pages, utilizing the
power of ASP.

• Tour. This option provides a general overview of the PWS features (see Figure 1.14).
This is an excellent source of basic information about what a Web server is and
how you can use PWS in conjunction with your Web design efforts.

Take a closer look at Figure 1.14. Note the text Or, use PWS as a development stag-
ing platform before uploading your site to an Internet provider. As discussed earlier,
you can use your ISP’s servers to develop your Web site (assuming that it offers
support for ASP). However, by utilizing the power of PWS, you have a convenient
staging platform for developing your Web pages before you deploy them for public
consumption (thus ensuring that they appear and function as you intend). This holds
true whether you are planning on making your Web pages available on the World
Wide Web or within the confines of a corporate intranet.

• Advanced. This option allows you to customize and edit specific directories
within your home directory (refer to Figure 1.13).

Confirming Your Web Server’s
ASP Functionality

Regardless of which Web server you are running on your Windows computer (IIS or PWS),
you can do a quick check to make sure that the server supports ASP functionality.

TRICK

FIGURE 1.14

Be sure to note how
to use the PWS as a

development
staging platform to

test your Web pages
before you deploy

them for public
consumption.

Untitled-4 2/25/03, 9:02 AM13

14
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

To do this, you will quickly create a very simple ASP Web page and use the Windows
Notepad as your editor.

I am using a Windows 2000 client machine, with the IIS installed. Unless specifi-
cally noted, you should have no problem using a Windows 98 or NT machine run-
ning PWS. You might notice some (very slight) differences in screen appearance
(that is, how the figures in this book compare to the ones on your computer) if you
are not using Windows 2000, but this should give you no reason for concern—the
functionality described remain the same.

1. From the Start menu, select Programs, Accessories, Notepad.

2. Enter the following ASP code exactly as it appears here (see Figure 1.15):
<html>

<body>

<p>

This is my first ASP Web page!

</p>

Today's date is <%=Date()%>

</body>

</html>

The line of code shown here:

Today's date is <%=Date()%>

will display the current date within your ASP page. You’ll be learning much more
about VBScript and functions like the Date() function later in the book.

HINT

TRICK

FIGURE 1.15

Testing your Web
server’s ASP

functionality with
some simple code.

Untitled-4 2/25/03, 9:02 AM14

C
h

a
p

te
r

1
P

re
p

a
ri n

g
 to

 W
o

rk
 w

it h
A

S
P

15

3. From the File menu within Notepad, select the Save As option.

4. In the Save In field, navigate to the wwwroot folder, below the Inetpub folder
(see Figure 1.16). For a more detailed discussion of the Inetpub folder, see the ear-
lier discussions of your specific Web server, IIS or PWS.

5. As shown in Figure 1.16, give this page the name TestPage.asp. Be sure to name
the page with the .asp extension. If you don’t save your ASP pages with the .asp
extension, any VBScript contained within those pages will not function.

Now that you’ve created your first ASP page, it’s time to test it on your Web server:

1. Open your Web browser of choice.

2. If you are using Windows 2000, type the following URL into your browser’s loca-
tion field: http://localhost/TestPage.asp.

If you are using Windows 98, type the following URL into your browser’s location
field: http://127.0.0.1/TestPage.asp.

Assuming that you saved your TestPage.asp Web page into the wwwroot subfolder of
your Inetpub folder, your screen should now look like Figure 1.17.

Admittedly, this isn’t an exciting page—especially compared to the things you will be
doing throughout this book—but this is an important first step in ensuring that you’ve
accomplished the following critical tasks:

• On your own machine, you’ve successfully installed a Web server that you can use
to develop and test your ASP Web pages.

• You understand how to save your ASP Web pages with the appropriate .asp exten-
sion (versus .html or some other extension) to ensure that the ASP programming
you build into these pages functions as you intend.

• You’ve created your first ASP Web page. Although this is perhaps not a very inter-
esting page, it does confirm your ability to embark on this exciting path of Web
development!

Displaying Your Web Server’s Default Home Page

You probably noticed in the preceding section the address of your TestPage.asp Web
page. Again, whether you are using IIS or PWS, the complete URL to access this page

FIGURE 1.16

Saving your first
ASP Web page in
your Web server’s

home directory.

Untitled-4 2/25/03, 9:02 AM15

16
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

consists of a few parts. To confirm that you understand how these URLs are constructed
(thus confirming that you understand how to access the Web pages you create in this
book), take a moment to review the elements of the URL you entered to display your
TestPage.asp page (http://localhost/TestPage.asp or http://127.0.0.1/TestPage.asp):

• The http:// is the typical association with the hypertext transfer protocol—no sur-
prises here.

• The next part of the URL is the name of your server running on your computer. If
you are using Windows 2000 with IIS, this is the localhost section of the URL. If you
are using Windows 98 and the PWS, the name of your server is the default
127.0.0.1.

Although it’s probably easy to remember 127.0.0.1 or localhost, you might want to
bookmark this home page address of your server within your browser application
so that you don’t have to retype it each time you want to access it.

• Finally, /TestPage.asp is the name of the Web page you want to view.

Note that, as you develop different Web sites and organize your pages within the Inetpub
folder, you can create subfolders underneath the wwwroot folder. For example, say
that you create a Web site describing your family history. The home page of this par-
ticular Web site is History_Home.asp. The full URL for accessing this page could be
http://localhost/Family_History/History_Home.asp.

Family_History is the name of the subfolder you created to store all Web pages associated
with this particular site, and History_Home.asp is one of perhaps many Web pages related
to this family history Web site (see Figure 1.18).

FIGURE 1.17

Your first ASP
Web page.

Congratulations!

TRICK

Untitled-4 2/25/03, 9:02 AM16

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

1
P

re
p

a
ri n

g
 to

 W
o

rk
 w

it h
A

S
P

17

Displaying the Default IIS Home Page

If you are using IIS, you access the default home page of the server by opening your
Web browser and entering the following URL: http://localhost/. The default home page
will load, as shown in Figure 1.19.

FIGURE 1.18

A typical folder
hierarchy, showing

different Web
folders underneath

the Inetpub and
wwwroot folders.

Under the wwwroot
folder, the folders

Family_History and
ABC_Business are
specific Web sites

and contain the
Web pages that

make up those sites.

FIGURE 1.19

The default home
page for IIS.

Untitled-4 2/25/03, 9:02 AM17

18
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

As you see in Figure 1.20, you can access additional information about IIS from this
page. Links to the administrative tools discussed earlier, as well as more extensive on-
line documentation, are quickly reached from here.

Displaying the Default PWS Home Page

If you are using PWS, you can access the default server home page, including on-line
documentation, just like the information available via IIS. To access the default home
page of PWS, open your Web browser and enter the following URL: http://127.0.0.1/. The
default home page will load, as shown in Figure 1.21.

Choosing an ASP Application
Development Tool

You’re nearly set to begin your ASP programming adventure, now that you have your
developmental Web server installed and configured. However, there is one major ques-
tion I haven’t yet discussed: With what tool are you going to enter all your ASP pro-
gram code?

This is an excellent question, and one I’ll address in a variety of ways as you move
through this book. For now, though, you should keep the following in mind:

• When learning a new programming language, it is best to do things “by hand”
first, rather than rely on an application development package, Through the use of
wizards, on-line help, or other “crutch” features, you circumvent gaining a real
understanding of the fundamental concepts. Although useful, these crutches
don’t expose you to how things work.

FIGURE 1.20

IIS comes complete
with extensive

on-line
documentation.

Note the extensive
documentation
also available
regarding ASP.

Untitled-4 2/25/03, 9:02 AM18

C
h

a
p

te
r

1
P

re
p

a
ri n

g
 to

 W
o

rk
 w

it h
A

S
P

19

• Application development packages oftentimes insert their own special code on
top of or in addition to the code you enter. Again, although potentially useful
(and taking a lot of the grunt work out of programming), this extra code can be
confusing as you attempt to learn the fundamentals of the language.

• After you get a solid understanding of the fundamental concepts of the language, you
can move to an application development package to enhance the skills you already
have learned. Thus, you gain the benefit of working with the development package.

What does all this mean? Put simply, as you begin programming with ASP, you’re going to
stick with a straight text editor (Notepad should suffice). Because you will hand-code all
your programming, you will gain a much stronger understanding of ASP fundamentals.

If you take a quick look at the table of contents, you will see that I also provide
detailed information on how to work with Microsoft FrontPage 2000 in conjunction
with your ASP development (see Figure 1.22). FrontPage is a wonderful tool and makes

FIGURE 1.21

On-line
documentation is
also available via
the PWS default

home page.

IN THE REAL WORLD

Even though ASP is a Microsoft technology, its popularity and power have caused other com-

panies to integrate support for ASP into their products. FrontPage remains (in my humble

opinion) the tool of choice for quick and easy ASP Web development, but other products are

available. For example, HomeSite, manufactured by Macromedia, is another very solid Web

application development tool that natively supports ASP development (see Figure 1.23). By

natively supports, I mean that ASP functionality is built in.

Your choice of application development tool (if you choose to use one) is ultimately your deci-

sion. Eventually, you will want to use one because these types of applications make your

development work much easier and faster.

Untitled-4 2/25/03, 9:02 AM19

20
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

the development of your Web sites much easier, more productive, and more fun. Before
you get to FrontPage, you will do everything by hand to ensure that you understand how
all this ASP programming works. You might have to enter a few extra keystrokes (there
are no Web development wizards in Notepad), but your effort will be well worth it!

Summary

In this first chapter, you learned what ASP is and how it interacts with Web servers and
Web browser software. You also took a look at the Web servers you should load on your

FIGURE 1.22

Working with
Microsoft FrontPage

2000 as your ASP
development tool.

FIGURE 1.23

Utilizing
Macromedia
HomeSite to

develop with ASP.

Untitled-4 2/25/03, 9:02 AM20

C
h

a
p

te
r

1
P

re
p

a
ri n

g
 to

 W
o

rk
 w

it h
A

S
P

21computer to work most effectively with ASP in general and with the information pro-
vided in this book. Finally, I quickly talked about the use of FrontPage 2000 and other
application development tools. I stressed that it is in your best interest to hold off on
using these tools until you gain a solid understanding of ASP fundamentals.

E X E R C I S E S

To ensure you have a good understanding of the Web server configuration issues presented in

this chapter, take a look at the following exercises:

1. Open Notepad, Word, and so on, and describe the advantages of working with ASP.

2. Continuing with the above, write another paragraph that describes the differences be-

tween ASP and a regular HTML Web page.

3. Create at least two new ASP Web pages so that you are comfortable with where to save

them (i.e., in the Inetpub directory) and how to save them (that is, with the .asp extension).

4. Take a few moments to search the Web for more information on both Microsoft FrontPage

(http://www.microsoft.com) and Macromedia HomeSite (http://www.macromedia.com). Although

you may not have experience with either program, take a moment to review their fea-

tures to see how they both support ASP development. Also, see if you can find informa-

tion on other Web development tools that support ASP.

5. Finally, review the enclosed CD-ROM to see the goodies that have been included and to

fire your imagination and interest as to the exciting things that await you in this book!

Untitled-4 2/25/03, 9:02 AM21

This page intentionally left blank

2

I
n this chapter, you will

• Learn how Visual Basic Script (or VBScript) is

at the center of all your ASP development and

how you can integrate VBScript into all your

ASP programming.

• Learn the core concept of variables and why

(and how) they are an essential programming

component.

• Learn fundamental programming statements

that bring your VBScript code to life.

• Build your first ASP game, Hello, World!,

which will utilize all the concepts you learn in

this chapter.

ProgrammingASP
Web Pages with

VBScript

C H A P T E R

Untitled-5 2/25/03, 9:06 AM23

24
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Before you begin developing the whiz-bang ASP pages I know you’ve been dreaming
about since you first purchased this book(!), there are some fundamental concepts of
programming with which you need to become familiar. I can hear the groans now, and
I know what you’re probably thinking: “Fundamental concepts! That sounds like a
synonym for boring!” Although it’s true that the material you will learn in this chap-
ter might not be as interesting as the games you will soon be developing, keep in mind
the operative phrase here: soon be developing. In other words, I’ll try my hardest to get
you through this perfunctory yet critical material as quickly as possible, and we’ll try
to have a little fun along the way, too.

This chapter was written to give you a general overview of VBScript, to get your
programmer’s feet wet, and, I hope, get you excited about the wonderful things you
can learn and do by reading the rest of this book. As you read sections that particu-
larly interest you, be sure to note the additional reference chapters, which go into
far more detail, including lots of coding examples, on the subject being discussed.

All the code examples in this chapter can be found on the enclosed CD-ROM. If you
want to follow along and test the examples, you can open them with Notepad or any
other text editor at your disposal and save them in the Inetpub folder on your hard
drive. If you don’t know what the Inetpub folder is, take another look at Chapter 1,
“Preparing to Work with ASP.” You might create a separate folder in the Inetpub
folder and call it ABG_ASP. In this folder, you can place all the code examples you
work through in this book, which will help you keep everything organized.

Integrating VBScript with ASP

This discussion of VBScript begins with a quick demonstration. Figure 2.1 shows a
simple Web page with a typical .html extension.

Take a closer look at this page:

• Notice the name of the page: ABC.html. As you know, HTML is short for Hypertext
Markup Language, the primary method of posting information on the Web.

• Note the following text: Upon receipt of your letter of inquiry, you should receive
information about the company in 4-6 weeks. The ABC Company is fictitious, of
course, but four-to-six weeks, in my opinion, is a long time to wait for informa-
tion, especially if you have to go to the trouble of mailing an inquiry.

• Take a look at the HTML code that constructed this page:

Listing 2.1 ABC.html

<html>

<head>

<title>Welcome to the ABC Company</title>

TRICK

TRICK

Untitled-5 2/25/03, 9:06 AM24

C
h

a
p

te
r

2
P

r o
g

ra
m

m
i n

g
A

S
P

 W
e
b

 P
a
g

e
s

w
it h

V
B

S
c
ri p

t

25</head>

<body>

<p align="center">Welcome to the ABC Company </p>

<p align="center">Today is Friday, June 15 2001</p>

<hr>

<p align="left">If you would like more information about our company, please

write to:</p>

<p align="left">ABC Company</p>

<p align="left">1234 Jackson Street</p>

<p align="left">North Vernon, Indiana 47265</p>

<p align="left"><i>Thanks for your interest in the ABC Company! Upon

receipt of your letter of inquiry, you should receive information about the

company in 4-6 weeks.</i></p>

</body>

</html>

Notice that the date (in this case, June 15, 2001) is hard-coded into the HTML. This
means that for the page to remain accurate, the HTML has to be manually up-
dated (that is, changed) each day to reflect the change in the date.

Now, consider the same page as an ASP page, illustrated in Figure 2.2. Note the .asp
extension in place of the usual .html.

FIGURE 2.1

A simple Web page
describing the
fictitious ABC

Company. Note the
.html extension in
the name of this

Web page,
ABC.html.

Untitled-5 2/25/03, 9:06 AM25

26
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Aside from the obvious differences in appearance, there are some critical differences
between ABC.html and ABC.asp:

• Note the name of the page in Figure 2.2 and how it has an .asp extension. This in-
dicates that the page is an ASP page.

• Note how, compared to ABC.html (refer to Figure 2.1), the ABC.asp page offers the
visitor the ability to receive information about the company immediately via e-
mail rather than wait four to six weeks for delivery through regular “snail mail.”

• Take a look at the code behind ABC.asp:

The use of <%= and <% and other opening/closing VBScript commands and functions
will be discussed in more detail throughout this book. For now, just be sure to rec-
ognize these special characters and the fact that they must be included within your
code (as shown) in order for your ASP pages to function properly.

Listing 2.2 ABC.asp

<html>

<head>

<title>Welcome to the ABC Company</title>

</head>

<body>

<p align="center">Welcome to the ABC Company </p>

FIGURE 2.2

A simple ASP page
but with enhanced

functionality,
compared to the

.html version.

TRICK

Untitled-5 2/25/03, 9:06 AM26

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

2
P

r o
g

ra
m

m
i n

g
A

S
P

 W
e
b

 P
a
g

e
s

w
it h

V
B

S
c
ri p

t

27<p align="center">Today is <%=DATE%></p>

<hr>

<p align="left"><i>Thanks for your interest in the ABC Company! Complete

the form below, and you will immediately receive information about the company

via e-mail!</i></p>

<form method="POST" action="ABCInfo.asp">

 <p align="left">Your name: <input type="text" name="T1" size="20"></p>

 <p align="left">Your e-mail address: <input type="text" name="T2" size="20"></p>

 <p align="center"><input type="submit" value="Send my information right now!"

 name="B1"></p>

</form>

<p align="left"> </p>

</body>

</html>

• Notice how, compared to ABC.html, the ABC.asp page uses the VBScript function
DATE to display the current date on the Web page dynamically. Also, the page uses a
form to capture information from the user on the spot so that the user can re-
ceive information immediately via e-mail.

By utilizing the DATE function, the ABC.asp page is self-sufficient in that the date dis-
played is always current and doesn’t need to be manually updated. Remember, in
ABC.html, the date is hard-coded, so the HTML used to display the data has to be changed
each day to display the correct date.

Although a simple demonstration, this is a prime example of the power and function-
ality ASP brings to your Web development.

Client-Side versus Server-Side Processing

In the preceding section, you caught a glimpse of how ASP can take your Web pages to
an entirely new level, but how does ASP work?

A critical element of ASP is that it executes on the server rather than the client, that is,
the Web browser itself. What does this mean? Let me use an analogy to explain.

Imagine that your television goes on the blink. Rather than have it repaired at the
shop, you ask the repairman to come out to your house. Although you give good direc-
tions to your home, and the repairman doesn’t have a hard time finding you, the story
changes considerably after he arrives. He quickly discovers that, because of the specific
make and model of your television, he can’t repair it in your home, even with his full
set of tools and general skill.

Now, imagine another scenario. In this case, you take your television to the shop to
have it repaired. Because the repairman doesn’t need to anticipate any special require-
ments of your TV or guess which tools he’ll need for the job, he can utilize his full
complement of resources, both tools and skill, in repairing your TV. Moreover, because
the repair work is being done in his shop, he has full control over how the repair

Untitled-5 2/25/03, 9:06 AM27

28
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

proceeds. Not only does he have easy access to all his tools, but he can also use sophis-
ticated testing equipment on your set. Ultimately, the TV is returned to you, repaired
correctly and—in this case—more quickly because you didn’t experience the delay of
the repairman’s first coming out to your house and discovering that he didn’t have
everything he needed.

What does this have to do with ASP? Think of client-side versus server-side processing
in the same fashion. When you utilize a language that is processed in the client, for
example, JavaScript, you risk the possibility of the repairman—in this analogy, the visi-
tors to your site and their specific Web browser—not being configured to display or
manipulate (or incapable of displaying or manipulating) the code you have placed
within your Web page. In other words, if the code within your Web page executes in a
browser that can’t handle it, for whatever reason, the code malfunctions or, worse,
doesn’t display at all. You are then left with a broken TV, to carry out the analogy.
However, if you use server-side processing, all the repair work can be taken care of on
the server, with the browser client’s only involvement being the receipt of the pro-
cessed code. This processed code is straight HTML, so the vast majority of browsers can

SHOULD YOU ALWAYS USE SERVER-SIDE PROCESSING?
From the TV repair analogy I’ve presented here, you might think that the only way to make

Web pages that utilize a programming language work properly is to use server-side process-

ing. Although it’s true that server-side processing has many advantages, it’s not accurate to

say that client-side processing is a bad thing. The real issue in this client-side/server-side pro-

cessing debate is whether you can safely assume, or control, the type of Web browser that will

be used to display your VBScript-enabled Web pages (in this case). For example, VBScript is a

Microsoft innovation. It is designed to work, for the most part, exclusively in the Microsoft

Web browser Internet Explorer. Now, that statement is true if you use VBScript in the manner

of client-side processing or if the VBScript is executed in the Web browser itself. Usually, if you

try to execute VBScript directly in other types of browsers, it will not function. If you have the

VBScript executed on the Web server, though, the only thing sent to the Web browser client is

the results of this execution. These are mostly straight HTML, which is capable of being dis-

played in any Web browser.

Some programming languages are designed from the onset to work in the client. JavaScript is

a fine example of this. However, you need to keep in mind that with even the most universal

client-side languages, there can be differences. For example, both Microsoft and Netscape

have slightly different methods of interpreting JavaScript. A Web page you create with

JavaScript will typically function the same in Internet Explorer and Netscape Navigator, but

differences—some big and some small—will creep up when you try to execute JavaScript-

enabled pages in the various browsers. Does this mean that you should avoid using them? Not

necessarily. However, you should be cognizant of the fact that, like our friendly TV repairman,

when you bring the repair into the client’s house (that is, the client-side processing in the

browser) versus doing the work at the shop (server-side processing), you introduce a level of

unpredictability because you don’t know what kind of environment you will be working in and

which tools you will need to get the job done right.

Untitled-5 2/25/03, 9:06 AM28

C
h

a
p

te
r

2
P

r o
g

ra
m

m
i n

g
A

S
P

 W
e
b

 P
a
g

e
s

w
it h

V
B

S
c
ri p

t

29display it. In a nutshell, server-side processing takes all the guesswork and variability
out of utilizing a programming language such as VBScript within your Web pages
because the code processing is done on the server, not in the browser.

Understanding VBScript Variables

Variables are perhaps the most essential programming elements because they allow you
to assign values to specific markers in your code. With this assignment comes the power
to further manipulate the values. A variable value can be nearly anything: a telephone
number, an e-mail address, an order date, a customer’s name–the list goes on.

Consider the following example:

Listing 2.3 VariableA.html

Email_Address="rsmith@zeppelin.com"

Age=31

UserName="Robert Smith"

You see three variables (Email_Address, Age, and UserName) being assigned specific values
(rsmith@zeppelin.com, 31, and Robert Smith, respectively). After variables are assigned, they
can be manipulated or otherwise referenced in your code, as in the following sample
page, Variable.asp:

Listing 2.4 VariableB.asp

<html>

<head>

<title>Working with Variables</title>

</head>

<body>

<%

Email_Address="rsmith@zeppelin.com"

Age=31

Name="Robert Smith"

%>

This is an example of working with variables within ASP<hr>

The e-mail address is: <%=Email_Address%><p>

The age is: <%=Age%><p>

The name is: <%=Name%>

</body>

</html>

When this code is executed, it appears as shown in Figure 2.3.

Also, as discussed in the preceding section, because Variable.asp has its code processed
on the server, only the results are sent to the browser. When the source code for this
page is viewed in the browser, only the processed HTML is visible. In other words, the

Untitled-5 2/25/03, 9:06 AM29

30
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

assignment of the variables (the actual VBScript) is processed on the server and therefore
not visible to users when they check the source code in their Web browser (see Figure 2.4).

Because only the resulting HTML is sent to the Web browser, server-side process-
ing is more secure, in general, because a user can’t see potentially sensitive pro-
gram code when viewing the source code.

FIGURE 2.3

The VBScript in this
page allows

variables to be
assigned values and

then allows those
values to be
displayed.

FIGURE 2.4

Because the
VBScript in

Variable.asp is
processed on the
server, only the

resulting HTML is
sent to the browser.

HINT

Untitled-5 2/25/03, 9:06 AM30

C
h

a
p

te
r

2
P

r o
g

ra
m

m
i n

g
A

S
P

 W
e
b

 P
a
g

e
s

w
it h

V
B

S
c
ri p

t

31In VBScript, there are several subtypes of variables, but I’m going to focus on the fol-
lowing four:

• Integer. This subtype can have an assigned value anywhere in the range of -32768
to 32768. Think of an integer subtype as the number variable, where you can as-
sign specific numeric values to the variable names you set. Examples of an integer
variable are age=31 or weight=190.

• Date. This subtype stores (you guessed it) date values. The value range for the date
subtype can range from January 1, 100, to December 31, 9999.

• Currency. Useful for storing monetary values. There are some specific formatting
concerns with this subtype, as there are with the date subtype. By calling specific
VBScript functions (special commands used to execute stored procedures), you can
display currency and date values in different ways. You can see a variety of these
formatting features illustrated in Appendix A, “VBScript Variable Reference.”

• String. This is perhaps the most common subtype. In general, you use string vari-
ables to store textual values, such as FirstName="William Burroughs" or
CityName="Indianapolis".

Note in the examples that with string variables you use quotation marks around the
value assigned to the variable, but with integer subtypes you do not use quotes. I’ll
talk more about this difference in the next section.

Declaring Constants in VBScript

Remember your senior prom or your wedding? Before you walked into the reception
hall with your date or spouse, you were announced to the crowd so that everyone
would know who you are. This is analogous to declaring constants in VBScript.

What does declaring mean, and why do you have to be concerned with it? When you
assign a value to a variable, you declare a constant. That is, you assign a permanent
value—until you declare it with a different value. The following are examples of declar-
ing constants in VBScript:

• LastName="Johnson"

• DOB="4/12/70"

• Years_Employed=15

As you will see in coding examples throughout this book, variables can have their
values changed as your code is executed, depending on how your code functions. This
can be useful when you want to use a variable as a temporary holding container for a
transient value. For example, you write a program that displays 10 random numbers to
the screen. In the program, you use the variable Display_Number in which to assign the
random number. However, because you are displaying 10 different numbers, you want
Display_Number to be able to have its value changed.

In another section of this program, you want to refer back to the user’s name at several
points in the code, via the variable UserName. Because the user’s name doesn’t change,

HINT

Untitled-5 2/25/03, 9:06 AM31

32
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

you want to declare a specific value for this UserName variable so that it will not change,
unless you change it by assigning a new value to the variable.

The simple way to view this is that you are always declaring variables the moment you
assign a value to them. However, when you assign a value to a variable that you don’t
want to change, you are declaring a constant for that variable.

For more specific information on VBScript variable subtypes, including how to ma-
nipulate them, be sure to refer to Appendix A, “VBScript Variable Reference.”

Learning to Program with VBScript

By all definitions, the following simple example is a VBScript program, which comes
alive when placed within an ASP Web page:

Listing 2.5 Simple_Program.asp

<html>

<body>

<%

FirstName="John"

LastName="Gosney"

%>

Welcome to VBScript <%=FirstName%> <%=LastName%>!

I know you are really going to love it!

</body>

</html>

When this code is executed on the Web server, it appears in a Web browser, as shown in
Figure 2.5.

TRICK

FIGURE 2.5

Simple as it is, this
is an example of a
VBScript program.

Untitled-5 2/25/03, 9:06 AM32

C
h

a
p

te
r

2
P

r o
g

ra
m

m
i n

g
A

S
P

 W
e
b

 P
a
g

e
s

w
it h

V
B

S
c
ri p

t

33This is a fine program, a good place to start, but I’m sure that you’re thinking right
now that you want your ASP pages to do more than just display simple text.

I have good news for you. You can unleash all kinds of power and functionality and
make your code run much more efficiently by utilizing some core VBScript statements.
I want to give you a preview of two:

• IF...THEN

• FOR...NEXT

Many more statements are essential to your effective use of VBScript, but I will focus
on these two statements in this introductory chapter.

The IF…THEN Statement

As I write this chapter, it is a very hot, humid summer afternoon. I live in Indiana,
where we have the saying, “If you don’t like the weather in Indiana, wait five minutes
and it will change!” Although this can make things interesting sometimes—for example,
a beautiful summer morning can give rise to very dark clouds and the threat of a
tornado—this also makes it difficult to plan for outdoor activity.

Imagine that you live in Indiana or someplace where the weather is very unpredictable.
You are on a much needed vacation, and tomorrow you want to take your kids to the
park for a day of outdoor fun. You want to plan for any contingency, so you decide that if
it rains, you will take the gang to the movies instead. To express this as an IF...THEN state-
ment, you could write it as IF it rains tomorrow, THEN I will take the kids to the movie.

Basically, when you use an IF...THEN statement, you want your code to test for a particular
condition. If that condition is true (equal to some value or condition you’ve set), a cer-
tain set of actions will take place. In the vacation example, you can see that IF the weather
is bad, THEN you will go to the movies. Going to the movies is the action that takes place if
the condition you are evaluating, the weather, is true, in other words, if it rains.

The following code illustrates this analogy as a VBScript program:

Listing 2.6 Weather_Fun.asp

<html>

<body>

<%

Good_Weather="We are going to the park!"

Bad_Weather="We are going to the movies!"

WeatherCheck=2

IF WeatherCheck=2 THEN

%>

The weather is bad -- <%=Bad_Weather%>

<%

END IF

Untitled-5 2/25/03, 9:06 AM33

34
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

%>

</body>

</html>

When this code is executed, it appears in the Web browser as shown in Figure 2.6.

Go through this code to be sure that you understand everything that is happening:

1. After inserting the usual <body> and <html> tags, a <% is placed to indicate that ev-
erything that follows (up to the closing %> tag) should be evaluated as VBScript.

2. Two variables are set, Good_Weather and Bad_Weather. Recall from the earlier discus-
sion that you are declaring constants by assigning permanent values to these
two variables.

3. A third variable, WeatherCheck (a variable of the integer subtype, by the way) is set
to 2. You will find that as you program, you assign various test variables so that
depending on the value they are assigned, a specific condition will be true or
false. In this example (and as you will see in a moment), a value of 2 for this vari-
able indicates bad weather. A value of 1 could indicate good weather.

4. The IF...THEN statement comes into play. In this example, IF the WeatherCheck vari-
able has been set to 2, THEN the value assigned to the Bad_Weather variable is dis-
played, via the <%=Bad_Weather%> statement.

5. Finally (as with many statements in VBScript), you need to indicate the end of the
statement so that your program knows that it can move on to the next section of
your code. This ending, for the IF...THEN statement, is indicated by the line END IF.

Be careful that you don’t forget to place the closing statements (the END IF statement
in the example). This is a very common oversight that results in program errors.

FIGURE 2.6

In this example, the
IF…THEN statement

results in some
stormy weather.

TRAP

Untitled-5 2/25/03, 9:06 AM34

C
h

a
p

te
r

2
P

r o
g

ra
m

m
i n

g
A

S
P

 W
e
b

 P
a
g

e
s

w
it h

V
B

S
c
ri p

t

35

You might be wondering at this point what would happen if you set the WeatherCheck
variable to something other than 2. Go ahead and try it. Set the WeatherCheck variable to
49 or any numeric value other than 2. Be sure to save your changes, and then load the
program again into your Web browser. Your screen should look like Figure 2.7.

Having a blank screen display when a certain condition is not true is generally not
good. Imagine if you were visiting this Web page and suddenly you were confronted
with a blank screen. You would probably, and rightly, wonder whether something is
wrong with the code, even though the code is working perfectly.

The code is working too perfectly, in fact. What you need at this point is a way to desig-
nate another action to occur if the WeatherCheck variable is set to something other than 2.

You do this with the IF...THEN...ELSE statement. Take a look at the following code listing:

Listing 2.7 More_Weather_Fun.asp

<html>

<body>

<%

Good_Weather="We are going to the park!"

Bad_Weather="We are going to the movies!"

WeatherCheck=2

IF WeatherCheck=3 THEN

%>

The weather is bad -- <%=Bad_Weather%>

FIGURE 2.7

Your message of
bad weather

displays only if the
WeatherCheck

variable is set to 2.
Otherwise, you are

left with a blank
screen.

Untitled-5 2/25/03, 9:06 AM35

36
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

<%

ELSE

%>

The weather is good -- <%=Good_Weather%>

<%

END IF

%>

</body>

</html>

When this code is executed, your screen should look like Figure 2.8.

Can you see what’s happening here? By adding the ELSE statement to the usual IF...THEN,
you allow your code to evaluate more than one condition. In simple English, you can
read it as IF the weather is bad, THEN we'll go to the movies. ELSE we will go to the park. Note that
you still need the closing END IF statement.

This type of program logic is illustrated in far greater detail in Chapter 7, “Essential
Programming Logic.”

I explain more about this concept in examples throughout the book, but let me men-
tion now that it is possible to nest IF...THEN statements so that you evaluate a variety of
conditions, based on the programming rules you set. Examine the following code:

FIGURE 2.8

If the WeatherCheck
variable is set to
something other

than 2, the condition
for bad weather, this

message is
displayed.

TRICK

Untitled-5 2/25/03, 9:06 AM36

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

2
P

r o
g

ra
m

m
i n

g
A

S
P

 W
e
b

 P
a
g

e
s

w
it h

V
B

S
c
ri p

t

37Listing 2.8 Nested.asp

<html>

<body>

<%

Test_Variable_A=1

RecordName_A="Pretzel Logic"

RecordName_B="Aja"

Test_Variable_B=2

IF Test_Variable_A=1 THEN

 IF Test_Variable_B=2 THEN

%>

My favorite record has the title of <%=RecordName_A%>

<%

ELSE

%>

My favorite record has the title of <%=RecordName_B%>

<%

END IF

END IF

%>

</body>

</html>

Now see what’s happening in this code:

1. As with the preceding example, four variables are set with specific values. These
variables are Test_Variable_A, RecordName_A, Test_Variable_B, and RecordName_B.

2. The first IF...THEN statement is called. If Test_Variable_A is equal to 1, the second
IF...THEN statement is executed, IF Test_Variable_B=2 THEN. If this second IF...THEN
statement evaluates as true (the Test_Variable_B is equal to 2), the following state-
ment is executed: My favorite record has the title of <%=RecordName_A%>. If the
Test_Variable_B variable does not equal 2, the following statement is executed: My
favorite record has the title of <%=RecordName_B%>.

3. Finally, note that two END IF statements are placed in the code. For every IF...THEN or
IF...THEN...ELSE statement you use, there must be a corresponding END IF statement.

Be sure to note in this code that if the first IF...THEN statement does not evaluate to true
(Test_Variable_A does not equal 1), the second IF...THEN statement does not execute. It can’t
because it falls within, or is nested within, the first IF...THEN statement. This results in
a blank screen being displayed, which should be avoided.

The FOR…NEXT Statement

As will be the case with many, many programs you write, the need to have a specific
action repeated, or looped, will occur. This is useful when you want to evaluate a
variety of values against the same condition. For example, imagine that you have 10

Untitled-5 2/25/03, 9:06 AM37

38
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

names of visitors to your Web site, but you want to give the fifth name a prize for
being the fifth person to visit your site. You have the list of names in random order,
so you want to loop through them, and when you hit the fifth name, you want a
special message to be displayed.

Take a look at the following code, and see how this is illustrated:

Listing 2.9 Loop.asp

<html>

<body>

<%

FOR i=1 to 10

IF i=5 THEN

%>

 Congratulations! You are the fifth visitor to the site! <p>

<%

ELSE

%>

Sorry, you are not the fifth visitor! <p>

<%

END IF

NEXT

%>

</body>

</html>

In this example, you are utilizing the FOR...NEXT statement to loop through a count of 10
numbers. This count is identified in the statement FOR i=1 to 10. i is a variable (you can
name it anything—I just picked i for this example) that is temporarily assigned the
count value (1 through 10).

Next, an IF...THEN statement is placed. If the loop count is equal to 5 (indicated here by
the statement IF i=5 THEN), the message Congratulations! You are the fifth visitor to the site!
is displayed. Otherwise, when the loop count is anything other than 5, the message
Sorry, you are not the fifth visitor! is displayed.

Figure 2.9 shows this code displayed in a Web browser.

This is a simple example of the FOR...NEXT loop, but it gives you an idea of the power of
this statement and the ways you can utilize it in your code. Throughout the book, you
will see many, many examples of the FOR...NEXT statement.

As with the IF...THEN statements, you need to close your FOR...NEXT statements.
However, with FOR...NEXT statements, you don’t close them with an END FOR but rather
the simple statement NEXT. By placing this statement in your code, it completes the
loop cycle you put into motion with the FOR i=1 to 10 statement in the example.

HINT

Untitled-5 2/25/03, 9:06 AM38

C
h

a
p

te
r

2
P

r o
g

ra
m

m
i n

g
A

S
P

 W
e
b

 P
a
g

e
s

w
it h

V
B

S
c
ri p

t

39

Commenting Your VBScript Code

Although the code examples in this chapter are simple and not in need of much internal
commentary, the more advanced programs you develop (including those in this book)
require that you comment your code. By commenting your code, you place notes to
yourself and, critically, to others who might view your code later, explaining the ratio-
nale behind the way you coded the program and reminding you how things work. You’d
be surprised how quickly you forget your own programming, even after a short while.

Commenting your code in VBScript is very simple. You place a single quotation mark,
also known as a tick mark, (') before the line, to indicate that it is a commented line. In
looking at the preceding code example, you can see how it would appear if it were
commented:

Listing 2.10 Loop.asp

<html>

<body>

<%

' The loop begins here. In this loop, the count will run from 1-10

FOR i=1 to 10

' When the loop gets to five, I want a special message to be displayed

IF i=5 THEN

%>

 Congratulations! You are the fifth visitor to the site! <p>

FIGURE 2.9

When the loop
count gets to 5, the
winning message is

displayed.

Untitled-5 2/25/03, 9:06 AM39

40
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

<%

ELSE

%>

Sorry, you are not the fifth visitor! <p>

<%

END IF

' Don't forget the NEXT statement, which completes the loop

NEXT

%>

</body>

</html>

As you can see here, providing even basic commentary makes your code easier to review.
Take advantage of this essential element of successful programming. You won’t regret it,
and neither will the programmers who need to review your code at a later date.

Any line that begins with the ' character is considered a comment and is not ex-
ecuted. You can use this feature to disable a line of code temporarily, which is often
helpful in troubleshooting your programs as you search for possible errors.

The Hello, World! Game

It is a tradition that when you learn a new programming language, your first program
should be the Hello, World! program, which displays this very text to your computer screen.

Despite the groans of some of you who have learned a programming language before,
I won’t veer from tradition. The Hello, World! game is the first game you will program
in this book. It is very similar to the sample code you saw in the section describing the
FOR...NEXT statement earlier.

The code for the game is shown here:

Listing 2.11 HelloWorld.asp

<html>

<body>

Welcome to the Hello, World! Game!<p>

<i>Admittedly, not much of a game, but hey...you gotta start somewhere,

right?</i>

<p>

<%

'Be sure to assign the value of the NAME variable to your own name!

NAME="John Gosney"

FOR i=1 to 15

IF i=5 THEN

'Again, you'll need to assign your own name here!

 IF NAME="John Gosney" THEN

%>

TRICK

Untitled-5 2/25/03, 9:06 AM40

C
h

a
p

te
r

2
P

r o
g

ra
m

m
i n

g
A

S
P

 W
e
b

 P
a
g

e
s

w
it h

V
B

S
c
ri p

t

41<hr>

<center>Hello, World!<p>

Welcome, <%=NAME%>, to VBScript Programming and ASP!

</center><hr>

<%

'Don't forget you need two END IF statements, one for each IF...THEN

END IF

END IF

'And don't forget to include the NEXT statement so that your loop functions

NEXT

%>

</body>

</html>

You can see the game code in action in Figure 2.10.

Summary

In this chapter, you were introduced to essential concepts of working with VBScript as
your programming tool of choice when developing ASP Web pages. You learned the dif-
ference between client-side and server-side scripting languages and the pros and cons of
each. You learned about VBScript variables, including what they are and how to use
them. You also examined some essential program statements, including the IF...THEN
and FOR...NEXT statements, both of which you will use throughout this book. Also, you
learned the importance of commenting your code, so you will take the time to provide
this type of internal documentation in your code. Finally, you programmed your first
ASP game and worked up a healthy programming appetite for the fun that lies ahead.

FIGURE 2.10

Your first game! As
the screen says, not

too exciting, but
things will get more

interesting soon.

Untitled-5 2/25/03, 9:06 AM41

42
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

E X E R C I S E S

Work through the following exercises to help you gain a further understanding of the essential

concepts you learned in this chapter:

1. Without referring to the text, take out a piece of scratch paper. To keep more in line with

the flavor of this book, open a blank document in Word or your favorite text editor.

Briefly describe in a short paragraph the difference between client-side and server-side

code processing.

2. Go back to the code examples in this book, and in at least two of them, assign a variable

with the value of your name. Have it displayed on screen when the code executes.

3. Write a program that utilizes the FOR...NEXT loop statement to count from 1 to 50, display-

ing each number on the screen. When this count hits 50, have the program display a

special completion message.

4. Write a program that has at least three nested FOR...NEXT loops. Like the examples in this

chapter, be sure that as the code executes, a blank screen is never displayed when the

conditions you set are evaluated.

5. In the programs you develop in steps 3 and 4, add comments so that you clearly under-

stand how your code is functioning.

Untitled-5 2/25/03, 9:06 AM42

3

I
n this chapter, you will

• Learn to work with the Response and Request objects

and use them to (among other things) process

form results and display them on a Web page.

• Understand the difference between passing in-

formation between Web pages with the

QueryString and form collections.

• Learn to manipulate the File object so that your

ASP Web pages interact with common text files.

• Program the ASP MadLibs game, using the

Request, Response, and File objects.

Working with
ASP Objects

C H A P T E R

Untitled-6 2/25/03, 9:09 AM43

44
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

In the first two chapters of the book, I introduce you to fundamental groundwork for
working with ASP. In Chapter 1, “Preparing to Work with ASP,” you configured a Web
server of your choice for a solid development platform from which to build your ASP
pages. In Chapter 2, “Programming ASP Web Pages with VBScript,” you learned how
VBScript brings your ASP pages to life. Although all this information is critical, you are
probably ready to begin developing real ASP Web pages (and a game here and there, too).

You are in luck. With this chapter, you begin your journey into the exciting world of ASP
by learning how to manipulate objects. Think of objects as the building blocks of your
ASP pages, powerful tools to help you bring all that functionality you’ve been dreaming
about to your own personal Web design toolbox. Without further delay, jump right in!

Introducing the Request and
Response Objects

Of all the objects in ASP, you use the Request and Response objects the most frequently. As
is my custom in this book, the discussion of these two powerful ASP objects begins
with an example, in Listing 3.1.

Listing 3.1 Response.asp

<html>

<head>

<title>Example of the Response Object</title>

</head>

<body>

This is an example of the ASP Response Object! <hr>

<%

Name="Robert Smith"

Response.Write Name & ", welcome to ASP!"

%>

</body>

</html>

This code is straightforward. You know from Chapter 2 that you can define variables
and declare constants. In this example, the variable Name is assigned the value Robert
Smith. Then, by using the Response object, the variable is output to the Web page, along
with the comment "welcome to ASP!". In essence, the Response object is an easy, effective
way of presenting the values of your variables and any results of your code manipula-
tion to the Web page.

The use of the <%= can also be viewed as equal to Response.Write. You can think of
<%= as a method of telling your VBScript to “write” to the screen what comes next.
For example, <%=SomeVariable%> would write the contents of SomeVariable variable
to the screen.

TRICK

Untitled-6 2/25/03, 9:09 AM44

C
h

a
p

te
r

3
W

o
rk

in
g

 w
i th

A
S

P
O

b
je

c
ts

45What are the Response and Request objects? The best way to understand these two objects is
to think of a telephone call. When you place a call, you are requesting that someone on
the other end of the line pick up the phone. When that person answers the phone, he or
she issues a response to your request (the ringing phone). Depending on what the person
says (your resulting conversation), you process the results of your request by taking spe-
cific actions, depending on whom you are talking to and for what purpose. Without
much extrapolation, this is the way the Response and Request objects work with ASP.

The Request Object

Before any further explanation, take a look at the Request object in Listing 3.2. You can
view the Request object as the “call to action” that the Response object, in turn, answers.

Listing 3.2 RequestForm.asp

<html>

<head>

<title>Example of the Request Object</title>

</head>

<body>

<p>This is an example of the Request Object!</p>

<form method="POST" action="RequestForm_Results.asp">

 <p>This is a typical HTML form. In the space provided, enter your name

 and then click on the Submit button.</p>

 <p><input type="text" name="Name" size="20"><input type="submit"

 value="Submit" name="B1"></p>

</form>

<p> </p>

</body>

</html>

Although you will be learning all about working with forms in ASP in Chapter 6,
“Using Forms,” here you can see how easy it is via the power of the Request object. Take
a look at Listing 3.3.

Listing 3.3 RequestForm_Results.asp

<html>

<head>

<title>Example of Form Processing with the Request Object</title>

</head>

<body>

Untitled-6 2/25/03, 9:09 AM45

46
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Welcome <%=Request.Form("Name")%> to the world of ASP!

</body>

</html>

As you can see in Figures 3.1 and 3.2, the value you enter in the box on the
RequestForm.asp page is displayed within the RequestForm_Results.asp page after

FIGURE 3.2

You can easily
process and display
form results in ASP,

using the
Request object.

FIGURE 3.1

A typical HTML form
you’ve probably
seen (and used)

many times on your
journeys around

the Web.

Untitled-6 2/25/03, 9:09 AM46

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

3
W

o
rk

in
g

 w
i th

A
S

P
O

b
je

c
ts

47you click the Submit button. This is done through the functionality and power of the
Request object, as shown in the following line from Listing 3.3:

Welcome <%=Request.Form("Name")%> to the world of ASP!

What’s happening in this line of code? I’m guessing that by looking at Listings 3.2 and
3.3, you can figure this out. To reiterate, though, here is a breakdown of the preceding
line of code from both an ASP and a basic HTML perspective:

1. Notice in Listing 3.2 how you designate the page to point to when processing the
form results. Take note of the following line:
<form method="POST" action="RequestForm_Results.asp">

Notice the section action="RequestForm_Results.asp". By using the action attribute of a
form (which is straight HTML—nothing to do with ASP), you tell the form where
to go after the user clicks the Submit button and puts the form into action. You
are asking this form to point to the RequestForm_Results.asp page. On this page,
the information entered into the form (the name entered in the text box shown
in Figure 3.1) is processed and ultimately displayed on screen.

2. When the information gets to the RequestForm_Results.asp page, it can be pro-
cessed. Remember the analogy of the telephone call? That is exactly what’s hap-
pening here. The Web browser in which the user enters his or her name on the
form makes a request that an action be taken by the Web server. In Listing 3.3,
the following line accomplishes this:
Welcome <%=Request.Form("Name")%> to the world of ASP!

By using the form collection of the Request object (more about collections in the
following section), you garner a response from the Web server—in this case, ask-
ing it to pass the information entered into the form field (which I named Name)
to the RequestForm_Results.asp page.

3. Finally, after all the requesting and responding is completed, the Web browser
displays the results, shown in Figure 3.2.

As you might guess, there is much more to both these objects, and you will see them in
action throughout this book. In the next section, you will begin your exploration of
Object collections, which will make the Request and Response objects more clear. You’ll also
see how they work in conjunction with other objects to really give ASP all of its power.

Understanding Object Collections

Think of collections as special subsets of objects that expose unique information about
an object for extended manipulation. In a large company, you can have a manufacturing
component, a sales component, a human resources component, and so on. In making an
analogy to ASP object collections, think of these company components as exposing spe-
cific attributes of the company.

So it is with the ASP object collections. Depending on the object, the number of collec-
tions varies, and each collection makes available specific information about the object.

For the Request object, the following collections are available for your manipulation:

• ClientCertificate. On some pages, a user certificate is required for access to the
page. This certificate contains a variety of information, from encrypted data to

Untitled-6 2/25/03, 9:09 AM47

48
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

basic user profile information. The ClientCertificate collection makes available
this information, as requested of the Web server.

• Cookies. If the Web page requesting information of the server contains cookies,
those cookies (and the data they contain) are sent to the server for examination.

• Form. By far the most common collection of the Request object, the form collection
takes all the values, as passed by an HTML form section, that are submitted as part
of the request. In Listing 3.2, the text box form element (named Name) would be
included in the form collection of the Request object. As shown in Listing 3.3, the
line Request.Form("Name") illustrates the form collection in action.

• QueryString. Similar to the form collection, the QueryString collection makes
available to the Web server all values contained in the URL of the user’s request. I
discuss the QueryString in more detail later in this chapter.

• ServerVariables. This collection makes available all the HTTP header values, as
sent by the user with his or her request.

Each object also has a set of unique properties that allow for even greater control of
the data being submitted by the user. You will learn about specific object properties
in the various code listings throughout this book.

The Request Object Form Collection

You already have an example of the form collection of the Response object in Listings 3.2
and 3.3. As you saw, it is very easy—via the form collection—to access and manipulate
information submitted on a typical HTML form.

Even though that example is very simple, it shows you everything you need to know
about reading form information from a Web page. However, here is a slightly more
complex example, where you can see the true power of the form collection. Listing 3.4
is a regular HTML form, albeit with several form elements.

Listing 3.4 FormExample.asp

<html>

<head>

<title>A complete Request object form collection example</title>

</head>

<body>

<p>A complete Request object form collection example

<hr>

<form method="POST" action="FormExample_Process.asp">

 <p>Enter your name here: <input type="text" name="Name" size="20"></p>

TRICK

Untitled-6 2/25/03, 9:09 AM48

C
h

a
p

te
r

3
W

o
rk

in
g

 w
i th

A
S

P
O

b
je

c
ts

49 <p>What is your gender: <input type="radio" value="M"

 name="Gender">M

 <input type="radio" name="Gender" value="F">F</p>

 <p>In what age group do you belong: <select size="1" name="Age">

 <option value="1">Younger than 18</option>

 <option value="2">18-26</option>

 <option value="3">27-45</option>

 <option value="4">46-65</option>

 <option value="5">Older than 65</option>

 </select></p>

 <p>Enter some general comments about what you think about ASP:</p>

 <p><textarea rows="5" name="Comments" cols="50"></textarea></p>

 <p align="center"><input type="submit" value="Submit" name="B1"></p>

</form>

</body>

</html>

Figure 3.3 shows how this form appears.

Now see how this code is processed via the form collection of the Request object. Listing
3.5 illustrates a page that processes the information entered into the form of the page
shown in Figure 3.3 by using the Request object’s form collection.

FIGURE 3.3

A typical HTML
form, with several

types of form
elements (a one-line
text box, a scrolling

text box, radio
buttons, and

the like).

Untitled-6 2/25/03, 9:09 AM49

50
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Listing 3.5 FormExample_Process.asp

<html>

<head>

<title>A complete Request object form collection example</title>

</head>

<body>

<p>A complete Request object form collection example - -

</p>

<p><i>Utilizing the Request object form collection to read the data</i>

<hr>

<p align="left">Name of visitor to the Web page: <%=Request.Form("Name")%> </p>

<p align="left">Gender of the visitor: <%=Request.Form("Gender")%></p>

<p align="left">Age classification of the visitor: <%=Request.Form("Age")%></p>

<p align="left">Visitor comments:<p>

<i><%=Request.Form("Comments")%></i>

<p align="left"> </p>

</body>

</html>

Figure 3.4 shows this page as it processes the information entered in the form illus-
trated in Figure 3.3.

FIGURE 3.4

The form is
processed using the
Request object’s
form collection.

Untitled-6 2/25/03, 9:09 AM50

C
h

a
p

te
r

3
W

o
rk

in
g

 w
i th

A
S

P
O

b
je

c
ts

51As you can see in Listing 3.5, the form collection can be used to read information from
any form element (text box, radio button, and so on). Because forms and form process-
ing are described in far greater detail in Chapter 6, for now you can familiarize your-
self with how form data is being passed and then manipulated via the form collection
of the Request object.

The Request Object QueryString Collection

The QueryString collection works nearly the same as the form collection, except that
you append values to the URL of the user’s request rather than use a form to capture
and pass data.

To demonstrate this, let me refer you to Listing 3.5 in the preceding section. Say that
after you pass the form information to the FormExample_Process.asp page, you want
to pass that information to another page, this time using the QueryString collection,
shown in Listing 3.6.

Listing 3.6 FormExample_Process2.asp

<html>

<head>

<title>A complete Request object querystring collection example</title>

</head>

<body>

<p>A complete Request object querystring collection example - -

</p>

<p><i>Utilizing the Request object querystring collection

to read the data</i>

<hr>

<p align="left">Name of visitor to the Web page:

<%=Request.Querystring("Name")%> </p>

<p align="left">Gender of the visitor:

<%=Request.Querystring("Gender")%></p>

<p align="left">Age classification of the visitor:

<%=Request.Querystring("Age")%></p>

<p align="left">Visitor comments:<p>

<i><%=Request.Querystring("Comments")%></i><hr>

</body>

</html>

Figure 3.5 shows how this code appears when executed.

Untitled-6 2/25/03, 9:09 AM51

52
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

As you see, you get the same results using either the form or QueryString collection of
the Request object. However, you should be aware of several issues when deciding which
of these collections to use:

• Compare the URL in Figure 3.4 to the one in Figure 3.5. In Figure 3.4, there is no
sign that any data has been passed. All the information entered by the user on the
form is processed via the Request object form collection. Using the form collection
is a more secure method of passing information; nothing is visible as it is passed.

• Depending on the type of Web browser being used (and, in some cases, the limita-
tions of the Web server), there can be a limit on the size of the URL. For example,
if you use the QueryString collection to pass an excessively large amount of infor-
mation, not all of it may be transferred via the appended URL.

• The appended URL cannot contain any spaces. Spaces can result in errors when
processing. Although Internet Explorer (usually) automatically converts a space
to a + sign, other browsers might not be able to handle this type of advanced
URL processing.

For all the reasons listed here, you should always try to use the form collections and
the POST method to pass information. You will be learning much more about process-
ing forms (including the POST method) in ASP in Chapter 6, “Using Forms.”

Introducing the File Object

The capability of your Web pages to write to a text file is a powerful attribute of ASP.
Say that you have a Web-based survey (using a typical Web form) that asks visitors to
analyze your Web site’s design and functionality. After the form is completed and the

FIGURE 3.5

This page looks
exactly the same as
that shown in Figure
3.4, which uses the
form collection of

the Request object.

TRICK

Untitled-6 2/25/03, 9:09 AM52

C
h

a
p

te
r

3
W

o
rk

in
g

 w
i th

A
S

P
O

b
je

c
ts

53user clicks the typical Submit button, you want the user’s information to be saved to a
text file so that you can review it later. Say that you own a small company that special-
izes in computer training. On your Web site, you have an online registration form that
folks interested in taking your classes can complete, and it sends their registration
information to them in a text file (so that they can print it out and bring it with them
to class). The capability to write to a text file would be perfect for this example.

The possible uses of this capability go on and on. To understand the functionality of
the File object (or the ASP object you use to access all this file manipulation capability),
you will program the ASP MadLibs game in this chapter. Remember MadLibs? This is
the word game that asks you to think of several verbs, nouns, and adjectives. Then, the
seemingly innocent list of words you generate is inserted into a prefabricated story,
often with very funny results. For example, say that you are asked for two nouns, two
verbs, and two adjectives. Your list of words is then inserted into the following story:

One day, (noun) was walking down the street. Suddenly, he (verb) the

(noun) he was carrying and (verb) into the nearest store. All this

activity gave him a/an (adjective) appearance, so he (adverb) walked to the

nearest phone and called his mother!

As you can see, with the list of words you provide, this story can take on humorous
connotations. You will learn how to program a Web-based version of this game, using
the File object to create your final story. As a mechanism for requesting (and collect-
ing) the various words, this is a preview of using forms in ASP.

Although the File object has several properties and characteristics, special focus in this
chapter is on using the File object to

• Read from a text file.

• Write to a text file.

The File Object Properties

As you did with the Request and Response objects, you will begin by examining the spe-
cific properties of the File object:

• Attributes. Returns the various attributes of a file. Such attributes include
whether the file is read-only and hidden, its name, and its location (in which
folder it resides).

• DateCreated. Tells the date and time the file was created.

• DateLastAccessed. Tells when the file was last accessed.

• DateLastModified. Tells when the file was last modified.

Remember that DateLastAccessed and DateLastModified are quite different. When a
file was last accessed means when it was last opened or examined. DateLastModified
refers to the most recent date the file was altered, not simply opened or examined.

• Drive. Tells you on which drive the file resides.

• Name. Returns the name of the file.

TRICK

Untitled-6 2/25/03, 9:09 AM53

54
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

• ParentFolder. Tells you the folder in which the file resides.

• Path. Returns the absolute path of the file’s location.

• ShortName. Tells the DOS-style name of the file.

• ShortPath. Shows the DOS-style path of the file.

• Size. Returns the size of the file in bytes.

• Type. Tells the file type (for example, .txt for a text file).

As you progress through the following sections (especially as you code the ASP MadLibs
game example), you will see most of these properties in action.

The File Object Methods

The File object also has its own set of methods:

• Copy

• Delete

• Move

• CreateTextFile

• OpenAsTextStream

Of these methods, you are going to be looking specifically at the CreateTextFile and
OpenAsTextStream methods because within your ASP code, they allow you to create a new
file and then read from, write to, or otherwise append the file.

A File Object Example

Listing 3.7 gives a quick example of how to work with the File object, its properties,
and its methods.

Listing 3.7 FirstFile.asp

<html>

<title>Working with the File Object</title>

<body>

This is a first example of working with the File object!

<hr>

<%

set TestFile=Server.CreateObject("Scripting.FileSystemObject")

set TFileStream=TestFile.CreateTextFile("c:\inetpub\wwwroot\ABG_ASP\

TestFile.txt")

TFileStream.WriteLine "Welcome to the File Object in ASP!"

TFileStream.Close

%>

</body>

</html>

Untitled-6 2/25/03, 9:09 AM54

C
h

a
p

te
r

3
W

o
rk

in
g

 w
i th

A
S

P
O

b
je

c
ts

55To ensure that you understand everything in this code, go ahead and work with it
directly now:

1. From the CD-ROM, open the file FirstFile.asp, and save it in your ABG_ASP folder
within the wwwroot directory.

2. Open your Web browser of choice, and navigate to this file. When the page loads
within your Web browser, it looks like Figure 3.6.

3. After the page loads, the text file you created via the VBScript code (I’ll explain
this in a moment) is created in your ABG_ASP folder. Navigate to that folder now,
and find a text file named TestFile.txt. Open this file within Notepad (or your fa-
vorite text editor). It looks like Figure 3.7.

How does the code in Listing 3.7 work? Very simply, as you will see here:

1. An instance of the File object is created. This is done via the line
set TestFile=Server.CreateObject("Scripting.FileSystemObject")

Note that the TestFile name given to this particular instance is just a random
name. You can call it anything you want, but it’s a good idea to keep it as short
as possible for easier manipulation within the rest of your code.

2. The file is created as you specify the exact path where you want the file created.
This is done in the line
TFileStream=TestFile.CreateTextFile("c:\inetpub\wwwroot\ABG_ASP\TestFile.txt")

In this example, you are creating the file (TestFile.txt) directly within your
ABG_ASP development folder, but note that you can create the file anywhere you

FIGURE 3.6

As with most ASP
functionality, most

of the exciting
stuff—in this case,
the VBScript code

that manipulates the
File object—

occurs behind the
scenes, with only

simple HTML being
output to the

Web browser.

Untitled-6 2/25/03, 9:09 AM55

56
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

like. However, you should decide where you will allow the file to be created or
otherwise manipulated, according to the sensitivity of the information being
passed and where within your system you want to allow this type of access.

3. After you create a file via the CreateTextFile method of the File object, you write to
the newly created file. This is done in the line
TFileStream.WriteLine "Welcome to the File Object in ASP!"

As you see in Figure 3.7, this very line ("Welcome to the File Object in ASP!") is written
to the TestFile.txt file. The WriteLine method is a method of the TextStream object,
which is discussed in more detail in the following sections.

4. Finally, when the file manipulation is completed, this particular instance of the
File object is closed in the line

TFileStream.Close

Closing your objects when you are finished working with them is a good practice
because it helps prevent coding errors and other problems. Leaving an object open
after you are done with it is not a good programming practice.

This is a simple example to whet your appetite for working with the File object. Now
that you have some idea of how it works, you can dive in to far more robust coding. The
first step is a closer examination of the TextStream object.

Introducing the TextStream Object

The TextStream object is the heart of most of the file manipulation in ASP, as illustrated
in Listing 3.7. There are three specific methods within the TextStream object: CreateTextFile,
OpenTextFile, and OpenAsTextStream. In Listing 3.7, you use the CreateTextFile to create the file
and the WriteLine method of the TextStream object to write to the newly created file.

FIGURE 3.7

The line of text you
asked to be

included in this
file has, indeed,

been added.

TRICK

Untitled-6 2/25/03, 9:09 AM56

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

3
W

o
rk

in
g

 w
i th

A
S

P
O

b
je

c
ts

57The TextStream object has its own set of properties and methods. First, take a look at the
TextStream object’s properties:

• AtEndOfLine. Returns a value of True if the file pointer (the location of the response as
the file is read) is at the end of a line in the file.

• AtEndOfStream. Returns a value of True if the file pointer is at the end of the file.

• Column. Depending on the current character being read within the file, returns the
column number of this character, starting from 1.

• Line. Depending on the current line number being read within the file, returns
this line number, starting from 1.

You will see many of the TextStream object’s methods in action in the listings and the
ASP MadLibs game:

• Close. Closes an open file.

• Read (a number). Reads a specific number of characters from the file. For example,
Read(20) reads the first 20 characters within the file being examined.

• ReadAll(). Reads the entire file and places it within a text string. (For more informa-
tion on text strings, see Chapter 2, “Programming ASP Web Pages with VBScript.”)

• ReadLine(). Reads a single line from the file and places it within a text string.

• Skip (a number). Skips over a specific set of characters from the file being examined.

• SkipLine. Skips a line when reading from the file being examined.

• Write (a string). Writes a specified string to the file being examined. For example
(as shown in Listing 3.7), the line
TFileStream.WriteLine "Welcome to the File Object in ASP!"

writes the line Welcome to the File Object in ASP! to the specified text file (as specified
by the CreateTextFile method, by the way).

• WriteLine (a string). Writes a string to the file being examined and then writes a
newline character within the file.

• WriteBlankLines (a number). Writes the specified number of blank lines to the file
being examined.

Although these methods are self-explanatory, it is easier to understand them if you see
them in action. The following sections give examples of how to use these various meth-
ods of the TextStream object.

Writing to a Text File

Although Listing 3.7 gives you a simple example of how to create and write to a text
file, as well as read from a file, Listing 3.8 is a more substantial demonstration of how
to write to a text file.

Listing 3.8 SecondFile.asp

<html>

<title>Working with the File Object</title>

<body>

A second example of working with the File object!

Untitled-6 2/25/03, 9:09 AM57

58
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

<hr>

<%

set TestFile=Server.CreateObject("Scripting.FileSystemObject")

set TFileStream=TestFile.CreateTextFile("c:\inetpub\wwwroot\ABG_ASP\

Test2File.txt")

TFileStream.WriteLine "Welcome to the File Object in ASP!"

TFileStream.WriteBlankLines(3)

TFileStream.WriteLine "Between this line and the opening line are

three blank lines. These blank lines were inserted using the

WriteLine method of the TextStream object. Now, let's write three

more blank lines before the next section of text is inserted."

TFileStream.WriteBlankLines(3)

TFileStream.WriteLine "Okay, that's better--three more blank lines

have just been inserted! I think you probably get the idea of how to

use the WriteLine method, so let's move on to more interesting things."

TFileStream.Close

%>

</body>

</html>

Now, follow these steps to see this code in action:

1. From the CD-ROM, open the file SecondFile.asp, and save it in your ABG_ASP
folder within the wwwroot directory.

2. Open your Web browser of choice, and navigate to this file. When the page loads
within your Web browser, it looks like Figure 3.8.

FIGURE 3.8

Not much to look at
within the browser,

but this doesn’t
mean that nothing

is happening
underneath
the hood!

Untitled-6 2/25/03, 9:09 AM58

C
h

a
p

te
r

3
W

o
rk

in
g

 w
i th

A
S

P
O

b
je

c
ts

59

3. After the page loads, the Test2File.txt file is created within your ABG_ASP folder.
Navigate to that folder now, and open this file. It looks like Figure 3.9.

You probably have the hang of writing to a text file. It’s a simple process: Create an
instance of the File object, define the file path where you want the file to be created,
and write to the file with whatever text you want to include. Now you will move on to
reading directly from a file into your ASP Web pages.

The information you write to a text file doesn’t have to be static text. You can define
and assign specific values to variables (which you learned how to do in Chapter 2,
“Programming ASP Web Pages with VBScript”) and then, as a result of your own
code processing, insert dynamic values into the text files. For example, you ask
visitors to your Web site to enter specific information. Then, you have your code
process that information and write the results of that processing to a text file.

Come to think of it, this is exactly the type of processing the ASP MadLibs game
performs. Stay tuned for a complete File object example later in this chapter.

Reading from a Text File

Reading from a file is also very straightforward via the power of the TextStream object.
See how this is done in Listing 3.9 with some of the TextStream object’s properties and
methods.

Listing 3.9 ThirdFile.asp

<html>

<title>Working with the File Object</title>

<body>

FIGURE 3.9

All the text you
asked to be

inserted, including
the blank lines, is
included within

this file.

TRICK

Untitled-6 2/25/03, 9:09 AM59

60
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

A third example of working with the File object!

<hr>

<%

set TestFile=Server.CreateObject("Scripting.FileSystemObject")

set TFileStream=TestFile.OpenTextFile("c:\inetpub\wwwroot\ABG_ASP\

Test2File.txt")

TextFormat=TFileStream.ReadLine

%>

<p>

<i>

<%=TextFormat%></i>

</p>

</body>

</html>

As with the other examples, save this file (it is named ThirdFile.asp on the CD-ROM)
into your ABG_ASP folder. Then open it in a Web browser. It looks like Figure 3.10.

As you can see in Figure 3.10, the code from Listing 3.9 first opens the Test2File for
reading. Then (through the power of the ReadLine method) the code reads the first line
of text from this file, Welcome to the File Object in ASP!. Remember from the description of
the ReadLine method, the data returned is set to a string. Keeping this in mind, you set
the value of the ReadLine method to the variable TextFormat. Finally, before outputting the
contents of this variable to the screen (via the line <%=TextFormat%>), you apply some gen-
eral HTML formatting. I set the font to Century Gothic, assigned a bigger font size, and
italicized it. This formatting gives the text (as read from the file) its unique appearance
(refer to Figure 3.10).

FIGURE 3.10

The capability to
read from an

existing text file
enables you to draw

on all kinds of
additional

information
resources when

developing in ASP.

Untitled-6 2/25/03, 9:09 AM60

C
h

a
p

te
r

3
W

o
rk

in
g

 w
i th

A
S

P
O

b
je

c
ts

61ASP MadLibs—Working with ASP Objects

You have learned how to work with the Request, Response, and File objects and have ex-
plored their respective methods and properties. You had a preview of working with
forms and QueryStrings and now understand how to create a text file and have your
ASP pages write to and read information from these pages.

With all these skills under your belt, you are ready to program ASP MadLibs. This game
draws on all three objects in this chapter and gives you yet another preview of working
with forms, as well as a hint of how your ASP pages can interact with a database, such
as Microsoft Access. Speaking of integrating your ASP pages with Microsoft Access, you
will learn how to do just that in Chapter 5, “Database Access with ADO.” Stay tuned for
more exciting programming via the power of ASP.

The ASP MadLibs game is composed of the following three steps:

1. A typical HTML form is used to gather the required information from the user
(more on what this information entails in just a moment) and pass it to the (ASP)
page that processes the data.

2. The page that processes the user information displays the resulting MadLib and
presents the user with options (play again, save the MadLib, and so on).

3. A text file is created that allows the user to save his or her unique MadLib cre-
ation as a text file, using a name the user specifies.

Sound cool? It should be, when everything is working. Let’s get to it.

The Game Data Input Form

The first part of the ASP MadLibs game is to build the form that gathers the informa-
tion from the user. Figure 3.11 illustrates this form.

FIGURE 3.11

This form is used to
gather the required
information from the

user so that a
unique ASP MadLib

can be created.

Untitled-6 2/25/03, 9:09 AM61

62
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

This is a simple HTML form (with the 20, one-line, text box form elements placed into
a table for a cleaner appearance). The code for this page is in Listing 3.10. Note the form
attributes. The ACTION attribute is set to MadLibProcess.asp—the page that will generate
the MadLib, based on the information entered on this form. Also, notice that each one-
line text box is numbered and named sequentially (Word1, Word2, Word3, and so on).

Listing 3.10 MadLibHome.asp

<html>

<head>

<title>Welcome to ASP MadLibs!</title>

</head>

<body>

<p><i>It's Time to Play...</i></p>

<p align="center">ASP

MadLibs!</p>

<hr>

<p align="left">Please enter the requested type of

word for each space below:</p>

<form method="POST" action="MadLibProcess.asp">

<p>

<table border="1" width="100%" height="139">

 <tr>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word1" size="15" value="(A Name)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word2" size="15" value="(Adjective)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word3" size="15" value="(Noun)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word4" size="15" value="(Adjective)"></td>

 </tr>

 <tr>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word5" size="15" value="(Verb-Past)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word6" size="15" value="(Noun)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word7" size="15" value="(Adjective)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word8" size="15" value="(Verb)"></td>

 </tr>

Untitled-6 2/25/03, 9:09 AM62

C
h

a
p

te
r

3
W

o
rk

in
g

 w
i th

A
S

P
O

b
je

c
ts

63 <tr>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word9" size="15" value="(Body Part)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word10" size="15" value="(Adjective)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word11" size="15" value="(Clothing Piece)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word12" size="15" value="(Noun)"></td>

 </tr>

 <tr>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word13" size="15" value="(Noun)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word14" size="15" value="(Verb-Past)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word15" size="15" value="(Adjective)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word16" size="15" value="(Adjective)"></td>

 </tr>

 <tr>

 <td width="25%" align="center" height="17"><input type="text"

 name="Word17" size="15" value="(Clothing Piece)"></td>

 <td width="25%" align="center" height="17"><input type="text"

 name="Word18" size="15" value="(Body Part)"></td>

 <td width="25%" align="center" height="17"><input type="text"

 name="Word19" size="15" value="(Body part)"></td>

 <td width="25%" align="center" height="17"><input type="text"

 name="Word20" size="15" value="(A Place)"></td>

 </tr>

</table>

<hr>

<p align="center"><input type="submit" value="Create My ASP MadLib Now!"

name="B1"></p>

</form>

</body>

</html>

The MadLib Processing Page

Now that you have a method (the Web form) for gathering information from the user,
it is time to create the page that takes that information and creates the ASP MadLib.

Untitled-6 2/25/03, 9:09 AM63

64
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The processing page for the game is named MadLibProcess.asp, and the code is in
Listing 3.11.

Listing 3.11 MabLibProcess.asp

<html>

<head>

<title>Here's Your ASP MadLib!</title>

</head>

<body>

<p><i>Thank you! And now, here is

your </i></p>

<p align="center">ASP

MadLib!</p>

<hr>

<p align="left">Dear <font

color="#FF0000"><%=Request.Form("Word1")%> ,</p>

<p align="left">I am having the most

interesting vacation. I've seen so many strange things. Upon my

arrival at the airport, a <%=Request.Form("Word2")%>

man and I

mixed up our luggage. At the hotel, I opened his suitcase to find three

<%=Request.Form("Word3")%>s

and a <%=Request.Form("Word4")%>

toothbrush. I nearly

<%=Request.Form("Word5")%> out of there when

I discovered a

<%=Request.Form("Word6")%>

wrapped in tissue paper. I took the

<%=Request.Form("Word7")%> man's luggage

down to the hotel clerk. The clerk began to

<%=Request.Form("Word8")%> when I told him

about the mix-up. He pointed his

<%=Request.Form("Word9")%> at a

<%=Request.Form("Word10")%>

man standing in the

lobby, wearing my <%=Request.Form("Word11")%>

on his head!</p>

<p align="left">After straightening out the

luggage mix-up, I decided to do some sight-seeing. I hardly had made it

out of the hotel when I immediately noticed the sky darkening, and it began to

Untitled-6 2/25/03, 9:09 AM64

C
h

a
p

te
r

3
W

o
rk

in
g

 w
i th

A
S

P
O

b
je

c
ts

65rain <%=Request.Form("Word12")%>s.

I ran for cover into the closest

<%=Request.Form("Word13")%>

I could

find, but I <%=Request.Form("Word14")%> into an

<%=Request.Form("Word15")%>

group of school children. They began laughing and pointing at me.

</p>

<p align="left">I checked my reflection in

a storefront window, only to discover I had the

<%=Request.Form("Word16")%>

man's <%=Request.Form("Word17")%> hanging from my

<%=Request.Form("Word18")%>! Wow!

I've only been

<%=Request.Form("Word19")%> for three hours

and I'm ready

for a vacation from my vacation! I figure it can't get much worse.

Oh, no! It seems the stamp I wanted to use to mail this letter is stuck

to my <%=Request.Form("Word20")%>!</p>

<HR>

<p align="left">Would you like to save this

ASP MadLib to a text file?</p>

<form method="POST" action="MadLibSave.asp">

 <p align="left">Please enter a name for this file: <input type="text"

name="MadLibName" size="20"></p>

 <p align="center"><input type="submit" value="Save this ASP MadLib!"

name="B1"></p>

 <input type="hidden" name="Word1" value="<%=Request.Form("Word1")%>"><input

type="hidden" name="Word10" value="<%=Request.Form("Word10")%>">

<input type="hidden" name="Word11"

value="<%=Request.Form("Word11")%>"><input type="hidden" name="Word12"

value="<%=Request.Form("Word12")%>"><input type="hidden" name="Word13"

value="<%=Request.Form("Word13")%>"><input type="hidden" name="Word14"

value="<%=Request.Form("Word14")%>"><input type="hidden" name="Word15"

value="<%=Request.Form("Word15")%>"><input type="hidden" name="Word16"

value="<%=Request.Form("Word16")%>"><input type="hidden" name="Word17"

value="<%=Request.Form("Word17")%>"><input type="hidden" name="Word18"

value="<%=Request.Form("Word18")%>"><input type="hidden" name="Word19"

value="<%=Request.Form("Word19")%>"><input type="hidden" name="Word2"

value="<%=Request.Form("Word2")%>"><input type="hidden" name="Word20"

value="<%=Request.Form("Word20")%>"><input type="hidden" name="Word3"

value="<%=Request.Form("Word3")%>"><input type="hidden" name="Word4"

value="<%=Request.Form("Word4")%>"><input type="hidden" name="Word5"

value="<%=Request.Form("Word5")%>"><input type="hidden" name="Word6"

Untitled-6 2/25/03, 9:09 AM65

66
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

value="<%=Request.Form("Word6")%>"><input type="hidden" name="Word7"

value="<%=Request.Form("Word7")%>"><input type="hidden" name="Word8"

value="<%=Request.Form("Word8")%>"><input type="hidden" name="Word9"

value="<%=Request.Form("Word9")%>">

</form>

<hr>

<p align="left">

No thanks, I want to generate another ASP MadLib!</p>

</body>

</html>

After the information on the first page is entered and submitted, this page processes
the information to generate a unique (and usually funny) ASP MadLib. Figure 3.12 shows
an example of such a MadLib.

On this page, you have the option of creating another MadLib or saving the one you
created, giving it a special name. If you choose the save option, you use the File object
to write your unique ASP MadLib to a text file, the name of which you specify. Figure
3.13 displays this option.

The following section describes the save feature of the ASP MadLibs game.

FIGURE 3.12

By using the form
collection of the

Request object, the
ASP MadLib is

created.

Untitled-6 2/25/03, 9:09 AM66

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

3
W

o
rk

in
g

 w
i th

A
S

P
O

b
je

c
ts

67

The Save Feature: Storing Your ASP MadLibs
to a Text File

You can easily save your favorite generated MadLibs to a text file (which is stored on the
server, by the way, and not the client machine). If you enter a name for the text file to
be created and click the Save this ASP MadLib! button (refer to Figure 3.13), you are
directed to the MadLibSave.asp page. The code appears in Listing 3.12.

Listing 3.12 MadLibSave.asp

<html>

<head>

<title>Saving your ASP MadLib!</title>

</head>

<body>

<%

set TestFile=Server.CreateObject("Scripting.FileSystemObject")

set TFileStream=TestFile.CreateTextFile

("c:\inetpub\wwwroot\ABG_ASP\"&Request.Form("MadLibName")&".txt")

TFileStream.WriteLine "Dear "&Request.Form("Word1")& ","

TFileStream.WriteBlankLines(2)

TFileStream.WriteLine "I am having the most interesting vacation!

FIGURE 3.13

If you really like a
particular ASP

MadLib, you can
save it for posterity
by writing it to a text
file. If you don’t like
the MadLib you just

created, note the
hyperlink below to
return to the data

input page.

Untitled-6 2/25/03, 9:09 AM67

68
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

I've seen so many strange things! Upon my arrival at the airport, a

"&Request.Form("Word2")& " man and I mixed up our luggage. At the hotel,

I opened his suitcase to find three "&Request.Form("Word3")& "s and a

"&Request.Form("Word4")&" toothbrush. I nearly "&Request.Form("Word5")& "

out of there when I discovered a "&Request.Form("Word6")& " wrapped in

tissue paper. I took the "&Request.Form("Word7")&" man's luggage down to

the hotel clerk. The clerk began to "&Request.Form("Word8")& " when I told

him about the mix-up. He pointed his "&Request.Form("Word9")&" at a lucky

"&Request.Form("Word10")&" standing in the lobby, wearing my

"&Request.Form("Word11")&" on his head!"

TFileStream.WriteBlankLines(2)

TFileStream.WriteLine "After straightening out the luggage mix-up, I

decided to do some sight-seeing. I hardly had made it out of the hotel

when I immediately noticed the sky darkening, and it began to rain

"&Request.Form("Word12")& "s. I ran for cover into the closest

"&Request.Form("Word13")&" I could find, but I "&Request.Form("Word14")&"

into a "&Request.Form("Word15")&" group of school children. They began

laughing and pointing at me."

TFileStream.WriteBlankLines(2)

TFileStream.WriteLine "I checked my reflection in a storefront window,

only to discover I had the "&Request.Form("Word16")&" man's

"&Request.Form("Word17")&" hanging from my "&Request.Form("Word18")&"!

Wow! I've only been in "&Request.Form("Word19")&" for three hours and I'm

ready for a vacation from my vacation! I figure it can't get much worse!

Oh, no! It seems the stamp I wanted to use to mail this letter is stuck to my

"&Request.Form("Word20")&"!"

%>

<p><i>Thanks for playing...</i></p>

<p align="center">ASP

MadLibs!</p>

<p align="center"> </p>

<p align="left">Your ASP MadLib has been

saved for future reference. Be sure and play again very soon!</p>

</html>

Note that this page pulls only the individual, one-line, text box form elements from
the MadLibHome.asp page via the Request object. Then each of the words entered by the
user is inserted into the story.

If the user decides to save the story to a text file, he or she is asked to provide a name
for the file. Each of the form fields is assigned as a hidden field (more on this in Chap-
ter 6) and passed to the MadLibSave.asp page. Very similar to displaying the story on
screen within the Web browser, each of the form elements is again inserted into the

Untitled-6 2/25/03, 9:09 AM68

C
h

a
p

te
r

3
W

o
rk

in
g

 w
i th

A
S

P
O

b
je

c
ts

69

story, with the final story being saved to the text file under the name provided by the
user. This is accomplished in the following line:

TFileStream=TestFile.CreateTextFile("c:\inetpub\wwwroot\ABG_ASP\

"&Request.Form("MadLibName")&".txt")

In this line, note the path where you save the file. After the ABG_ASP folder, the line
uses the Request object again to retrieve the name the user wants to assign to the soon-
to-be-generated text file (the one-line, text box form element used to gather the name
of this file is named MadLibName—refer to Listing 3.12 for MadLibProcess.asp).

Summary

This chapter introduces you to the concept of ASP objects, including the Request, Response,
and File objects. You learned how to use the Request object to process form data and how
to pass information via a QueryString. Then, moving on to the File object, you studied
several examples of how to write and read information to a text file via your ASP pages.
Finally, you programmed the ASP MadLibs game, which is a complete demonstration of
how to use the Request, Response, and File objects to produce an entertaining game.

FIGURE 3.14

Using the File
object, you can save

your favorite ASP
MadLibs for later

viewing in a typical
text file.

Untitled-6 2/25/03, 9:09 AM69

70
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

E X E R C I S E S

Try out these exercises to improve your understanding of the Request, Response, and File objects:

1. Design a form for a fictional Web site that asks visitors to provide their name, address

(including city, state, and ZIP), telephone number, and e-mail address. Then, have another

page process this information, formatting each element in a different way (for example,

bold and italicize the name, underline the address, and so on).

2. Repeat exercise 1, but rather than use the forms collection of the Request object, pass the

information to the processing page via a QueryString.

3. Create a text file with three or four paragraphs of text. Using the methods and properties

of the File object, read the information in this file into an ASP Web page, formatting the

text (boldface, italic, different fonts, and so on) as the file is read.

4. Modify the ASP MadLibs game so that on the MadLibProcess.asp page, the words to be

inserted into the story are formatted in a different fashion than they appear in the original

code (for example, change their font size, color, style, and so on).

5. Write your own ASP MadLibs. When you have a good story (with appropriate blanks for

inserting words provided by the player), create the form to gather these words, and also

create a page to display the story via a Web browser. Finally, just like the game in this

chapter, give players the ability to save their story to a text file.

Untitled-6 2/25/03, 9:09 AM70

4

I
n this chapter, you will

• Review where ASP components are installed

on your computer and how to access them.

• Learn how to implement the various compo-

nents into your ASP Web pages, seeing first-

hand the potential functionality, convenience,

and ease of use they bring to your programming.

• Learn the limitations of components and when

to consider using an alternative to achieve the

functionality they present.

Working with ASP
Components

C H A P T E R

Untitled-1 2/25/03, 10:06 AM71

72
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Ah, the infamous TV dinner. Food for millions of bachelors and otherwise challenged
cooks throughout this country and the world at large. From meatloaf to chicken nug-
gets, the variety of dinners you can nuke in your microwave is seemingly endless.

You will notice throughout this book that I have a habit of introducing ASP topics by
developing an analogy to strange topics (I think that the one I’m making here is prob-
ably the weirdest). These wacky comparisons always (I hope) make the subject under
discussion easier to understand.

Okay, enough justification. Just what do TV dinners have in common with ASP compo-
nents? Think of a typical TV dinner and why you buy it. Assuming (and this is admit-
tedly an assumption, but just go with it for a moment) that you like the taste of the
things, what do they have to offer? Well, within that fancy cardboard tray, you are
presented with an assortment of food you would otherwise have to buy and prepare
yourself. In a typical TV dinner, you get convenience, everything in one place and with-
out your having to put in the work.

Such is the case with ASP components. Instead of your having to program on your own,
the components do the work for you. Also, they offer you tremendous convenience by
easily plugging in to your ASP Web pages. They load automatically with Internet Infor-
mation Server, so you get all this functionality in one place, too.

Now that you know what TV dinners and these components have in common(!), you
are ready to begin work with the components.

What Are ASP Components?

The key benefit of using components is that they present, in an easy-to-use, accessible
package, a lot of functionality you would otherwise have to program on your own. If
there is one rule of programming I like to live by, it’s this: If you find an easy way to do
something, don’t hesitate to use it! If that sounds deceptively simple, you are right.
Oftentimes, as you develop with ASP (and any programming or scripting language),
you struggle for many hours (days?!?) trying to find a solution to a particular problem.
What makes this task equally rewarding and frustrating is that, nine times out of ten,
your final solution is so darn simple (and often, elegant) you can’t believe that you
worked so hard to get there. That said, always keep the components in the back of your
mind as you develop your pages. They can save you a tremendous amount of time (and
aspirin, for your headaches).

In this chapter, you’re going to look at four of the ASP components:

• Content Linking component. This component allows you to add a table of con-
tents (or just contents) page into your site. After this is established, you can link
back and forth to all the pages within your site. Then, when you need to make
changes (add or remove pages and links), you just edit the text file from which
this component runs rather than go through each and every page of your site,
making individual changes.

• Ad Rotator component. This component brings the functionality of rotating
graphics to your ASP pages each time a page is loaded. I’m sure that you’ve seen
this type of advertisement during your surfing adventures on the Web; each time
you visit a page, the advertisements are different. With the Ad Rotator compo-
nent, you can easily add this functionality to your own pages.

Untitled-1 2/25/03, 10:06 AM72

C
h

a
p

te
r 4

W
o

r k
in

g
w

it h
A

S
P

 C
o

m
p

o
n

e
n

t s

73• Content Rotator component. Similar to the Ad Rotator component, the Content
Rotator component allows you to rotate various text and HTML information on
your pages.

• Page Counter component. Use this component to track the number of visitors to
your Web site.

You should note that not all of the components load “at the same time.” In other
words, depending on the specific configuration of your system, you may not have
access to every ASP component. For example, if you use FrontPage, you will gain
access to some different components (sometimes referred to as WebBots) that you
would otherwise not have access to. For more information on the FrontPage WebBot
issue, see Chapter 10, “ASP and HTML Scripting with FrontPage 2000.”

There is one other ASP component, the ActiveX Data Object component (ADO for short).
I discuss this in Chapter 5, “Database Access with ADO.” Because of the tremendous
functionality and power of ADO, I devote an entire chapter to it.

Various third-party ASP components are available for free download via the Web.
Please refer to the enclosed CD-ROM for a sampling of some of these components.

The best way to understand the functionality of the components is to see them in
action. I will get straight to that by describing each component and providing an ex-
ample of it in action.

Working with the Content Linking
Component

As your Web sites grow beyond a few pages, ensuring that all the hyperlinks on these
pages point to the correct location becomes more of a priority (and more of a burden).
You use the Content Linking component to assist you in this important task.

Imagine that you have the URLs in Listing 4.1 on a number of pages within your Web site.

Listing 4.1 URL Listing

ABC Company Home Page</a href>

Guest Services</a href>

Order Form</a href>

Order Catalog</a href>

Feedback Form</a href>

Account Status</a href>

ABC Company Copyright</a href>

Say that the number of pages that contain these links totals around 50 within your
site. What happens if, for some reason, the location of one of these links changes?
For example, what if the link to the order form page changes from order_form.asp to
just orderform.asp? You have to go through each page in your site and manually
make this change.

TRICK

TRAP

Untitled-1 2/25/03, 10:06 AM73

74
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

However, if you use the Content Linking component to create the list, you can make a
change in one place, and that change will be updated in all the pages in your Web site.
Sound useful? It is!

The Content Linking component uses a text file to store all the links you want to include on
your pages. For example, using the links in Listing 4.1, the text file might look like Listing 4.2.

When creating your text files for use with the Content Linking component, be sure
that you tab between the URL, the description, and the optional comment. If you just
use the spacebar, you will receive errors when using this file with the Content Link-
ing component.

Listing 4.2 Contents.txt

home.asp Home page of the ABC Company Our window to the world

guest_services.asp Listing of all the services we offer

order_form.asp Main order form for our catalog Can access directly

feedback_form.asp Customer comment line Checked on a daily basis

account_status.asp View all account information

copyright_info.asp Copyright for use of ABC name Updated yearly

Each listing in a text file has the following format:

• The URL of the page

• The description of the page

• An optional comment line for the page (no comment for the guest_services.asp
and account_status.asp pages in Listing 4.2)

As you learned in Chapter 3, “Working with ASP Objects,” each object has a specific
member listing. Such is the case with these components. For the Content Linking com-
ponent, its members are

• GetListCount. Returns the number of items in the text file containing all the URLS of
the pages to which you want to link

• GetListIndex. Returns the index (or number) of the current page being viewed, as it
is listed in the text file

• GetNextURL. Retrieves the next URL in the list, as listed in the text file

• GetNextDescription. Retrieves the next description in the list, as listed in the text file

• GetPreviousURL. Retrieves the previous URL in the list, as listed in the text file

• GetPreviousDescription. Retrieves the previous URL in the list, as listed in the text file

• GetNthURL. Retrieves a specific URL in the text file

• GetNthDescription. Retrieves a specific description in the text file

The Content Linking Component—An Example

Listing 4.3 is an example of the Content Linking component in action. In this example,
you’ll see how the Content Linking component can read from an existing text file (in
this case, Contents.txt) to display the results on-screen.

TRAP

Untitled-1 2/25/03, 10:06 AM74

C
h

a
p

te
r 4

W
o

r k
in

g
w

it h
A

S
P

 C
o

m
p

o
n

e
n

t s

75Listing 4.3 Content_Linking.asp

<html>

<head>

<title>Working with Content Linking Component</title>

</head>

<body>

This page will display the links in the Content.txt file

<hr>

<%

Set Num_of_links=Server.CreateObject("MSWC.NextLink")

LinkNum=Num_of_links.GetListCount("Contents.txt")

For i=1 to LinkNum

%>

<table border="1" width="38%">

 <tr>

 <td width="100%">

 <a href="<%=Num_of_links.GetNthURL("Contents.txt", i)%>">

 <%=Num_of_links.GetNthDescription("Contents.txt", i)%>

 </td>

</tr>

<% Next %>

</table>

</body>

</html>

Using the text file described in Listing 4.2 (see the file named Contents.txt on the CD-
ROM) in conjunction with the code from Listing 4.3, when this page is loaded into a
browser, it looks like Figure 4.1.

Make sure that the text file you create for use with the Content Linking component
is in the same Web folder as the page that calls it.

Here is how this code works:

1. As you learned in Chapter 3, the object is called and defined. In this case, you
are naming your instance of the object Num_of_Links.

2. A simple For...Next loop is used to dynamically run through each URL listed in
the text file and display it on-screen.

3. Finally, as each of the lines is read from the text file, the URL and its description
are output to the screen. If you look at the status bar of the browser in Figure
4.1, you can see how the URL is dynamically created.

TRAP

Untitled-1 2/25/03, 10:06 AM75

76
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

If you’re confused about the For...Next business in step 2, stay with me. You will be
learning all about loops and how to use them in the coming chapters. The important
thing at this point is that you understand how the Content Linking component works
with a text file to read information from that text file into a Web page.

Working with the Ad Rotator Component

You use the Ad Rotator component to mimic the action you see on numerous Web
pages where various advertisements are rotated each time the page is loaded into your
Web browser. Even if you don’t have traditional advertisements (that is, you’re not
trying to sell anything), you can use this component to rotate through any set of im-
ages. For example, you might have four or five business graphics representing various
assets of your company. Even if only your employees see these graphics, using the Ad
Rotator component makes for an attractive, easy method of displaying information.

Like the Content Linking component, the Ad Rotator component has specific mem-
bers. These are

• GetAdvertisement method. Uses the information found in the related Ad Rotator file.
(I’ll talk about this file in a moment. It is similar in function to the text file you
used when working with the Content Linking component.) This is the only
method of the Ad Rotator component.

• Border property. Indicates the thickness of the border that should appear around
the advertisement image.

• Clickable property. Determines whether the image displayed should also serve as a
hyperlink. Normally, this is the case so that when you click an image, you are
taken to that advertiser’s Web site.

FIGURE 4.1

Each respective
URL is bulleted and

placed within a
unique row of a

typical HTML table.

Untitled-1 2/25/03, 10:07 AM76

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r 4

W
o

r k
in

g
w

it h
A

S
P

 C
o

m
p

o
n

e
n

t s

77• TargetFrame property. Determines which frame to load the page that is linked to the
image, if you are using frames on the page where you display the advertisement. I
talk more about frames and other HTML formatting in Chapter 9, “Formatting
Processed Output.”

As already mentioned, the Ad Rotator component also reads from a text file to retrieve
important information on how the specific advertisements should be displayed. Take
a look at the sample text file in Listing 4.4, which I’ll explain in the example of work-
ing with the Ad Rotator component.

Listing 4.4 Rotator.txt

WIDTH 137

HEIGHT 180

BORDER 1

*

2h.gif

http://www.premierpressbooks.com

Link to Premier Press, Inc.

2

9d.gif

http://www.premierpressbooks.com

Link to Premier Press, Inc.

2

The Ad Rotator Component—An Example

Before I explain how the text file in Listing 4.4 works, Listing 4.5 shows it in action,
along with a page that uses the Ad Rotator component.

Listing 4.5 Ad_Rotator.asp

<html>

<head>

<title>Working with the Ad Rotator Component</title>

</head>

<body>

<%

Set objRotate=Server.CreateObject("MSWC.AdRotator")

objRotate.Border=0

objRotate.Clickable=True

RotateHTML=objRotate.GetAdvertisement("Rotator.txt")

Response.Write(RotateHTML)

%>

</body>

</html>

When this page is loaded in a Web browser, the result looks like Figure 4.2.

Untitled-1 2/25/03, 10:07 AM77

78
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Take a closer look at all of this to be sure that you understand what is happening. First,
you need to understand how the corresponding text file works and what information
is stored within it (refer to Listing 4.4):

• The first part of the text file (everything above the * mark in Listing 4.4) indicates
the size of the image to be displayed and whether it should have a border. You
specify zero for no border.

• Underneath the * mark are the attributes for each specific ad image.

1. The first line (2h.gif) is the image file. In this case, the image file is in the same
directory as the rest of your Web pages, so all you have to do is list the file name.
If it is in a different directory, you add this information to the front of the image
file name: /some_directory/another_directory/2h.gif.

2. The second line indicates the URL to which you want the image to link. In the
case of the Rotator.txt file used here, both the images link to the Premier Press
home page (http://www.premierpressbooks.com).

3. The third line indicates the text that should appear when the cursor hovers over the
image or the text to be displayed if the Web browser cannot support images. Again,
in the case of these two images, the text to display is Link to Premier Press, Inc.

4. The fourth line is more complicated. Depending on the number of ads repre-
sented in the file (in this case, two: 2h.gif and 9d.gif), the number on the fourth
line is a weight for how many times an image should be displayed. This number,
also called the impression, is roughly equivalent to the percentage of times each
image will appear. For example, if there are three images, the first image has its
impression value set to 3, the second has its value set to 5, and the third set to 1.
This translates to the first image being displayed 30 percent of the time, the sec-
ond 50 percent, and the third 10 percent.

FIGURE 4.2

Depending on the
specifications you

list in the
corresponding text

file, different images
or advertisements

appear. The
displayed text is for

the sake of browsers
that do not support
graphics. Also, in
this example, the

images are
hyperlinked to a

Web site (http://
www.premier

pressbooks.com).

Untitled-1 2/25/03, 10:07 AM78

C
h

a
p

te
r 4

W
o

r k
in

g
w

it h
A

S
P

 C
o

m
p

o
n

e
n

t s

79In Listing 4.5, look at the code that calls the Ad Rotator component:

<%

Set objRotate=Server.CreateObject("MSWC.AdRotator")

objRotate.Border=0

objRotate.Clickable=True

RotateHTML=objRotate.GetAdvertisement("Rotator.txt")

Response.Write(RotateHTML)

%>

1. As with all components, the particular component is created and named first (in
this case, objRotate).

2. The specific properties of the Ad Rotator component are defined. In this case, it
is given no border (obj.Border=0), and the images are made clickable
(objRotate.Clickable=True).

3. The text file is called (RotateHTML=objRotate.GetAdvertisement("Rotator.txt"), as described
in the preceding list.

Working with the Content Rotator
Component
The Content Rotator component is very similar to the Ad Rotator component and is just
as useful. By using the Content Rotator component, you can quickly insert uniform text
into any Web page. Also, like the Content Linking component, you can change the infor-
mation in the text file and see those changes immediately reflected in all pages that use
the component (rather than go through each individual page and change the content).

The following two methods are used by the Content Rotator component:

• GetAllContent. Retrieves and makes available all the content in the associated text
file (more about this text file in a moment)

• ChooseContent. Allows you to get the next string from the text file but does not
display it

As with the Content Linking component, a text file is used with the Content Rotator
component. Listing 4.6 is an example of such a text file.

Listing 4.6 ContentRotator.txt

%% 4 // The following is the usual welcome message

Welcome to ASP Programming for the Absolute Beginner. We hope that you

find it enjoyable and useful in your learning to program with ASP!

%% 2 // The following is the link to Premier Press

For more information on Premier Press, visit http://premierpressbooks.com

%%3 // The following is an example of some formatted HTML text

Within the text file, you can also include HTML formatting

<hr>

<center>Welcome to the exciting world of the Content Linking component!</center>

How does this text file work?

1. Each line of text begins with %%.

Untitled-1 2/25/03, 10:07 AM79

80
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

2. The number that follows is similar to the expression number in the Ad Rotator
component in that it corresponds (roughly) to a percentage of how often that
particular line of text will display.

3. The information that follows the // is an optional comment.

4. The line of text is inserted. As you can see in the third line of text in Listing 4.6,
you can also include HTML formatting directly within this text file.

The Content Rotator Component—An Example

Listing 4.7 is an example of the Content Rotator component in action. Note that the
ContentRotator.txt file reference is the same sample text file described in Listing 4.6.

Listing 4.7 ContentRotator.asp

<html>

<head>

<title>Working with the Content Rotator Component</title>

</head>

<body>

<%

Set CRotator=Server.CreateObject("MSWC.ContentRotator")

RotatorContent=CRotator.GetAllContent("ContentRotator.txt")

Response.Write RotatorContent

%>

</body>

</html>

When this page is loaded into a Web browser, it looks like Figure 4.3.

FIGURE 4.3

Notice how you can
include HTML tags
within the text file
and it will display
the formatting on
screen when the
text file is read—
very similar to the

Ad Rotator
component and its

corresponding
text file.

Untitled-1 2/25/03, 10:07 AM80

C
h

a
p

te
r 4

W
o

r k
in

g
w

it h
A

S
P

 C
o

m
p

o
n

e
n

t s

81Working with the Page Counter Component

I’m sure that you have seen the various page counters on different Web pages. Perhaps
they have corresponding text that reads something like You are the (number) person to visit
this Web site. By using the Page Counter component, you can add this functionality to
your ASP pages as well.

The Page Counter component has the following three methods:

• Hits. Returns the number of hits (or number of times the page has been accessed)
for either a specified page or the current page.

• PageHit. Increases the hit count for the current page.

• Reset. Returns the hit count for the specified page to zero. If such a page is not in-
dicated, the current page has its hit count returned to zero.

The Page Counter Component—An Example

Listing 4.8 is an example of the Page Counter component. This component is particu-
larly useful in providing an easy, yet effective, way of tracking and displaying the num-
ber of visitors to your Web site.

Listing 4.8 PageCounter.asp

<html>

<head>

<title>Working with the Page Counter Component</title>

</head>

<body>

<%

Set PageCount=Server.CreateObject("MSWC.PageCounter")

Response.Write('You are the ' & PageCount.PageHit & ' person to visit

this page')

%>

</body>

</html>

When this page is loaded into a Web browser, it looks like Figure 4.4.

Summary

This chapter gives you a brief overview of some of the more common, easy-to-use ASP
components. Many of these components use a simple text file to store essential informa-
tion that helps to drive their functionality. Within these text files, you can also include
HTML and other scripting information, which is then executed in the ASP page on which
the component resides. Finally, you assign and call components in the same way you
learned how to work with other objects in Chapter 3, “Working with ASP Objects.”

Untitled-1 2/25/03, 10:07 AM81

82
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

E X E R C I S E S

This chapter presents a cursory overview of components. You can increase your understand-

ing by performing the following exercises:

1. Create a new page that makes use of the Page Counter component. Design the page

(using standard HTML) so that the Page Count listing appears in the center of your page

(perhaps use a table to make this appear neatly formatted).

2. Pull some images or graphics from your personal files and integrate them into the Ad

Rotator component example.

3. Develop a text file for use with the Content Linking component that uses at least five

URLs for your favorite Web sites.

4. Utilizing the Ad Rotator component, set at least one of the image/advertisements so that

the URL contained within it points to one of your favorite Web sites.

5. Finally, develop a page of your own that integrates all the components described in

this chapter.

FIGURE 4.4

Each time the page
is visited, the

number shown
increases by one.

Untitled-1 2/25/03, 10:07 AM82

5

I
n this chapter, you will

• Learn the fundamentals of ADO, the heart of

this Web page database connectivity in ASP.

• Learn how to configure your databases so

that they can be used in conjunction with your

Web pages.

• Learn the major Structured Query Language

(SQL) statements that you will use in your ASP

code to work with information in your data-

bases via your Web pages.

• Experiment with different kinds of data access

within your ASP Web pages so that you can

see the power of a dynamic, database-driven

Web page (compared to a static Web page

without this type of access).

Database Access
with ADO

C H A P T E R

Untitled-2 2/25/03, 10:10 AM83

84
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

I think that I was about twelve or thirteen when my parents bought me my first compo-
nent stereo system for Christmas. Up to that point, I had always received my older sister’s
hand-me-down stereos. (At that time, we weren’t talking CD player, 200-watt surround
sound! No, it was more like a turntable and an 8-track player.) I was really excited to have,
finally, a stereo worthy of my ever-growing record collection. At any rate, my parents
bought the stereo well before Christmas, and given that it came in seven or eight (very
big) boxes, there was no way to hide it. I was obviously well beyond the Santa Claus years,
but my Mom insisted that I not see what was inside the boxes until Christmas morning
(even though I knew, of course, what sonic delights awaited me inside those boxes). For-
tunately, my Dad was still a big kid at heart, and he didn’t see any harm in “just opening
the boxes” so that I could view the goods. This, of course, turned into “Well, we’ll put the
rack together for the stereo, but we won’t add any components,” which then turned into
“Well, now that we’ve got the rack together, we might as well put the components in,
but we won’t hook them up.” Things progressed until my Mom finally put her foot down
and made me wait until Christmas morning to hear the thing.

What does this story have to do with database access with ASP? Think of my uncon-
nected stereo system as a Web page without any access to a data source. Yes, it’s very
pretty to look at (and perhaps impressive, on a superficial level), but it doesn’t do any-
thing! Without giving your Web pages a means of interacting with data (and thus
making them dynamic, versus static), you are very limited in not only the types of
information you can display, but also—and more importantly—the type of interaction
you can provide to your users. Fortunately, as with most things involving ASP, provid-
ing your Web pages with this database interaction is quite easy—and that, loyal reader,
is the focus of this chapter.

Understanding ADO

Imagine a world where every type of car, regardless of the make and model, ran on a
different kind of gasoline, or, instead of having one standard for recording and play-
back, there were twenty-five types of compact discs. In both scenarios, it would be very
difficult to achieve any type of standard because so many people could be (potentially)
using so many things. The undeniable result: confusion, frustration, and a major lack
of productivity.

So it was before ADO and the effort in accessing information from a database. (Okay,
maybe it wasn’t that bad, but it was at the very least more complicated.) With ADO
(short for ActiveX Data Objects), programmers have a way to access information easily
from a database via the Web.

However, ADO isn’t the full story. In the early 1990s, Microsoft created a standard known
as the Open Database Connectivity standard (ODBC). Using this technology, you can con-
nect to data regardless of where it is stored, that is, in an Access database, in Oracle, you
name it. This worked (and worked well), but the question then became how to access
information that isn’t stored in a database, for example, in an Excel worksheet. The next
iteration of ODBC was OLE-DB, short for Object Linking and Embedding Database, which
allows this kind of data retrieval from an information source other than a database.

Yikes, you are probably saying at this point. What do all these confusing terms mean,
and why should you worry about them? What does any of this have to do with ADO
(which is, if you’ve forgotten, the title of this section)? In reality, you don’t have to be

Untitled-2 2/25/03, 10:11 AM84

C
h

a
p

te
r

5
D

a
ta

b
a
s
e
 A

c
c
e
s
s
 w

i th
 A

D
O

85overly concerned with the history of this topic as long as you understand the impor-
tance of ADO, especially in relation to your work with ASP. In short, ADO represents a
collection of objects that, via ASP, you can easily manipulate to gain incredible control
over the information stored in your data source (be it an Access database, an Excel
spreadsheet, and so on).

The ADO Object Collection

You’re probably getting annoyed with me at this point (and if so, I don’t blame you) for
introducing all these terms (and very quickly). Now I’ve gone and added yet another
term, objects, to the mix. Stay with me, though. With objects, you’ve reached the im-
portant point of this discussion of ADO. (Put simply, I’m not going to hit you with any
more confusing terms, at least not for the moment.)

Objects represent relationships between other objects in that some objects have to be
created before other objects can be used. Moreover, each object represents a unique
part of the interaction that occurs between your ASP Web pages and your data source.
Within ADO are three major objects, which I’ll discuss in this book:

• Connection object. Used to do just that—create a connection to the data source.

• Command object. Allows you to program commands to access the information
stored in the data source. These commands are created using the Structured
Query Language (SQL for short, pronounced See-Quell). I’ll be talking a lot about
SQL in this and subsequent chapters because it provides the primary mechanism
for accessing and manipulating data in a database.

• Recordset object. Comes in handy because it serves as a repository of information
returned from the execution of the command objects. Think of the recordset ob-
jects as the results of your actions. Through the power of recordsets, you can cre-
ate your own unique view of the information stored in a database.

To understand how these three objects work together, think of ordering a new com-
puter. When you place the order on-line, you are presented with an order form that
lists all the options available for each component of the computer (memory, hard disk
size, and the like). As you go through the form, you specify exactly which options you
want, and the result of all this specification is a computer unique to your needs.

In comparing this with the ADO objects, think of the process this way:

• When you go on-line and access the form, you are creating a link to the
manufacturer’s stored information. This is like the connection object because you
are establishing the connection to the data source.

• When you start to configure your specific requirements, you are commanding the
manufacturer’s information to produce the computer that meets your specific
needs. In a Web page utilizing SQL, you are reaching into the database and com-
manding that specific information be returned to you.

• Finally, based on the specifications you provide, a unique computer is built for
you. In ADO, this corresponds to the recordset object: You have established a con-
nection, have commanded (or to use the SQL-specific terminology, queried) the
database to return unique information, and now, via the recordset object, have ac-
cess to that unique information.

Untitled-2 2/25/03, 10:11 AM85

86
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Are you still with me? Again, my goal is to familiarize you with the three major objects
of ADO because you will consistently use them in your ASP programming. Although
the history of ADO development is important, the real issue is understanding the power
of ADO and how you can best exploit it. That is the focus of this chapter, so let’s jump
into some examples now.

Creating a Data Source Name (DSN)

Before you can begin using your database in your ASP Web page, you have to create the
appropriate connection to the database. By creating this connection, you are creating
a Data Source Name (DSN for short).

Before creating your first DSN, you should have some type of Web server installed
on your computer. If you haven’t installed a Web server as instructed in Chapter 1,
“Preparing to Work with ASP,” you should do that now.

You might have noticed my seemingly interchangeable use of the terms data source
and database. Specifically, a data source is any type of information store that has
information you want to retrieve, so a data source can include a database, a Word
or an Excel document, and so on. Moving forward, however, when I write about data
sources, I am specifically referring to a database. Moreover, I am referring to
Microsoft Access databases.

Now you will create a DSN for the Music.mdb Access database found on the enclosed
CD-ROM:

1. Before you do anything else, copy the Music.mdb file from the CD-ROM to your
ABG_ASP directory, in the wwwroot directory of the Inetpub folder.

2. Navigate to the ODBC Data Source Administrator dialog box, using one of the fol-
lowing paths, and click the System DSN tab (see Figure 5.1):

• For Windows 9x, click Start, Settings, Control Panel, and then the 32-bit
ODBC icon.

• For Windows 2000 (from which these screens are captured), click Start,
Settings, Control Panel, Administrative Tools, and then the Data Sources
(ODBC) icon.

Depending on which version of Windows you are running (Windows 9x or 2000),
getting to the ODBC Data Source Administrator dialog box (refer to Figure 5.1), in-
volves two slightly different paths. Note, however, that after you arrive at the dialog
box, the process for establishing a DSN is the same, regardless of which version of
Windows you are running.

3. Click the Add button. The Create New Data Source dialog box opens (see Figure
5.2). Scroll down the list, and select the Microsoft Access Driver (*.mdb) option.

HINT

HINT

TRICK

Untitled-2 2/25/03, 10:11 AM86

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

5
D

a
ta

b
a
s
e
 A

c
c
e
s
s
 w

i th
 A

D
O

87

4. Click the Finish button. The ODBC Microsoft Access Setup dialog box opens (see
Figure 5.3).

5. In the Data Source Name field, type Music.

6. In the Description field, type This is the DSN that is used with Chapter 5 of
the book.

7. In the Database section, click the Select button. The Select Database dialog box
opens (see Figure 5.4). Navigate to the ABG_ASP folder in the wwwroot directory
of the InetPub folder to find the Music.mdb file. Select it, and then click OK.

FIGURE 5.1

Click the System
DSN tab to begin
the configuration

process of creating
a DSN.

FIGURE 5.2

Note the list of
available drivers.
ADO/ODBC can
integrate with a
variety of data

sources.

FIGURE 5.3

You select the data
source for which

you want to create
a DSN.

Untitled-2 2/25/03, 10:11 AM87

88
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

8. Your screen should look like Figure 5.5. Click OK. You will be returned to the
ODBC Data Source Administrator dialog box (refer to Figure 5.1). Note that your
Music.mdb file has been added as a System Data Source (see Figure 5.6).

This process for creating a DSN is repeated several times in this book because you will
work with different Access databases (all included on the CD-ROM). Although this pro-
cess might seem complicated now, it will soon become second nature. The next section
allows you to test your newly created DSN and introduces you to the power of SQL.

Introducing SQL

Now that you’ve created a DSN, you can begin working with the Music.mdb database
within your ASP pages. If you recall, from the discussion of ADO objects at the begin-
ning of the chapter, SQL is the primary mechanism for retrieving and manipulating
data from within your database via your ASP pages. It’s time to introduce you to SQL
and show you how this method makes your Web pages come alive.

FIGURE 5.4

You select the
database file that

will be used with the
Music DSN you are

creating.

FIGURE 5.5

With the ODBC
Microsoft Access
Setup dialog box
completed, you

have provided all
the information

necessary to create
a DSN.

FIGURE 5.6

With the Music DSN
created, you are

ready to access the
Music.mdb

database from
within your ASP

Web pages.

Untitled-2 2/25/03, 10:11 AM88

C
h

a
p

te
r

5
D

a
ta

b
a
s
e
 A

c
c
e
s
s
 w

i th
 A

D
O

89Although it is best to learn how to code by hand before moving to any type of HTML/
scripting editor, in the future you will find that the use of such an application has
distinct advantages. Not the least of these is the time saved by automating routine,
mundane tasks. That said, I will return to many concepts presented in this chapter
(especially the discussion of the various SQL statements) in Chapter 10, “ASP and
HTML Scripting with FrontPage 2000.” Although you might be tempted to move ahead
to that chapter now, resist the temptation! By reading this chapter first, you will
gain a far greater fundamental understanding of these important database concepts
than those who rely heavily on a tool such as FrontPage without first gaining an
understanding of how things work.

A full discussion of SQL is well beyond the scope of this book. You will learn how to
work with the four major SQL statements that, combined with a little creativity on
your part, allow you to do all kinds of wonderful database interactions in conjunc-
tion with ASP. However, if you are interested in learning more about SQL, be sure to
check out Microsoft SQL Server 7 Administrator’s Guide (Premier Press).

What is SQL? Again, this term is short for Structured Query Language, which was de-
veloped to serve as a universal method of manipulating information in a database. By
using SQL (via ADO) within ASP Web pages, you can do some amazing things. This
chapter will whet your SQL whistle (so to speak!), with later chapters building on the
foundation you learn here.

You can use SQL to test whether the DSN configuration you created is working prop-
erly. You will create a Web page to do just that:

1. In Notepad, open the file SQL_Test.asp on the CD-ROM, and immediately save it
(keeping the name SQL_Test.asp) to your ABG_ASP folder.

2. Open this page in a Web browser. If everything is configured properly, your
screen should look like Figure 5.7.

A common mistake in establishing a DSN is not referring to it properly with your
ASP pages. If you see the following error message,

Error Type:

Microsoft OLE DB Provider for ODBC Drivers (0x80004005)

[Microsoft][ODBC Driver Manager] Data source name not found

and no default driver specified

then you probably have misspelled the DSN reference within your code or not prop-
erly referenced the DSN within your code.

Take a look at the code for this page to see everything that is happening:

Listing 5.1 SQL_Test.asp

<HTML>

<HEAD>

TRICK

TRICK

TRAP

Untitled-2 2/25/03, 10:11 AM89

90
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

<TITLE>ADO First Test</TITLE>

<BODY>

Here is a listing of all the records in the Catalog table of the

Music.mdb database!

<HR>

<%

Set Catalog=Server.CreateObject("ADODB.Recordset")

Catalog.open "SELECT * FROM Catalog", "DSN=Music"

Do WHILE NOT Catalog.EOF

Response.Write Catalog("Title") & "<p>"

Catalog.MoveNext

Loop

Catalog.Close

Set Catalog=Nothing

%>

</BODY>

</HTML>

Note in Code Listing 5.1 the following lines:

Catalog.Close

Set Catalog=Nothing

These lines do two important things, which you should be careful to include in all of your
code that utilizes ADO: the first line literally closes the connection to the data source
(which is important because keeping a connection open can cause application errors,
performance loss on the server, and so on). The second line, then, erases any lingering
association with the connection to the variable name (in this case, Catalog).

TRICK

FIGURE 5.7

If your DSN is
configured properly,
your SQL_Test.asp
page will display

information from the
Music.mdb
database.

Untitled-2 2/25/03, 10:11 AM90

C
h

a
p

te
r

5
D

a
ta

b
a
s
e
 A

c
c
e
s
s
 w

i th
 A

D
O

91What’s happening with Code Listing 5.1? It’s really not that complicated if you take a
moment to follow the programming logic to see how the page functions:

• First, some simple HTML formatting is provided, including giving the page a title
(ADO First Test).

• The script section begins with the usual <% identifier.

• Next, a connection is made to the Music database via the recordset object. This con-
nection is given the name Catalog. Note that you can name these connections what-
ever you want. However, it is usually a good idea to keep them simple and in some
sense descriptive of what the connection represents. The "DSN=Music" portion is used
as an indicator, letting your code know which DSN you are interested in using.

• When the connection is made, the connection is then opened (Catalog.open), and
the SQL query is performed. In this case, the query asks for all records in the Cata-
log table to be returned. (I explain this and other SQL statements in much more
detail later in this chapter.)

• Next, the line Do WHILE NOT Catalog.EOF instructs the script to run through each
record in the returned recordset. The returned recordset is all the records gener-
ated by the SQL query—in this case, all the records in the Catalog table of the data-
base. EOF is short for End of File, so, in essence, this script will execute (or loop)
until the last record in the Catalog table is returned.

• The next line, Response.Write Catalog("Title") & "<p>", instructs the code to write to
the screen the current value being returned for the Title field of the Catalog
table. Remember, the script is looping through all the records in the Catalog
table, so the current value is whatever value, at that point in the loop, is present
in the Title field.

• The next two lines, Catalog.MoveNext and Loop, instruct the code to do just that: Move
to the next record, and then continue looping through the returned recordset
(until the EOF value is reached).

• Finally, the lines Catalog.Close and Set Catalog=Nothing close all connections to the da-
tabase. You should always perform this step in all ADO scripts because this en-
sures that no connections are maintained past the point you need them. More im-
portant, this helps to prevent unwanted and frustrating errors.

Clear as proverbial mud, right? It’s not that difficult if you view the code logically and
take the statements at face value (meaning that their functioning is very similar to the
simple meaning they imply).

Although I talk more about all the components of this code throughout the chapter,
take a closer look now at the SQL statement:

SELECT * FROM Catalog

This statement is simple, but (as with all things SQL) deceptively so. The SELECT state-
ment is perhaps the primary SQL statement because it is used in various permutations
to select or “read” data from a table. The information that follows it (in this case, the *
symbol) modifies it to the level of specificity in which you are interested. Put simply,
you first invoke the SELECT statement and then tell it how “selective” you want it to be in
retrieving records from the specified table (in this case, the Catalog table of the
Music.mdb database). In this statement, you can interpret it in plain English as saying,
“Please return all the records and fields from the Catalog table to me.”

Untitled-2 2/25/03, 10:11 AM91

92
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Besides the SELECT statement, there are three basic SQL commands you will learn how
to use in this chapter. If you master these simple commands and use your creativity,
you can use SQL to manipulate data very powerfully within your ASP Web pages. The
three additional statements you will be zeroing in on include

• INSERT

• UPDATE

• DELETE

The following sections examine each of these statements, presenting code examples
showing how they work with ADP and ASP.

The SELECT Statement

In the preceding section, you saw a simple use of the SELECT statement. This is all fine
and good, but on many occasions you won’t need to return all the records in a specific
table. You might be looking for a specific record or for records that fall within a given
range. All these data query options are possible via the SELECT statement by increasing
the level of selectivity in which the statement is executed.

Here are a few examples to demonstrate these concepts:

1. Load the file SELECT_A.asp from the CD-ROM, and save it inside your
ABG_ASP folder.

2. Open the page in your Web browser. Note that this page (like all examples in this
chapter) accesses the Music.mdb database, so you need to ensure that you’ve cre-
ated a working DSN connection to this database, as described earlier in this
chapter. Your Web browser should look similar to Figure 5.8.

FIGURE 5.8

By modifying a
typical SELECT

statement with a
WHERE clause,

you gain far more
precise control on
the data returned

via your SQL
queries.

Untitled-2 2/25/03, 10:11 AM92

C
h

a
p

te
r

5
D

a
ta

b
a
s
e
 A

c
c
e
s
s
 w

i th
 A

D
O

93How does this work? As usual, take a look at the code.

Listing 5.2 Select_A.asp

<HTML>

<HEAD>

<TITLE>First SELECT Example</TITLE>

<BODY>

In this example, only the fifth record in the Catalog table is returned.

<HR>

<%

Set Catalog=Server.CreateObject("ADODB.Recordset")

Catalog.open "SELECT * FROM Catalog WHERE ID=5", "DSN=Music"

Response.Write "Title: " & Catalog("Title") & "<p>"

Response.Write "Artist: " & Catalog("Artist")

Catalog.close

Set Catalog=Nothing

%>

</BODY>

</HTML>

The following is an explanation of this code. It’s not terribly different from the preced-
ing listing, but the biggest difference is in the SELECT statement:

• As before, a connection is established to the Music database. This connection is
given the name Catalog. Remember, you can name these connections whatever
you want.

• Next, the SQL command is executed. In this example, you are instructing the code
to return only the fifth record in the Catalog table. This is indicated via the WHERE
clause: WHERE ID=5.

• How do you know what the fifth record is? Open the Music database in Access,
and view the Catalog table, shown in Figures 5.9 and 5.10.

FIGURE 5.9

The Music
database,

consisting of three
tables. If you are

using an older
version of Access,
these screens may

appear slightly
different.

Untitled-2 2/25/03, 10:11 AM93

94
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

What is the Music database? For illustrative purposes in this chapter (as well as
Chapter 10, “ASP and HTML Scripting with FrontPage 2000”), imagine this database
as the central repository for a small record store. The owners have decided to place
all their inventory information (the Catalog table), as well as information about their
customers (the Customers table), into an Access database. Perhaps they (like you)
are also interested in integrating their database with ASP and creating an e-com-
merce Web site where their customers can place orders on-line. All these things
are possible through ADO and ASP.

• As you see in Figure 5.10, the fifth field corresponds to the ID field where the
value is 5.

• Finally, utilizing the response object, the values of both the Artist and Title fields
are written to the screen. Then, the Catalog connection is closed and set to nothing.

This WHERE clause example is fine, but what if you want to add an even greater level of
specificity regarding which record is returned? Take a look at another example:

1. Load the file SELECT_B.asp from the CD-ROM, and save it inside your
ABG_ASP folder.

2. Open the page in your Web browser. It should look like Figure 5.11.

Take a look at the following code to see what is happening:

Listing 5.3 Select_B.asp

<HTML>

<HEAD>

<TITLE>Second SELECT Example</TITLE>

<BODY>

In this example, the only record that is returned is the first record

FIGURE 5.10

The Catalog table,
illustrating the fifth

record. Note the use
of the ID field as an
Autonumber field
(see Appendix C,

“Access
Essentials,” for

more information).

HINT

Untitled-2 2/25/03, 10:11 AM94

C
h

a
p

te
r

5
D

a
ta

b
a
s
e
 A

c
c
e
s
s
 w

i th
 A

D
O

95

that has an ID greater than 5, and where the Beatles is the artist.

<HR>

<%

Set Catalog=Server.CreateObject("ADODB.Recordset")

Catalog.open "SELECT * FROM Catalog WHERE ID > 5 AND ARTIST='The Beatles'",

"DSN=Music"

Response.Write "Title: " & Catalog("Title") & "<p>"

Response.Write "Artist: " & Catalog("Artist")

Catalog.close

Set Catalog=Nothing

%>

</BODY>

</HTML>

This code is very similar (indeed, nearly identical) to the preceding listing, with the
exception of the SQL statement. Note that in this example you are instructing the code
to return the first record that has an ID greater than 5 and where the Artist field has a
value of The Beatles.

You should note at this point that, depending on the level of specificity of the returned
data, your SQL statements can become quite long. To demonstrate this, here is yet
another example of the WHERE clause:

1. Load the file SELECT_C.asp from the CD-ROM, and save it to your
ABG_ASP folder.

2. Open the page in a Web browser. It should look like Figure 5.12.

FIGURE 5.11

More exact control
of which records
are returned is

possible by
modifying the

WHERE clause to
include a greater

degree of
specificity.

Untitled-2 2/25/03, 10:11 AM95

96
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The code listing for the SELECT_C.asp page is shown here:

Listing 5.4 Select_C.asp

<HTML>

<HEAD>

<TITLE>Third SELECT Example</TITLE>

<BODY>

In this example, the only record that is returned is the first record

that has an ID greater than 20 but less than 30, and where the artist is not

equal to The Grateful Dead and where the title is not equal to CSN.

<HR>

<%

Set Catalog=Server.CreateObject("ADODB.Recordset")

Catalog.open "SELECT * FROM Catalog WHERE ID > 20 AND ID < 30 AND ARTIST <>

'The Grateful Dead' AND TITLE <> 'CSN'", "DSN=Music"

Response.Write "Title: " & Catalog("Title") & "<p>"

Response.Write "Artist: " & Catalog("Artist")

Catalog.close

Set Catalog=Nothing

%>

</BODY>

</HTML>

Again, the only difference between this code listing and the preceding two is the SQL
statement. Note how, by adding qualifiers to the SQL statement, you can instruct the
code to return a very specific record.

FIGURE 5.12

Simple output but
somewhat

complicated
processing!

Untitled-2 2/25/03, 10:11 AM96

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

5
D

a
ta

b
a
s
e
 A

c
c
e
s
s
 w

i th
 A

D
O

97As you move through the rest of the book, you will see many examples of the WHERE
clause being used to return a specific record. For now, you might want to experiment
with the three examples listed here, modifying the SQL statements to return different
values, depending on the level of specificity your SQL statement calls for.

The INSERT Statement

Although the SELECT statement is the core statement of SQL, it can take you only so far.
What happens when, for example, you want to insert information into a database as it
is provided by visitors to your Web site or as a result of the processing of your code?
That is where the INSERT statement comes in handy.

Here is an example:

1. Load the INSERT_A.asp file from the CD-ROM, and save it to your
ABG_ASP folder.

2. Open the page in a Web browser. It should look like Figure 5.13.

Examine the following code listing to see how things are working:

Listing 5.5 Insert_A.asp

<HTML>

<HEAD>

<TITLE>First INSERT Example</TITLE>

<BODY>

If you are viewing this code, then the following information has been

inserted into the Customer table of the Music database.

FIGURE 5.13

A simple example of
using the SQL

INSERT statement
to add information
to a database via

your ASP Web
pages.

Untitled-2 2/25/03, 10:11 AM97

98
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

<HR>

First name: William<p>

Last name: Burroughs<p>

E-mail: blee@mugwump.com<p>

<hr>

<%

Set Catalog=Server.CreateObject("ADODB.Recordset")

Catalog.open "INSERT INTO CUSTOMERS (LastName, FirstName, Email) VALUES

('william', 'Burroughs', 'blee@mugwump.com')", "DSN=Music"

%>

</BODY>

</HTML>

In this example, the INSERT statement is used to insert information into three specific
columns (FirstName, LastName, and Email) of the Customers table of the database.
This table is illustrated in Figure 5.14.

The INSERT statement isn’t difficult to master, although you have to be careful with the
syntax. Note the use of the parentheses around the table field names, as well as the
values inserted into these field names. Other than this, the INSERT statement is easy to
use. Throughout the other chapters in this book, you will see more examples of how
this powerful statement can be used, especially in the next chapter, where informa-
tion gathered directly from a Web form is inserted into a database.

Ensuring Proper Database Permissions

Unlike the SELECT statement, which simply reads data, the INSERT statement (and the
UPDATE and DELETE statements, discussed later in this chapter) requires that proper per-
missions be set on the database.

This is especially important if you are using Windows 2000 and the Internet Informa-
tion Server (IIS) because the security is much more robust, thus requiring more atten-
tion on your part. If you don’t set the security levels correctly, your code can generate
errors.

Now you will set these security levels on the Music database and ensure that the per-
missions are set properly on your ABG_ASP folder.

1. Navigate to where you have saved the Music.mdb file (this should be in your
ABG_ASP folder). Select the file, and then right-click. From the pop-up menu, se-
lect Properties.

2. In the properties dialog box that opens, click the Security tab. Then, in the Name
section, click Everyone (see Figure 5.15).

FIGURE 5.14

The Customers table
of the Music

database.

Untitled-2 2/25/03, 10:11 AM98

C
h

a
p

te
r

5
D

a
ta

b
a
s
e
 A

c
c
e
s
s
 w

i th
 A

D
O

99

3. For this example (and all other databases you will be working with in this book),
be sure that all the checkboxes—with the exception of Full Control—are checked
in the Permission area of the dialog box (refer to Figure 5.15).

4. Now that you’ve set the database permissions, it’s time to ensure that the per-
missions are set properly on the ABG_ASP folder in which you are placing all
your ASP pages. Navigate to that folder, select it, and right-click. From the pop-up
menu, select the Properties option, and click the Security tab. The properties
dialog box opens (see Figure 5.16).

5. Set the permissions for Everyone to include everything except the Full Control
option. Then click Apply.

The UPDATE Statement

The UPDATE statement is similar to the INSERT statement in that both statements alter the
information in your database. However, the key difference between the two is that with
UPDATE, you can make modifications to a specific record (or records) that already exists.

FIGURE 5.15

Setting specific
security levels for
your databases is
critical to proper

functioning
with ASP.

FIGURE 5.16

The permission
settings for your
ABG_ASP Web

folder should be the
same for everyone
as they are for your

databases.

Untitled-2 2/25/03, 10:11 AM99

100
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

As always, an example is in order:

1. Load the UPDATE_A.asp file from the CD-ROM, and save it to your
ABG_ASP folder.

2. Open the file in your Web browser. Your screen should look like Figure 5.17.

This is the code for UPDATE_A.asp:

Listing 5.6 Update_A.asp

<HTML>

<HEAD>

<TITLE>First UPDATE Example</TITLE>

<BODY>

If you are viewing this code, then the following information has been

updated in the Catalog table of the Music database.

<HR>

Record ID: 24<p>

Artist: The Doors<p>

Title: Morrison Hotel<p>

Price: Changed from $10.99 to $13.99

<hr>

<%

Set Catalog=Server.CreateObject("ADODB.Recordset")

Catalog.open "UPDATE Catalog SET Price='$13.99' WHERE ID=24", "DSN=Music"

%>

</BODY>

</HTML>

FIGURE 5.17

Similar to INSERT,
the UDPATE

statement allows
you to modify

existing database
records.

Untitled-2 2/25/03, 10:11 AM100

C
h

a
p

te
r

5
D

a
ta

b
a
s
e
 A

c
c
e
s
s
 w

i th
 A

D
O

101The critical thing you need to remember when using the UPDATE statement is that you must
be sure to specify which record (or records) is to be updated. Take another look at the SQL
statement in the preceding listing, and compare it to the following SQL statement:

UPDATE Catalog SET Price='$13.99'

In this example, there is no WHERE clause. Can you guess what would happen if this
statement was executed? If your guess is that all the records in the Catalog table would
have their price set to $13.99, you are exactly right. Unless this type of global change is
what you have in mind, be very careful when using the UPDATE statement so that you
update only the records that need to have their information changed.

Another example of the UPDATE statement follows:

1. Load the UPDATE_B.asp file from the CD-ROM, and save it in your
ABG_ASP folder.

2. Load the page in a Web browser. Your screen should look like Figure 5.18.

Here is the code:

Listing 5.7 Update_B.asp

<HTML>

<HEAD>

<TITLE>Second UPDATE Example</TITLE>

<BODY>

If you are viewing this code, then all records in the Catalog table

with an ID greater than 30 but less than 40, and with a price equal to

$9.99 have had their price updated to $15.99

<HR>

<%

FIGURE 5.18

Another UPDATE
example, this time
with an even more

specific WHERE
clause.

Untitled-2 2/25/03, 10:11 AM101

102
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Set Catalog=Server.CreateObject("ADODB.Recordset")

Catalog.open "UPDATE Catalog SET Price='$15.99' WHERE ID > 30 AND ID < 40

AND PRICE='$9.99'", "DSN=Music"

%>

</BODY>

</HTML>

Again, this code should look familiar. The only difference is the use of a more specific
WHERE clause, which is updating the price field to $15.99 in only those records that have
an ID in the range of 30–40 and a price of $9.99.

The DELETE Statement

So far, you’ve learned how to read, insert, and update information in a database. Through
ADO and ASP, I hope that you are finding this experience very easy and that it is giving
you ideas about how to create even more dynamic, exciting Web pages.

You’ve learned a lot about basic SQL, but there is still one more fundamental state-
ment you need to learn. This is the DELETE statement.

Consider the following example:

1. Load the file DELETE_A.asp from the CD-ROM, and save it in your ABG_ASP
folder.

2. Load the page in a browser. Your screen should look just like Figure 5.19.

FIGURE 5.19

Deleting records
from a database. As

with the UPDATE
statement, you need
to be careful about
clearly specifying
which records you

want to delete.

Untitled-2 2/25/03, 10:11 AM102

C
h

a
p

te
r

5
D

a
ta

b
a
s
e
 A

c
c
e
s
s
 w

i th
 A

D
O

103Here is the code:

Listing 5.8 Delete_A.asp

<HTML>

<HEAD>

<TITLE>First DELETE example</TITLE>

<BODY>

If you are viewing this code, then all records greater than 78 but

less than 80 have been deleted from the Catalog table of the Music database.

<HR>

<%

Set Catalog=Server.CreateObject("ADODB.Recordset")

Catalog.open "DELETE * FROM Catalog WHERE ID > 78 AND ID < 80", "DSN=Music"

%>

</BODY>

</HTML>

After the code is run, if you look in the Catalog table of the Music database, you will
see that record 79 has been deleted (see Figure 5.20).

The Counting Magician: Working with
Recordsets

You now understand the essential components of database access via ADO and ASP,
you know how to create a DSN connection so that your databases can be accessed via
your ASP Web pages, and you’ve experimented with the core statement of SQL.

Whew! That’s a lot of material. Before I close out this chapter, take just one more look
at the issue of recordsets and how you can manipulate them.

FIGURE 5.20

By utilizing a typical
WHERE clause with

the DELETE
statement, you have

pinpoint control
over which records
you want to delete
from a database.

Untitled-2 2/25/03, 10:11 AM103

104
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

To illustrate this, let me refer you to the first listing in this chapter, repeated here:

Listing 5.9 Counting_Magic.asp

<HTML>

<HEAD>

<TITLE>ADO First Test</TITLE>

<BODY>

Here is a listing of all the records in the Catalog table of the

Music.mdb database!

<HR>

<%

Set Catalog=Server.CreateObject("ADODB.Recordset")

Catalog.open "SELECT * FROM Catalog", "DSN=Music"

Do WHILE NOT Catalog.EOF

Response.Write Catalog("Title") & "<p>"

Catalog.MoveNext

Loop

Catalog.Close

Set Catalog=Nothing

%>

</BODY>

</HTML>

If you recall, when this code is executed, the result is a simple dump of all values
contained in the Title field of the Catalog table for each record in the table (refer to
Figure 5.7). In the chapters that follow, you will learn all kinds of nifty ways to format
your returned recordsets (dynamically populating form drop-down menus, creating
tables on-the-fly, and so on). For now, however, you will stick to something simple: the
recordset Counting Magician.

In the preceding code (and as described earlier in the chapter), you know that a DO WHILE
loop is executed so that all the records are returned from the SQL query. In the case of
the SQL statement illustrated in this code listing, this accounts for all the records in
the Catalog table because there is no WHERE clause to specify individual records. Although
dumping all the results of this query as this loop executes to the screen might be
useful, it would be even more interesting if you could have a running tally of the total
number of records as they are displayed.

Enter the Counting Magician. With just a simple Response.Write statement, you can see
how you can count the number of records returned from the SQL query.

You will be working in much more detail with DO WHILE loops and other essential
program control in Chapter 7, “Essential Programming Logic.”

TRICK

Untitled-2 2/25/03, 10:11 AM104

C
h

a
p

te
r

5
D

a
ta

b
a
s
e
 A

c
c
e
s
s
 w

i th
 A

D
O

105Consider the following code, which includes just a minor change from the preceding
listing:

Listing 5.10 Counting_Magic_B.asp

<HTML>

<HEAD>

<TITLE>The Counting Magician</TITLE>

<BODY>

Here is a listing of all the records in the Catalog table of the

Music.mdb database!

<HR>

<%

Set Catalog=Server.CreateObject("ADODB.Recordset")

Catalog.open "SELECT * FROM Catalog", "DSN=Music"

DIM counter

counter = 0

Do WHILE NOT Catalog.EOF

counter=counter+1

Response.Write Catalog("Title") & "<p>"

Response.Write "This is record count number " & counter & "<p>"

Catalog.MoveNext

Loop

Catalog.Close

Set Catalog=Nothing

%>

</BODY>

</HTML>

To see this code in action, do the following:

1. Open the file Counting_Magic_B.asp from the CD-ROM, and save it in your
ABG_ASP folder.

2. Open the file in a Web browser. Your screen will look like Figure 5.21.

Again, in later chapters, you will be manipulating to a much greater degree the
recordsets returned by various SQL queries. For now, just start thinking about how you
might dynamically export to a Web page the information returned from a SQL query.
As you will see later (especially in Chapter 9, “Formatting Processed Output,” and Chap-
ter 10, “Advanced Output Processing”), you can do some amazing things via ADO and
ASP. Some real fun is in store for you.

Summary

You have covered much ground in this chapter. Specifically, you’ve learned

• The essentials of ADO, including its developmental history and how it integrates
with ASP.

Untitled-2 2/25/03, 10:11 AM105

106
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

• How to create a Data Source Name (DSN) connection, which is the essential first
step in making your databases accessible to your ASP Web pages.

• The four fundamental SQL statements: SELECT, INSERT, UPDATE, and DELETE. You’ve seen
examples of how to use them alone and in conjunction with WHERE clauses, an im-
portant element in gaining exact control over how your queries are executed.

• How to use a DO WHILE loop to run through a complete recordset, as returned from a
SQL query. You will be working with this type of data manipulation at a much
higher level in later chapters.

FIGURE 5.21

By adding a simple
variable, you can

utilize the DO WHILE
loop to count the

number of records
being returned from

your recordset.

Untitled-2 2/25/03, 10:11 AM106

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

5
D

a
ta

b
a
s
e
 A

c
c
e
s
s
 w

i th
 A

D
O

107
E X E R C I S E S

Work through the following exercises to increase your understanding of the concepts pre-

sented in this chapter:

1. Create a new Access database, name it MyDatabase, and then establish a DSN connec-

tion to it.

2. Create in your database a table named Address_Book that has the following fields. Make

all of them text fields, with the exception of the ID field. Make this field an Autonumber

field.

• ID

• FirstName

• LastName

• Street

• City

• State

• Zip

After you create this table, add five or ten unique records so that each field in each record

has something in it.

3. Using the Address_Book table, write an ASP page that reads all the records from the table

and displays them, one after the other.

4. Using the Address_Book table, write an ASP page that selects and displays only those

records in which the ID field is greater than 3 but less than 6.

5. Using the Address_Book table, write an ASP page that inserts the following new record

into the table:

First Name: Donald

Last Name: Fagen

Street: 123 Green Flower

City: Aja

State: California

Zip: 90104

6. Create an ASP page that deletes at least one record from the Address_Book table, based

on a WHERE clause you specify.

7. Create an ASP page that updates at least one record from the Address_Book table, based

on a WHERE clause you specify.

Untitled-2 2/25/03, 10:11 AM107

This page intentionally left blank

6

I
n this chapter, you will

• Work with the ASP response and request ob-

jects to learn the fundamentals of working

with forms in ASP.

• Immediately start building simple forms in your

Web pages that allow visitors to enter informa-

tion and have it processed and/or manipulated

to display results on another Web page.

• Learn how to use forms to store information in

a database as users enter it on your Web pages.

• Program the Memory Game, which highlights

all the ASP form functionality just mentioned,

including how to display form-manipulated

data results on your Web pages.

Using Forms

C H A P T E R

Untitled-1 3/6/03, 2:08 PM109

110
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Undoubtedly, making your way across the vast expanse of the Internet, you have en-
countered what is perhaps the greatest functional asset of the Web: the skillful and
practical use of forms. Forms contribute to the Web’s unique level of usability and are
the centerpiece of much of what the Web has to offer. For example, you can search for
information, enter pertinent order information for an electronic purchase, upload
information about yourself to an on-line dating service—the list goes on. In the past
(before Active Server Pages), the use of forms was complicated and not something to be
undertaken by the novice programmer. With the power of ASP, you can learn how to
use—and begin implementing—forms within your Web pages in a matter of minutes.

The Memory Game

As I’m fond of admitting, I’m a victim of ’70s popular culture. Having spent the formi-
dable years of my childhood watching such television programs as The Bionic Man,
S.W.A.T., and Charlie’s Angels, not to mention listening to ’70s popular music (I prom-
ise not to sneak in a veiled reference to “The Piña Colada Song,” maybe), the zeitgeist of
that period is always haunting my thoughts in one way or another. That said, another
big pop culture influence of that time (and of the early ’80s, too, for younger readers)
is the infamous game show. Ultimately going by the wayside, in favor of talk shows,
game shows were big business not that long ago, and everyone has a favorite.

Among my favorite game shows was Concentration. Do you remember that show? The
object of the game was to guess the meaning of a pictograph. For example, they would
show pictures of a man with the word Don above his head, then a plus sign, and then
a skeleton key. The answer to this pictograph was donkey. However, this pictograph
was hidden behind a game board made up of numbered squares. Behind each square
was one half of a “match,” usually some common object, such as a household item, an
animal, and the like. As the players called out a numbered square and its contents
were revealed, they had to find its corresponding match on the game board. As matches
were made, these squares were removed to display the hidden pictograph. As more
and more matches were made, more of the pictograph was revealed, making it easier
to guess the meaning of the pictograph and thus win the game. The game was called
Concentration because, when the contents of a square were revealed, you had to re-
member where its corresponding match was located on the game board.

For this chapter, you will program a game similar in scope to Concentration. Although
your game won’t have a pictograph hidden underneath the squares (with more time
devoted to programming the game, you could do such a thing), it will mimic the match-
ing aspect of the original Concentration. Players will be presented with a game board
composed of 16 squares corresponding to eight matches. The object of the game is to
match all eight matches in the shortest number of guesses. Figure 6.1 shows the Memory
Game board in action.

Before you start building the Memory Game, you need to learn some basics of working
with forms in ASP. This involves an understanding of the response and request objects,
which happen to be the focus of the next section. The code for the Memory Game will
also draw heavily on the ADO skills you learned in Chapter 5, “Database Access with
ADO,” because the game has interaction with a Microsoft Access database as an essen-
tial component.

Untitled-1 3/6/03, 2:08 PM110

C
h

a
p

te
r

6
U

s
in

g
 F

o
rm

s

111

Form Essentials: The Response and
Request Objects

When I started working with ASP, the promise of easy form functionality was some-
thing I couldn’t resist. Having struggled with CGI programming for too long, the idea
that I could develop a simple form and immediately have the information that was
entered into it processed by another page, let alone stored in a database, seemed too
good to be true. Fortunately, I was not disappointed. Working with forms in ASP is
incredibly easy. Best of all, with this ease of use comes no loss in functionality or over-
all programming power. Who says you can’t have it all?!?

For this chapter, I’m assuming that, although you might never have worked with pro-
cessing forms, you do have some understanding of the various form elements, for ex-
ample, text box, radio button, and the like. These represent a fundamental component
of basic HTML. However, if you aren’t familiar with the form elements, you will be
exposed to nearly all of them in this chapter.

Also, many HTML editing programs have extensive, built-in form functionality. One of
these programs, Microsoft FrontPage 2000, is discussed in Chapter 10, “ASP and HTML
Scripting with FrontPage 2000.”

To begin the discussion of forms, why don’t I show you a simple form example so that
you, too, can share the excitement of this powerful feature of ASP. Take a look at the
following code:

Listing 6.1 FirstForm.asp

<HTML>

<TITLE> My first ASP Form </TITLE>

<BODY>

FIGURE 6.1

The Memory Game
highlights essential
form functionality,
including how to

build on this
functionality by

integrating with a
database.

Untitled-1 3/6/03, 2:08 PM111

112
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 My first ASP Form!

<HR>

<FORM METHOD="POST" ACTION="FormRead.asp">

What is your first name? <input type="text" name="FirstName" size="20">

<P>

What is your last name? <input type="text" name="LastName" size="20">

<HR>

<input type="submit" value="Submit this data!" name="B1">

</FORM>

</BODY>

</HTML>

Before you start exploring this code, take the following actions:

1. Either enter the preceding code into Notepad, or open it in Notepad from the
CD-ROM.

2. After you have the code in Notepad, save it in your ABG_ASP directory with the
name FirstForm.asp.

3. After you save the page, open it in your Web browser. It should look similar to
Figure 6.2.

Although this page is very basic HTML, take a look at the code to make sure that you
understand the form-specific elements at work here.

FIGURE 6.2

A simple HTML form
but one that

demonstrates the
power of working
with forms in ASP.

Untitled-1 3/6/03, 2:08 PM112

C
h

a
p

te
r

6
U

s
in

g
 F

o
rm

s

113Begin by examining the line <FORM METHOD="POST" ACTION="FormRead.asp">. This line performs a
few form-specific tasks:

• First, it tells the Web browser that the code that follows (until the </FORM> tag is en-
countered) is part of a form.

• Second, it defines the type of METHOD that will be used to send the data entered on
the form.

• Finally, it indicates to which page the data should be directed (that is,
ACTION="FormRead.asp"). Note that you can use various METHOD types to post data
(depending on the type of data you are sending). In this book, I will stick with
the POST method.

• The next section of code defines two text box form elements. Be sure to note the
name given to each text box ("FirstName" and "LastName") because this will be critical
when you process the information entered into these form elements.

• Finally, a Submit button form element is defined and given the label Submit my
data!. When users click this button, displayed in their Web browser, the data they
entered into the FirstName and LastName text boxes is posted to the
FormRead.asp page, which I’ll discuss next.

All in all, a simple HTML form. Now you will see how the data entered into this form
(specifically, the first and last name of a user) can be processed or otherwise manipu-
lated on another Web page.

Reading and Manipulating Form Data

A form doesn’t do you much good unless you can read or manipulate the data you
capture. As I’ve said already, and it bears repeating again, ASP makes it extremely easy
to work with form data.

The real magic of this ASP functionality is the request object. Before I lead you into a
discussion of what this is, why don’t you create a Web page that reads and manipu-
lates the data entered on the FirstForm.asp page created in the preceding section:

Listing 6.2 FormRead.asp

<HTML>

<TITLE> Reading Form Input with ASP </TITLE>

<BODY>

 Reading Form Input with ASP!

<%

FirstName=Request.Form("FirstName")

LastName=Request.Form("LastName")

<HR>

<%=Response.Write(FirstName)%>

<%=Response.Write(LastName)%></color>

<HR>

Untitled-1 3/6/03, 2:08 PM113

114
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Welcome to the exciting world of ASP forms!

</BODY>

</HTML>

Go ahead and enter this code into Notepad:

1. Either enter the code into Notepad or open it in Notepad from the CD-ROM.

2. When you have the code in Notepad, save it in your ABG_ASP directory with the
name FormRead.asp.

3. After you save the page, open your Web browser and open the FirstForm.asp
page. Enter your first and last name; then click the Submit This Data! button.
Your screen should look something like Figure 6.3.

The FirstForm.asp and FormRead.asp pages are very simple illustrations of how to read
form data using ASP. Don’t let that simplicity fool you. Within this simple code lies the
foundation of much more powerful and functional ASP programming. Take a look at the
key elements of the FormRead.asp page, most notably, the request and response objects:

• The first major programming in this page is the assignment of the FirstName and
LastName variables. Because you were introduced to these crucial ASP elements in
Chapter 3, “Working with ASP Objects,” you will probably use the response and re-
quest objects more than any other objects as you learn ASP programming. In the
first lines of code for the FormRead.asp page, you use the request object literally to
request the data entered in the two text box form fields on the FirstForm.asp page.

Note that the two variables, FirstName and LastName, are named to correspond to the
text box form field names on the FirstForm.asp page. Giving the variables you set the
same names as the form fields is a convenient way to remember which data you are
manipulating and to make your code, in general, easier to debug and read later.

FIGURE 6.3

The names you
entered on the first
page are “read” by
the FormRead.asp
page. Note how,

using simple HTML
formatting, your

name is in a
different font and

color and is
boldface.

TRICK

Untitled-1 3/6/03, 2:08 PM114

C
h

a
p

te
r

6
U

s
in

g
 F

o
rm

s

115You don’t have to define these two variables to retrieve your form data. For example,
you can place the request object directly within your HTML. Take another look at
the preceding code, and consider the following:

<%=Request.form("FirstName")%> nbsp;

<%=Request.form("LastName")%>

</color>

In this example, you call the request object directly within the HTML. In other words,
rather than use the response object, you don’t define the FirstName and LastName

variables first, as done in the preceding code listing. Either way works, but it is
good programming practice to define your variables first to make your code easier
to understand and debug.

• The rest of the code for the FormRead.asp page is straight HTML. I added extra for-
matting—a different font, a different color, and boldface—to highlight the informa-
tion being read from the FirstForm.asp page, but all in all, this is a very simple page.

You have examined some simple form processing and been introduced to important
concepts regarding the use of forms. Now you will move on to programming the Memory
Game. This will highlight several aspects of form functionality, including manipula-
tion of data on-screen, the use of form data in code processing, and the use of forms as
a method of integrating your collected information with a database.

The Memory Game: A Design Overview

If you recall from the beginning of the chapter, I asked you to take a little trip down
memory lane and come up with your favorite game show. Hopefully, you have a favor-
ite show—after all, game shows are the ambrosia of any healthy pop culture diet! If you
don’t, you’re going to get a chance to program your own game show in this chapter. It’s
called the Memory Game, and you’re going to build it now.

Several facets of the Memory Game enhance what you’ve learned so far and introduce
you to new areas of ASP programming:

• Building on what you learned in Chapter 5 about ADO, the Memory Game utilizes
a Microsoft Access database as its central functionality component.

• To gather information from users, the Memory Game presents players with form
fields so that they can enter their match choices.

• Simple HTML formatting, combined with the VBScript RND function, makes the
game new and challenging each time it is played.

• The Memory Game gives you a preview of advanced program decision making via
IF...THEN statements and tools you will learn more about in Chapter 7, “Essential
Programming Logic,” and Chapter 8, “Essential Programming Logic, Part II.”

Like the other game examples in this book, the Memory Game is simple in its program-
ming code but powerful in its execution. If you haven’t noticed yet, this combination of
(relatively) easy programming and powerful functionality is a key component of ASP and
what makes it such a popular Web scripting language for both beginners and professionals.

TRICK

Untitled-1 3/6/03, 2:08 PM115

116
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Are you ready to build the Memory Game? Let’s get started, then, with the design of
the Memory database.

The Memory Database

The Memory Game database is a Microsoft Access database and consists of two pri-
mary tables: History and MatchData (see Figure 6.4):

• MatchData is used as a transient storage table to capture data specific to each
game. Figure 6.5 illustrates the MatchData table in Design view. As you start to
program the Memory Game code, you will review this table in detail.

ENSURING THAT FORM DATA IS PROVIDED

If you have ever ordered anything on the Web or been asked to complete a questionnaire,

survey, and the like, you’ve probably seen some type of marking on the form to indicate that

certain fields are required. Perhaps you ignored these required fields, leaving them blank, and

tried to submit the form without providing any data.

More than likely, if you were using a well-designed form, you were presented with a message

announcing that you failed to provide required data and are being returned to the form to

enter this information. This type of form data verification can be done in a variety of ways and

is critical to ensuring that all the data you want to collect via a form is, indeed, collected.

Fortunately, because of the increasing power of HTML editing programs such as Microsoft

FrontPage or Macromedia HomeSite, you don’t have to know any special programming to

build this type of form verification into your Web pages. In fact, you can do simple form data

verification by using ASP. (I’ll show you an example of this later in this chapter, as well as in

later chapters.) If you use an application like FrontPage (don’t forget that you’re going to be

taking a look at FrontPage in Chapter 10, “ASP and HTML Scripting with FrontPage 2000”),

automated tools allow you to customize the type of verification you want to perform on form

data. For example, you can

• Verify the type of data being entered into the form field (letters, digits, white space, and

the like).

• Verify the length of the data string being entered into the form field. You can set a mini-

mum or maximum number of characters that must be entered into a specific field for the

form to be processed. This type of form field verification is especially useful when you are

capturing such information as a social security number, in which case, you’d set the

minimum and maximum data string lengths to 9.

• Verify a range within which the form field data must fall. For example, you can require it

to be greater than or equal to a specific value.

In short, form field verification is yet another tool for ensuring the overall integrity, usability, and

functionality of your Web pages. There is nothing worse than your users trying to access your

Web site, but through no fault of their own—such as entering information into a form field that

falls outside your desired range—the page crashes or does not function as you intended.

Untitled-1 3/6/03, 2:08 PM116

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

6
U

s
in

g
 F

o
rm

s

117

• History is used to store information about each game for future reference (see Fig-
ure 6.6). Specifically, this table stores the player’s name, the date he or she played
the game, and the number of guesses it took to correctly make all the matches.

Install the Memory.mdb database by following these instructions. If you are using
Windows 9x, open the Control Panel, and click the ODBC icon to perform these steps.
Although the dialog boxes look slightly different, the process of establishing the ODBC
connection is nearly identical to that of Windows 2000.

FIGURE 6.4

The Memory.mdb
database,

consisting of two
tables: History and

MatchData.

FIGURE 6.5

The MatchData
table is used to

store information
about each game as

it is being played.

FIGURE 6.6

As with many
electronic games,
the History table

serves as a
repository of high
(and low!) scores
for later review
(and possibly
gloating over).

Untitled-1 3/6/03, 2:08 PM117

118
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

1. Locate the Memory.mdb database file on the enclosed CD-ROM, and copy it into
your ABG_ASP folder in the Inetpub directory.

2. Create the ODBC connection to the database. From the Windows 2000 Control
Panel, click the Administrative Tools icon, and then click the Data Sources (ODBC)
icon. The ODBC Data Source Administrator dialog box opens (see Figure 6.7).

3. Click the System DSN tab, and then click Add to open the Create New Data
Source dialog box (see Figure 6.8). Highlight the Microsoft Access Driver (*.mdb)
option, and click Finish.

4. Complete the ODBC access setup process by clicking the Select button and select-
ing the Memory.mdb database file you copied into your ABG_ASP directory (see
Figure 6.9).

5. As shown in Figure 6.9, you complete the Data Source Name field by entering
Memory.mdb. Provide a short description in the Description field, and click the
OK button. Figure 6.10 shows the Memory.mdb database added to your list of
available System Data Sources.

You have now established an ODBC connection to the Memory database.

FIGURE 6.7

Select the System
DSN tab to begin

the ODBC
connection process.

FIGURE 6.8

As mentioned in
Chapter 5, note the
different kinds of

data source drivers
available to you

via ODBC.

Untitled-1 3/6/03, 2:08 PM118

C
h

a
p

te
r

6
U

s
in

g
 F

o
rm

s

119

Establishing Database Permissions with
Windows 2000

If you are using Windows 2000 and Access 2000, you must establish the proper security
setting on the database so that it will work properly with your ASP code:

1. Navigate to the Memory.mdb file, select it, and right-click. From the pop-up
menu that appears, select the Properties option (see Figure 6.11).

2. The Memory Properties dialog box opens. Click the Security tab. In the Name sec-
tion of the dialog box, select the Everyone listing. In the Permissions section,
make sure that the Modify, Read & Execute, and Read and Write options are

FIGURE 6.9

The ODBC setup is
nearly complete!

FIGURE 6.10

You should see the
Memory.mdb file in
the listing of System
Data Sources under
the System DSN tab.

FIGURE 6.11

If you are using
Windows 2000 and
Access 2000, you

must set the proper
security

permissions on the
Memory database
for it to work with
your ASP code.

Untitled-1 3/6/03, 2:08 PM119

120
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

selected; then click the Apply button. Your database is now ready to function
properly with the Memory Game ASP code.

As you move through the programming of the Memory Game, you will come to un-
derstand in more detail how the Memory database and its tables fit into the func-
tioning of the game. For now, be content in having established the ODBC connection
and the proper security settings because these are critical “first things first” issues
of programming a game.

Programming the Memory Game

Now that you have established the database, it’s time to begin programming the
Memory Game.

One of the key elements of the game is its capability to assign the matches randomly
each time the game is played. In other words, the game board should never be the
same configuration twice, to make it more difficult (and more fun) to guess where the
matches are hidden.

Before you begin to build the game (including the HTML that will form the game board,
as shown in Figure 6.1), I want to make sure that you understand the piece of code that
randomly generates the game board each time it is played.

Random Number Generation, Part I

An essential element of any game is the ability to randomly generate numbers. This is
used to add an element of chance to any game, and the Memory Game example in this
chapter is no exception.

That said, let’s take a moment to review a sample random number generator code that
will, in turn, be used with the Memory Game.

1. Locate the Random.asp file on the enclosed CD-ROM, and copy it into your
ABG_ASP folder in the Inetpub directory.

A LITTLE SECURITY IN AN INSECURE WORLD

Why bother with security? Although it’s true that you don’t have to worry about “unautho-

rized” access to data with the games in this book, in the real world you will undoubtedly want

to limit access to your critical data. A full discussion of Windows security and permission

settings is well beyond the scope of this book, but be aware that setting proper security on

your systems (especially your Web sites, given that the porous nature of the Web provides an

open invitation to would-be hackers) is an absolute requirement in today’s world. There is no

worse feeling of helplessness than when you realize that your Web site and related systems

have been penetrated by unauthorized and often times malevolent intruders. Be cautious with

both the design and placement of your critical data.

Untitled-1 3/6/03, 2:08 PM120

C
h

a
p

te
r

6
U

s
in

g
 F

o
rm

s

121

2. Open this page within a Web browser. After a few moments, the ASP code within
this page will execute, and your screen will look like Figure 6.12. The ASP code
within Random.asp takes a few moments to complete because it must perform
certain conditional logic statements, as well as insert information into the
Memory database each time the loop that makes up the code is executed.

3. Admittedly, the screen output isn’t exciting, but the ASP code behind the scenes
is doing some interesting things. Navigate to the Memory database, open it, and
then open the MatchData table. Your MatchData table should look something
like Figure 6.13.

The following code is for the Random.asp file. Take a look at it to see what you can
figure out. Then I’ll explain how the code works.

FIGURE 6.12

Once the code runs,
open the

Memory.mdb
database to see the

random numbers
that will have been

inserted.

FIGURE 6.13

New, random
numbers (1–16) are
assigned to each

record in the
MatchData table

every time the
Random_Code.asp
page is executed.

Untitled-1 3/6/03, 2:08 PM121

122
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Listing 6.3 Random.asp

<HTML>

<TITLE>Random Number Generation</TITLE>

<BODY>

Generating the random number matches within the MatchData table of

the Memory database...

<HR>

<%

Dim CheckVar

For i=1 to 16

set DataCheck=Server.CreateObject("ADODB.Recordset")

sqlstmt="SELECT * FROM MatchData WHERE ID=" & i

DataCheck.Open sqlstmt, "DSN=Memory", 3, 3, 1

B=DataCheck("RND_Assigned")

IF B=0 THEN

CheckVar=0

ELSE

CheckVar=1

END IF

DO UNTIL CheckVar = 1

RANDOMIZE

RndCheck=INT((16-1+1) * RND + 1)

For Index = 1 to 750000

Next

set Datacheck2=Server.Createobject("ADODB.Recordset")

sqlstmt2="SELECT * FROM MatchData WHERE Table_Location="&RndCheck

DataCheck2.Open sqlstmt2, "DSN=Memory", 3, 3, 1

If DataCheck2.recordcount = 0 THEN

set InsertCheck=Server.Createobject("ADODB.Recordset")

sqlinsert="UPDATE MatchData SET Table_Location=" & RndCheck & " & "

WHERE ID="& i

InsertCheck.Open sqlinsert, "DSN=Memory"

CheckVar=1

END IF

DataCheck2.close

Set DataCheck2=nothing

LOOP

Untitled-1 3/6/03, 2:08 PM122

C
h

a
p

te
r

6
U

s
in

g
 F

o
rm

s

123Datacheck.close

Set Datacheck=nothing

Next

%>

The numbers have been randomly generated and inserted into the

Memory database!

</BODY>

</HTML>

As mentioned before, a primary function of the Memory game is to generate numbers
randomly from 1 to 16 so that each matching pair can be assigned a random location
within the table every time the game is played. This is accomplished through the use
of two For...Next loops. You were introduced to For...Next loops in Chapter 2, “Program-
ming ASP Web Pages with VBScript.” You will learn more about using loops in Chapter
7, “Essential Programming Logic,” and you can also find a reference for this and other
VBScript topics in Appendix A, “VBScript Variable Reference.”

In essence, the two For...Next loops split this code into two parts. Take a look at each
piece individually so that you can understand how everything fits together:

1. The line For i=1 to 16 is, as you know, the beginning line of a For...Next loop. By be-
ginning the loop at 1 and ending it at 16, you are telling the loop—you guessed
it!—to repeat itself 16 times. Each time through the loop, the current number
(1–16) is assigned to a variable so that you can tell within your code how far you
are into the loop. In this case, I used the variable i, but you can call this variable
anything you want.

2. The next part of the code establishes a connection to the Memory DSN you cre-
ated. Note that, in the SELECT statement, the only record that is returned is the
one that matches the current number of the loop. This is done by utilizing the i
variable assigned to the loop. For example, the fifth time through the loop, the
SELECT statement would read SELECT * FROM MatchData WHERE ID=5.

3. After this particular record is retrieved via the SELECT statement, a variable is cre-
ated (B), and the value of the Selected field from the returned record is assigned
to this variable. For example, if this is the fifth time through the loop, the SELECT
statement reads the record from the MatchData table where the ID record equals
5. Then, the B variable is given the same value as the value in the Selected field
of the returned record.

4. For the game to work properly, each matching pair should be assigned a unique
number between 1 and 16. This enables each match (for example, Dog1, Cat2,
Goat1, and so on) within the MatchData table of the database to have a unique
number. That said, the next section of the code checks whether the record cur-
rently selected has already been assigned a number from 1 to 16. This is done us-
ing an IF...THEN statement (which you learned about in Chapter 2): If the variable
B equals 0, a new variable, CheckVar, is set to 0. Otherwise, the CheckVar variable is set
to 1. The CheckVar variable is used to denote whether the selected record (the
record currently being analyzed via the For...Next loop) has already been assigned
a random number between 1 and 16.

Untitled-1 3/6/03, 2:08 PM123

124
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Random Number Generation, Part II

In essence, the first part of the Random.asp code described in the preceding section just
establishes the For...Next loop that will run for 16 times. Each time through, the MatchData
table of the Memory database is queried, and, for the record returned, the value of the
Rnd_Assigned field is checked. That value is assigned to the CheckVar variable.

Now the second part of the Random.asp code comes into play, depending on whether
the value of the CheckVar variable is a 0 or a 1. First, examine the second part of the code
when the CheckVar variable is set to 0:

1. When the CheckVar variable is set to 0, this denotes that the B variable has been set
to 0. Take another look at the section of code that assigns the B variable: If the
Rnd_Assigned field is 0, this means that a random number between 1 and 16 has
yet to be assigned for the record being analyzed (the record being reviewed as
the For...Next, 1–16 loop executes).

2. When CheckVar is set to 0, the next section of code, a DO loop, executes until CheckVar
is set to 1 (the DO loop is denoted by the line DO UNTIL CheckVar=1). As you learned in
Chapter 2, you can use a DO loop to execute a specific section of code until some
variable evaluates to a value you specify. In this case, you want the DO loop to ex-
ecute until the CheckVar variable is equal to 1.

3. After the DO loop is called, the first lines of code generate a random number be-
tween 1 and 16. The random number generated is assigned to the variable
RndCheck. Then (similar to the first call to the Memory DSN in Part I of this code), a
connection is set to the MatchData table (this connection is DataCheck2). In this
case, the SELECT statement pulls the specific record from the MatchData table
where the Table_Location field is set to the random number that has been gener-
ated. The Table_Location field is used to denote where on the game table this
matching pair is to be located.

4. If the record count of this query is 0, no records were found in the MatchData
table where the Table_Location record is equal to the RndCheck variable, and the
next section of code executes. Again, a connection (InsertCheck) to the MatchData
table is created. This time, an UPDATE statement is used to assign the value of the
RndCheck variable to the Table_Location field of the record being analyzed. If the
record count of the DataCheck2 connection is greater than 0, the random number
that has been generated already has been assigned to some other record in the
table, so the DO loop continues to execute. That is, another random number be-
tween 1 and 16 is generated, the DataCheck2 connection is established again, the
record count is checked, and so on.

5. After the CheckVar variable is set to 1 (or after a unique random number between
1 and 16 has been generated and then inserted via the UPDATE statement into the
database), the DO loop is terminated, and the next number in the FOR...NEXT loop
is generated, with the entire process being repeated. To put all of this simply,
each individual record in the MatchData table must be assigned a unique
number between 1 and 16 to ensure that each record has a unique location
on the game board.

6. Finally, when the FOR...NEXT loop is completed, the text you see in Figure 6.12 is
output to the screen, indicating that the entire code has executed.

Untitled-1 3/6/03, 2:08 PM124

C
h

a
p

te
r

6
U

s
in

g
 F

o
rm

s

125You might (should!) have noticed that I didn’t mention the following lines of code in
my explanation of how the Random.asp code executes:

For Index = 1 to 750000

Next

As you already know, this code assigns a variable (Index) to the value of the For...Next
loop each time it executes. This particular For...Next loop executes 750,000 times(!)
but doesn’t seem to do anything other than that. On the surface, at least, all this
section of code seems to be doing is to pause the execution of the rest of the code.
Before anything else can execute, this loop has to execute three-quarters of a mil-
lion times! However, this pause is the whole point. Because of ADO’s speed limita-
tions when working with Access, it is sometimes necessary to include these code
pauses. Otherwise, your code tends to jump ahead of itself, resulting in errors.

What do I mean? Try running the Random.asp code without this particular For...Next
loop. Within the MatchData table, you will see the same random, 1–16 number being
assigned to more than one record. The reason for this is that, because the DataCheck2
and InsertCheck connections are established (and the specific SQL statements ex-
ecuted), the Access ADO driver can’t keep up with the speed of the code execution.
As the DO loop executes, this results in the DataCheck2 connection being run before
the InsertCheck is allowed to execute fully. The result of this overlap is that the
DataCheck2 record count returns an erroneous value. That is, what would otherwise
return a record count greater than 1 returns as 0 because the InsertCheck connec-
tion has not been allowed to execute and thus update the MatchData table.

Long story short: When you are calling back-to-back connections to an Access da-
tabase via ADO—especially if one of those connections is inserting or updating
information into the database—it is wise to place one of the For...Next delays be-
tween the connections to ensure that your connections have a chance to execute
(close) fully before the next connection is established and executed.

This code will become clearer as you study the rest of the code that comprises the
Memory Game. For now, however, understand the following plain-English summary of
how this section of code functions:

1. Hi, I’m the code for the Memory Game! For every matching pair (Cat1, Cat2, Dog1,
Dog2), I need to assign a unique random number between 1 and 16. This random
number will correlate to the location of each matching pair on the game board.

2. To do this, I use a For...Next loop that executes 16 times. Each time through the
loop, I check the MatchData table of the database to see whether the record
being analyzed (again, this record corresponds to each time through the
For...Next loop) has already been assigned a random number. This random
number will be the unique location on the game board for that matching pair.

3. If the random number generated has already been assigned, I keep generating a
random number (1–16) via a DO loop. When I find a random number that has not
already been assigned, I use the SQL UPDATE statement to assign this number to
the record being analyzed (again, the record being analyzed corresponds to the
1–16 number currently being evaluated via the For...Next loop).

TRAP

Untitled-1 3/6/03, 2:08 PM125

126
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

4. When all 16 records in the MatchData table are assigned a unique random num-
ber between 1 and 16, the code is complete.

Understanding the Entire
Memory Game Code

Whew! Feeling overwhelmed by the Random.asp code discussion? Well, you can relax.
The rest of the Memory Game code is quite easy to understand and highlights the ways
you can use forms to gather, manipulate, and insert data, either directly on a Web
page or in conjunction with a database connection.

The Memory_Home.asp Page

The Memory Game consists of two pages: Memory_Home.asp and Memory_Process.asp.
Memory_Home.asp is the opening screen of the game, greeting the players and asking
them to enter their name. Figure 6.14 illustrates this opening screen.

Take a moment to review the code for the Memory_Home.asp page. From the CD-ROM,
open the file Memory_Home.asp. Here is the code for this page:

Listing 6.4 Memory_Home.asp

<html>

<head>

<title>The Memory Game!</title>

</head>

<%

'Reset the game database

Set GameReset=Server.CreateObject("ADODB.Recordset")

sqlstmt="UPDATE MatchData SET Table_Location=0, Rnd_Assigned=0, Selected=0"

GameReset.Open sqlstmt, "DSN=Memory", 3, 3, 1

%>

<body>

<p align="left"><i>

Welcome to...</i></p>

<p align="center"><hr></p>

<p align="right">The

Memory Game!</p>

<p>Let's

 Play!</p>

<form method="POST" action="Memory_Process.asp">

 <p>What is your name? <input type="text" name="Name" size="20"></p>

 <p align="center"><input type="submit" value="Submit your name,

and begin play!" name="B1"></p>

</form>

<p> </p>

</body>

</html>

Untitled-1 3/6/03, 2:08 PM126

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

6
U

s
in

g
 F

o
rm

s

127

Take a look at the code here, and notice the following line:

GameReset.Open sqlstmt, "DSN=Memory", 3, 3, 1

What does the 3, 3, 1 mean? This is a specific ADO configuration (where each num-
ber corresponds to a specific data access setting). For all the data access examples
used within this book, don’t forget to include this line of code, and leave it as 3, 3, 1.

Notice the ASP code at the beginning of this page. Every time this page loads, the
MatchData table within the Memory database is reset, ready to begin another game.
Take a look at the SQL statement in the GameReset connection. For each record in the
database, the Rnd_Assigned and Selected fields are set to 0.

The rest of this page is straightforward HTML. In addition to minimal text formatting,
a form is used to gather the player’s name. Notice the action of the form (action =

"Memory_Process.asp"), which points to the Memory_Process.asp page. This is where the
real action is. Also notice the name given to the one-line text box used within the form
(Name). This will be used on the Memory_Process.asp page so that the user’s name can be
both displayed on-screen and inserted into the History table of the database when the
game is completed.

The Memory_Process.asp Page

After the user provides his or her name on the Memory_Home.asp page, the
Memory_Process.asp page takes command, allowing the game to be played. Although
the code for this page might seem overwhelming, it’s quite easy to understand. Re-
member, too, that you already encountered the central—and most difficult—section of
the Memory_Process.asp page when I discussed random number generation (the pre-
ceding code will be used verbatim in the Memory_Process.asp page).

FIGURE 6.14

The opening screen
of the Memory
Game, utilizing

a one-line text box
form element
to gather the
user’s name.

TRICK

Untitled-1 3/6/03, 2:08 PM127

128
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Another interesting element of this page is that to provide the maximum amount of
functionality with the minimum number of Web pages, the Memory_Process.asp page
submits to itself. I’ll explain this important concept of programming in a few moments.

For now, open the page within Notepad so that you can see the entire code:

Listing 6.5 Memory_Process.asp

<html>

<head>

<title>The Memory Game!</title>

</head>

<body>

<p align="left">The

Memory Game</p>

<%

'Check to see if gameboard has been generated

IF Request.Form("GameStart")=1 THEN%>

<center>Player: <%=Request.Form("Player")%></center>

<%

'Add to the number of guesses

Guesses=Request.Form("Guesses")

Guesses=CInt(Guesses)

Guesses=Guesses+1

'Gameboard has been generated -- check for matches

Set MatchCheckA=Server.CreateObject("ADODB.Recordset")

sqlstmt="SELECT * FROM MatchData WHERE Table_Location="&Request.Form("MatchA")

MatchCheckA.Open sqlstmt, "DSN=Memory", 3, 3, 1

CheckA=MatchCheckA("Table_Name")

Set MatchCheckB=Server.CreateObject("ADODB.Recordset")

sqlstmt="SELECT * FROM MatchData WHERE Table_Location="&Request.Form("MatchB")

MatchCheckB.Open sqlstmt, "DSN=Memory", 3, 3, 1

CheckB=MatchCheckB("Table_Name")

'Check to see if a match has been made

IF CheckA=CheckB AND Request.Form("MatchA") <> Request.Form("MatchB") THEN

'A match is made -- update the MatchData table to reflect this

Set MatchInsert=Server.CreateObject("ADODB.Recordset")

Untitled-1 3/6/03, 2:08 PM128

C
h

a
p

te
r

6
U

s
in

g
 F

o
rm

s

129sqlstmt="UPDATE MatchData SET Selected=1 WHERE Table_Name='" & CheckA & "'"

MatchInsert.Open sqlstmt, "DSN=Memory", 3, 3, 1

'Pause briefly to allow for update to be completed

FOR Z=1 to 750000

NEXT

%>

<hr>

<center>That's a match!</center>

<hr>

<table border="1" width="100%">

<tr>

<%

TableCount=0

FOR a=1 to 16

TableCount=TableCount+1

'Check to see if a match is made for this table location

Set TableDisplay=Server.CreateObject("ADODB.Recordset")

sqlstmt="SELECT * FROM MatchData WHERE Table_Location=" & a

TableDisplay.Open sqlstmt, "DSN=Memory", 3, 3, 1

%>

<td width="25%" align="center">

<%IF TableDisplay("Selected")=1 THEN%>

<p align="center">

<%=TableDisplay("Table_Name")%>

</td>

<%ELSE%>

<p align="center">

<%=a%>

</td>

<%END IF%>

<%

IF TableCount=4 THEN

TableCount=0

%>

</tr>

<tr>

<%

END IF

NEXT

%>

</table>

<%

Untitled-1 3/6/03, 2:08 PM129

130
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

ELSE

%>

<hr>

<center>I'm sorry, but that is not a match!</center>

<hr>

<table border="1" width="100%">

<tr>

<%

FormCheckA=Request.Form("MatchA")

FormCheckA=CInt(FormCheckA)

FormCheckB=Request.Form("MatchB")

FormCheckB=CInt(FormCheckB)

TableCount=0

FOR a=1 to 16

TableCount=TableCount+1

'Check to see if a match is made for this table location

Set TableDisplay=Server.CreateObject("ADODB.Recordset")

sqlstmt="SELECT * FROM MatchData WHERE Table_Location=" & a

TableDisplay.Open sqlstmt, "DSN=Memory", 3, 3, 1

%>

<td width="25%" align="center">

<%IF TableDisplay("Selected")=1 OR FormCheckA=a OR FormCheckB=a THEN%>

<p align="center">

<%=TableDisplay("Table_Name")%>

</td>

<%ELSE%>

<p align="center">

<%=a%>

</td>

<%END IF%>

<%

IF TableCount=4 THEN

TableCount=0

%>

</tr>

<tr>

<%

END IF

NEXT

%>

Untitled-1 3/6/03, 2:08 PM130

C
h

a
p

te
r

6
U

s
in

g
 F

o
rm

s

131</table>

<%END IF

ELSE

'Execute the code to randomly build the matches

'Comment this

Guesses=0

Dim CheckVar

For i=1 to 16

set DataCheck=Server.CreateObject("ADODB.Recordset")

sqlstmt="SELECT * FROM MatchData WHERE ID=" & i

DataCheck.Open sqlstmt, "DSN=Memory", 3, 3, 1

B=DataCheck("Rnd_Assigned")

IF B=0 THEN

CheckVar=0

ELSE

CheckVar=1

END IF

DO UNTIL CheckVar = 1

RANDOMIZE

RndCheck=INT((16-1+1) * RND + 1)

For Index = 1 to 750000

Next

set Datacheck2=Server.Createobject("ADODB.Recordset")

sqlstmt2="SELECT * FROM MatchData WHERE Table_Location="&RndCheck

DataCheck2.Open sqlstmt2, "DSN=Memory", 3, 3, 1

If DataCheck2.recordcount = 0 THEN

set InsertCheck=Server.Createobject("ADODB.Recordset")

sqlinsert="UPDATE MatchData SET Table_Location=" & RndCheck & ",

Rnd_Assigned=1 " & " WHERE ID="& i

InsertCheck.Open sqlinsert, "DSN=Memory"

CheckVar=1

END IF

DataCheck2.close

Set DataCheck2=nothing

Untitled-1 3/6/03, 2:08 PM131

132
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

LOOP

Datacheck.close

Set Datacheck=nothing

Next

%>

<table border="1" width="100%">

<tr>

<%

TableCount=0

FOR a=1 to 16

TableCount=TableCount+1

%>

<td width="25%" align="center">

<p align="center">

<%=a%>

</td>

<%

IF TableCount=4 THEN

TableCount=0

%>

</tr>

<tr>

<%

END IF

NEXT

%>

</table>

<%END IF%>

<%

'Now, scan the database to see if all matches have been made, and

'the game has been won

Set WinCheck=Server.CreateObject("ADODB.Recordset")

sqlstmt="SELECT * FROM MatchData WHERE Selected=1"

WinCheck.Open sqlstmt, "DSN=Memory", 3, 3, 1

IF WinCheck.Recordcount=16 THEN

'Insert player information into the database

Player=Request.form("Player")

Guesses=Guesses

sqlstmt="INSERT INTO History (Name, Guesses) VALUES

Untitled-1 3/6/03, 2:08 PM132

C
h

a
p

te
r

6
U

s
in

g
 F

o
rm

s

133('"& Player & "'," & Guesses & ")"

Set GameInsert=Server.CreateObject("ADODB.Recordset")

GameInsert.Open sqlstmt, "DSN=Memory", 3, 3, 1

%>

<hr>

<center>YOU WIN THE GAME!</center><p>

You won the game in <%=guesses%> guesses!

<hr>

<form method="POST" action="Memory_Home.asp">

<center><input type="submit" value="Play again" name="b2"></center>

</form>

<%

ELSE

%>

<p>Make your match selections:</p>

<form method="POST" action="Memory_Process.asp">

 <table border="1" width="100%">

 <tr>

 <td width="50%" align="center">

 <p>Match A: <select size="1"

 name="MatchA">

 <%

 FOR i=1 to 16

 %>

 <option value="<%=i%>"><%=i%></option>

 <%

 NEXT

 %>

 </select></p>

 </td>

 <td width="50%" align="center">

 MatchB: <select size="1"

 name="MatchB">

 <%

 FOR i=1 to 16

 %>

 <option value="<%=i%>"><%=i%></option>

 <%

 NEXT

 %>

 </select></td>

 </tr>

Untitled-1 3/6/03, 2:08 PM133

134
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 </table>

 <p align="center"><input type="submit" value="Make a Match!"

 name="B1"></p>

 <input type="hidden" name="GameStart" value="1">

 <input type="hidden" name="Guesses" value="<%=Guesses%>">

 <%

 IF Request.Form("GameStart")=1 THEN%>

 <input type="hidden" name="Player" value="<%=Request.Form("Player")%>">

 <%ELSE%>

 <input type="hidden" name="Player" value="<%=Request.Form("Name")%>">

 <%END IF%>

</form>

<p> </p>

<%END IF%>

</body>

</html>

I will explain this code in sections to ensure that you understand not only the basic
script but also how it integrates with the Memory database, which it does extensively.

The Memory_Process.asp Page: Setting Up the Game

Take another look at the following excerpt:

<html>

<head>

<title>The Memory Game!</title>

</head>

<body>

<p align="left">The

Memory Game</p>

<%

'Check to see if gameboard has been generated

IF Request.Form("GameStart")=1 THEN%>

<center>Player: <%=Request.Form("Player")%></center>

<%

'Add to the number of guesses

Guesses=Request.Form("Guesses")

Guesses=CInt(Guesses)

Untitled-1 3/6/03, 2:08 PM134

C
h

a
p

te
r

6
U

s
in

g
 F

o
rm

s

135Guesses=Guesses+1

'Gameboard has been generated -- check for matches

Set MatchCheckA=Server.CreateObject("ADODB.Recordset")

sqlstmt="SELECT * FROM MatchData WHERE Table_Location="&Request.Form("MatchA")

MatchCheckA.Open sqlstmt, "DSN=Memory", 3, 3, 1

CheckA=MatchCheckA("Table_Name")

Set MatchCheckB=Server.CreateObject("ADODB.Recordset")

sqlstmt="SELECT * FROM MatchData WHERE Table_Location="&Request.Form("MatchB")

MatchCheckB.Open sqlstmt, "DSN=Memory", 3, 3, 1

CheckB=MatchCheckB("Table_Name")

'Check to see if a match has been made

IF CheckA=CheckB AND Request.Form("MatchA") <> Request.Form("MatchB") THEN

'A match is made -- update the MatchData table to reflect this

Set MatchInsert=Server.CreateObject("ADODB.Recordset")

sqlstmt="UPDATE MatchData SET Selected=1 WHERE Table_Name='" & CheckA & "'"

MatchInsert.Open sqlstmt, "DSN=Memory", 3, 3, 1

'Pause briefly to allow for update to be completed

FOR Z=1 to 750000

NEXT

%>

This initial section of code checks whether the game has already started, and if it has,
checks to determine whether a match has been made. Remember how I said that the
Memory_Process.asp page submits back to itself? When the game begins, the player
selects two possible table locations for a match. When the player clicks Submit, the
form has its action method set to Memory_Process.asp. This type of coding is conve-
nient for keeping all the action confined to one place, so to speak, because you can put
a lot of code in one container; that is, one Web page.

In the preceding code, the first task is to see whether the game board has been gener-
ated. The game board generation code is the random number generator code, as you
will soon see. For each game, you want the game board to be generated only once, so
the matching pairs are assigned a random number between 1 and 16—their unique
hidden location on the game board—and they keep that location throughout the game.
If the game has already started, the name of the player is captured, and the current
guess is added to the overall number of guesses.

Assuming that the game board has been generated, which is determined by the IF
Request.form ("GameStart") = 1 THEN) statement, the code checks whether a match has been
made. The database is queried twice (note the connections MatchCheckA and MatchCheckB).

Untitled-1 3/6/03, 2:08 PM135

136
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The variables CheckA and CheckB are set to the value of the Table_Name field from each
respective query. If the CheckA and CheckB variables are equal (meaning that within the
MatchData table of the database, the two matching pairs are equal), a match is indi-
cated. When a match is made, the MatchData table is updated via the MatchInsert con-
nection. Finally, as you saw in the random number generation code, a FOR...NEXT loop is
inserted (FOR Z=1 to 750000) to allow the database to be updated (again, the MatchInsert
connection). If a match is made, the user is notified with the text That's a match!.

The Memory_Process.asp Page: Generating the Game Board

and Playing the Game

The following section of code constitutes the second part of the Memory Game code. It
is used to generate the board for each turn, and to display (where appropriate) all
previous matches that have been made:

<table border="1" width="100%">

<tr>

<%

TableCount=0

FOR a=1 to 16

TableCount=TableCount+1

'Check to see if a match is made for this table location

Set TableDisplay=Server.CreateObject("ADODB.Recordset")

sqlstmt="SELECT * FROM MatchData WHERE Table_Location=" & a

TableDisplay.Open sqlstmt, "DSN=Memory", 3, 3, 1

%>

<td width="25%" align="center">

<%IF TableDisplay("Selected")=1 THEN%>

<p align="center">

<%=TableDisplay("Table_Name")%>

</td>

<%ELSE%>

<p align="center">

<%=a%>

</td>

<%END IF%>

<%

IF TableCount=4 THEN

TableCount=0

%>

</tr>

<tr>

<%

END IF

NEXT

%>

Untitled-1 3/6/03, 2:08 PM136

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

6
U

s
in

g
 F

o
rm

s

137</table>

<%

ELSE

%>

<hr>

<center>I'm sorry, but that is not a match!</center>

<hr>

<table border="1" width="100%">

<tr>

<%

FormCheckA=Request.Form("MatchA")

FormCheckA=CInt(FormCheckA)

FormCheckB=Request.Form("MatchB")

FormCheckB=CInt(FormCheckB)

TableCount=0

FOR a=1 to 16

TableCount=TableCount+1

'Check to see if a match is made for this table location

Set TableDisplay=Server.CreateObject("ADODB.Recordset")

sqlstmt="SELECT * FROM MatchData WHERE Table_Location=" & a

TableDisplay.Open sqlstmt, "DSN=Memory", 3, 3, 1

%>

<td width="25%" align="center">

<%IF TableDisplay("Selected")=1 OR FormCheckA=a OR FormCheckB=a THEN%>

<p align="center">

<%=TableDisplay("Table_Name")%>

</td>

<%ELSE%>

<p align="center">

<%=a%>

</td>

<%END IF%>

<%

IF TableCount=4 THEN

TableCount=0

%>

</tr>

<tr>

<%

END IF

Untitled-1 3/6/03, 2:08 PM137

138
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

NEXT

%>

</table>

<%END IF

ELSE

The primary duty of this section of code is to redraw the game board to reflect all
current matches and show the matching pairs associated with the numbers selected
by the user from the two drop-down menus when he or she attempts to make a match.

The primary element of building the game board is the FOR...NEXT loop. Note that both
loops (regardless of whether a match is made) are set from 1 to 16. Because there are 16
game pieces representing eight matching pairs, the number 16 should come as no
surprise. Note, however, how the tables are built. By running the FOR...NEXT loop, creat-
ing a temporary variable named TableCount, and checking whether this variable is equal
to 4, you can set the number of columns in the table. Basically, as the FOR...NEXT loop
executes, the TableCount variable is increased by 1. Each time through the loop, this
variable is checked to determine whether it is equal to 4. When it is, the </tr> tag is
inserted, indicating that the fourth column has been reached and that a new table
row should be started. When this happens, the TableCount variable is reset to 0, and the
process begins again.

Also executing with this FOR...NEXT loop is the game’s capability to determine whether
each square of the game board has been matched. Notice the use of the TableDisplay
connection, which queries the database based on the current number being evaluated
via the FOR...NEXT loop, that is, the SQL statement "SELECT * FROM MatchData WHERE Table_Location="
& a, where a is the variable assigned to the FOR...NEXT loop. If the Selected field from this
query is equal to 1, a match has been made on the specific matching pair, and its table
name is displayed within the table, instead of the 1–16 number used to hide the con-
tents of the square.

The Memory_Process.asp Page: Random Number Generation

The third section of code for the Memory Game is, in essence, the random number
generator code described in the preceding section. For the game, this code is used to
assign each matching pair a random number between 1 and 16, which, in turn, relates
to the pair’s 1–16 game board location. Remember from the beginning part of the
Memory_Process.asp page, this random number generator code is executed only once,
at the beginning of the game.

The Memory_Process.asp Page: Winning the Game

Here is the final section of code. It is used to track the results of each “turn” in the
game and ultimately used to determine when the game is won:

<%

'Now, scan the database to see if all matches have been made, and

'the game has been won

Untitled-1 3/6/03, 2:08 PM138

C
h

a
p

te
r

6
U

s
in

g
 F

o
rm

s

139Set WinCheck=Server.CreateObject("ADODB.Recordset")

sqlstmt="SELECT * FROM MatchData WHERE Selected=1"

WinCheck.Open sqlstmt, "DSN=Memory", 3, 3, 1

IF WinCheck.Recordcount=16 THEN

'Insert player information into the database

Player=Request.form("Player")

Guesses=Guesses

sqlstmt="INSERT INTO History (Name, Guesses) VALUES

('"& Player & "'," & Guesses & ")"

Set GameInsert=Server.CreateObject("ADODB.Recordset")

GameInsert.Open sqlstmt, "DSN=Memory", 3, 3, 1

%>

<hr>

<center>YOU WIN THE GAME!</center><p>

You won the game in <%=guesses%> guesses!

<hr>

<form method="POST" action="Memory_Home.asp">

<center><input type="submit" value="Play again" name="b2"></center>

</form>

<%

ELSE

%>

<p>Make your match selections:</p>

<form method="POST" action="Memory_Process.asp">

 <table border="1" width="100%">

 <tr>

 <td width="50%" align="center">

 <p>

 Match A: <select size="1" name="MatchA">

 <%

 FOR i=1 to 16

 %>

 <option value="<%=i%>"><%=i%></option>

 <%

 NEXT

 %>

 </select></p>

 </td>

 <td width="50%" align="center">

 MatchB:

Untitled-1 3/6/03, 2:08 PM139

140
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 <select size="1" name="MatchB">

 <%

 FOR i=1 to 16

 %>

 <option value="<%=i%>"><%=i%></option>

 <%

 NEXT

 %>

 </select></td>

 </tr>

 </table>

 <p align="center"><input type="submit" value="Make a Match!"

 name="B1"></p>

 <input type="hidden" name="GameStart" value="1">

 <input type="hidden" name="Guesses" value="<%=Guesses%>">

 <%

 IF Request.Form("GameStart")=1 THEN%>

 <input type="hidden" name="Player" value="<%=Request.Form("Player")%>">

 <%ELSE%>

 <input type="hidden" name="Player" value="<%=Request.Form("Name")%>">

 <%END IF%>

</form>

<p> </p>

<%END IF%>

</body>

</html>

This final section of code checks, via the WinCheck connection, whether the game has
been won. Through the use of the SQL query SELECT * FROM MatchData WHERE Selected=1, you
ask the code to search through the entire MatchData table and return all records where
the Selected field is equal to 1. (Remember, a value of 1 in this field indicates that a
match has been made.) If the record count of this query is 16 (all the records in the
MatchData table), all matches have been made, and the game won. An appropriate
message is displayed, YOU WIN THE GAME!, and the option to play again is presented via a
Submit button form element. If you look at the form in which this button resides, you
will notice that the action attribute is set to return to Memory_Home.asp. This ensures
that the code at the beginning of that page resets all the values in the MatchData table
so that the game can be played again. If the game is won, note that within this section
the user’s name and the number of guesses it took to win the game are inserted into
the History table of the database (via the GameInsert connection).

The other important element in this section of code is the presentation of the two
drop-down menus, used by the players to select two numbers in search of a possible
match. Similar to the dynamic rendering of the game board, note how a FOR...NEXT
loop is used to build the values of the drop-down menus (again 1–16, to correspond
to the number of squares on the game board). Finally, three hidden form fields are

Untitled-1 3/6/03, 2:08 PM140

C
h

a
p

te
r

6
U

s
in

g
 F

o
rm

s

141also included in the form that closes out this page (notice that the action attribute of
the form is set to return to Memory_Process.asp). These three hidden form fields are

• GameStart. This form field is used to indicate that the game has already begun.
Remember from the discussion on the first part of the code, if this form is de-
tected and its value set to 1, the code knows that the game has already begun and
therefore does not need to have the game board regenerated.

• Guesses. This form field is used to keep track of the number of guesses it takes the
player to win the game. Each time through the code, the value of this form field
increases by 1 to indicate that another guess has been made.

• Player. Finally, this form field is used to continue to pass the player’s name each
time the page resubmits back to itself. This value is originally captured on the
Memory_Home.asp page, where users are asked to sign in and identify themselves.

Summary

You were presented with an incredible amount of information in this chapter, includ-
ing how to capture and display form results and how to integrate form data into a SQL
query of your database. Moreover, you saw how to use forms so that a page can submit
to itself, thus saving valuable Web real estate and improving the efficiency of your
code. Finally, via the Memory Game, you saw how you can use forms to capture infor-
mation from players, enabling you to provide your Web pages with a dynamic inter-
face. Depending on the information entered into the form fields, the page can react
accordingly, often by querying a related database.

Untitled-1 3/6/03, 2:08 PM141

142
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

E X E R C I S E S

To continue your understanding and enjoyment of the use of forms within your ASP pages, try

these exercises to improve the functionality and presentation of the Memory Game:

1. Rather than allow just one individual to play the game, rework the code so that it keeps

track of two players, storing the results of each player’s guess in the MatchData table and

their game history in the History table.

2. Develop the dynamic presentation of the game board so that instead of showing (and

continuing to show) all matches, you hide them when a match is made, by displaying a

blank square where the match was made.

3. When the game is won, capture more than just the player’s name and number of guesses

in the History table. Also capture the date the game was played and perhaps a Comment

field in which the players can enter remarks on how the game was played. This requires

that you provide them with a form element to enter their comments after they receive the

message that they have won the game.

4. Increase the number of possible matches to 32 instead of 16. In doing so, adjust not only

the FOR...NEXT loops within the code, moving them from 1 to 32 instead of 1 to 16, but also

the structure of the database. (You will need to come up with some more matching pairs.)

5. Finally, demonstrate how the Memory_Process.asp code could be divided into two or more

Web pages. Rather than have the page submit to itself, see whether you can divide the code

on this page into two separate Web pages. In other words, when the player clicks the Make

a Match button, rather than resubmit to the Memory_Process page, have the game directed

to another ASP Web page to process the form data and display the results.

6. On the Memory_Home.asp page, include a link that will display the stored game data in

the History table of the database. Also, include a search form that allows players to look

up their high scores, based on their name.

Untitled-1 3/6/03, 2:08 PM142

7

I
n this chapter, you will

• Work with the If...Then statement to add logic

control to your ASP scripts.

• Learn how to integrate loops into your ASP

scripts to avoid needless repetition in your

programming, thus increasing the speed and

power of your Web pages.

• Understand how to use this type of program-

ming logic with your databases to gain more

specific control over how your ASP Web pages

integrate with them.

• Program the Fortune Teller game, in which us-

ers enter information via an ASP Web page

and a unique fortune is returned, based on the

information entered, the day of the month, and

whether they have already received that for-

tune for the month.

Essential
Programming
Logic, Part I

C H A P T E R

Untitled-4 2/25/03, 10:19 AM143

144
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

I’ve covered a tremendous amount of ground so far, introducing you to the power and
complexity of ASP. Through the sample games and code, you are starting to see how
easy (and fun!) it is to work with ASP and to integrate advanced Web development
techniques such as form processing and database access. It’s time to add some finesse
to your ASP programming by learning to control how your code executes and performs.
This is especially important when working with databases. For example, say that a
visitor to your Web site wants to search for a specific record. You want to display only
the record in which he or she is interested rather than return the entire recordset
from your database. Implementing this type of exact control in your ASP pages makes
your Web pages more functional and easy to use.

The Fortune Teller Game

To illustrate essential programming logic control best, I’ll show you how to design and
implement a Fortune Teller game. This game will highlight some basic functionality
(much of which you’ve already seen in earlier chapters), but will touch on most of the
inherent logic functionality in VBScript, including For...Next loops, If...Then statements,
and integration with a datasource. First, though, I will talk a little about how the
Fortune Teller game works.

The Fortune Wizard asks you to enter some basic information, such as your name and
age. To make the resulting fortune seem more mystical and powerful, the wizard also
asks you to enter a number between 1 and 20 (this number will be used in the process-
ing of the fortune). Figure 7.1 shows the wizard’s question page.

After information is entered and the user clicks the Unveil my Fortune! button, the
wizard does its magic by processing the data with simple (but powerful) ASP script.
Figure 7.2 shows the results.

FIGURE 7.1

The Fortune Wizard
asks for information
before processing
your clairvoyant

code.

Untitled-4 2/25/03, 10:19 AM144

C
h

a
p

te
r

7
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
rt I

145

The user’s fortune is personalized. Notice how the user’s name, Robert Johnson, is also
reflected on the results page, with the option to have another fortune read by clicking
the Tell me another fortune! button. Because of the way the ASP code is written for this
game (I’ll discuss the code with you in just a moment), if a user enters the same name
on the data entry screen (refer to Figure 7.1), the code checks the database to see whether
the user has played the game before and which fortunes have already been presented
to the user for that month.

Speaking of databases, the Fortune Teller game uses a simple Microsoft Access data-
base as a place to store the 31 fortunes that make up the game and as a method of
tracking the fortunes that have already been presented. Figures 7.3 and 7.4 illustrate
the design of the Fortune.mdb database.

What gives real power to the Fortune Teller game is neither the database nor the way
the fortunes are presented to the players but rather the internal programming logic.
In conjunction with the information provided by the player, this ensures that each
fortune presented to each player is random but also specific to each day of the month
in which the player is playing. For the rest of this chapter, I’ll show you how the For-
tune Teller works its magic.

Fortune Teller Basics

Before you begin your exploration of the logic that drives the Fortune Teller, you must
install and activate the Fortune.mdb database and build the data input page (refer to
Figure 7.1) on which players provide basic information for the Fortune Wizard. The
database for this chapter is named Fortune.mdb and can be found on the CD-ROM.

FIGURE 7.2

Based on the
information

provided by the user
and whether the

user has played the
game before, a

unique fortune is
presented for each
day of the month.

Untitled-4 2/25/03, 10:19 AM145

146
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Creating an ODBC Connection for the
Fortune.mdb Database

You learned how to create ODBC connections in Chapter 5, “Database Access with ADO.”
As you recall, the process for establishing this connection is quite easy, but in case you
forgot or need a refresher, here are the steps for establishing the ODBC connection to
the Fortune.mdb database.

FIGURE 7.3

The Fortune_Data
table stores the

fortunes randomly
presented to

players.

FIGURE 7.4

The Fortune_Track
table, shown in

Design view, stores
specific player

information,
including the

username and
which fortune was

displayed on a
given date.

Untitled-4 2/25/03, 10:19 AM146

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

7
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
rt I

147Remember from Chapter 5, “Database Access with ADO,” that the method of accessing
the ODBC Data Source Administrator differs among Windows 95, 98, and 2000. After the
Administrator is open, though, the steps for establishing the connection are the same.

1. Open the ODBC Data Source Administrator, using the steps specific to your oper-
ating system.

2. When the Administrator is open, from the list of User Data Sources, click the MS
Access Database option, and click Add.

3. In the Create New Data Source dialog box, select Microsoft Access Driver (*.mdb)
from the list, and click Finish.

4. In the ODBC Microsoft Access Setup dialog box, complete the fields as shown in
Figure 7.5.

5. In the Data Source Name field, enter Fortune. Also, in the Database section, the
path should be similar to what you see illustrated in Figure 7.5.

Depending on your specific development platform, the file path for the Fortune.mdb
database will appear slightly different from what is shown in Figure 7.5
(C:\Inetpub\wwwroot\ABG_ASP\Fortune.mdb). Just be sure that you copied the
Fortune.mdb database file within your ABG_ASP folder under your wwwroot folder.

6. When your ODBC Microsoft Access Setup dialog box looks like Figure 7.5, go ahead
and click OK. You are returned to the ODBC Data Source Administrator dialog box.
In the list of User Data Sources, you will see Fortune, as illustrated in Figure 7.6.

TRICK

FIGURE 7.5

Complete the ODBC
Microsoft Access

Setup dialog box as
shown here. Be
sure to include a
description of the

data source so you
can clearly identify

it later.

TRICK

FIGURE 7.6

The Fortune.mdb
database is
successfully

installed with an
ODBC connection.

Untitled-4 2/25/03, 10:19 AM147

148
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Creating the Fortune_Info.asp Data Input Page
Now that you’ve created the ODBC connection for the Fortune.mdb database, it’s time
to create the Fortune_Info.asp page (refer to Figure 7.1) for the players to provide neces-
sary information to the Fortune Wizard. The Fortune_Info.asp file can be found within
on the CD-ROM.

Within Notepad, enter the code in Listing 7.1 for the Fortune_Info.asp page, or load it
directly from the CD-ROM.

Listing 7.1 Fortune_Info.asp

<html>

<head>

<title>The Clairvoyant Code</title>

</head>

<body bgcolor="#FFFF00">

<p align="center">

The Clairvoyant Code </p>

<p align="center">of the</p>

<p align="center">

ASP Fortune Wizard</p>

<hr>

<p align="left">Greetings to all powerful ASP

programmers! I am the great ASP Fortune Wizard, ready to provide you with

your daily fortune!</p>

<p align="left">By providing me with the

information below, then clicking the "Unveil my Fortune" button, I

will present you with my words of wisdom!</p>

<form method="POST" action="Fortune_Process.asp">

 <p align="left">What is your first and last name ?

<input type="text" name="Name" size="40"></p>

 <p align="left">How old are you? <input type="text"

name="Age" size="20"></p>

 <p align="left">Pick a number between 1 and 20:

<input type="text" name="Number" size="20"></p>

 <p align="center"><input type="submit" value="Unveil my Fortune!"

name="B1"></p>

</form>

</body>

</html>

This page is straightforward HTML, with a few distinctions:

• Note the use of the Monotype Corsiva font, which gives the text a medieval, mysti-
cal quality.

• This page has three standard text box inputs: username, user age, and a field to en-
ter a random number between 1 and 20. The form points to Fortune_Process.asp,
where the Fortune Wizard does his stuff (I will discuss this page and the corre-
sponding code shortly).

Untitled-4 2/25/03, 10:19 AM148

C
h

a
p

te
r

7
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
rt I

149• Within the form section of the page, note the unique names of the three text box
inputs: Name, Age, and Number.

Admittedly, the formatting of this Fortune_Info.asp page is basic. Nevertheless, take
advantage of even the simplest formatting (for example, the use of the MonoType
Corsiva font) to give your pages easy-to-implement flair and style.

Working with the If...Then Statement

Now that you have established an ODBC connection to the Fortune.mdb database and
have created the Fortune_Info.asp data input page, you are ready to begin exploring
the ASP code that gives the Fortune Wizard his clairvoyant quality.

The Fortune Wizard draws much of his power from the use of the classic If...Then state-
ment. This statement is perhaps the most famous of all programming statements be-
cause it allows the computer to make decisions, thus giving it a certain capability to
think for itself. Of course, this (very) artificial intelligence is based solely on the rules
you provide. The computer isn’t thinking at all, but rather reacting to a series of rules.
Consider the code in Listing 7.2.

Listing 7.2 Simple If...Then Example

<%

SomeNumber=56

UserNumber=<%=Request.form("Number")%>

IF UserNumber > SomeNumber Then

%>

 The number you entered is larger than the accepted maximum

<%

End If

%>

To understand how the computer thinks through its processing of the code, look at
what is happening here:

• The first two lines are defining the variables SomeNumber and UserNumber. Note that the
UserNumber variable depends on what a user entered in a field named Number on a pre-
vious form.

• After the UserNumber variable is defined, the code makes a comparison of its value to
the set value of the SomeNumber variable (which is 56). If the value assigned to the
UserNumber variable is greater than 56, the text The number you entered is larger than the ac-
cepted maximum is displayed. If the value is less than 56, no special message is displayed.

Using the If...Then...Else Statement

If you think this example is simple, you’re right—it is a basic example of the If…Then
statement—and congratulations! You understand an essential element of programming
logic, which you will use again and again when developing your ASP pages.

TRICK

Untitled-4 2/25/03, 10:19 AM149

150
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Because you obviously are staying right with me here, take a look at a more advanced
example in Listing 7.3.

Listing 7.3 Simple If...Then...Else Example

<%

SomeNumber=56

UserNumber=<%=Request.form("Number")%>

IF UserNumber > SomeNumber Then

%>

 The number you entered is larger than the accepted maximum

<% Else %>

 The number you entered is within the accepted range of values

<%

End If

%>

Basically the same code, right? Take a closer look, and note the following, all-impor-
tant line of code:

<% Else %>

By using the Else statement, you allow your code to consider more than one rule and
thus “think” to a higher degree. In Listing 7.3, if the value assigned to UserNumber is
greater than 56 (the value assigned to SomeNumber), the same message is still displayed (The
number you entered is larger than the accepted maximum). However, in this example, you also
provide another rule for the computer to consider as it processes the code: If the value
assigned to SomeNumber is less than 56, the message The number you entered is within the
accepted range of values is displayed. This capability to differentiate between presented
messages is dependent on the Else statement, which gives the computer an option of
which message to present if the SomeNumber variable is less than 56.

More Examples of If...Then...Else

The examples in the preceding sections compare one number to another to determine
which message should be displayed to the user. However, you can also compare string
values and time and even concatenate values for comparison. Take a look at Listing 7.4.

Listing 7.4 Comparing String Values with If...Then...Else

<%

SomeText="I am a great ASP Programmer"

UserText=<%=Request.form("DataText")%>

IF SomeText = UserText

%>

 You're exactly right! You are a great ASP programmer!

<% Else %>

 Ah, don't be so hard on yourself! You really are a great ASP

programmer!

<%

Untitled-4 2/25/03, 10:19 AM150

C
h

a
p

te
r

7
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
rt I

151End If

%>

Rather than compare numbers, this code compares two string values (SomeText and
UserText). Again, the UserText value is assigned from information entered within a DataText
field on a previous form. If the user enters I am a great ASP Programmer in this DataText
field, the encouraging message You're exactly right! You are a great ASP programmer is dis-
played. If not, the message Ah, don't be so hard on yourself! You really are a great ASP
programmer! is displayed. Like the previous examples, the use of the If...Then...Else state-
ment allows the computer to think through the information and respond according to
the rules you’ve provided.

You can also use the If...Then...Else statement to concatenate (add together) values. By
doing so, you can implement some advanced data manipulation within your ASP pages.
Take a look at Listing 7.5.

Listing 7.5 Concatenating Values with If...Then...Else

<%

ValueA=20

ValueB=<%=Request.form("CheckValue")%> + 10

IF ValueA > ValueB THEN

%>

 The number you entered is too small!

<% Else %>

 The number you entered is within the range of accepted value

<%

End If

%>

In this example, the ValueB variable is defined by a number entered in a CheckValue field
on a previous form. However, notice that in addition to this value, a value of 10 is added:

ValueB=<%=Request.form("CheckValue")%> + 10

After the ValueB variable is set, the If...Then statement checks whether it is greater than
the defined ValueA variable (in this example, the ValueA variable is set to 20). If it is not,
the message The number you entered is too small is displayed. Otherwise, the message The
number you entered is within the range of accepted value is displayed.

Be sure to check out Appendix A, “VBScript Variable Reference,” for general informa-
tion on variable and evaluation syntax. This gives you more details on comparing and
concatenating variables of different types (numeric, string, and so on).

Working with Loops

The If...Then...Else statement is powerful, and its uses are limited only by your imagi-
nation. As the basis of most of your coding (because the statement allows the com-
puter to think by providing it with a set of rules), If...Then...Else can drive most of your
code’s decision-making abilities.

However, using the If...Then...Else statement is not always efficient. Take a look at
Listing 7.6.

Untitled-4 2/25/03, 10:19 AM151

152
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Listing 7.6 Non-efficient Programming

<html>

<body>

<%

RightValue = 5

TestValue=1

If TestValue=RightValue Then %>

That is the right answer <p>

<%Else%>

That is the wrong answer <p>

<%End If %>

<%TestValue=2%>

If TestValue=RightValue Then %>

That is the right answer <p>

<%Else%>

That is the wrong answer <p>

<%End If %>

<%TestValue=3%>

If TestValue=RightValue Then %>

That is the right answer <p>

<%Else%>

That is the wrong answer <p>

<%End If %>

<%TestValue=4%>

If TestValue=RightValue Then %>

That is the right answer <p>

<%Else%>

That is the wrong answer <p>

<%End If %>

<%TestValue=5%>

If TestValue=RightValue Then %>

That is the right answer <p>

<%Else%>

That is the wrong answer <p>

<%End If %>

</body>

</html>

When this code is executed within a Web browser, the output looks like Figure 7.7.

If you look at Listing 7.6, you can see that nothing complicated is going on. Using a
typical If...Then...Else statement, the code is processed until the variable RightValue (which
has been set to 5) equals the variable TestValue, which is increased by increments of 1.
However, despite the simplicity of this process, it takes nearly 40 lines of code to achieve
it! Now take a look at Listing 7.7.

Untitled-4 2/25/03, 10:19 AM152

C
h

a
p

te
r

7
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
rt I

153

Listing 7.7 Efficient Programming Using Loops

<html>

<body>

<%RightValue = 5%>

<%FOR TestValue = 1 to 5

%>

<% IF TestValue = RightValue THEN %>

That is the right answer <p>

<% ELSE %>

That is the wrong answer <p>

<% END IF %>

<%NEXT%>

</body>

</html>

As you can see, Listing 7.7 is much shorter than Listing 7.6 but accomplishes the same
thing. Through the power of looping, you have to provide your evaluation rule only
once (IF TestValue = RightValue THEN...). Each time the code loops (evaluates the TestValue
variable in increments of 1, starting with 1 and running through 5), it automatically
generates the specific rules you hard-coded in Listing 7.6. This type of calling is a FOR...NEXT
loop and is extremely convenient when you need to evaluate large sets of values and
compare them to other values. As you will see in the Fortune Teller example, this type
of looping makes quick work of evaluating a returned database recordset, determin-
ing whether a specific record matches set rules or criteria you’ve defined with various
If...Then...Else statements.

FIGURE 7.7

That is the wrong
answer is displayed
until the TestValue
variable equals the
RightValue variable.

Untitled-4 2/25/03, 10:19 AM153

154
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Building the Fortune Teller Wizard

Before programming the Fortune Teller Wizard, here is a review of the type of func-
tionality the wizard (in other words, your ASP code) has to perform:

1. The wizard gathers all information from the user. This includes first and last
name, age, and a number between 1 and 20. All this information is captured us-
ing the Fortune_Info.asp page (refer to Figure 7.1).

2. The wizard takes the user’s information provided and processes it via the
Fortune_Process.asp page (you will program this page in this chapter).

3. The wizard presents the user a fortune, based on the code processing done via
ASP. Note that, as a critical part of this code processing, the wizard reads infor-
mation from the Fortune.mdb database to determine the fortunes the user has
already received and retrieves the appropriate fortune (via the Fortune_Data
table) from the Fortune.mdb database.

Now you will program the clairvoyance into the Fortune Teller Wizard.

Creating the Fortune_Process.asp Page

If you refer quickly to Listing 7.1 (for the Fortune_Info.asp page), you will see that the
page posts its information to a Fortune_Process.asp page:

<form method="POST" action="Fortune_Process.asp">

You have basically three pieces of information to work with in processing a user’s for-
tune: the name, age, and “secret” number (between 1 and 20) they provide.

The HTML formatting to display the fortune is simple. I will get to that in a moment,
but for now, I want to show you how to get the fortune, or put simply, how to program
the wizard:

1. If Notepad isn’t already open, open it and enter the following basic HTML code:
<html>

<head>

<title>The Clairvoyant Code - Your Fortune is Told!</title>

</head>

<body bgcolor="#FFFF00">

This is standard HTML code. Note the title you are giving to this page (“The Clair-
voyant Code - Your Fortune is Told!”) and the body background color you are as-
signing.

2. Save your page. Remember to save it with the .asp extension (you should be sav-
ing this page as Fortune_Process.asp).

3. Enter the rest of the code for the Fortune_Process.asp page as shown in Listing
7.8. I’ll discuss each section in just a moment.

Untitled-4 2/25/03, 10:19 AM154

C
h

a
p

te
r

7
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
rt I

155Listing 7.8 Fortune_Process.asp

<%

set FortuneTrack=Server.CreateObject("ADODB.Recordset")

FortuneTrack.Open "SELECT * FROM Fortune_Track WHERE Username='" &

Request.Form("Name") & "'", "DSN=Fortune"

Dim PrevFortune

PrevFortune = 0

Do While NOT FortuneTrack.EOF

PrevFortune = PrevFortune + FortuneTrack("ID")

FortuneTrack.MoveNext

Loop

FortuneTrack.Close

Set FortuneTrack=nothing

MagicNumber = PrevFortune + Request.Form("Age") + Request.Form("Number")

IF MagicNumber > 100 THEN

RANDOMIZE

NewFortune=INT((15 - 1 + 1) * RND + 1)

ELSE

RANDOMIZE

NewFortune=INT((31 - 16 + 1) * RND + 16)

END IF

UserName=Request.form("Name")

Set InsertFortune=Server.CreateObject("ADODB.RecordSet")

InsertFortune.Open "INSERT INTO Fortune_Track (Username, Fortune_ID)

 VALUES ('" & Username & "', " & NewFortune &

, "DSN=Fortune"

set TodayFortune=Server.CreateObject("ADODB.Recordset")

TodayFortune.open "SELECT * FROM Fortune_Data WHERE ID=" &

NewFortune, "DSN=Fortune"

%>

<p align="left">Thank you,

<%=Request.Form("Name")%>, wisdom seeker extraordinaire!

Your fortune is as follows:</p>

<hr>

<p align="left"><font size="6" face="Bookman Old Style"

Untitled-4 2/25/03, 10:19 AM155

156
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

color="#0000FF"><%Response.Write

TodayFortune("Fortune_Data")%></p>

<hr>

<p align="left">This is your

fortune for

<%=FORMATDATETIME(DATE,vbLongDate)%>. To have another fortune read,

click the button

below.</p>

<form method="POST" action="Fortune_Info.asp">

 <p align="center"><input type="submit" value="Tell me another fortune!"

name="B1"></p>

</form>

</body>

</html>

If Listing 7.8 seems complicated, don’t fret. It’s actually very straightforward and builds
on skills you learned in the previous chapters. I’ll go through each section of this code
one chunk at a time, and you will soon see that this page is quite simple.

Fortune_Process.asp—Defining the Page Header
Information

The first section of this code is straightforward HTML. All you are doing is defining the
background (in this case, yellow) and giving the page a title:

<html>

<head>

<title>The Clairvoyant Code - Your Fortune is Told!</title>

</head>

<body bgcolor="#FFFF00">

Again, very simple. Other than the catchy page title ("The Clairvoyant Code - Your Fortune is
Told!"), nothing special is happening in this section of the code.

Fortune_Process.asp—Reading Previous Fortune
Entries

The next section of code scans the Fortune_Track table to determine (based on the
username) how many fortunes have already been given to the user. Remember, every
time a fortune is presented, information on the fortune seeker is inserted into the
Fortune_Track table of the database.

<%

set FortuneTrack=Server.CreateObject("ADODB.Recordset")

FortuneTrack.Open "SELECT * FROM Fortune_Track WHERE Username='" &

Untitled-4 2/25/03, 10:19 AM156

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

7
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
rt I

157Request.Form("Name") & "'", "DSN=Fortune"

Dim PrevFortune

PrevFortune = 0

Do While NOT FortuneTrack.EOF

PrevFortune = PrevFortune + FortuneTrack("ID")

FortuneTrack.MoveNext

Loop

FortuneTrack.Close

Set FortuneTrack=nothing

Take a closer look at what’s going on here to understand this critical section of the code:

1. The first part of this section opens a connection to the database. The SELECT state-
ment gathers all records within the Fortune_Track table where the Username
field matches the name provided by the user on the Fortune_Info.asp page.

2. The variable PrevFortune is declared and initially set to zero. This variable records
how many previous fortunes have been read (and subsequently recorded in the
database) for a specific user.

3. Finally, the DO WHILE loop runs through all the return records, as gathered by the
SELECT statement. As each record is returned, the values of the Fortune_ID fields
are added together. The code will use this number for generating a new fortune.

In essence, the PrevFortune variable is the sum of all the specific Fortune_ID values
recorded in the Fortune_Track table. For example, if user Sally Jones has three en-
tries in the Fortune_Track table (meaning that she has had her fortune read three
times), the PrevFortune adds all the values contained in the Fortune_ID field. Note
that the Fortune_ID field corresponds to the ID field of the Fortune_Data table. When
a fortune is delivered to a user, the unique identifier of that fortune (the ID field in the
Fortune_Data table) is recorded in the Fortune_ID field of the Fortune_Track table.

Fortune_Process.asp—Generating the Magic
Number for the New Fortune

The next section of code is where the clairvoyance of the code comes into play. This
mystical power is compliments of the RANDOMIZE function within VBScript, as well as the
If...Then statement.

MagicNumber = PrevFortune + Request.Form("Age") + Request.Form("Number")

IF MagicNumber > 100 THEN

RANDOMIZE

NewFortune=INT((15 - 1 + 1) * RND + 1)

ELSE

RANDOMIZE

HINT

Untitled-4 2/25/03, 10:19 AM157

158
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

NewFortune=INT((31 - 16 + 1) * RND + 16)

END IF

What’s happening with this section of your code? The MagicNumber variable is used ulti-
mately to pick a new fortune from the Fortune_Data table of the database.

1. The value of the PrevFortune variable (calculated in the first part of your code)
is added to the Age and Number values entered by the user on the
Fortune_Info.asp page.

2. The RANDOMIZE function is called to pick a fortune ID (again, corresponding to the
ID field of the Fortune_Data table), depending on the ultimate value of the
MagicNumber variable. If the MagicNumber variable is greater than 100, the RANDOMIZE
function is called to select a random number between 1 and 15 (including 1 and
15). If the MagicNumber variable is less than 100, the RANDOMIZE function is called to se-
lect a random number between 16 and 31 (including 16 and 31). Again, you ran-
domly select a number between 1 and 31 because this range corresponds to the
ID field in the Fortune_Data table of the database.

3. This number is assigned to the variable NewFortune, which correlates to a specific
ID within the Fortune_Data table.

Fortune_Process.asp—Displaying a New Fortune

After this processing is done, the only thing left to do is display the code. This is done
via the following code:

UserName=Request.form("Username")

Set InsertFortune=Server.CreateObject("ADODB.RecordSet")

InsertFortune.Open "INSERT INTO Fortune_Track (Username, Fortune_ID) VALUES

('" & Username & "', " & NewFortune & ")""DSN=Fortune"

set TodayFortune=Server.CreateObject("ADODB.Recordset")

TodayFortune.open "SELECT * FROM Fortune_Data WHERE ID=" & NewFortune,

"DSN=Fortune"

%>

<p align="left">Thank you, <font

color="#0000FF">

<%=Request.Form("Name")%>, wisdom seeker extraordinaire! Your

fortune is as

follows:</p>

<hr>

<p align="left"><font size="6" face="Bookman Old Style"

color="#0000FF"><%Response.Write

TodayFortune("Fortune_Data")%></p>

<hr>

<p align="left">This is your

Untitled-4 2/25/03, 10:19 AM158

C
h

a
p

te
r

7
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
rt I

159fortune for

<%=FORMATDATETIME(DATE,vbLongDate)%>. To have another fortune read, click the

button

below.</p>

<form method="POST" action="Fortune_Info.asp">

 <p align="center"><input type="submit" value="Tell me another fortune!"

name="B1"></p>

</form>

</body>

</html>

Look at the specific features of this code:

1. After the NewFortune variable is defined (per the preceding section of code), it is in-
serted into a typical SELECT statement, which reads from the Fortune_Data table.

2. To record which fortune is given to the user, an INSERT statement is used to store
the specific fortune ID, the username, and the current data into the
Fortune_Track table of the database.

3. Regular HTML formatting (font, color, and so on) is used to present the fortune
to the user. Note the use of Response.Write to display the name and the fortune.

4. A typical form (with a submit button labeled Tell me another fortune) is pre-
sented. When users click this form, they are returned to the Fortune_Info.asp
page, where they can enter information again and have a new fortune read.

Summary

Through the Fortune Teller game, you have learned essential elements of program-
ming ASP pages. You learned how to use the If...Then statement to add programming
logic to your code You were introduced to the concept of loops in your code and saw
how they greatly reduce the length of your code, as well as add tremendous function-
ality, especially in looping through records from a database. Building on the material
you learned in Chapter 5, “Database Access with ADO,” and Chapter 6, “Using Forms,”
you learned how to gather information from a user, integrate it with information be-
ing read from a database, and then store the information (via a simple INSERT state-
ment) back into the database. Finally, by using even basic HTML formatting, you learned
how to spice up your Web pages, especially when integrating dynamic information
read from a database.

Untitled-4 2/25/03, 10:19 AM159

160
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

E X E R C I S E S

Try these exercises to strengthen your understanding of the concepts presented in this chapter:

1. Although not a specific subject discussed in this chapter, create a new Access database

and establish a DSN connection to it. (It never hurts to review this important concept!)

Once this is done, create a few simple ASP pages that reference some information in the

database, and in turn display it on-screen.

2. Create a Web page that asks the user to enter her age. Then, create another Web page

that, utilizing the information provided by the user (you’ll need to be comfortable with

forms to work with this exercise), displays one message if the user is under 50 years of

age, and another message if the user is over 50 years of age.

3. Similar to exercise #2 above, add a third message. For example, have your page display

one message if the user is under 30 years of age; display a second message if he is 31-50

years of age; then, display a third message if he is over 50 years of age.

4. Create a Web page that asks the user to enter some number from one to ten. Then, pass

that information to a form “processing” page and, utilizing a Loop, increment by one the

number provided by the user. Display these new numbers on-screen, and “loop” (display-

ing each number for each iteration of the loop) until the loop reaches 50.

5. Develop a Web page that utilizes an If...Then, If...Then...Else and loop. If possible, have

the page read/write information to an Access database, too.

Untitled-4 2/25/03, 10:19 AM160

8

I
n this chapter, you will

• Learn how to use arrays to streamline your

programming and to serve as useful containers

for a wide range of values within your code.

• Work with various VBScript functions, includ-

ing mathematical, date, and time functions, to

add easy functionality to your ASP Web pages.

• Develop a game that uses many concepts

you’ve learned so far, especially in Chapter 7—

including integrating with a database and

working with forms.

Essential
Programming
Logic, Part II

C H A P T E R

Untitled-5 2/25/03, 10:22 AM161

162
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

In Chapter 7, “Essential Programming Logic, Part I,” you were introduced to funda-
mental programming concepts within VBScript, including the IF...THEN statement and
basic loops. In this chapter, you will build on these essential concepts by learning more
about VBScript functionality and, in the process, working more with loops, using ar-
rays, and again integrating your Web pages with a Microsoft database. Finally, espe-
cially as you develop the game for this chapter, you will get a preview of more ad-
vanced HTML formatting possible with VBScript (you will be learning more about for-
matting your dynamic VBScript output in Chapter 9, “Formatting Processed Output”).

Introducing Arrays:
Why Do You Need Them?

To describe the concept of an array best, think of—what else—an egg carton. That’s
right, an egg carton (because eggs and ASP have so much in common). A typical egg
carton has two rows, each containing six slots. If, for some reason, you felt compelled
to do so, you could use a felt-tip marker and number the eggs 1 through 12.

Now, before you start defacing eggs in your local supermarket, do a little more visual-
ization. Rather than number the eggs themselves, you number each slot in which the
eggs rest. Then you color each egg a different color so that each egg has its own unique
color (perhaps it’s Easter time).

You’re probably wondering where I’m going with this (as I am). Seriously, if you can
imagine a typical egg carton with 12 uniquely colored eggs, you understand the basic
concept of an array. An array is a variable in and of itself. However, unlike a typical
variable, an array can store multiple values (usually, values that are related in some
way). Consider the code in Listing 8.1.

Listing 8.1 Coding without Arrays

<%

DIM EggCarton(12)

 EggCarton(1)="Red"

 EggCarton(2)="Blue"

 EggCarton(3)="Yellow"

 EggCarton(4)="Brown"

 EggCarton(5)="Green"

 EggCarton(6)="Black"

 EggCarton(7)="Gold"

 EggCarton(8)="Silver"

 EggCarton(9)="Purple"

 EggCarton(10)="Orange"

 EggCarton(11)="Violet"

 EggCarton(12)="White"

%>

The color of the egg in slot 7 is <%=EggCarton(7)%>, but the color of

the egg in slot 10 is <%=EggCarton(10)%>.

Untitled-5 2/25/03, 10:22 AM162

C
h

a
p

te
r

8
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
r t II

163As you can probably see in Listing 8.1, you are working with an array named EggCarton.
This array has 12 slots, each of which corresponds to a specific egg. When the line of
code is executed underneath the array, it reads like this:

The color of the egg in slot 7 is Gold, but the color of the egg in slot

10 is Orange.

What’s happening here is that the EggCarton array is used to store the specific, related
values (colors) of the 12 eggs. Although this is a simple example, you can already see
how, by using arrays, you can easily group together related values for easy reference,
retrieval, and manipulation within your code.

Arrays can also be multidimensional. What this means is that you can store more
than one piece of information within each slot because within each position are
subslots. For example, Listing 8.2 shows the EggCarton array as it would appear were it
multidimensional.

Listing 8.2 Defining Elements in an Array

<%

DIM EggCarton(12,1)

 EggCarton(0,0)="Egg 1"

 EggCarton(0,1)="Red"

 EggCarton(1,0)="Egg 2"

 EggCarton(1,1)="Blue"

 EggCarton(2,0)="Egg 3"

 EggCarton(2,1)="Yellow"

 EggCarton(3,0)="Egg 4"

 EggCarton(3,1)="Brown"

 EggCarton(4,0)="Egg 5"

 EggCarton(4,1)="Green"

 EggCarton(5,0)="Egg 6"

 EggCarton(5,1)="Black"

 EggCarton(6,0)="Egg 7"

 EggCarton(6,1)="Gold"

 EggCarton(7,0)="Egg 8"

 EggCarton(7,1)="Silver"

 EggCarton(8,0)="Egg 9"

 EggCarton(8,1)="Purple"

 EggCarton(9,0)="Egg 10"

 EggCarton(9,1)="Orange"

 EggCarton(10,0)="Egg 11"

 EggCarton(10,1)="Violet"

 EggCarton(11,0)="Egg 12"

 EggCarton(11,1)="White"

%>

The egg in slot #4, <%=EggCarton(7,0)%>, has the color <%=EggCarton(7,1)%>

Untitled-5 2/25/03, 10:22 AM163

164
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Another way to think of these multidimensional arrays is in terms of a table. Specifi-
cally, the first number (or index) in the array corresponds to the row of the table, and
the second number (index) is the column.

Visualizing arrays as tables is an excellent way of comprehending their layout and
quickly understanding the values of each position.

Again, you will find that arrays are very useful for grouping together and categorizing
related sets of information. Also, because you can dynamically define the values placed
into them, they prove to be incredibly powerful tools for storing variable values that
are determined as your code executes.

What do I mean by that? If you recall from examples in this book, you can assign
values to variables on-the-fly. Consider the example in Listing 8.3.

Listing 8.3 First Array Example

DIM ScoreArray(5)

For i=1 to 5

Value="Score"&i

 ScoreArray(i)=Value

Next

When this code executes, the following actions occur:

1. An array by the name of ScoreArray is defined via the DIM statement.

2. A simple For...Next loop is begun. In this instance, the loop runs five times.

3. A variable named Value is set each time the loop executes. The value assigned to
this Value variable is dynamically generated: It is a combination of the word Score
and the current value of the i variable as it corresponds to the For...Next loop.
Therefore, the first time through the loop, the Value variable has a value equal to
Score1.

4. The Value variable is assigned to a specific position within the ScoreArray. Again, be-
cause this is dynamic code, the first time through the loop, the code executes as
ScoreArray(1)="Score" (as the current value of i is evaluated).

Zero-Based Arrays

Zero-based indicates that all arrays have one more element than it would appear. In
the array SomeArray(7), there are actually eight elements because the array is zero-based.
Basically, this means that the zero position is a viable position for storing data within
the variable, so the SomeArray(7) variable can have its elements defined as in Listing 8.4.

Listing 8.4 Example of Zero-Based Arrays

SomeArray(0)="Los Angeles"

SomeArray(1)="Boston"

SomeArray(2)="Chicago"

SomeArray(3)="Dallas"

TRICK

Untitled-5 2/25/03, 10:22 AM164

C
h

a
p

te
r

8
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
r t II

165SomeArray(4)="Denver"

SomeArray(5)="Indianapolis"

SomeArray(6)="Houston"

SomeArray(7)="New York"

As you can see, there are eight elements in the SomeArray(7) array, because of the exist-
ence of the zero position. Don’t let this confuse you. Just remember that you always
have that extra element (the zero position) to work with.

Remember not to exceed the maximum number of elements within an array. In the
SomeArray example, if you tried to assign a value to element SomeArray(8), you would
receive an error. Even though there are eight elements in this array, the zero element
counts as the first position, so the highest element number is still 7.

Useful Array Functions

VBScript presents many useful functions for working with arrays. In this section, I will
describe a few of these and show how you can use them to your advantage within your
ASP Web pages.

UBOUND()

The first function, UBOUND(), allows you to retrieve the size of an array quickly. For ex-
ample, take a look at Listing 8.5.

Listing 8.5 Example of UBOUND() Function

DIM JohnArray(23, 34)

UBOUND(JohnArray)

UBOUND(JohnArray, 1)

UBOUND(JohnArray, 2)

What is displayed when this code executes? Each UBOUND() function call returns a
unique value:

1. UBOUND(JohnArray) returns the value of 23. Why 23 and not 34 (or some other an-
swer)? If you just place the array name within the UBOUND function, it automati-
cally returns the highest value of the array’s first dimension. In this case, the
highest value possible in the first dimension is 23.

Don’t let all this talk of multidimensional arrays throw you. Think of a table, and
visualize rows and columns so that you can see the different dimensions of the ar-
ray and the values they contain.

2. In UBOUND(JohnArray, 1), the value of 23 is again returned. You are specifically ask-
ing for the upper limit of the first dimension of the array, which is 23.

3. In UBOUND(JohnArray, 2), the value of 34 is returned. You are asking for the upper
limit of the second dimension to be returned, which is 34.

TRAP

TRICK

Untitled-5 2/25/03, 10:22 AM165

166
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

ERASE()

The second array function I want to discuss is the ERASE() function. Not surprisingly,
you use this array to clear away the values stored in an array. Look at the code in
Listing 8.6.

Listing 8.6 Example of ERASE() Function

<%

DIM JackArray(5)

JackArray(1)="Bob the Builder"

JackArray(2)="Blue's Clues"

JackArray(3)="Rugrats"

%>

The value of the second position of the array is <%=JackArray(2)%><p>

<%

ERASE JackArray

%>

The value of the first position of the array is <%=JackArray(1)%>

When this code is executed, the following output is presented:

The value of the second position of the array is Blue's Clues

The value of the first position of the array is

As you can see, the first statement has the value of the second position dynamically
inserted (via the statement <%=JackArray(2)%>). However, the second statement has a blank
spot where the value of the first position should be inserted, because the ERASE func-
tion was called right before this line is executed.

ISARRAY()

The final array-specific function I want to discuss is the ISARRAY() function. This func-
tion returns a value of true or false, depending on whether the variable being evaluated
is an array. Consider Listing 8.7.

Listing 8.7 Example of ISARRAY() Function

<%

DIM GennaValue(5)

GeorgeValue

%>

Is GennaValue an array? The answer is <%=ISARRAY(GennaValue)%><p>

Is GeorgeValue an array? The answer is <%=ISARRAY(GeorgeValue)%>

When this code executes, the following is output to the screen:

Is GennaValue an array? The answer is TRUE

Is GeorgeValue an array? The answer is FALSE

Untitled-5 2/25/03, 10:22 AM166

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

8
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
r t II

167Useful VBScript Functions

From IF...THEN statements to For...Next loops, arrays, and other variables, you have quite
a bit of VBScript under your belt and, along with it, the knowledge to make your Web
pages sing and dance by using VBScript with ASP. For more information on various
facets of VBScript, be sure to review Chapter 2, “Programming ASP Web Pages with
VBScript,” Chapter 7, “Essential Programming Logic, Part I,” and Appendix A, “VBScript
Variable Reference.”

In this section, you will take a look at a few more useful VBScript functions that will
make your programming life much easier and your Web pages more exciting. This is a
good overview of the functions available with VBScript, but not an exhaustive list.

The Convert Functions

Several functions available with VBScript enable you to convert a value to a specific
subtype variant (for example, a date subtype and currency subtype):

• CCur(). Converts an expression to a variant of the subtype currency

• CDate(). Converts an expression to a variant of the subtype date

• Chr(). Converts ANSI code to the matching keyboard character

• CInt(). Converts an expression to a variant of the subtype integer

As I write this, I hear you asking me, “Why, John, would I want to use these functions?”
Although they might seem boring and simple, they are very, very powerful. You will
find that as you dynamically generate and assign values to variables within your code,
you will want to turn around and manipulate those new values in a specific way, as in
Listing 8.8, for example.

Listing 8.8 ConvertFunctions.asp

<head>

<title>Example of the CDate() Function</title>

</head>

<html>

<body>

<%

For i = 1 to 5

 DynamicDate=i&"/"&i&"/"&i

 DynamicDate=CDate(DynamicDate)

 DynamicDate=FORMATDATETIME(DynamicDate, vbLongDate)

%>

Date number <%=i%> is: <%=DynamicDate%><p>

<%

Next

%>

</body>

</html>

When this code is executed within a Web browser, it looks like Figure 8.1.

Untitled-5 2/25/03, 10:22 AM167

168
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

As you can see from the code, you are using another simple For...Next loop to provide a
variable, i, that increases by a value of 1 each time through the loop. Using this vari-
able, the DynamicDate variable is built (DynamicDate=i&"/"&i&"/"&i). After this variable is built,
it is converted to a date subtype, by using the CDate() function, so that it can be further
formatted, using the FORMATDATETIME function.

You can use the other conversion functions in the list to manipulate variables in the same
way, so that their values can be converted to current, integer, or ANSI character subtypes.

Mathematical Functions

I admit it—I was never a math whiz. Calculus was a real struggle for me. However, I
have always been fascinated with mathematical concepts and theories, even though I
don’t have a clue what any of them mean.

If you, too, are mathematically challenged, you will be glad to know that, for your com-
putational pleasure, VBScript presents a wide assortment of trigonometric functions:

• Atn(). Returns the arctangent of a number

• Cos(). Returns the cosine of a number

• Exp(). Raises a number to a specific exponential value

• Log(). Returns the natural logarithm of a number

• Sin(). Returns the sine of a number

• Sqr(). Returns the square root of a number

• Tan(). Returns the tangent of a number

When executed, the code in Listing 8.9 presents the output shown in Figure 8.2.

FIGURE 8.1

An example of using
the CDate()

function to convert
a dynamically

generated variable
into a variant of the

date subtype.

Untitled-5 2/25/03, 10:22 AM168

C
h

a
p

te
r

8
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
r t II

169Listing 8.9 MathFunctions.asp

<head>

<title>Example of Mathematical Functions in VBScript</title>

</head>

<body>

For this example, let's work with the number 31

<hr>

 The arctangent value is: <%=Atn(31)%>

 The cosine value is: <%=Cos(31)%>

 The exponential value is: <%=Exp(31)%>

 The natural logarithm value is <%=Log(31)%>

 The square root value is: <%=Sqr(31)%>

 The sine value is: <%=Sin(31)%>

 The tangent value is: <%=Tan(31)%>

</body>

</html>

I won’t say more about these functions, other than to remind you that if you have a
need for them and you understand them, you can use these to perform powerful num-
ber crunching. Enjoy!

The Is Functions

The Is functions, as I like to call them, are quite useful in testing whether a value
meets specific criteria. You saw an example of one of these, IsArray(), earlier.

FIGURE 8.2

An example of the
trigonometric

functions available
within VBScript, as
performed on the

number 31.

Untitled-5 2/25/03, 10:22 AM169

170
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

In addition to this function, you should be aware of several others:

• IsDate(). Determines whether an expression can be converted into a date format

• IsEmpty(). Determines whether a variable has been initialized or set to an
initial value

• IsNull(). Measures whether the expression in question is null

• IsNumeric(). Tests an expression to see whether it is a number

When do you use the Is functions? These functions are particularly useful when you
want to test whether a given expression meets specific criteria. In plain English, you
are asking yourself, Is the expression I’m looking at a number? Is the expression I’m
looking at null in value?

One very useful application of these functions is to test whether submitted form data
meets your criteria. Listing 8.10 is a simple form that asks users to enter the date they
were born and their age. Listing 8.11 is a typical form-processing page that uses two of
these functions to ensure that the data submitted by the user meets specified criteria.
Figure 8.3 shows the form that users are asked to complete.

Listing 8.10 IsFunctionForm.asp

<html>

<head>

<title>Working with "Is" Functions in VBScript</title>

</head>

<body>

<p align="center">Working

with the "Is" Functions</p>

<p align="center"><hr>

<form method="POST" action="IsFunctionProcess.asp"

<p align="left">Enter the date of your birth, in the format shown:

<input type="text" name="DOB" size="20" value="mm/dd/yy"></p>

<p align="left">Enter your age in years: <input type="text" name="Age"

size="10"></p>

<p align="center"><input type="submit" value="Verify your data!"

name="B1"></p>

</form>

</body>

</html>

Listing 8.11 IsFunctionProcess.asp

<html>

<head>

<title>Working with "Is" Functions in VBScript</title>

</head>

<body>

Untitled-5 2/25/03, 10:22 AM170

C
h

a
p

te
r

8
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
r t II

171<%

DOB=Request.Form("DOB")

CheckDOB=IsDate(DOB)

IF CheckDOB="False" THEN

%>

Submission error!

<hr>

You must enter your DOB in the proper format. Click the Back button on your

browser to re-enter this information.

<hr>

<%

END IF

Age=Request.Form("Age")

CheckAge=IsNumeric(Age)

IF CheckAge="False" THEN

%>

Submission error!

<hr>

You must enter your age in the proper format. Click the Back button on your

browser to re-enter this information.

<hr>

<%

END IF

%>

</body>

</html>

FIGURE 8.3

A simple form
asking visitors to

enter their date of
birth and age in

specific formats.

Untitled-5 2/25/03, 10:22 AM171

172
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

When you load this page into your Web browser, the first time you submit your data,
enter your name in the date of birth field, but enter your age in numeric value. When
you click the Verify your data! button, your screen looks like Figure 8.4.

To illustrate the IsNumeric() function, go back to the form, but this time enter your date
of birth in the proper format, and then enter your name in the age field. When you
submit your data, your screen looks like Figure 8.5.

The code listings are simple, but you can see how the various Is functions can be used
to verify whether certain data is of the proper format. Don’t forget to implement these
powerful functions in your code when you have to do rudimentary data checking. This
method of safeguarding your data can be very important. Imagine that you are trying
to build a comprehensive database of user information and you want to make sure
that you capture information (street address, state, ZIP) in the proper format. In other
words, you don’t want users to enter their age in the state field of your form, their date
of birth in the street address field, and so on. By using the Is functions as described
here, you can check the data before it is submitted to your database. If it can’t be
converted (that is, checked) into specific formats, you ask users to resubmit the data
(refer to Figures 8.4 and 8.5).

Many HTML editing tools, such as Microsoft FrontPage, have built-in form field vali-
dation features. However, don’t forget to use the built-in validation features of
VBScript—the Is functions.

FIGURE 8.4

The IsDate()

function in Listing
8.11 checks whether
the value you enter
into the DOB field

can be converted to
a date format. If it
can’t, you see this

error message.

TRICK

Untitled-5 2/25/03, 10:22 AM172

C
h

a
p

te
r

8
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
r t II

173

Time and Date Functions

Not surprisingly, VBScript has several functions that make working with and manipu-
lating date and time values much easier:

• Date(). Returns the date as it is being kept on the particular system where IIS
is running

• Hour(). Returns the hour, as specified

• Minute(). Returns the minute as specified

• Month(). Returns the month, as specified

• Now(). Returns the current date and time, as specified on the server where IIS
is running

• Second(). Returns the second of the specified minute

• Time(). Returns the current time, as specified on the server where IIS is running

Of all the functions, these date and time functions are probably the most self-ex-
planatory. Nevertheless, take a look at a Web page that shows them all in action, in
Listing 8.12.

Listing 8.12 DateTimeFunctions.asp

<html>

<head>

<title>Working with VBScript Date/Time Functions</title>

</head>

FIGURE 8.5

IsNumeric()

verifies that your
name, as text,

cannot be
converted into a

numeric format, so
this error message

is displayed.

Untitled-5 2/25/03, 10:22 AM173

174
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

<body>

<p align="center">

Working with Date/Time Functions</p>

<hr>

 The date is: <%=DATE%>

 The hour right now is: <%=Hour(NOW)%>

 The minute right now is: <%=Minute(NOW)%>

 The time right now is: <%=NOW%>

 The second of the minute right now is: <%=Second(NOW)%>

 The time on the Web server computer is: <%=Time%>

</body>

</html>

Figure 8.6 shows how these functions return specific values.

The functions described here are just a few of the date and time functions available
within VBScript.

Programming the ASP War! Game

When you were a kid, before you knew how to play poker, you probably laid down a few
exciting games of War. Now, as I remember playing it, the game consists of dealing half
the deck to yourself and the other half to your buddy. Then, you each turn over one
card at a time, with the highest card winning the hand. When there are no cards left
to play, the person who wins the most hands wins the war.

FIGURE 8.6

The date and time
functions in action

on a Web page.

Untitled-5 2/25/03, 10:22 AM174

C
h

a
p

te
r

8
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
r t II

175Admittedly, this isn’t the most exciting game, but with help from ASP, you can turn a
simple children’s game into something more entertaining. Before you examine the
code, take a look at the rules for playing ASP War!:

• To begin the game, you are asked to enter your name and the initial number of
armies with which you want to battle. Note that you start the game with 200 armies.

• Your computer is the opponent. The computer starts the game with 100 armies.

• There are 10 battles (or rounds) per game. For each round, you have to gamble at
least half your available armies.

• The winner of each battle is determined by adding up the value of all the cards
displayed. In many card games, face cards are assigned a value of 10, with all
other cards being awarded their face value. However, in ASP War!, the face cards
(including the Ace) are assigned the following point values:

• 10 card—10 points

• Jack card—11 points

• Queen card—12 points

• King card—13 points

• Ace card—14 points

• At the end of 10 rounds, the total points for the player and for the computer are
added. The highest point total wins the war!

Let me take you through a game so that you can see how the rules are applied:

1. To begin the game, load the page ASPWar_Home.asp into your Web browser (see
Figure 8.7).

2. When you click the Begin the War! button, the game begins. Three cards are
drawn for you and for the computer. The total of the three cards is computed,
with the highest total winning that battle (see Figure 8.8).

FIGURE 8.7

Enter your name
and the number of
armies you want to

gamble on the
initial battle.

Untitled-5 2/25/03, 10:22 AM175

176
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

3. If you scroll down the page, underneath the COMPUTER WINS THE BATTLE! message, you
will see a prompt to enter the number of armies you want to gamble in the next
battle (see Figure 8.9). Note how the total of your available armies is automati-
cally computed, based on the results of the current round. In this example, the
player gambled 100 of his 200 armies. Because the computer won the battle, he
now has only 100 armies left (200 - 100 = 100). The computer, whenever it wins,
adds to its total the number of armies the player gambled.

FIGURE 8.8

The computer wins
the battle. With two
Aces and an 8, the

computer’s total
score is 36 (each
Ace is worth 14
points, and the 8
card equals 36).

FIGURE 8.9

Enter the number
of armies you want
to gamble for the

next round.
Click Proceed to

next battle!

Untitled-5 2/25/03, 10:22 AM176

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

8
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
r t II

177

4. As the game continues, note how the current round is tracked (in Figure 8.10,
the game is in round 2). Also, in this figure, the player has won the battle with a
total score of 32 (Ace = 14, King = 13, and a 5).

5. Scrolling to the bottom of this screen (refer to Figure 8.10), the player has a total
of 150 armies, but this time he forgets the rule that he must gamble at least half
his armies and enters only 50. When he clicks the submit button, he is presented
with an error message, shown in Figure 8.11.

FIGURE 8.10

The player wins this
round. Note how the

current round is
tracked at the top of

the screen.

FIGURE 8.11

You must gamble at
least half your

available armies to
fight each battle.

Untitled-5 2/25/03, 10:22 AM177

178
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

6. The game is also smart enough to know whether you are trying to gamble more
armies than you have available. If you do, you see the message shown in Figure 8.12.

7. The game continues through 10 rounds. The highest score at the end of the
tenth round wins the game, as shown in Figure 8.13.

FIGURE 8.12

Don’t try to gamble
more armies than

you have available!

FIGURE 8.13

The war is over!
Can you fight the

evil computer and
bring peace to
Silicon Valley?

Untitled-5 2/25/03, 10:22 AM178

C
h

a
p

te
r

8
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
r t II

179Analyzing the Code

The game consists of two ASP pages:

• ASPWar_Home.asp. This displays the opening text and asks you to enter your
name and the initial number of armies you want to fight with.

• ASPWar_Play.asp. This is where all the action of the game occurs, including the
display of the cards, determining who wins each round, the tracking of the round
and score, and the final determination of who wins the war (the game).

• The War.mdb database. This is used to track the randomly selected cards from
hand to hand so that the player and the computer are not dealt the same card(s).

Listing 8.13 is the ASPWar_Home.asp page.

Listing 8.13 ASPWar_Home.asp

<html>

<head>

<title>ASP War!</title>

</head>

<body>

<p align="center">

ASP WAR</p>

<hr>

<p align="left">So private, you think you got what it takes to

be a general? You better be ready, because your computer just might have

other plans! Gamble your armies on the turn of a card: if you get lucky,

you'll gain reinforcements allowing you to mount even bigger offensives.

Have a bad day, and you're going to be very unpopular on the home front. So,

Dr. Strangelove, enter your name below and get ready for...WAR!</p>

<p align="center">BEGIN THE WAR WITH 200

ARMIES</p>

<p align="center">YOU MUST ENGAGE AT LEAST

HALF OF YOUR AVAILABLE ARMIES IN EACH BATTLE!</p>

<hr>

<form method="POST" action="ASPWar_Play.asp">

 <p align="left">Enter your name here: <input type="text" name="Player"

size="20"></p>

 <p align="left">Enter number of armies for first battle: <input type="text"

name="Armies" size="10"></p>

 <p align="center"><input type="submit" value="Begin the War!" name="B1"></p>

<input type="hidden" name="TotalArmies" value="200">

<input type="hidden" name="CTotalArmies" value="100">

<input type="hidden" name="Round" value="1">

</form>

</body>

</html>

Untitled-5 2/25/03, 10:22 AM179

180
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

This is a very simple form, but you should take note of the specific hidden form fields
set and passed along with the initial number of armies to be used (form element Armies),
as well as the player’s name (form element Player). Specifically, three hidden form fields
are initially set on this page:

• TotalArmies. Tracks the total number of armies you gain or lose throughout the
course of the game. As you progress through each round, TotalArmies tracks the to-
tal number of armies you have available to fight with. To begin the game, you
have 200 armies at your disposal.

• CTotalArmies. Functions in exactly the same way as the TotalArmies variable but tracks
the armies available to the computer. Note that the initial value of this variable is
set to 100.

• Round. Tracks the current round of the game. After the tenth round, the TotalArmies
and CTotalArmies variables are compared, with the highest one indicating who
wins the game.

Why make the TotalArmies, CTotalArmies, and Round variables hidden? They are used
to track specific game components, so they can remain behind the scenes because
they require no direct manipulation by the user.

Listing 8.14 is the ASPWar_Play.asp page, where all the game action takes place. Al-
though at first glance this might seem complicated, it’s quite straightforward and
easy to understand.

Listing 8.14 ASPWar_Play.asp

<html>

<head>

<title>ASP War!</title>

</head>

<body>

<%

 ArmyCheck=Request.Form("TotalArmies")

 ArmyCheck=CInt(ArmyCheck)

 ArmyCheckStatic=ArmyCheck

 ArmyCheck=ArmyCheck / 2

 ArmyBet=Request.Form("Armies")

 ArmyBet=CInt(ArmyBet)

 'Check to see if game is over

 'Only 10 rounds are played

 IF Request.Form("Round")=11 THEN

%>

<hr>

<center>The War Is Over!</center>

<hr>

TRICK

Untitled-5 2/25/03, 10:22 AM180

C
h

a
p

te
r

8
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
r t II

181<%

 'Check to see who won the game

 IF Request.Form("TotalPoints") > Request.Form("CTotalPoints") THEN

 %>

 YOU WIN THE BATTLE!<p>

 Your score: <%=Request.Form("TotalArmies")%><p>

 Computer score: <%=Request.Form("CTotalArmies")%>

 <%

 ELSE

 %>

 SORRY! THE COMPUTER HAS WON THE BATTLE!<p>

 Your score: <%=Request.Form("TotalArmies")%><p>

 Computer score: <%=Request.Form("CTotalArmies")%>

 <%END IF%>

<%

 'Check to see number of armies. Remember, the player must

 'gamble at least half his or her available armies

 'Check to see if player has gambled more armies

 'than she or he has available

 ELSEIF ArmyBet > ArmyCheckStatic THEN

 'Player needs to reduce number of gambled armies

%>

Sorry, but you don't have that many armies!<p>

<form method="POST" action="ASPWar_Play.asp">

Enter number of armies for next battle (Available: <%=Request.Form

("TotalArmies")%>): <input type="text" name="Armies" size="10">

<p>

<center><input type="submit" value="Click here to gamble more armies"></center>

<input type="hidden" name="player" value="<%=Request.Form("Player")%>">

<input type="hidden" name="TotalArmies" value="<%=Request.Form

("TotalArmies")%>">

<input type="hidden" name="round" value="<%=Request.Form("Round")%>">

<input type="hidden" name="CTotalArmies" value="<%=Request.Form

("CTotalArmies")%>">

</p>

</form>

<p>

<%

 ELSEIF ArmyCheck > ArmyBet THEN

 'Player needs to gamble more armies.

Untitled-5 2/25/03, 10:22 AM181

182
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

%>

Sorry, but you need to gamble at least half of your available armies!<p>

<form method="POST" action="ASPWar_Play.asp">

Enter number of armies for next battle (Available: <%=Request.Form

("TotalArmies")%>): <input type="text" name="Armies" size="10">

<p>

<center><input type="submit" value="Click here to gamble more armies"></center>

<input type="hidden" name="player" value="<%=Request.Form("Player")%>">

<input type="hidden" name="TotalArmies" value="<%=Request.Form

("TotalArmies")%>">

<input type="hidden" name="round" value="<%=Request.Form("Round")%>">

<input type="hidden" name="CTotalArmies" value="<%=Request.Form

("CTotalArmies")%>">

</p>

</form>

<p>

<%

'If player has gambled at least half of his or her available armies,

'then the game may continue

ELSE

'Define Arrays

Dim PlayerCards(3)

Dim ComputerCards(3)

Dim ComputerScore(3)

Dim PlayerScore(3)

'Set player name

Player=Request.Form("Player")

%>

<hr>

<center>BATTLE No.<%=Request.Form("Round")%></center>

<hr>

<table border="0" width="100%" bgcolor="#C0C0C0">

 <tr>

 <td width="50%" colspan="2">

 <p align="center">

 <u> <%=Request.Form("Player")%></u>

 </td>

 <td width="50%" colspan="2">

 <p align="left">

 <u>COMPUTER</u>

Untitled-5 2/25/03, 10:22 AM182

C
h

a
p

te
r

8
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
r t II

183 </td>

 </tr>

<%

'Randomly select the cards from the database, for this battle

'We will need six cards, so the loop will repeat six times

'As each card is randomly selected, the Selected column is marked in the

'database, and the card name is placed into one of the two arrays

'for retrieval during the battle!

'Determine Player Cards

For a=1 to 3

CheckVar=0

'Check to see if this card has already been selected from the database

DO UNTIL CheckVar=1

CheckVar=0

 RANDOMIZE

 RndCheck=INT((52-1+1) * RND + 1)

set CardCheck=Server.CreateObject("ADODB.Recordset")

sqlstmt="SELECT * FROM Cards WHERE ID="& RndCheck

CardCheck.Open sqlstmt, "DSN=War", 3, 3, 1

IF CardCheck("Selected")=0 THEN

CheckVar=1

PlayerCards(a)=CardCheck("CardName")

PlayerScore(a)=CardCheck("CardValue")

'Update Database

set CardUpdate=Server.CreateObject("ADODB.Recordset")

sqlstmt="UPDATE Cards SET Selected=1 WHERE ID="&RndCheck

CardUpdate.Open sqlstmt, "DSN=War", 3, 3, 1

END IF

LOOP

Next

'Determine Computer Cards

For a=1 to 3

CheckVar=0

'Check to see if this card has already been selected from the database

DO UNTIL CheckVar=1

CheckVar=0

 RANDOMIZE

 RndCheck=INT((52-1+1) * RND + 1)

set CardCheck=Server.CreateObject("ADODB.Recordset")

Untitled-5 2/25/03, 10:22 AM183

184
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

sqlstmt="SELECT * FROM Cards WHERE ID="& RndCheck

CardCheck.Open sqlstmt, "DSN=War", 3, 3, 1

IF CardCheck("Selected")=0 THEN

CheckVar=1

ComputerCards(a)=CardCheck("CardName")

ComputerScore(a)=CardCheck("CardValue")

'Update Database

set CardUpdate=Server.CreateObject("ADODB.Recordset")

sqlstmt="UPDATE Cards SET Selected=1 WHERE ID="&RndCheck

CardUpdate.Open sqlstmt, "DSN=War", 3, 3, 1

END IF

LOOP

Next

'Now, begin the battle!

%>

 <tr>

 <td width="11%">BANG!</td>

 <td width="39%">

 <p align="center"><img border="0" src="Cards/<%=PlayerCards(1)%>.gif"

 width="73" height="97"></td>

 <td width="41%">

 <p align="center"><img border="0" src="Cards/<%=ComputerCards(1)%>.gif"

width="73" height="97"></td>

 </tr>

 <tr>

 <td width="11%">BANG!</td>

 <td width="39%">

 <p align="center"><img border="0" src="Cards/<%=PlayerCards(2)%>.gif"

 width="73" height="97"></td>

 <td width="41%">

 <p align="center"><img border="0" src="Cards/<%=ComputerCards(2)%>.gif"

 width="73" height="97"></td>

 </tr>

 <tr>

 <td width="11%">BANG!</td>

 <td width="39%">

 <p align="center"><img border="0" src="Cards/<%=PlayerCards(3)%>.gif"

 width="73" height="97"></td>

 <td width="41%">

 <p align="center"><img border="0" src="Cards/<%=ComputerCards(3)%>.gif"

width="73" height="97"></td>

 </tr>

Untitled-5 2/25/03, 10:22 AM184

C
h

a
p

te
r

8
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
r t II

185</table>

<%

'Determine who won this battle

PScore=PlayerScore(1)+PlayerScore(2)+PlayerScore(3)

CScore=ComputerScore(1)+ComputerScore(2)+ComputerScore(3)

IF PScore > CScore THEN

'Set Armies

A=Request.Form("TotalArmies")

B=Request.Form("Armies")

A=CInt(A)

B=CInt(B)

TotalArmies=A+B

CTotalArmies=Request.Form("CTotalArmies")

%>

<p align="center">PLAYER WINS THE

BATTLE!</p>

<%END IF%>

<%

IF CScore > PScore THEN

A=Request.Form("TotalArmies")

B=Request.Form("Armies")

TotalArmies=A-b

'When the computer wins, they get armies added to their total

C=Request.Form("CTotalArmies")

C=CInt(C)

CTotalArmies=C+B

%>

<p align="center">COMPUTER WINS THE

BATTLE!</p>

<%END IF%>

<%IF PScore=CScore THEN

TotalArmies=Request.Form("TotalArmies")

CTotalArmies=Request.Form("CTotalArmies")

%>

<p align="center">STALEMATE!</p>

<%

END IF

%>

<%

'Reset the database

set CardReset=Server.CreateObject("ADODB.Recordset")

sqlstmt="UPDATE Cards SET Selected=0"

CardReset.Open sqlstmt, "DSN=War", 3, 3, 1

Untitled-5 2/25/03, 10:22 AM185

186
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

%>

<hr>

<form method="post" action="ASPWar_Play.asp">

<%

'Set values to pass

CurrentRound=Request.Form("Round")+1

Player=Request.Form("Player")

%>

<input type="hidden" name="player" value="<%=Player%>">

<input type="hidden" name="TotalArmies" value="<%=TotalArmies%>">

<input type="hidden" name="round" value="<%=CurrentRound%>">

<input type="hidden" name="CTotalArmies" value="<%=CTotalArmies%>">

Enter number of armies for next battle: (Available: <%=TotalArmies%>)

<input type="text" size="10" name="Armies"> <center><input type="submit"

value="Proceed to next battle!"></center>

</form>

<%

END IF

%>

</body>

</html>

How does all of this work? Let’s go through the code and see what’s happening within
this page:

1. The opening lines of code request the total armies and number of armies that
have been gambled for the particular round. The ArmyCheck variable is used to de-
termine whether at least half the available armies have been gambled (remem-
ber, this is a central rule of the game).

2. The next section, focusing on the line IF Request.Form("Round")=11, checks whether
the game is over (the round variable increases by 1 as each round is played). If
this variable is equal to 11, this indicates that 10 rounds have been played and
the game is over (so the IF...THEN statement evaluates to true in this case). The
code then checks to see who won the war, by comparing the TotalArmies (player
armies) with the CTotalArmies (computer armies) variables. Whichever is highest
wins the game, and the appropriate message is displayed (either YOU WIN THE WAR or
SORRY! THE COMPUTER HAS WON THE WAR!).

3. If the round variable is not equal to 1, this indicates that the game is still in
progress. The first action that must occur is to determine whether the player has
gambled at least half his armies and to check whether he has tried to gamble
more armies than he possesses. The use of the ELSEIF statement facilitates this: If
either of the preceding conditions are true, the appropriate code is displayed
(Sorry, but you don't have that many armies! or Sorry, but you need to gamble at least half of
your available armies). The code is stopped at this point, and a form is displayed,
asking the user to gamble more or fewer of his armies.

Untitled-5 2/25/03, 10:22 AM186

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

8
E
s
s
e
n

ti a
l P

r o
g

r a
m

m
i n

g
 L

o
g

i c
, P

a
r t II

187Note that in both these sections, the form action is set to "ASPWar_Play.asp". In
other words, the form submits back to the same page. This is a useful trick for
keeping your ASP applications smaller in size by limiting the number of Web pages
you need to build.

4. Assuming that round 10 has not passed and the player has gambled at least half
his armies (without trying to gamble more armies than he already has), the code
proceeds. The first action to occur is that the four arrays are initially set
(PlayerCards, ComputerCards, ComputerScore, and PlayerScore). These arrays are used to dis-
play the cards on screen and to tally the total of these cards so that a winner for
each round can be determined.

5. A typical HTML table is begun (to keep the card display neat, you place the cards
into specific cells within the table). The round is displayed at the top of the table
(via the line BATTLE no. <%=Request.Form("Round")%>).

6. The specific cards for each round are randomly selected. Notice the use of the
CheckVar variable to determine whether the card has already been selected. This
works exactly the same as the Memory Game you developed in Chapter 6. A ran-
dom number is generated (in this case, a number between 1 and 52 to corre-
spond to the number of cards in the deck). This number is then used in a SQL
query to the database. This query continues to be executed (via the DO UNTIL loop)
until a card is found that has not been selected. When such a card is found, its
value within the database is set to selected, and the DO UNTIL loop ends. The card
name is inserted into the PlayerCard array (by the line
PlayerCards(a)=CardCheck("CardName")), and the card’s specific value is inserted into the
array PlayerScore (by the line PlayerCards(a)=CardCheck("CardValue")).

7. This process is repeated for the computer cards so that, for each round, all four ar-
rays (PlayerCards, ComputerCards, ComputerScore, and PlayerScore) are set with specific values.

8. The cards are displayed on the screen inside the table. Notice how the various
card image files are referenced:
<img border="0" src="Cards/<%=PlayerCards(1)%>.gif"

The name of the card is dynamically generated by calling a specific element of ei-
ther the PlayerCard or ComputerCard array and then adding the .gif extension to the end.

9. After all the cards are displayed, the code determines who won this particular
round. The player score and computer score are computed (by adding together
the respective elements of both the PlayerScore and ComputerScore arrays), with each
of these values being set to two variables: PScore and CScore. Then, these two vari-
ables are compared. The highest score indicates the winner of this particular
round, and the appropriate message is displayed (PLAYER WINS THE BATTLE!, COMPUTER
WINS THE BATTLE!, or STALEMATE!).

10. Finally, the database is reset. Specifically, the Selected field for each record is set
back to 0 (this is done so that, when the cards for the next round are deter-
mined, all the cards are initially unselected). A form is presented to the player,
asking him to enter the number of armies he wants to gamble for the next
round. Note that within this line of code, the TotalArmies variable value is dis-
played so that players know how many armies are available to them.

TRICK

Untitled-5 2/25/03, 10:22 AM187

188
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The card images are freeware and were obtained from the Web. However, in an effort
to give proper credit to the creator of these cards and to encourage the free and honest
distribution of others’ work, please be sure to read the Card_Graphic_Agreement file
included on the enclosed CD-ROM.

Summary

This chapter presents you with more useful VBScript functions and gives examples of
how to integrate them within your ASP Web pages. Using arrays, manipulating and
formatting time and dates, determining whether variables meet specific criteria (the
Is functions) and working with trigonometric functions, you should take advantage of
all the functions within VBScript to make your coding more powerful and, ultimately,
easier to understand. Finally, by developing the ASP War! game, you again saw how
various VBScript functions and statements can come together to produce nifty results
(especially when combined with straightforward HTML). You will learn more about
formatting your VBScript output with HTML in Chapter 9.

E X E R C I S E S

Try these exercises to further your understanding of how to work with VBScript functions:

1. Develop a form that asks for a user’s name, street address, city, state, and ZIP. When the

form is processed, place all this information into a multidimensional array named UserInfo(),

and then, reading from this array, display the information back on the screen. Do not use

request.form to display the information. Instead, insert the form data into the UserInfo()

array. Then display the information by reading from this array.

2. Develop a form that asks for information in a specific format (text, date, numbers, and the

like). When the form is processed, use the Is functions to determine whether the informa-

tion entered meets the specific format you set.

3. Develop an ASP Trigonometry Calculator. Format a typical HTML table, and within each

cell, place a submit button that is titled Sin, Cos, Tan, and so on (list all the trigonometric

functions discussed in this chapter). Also, in one of the cells, insert a text box so that the

user can insert a number. Then, depending on the number entered and the specific button

selected, the value will be displayed on screen.

4. Customize the ASP War! game so that, on the ASPWar_Home.asp page, it also asks

users how many rounds they would like to play, instead of forcing them to play the

default 10 rounds.

5. Customize the ASP War! game (and database) so that, after the game is over, the player

has the option to save his scores (within the database) for future reference.

6. Troubleshoot (that is, add functionality to account for possible errors) the following pos-

sibilities: upon the first turn, user bets all his armies and loses (what screen/options should

appear to him)? Also, add a feature into the code so that the system checks to make sure

he entered a username.

Untitled-5 2/25/03, 10:22 AM188

9

I
n this chapter, you will

• Learn how to format tables, lists, and

hyperlinks and to perform general page for-

matting as a result of your processed VBScript.

• Learn how to integrate query results dynami-

cally from a database into your Web pages.

• Learn how to make the ASP MadLibs game

presented in Chapter 3, “Working with ASP

Objects,” more visually appealing and more

functional.

Formatting
Processed Output

C H A P T E R

Untitled-6 2/25/03, 10:23 AM189

190
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

One look at the title of this chapter and you might think that it’s referring to one of those
not-so-tasty food substitutes you find in a box of imitation macaroni and cheese. This is not
the case, however. Formatting processed output refers to methods and mechanisms for
making the VBScript you execute within your ASP Web pages come to life in the best way
possible. Remember, one of the most appealing attributes of ASP is that your VBScript
executes on the server, so only regular HTML is sent to the user’s Web browser for display.
However, in comparison to static HTML, the dynamic Web pages you create with ASP can
produce HTML that is a result of users’ providing information via a form, the integration
of information stored in a database with the Web page, the actual processing of your VBScript
code on the server, and so on. In short, your Web pages come alive with ASP. Learning how
to format the executed code and its resulting output ensures that your pages—and the
functionality contained within them—always look their best.

Think of this chapter as a workshop lesson on how to improve your existing skill set in
working with VBScript, ASP, and database design.

HTML Formatting—Beyond the Basics

By using typical HTML formatting, you can neatly arrange your text and graphics on a
Web page. Consider the typical HTML code for a table in Listing 9.1.

Listing 9.1 Table.asp

<html>

<head>

<title>Simple HTML Formatting</title>

</head>

<body>

<table border="1" width="100%">

 <tr>

 <td width="100%" colspan="2">

 <p align="center"><font color="#008000" size="6" face="Bookman

Old Style">Welcome

 to Active Server Pages</td>

 </tr>

 <tr>

 <td width="50%"> </td>

 <td width="50%"> </td>

 </tr>

 <tr>

 <td width="50%"> </td>

 <td width="50%"> </td>

 </tr>

 <tr>

 <td width="50%"> </td>

 <td width="50%"> </td>

 </tr>

 <tr>

Untitled-6 2/25/03, 10:23 AM190

C
h

a
p

te
r

9
F
o

rm
a
tt in

g
 P

ro
c
e
s
s
e
d

 O
u

tp
u

t

191 <td width="50%"> </td>

 <td width="50%"> </td>

 </tr>

 <tr>

 <td width="50%"> </td>

 <td width="50%"> </td>

 </tr>

 <tr>

 <td width="50%"> </td>

 <td width="50%"> </td>

 </tr>

 <tr>

 <td width="50%"> </td>

 <td width="50%"> </td>

 </tr>

 <tr>

 <td width="50%"> </td>

 <td width="50%"> </td>

 </tr>

 <tr>

 <td width="50%"> </td>

 <td width="50%"> </td>

 </tr>

</table>

</body>

</html>

When this page is loaded within a Web browser, it looks like Figure 9.1.

FIGURE 9.1

A simple HTML
table. Note the
amount of code

required to produce
this simple page.

Untitled-6 2/25/03, 10:24 AM191

192
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

If you didn’t know anything about VBScript or ASP, you would be relegated to typing in
all the preceding code to produce the table in Figure 9.1. Fortunately, you decided to
learn ASP and are becoming quite proficient at it, so you have other options available!
Take a look at the code in Listing 9.2, which produces the same table shown in Figure
9.1 but uses VBScript to do the job.

Listing 9.2 Table2.asp

<html>

<head>

<title>Simple HTML Formatting</title>

</head>

<body>

<table border="1" width="100%">

 <tr>

 <td width="100%" colspan="2">

 <p align="center"><font color="#008000" size="6" face="Bookman Old

 Style">Welcome

 to Active Server Pages</td>

 </tr>

<%

For i=1 to 10

%>

 <tr>

 <td width="50%"> </td>

 <td width="50%"> </td>

 </tr>

<%

Next

%>

</table>

</body>

</html>

Undoubtedly, you notice the difference in code length between Listings 9.1 and 9.2; the
latter is considerably shorter. Also, note how much easier Listing 9.2 is to read and under-
stand. After the opening <table> tag is displayed and the initial table cell is formatted
with the Welcome to Active Server Pages text, a simple For...Next loop is inserted. This loop is
programmed to run 10 times; each time through, a new row of the table is inserted.
After the loop is complete, the closing </table> tag is inserted, and the page ends.

Because this example is simple, you should not underestimate the power of VBScript
to reduce the size and complexity of your HTML formatting drastically. Tables are a
good example, especially when used to read information from a database (as you learned
to do in Chapter 5, “Database Access with ADO”).

To reinforce that point, here is another look at reading information into your Web
pages via an Access database. Listing 9.3 draws on the Music database you worked with
in Chapter 5.

Untitled-6 2/25/03, 10:24 AM192

C
h

a
p

te
r

9
F
o

rm
a
tt in

g
 P

ro
c
e
s
s
e
d

 O
u

tp
u

t

193Listing 9.3 Database.asp

<html>

<head>

<title>Formatting Database Information</title>

</head>

<body>

<table border="1" width="100%">

 <tr>

 <td width="100%" colspan="2">

 <p align="center"><font color="#008000" size="6" face="Bookman Old

 Style">A sample of our music catalog</td>

 </tr>

<%

Set Catalog=Server.CreateObject("ADODB.Recordset")

Catalog.open "SELECT * FROM Catalog", "DSN=Music"

Do WHILE NOT Catalog("ID")=11

%>

 <tr>

 <td width="50%"> <%=Catalog("Artist")%></td>

 <td width="50%"> <%=Catalog("Title")%></td>

 </tr>

<%

Catalog.MoveNext

Loop

Catalog.Close

Set Catalog=Nothing

%>

</table>

</body>

</html>

When this code is loaded into a Web browser, it looks like Figure 9.2.

Think for a moment about the drawbacks of not using a database to present this kind
of information. You have to deal with the following issues:

• You have to enter each line of the table manually. Aside from the time involved,
your code will be twice as long (like Listing 9.1).

• Whenever the information within your Web page changes, you have to update the
Web page (and any related formatting) to display the information.

By keeping the information within a database, you only make the change there and let
the SQL query in the Web page do all the work. You can take the information you
retrieve from the SQL query and use it within other pages to which this page links (as
you will soon see).

The point here is that you should always take advantage of the time-saving, code-mini-
mizing capabilities of VBScript and ASP. Now you will see how VBScript and ASP bring
spice to your HTML.

Untitled-6 2/25/03, 10:24 AM193

194
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Creating Dynamic Form Elements

In Chapter 6, “Using Forms,” you learned how to use ASP to gather and process infor-
mation and, in conjunction with ADO, to integrate this information with a database.
You can also use VBScript to create the form and its corresponding form elements
dynamically.

To illustrate this, Listing 9.4 is a typical HTML form that uses a drop-down menu element.

Listing 9.4 Hard Coded Form Elements

<html>

<head>

<title>Dynamic Form Elements</title>

</head>

<body>

<p>Please select one of the titles listed below, and then click the

Submit button:</p>

<form method="POST" action="TitleChoice.asp">

 <p><select size="1" name="Choice">

 <option value="37">Dixie Chicken</option>

 <option value="38">Astral Weeks</option>

 <option value="39">In my Tribe</option>

 <option value="40">Scarecrow</option>

 <option value="41">Blue</option>

 </select><input type="submit" value="Submit" name="B1"></p>

</form>

FIGURE 9.2

By integrating
information stored
within a database

into your Web
pages, you add a
whole new level
of functionality

and power.

Untitled-6 2/25/03, 10:24 AM194

C
h

a
p

te
r

9
F
o

rm
a
tt in

g
 P

ro
c
e
s
s
e
d

 O
u

tp
u

t

195</body>

</html>

When loaded into a Web browser, this code produces the results shown in Figure 9.3.

In Listing 9.4, notice how all the items in the drop-down menu have a numeric value
assigned to them (37–41). This number corresponds to each record’s specific ID, as
contained in the Catalog table of the Music.mdb database. Figure 9.4 shows this table.

FIGURE 9.3

A typical drop-down
menu form element
populated with five

titles, each assigned
a specific value.

FIGURE 9.4

The Catalog table of
the Music.mdb

database. Note the
ID field for each

highlighted entry.

Untitled-6 2/25/03, 10:24 AM195

196
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Although it is possible to list each of these items statically within the HTML itself (in
other words, to have this specific information contained directly within the HMTL), it
is more practical and secure and, generally, better programming to read this informa-
tion from a database. That way, if you want to update or change it later, all you have to
worry about is changing the source of the information. All the Web pages that read or
manipulate this information can stay intact.

Listing 9.5 is an example of how this information can be read directly from the data-
base, with each of the items in the drop-down menu dynamically populated, based on
that information.

Listing 9.5 Form.asp

<html>

<head>

<title>Dynamic Form Elements</title>

</head>

<body>

<%

Set Catalog=Server.CreateObject("ADODB.Recordset")

Catalog.open "SELECT * FROM Catalog WHERE ID > 36 AND ID < 42", "DSN=Music"

%>

<p>Please select one of the titles listed below, and then click the

Submit button:</p>

<form method="POST" action="TitleChoice.asp">

<p><select size="1" name="Choice">

<%

DO WHILE not Catalog.EOF

%>

<option value="<%=Catalog("ID")%>"><%=Catalog("Title")%></option>

<%

Catalog.MoveNext

Loop

Catalog.Close

Set Catalog=Nothing

%>

</select><input type="submit" value="Submit" name="B1"></p>

</form>

</body>

</html>

When this code executes, the same result shown in Figure 9.3 is displayed in the Web
browser: a drop-down menu presenting five options. However, note that in Listing 9.5,
the drop-down menu and each of the five selections are dynamically read and defined
in the following line:

<option value="<%=Catalog("ID")%>"><%=Catalog("Title")%></option>

Using ADO techniques you learned in Chapter 5, the ID and Title values are read from
the Catalog query. Because you also are using a DO...WHILE loop (to loop through each of

Untitled-6 2/25/03, 10:24 AM196

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

9
F
o

rm
a
tt in

g
 P

ro
c
e
s
s
e
d

 O
u

tp
u

t

197

the records returned from the SQL query), the five options are built on-the-fly, thus
eliminating the need to hard-code (that is, include within the page itself) these values.
If you look at the source code for this page after it loads within your Web browser, you
can see that both the ID and Title values for each of the five records have been defined
(see Figure 9.5).

Creating Dynamic Hyperlinks and QueryStrings

Aside from dynamically generating form elements via data queried from a database, it
is also beneficial to use this on-the-fly HTML creation with hyperlinks and QueryStrings.
In this section, I’ll show you how to do just that.

All the techniques described in this chapter are particularly useful when you are
providing customized responses to user requests on your Web pages. For example,
imagine that you own a small business and develop a Web site to market and sell
your goods or services. Rather than present every user with your entire inventory,
you offer a form where users can search through your catalog, based on specific
criteria. Then you use this information to query your database and return only the
items in which they are interested. This type of customized Web design is central to
presenting the most functional and easiest-to-use Web site and also enables you to
make efficient use of your databases (where most of your information is likely stored).

Creating dynamic hyperlinks and QueryStrings works very much like the other dy-
namic content creation so far in this chapter. It’s a matter of integrating the VBScript
that generates the dynamic content directly within your standard HTML. Whether this
be within the tags for a table, form, or hyperlink, you should take advantage of this
powerful technique to make your code simpler to understand and manage.

FIGURE 9.5

Although the HTML
sent to the browser
appears the same,

integrating the page
with a database
enables you to

define and generate
these form elements
dynamically, as well
as other material on

your page.

TRICK

Untitled-6 2/25/03, 10:24 AM197

198
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Take a look at Listing 9.6 for an example of how you can dynamically create hyperlinks
based (again) on a database query.

Listing 9.6 Hyperlink.asp

<html>

<head>

<title>Dynamically created hyperlinks and querystrings</title>

</head>

<body>

<%

Set Catalog=Server.CreateObject("ADODB.Recordset")

Catalog.open "SELECT * FROM Catalog WHERE ID=72", "DSN=Music"

LinkName=Catalog("Title")&".html"

%>

<a href="<%=LinkName%>">Click here to view more information about

<%=Catalog("Title")%> by <%=Catalog("Artist")%>

</body>

</html>

When this code is executed within a Web browser, it looks like Figure 9.6.

In Figure 9.6, within the status bar, note that the URL for this hyperlink is the name of
the particular CD (in this case, Songs in the Key of Life) followed by the .html exten-
sion. This hyperlink was defined within the following line:

LinkName=Catalog("Title")&".html"

The variable LinkName is defined and given the value of the Title field as returned from
the Catalog query, plus the .html extension. Again, this type of dynamic creation of

FIGURE 9.6

You can dynamically
create hyperlinks

just as you can
other database-

driven information.

Untitled-6 2/25/03, 10:24 AM198

C
h

a
p

te
r

9
F
o

rm
a
tt in

g
 P

ro
c
e
s
s
e
d

 O
u

tp
u

t

199information is far more efficient and practical and (ultimately) easier to manipulate
than static or hard-coded information.

You can do similar things with QueryStrings as well. Consider the simple form in List-
ing 9.7, which asks users to enter their last name so that their records can be obtained
from a database.

Be cautious when assigning values to QueryStrings because some browsers can’t
handle the spaces that are often present in many values. For example, if you had the
following QueryString URL:

http://www.someplace.com/Name=Susan Jones

the space between Susan and Jones might cause problems when some browsers
attempt to read this value.

You also should be cautious in transferring potentially sensitive information via a
QueryString. Consider the following example:

http://www.someplace.com/Name=Jones?Password=hjdk12

This is an exaggerated example, but you can see how this method of passing infor-
mation can, in some cases, be an insecure method.

Listing 9.7 Working with QueryStrings

<html>

<head>

<title>Dynamic Querystring Creation</title>

</head>

<body>

<form method="POST" action="InfoRetrieve.asp">

 <p>Please enter your last name so that we can retrieve your information from

 our database:<input type="text" name="Name" size="20"></p>

 <p><input type="submit" value="Submit" name="B2"></p>

</form>

</body>

</html>

This code, when executed, looks like Figure 9.7.

Imagine that on the InfoRetrieve.asp page (the page to which this form points—check the
action attribute of the form element in Listing 9.7), the information entered by the user is
used to search the database. From that search, the following information is returned:

• The individual’s first name (Robert)

• The individual’s age (41)

• The individual’s employer (ABC Company)

Now imagine that you want to pass on these three pieces of information to another
page. Say, for example, that this page is named InfoRetrieve2.asp. On this page, addi-
tional information from the individual’s file will be pulled, based on these three pieces

TRAP

Untitled-6 2/25/03, 10:24 AM199

200
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

of information . You can add these three pieces of information to the URL of the page
used to call the InfoRetrieve2.asp page, by dynamically assigning the QueryString val-
ues, as shown in Listing 9.8.

For this example, I’m pretending that a SQL query has been made to a fictional
database that stores the information being placed into the QueryString. For illus-
tration purposes, I have not written this query. In a typical page, though, this ac-
tion would occur.

Listing 9.8 QueryString.asp

<html>

<head>

<title>Dynamic Querystring Creation</title>

</head>

<body>

<%

FirstName="Robert"

LastName="Garfield"

Age="41"

Employer="ABC"

%>

Thank you for the information. Based on what you have provided, we

can continue to retrieve the rest of your file.

<hr>

<form method="post" action="InfoRetrieve2.asp?FirstName=<%=FirstName%>

&LastName=<%=LastName%>&Age=<%=Age%>&Employer=<%=Employer%>">

FIGURE 9.7

A simple form
prompting the user
to enter his or her

last name.

HINT

Untitled-6 2/25/03, 10:24 AM200

C
h

a
p

te
r

9
F
o

rm
a
tt in

g
 P

ro
c
e
s
s
e
d

 O
u

tp
u

t

201<input type="submit" value="Click here to continue to retrieve your file">

</form>

</body>

</html>

When the source code for this page is viewed within a Web browser, it looks like Figure 9.8.

As you can see in Figure 9.8, the first name, last name, age, and company values are
tacked on to the URL of the form-processing page. Once there, these values can be
retrieved from the QueryString and used for whatever data manipulation purposes
are necessary in that page.

Remember from previous discussions that you can retrieve QueryString values us-
ing the Request.Querystring method. For example, if the URL had a value of
somepage.asp?FirstName=John&LastName=Gosney, you could retrieve the values Johnand
Gosney by using the following code:

FirstName=Request.Querystring("FirstName")

LastName=Request.Querystring("LastName")

You should avoid relying too heavily on the use of the QueryString because you can
potentially expose sensitive information to visitors of your Web site. For example,
consider the following URL and QueryString:

somepage.asp?Salary=38000&Probation=Yes

Depending on the sensitivity of the information (in this case, salary level and whether
the individual has been on probation), you might not want to make it readily visible.
This is the major drawback of QueryStrings because they are not a particularly good
method of keeping private information, well, private! Therefore, use with caution.

FIGURE 9.8

You can dynamically
assign QueryString

values so that
information can be
easily passed from

one page to another.

TRICK

TRAP

Untitled-6 2/25/03, 10:24 AM201

202
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Another Look—ASP MadLibs

Now that you are aware of ways to generate and manipulate information dynamically
within your ASP pages, you will review the game you created in Chapter 3, “Working
with ASP Objects”—ASP MadLibs. You will see how it can be updated and revised to take
advantage of techniques presented in this chapter.

As you recall, the game consists of two pages: MadLibHome.asp and MadLibProcess.asp.
Figures 9.9 and 9.10, respectively, illustrate these two pages.

FIGURE 9.9

The opening page of
the ASP MadLibs
game asking you

to provide the
required words.

FIGURE 9.10

The MadLib is
completed, based
on the information

you provided.

Untitled-6 2/25/03, 10:24 AM202

C
h

a
p

te
r

9
F
o

rm
a
tt in

g
 P

ro
c
e
s
s
e
d

 O
u

tp
u

t

203So that you can review the code, Listing 9.9 presents the MadLibHome.asp page.

Listing 9.9 MadLibHome.asp

<html>

<head>

<title>Welcome to ASP MadLibs!</title>

</head>

<body>

<p><i>It's Time to Play...</i></p>

<p align="center">ASP

MadLibs!</p>

<hr>

<p align="left">Please enter the requested type of

word for each space below:</p>

<form method="POST" action="MadLibProcess.asp">

<p>

<table border="1" width="100%" height="139">

 <tr>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word1" size="15" value="(A Name)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word2" size="15" value="(Adjective)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word3" size="15" value="(Noun)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word4" size="15" value="(Adjective)"></td>

 </tr>

 <tr>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word5" size="15" value="(Verb-Past)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word6" size="15" value="(Noun)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word7" size="15" value="(Adjective)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word8" size="15" value="(Verb)"></td>

 </tr>

 <tr>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word9" size="15" value="(Body Part)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word10" size="15" value="(Adjective)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word11" size="15" value="(Clothing Piece)"></td>

Untitled-6 2/25/03, 10:24 AM203

204
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 <td width="25%" align="center" height="23"><input type="text"

 name="Word12" size="15" value="(Noun)"></td>

 </tr>

 <tr>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word13" size="15" value="(Noun)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word14" size="15" value="(Verb-Past)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word15" size="15" value="(Adjective)"></td>

 <td width="25%" align="center" height="23"><input type="text"

 name="Word16" size="15" value="(Adjective)"></td>

 </tr>

 <tr>

 <td width="25%" align="center" height="17"><input type="text"

 name="Word17" size="15" value="(Clothing Piece)"></td>

 <td width="25%" align="center" height="17"><input type="text"

 name="Word18" size="15" value="(Body Part)"></td>

 <td width="25%" align="center" height="17"><input type="text"

 name="Word19" size="15" value="(Place)"></td>

 <td width="25%" align="center" height="17"><input type="text"

 name="Word20" size="15" value="(Body Part)"></td>

 </tr>

</table>

<hr>

<p align="center"><input type="submit" value="Create My ASP MadLib Now!"

name="B1"></p>

</form>

</body>

</html>

Also, Listing 9.10 presents the MadLibProcess.asp page code.

Listing 9.10 MadLibProcess.asp

<html>

<head>

<title>Here's Your ASP MadLib!</title>

</head>

<body>

<p><i>Thank you! And now, here is

Untitled-6 2/25/03, 10:24 AM204

C
h

a
p

te
r

9
F
o

rm
a
tt in

g
 P

ro
c
e
s
s
e
d

 O
u

tp
u

t

205your </i></p>

<p align="center">ASP

MadLib!</p>

<hr>

<p align="left">Dear <font

color="#FF0000"><%=Request.Form("Word1")%> ,</p>

<p align="left">I am having the most

interesting vacation. I've seen so many strange things.

Upon my arrival at the airport, a

<%=Request.Form("Word2")%>

man and I

mixed up our luggage. At the hotel, I opened his suitcase to find

three <%=Request.Form("Word3")%>s

and a <%=Request.Form("Word4")%>

toothbrush. I nearly

<%=Request.Form("Word5")%> out of there when

I discovered a

<%=Request.Form("Word6")%> wrapped in

tissue paper. I took the

<%=Request.Form("Word7")%> man's luggage down

to the hotel clerk. The clerk began to

<%=Request.Form("Word8")%> when I told him

about the mix-up. He pointed his

<%=Request.Form("Word9")%> at a <font

color="#FF0000"><%=Request.Form("Word10")%>

man standing in the

lobby, wearing my <%=Request.Form("Word11")%>

on his head!</p>

<p align="left">After straightening out the

luggage mix-up, I decided to do some sight-seeing. I hardly had made it

out of the hotel when I immediately noticed the sky darkening, and it began to

rain <%=Request.Form("Word12")%>s.

I ran for cover into the closest

<%=Request.Form("Word13")%>

I could

find, but I <%=Request.Form("Word14")%> into an

<%=Request.Form("Word15")%>

group of school children. They began laughing and pointing at me.

</p>

<p align="left">I checked my reflection in

a storefront window, only to discover I had the

<%=Request.Form("Word16")%>

man's <%=Request.Form("Word17")%> hanging from

my <%=Request.Form("Word18")%>!

Wow! I've only been

Untitled-6 2/25/03, 10:24 AM205

206
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

<%=Request.Form("Word19")%> for three hours

and I'm ready for a vacation from my vacation! I figure it can't get

much worse.

Oh, no! It seems the stamp I wanted to use to mail this letter is stuck

to my <%=Request.Form("Word20")%>!</p>

<HR>

<p align="left">Would you like to save this

ASP MadLib to a text file?</p>

<form method="POST" action="MadLibSave.asp">

 <p align="left">Please enter a name for this file: <input type="text"

name="MadLibName" size="20"></p>

 <p align="center"><input type="submit" value="Save this ASP MadLib!"

name="B1"></p>

 <input type="hidden" name="Word1" value="<%=Request.Form("Word1")%>">

<input type="hidden" name="Word10" value="<%=Request.Form("Word10")%>">

<input type="hidden" name="Word11" value="<%=Request.Form("Word11")%>">

<input type="hidden" name="Word12" value="<%=Request.Form("Word12")%>">

<input type="hidden" name="Word13" value="<%=Request.Form("Word13")%>">

<input type="hidden" name="Word14" value="<%=Request.Form("Word14")%>">

<input type="hidden" name="Word15" value="<%=Request.Form("Word15")%>">

<input type="hidden" name="Word16" value="<%=Request.Form("Word16")%>">

<input type="hidden" name="Word17" value="<%=Request.Form("Word17")%>">

<input type="hidden" name="Word18" value="<%=Request.Form("Word18")%>">

<input type="hidden" name="Word19" value="<%=Request.Form("Word19")%>">

<input type="hidden" name="Word2" value="<%=Request.Form("Word2")%>">

<input type="hidden" name="Word20" value="<%=Request.Form("Word20")%>">

<input type="hidden" name="Word3" value="<%=Request.Form("Word3")%>">

<input type="hidden" name="Word4" value="<%=Request.Form("Word4")%>">

<input type="hidden" name="Word5" value="<%=Request.Form("Word5")%>">

<input type="hidden" name="Word6" value="<%=Request.Form("Word6")%>">

<input type="hidden" name="Word7" value="<%=Request.Form("Word7")%>">

<input type="hidden" name="Word8" value="<%=Request.Form("Word8")%>">

<input type="hidden" name="Word9" value="<%=Request.Form("Word9")%>">

</form>

<hr>

<p align="left">

No

thanks, I want to generate another ASP MadLib!</p>

</body>

</html>

This game and the two pages that compose it are particularly good examples of how to
apply the techniques in this chapter because both pages are very heavy with static or
hard-coded text. If the game programmer (you!) wanted to make changes to these pages,

Untitled-6 2/25/03, 10:24 AM206

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

9
F
o

rm
a
tt in

g
 P

ro
c
e
s
s
e
d

 O
u

tp
u

t

207he would have to work directly within the Web page code itself rather than simply
open a database and make the change there.

You can remedy this situation and make the game code easier to understand and
more efficient.

Improving ASP MadLibs!:
Integrating with a Database

If you look closely at Listing 9.9, you can see that the HTML to compose the table has
been hard-coded into the page. Recall from the section “HTML Formatting—Beyond the
Basics” that I explained how you can drastically cut down the amount of code required
to build a typical HTML table, by using simple For...Next loops.

You can do the same thing with the MadLibHome.asp page and its table. However, you
must first create an Access database to integrate with this game. Even though you are
probably familiar with the process of creating an ODBC connection for use within
your ASP page, here is the process again. (For a general overview of Microsoft Access
basics, see Appendix C, “Access Essentials.”)

1. Create the database by opening Microsoft Access and selecting File, New. When
the New dialog box appears, select Database and click OK.

2. In the File New Database dialog, name the database MadLib, and save it in your
ABG_ASP directory in the Inetpub folder.

3. You can now begin creating tables within the database. From the Insert menu,
select Table.

4. Within the New Table dialog box, select Design View and click OK.

5. Enter the table field names so that your table looks like Figure 9.11.

FIGURE 9.11

Make sure that your
fields are named
and configured

exactly as you see
them here.

Untitled-6 2/25/03, 10:24 AM207

208
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

6. Close the table. You are asked to give it a name. Name it WordInfo, as shown in
Figure 9.12.

7. Open the table in datasheet view, and enter each of the 20 words. For the Word
field, enter the number of the word (Word1, Word2, Word 3) and for the Type
field, enter the element of speech that each of the individual words is calling for
(refer to Figure 9.9 to determine the element of speech each word should be). Fig-
ure 9.13 illustrates how your table should appear.

8. Now you are ready to establish the ODBC connection to this database. Depending
on your version of Windows, navigate to the ODBC Data Source Administrator
dialog box. Click the System DSN tab, and click Add.

9. In the Create New Data Source dialog box, select the Microsoft Access Driver op-
tion, and click Finish (see Figure 9.14).

FIGURE 9.12

Save the table using
the name WordInfo.

FIGURE 9.13

Entering this
information in the
database makes

your code shorter
and easier to
change at a
later date.

FIGURE 9.14

Preparing to create
the ODBC

connection for the
MadLib.mdb

database.

Untitled-6 2/25/03, 10:24 AM208

C
h

a
p

te
r

9
F
o

rm
a
tt in

g
 P

ro
c
e
s
s
e
d

 O
u

tp
u

t

209

10. In the ODBC Microsoft Access database, configure it so that it looks like
Figure 9.15.

11. Click OK. Your connection is now added to the System DSN tab.

Improving ASP MadLibs!: Dynamic Page
Formatting

Now that the database is created, you can do some things to improve the code on the
MadLibHome.asp page. In the revised code in Listing 9.11, see whether you can spot the
changes (many of which are discussed in this chapter).

Listing 9.11 MadLibHome_REV.asp

<html>

<head>

<title>Welcome to ASP MadLibs!</title>

</head>

<body>

<p><i>It's Time to Play...</i></p>

<p align="center">ASP

MadLibs!</p>

<hr>

<p align="left">Please enter the requested type of

word for each space below:</p>

<form method="POST" action="MadLibProcess_REV.asp">

<p>

<table border="1" width="100%" height="139">

<tr>

<%

i=0

Set TableFormat=Server.CreateObject("ADODB.Recordset")

sqlstmt="SELECT * FROM WordInfo"

TableFormat.Open sqlstmt, "DSN=MadLib", 3, 3, 1

DO WHILE NOT TableFormat.EOF

i=i+1

%>

FIGURE 9.15

Configuring the
MadLib.mdb

database so that it
can be accessed

via ODBC.

Untitled-6 2/25/03, 10:24 AM209

210
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

<td width="25%" align="center" height="23"><input type="text" name=

"<%=TableFormat("Word")%>" size="15" value="(<%=TableFormat("Type")%>)"></td>

<%

IF i=5 then

i=0

%>

</tr>

<tr>

<%

END IF

TableFormat.MoveNext

Loop

TableFormat.Close

Set TableFormat=Nothing

%>

</table>

<hr>

<p align="center"><input type="submit" value="Create My ASP MadLib Now!"

name="B1"></p>

</form>

</body>

</html>

Quite a bit shorter, isn’t it? However, when this new page is loaded into a Web browser,
it appears exactly the same as the original MadLibHome.asp page (refer to Figure 9.9).
To ensure that you understand how this code has been shortened and improved, take a
moment to review the following:

• First, the introductory welcome message is displayed, and the opening <table> tag
is inserted.

• Next, a connection is established to the MadLib database, and a SQL query is run
to return all the records from the WordInfo table.

• To run through the entire recordset so that each particular record is viewed, you
use a DO WHILE loop.

• If you look at how the table is formatted and displayed on screen, there are only
four fields per row. To format the table dynamically (that is, so that a new row is
inserted after four cells have been placed), you use a simple variable (i) that in-
creases by 1 each time through the loop. When this variable reaches 5, the closing
row tag (</tr>) is inserted, and this variable is reset to 0.

• For each column (<td>) of the table, the default value that should appear in each
text box, as well as the name of each text box, is derived from the information
stored within the WordInfo table of the database:
<td width="25%" align="center" height="23"><input type="text" name=

"<%=TableFormat("Word")%>" size="15" value="(<%=TableFormat("Type")%>)"></td>

In the section “Creating Dynamic Form Elements,” you saw how you can dynami-
cally name and assign form elements. The preceding code is a prime example of

Untitled-6 2/25/03, 10:24 AM210

C
h

a
p

te
r

9
F
o

rm
a
tt in

g
 P

ro
c
e
s
s
e
d

 O
u

tp
u

t

211how this is done. Both the form element name and value are set dynamically,
based on information contained within the database. Note how this technique
drastically cuts down on the length of this code.

• Finally, the connections to the database are closed, and a Submit button is in-
serted so that the information the player enters can be passed on to the
MadLibProcess_REV.asp page.

Now that you have improved the MadLibHome.asp page, see what you can do to the
MadLibProcess.asp page. Take a look at the revised code in Listing 9.12.

Listing 9.12 MadLibProcess_REV.asp

<html>

<head>

<title>Here's Your ASP MadLib!</title>

</head>

<body>

<p><i>Thank you! And now, here is

your </i></p>

<p align="center">

ASP MadLib!</p>

<hr>

<p align="left">Dear

<%=Request.Form("Word1")%> ,</p>

<p align="left">I am having the most

interesting vacation. I've seen so many strange things. Upon my

arrival at the airport, a <%=Request.Form("Word2")%>

man and I mixed up our luggage. At the hotel, I opened his suitcase

to find three <%=Request.Form("Word3")%>s

and a <%=Request.Form("Word4")%>

toothbrush. I nearly

<%=Request.Form("Word5")%> out of there when

I discovered a

<%=Request.Form("Word6")%> wrapped in

tissue paper. I took the

<%=Request.Form("Word7")%> man's luggage down

to the hotel clerk. The clerk began to

<%=Request.Form("Word8")%> when I told him

about the mix-up. He pointed his

<%=Request.Form("Word9")%> at a

<%=Request.Form("Word10")%>

man standing in the

lobby, wearing my <%=Request.Form("Word11")%>

on his head!</p>

<p align="left">After straightening out the

luggage mix-up, I decided to do some sight-seeing. I hardly had made it

Untitled-6 2/25/03, 10:24 AM211

212
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

out of the hotel when I immediately noticed the sky darkening, and it began to

rain <%=Request.Form("Word12")%>s.

I ran for cover into the closest <font color=

"#FF0000"><%=Request.Form("Word13")%>

I could

find, but I <%=Request.Form("Word14")%> into an

<%=Request.Form("Word15")%>

group of school children. They began laughing and pointing at me.

</p>

<p align="left">I checked my reflection

in a storefront window, only to discover I had the <font color=

"#FF0000"><%=Request.Form("Word16")%>

man's <%=Request.Form("Word17")%> hanging from

my <%=Request.Form("Word18")%>! Wow!

I've only been

<%=Request.Form("Word19")%> for three hours

and I'm ready for a vacation from my vacation! I figure it can't get

much worse.

Oh, no! It seems the stamp I wanted to use to mail this letter is stuck

to my <%=Request.Form("Word20")%>!</p>

<HR>

<p align="left">Would you like to save this

ASP MadLib to a text file?</p>

<form method="POST" action="MadLibSave.asp">

 <p align="left">Please enter a name for this file: <input type="text"

name="MadLibName" size="20"></p>

 <p align="center"><input type="submit" value="Save this ASP MadLib!"

name="B1"></p>

<%

For i=1 to 20

Word="Word"&i

Word=Evaluate(Word)

%>

<input type="hidden" name="Word<%=i%>" value="<%=Word%>">

<%

Next

%>

</form>

<hr>

<p align="left">

No

thanks, I want to generate another ASP MadLib!</p>

</body>

</html>

Untitled-6 2/25/03, 10:24 AM212

C
h

a
p

te
r

9
F
o

rm
a
tt in

g
 P

ro
c
e
s
s
e
d

 O
u

tp
u

t

213Although fewer changes have been made to this page, note the end of the code where,
using a For...Next loop and the Evaluate function, you significantly reduce the amount of
static code used to define and assign the 20 hidden form fields.

You could place the entire ASP MadLib story template into a database and then
have it read directly from there. See exercise 3 at the end of this chapter for more on
this possibility.

Summary

In this chapter, I showed you various techniques for integrating basic HTML with your
VBScript to produce efficient, easy-to-understand code. By looking at forms and form
elements, hyperlinks and QueryStrings, table formatting and integration with Access
databases, taking advantage of the various functions available within VBScript (espe-
cially the looping capabilities, combining them with the power to step through a re-
turned SQL query recordset), you can add an entire new dimension to your ASP pages.
When working on your pages and designing your databases, always be on the lookout
for how you can make your coding more efficient. Your code will be more functional
and easier for both you and others to understand.

E X E R C I S E S

Try these exercises to improve your understanding of the techniques described in this chapter.

1. Dynamically create three tables within an ASP Web page so that you have only one hard-

coded set of opening and closing <tr> and <td> tags. Using loops and other techniques

you’ve learned, build the table with as little code as possible.

2. Design a simple database, and then query it using the ADO techniques you have mas-

tered. Then, pass the information you query from the database to another page via a

QueryString. Have the page that processes the information read and manipulate the in-

formation stored in the QueryString.

3. Looking again at the ASP MadLibs game, place the entire story template into a new table

in the MadLib.mdb database. As the game is executed, read and integrate the information

from the story template database into the game itself (in other words, program the game

so that none of the story template is hard-coded into the MadLibProcess_REV.asp page).

4. Go back and look at another game you’ve programmed in this book to see whether you

can apply techniques from this chapter to minimize the game code and make it more

efficient.

5. Finally, after you do exercise 4, compare it to the original code. What are the major changes

you made? Can you remember to think about these more efficient methods of program-

ming before you write even one line of code? Doing so will save you a tremendous amount

of time in the long run and also remind you to plan and sketch out your Web pages (and

corresponding databases) before you start to program or develop them.

TRICK

Untitled-6 2/25/03, 10:24 AM213

This page intentionally left blank

10

I
n this chapter, you will

• Become familiar with the general interface of

FrontPage 2000, through an introduction to its

primary features and functions.

• Utilize FrontPage with your Web server so

that you can use it as part of a complete Web

development environment.

• Learn to appreciate how, by taking advantage

of its numerous wizards and other automated

features, FrontPage can significantly cut the

time you spend on mundane or routine tasks

involved with ASP programming.

• Review the ADO/SQL examples you worked

through in Chapter 5, “Database Access

with ADO,” via the FrontPage 2000 Database

Results Wizard.

ASP and HTML
Scripting with
FrontPage 2000

C H A P T E R

Untitled-7 2/25/03, 10:25 AM215

216
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

As you know, Active Server Pages is a Microsoft convention. That said, it should come
as no surprise that other Microsoft products extensively incorporate ASP functional-
ity. One of those products is FrontPage 2000, the very popular HTML editing applica-
tion that, because of its functionality and ease of use, is popular with both beginning
and advanced Web developers. Although I want you to avoid using an application like
FrontPage for this book (to get a more effective, hands-on tutorial of ASP program-
ming), you should be aware of the tremendous time-saving attributes of programming
with an HTML editor such as this. When you are comfortable with the foundations of
programming, by hand-coding everything yourself, you can move to an HTML editor to
help with much of the grunt work or otherwise routine tasks of Web development.

Building a FrontPage Web

A FrontPage Web is a folder for storing all your Web pages and related elements. How-
ever, in addition to the usual Windows folders, you can apply other properties to a
FrontPage Web as you allow the contents of the Web to be accessed (via a Web server,
such as the Personal Web Server or Internet Information Server) using a browser.

You should think of building a Web as step Numero Uno because you can, from the
start, keep everything organized. Now you will start a deeper exploration of FrontPage
by building a Web.

Naming a FrontPage Web

If FrontPage isn’t running on your machine, start it now.

When the application starts, follow these steps to create your first FrontPage Web:

1. From the File menu, select New, Web (see Figure 10.1).

2. You are now presented with the New dialog box (see Figure 10.2). For now, select
One Page Web, but don’t click OK just yet.

3. Take a look in Figure 10.2 at the drop-down menu under Specify the Location of
the New Web in the Options section. Depending on your machine (and on
whether you are connected to a network or have used a previous version of
FrontPage on your machine before upgrading to FrontPage 2000), the options
presented here can differ. However, you want to create your Web in the home di-
rectory of either the Personal Web Server (PWS) or Internet Information Server
(IIS), whichever you have running on your computer.

FIGURE 10.1

Beginning the new
FrontPage Web

creation process.

Untitled-7 2/25/03, 10:25 AM216

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

217

4. What’s the home directory of your server? You can find the address of your
home page via the Personal Web Manager opening dialog box (see Figure 10.3).

5. After you select your home page URL from the drop-down menu, click the drop-
down menu field, and add the following to the home URL:

/ABG_FP

The New dialog box should now look like Figure 10.4.

6. Click OK. You should see the Create New Web dialog as your new Web is created,
in the location you specified.

7. Congratulations! You’ve just created your first FrontPage Web. You should now
be looking at the FrontPage editor in Page view, with the Folder List pane dis-
playing your new Web (see Figure 10.5).

FIGURE 10.2

Selecting One Page
Web. Take note of
the location of the

new Web.

FIGURE 10.3

You can see the URL
of the PWS home
page, as well as

your home directory,
from the Personal

Web Manager
home page.

Untitled-7 2/25/03, 10:25 AM217

218
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Adding New Pages to Your Web

Now that you have a brand-spanking-new FrontPage Web, you need to add some Web
pages. Adding a new Web page to a FrontPage Web is done in exactly the same fashion
as creating a new page that is placed in another folder on your computer (or on a
floppy disk, ZIP drive, and so on) rather than inside a Web.

When your new Web was created, a blank Web page was also created. Save this page
into your Web, giving it a name in the process:

1. From the File menu, select Save As. This opens the Save As dialog box
(see Figure 10.6).

FIGURE 10.4

Specifying the exact
location of your new

FrontPage Web.

FIGURE 10.5

Your newly created
FrontPage Web. If
you don’t see the

folders, select
Folders from the

View menu.

Untitled-7 2/25/03, 10:25 AM218

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

219

2. In the File Name field, type Home. Also, take a moment to notice in which direc-
tory you are saving this page; the Save In drop-down menu should be displaying
your newly created Web.

3. For now, leave the Save as Type field set to the default Web Pages option.

4. Click Save. Your page is saved into your Web directory (in this case, ABG_FP) with
the name you specified (in this example, Home).

You will notice that the default extension that FrontPage adds to all Web pages
(when you try to save them) is .htm. Obviously, you know by this point that you need
to store your Active Server Pages with the .asp extension. However, for straight
HTML pages, you can also save them with the usual .html extension (in other words,
there is no functional difference between .htm and .html). The main point here is to
pay close attention to what you are naming your pages, not just in regard to the
extension but the actual name, too (the more descriptive the name, the better: just
try—for simplicity’s sake—to keep the names of your pages as small as possible).

FIGURE 10.6

Setting the
parameters for

saving a page into
your Web.

TRICK

NETSCAPE NAVIGATOR OR INTERNET EXPLORER?
In case you haven’t noticed, FrontPage 2000 is a Microsoft product. You need to be aware that

although the application is extremely powerful and easy to use, the Web pages you develop

within FrontPage are intended (well, intended by Microsoft, anyway) to be displayed using

Microsoft’s Web browser, Internet Explorer.

Now, this doesn’t mean that Netscape Navigator won’t display pages created in FrontPage. In

fact, nothing could be further from the truth. However, as you move through the functions and

features of FrontPage, you need to know that some of the nifty effects you can add to your

Web pages (from within FrontPage, that is) will display only if your visitors are using Internet

Explorer as their browser.

Fortunately, most of these features are simply window dressing. In other words, you don’t

have to be concerned that you will lose major functionality if Netscape Navigator is your cus-

tomers’ browser of choice. For example, you can still database-enable your Webs without

worrying about this browser conundrum.

Untitled-7 2/25/03, 10:25 AM219

220
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

FrontPage 2000 Basics

To understand FrontPage 2000 best, take a moment to review its general interface,
illustrated in Figure 10.7.

When FrontPage opens, you are immediately placed in Page view. What are the differ-
ent views, and what do they mean?

Take another look at Figure 10.7, along the left side of the screen. The icons running
horizontally (Page, Folders, Reports) represent the different views you can work in within
FrontPage:

• Page view. This is the default view in which FrontPage places you upon first
launching the program. Like a blank Word document, Page view represents a
blank Web page. You can think of the large white space as your Web canvas be-
cause you can place Web elements (form elements, text, and so on) right into this
space.

There are three specific view tabs within Page view: Normal, HTML, and Preview.
Just take note of them now, because I discuss these in more detail when you cre-
ate your first Web page.

• Folders view. As you create Webs in FrontPage, you organize the Web pages that
make up the site into folders. The Folders view allows you to get a snapshot of this
organization, including the (file) size of your Web pages, the date they were last
modified, and so on.

• Reports view. This gives a more specific analysis of your Web site’s content, from
an administrative viewpoint. For example, from within Reports view, you can take
note of Web pages that don’t have any hyperlinks to them, pages that are slow(er)
to load in a Web browser, and other related functions.

FIGURE 10.7

The FrontPage 2000
interface. Like all

Office applications,
it has a common

menu bar (File, Edit,
View, and so on).

View tabs

Untitled-7 2/25/03, 10:25 AM220

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

221• Navigation view. This view allows you to add navigation elements quickly to the
various Web pages within your site.

• Hyperlinks view. Just as you wouldn’t think of taking a cross-country trip without
a good map or atlas, you shouldn’t have to design your Web site without a way of
seeing, at a glance, its overall structure. In this view, you can see all the
hyperlinks between your pages. This picture of your Web site is presented graphi-
cally, which makes it easy to see which pages link to other pages.

• Tasks view. Usually, building a Web site is a team effort because several individu-
als with different areas of expertise are called on to design one or more features
or areas of the Web site. FrontPage is equipped with this functionality to assign
and track tasks to specific individuals, to facilitate a team effort approach in
building a Web site. The Tasks view displays this type of information, including to
whom a specific task was assigned, its priority, and when it is due to be com-
pleted. Because you are flying solo here in your Web development endeavors, I
won’t discuss Tasks view in much detail.

Feeling confused about all these views? Don’t let the view conundrum concern you.
The vast majority of the time, you will be working exclusively in Page view. As a matter
of fact, think of the other views as administrative views (which in reality they are),
placed within FrontPage to help you quickly view your site’s organizational structure.

Creating Your First Web Page

Because you have FrontPage open, you might as well create your first Web page, right?

For this exercise, you are going to construct a basic home page for a fictitious company.
Don’t worry if, after completing this section, your work doesn’t quite, ah, make the grade.
The point of this session is to get you comfortable working within the FrontPage envi-
ronment, as well as with the toolsets available to you for Web page creation.

Placing and Formatting Text

If you have FrontPage running now on your computer (if you don’t, start the application
so that you can follow along with the discussion), you will note that the formatting
toolbar is very similar to what you see in other Office applications (see Figure 10.8).

Can’t see the formatting toolbar? It might be hidden. From the FrontPage menu, click
View, and select the Toolbars option. On the list of toolbars that appears, make sure
that Formatting is selected.

To familiarize yourself with formatting text in FrontPage, here is a simple format-
ting exercise:

1. The first text you want to appear on the page is the name of your company. You
want to center the name of your company, so click the center icon on the format-
ting toolbar. Notice how the cursor moves to the center of the page.

2. Change the font and font size. From the font menu, select a style that appeals to
you. For the font size, select 14 point.

TRICK

Untitled-7 2/25/03, 10:25 AM221

222
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

3. To give your company name more emphasis, bold the text you are about to type
by clicking the bold icon. Also, select a color for the text by clicking the font
color icon.

4. Type the name of your company (see Figure 10.9). Take some time to experiment
with different font styles, sizes, and colors.

Font

Style

Font size

Formatting toolbar

Text alignment

Numbering

Bullets

Text indent

Highlight color

Font color

FIGURE 10.8

The formatting
toolbar within

FrontPage is similar
to that found in

other Office
applications.

FIGURE 10.9

An example of some
simple formatting. In

this example, I’ve
chosen the Tahoma
font style, 14 point,
bold, centered, and

with a font color
of green.

Untitled-7 2/25/03, 10:25 AM222

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

223Got the idea with formatting text? If you’ve done any work within Microsoft Word (or
any other word processing application), formatting text is probably second nature.
FrontPage is no different.

Inserting Graphics

The most visually appealing Web sites are the ones that make good use of graphics.

However, you must temper your desire to go wild with graphic placement, keeping the
following important tips in mind:

• Most importantly, graphics (as compared to text) can take a longer time to down-
load. You’ve probably surfed the Web and come across a site that seemed to take
forever to download to your browser because of an excessive use of graphics. Keep
this in mind when using graphics on your site: If a site takes a long time to load,
visitors will move on. Don’t let this happen to your Web site because you’ve placed
too many graphics in your pages.

• Be savvy when choosing graphics because they can give your site a very profes-
sional or, if chosen poorly, a very sloppy look. When choosing graphics, keep in
mind the general tone you are attempting to set with your Web site. If, for ex-
ample, you are creating a Web site for a daycare center, it would be perfectly ap-
propriate to have graphics of cartoon children, animals, and so on, on your site.
However, these types of graphics would be inappropriate (and give the wrong im-
pression) if the business is not a daycare. Choose wisely.

• Finally (and perhaps most importantly, especially if you are not an artist), don’t
frustrate yourself—and waste valuable time—by trying to design your own graph-
ics. Literally millions of graphics, ranging from static images to animated GIFs,
are available for your free use. Some of these can be found on your own computer
in the form of clip art, and others can be downloaded from the Web. Take advan-
tage of this valuable creative resource.

As I’ve said, all Web designers learn from studying the work of others. This is one of
the great community aspects of the Web. However, if you are going to use a graphic
(or any Web element, for that matter) designed or programmed by others, be sure
that you have their permission to do so, and cite them as the creator of the work if
they require it.

Now, why don’t you experiment with adding some graphics to your Web page. FrontPage
has several options for inserting available graphics, so you will explore a few of them here:

1. From the preceding exercise, you should have the name of your company nicely
formatted at the center of your page. (If you don’t, that’s okay. All these early exer-
cises are designed just to get your virtual feet wet with the FrontPage interface.)
Now, place your cursor below the text of your company name, and click the center
icon again on the formatting toolbar (if your cursor is not already centered).

2. From the Insert menu, click Picture (see Figure 10.10). When the option menu
slides out to the right, hold your mouse button over the down arrow at the bot-
tom of this menu so that you can see all the options available to you.

TRAP

Untitled-7 2/25/03, 10:25 AM223

224
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

3. Click the Clip Art option. This opens the Clip Art Gallery dialog box (see Fig-
ure 10.11).

Take a closer look at this dialog box:

• Note the three tabs: Pictures, Sounds, and Motion Clips.

• The Clip Art Gallery dialog box has a handy search feature, so if you’re look-
ing for a specific type of graphic, you can do a search for it.

• Note the two icons at the top: Import Clips and Clips Online. Import Clips al-
lows you to insert different graphics you have collected on your own into the
clip art collection. This is useful for organizational purposes; you can keep all
your graphics in one place. Clips Online is a special service that Microsoft has
established, where you can download new and interesting clip art directly
into FrontPage.

4. With the Pictures tab selected, click the Business icon, which displays all the
current clip art on your machine that has been placed into this category. Find a
graphic that appeals to you, and click it once. This displays a special pop-up
menu (see Figure 10.12).

5. If you click the first icon in the pop-up menu, the selected graphic is inserted
directly into your Web page. If you click the second icon, you get a preview of
the graphic. This is useful for seeing the entire graphic before you insert it
into your page.

6. For now, click the Insert Clip icon. The graphic is then placed into your Web
page (see Figure 10.13).

FIGURE 10.10

You can insert a
picture from clip art
or from a file. Note
that you can also
insert video into
your Web pages.

FIGURE 10.11

The Clip Art Gallery
dialog box allows

you to insert
graphics, video, and

sound easily into
your Web pages.

Untitled-7 2/25/03, 10:25 AM224

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

225

7. When the graphic is in your page, you can manipulate it in various ways. Click
the graphic once. This causes the graphic to be outlined and also the Pictures
toolbar to appear at the bottom of your screen (see Figure 10.14).

8. By clicking one of the squares outlining your graphic and then dragging your
mouse, you can change the size and shape of your graphic. Also, take some time
now to experiment with the Pictures toolbar. If you hover your cursor over the
icons in the Pictures toolbar, a ToolTip appears, informing you of which action
the specific icon executes. Go ahead and experiment with some of the icons in
the Pictures toolbar, paying close attention to how they affect your picture.

If the Pictures toolbar disappears, you’ve probably deselected your graphic. Simply
click your graphic once to bring the Pictures toolbar back to your screen.

FIGURE 10.12

When you single-
click a clip art

graphic, a special
pop-up menu gives

you options for what
you’d like to do with

the graphic.

FIGURE 10.13

A clip art graphic
inserted into the

Web page.

TRICK

Untitled-7 2/25/03, 10:25 AM225

226
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Adding Tables to Organize Your Information

The greatest HTML tag ever invented? Well, maybe not quite that good, but you will
quickly come to love—and hate—the <TABLE> tag. The good news is that FrontPage does a
lot of the dirty work for you in designing and formatting tables, so you can have more
time to be creative in deciding how to best present the content on your page.

The best way to learn tables is to experiment. So, let’s do a little table experimenting.

1. Create a new page within FrontPage.

You can quickly access recently opened files and Webs by selecting File, Recent
Files, or File, Recent Webs.

2. From the Table menu, select Insert, Table. This produces the Insert Table dialog
box. See Figure 10.15.

3. For now, go ahead and leave the default values in the Insert Table dialog box as
they are. When you click OK, a table is drawn to the parameters you set within
the Insert Table dialog box (that is, 2 rows by 2 columns). See Figure 10.16.

As you can see, using the Insert Table command isn’t difficult. But FrontPage’s table
features don’t stop with this simple (and, arguably, boring!) Insert feature. Rather, you
can format and design your tables—not to mention insert graphics and text into the
various table cells—to produce some really nice effects.

FIGURE 10.14

FrontPage allows
you to manipulate

graphics after they
are inserted into
your Web pages.

Pictures toolbar

TRICK

Untitled-7 2/25/03, 10:25 AM226

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

227

Formatting Tables

To access the table formatting features, click in any cell within your table. Then, from
the Table menu, select Properties, Table. This displays the Table Properties dialog box,
as shown in Figure 10.17.

FIGURE 10.15

Accessing the table
features of
FrontPage.

FIGURE 10.16

You can quickly
produce tables for
your Web pages
with the Insert
Table feature.

FIGURE 10.17

The Table Properties
dialog box.

Untitled-7 2/25/03, 10:25 AM227

228
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Let’s examine the different features of the Table Properties dialog box:

• The Layout section enables you to set the alignment of the table cells, as well as
cell padding and cell spacing.

• The Borders section enables you to define both the size and color of your table
borders.

• The Background section enables you to select images and graphics to use as back-
ground within your table. See Figure 10.18.

In addition to controlling the entire table properties, you can set specific cell properties
of your tables. You can access the Cell Properties dialog box by selecting Properties, Cell
from the Table menu, or right-clicking on the table and selecting Cell Properties from
the pop-up menu. See Figure 10.19.

FIGURE 10.18

The first table uses
ClipArt graphic as a
background image,

whereas the second
table uses a

simple design.

FIGURE 10.19

Use the Cell
Properties dialog

box to set specific
cell characteristics
within your table.
Note the features
are similar to the
Table Properties

dialog box.

Untitled-7 2/25/03, 10:25 AM228

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

229Of course, once you initially insert your table, you can edit it by adding and deleting
rows, columns, and cells.

• To insert an element into your table, click within your table, then select Insert
from the Table menu and choose Rows, Columns, or Cells.

You can also add a caption to your table by selecting Insert, Caption from the Table
menu. This will place your cursor directly above the table, from which you can
add text.

• To delete an element, first select the element in the table. Then, from the Table
menu, select the Delete Cells option that is highlighted, as shown in Figure 10.20.

Finally, you can also split and merge cells in a table to produce some interesting table
structures.

1. In the table you created in the first exercise, select the first cell by clicking
within the cell, then from the Table menu, click Select, Cell. The cell is high-
lighted.

2. Next, right-click in the selected cell and select Split Cells from the pop-up menu.
See Figure 10.21.

3. The Split Cells dialog box will now appear. Go ahead and split the cell into four
columns.

4. Next, select the upper-right cell, select Split Cells from the Table menu, and split
this cell into two rows. See Figure 10.22.

FIGURE 10.20

In this example, the
cell has been

selected and can
now be deleted from

the Table menu.

FIGURE 10.21

Select Split Cells
from the pop-up
menu, when you
right-click on a

selected table cell.

TRICK

Untitled-7 2/25/03, 10:25 AM229

230
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

In addition to splitting cells, you can also merge cells. To merge cells, select all
the split cell elements you want to merge. Then, from the Table menu, select
Merge Cells.

Adding Text and Graphics to Your Tables

The table we’ve created is a little boring. Let’s take some time to spice it up with text and
graphics, in the process demonstrating what a powerful design element tables can be.

As with nearly every element of Web design, tables are no exception to the “Test in
different browsers” rule, to ensure that your tables (and entire Web site, for that
matter) look neat and well-designed in both Internet Explorer and Netscape Navi-
gator (and, other browsers, too, if you have access to them).

Netscape and IE can (and do) render tables differently. Sometimes, the differences
are so small they are unnoticeable; other times, it seems as if you’ve created two
entirely different versions of your table! Test, test, test!

1. Let’s get rid of the boring table we have on the page right now. Select the entire
table, then from the Table menu, select Delete Cells. This will erase your table.

2. Now that you have a clean slate, let’s begin again. From the Table menu, select
Insert, Table. Within the Insert Table dialog box, leave the number of rows set at
1, but change the number of columns to 2. Click OK.

3. The table is inserted. Now, select the right cell, right-click, and select Split Cells.
From the Split Cells dialog box, divide the cell into two rows.

4. The basic structure of the table is now defined. Now, add a graphic to the left
cell (that is, the cell that hasn’t been split). Click in the cell, then from the Table
menu, select Properties, Cell (or right-click in the selected cell and select Cell
Properties from the pop-up menu).

5. In the Background section of the Cell Properties dialog box, click on Browse. The
Select Background Picture dialog box appears. See Figure 10.23.

6. Browse through the image files (if you have any) on your machine, or click on
the ClipArt button and find a graphic that appeals to you. Your graphic will be
inserted in the left cell (in the sample table I’ve drawn above, the music pages
are simple ClipArt).

7. Finally, format the two remaining (right) cells any way you want.

Take some time now to play around with formatting your table. Split and merge cells,
add and delete elements, and format text and graphics.

FIGURE 10.22

The Split Cells
dialog box. Here, we
are splitting the cell
into four columns.

TRICK

TRAP

Untitled-7 2/25/03, 10:25 AM230

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

231

Working with FrontPage Components

At this point in your initial Web page creation, you have inserted and formatted some
text, as well as placed a graphic or two on your page. Now, take a moment to investigate
a unique feature of FrontPage as a Web development tool: the FrontPage components.

You can use the components to easily include some of the more common functionality
you find on well-designed Web pages, such as

• Hit counters. Are used to visually track the number of visitors to your site. Well
positioned, the hit counter can serve as a powerful PR tool, reflecting the (you
hope) popularity of your site by highlighting the numbers of visitors who have
loaded your site into their browser.

• Hover buttons. Allow special effects to occur when the user “hovers” his or her
cursor over the button. For example, you could place within your Web page a
hover button titled Song Excerpt. When the user hovers the cursor over this par-
ticular button, a short excerpt of a song (which you would also insert into the
Web page) would begin to play.

• Marquees. Allow you to have text scrolling across the top of a page, much like an
electronic marquee at a professional sports arena. Within FrontPage, you can cus-
tomize not only the text that appears in the marquee but also the direction and
speed at which the text scrolls.

• Search forms. Are essential tools for any well-designed site because they allow
users to quickly enter a term (or terms) about which they are interested in learn-
ing more.

You can view the FrontPage components by selecting Component from the Insert menu
(see Figure 10.24).

Now you insert the marquee component into the sample Web page:

1. Click underneath the picture you inserted during the preceding exercise.

2. Go to the Insert menu, select Component, and then choose Marquee from the
list of options. This opens the Marquee Properties dialog box (see Figure 10.25).

3. Enter some text into the Text field. (Try to type a sentence or two, instead of just
one word, so that you can see the full marquee effect in action.) Leave the other
options as they are, and click OK.

FIGURE 10.23

Either select a
graphic from your

computer or click on
the ClipArt button
and browse until

you find something
that appeals to you.

Untitled-7 2/25/03, 10:25 AM231

232
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

4. On your Web page (within FrontPage, that is—after your page is published, you
will see the marquee in action), you will see the text you just typed into the Mar-
quee Properties dialog box. Your Web page should now look something like Fig-
ure 10.26.

Note that the marquee is only guaranteed to work 100% of the time when you use
Internet Explorer. Again, use caution when relying too heavily on these Microsoft-
centric capabilities that are built into FrontPage, lest visitors to your Web site using
browsers other than IE may experience errors or a loss of your desired functionality.

5. Ready to see the marquee in action? Take a look at the bottom of the FrontPage
window, and notice the three view tabs: Normal, HTML, and Preview. Up to this
point, you have been working in Normal view. To get an immediate feel for how
your page will look when it is live, you can click the Preview tab. Do that now.
You should see the text you inserted in the Marquee dialog box scrolling across
the screen (see Figure 10.27).

You should note that the Preview tab might not render a completely accurate represen-
tation of how your page will look in a Web browser. What do I mean? Not all elements
you insert into your Web pages will be immediately visible using the Preview tab. Some
elements (including some components, such as the hit counter component) have to be
published first to be seen in action.

FIGURE 10.24

The FrontPage 2000
Component menu.

FIGURE 10.25

The Marquee
component
dialog box.

TRAP

Untitled-7 2/25/03, 10:25 AM232

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

233

This is why the installation of a Web server (again, either the PWS or IIS) is crucial. It
allows you a complete development environment on your own computer so that you
can get a true picture of how your site will function when it is live on the Web.

The HTML view tab displays the HTML code used to build your Web pages. By utiliz-
ing HTML view, you can go in and tweak the HTML, as well as ASP code, to your
specifications.

FIGURE 10.26

Your Web page is
starting to develop.
You’ve inserted text,

a graphic, and a
marquee

component.

View tabs

FIGURE 10.27

Your text scrolls
across the page.

TRICK

Untitled-7 2/25/03, 10:25 AM233

234
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Saving Your Web Pages

You’ve done some significant Web page construction. Like all work on a computer, it is
a good idea to save your work frequently, and FrontPage is no exception.

Go ahead now and save your Web page:

1. If you are still in Preview view from the preceding exercise (if your text is still scroll-
ing across the screen, you are still in Preview view), click the Normal view tab.

2. From the File menu, click Save As. This opens the Save As dialog box (see Fig-
ure 10.28).

3. Using the Save In field, navigate to the folder on your hard drive where you’d
like to save your Web page.

4. In the File Name field, give your Web page a name. Leave the Save as Type field
set to Web pages.

5. Click Save to save your page. If you inserted graphics into your page (which you
probably did if you followed along in the exercises), you are also presented with
the Save Embedded Files dialog box (see Figure 10.29). Click OK to save these em-
bedded pictures, along with your Web page.

Validating Forms

As with many things dealing with Web design, form validation used to be a difficult
programming task. But, as with many Web-related tasks now, the use of FrontPage
makes things a whole lot easier.

FIGURE 10.28

The FrontPage Save
As dialog box. Note

the similarities to
Save As dialog

boxes in the other
Office applications.

FIGURE 10.29

The Save Embedded
Files dialog box.

Untitled-7 2/25/03, 10:25 AM234

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

235In this section, we’ll take a look at how you can incorporate form validation into your own
Web pages, to be sure you are capturing all required information from visitors to your site.

Determining Required Form Fields

To begin our discussion of form validation, the first thing to do is create a new page.

1. First, create a new page within FrontPage, and insert the form elements so that
your page looks like Figure 10.30. Go ahead and save it as FormA.htm.

2. For this initial example, let’s pretend that we’ve determined the textbox field
(Enter Your Full Name Here:) to be a “required” field. Double-click on the actual
form element to display the Text Box Properties dialog box. See Figure 10.31.

3. When the Validate button is clicked, the Text Box Validation dialog box is dis-
played. Note that different form elements will display different validation dialog
boxes. For example, Radio Button Validation when a radio button is selected for
validation. See Figure 10.32.

This box appears complicated, but in actuality is quite simple to work with. Let’s
take a closer look at the different types of “validation” properties you can set:

• The Data Type drop-down menu enables you to set the specific type of data
that can be entered into the form element. Depending on which data type you

FIGURE 10.30

Preparing to set
validation properties

on a form.

FIGURE 10.31

Click on the Validate
button to display the

form elements
validation
properties.

Untitled-7 2/25/03, 10:25 AM235

236
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

select (there are four types: No Constraints, Text, Integer, and Number), this
can activate the Text Format options of the dialog box. For example, if you se-
lect the Text option, both the Text format options and the Display Name will
become active. See Figure 10.33.

• In Figure 10.33, we have selected the Text option. This, in turn, enables us to
select what type of text formats we’ll allow to be entered into our textbox
form element (for example, letters, digits, white space, other) as well as the
message which will be displayed if the user does not enter information in the
form field, or enters characters that are not acceptable.

Use caution when setting the Text Format properties of a form element. In Figure
10.33, we have set the Text Format properties to allow for letters and white space.
However, if the user were to enter any numbers in this field, or any special charac-
ters (such as a comma), the error message would be displayed upon submission.

When setting form validation, take time to think about the type of information your
users will be entering into the form fields. For example, if you have a form field
requiring a phone number, you’d want to set the Text Format property to allow for
numbers and special characters (such as a hyphen).

FIGURE 10.32

The Validation
dialog box for, in this

case, a Text Box
form element.

FIGURE 10.33

By selecting
different Data
Types, you can
access specific
form validation

properties.

TRAP

Untitled-7 2/25/03, 10:25 AM236

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

237

• The Data Length section enables you to determine the size of the information
entered into the field. Note that there are both maximum and minimum
value properties.

• Finally, note the Data Value section, which enables you to set specific param-
eters regarding not just the size of the information, but also within a range it
must fall (this is especially useful for capturing numeric data).

4. Go ahead and set the validation properties for this form element so that your
dialog box appears like Figure 10.34.

5. Save and close this page. Now, let’s test our form validation properties in a browser.

Testing Form Validation in a Browser

We can test our form validation properties that have just been set, by loading the page
within a Web browser and utilizing either IIS or the Personal Web Server.

1. Load the form page you created above into your Web browser. See Figure 10.35.

2. To see the effect of the validation on the textbox field, go ahead and click the
Submit button, with no information entered into that field. See Figure 10.36.

3. When you click Submit without any information in the Name field, you are pre-
sented with a validation error, just as we specified in the Form Validation dialog
box for this specific form element.

Note that the Form Validation message box indicates it is using JavaScript. Through
the magic (did someone say convenience?) of FrontPage, the underlying JavaScript
code is inserted into your pages automatically—no programming involved!

4. When you created the FormA.htm page above, you set the Text Format properties
to allow only for text and white space. Try entering some numbers in the Name
field, but enter less than 10 numbers. Then, try entering more than 10 numbers
and compare the differences in error message you receive. See Figures 10.37
and 10.38.

FIGURE 10.34

Setting validation
properties for the

textbox.

TRICK

Untitled-7 2/25/03, 10:25 AM237

238
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

FIGURE 10.35

The form you
created above, as
viewed in a Web

browser.

FIGURE 10.38

Form validation in
action.

FIGURE 10.37

Because of our
specified validation

properties, when
fewer than 10
numbers are

entered, we are
presented with the

following error
message.

FIGURE 10.38

In this case, we’ve
entered more than
10 characters so
we’ve met that

validation
requirement. But,
because we have
entered numbers

rather than text, we
are presented with
this error message.

Untitled-7 2/25/03, 10:25 AM238

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

239Validating Other Form Elements

You can use form validation with other form elements, too. In essence, they all follow
the same principle as text boxes, in that you set specific requirements for the type of
data that can be entered, selected, and checked.

Let’s take a quick look at the other types of form elements you can apply form valida-
tion to, by again looking at our FormA.htm page.

• Double-click on one of the radio buttons, and then click on the Validate button in
the Radio Button Properties dialog box. This will display the Radio Button Valida-
tion dialog box, as shown in Figure 10.39.

If you don’t select one of the radio button options when validation has been acti-
vated, you’ll see the error message as presented in Figure 10.40.

• The other useful form validation feature is for drop-down menus. Although we
don’t have a drop-down menu on FormA.htm, Figure 10.41 illustrates the valida-
tion dialog box for this form element.

The neat thing about the validation features of the drop-down menu is the Disal-
low First Item. By selecting this, you prevent the user from (surprise!) selecting the
first item in the list. That way, you can use this item as an instructional option
(for example, “Select from the following list...”) without worrying about the user
actually selecting this option.

Remember, as with other practical and useful FrontPage functionality, form valida-
tion will require that the FrontPage components be installed on the server.

FIGURE 10.39

When you validate a
group of radio

buttons, you are in
essence requiring

that one of them be
selected by the user.

FIGURE 10.40

Requiring the user
to select one of the

radio button
choices.

FIGURE 10.41

Setting validation
for a drop-down

menu form element.

TRAP

Untitled-7 2/25/03, 10:25 AM239

240
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Utilizing the FrontPage 2000 Database
Results Wizard

As I said at the beginning of this chapter, before allowing FrontPage to automate any of
your programming, you should do things by hand first. This includes general HTML
code, as well as more advanced programming with ASP.

That said, however, I want to level you: After you gain a basic understanding of how
everything fits together—for example, the relationship between ADO and ASP, discussed
in Chapter 5—there is no reason not to use an application like FrontPage. If you’ve ever
struggled with hand-coding an HTML table, you know how frustrating even the sim-
plest of tables can be. With FrontPage (or another application development tool), you
can automate this mundane or routine task, moving on to far more interesting aspects
of programming, such as ASP scripting.

However (yes, another however!), you need to be aware of the downside of this, too. In
the following sections, I’ll show you how you can use FrontPage to generate automati-
cally most of the code examples you worked through in Chapter 5, including the SQL
examples utilizing the SELECT, UPDATE, and INSERT statements. As you work through the
examples, you will see the advantages—and disadvantages—in using FrontPage to gen-
erate your ASP database connection scripts automatically.

Now you will work through a few examples to learn about the Database Results Wizard:

1. Create a new page within FrontPage, and save it under the name FP_Test.asp
within your ABG_ASP folder.

2. From the Insert menu, select Database, Results (see Figure 10.42).

3. The first step in the Database Results Wizard is displayed (see Figure 10.43).

4. Select the Use a New Database Connection radio button, and then click the Cre-
ate button. The Web Settings dialog box opens. Click the Database tab, and then
click Add. The New Database Connection dialog box opens (see Figure 10.44).

FIGURE 10.42

Selecting the
Database Results

Wizard option.

FIGURE 10.43

Beginning the
Database Results

Wizard by first
selecting the
appropriate

database
connection.

Untitled-7 2/25/03, 10:25 AM240

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

241

5. In the Name field, enter DBWizard. Click the System Data Source on Web Server
option, and then click Browse.

6. In the System Data Sources on Web Server dialog box, select the Music DSN (see
Figure 10.45). You created this DSN during your work in Chapter 5.

7. Click OK, and you return to the New Database Connection dialog box. Click OK
again to be returned to the Web Settings dialog box. Select the DBWizard name,
and then click the Apply button (see Figure 10.46).

8. After a brief moment, the connection is made. Now, click the OK button to be re-
turned to Step 1 of the Database Results Wizard. The Use an Existing Database
Connection option should now be selected, with the DBWizard selection high-
lighted in the drop-down menu. Click Next, and you are presented with Step 2 of
the Database Results Wizard (see Figure 10.47).

9. Leave the default Catalog Record Source option selected, and click Next. Step 3 of
the Database Results Wizard is displayed (see Figure 10.48).

FIGURE 10.44

In using the
Database Results
Wizard, you work

with a system DSN,
which you learned
how to create in

Chapter 5.

FIGURE 10.45

Selecting the
system DSN to

which you want to
make a connection,
with the Database

Results Wizard.

FIGURE 10.46

Completing the
database

connection process
via the Database
Results Wizard.

Untitled-7 2/25/03, 10:25 AM241

242
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

10. For this example, leave all the fields selected, and click Next. In the next dialog
box (Step 4), leave the default selection, and click Next again. You are presented
with the final dialog box (Step 5). Again, accept the default selection, and click
Finish. Your screen should now look like Figure 10.49.

FIGURE 10.47

Specify the record
source (in this case,
an individual table

of the Music
database) to which

you want to
establish a

connection and run
a SQL query against.

FIGURE 10.48

Note that in Step 3,
you are asked to

specify which fields
from the Catalog

table will be
displayed when the
Database Results
Wizard performs

its magic.

FIGURE 10.49

FrontPage, via the
Database Results

Wizard,
automatically

generates the ASP
code, as well as a
nicely formatted

table (complete with
navigation buttons)
to view the results
of the SQL query

also generated as
you worked through
the wizard’s steps.

Untitled-7 2/25/03, 10:25 AM242

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

243

11. Save this page now, and then open it in a Web browser. Your screen should look
like Figure 10.50.

Viewing the Automatically Generated ASP Code

You probably have noticed, after working through the exercise, that by utilizing the
Database Results Wizard you don’t have to know anything about ASP. Also, after com-
ing this far in the book, you probably have formed an opinion of ASP programming:
Either you really like it or you are thinking—after looking at the preceding exercise—
that the Database Results Wizard is a gift from heaven. That is, you can work with ASP
without knowing anything about it.

I hope that your interest level, combined with the instructional nature of this book, is
keeping you firmly in the “I like ASP and want to learn more” camp. Regardless, you
should be aware of how FrontPage magically allows you fast and easy Web/database
access with just a few clicks of the mouse instead of the programming you’ve been
doing so far.

To illustrate this, here is the code generated by FrontPage to make the Database Re-
sults Wizard successful:

1. If it isn’t still open, start FrontPage on your computer, and open the FP_Test.asp
page, in which you created the Database Results Wizard.

2. Now, click the HTML tab, and view the code generated by FrontPage (see Fig-
ure 10.51).

If you’re looking at this code and saying to yourself, “Well, hmm, I see some things in
here that I’m familiar with—like SQL queries—but I see a lot of strange things I don’t
recognize,” you are not alone. You are recognizing both the pros and cons of working

FIGURE 10.50

The Database
Results Wizard
automatically

generates the ASP
code that allows

this type of
interaction with

your Music
database.

Untitled-7 2/25/03, 10:25 AM243

244
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

with this type of autogenerated ASP code. Yes, it’s easy to use, and the Database Results
Wizard gives you a powerful interface. The downside is that when you try to go into
the code to understand and/or customize it, you can run into trouble.

It is for this exact reason that I waited until now to show you a tool like FrontPage and
asked you to hand-code all your ASP programming. Admittedly, Notepad is not an ideal
programming environment, and, yes, FrontPage handles the routine tasks of Web page
development (creation of tables, general formatting, and so on) very, very well. As you’ve
just seen, though, there are drawbacks in relying too heavily on all the automation
that a tool like FrontPage provides.

Still, when you become familiar and experienced with the foundations of ASP pro-
gramming (if you’ve made it this far into the book, you are well on your way to reach-
ing that plateau), you should consider a tool like the Database Results Wizard. The
following sections walk you through a few more examples of what you can do with it.
I also show some of the form automation features of FrontPage and how you can use
the two together.

Integrating Forms with the Database
Results Wizard

In the example from the preceding section, I showed you a very simple illustration of
the Database Results Wizard. Basically, you created a simple SELECT statement and then
used the features of the wizard to put the results into a nicely formatted table. For the
following example, I’ll show you how to customize the wizard to bring it more in line
with some of the other SQL statements you worked with in Chapter 5, “Database Ac-
cess with ADO,” and Chapter 6, “Using Forms.”

FIGURE 10.51

FrontPage
automatically

generates
significant code to
make the Database

Results Wizard work
its magic.

Untitled-7 2/25/03, 10:25 AM244

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

245For this example, I will first show you how to use some of the form automation features
of FrontPage. Then, after you create your form, you can see how to integrate this with the
Database Results Wizard. In essence, you will create two Web pages in this example:

• The first page is a typical HTML form, asking you to enter an artist’s name. You
will be using the Music database you worked with in Chapter 5.

• The second page, the form processing page, takes the information entered into
the form on the first page and, utilizing the Database Results Wizard, displays to
the user all records within the Catalog table of the Music database that match the
search criteria (the artist’s name you entered within the form).

1. Create a new page within FrontPage, and immediately save it as SearchForm.asp
in your ABG_ASP folder.

2. Enter the text, Please enter in the form field an artist for which you want to
search in the Music database.

3. Below this text, you insert the actual form field. From the Insert menu, select
Form, One-Line Text Box (see Figure 10.52).

4. You can now use the automated form features of FrontPage to establish the spe-
cific properties of both the form field and the form itself. Double-click the form
field to open the Text Box Properties dialog box. In the Name field, enter Artist.
Your screen should look like Figure 10.53.

5. Click OK to apply your specifications. Now, right-click within the dotted line
boundary of the form itself, and from the pop-up menu, select the Form Proper-
ties option.

FIGURE 10.52

Inserting a one-line
textbox form field.

FIGURE 10.53

Rather than hand-
code the specific

properties of a form
and its various

elements, you use
the FrontPage

wizards and dialogs
to automate these

tasks quickly.

Untitled-7 2/25/03, 10:25 AM245

246
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

6. The Form Properties dialog box opens. Click the Send to Other option, and then
click the Options button. The Options for Custom Form Handler dialog box
opens (see Figure 10.54).

7. Complete the form as illustrated in Figure 10.54 (you will be creating the
SearchForm_Process.asp page in a few minutes), and then click OK. You are re-
turned to the Form Properties dialog. Click OK to close this dialog.

8. Save this SearchForm.asp page. You are now ready to create the
SearchForm_Process.asp page, which will utilize the Database Results Wizard.

Creating a Database Results Wizard Form
Processing Page

As you remember from Chapters 5 and 6, you can easily create a form that integrates
with a database. Undoubtedly, this type of ASP coding will become second nature to
you, with a little experience, and your interest in programming will continue to in-
crease. I hope that you will want to continue to hand-code and specially modify your
own form and database ASP code.

Still, at times you might want to create a quick form that integrates with a database,
without having to do any coding. In these cases, you can use FrontPage’s Database
Results Wizard.

In the preceding section, you created a simple form that asks users to enter a search
criteria; remember, you named this form field Artist. Now you would like to have what-
ever information is entered in this form matched with all corresponding records in
the Catalog table of the Music database. You saw some of the FrontPage tools for creat-
ing forms and form fields and setting their properties. You will now see how you can
easily integrate these forms with a database:

1. Create a new page within FrontPage, and immediately save it as
SearchForm_Process.asp. Remember that on the SearchForm.asp page, in the
Options for Custom Form Handler dialog box (refer to Figure 10.54), you
indicated that you wanted the form results to be processed on this page.

2. From the Insert menu, select Database, Results. The Step 1 dialog box of the
Database Results Wizard opens.

FIGURE 10.54

In the Custom Form
Handler, you specify

the location (the
form processing

page) to which you
want to send your

form data for
processing.

Untitled-7 2/25/03, 10:25 AM246

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

2473. Click the Use an Existing Database Connection option, and select Music from the
drop-down list.

4. Click Next. In Step 2 of the wizard, select the Record Source option, and from
the drop-down menu, select Catalog.

5. Click Next. It is here in Step 3 of the wizard that you will perform much of your
custom form and database integration. First, you edit the Catalog table fields
that will be returned for all records that match the form search criteria. Click
the Edit List button to open the Displayed Fields dialog box (see Figure 10.55).

6. In the Available Fields column, select ID, and then click the Remove button. This
prevents the ID field of the Catalog table from displaying in the Results table
generated for all matching records. Note that you can also change the order of
the displayed fields by selecting them and clicking the Move Down button.

7. Click OK to return to Step 3 of the wizard. Click the More Options button. In the
dialog box that opens, click the Criteria button.

8. You are presented with a blank Criteria dialog box. Click the Add button to open
the Add Criteria dialog box (see Figure 10.56).

9. Complete this dialog as shown in Figure 10.56. Again, remember that you gave
the form field on the SearchProcess.asp page the name Artist and that you want

FIGURE 10.55

Use this dialog box
to edit the database
table fields that will
be displayed for all
matching records.

FIGURE 10.56

Use the Add Criteria
dialog box to

customize your
search of the

database, based on
different factors. In
this case, you want

to search the
Catalog table using
the search criteria

entered on the
SearchProcess.asp

page.

Untitled-7 2/25/03, 10:25 AM247

248
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

to use whatever information is entered into this field as a search criteria, look-
ing for matches in the Artist column of the Catalog table of the Music database.
The value field in the Add Criteria dialog box should equal the name—in this
case—of your form field (Artist). Be sure to check the Use This Search Form Field
so that the wizard knows that the value you are entering in the Value field corre-
sponds to a form field.

10. Click OK to return to the Criteria dialog box. Note that your search criteria have
been added to this list. Using the buttons at the bottom of this dialog, you can
add, remove, or modify criteria.

11. Click OK, and then OK again to return to Step 3 of the wizard.

12. Click Next, and then Next again to reach the final step (Step 5) of the wizard.
Click Finish, and all the ASP code for the Database Results Wizard is generated,
including the formatted HTML table to display the results. Your screen should
now look like Figure 10.57.

13. Save the page.

You are now ready to see the SearchForm and SearchForm_Process pages in action:

1. Open a Web browser, and load the SearchForm.asp page.

2. In the Search field, enter the name of a pop/rock band you like. For this example,
enter The Beatles in the search field (see Figure 10.58).

3. When you click Submit Query, the information you entered is passed to the
SearchForm_Process.asp page, where the code for the Database Results Wizard is
executed. Your screen should look similar to Figure 10.59.

FIGURE 10.57

After providing the
wizard with your

query specifications,
the ASP code and
the HTML table to
display the query

results are
generated.

Untitled-7 2/25/03, 10:25 AM248

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

249

FIGURE 10.58

Using the
SearchForm.asp
page to look for

information in the
Catalog table of the

Music database.

FIGURE 10.59

The Database
Results Wizard

returns all records
that match your
search criteria.

Working with Frames in FrontPage

Utilizing frames within your Web pages is a great way to add style and functionality to
your work. FrontPage offers a very powerful tool for creating and manipulating frame-
based Web pages.

Untitled-7 2/25/03, 10:25 AM249

250
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

1. From within FrontPage, click on the File menu, and select New, Page. When
the New Page dialog box appears, select the Frames Pages tab, as shown in Fig-
ure 10.60.

2. For this example, let’s select the Banner and Contents layout. Be sure this choice
is selected, and then click OK.

3. You are presented with the basic structure of the frame. Note that each frame is
essentially three separate Web pages. FrontPage asks you whether you want to
create each frame from scratch or use an existing page. See Figure 10.61.

4. For now, go ahead and click on the New Page button in each frame. After
clicking on each of the three New Page buttons, you are presented (in FrontPage
Page View) with three blank Web pages, each corresponding to a frame. See
Figure 10.62.

FIGURE 10.60

The Frames Pages
tab of the New Page
dialog box. Note the

different types of
frame layouts, and

how you are
provided a

description and
preview of each.

FIGURE 10.61

You can build your
frames page from
existing pages or
create new pages

from scratch.

Untitled-7 2/25/03, 10:25 AM250

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

251

5. Note the additional frame tabs at the bottom of your screen. For now, take spe-
cial notice of the No Frames tab. Remember above when I mentioned that not all
your customers might have browsers capable of displaying frames? Well,
FrontPage has a built-in No Frames option, so you can construct a “no frames”
page to display to these customers. See Figure 10.63.

FIGURE 10.62

New frame pages,
ready to go.

FIGURE 10.63

Use this page to
display special
messages to

customers with
(very) old browsers,

that can’t display
frame pages.

Untitled-7 2/25/03, 10:25 AM251

252
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Saving Frame Pages

As I mentioned above, building and saving frame pages is very similar to working with
regular HTML pages in FrontPage, but with a few unique differences.

Now that we have a structure for our frame page, let’s go ahead and immediately save it.

1. From the File menu, select Save As. You are presented with the Save As dialog
box. Note how the structure of your frame page is presented. See Figure 10.64.

2. I have decided to name the entire frame page FrameTest. Enter a name for your
frame page in the File Name field, and then click Save.

3. You are now asked to save the “table of contents” frame (remember, each frame
is an individual Web page, so you have to save each page: This frame consists of
three Web pages, so you’ll need to save each one individually). See Figure 10.65.

After you enter a name for each frame, you will be taken to the next frame, until
all frames (Web pages) are saved.

Now that you have the structure of your frame page saved and displaying in a Web
browser, let’s go back into FrontPage and explore the unique properties that make up
a frame page.

FIGURE 10.64

The first name you
provide in the

FileName field will
be the name of the
entire frame page,
or the name of the
page users will see
in the URL when this

frame page loads
into the browser.

FIGURE 10.65

Saving the table of
contents frame

page. In this case,
I’ve decided to just
name it frameleft.

Untitled-7 2/25/03, 10:25 AM252

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

253Understanding Frame Page Mechanics

Even though we haven’t explored the actual HTML that builds your Web pages, let’s
examine how it works in relation to frames pages, because it will make your under-
standing of frames easier.

1. Return to FrontPage, and open FrameTest.htm.

2. Click on the Frames Page HTML tab at the bottom of the screen. This will display
the HTML that comprises the FrameTest.htm page. See Figure 10.66.

When you first began the save process of your frames page, the first filename
FrontPage asked you to provide was the name of the “container” page: In this case,
you gave it the name FrameTest.htm. The container page is, in essence, the struc-
ture of a frame page: it sets basic attributes of the page (the width of the scrollbars,
the size of individual frames, and so on) and calls the actual Web pages that make
up the frame (remember, each frame is a separate Web page).

3. Let’s examine the following code:

Listing 10.1 Frame HTML

<frameset rows="64,*">

 <frame name="banner" scrolling="no" noresize target="contents"

 src="frametop.htm">

 <frameset cols="150,*">

 <frame name="contents" target="main" src="frameleft.htm">

 <frame name="main" src="frameright.htm">

FIGURE 10.66

By utilizing the
Frames Page HTML

tab, you can see
exactly how your

frame page is
constructed
with HTML.

HINT

Untitled-7 2/25/03, 10:25 AM253

254
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

 </frameset>

 <noframes>

 <body>

 <p>This page uses frames, but your browser doesn't support them.</p>

 </body>

 </noframes>

</frameset>

4. Notice the three <frame name> tags: banner, contents, main. Also, notice the src of
these three “frame names” (frametop.htm, frameleft.htm, and frameright.htm).
Recall that when you were saving the frame, you were asked to provide a
filename for each of the frames: these were the names (i.e., frametop, frameleft,
and frameright) that you provided. FrontPage, in turn, correlated the names you
provided with the “frame structure name” (banner, contents, main). So, the fol-
lowing is how the filenames you provided correlate to the “frame structure”
names that FrontPage has inserted:

5. Next, notice in the HTML excerpt here the “target” component of each <frame>
tag. For example, take a closer look at this piece of HTML:
<frame name="contents" target="main" src="frameleft.htm">

This tag refers to the “table of contents” frame (or, the left frame). The name of
this frame is contents, and the Web page represented by this frame is
frameleft.htm. The “target” attribute refers to which frame hyperlinks will point
to. For example, if we place a hyperlink titled New Products in this frame, when
the customer clicks on the link, the results of the hyperlink will be displayed in
the “contents” frame (or, the frameright.htm page).

6. Finally, before we leave our HTML analysis of frames, take a look at the following
code:
<noframes>

<body>

<p>This page uses frames, but your browser doesn't support them.</p>

</body>

</noframes>

Again, most of your customers will have browsers capable of displaying frames.
However, for those who don’t, the <noframes> tag displays a message to these users

TABLE 10.1 FILENAMES TRANSLATED TO FRAME NAMES

Filename You Provided During the Save Process Correlating FrontPage Frame Name

frametop.htm banner

frameleft.htm contents

frameright.htm main

Untitled-7 2/25/03, 10:25 AM254

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

255(in this case, “This page uses frames, but your browser doesn’t support them”).
You can change this message to display anything you want: remember from our
discussion earlier, you can click on the NoFrames tab within FrontPage to access
and customize this no frame option.

Integrating E-mail with FrontPage Webs

By utilizing the FrontPage e-mail features, you can turn your Web site into your own
personal secretary. But instead of having hundreds of those old “While You Were Out”
message forms lying all over your desk, you can configure your small business Web site
to automatically send you an e-mail when an order is placed.

How is this done? Quite simply. Let’s take a look:

1. Since we’ve already added some nifty form validation to it, let’s go ahead and
continue to work with the FormA.htm page.

2. From within FrontPage, right-click anywhere within the form boundaries (not
on a specific form element, but somewhere between the dotted lines), and select
Form Properties from the pop-up menu. See Figure 10.67.

3. First, let’s take a look at the “Where to Store Results” section of this dialog. In the
preceding chapter, we were using the Send to Other option to specify a page to
submit our form results (that is, so the information could be inserted into an Ac-
cess database). For this example, though, click on the Send To option, and enter an
e-mail address, such as your e-mail address. Then, click on OK. See Figure 10.68.

4. What is this rather detailed error message, and why are you receiving it? In or-
der for FrontPage to automatically generate e-mail, the e-mail server needs to be
properly configured. So, for this section, you’ll have to take my word that this
feature really does work(!), even though you might not be able to see a live dem-
onstration on your own machine.

FIGURE 10.68

More than likely,
you will receive this

FrontPage error
message, when you

select Send To
e-mail address.

FIGURE 10.67

The Form Properties
dialog box.

Untitled-7 2/25/03, 10:25 AM255

256
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

5. With the Send To...(e-mail address) option still selected, go ahead and click on
the Options button in the Form Properties dialog box. This will display the Op-
tions for Saving Results of Form dialog box, as shown in Figure 10.69.

6. The E-mail Results tab of the Options for Saving Results of Form dialog box has a
few specific properties you can set:

• E-mail address to receive results: the address for which you want to send the
message (that is, your e-mail address).

• E-mail format: depending on the type of e-mail client being used (Microsoft
Outlook, Netscape Messenger, and so on), the format of the e-mail text can
have different styles (HTML formatting, formatted text, etc.). The default for-
mat is formatted text.

• E-mail message header: this allows you to specify the subject and reply-to line
of the e-mail. Ideally, the subject line will be indicative of the message con-
tents; the reply-to line can be an e-mail address (again, your e-mail address or
your company’s general e-mail address) that you want customers to respond
to, if necessary.

7. After you specify the properties as described above, go ahead and click OK to re-
turn to the Form Properties dialog box. Click OK again to close this dialog, and
be returned to the FrontPage editor.

Working with DHTML Effects

The Web is not a static medium. Given the ever-increasing bandwidth offered by such
devices as cable modems, not to mention the increasing processor speeds and gener-
ally out-of-this-world cool applications that are being developed, we are truly in the
digital revolution with the Web as our collective technological flagship.

That said, one of the recent advances has been in HTML itself. Originally designed to be
a static method of displaying text (hence the “markup” in Hypertext Markup Language),
not unlike preparing a book for a printer, HTML has received some much-needed “ac-
tive” shots in the arm, through the use of such advances as DHTML, which we’ll focus
on in this section.

FIGURE 10.69

Click on the E-mail
Results tab to

specify related
e-mail features of

FrontPage.

Untitled-7 2/25/03, 10:25 AM256

TE
AM
FL
Y

Team-Fly®

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

257So what is DHTML? This stands for Dynamic Hypertext Markup Language, and in es-
sence allows traditional HTML to come alive through the use of exact positioning of
text on a screen, and all kinds of interesting special effects. A combination (usually) of
something called cascading style sheets and JavaScript, skilled DHTML programmers
can do some amazing things to bring a boring, static Web page to life.

However, you don’t have to program to utilize the DHTML effects that are available
through FrontPage. Let’s see an example of how you can add DHTML to your Web pages,
through the use of FrontPage.

Despite the cool applications that Microsoft develops, they are not the only fish in
the Web pond (they might be the biggest, but they are not the only one). That said,
the technology used by Microsoft to implement DHTML in its browser (Internet Ex-
plorer) is not the same as how Netscape implements this technology in its browser.

So guess what? The DHTML effects you add to your Web pages with FrontPage may
look fantastic in IE, but may not work at all in Navigator (or, they may work differ-
ently). Bottom line: don’t be the farm on the use of DHTML effects in your Web pages,
because they can very often be implemented quite differently, in different browsers.

1. Keeping the “Caution” on DHTML in mind, let’s do a little experimenting. Create
a new Web page and title it Cool.asp.

2. Type the following text: Dropping in to say hello, this is an example of DHTML,
and format the text in some fashion (I’ve bolded, changed the font, and in-
creased the size of my text).

3. With your cursor on the same line as the text, select Format, Dynamic HTML Ef-
fects. See Figure 10.70.

4. The DHTML toolbar is displayed, as shown in Figure 10.71. From the On drop-
down menu, select Page Load, and from the Apply drop-down menu, select Drop
in By Word. Note how the text you typed above is now outlined in blue.

5. Save your page.

FIGURE 10.70

Accessing the
DHTML effects

option through the
Format menu.

FIGURE 10.71

Determining the
type of DHTML
effect you want

to apply.

TRAP

Untitled-7 2/25/03, 10:25 AM257

258
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

6. Now, load this page into Internet Explorer. See Figure 10.72.

7. If you have Netscape Communicator, try loading the same page, and see the dif-
ferences in effect. Instead of dropping in word by word, the entire sentence
“drops in” at once. Still a cool effect, although admittedly not quite as snazzy as
how it appears in Internet Explorer.

DHTML is fun, and with the use of FrontPage is easy to implement. However, as we’ve
just seen, differences in how various browsers interpret it can result in mixed results,
to say the least.

A much better alternative is to use an application that, through the use of a browser
plug-in, can produce the same effect regardless of which browser your customers use.
Probably the best such application available today is Macromedia Flash: while some-
what difficult to master, Flash can produce absolutely stunning audio and visual ef-
fects within your Web page (for a great example, check out the Chrysler Web site for its
new PT Cruiser at: http://www.chryslercars.com/.

Summary

This chapter introduces you to FrontPage 2000, providing a quick overview of the
application’s interface, explaining how to create and save Webs and Web pages, and
discussing some special features of the program, especially those that focus on ASP,
including form processing and database integration. Although the product has a high
degree of functionality and is easy to use, you learned the possible drawbacks of using
an application like FrontPage. Specifically, it sometimes relies too much on propri-
etary technology, supporting only other Microsoft products, so you run the risk of
alienating some visitors to your FrontPage-built Web sites.

FIGURE 10.72

Your text “drops in”
just as you specified

in FrontPage.

Untitled-7 2/25/03, 10:25 AM258

C
h

a
p

te
r

1
0

A
S

P
a
n

d
 H

T
M

L
 S

c
ri p

ti n
g

 w
i th

 F
ro

n
t P

a
g

e
 2

0
0
0

259
TO USE OR NOT TO USE FRONTPAGE? THAT IS A GOOD ASP QUESTION!

This chapter gives you a cursory overview of all the FrontPage 2000 features. Used alone or as

part of a group-based Web development project, FrontPage is a powerful, easy-to-use tool

that takes the mundane tasks out of Web development and programming—it straight out

makes designing and implementing Web pages more fun. Although FrontPage is not by any

means the only HTML editing tool available (indeed, other products, such as Macromedia

HomeSite, natively support ASP functionality), nothing comes close to FrontPage (and this

should come as no surprise) in integrating with other Microsoft technologies, of which ASP is

one, and making them easier and more productive to use.

Although this is good, there are some significant drawbacks to using FrontPage in the real

world, especially if you are a seasoned programmer:

• Despite improvements in this area from previous editions, FrontPage 2000 still has a noto-

rious habit of not necessarily changing your code but adding its own unique mark on the

proceedings. If you recall from looking at the autogenerated Database Results Wizard code,

the program adds several of its own FrontPage-isms to your code (ASP, HTML, or other-

wise). Although most of this is easy to figure out, it can lead to some real frustrations,

especially if you like to have exact control over every element of your programming.

• FrontPage is a Microsoft product and is designed to work best with other Microsoft products.

Depending on which side of the fence you compute, this push towards homogenous comput-

ing amounts to either tremendous freedom for innovation or just one keystroke shy of totali-

tarianism. At any rate, you need to remember that some of the whiz-bang features of FrontPage

(more specifically known as FrontPage extensions) function properly only in Internet Explorer.

This is probably the most important thing you need to consider when deciding how much to

rely on the automated features of FrontPage. You don’t want to spend time developing a

Web site based solely on the special features of FrontPage only to discover that it will func-

tion in only one browser. Long story short: Test, test, test your Web pages in various brows-

ers (and different versions of browsers) to ensure maximum compatibility.

• Speaking of FrontPage extensions, if you want to publish your Web pages via a third-party

ISP, you need to be sure that the ISP supports FrontPage extensions. Otherwise, many

special features of FrontPage that make it so easy to use, for example, the FrontPage com-

ponents, won’t function. Unfortunately (or fortunately, depending on how you feel about

Mr. Gates and his little company), some ISPs refuse to support the FrontPage extensions as

a voice of protest against the Redmond machine. Again, the real story here is to test all

your work, know your development environment, and be prepared to suffer the conse-

quences of developing with a special tool. For example, some visitors might not be able to

view special features of your site because they don’t use a specific browser.

Untitled-7 2/25/03, 10:25 AM259

260
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

E X E R C I S E S

To improve your understanding of FrontPage, work through the following exercises:

1. Within FrontPage, create a new Web site, assign it the proper access permissions, and

name it MyNewWeb.

2. Create a page that has several form elements. Place and configure the elements using the

FrontPage form tools.

3. Create a page that utilizes the Database Results Wizard. Query the Music database, but

this time, create a search form that queries on the Title field (instead of Artist). Make sure

that the resulting HTML table also displays the ID field from the Catalog table.

4. In the HTML table created in the preceding exercise, make the displayed ID field a hyperlink.

Note that often you will want to hyperlink query results. For example, if you are running

an e-commerce site, you might want all returned records from a customer search of your

inventory to be directly hyperlinked to an order form.

5. Finally, after working through the preceding two exercises, try to duplicate all the ASP

functionality presented in these exercises by just using Notepad, returning to coding by

hand. What differences do you see in the code you wrote versus the autogenerated code

of FrontPage? What elements or section of the code do you find easier or more difficult to

create either by hand or by using FrontPage? Use your answers to these questions to help

guide you in your decision as to whether to use a tool like FrontPage.

Untitled-7 2/25/03, 10:25 AM260

11

I
n this chapter, you will

• Get an overview of all the concepts and tools

you learned to work with in this book. You can

then use this chapter as a quick reference as

you move forward with your ASP programming.

• Learn what’s ahead for ASP, specifically the

Microsoft .NET initiative, and about resources

where you can discover more about this excit-

ing, emerging technology.

Looking Back and
Looking Forward

C H A P T E R

Untitled-8 2/25/03, 10:28 AM261

262
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

As the Grateful Dead used to sing, “What a long, strange trip it’s been.” Perhaps this is
the way you are feeling now after 10 chapters of intense immersion into the world of
ASP and VBScript. Although strange as it undoubtedly was when you were introduced
to new and exciting concepts, I sincerely hope that your trip has been an educational
one. This trip should inspire you to continue working with this exciting Web develop-
ment tool and to learn more about creating dynamic, powerful, functional, easy-to-use
Web applications.

This final chapter reviews what you’ve learned and serves as a comprehensive quick
reference tool to which you can return time and time again with your ASP questions.
Also, I will describe what’s ahead for ASP so that you can glimpse the future of Web
development in this area.

Topics are presented in (roughly) the order in which they appear in this book. Note
that I’ve provided specific page numbers for reference to the material discussed so
that you can quickly find what you are looking for.

Configuring Your System for ASP

For ASP to function properly, you must work with a properly configured server, one
that is capable of supporting ASP. In the Windows operating system discussed in this
book, both the Personal Web Server (Windows NT and 98) and the Internet Informa-
tion Server (Windows 2000) are capable of supporting ASP functionality.

Working with ASP on the Personal Web Server

The Personal Web Server (PWS) is designed to work with Windows 98 and NT (it is
called Peer Web Services on Windows NT). Although not as functionally complete or
powerful as the Internet Information Server (IIS), the PWS can be effectively used in
conjunction with your personal computer as a development, testing, and staging plat-
form for your work with ASP before you take it live on a production server. PWS also
supports the FrontPage server extensions (discussed in more detail in Chapter 10, “ASP
and HTML Scripting with FrontPage 2000”; also refer to Chapter 1, “Preparing to Work
with ASP”) and is easy to install and configure.

For more information on PWS, consult the following sections:

• “Configuring Your Web Server for ASP” in Chapter 1, page 4.

• “Installing Personal Web Server” in Chapter 1, page 10.

• “Confirming Your PWS Installation” in Chapter 1, page 12.

• “Displaying the Default PWS Home Page” in Chapter 1, page 18.

Working with ASP on the Internet
Information Server

IIS is the full-featured Web server that comes packaged with Windows 2000 server, as
well as the Windows 2000 Professional client. With IIS, you have a complete applica-
tion tool that enables you to work with the Web via ASP (and other) applications in a
variety of ways.

Untitled-8 2/25/03, 10:28 AM262

C
h

a
p

te
r

1
1

L
o

o
k

in
g

 B
a
c
k

 a
n

d
 L

o
o

k
i n

g
 F

o
rw

a
rd

263For more information on IIS, consult the following sections:

• “Configuring Your Web Server’s ASP Functionality” in Chapter 1, page 13.

• “Installing Internet Information Server” in Chapter 1, page 5.

• “Confirming Your IIS Installation” in Chapter 1, page 7.

Working with Other ASP-Related Tools

Although a functional, properly configured Web server is an essential tool for your
work with ASP, you will also find other resources useful. Specifically, some type of
HTML and/or scripting editor comes in quite handy because you need an easy-to-use
environment for entering and fine-tuning your code.

For more information on such tools, consult the following:

• “Choosing an ASP Application Development Tool” in Chapter 1, page 18.

• Chapter 10, “ASP and HTML Scripting with FrontPage 2000,” for more informa-
tion on Microsoft FrontPage, an excellent tool for working with ASP and general
HTML coding.

FrontPage is by no means the only development tool that supports ASP functionality.
However, given its ease of use and direct integration with ASP (because both are
Microsoft products), FrontPage is the focus of this book.

Programming ASP Pages with VBScript

As you now know, VBScript is the default scripting language for use with ASP. Although
not the only scripting language you can use, VBScript is relatively easy to learn with-
out sacrificing any functionality for this ease of use. Because your ASP pages contain
VBScript code, this code is processed on the server, and the results are sent to the Web
browser for display.

Although nearly all the chapters in this book contain some element of or reference
to VBScript, some chapters deal more specifically with the fundamental concepts of
this powerful scripting language. For the essentials of VBScript, consult the follow-
ing sections:

• “Understanding VBScript Variables” in Chapter 2, page 29.

• “The IF...THEN Statement” and “The FOR...NEXT Statement” in Chapter 2 for general
information on essential programming statements, beginning on pages 33 and 37,
respectively.

• “Commenting Your VBScript Code” in Chapter 2, page 39.

• “Working with Loops” in Chapter 7, page 151.

• “Introducing Arrays: Why Do You Need Them?” in Chapter 8, page 162.

• Chapter 8, “Essential Programming Logic, Part II,” for general information on
mathematical, time and date, and VBScript functions.

• Appendix A, “VBScript Variable Reference,” for more general information on work-
ing with the variable subtypes available within the scripting language.

Untitled-8 2/25/03, 10:28 AM263

264
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Integrating Your ASP Web Pages
with a Database

As noted many times throughout this book, one of the most popular and useful fea-
tures of ASP is how easy it is to have your Web pages interact with a database. This
allows for an entirely new level of functionality because your pages become dynamic,
able to respond to and display information based on specific user input.

For specific information on how to accomplish this integration, refer to the follow-
ing chapters:

• Chapter 5, “Database Access with ADO,” which describes the fundamental ele-
ments of this type of integration.

• Chapter 3, “Working with ASP Objects,” which explains this essential component of
working with ASP (a precursor to understanding the power of ADO and how it works).

• The Memory Game example from Chapter 6, “Using Forms” (beginning on page
110), which demonstrates how to integrate database access with other facets of
your code, as well as how to accept user information and then query a database
(and return results) based on that information.

• Appendix B, “SQL Reference,” which provides an overview of the language in which
you call and retrieve information from a database: SQL (Structured Query Language).

• Appendix C, “Access Essentials,” which describes how to establish and configure
basic Microsoft Access databases that you then integrate with your ASP Web pages
(if you are not familiar with basic database concepts).

Looking Ahead—ASP+

The Web is in a state of constant change, fueled by thousands of ideas (some good,
some not so good) that drive innovation, reinvention of existing ideas, market values,
and, in general, how information is stored, distributed, and accessed.

ASP technology is but one tool in a sea of tools that shape the present—and future—of
the Web. Like all other tools, to keep up with the ever-changing face of the Web, ASP
must evolve or perish.

The Philosophy of Indispensability—Viewing the
Web as an Automobile

Enter ASP.NET—or ASP+, or ASP 4.0 (it goes by many names)—the next iteration of ASP
technology. As of this writing, the technology is still in beta (not yet officially released
for public consumption) and is part of Microsoft’s ambitious, sweeping vision of how
the Web will evolve over the next several years, especially in the area of how informa-
tion will be accessed on a multitude of devices, not just the traditional PC. As you
probably know, all kinds of devices—from Web-enabled cell phones to handheld com-
puting devices such as the Palm Pilot—are not essential tools in accessing information
on a daily basis. With the ubiquitous nature of the Web in both our private and profes-
sional lives, it makes sense that these devices have the capability to link to informa-
tion formerly accessible only via the desktop PC or laptop computer.

Untitled-8 2/25/03, 10:28 AM264

C
h

a
p

te
r

1
1

L
o

o
k

in
g

 B
a
c
k

 a
n

d
 L

o
o

k
i n

g
 F

o
rw

a
rd

265Besides multiple methods of access, there is also an ever-growing need to make the
Web a more secure, personalized space. Think of the modern automobile. If you thought
(frequently) that your car could break down at a moment’s notice and, as you are sit-
ting stranded on the side of the road, roaming bands of highway pirates would steal
you blind while you watch hopelessly, you would not be inclined to drive often (or at
the very least, any distance). Moreover, what if, instead of the literally hundreds of
styles of cars available, you had only half-a-dozen models from which to choose and all
in the same color? Again, you would probably feel stifled in how you use your automo-
bile and—critical to how the Web will evolve—how you relate to your automobile. It is
not only a necessary tool in your everyday life but also a metaphorical extension of
your personality, desires, and goals.

If you think that what you’ve just read is heady and bordering on metaphysical gibber-
ish, take a moment—seriously—to reflect on how you feel about your automobile. Why
did you pick that particular model? Why that color? Also, why did you insist that the
car have certain features (sunroof, multidisc CD player, and so on)? More than likely,
you view your car not only as an invaluable machine in your everyday life but also as
an important extension of your personality. It is this combination—practicality and
intimacy—that many businesses (including Microsoft) want to see developed into the
Web. For many of us, the Web and technology in general have already attained this
sacred place in our lives—we can’t live without them. However, for the vast majority of
folks throughout the world, the Web is still very much in its infancy. An interesting
gadget, one that has gained a tremendous amount of attention, but still alien and
possessing nowhere near the status of being indispensable in our everyday lives.

The Promise of ASP+

ASP+ is about to enter the picture with the following goals:

• The availability of information on a variety of platforms and devices, not just the
traditional PC.

• To quote a Microsoft press release, a shift of focus from “individual Web sites or
devices connected to the Internet, to constellations of computers, devices, and ser-
vices that work together to deliver broader, richer solutions” so that people can
control “how, when, and what information is delivered to them.”

• A universal vision of data access.

• Heavy use of XML (eXtensible Markup Language), allowing more exact control and
placement of information.

• Intelligent data, which doesn’t lose any of its integrity when transmitted across
the Web and received (and manipulated) on a variety of platforms (handheld de-
vices, desktop PCs, laptops, and the like).

• New levels of security so that data can be comfortably and securely shared.

• Personalization and customization of data (driven by customer information
desires), including more control of your profile and how others access your per-
sonal information.

• A unified computing environment, enabling users to browse and author docu-
ments and information within a single interface.

Untitled-8 2/25/03, 10:28 AM265

266
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

• Cleaner, more powerful, and faster code, with advanced DHTML sent to browsers
capable of displaying such content, as well as regular HTML.

• Extensive controls for both data binding and form control, which provide tremen-
dous precision in how data is displayed within the client. This enhanced integra-
tion of the information and the process in which it is displayed or manipulated
gives the information a life of its own. It doesn’t just sit within your client; it com-
municates with the entire application structure.

Internet Information on ASP+

As of this writing, ASP+ and the entire Microsoft .NET are still very much in develop-
ment. However, many developers (of which you are now one, having read this book!)
are starting to look to ASP+ as their next tool for Web application development.

For more information, consult the following sources:

• http://msdn.microsoft.com/msdnmag/issues/0900/ASPPlus/ASPPlus.asp

• http://www.devx.com/dotnet/resources/default.asp

• http://www-askasp-plus.com/articles.asp?View=ALL

• http://www.asp101.com/aspplus

• http://www.stardeveloper.com/asp_bk_aspplus_2.asp

• http://4guysfromrolla.com/webtech/amb/amb.ASPPlus.shtml

Summary

Perhaps you are thinking that to stay on the cutting edge of ASP, you now need to run
out and buy a book on ASP+. Perhaps you feel that all the material in this book is
outdated and you would have been better off waiting for a book on ASP+. Think again.
As with any new technology—especially one as sweeping in scope and vision as the
.NET initiative—early implementers must spend much time not on the cutting edge
but the bleeding edge. In short, there is something to be said for allowing the technol-
ogy to evolve and work out its kinks and bugs before you invest time and resources in
utilizing it as your primary solution. Moreover, you always benefit by having a solid
understanding of the fundamentals, which are often found in earlier versions. Then
you appreciate what the new enhancements mean and can best benefit from all the
functionality they represent. You did a smart thing in purchasing and learning from
this book because you now have a foundation from which to move forward into the
world of .NET and ASP+. The technologies you now understand (VBScript, SQL, the
integration of databases with Web pages, and so on) are cornerstones of ASP, both
current and future. Build from what you’ve learned, and continue to experience the
power and fun of working with this ever-evolving technology.

Untitled-8 2/25/03, 10:28 AM266

TE
AM
FL
Y

Team-Fly®

A

T
hroughout this book, I’ve shown you

how to tap the power of ASP using

VBScript. This appendix serves as a

quick reference, a convenient place for you to look

up everyday questions in regard to VBScript vari-

able behavior.

VBScript Variable
Reference

A P P E N D I X

Untitled-1 2/25/03, 8:21 AM267

268
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

You will discover, as you become more comfortable with ASP and VBScript, that
you won’t need to refer to a reference like this. Maybe you’ve already reached that
level (if you’re a quick learner!). For now, though, use this as a programming cheat
sheet while you master the essentials of the language.

VBScript and ASP Essentials

To get your VBScript to perform correctly within your ASP pages, you need to keep the
following in mind:

• Be sure that you save your VBScript-enabled Web pages with the .asp extension.
This ensures that the VBScript included within your pages will execute on the
server, sending only the results of that execution to the Web browser.

• Aside from giving your pages the .asp extension, you must also ensure that your
ASP Web pages are presented (and processed) via a Web server capable of working
with ASP. The Microsoft Personal Web Server and Internet Information Server
you’ve been using throughout this book are good examples of Web servers capable
of working with ASP.

• To integrate your VBScript into regular HTML, you must place the VBScript within
<% and %> markings. For example, the following VBScript would properly execute in
a Web page that has an .asp extension and is being processed by a Web server ca-
pable of working with ASP:

<html>

<body>

<%

TestVar="Active Server Pages"

%>

Welcome to the exciting world of <%=TestVar%>

</body>

</html>

The following code would not work because the closing %> tag, after the definition
of the TestVar variable, is not included. An error message would be displayed in the
Web browser, attempting to access this page.

<html>

<body>

<%

TestVar="Active Server Pages"

Welcome to the exciting world of <%=TestVar%>

</body>

</html>

I’ve shown you many coding examples utilizing these basic rules. Even though they
are basic, they are essential. If you forget to follow these essentials of ASP program-
ming with VBScript, your Web pages will, at best, not function and, at worst, present
all kinds of nasty errors to the person visiting your site.

TRICK

Untitled-1 2/25/03, 8:21 AM268

A
p

p
e
n

d
ix

A
V

B
S

c
rip

t V
a
ria

b
l e

R
e
fe

re
n

c
e

269VBScript Variable Subtypes

Remember that a variable is a special programming component that can contain a
variety of values, depending on how such values are set by the programming. For ex-
ample, you could have a variable named Age to (temporarily) hold the age of each user
as they are listed and read from a database.

Within VBScript are several variable subtypes, including the following:

• Byte

• Boolean

• Integer

• Long

• Single

• Double

• Currency

• Date

• Object

• String

Depending on the specific value you want to represent (for example, currency versus
date), you can use these subtypes in different ways. I’ll show you how to work with
several subtypes in this appendix.

Understanding and working with variables is about as essential as it gets in learn-
ing a programming language. Also, be sure to refer to Chapter 2, “Programming ASP
Web Pages with VBScript,” for more information on this subject and for more de-
tailed examples of the information presented in this appendix.

Working with String Functions

The ability to manipulate and work with string functions is a major feature of VBScript.
Within this section, I’ll show you how to

• Concatenate strings.

• Search and replace strings.

• Compare one string to another.

• Extract strings.

Concatenating Strings

If you concatenate a string, you are literally building a larger string from two or more
smaller strings. Consider the following example:

<html>

<body>

TRICK

Untitled-1 2/25/03, 8:21 AM269

270
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

<%

ValueA="A good way to learn "

ValueB="to program in ASP is "

ValueC="to read ASP Programming for the Absolute Beginner"

ValueD=ValueA&ValueB&ValueC&ValueD

Response.Write(ValueD)

%>

</body>

</html>

When this ASP page executes, the text “A good way to learn to program in ASP is to
read ASP Programming for the Absolute Beginner” is displayed. If you look closely at
the code, you can see that three variables (ValueA, ValueB, and ValueC) have been assigned
specific textual values. When combined together, using the & sign (and subsequently
assigned to the ValueD variable), the entire concatenated value is displayed.

Note that the & sign is used only to concatenate strings. If you want to add numeric
variables, you can use regular numeric operators (+, -, /, and so on). I’ll talk more
about numeric operators later in this appendix.

Searching and Replacing Strings

Often in your programming, you need to search for one string within another string.
Fortunately, VBScript allows you to accomplish this task easily via the INSTR() function.
By utilizing this function, you can determine the numeric position of one string within
another string. Take a look at the following example:

<html>

<body>

<%=

INSTR("Now is the time for all good men to come to the aid of their

country", "good")%>

</body>

</html>

When this code executes, a numeric value of 25 is displayed on the screen. Why 25?
Because in evaluating the string "Now is the time for all good men to come to the aid of their
country", the INSTR function is looking for the position within the string that the word
good begins. Starting at one and counting over the specific characters until the start-
ing position of the word good, you will find that good starts at the twenty-fifth posi-
tion. If you were searching for the starting position of the word time, the value re-
turned would be 12 because time starts at the twelfth position in the string.

Note that you don’t have to start at the first position of a string. Consider the following
code:

<html>

<body>

TRAP

Untitled-1 2/25/03, 8:21 AM270

A
p

p
e
n

d
ix

A
V

B
S

c
rip

t V
a
ria

b
l e

R
e
fe

re
n

c
e

271<%=

INSTR(4, "My name is John", "name")

%>

</body>

</html>

In this example, a value of 4 is returned. You are asking the INSTR function to search for
the word name and to begin the search at the fourth position of the string "My name is
John". Because the word name starts at the fourth position of the string, a value of 4 is
returned. However, look at the following code:

<html>

<body>

<%=

INSTR(5, "My first name is John", "first")

%>

</body>

</html>

In this case, a value of 0 is returned. Why? Because even though the word first is in the
fifth position of the string included within it (that is, the letter I), a value of 0 is re-
turned because the search starts at the fifth position. A full match on the word first is
not found because the f in first is not accounted for, given that the search begins at the
fifth character and the letter f is at the fourth position.

You should also be aware that the INSTR function is, by default, case-sensitive. The fol-
lowing code returns the value of 0 for this reason:

<html>

<body>

<%=

INSTR("My first name is John", "FIRST")

%>

</body>

</html>

If the search string were listed as "My FIRST name is John", a value of 4 would be returned.

You can get around this case-sensitive default by placing a 1 at the end of the func-
tion, as shown here:

<html>

<body>

<%=

INSTR(4, "My first name is John", "FIRST", 1)

%>

</body>

</html>

TRICK

Untitled-1 2/25/03, 8:21 AM271

272
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

In this example, a value of 4 is returned because you are telling the INSTR function to
ignore its case-sensitive default. Be careful, though, when using this feature! You need
to include the start position argument (4,...), or your code will produce an error.

Finally, even though the INSTR function searches by default from the left of a string, you
can get it to search from the right. Examine the following code example:

<html>

<body>

<%=

INSTRREV("My first name is John", "J")

%>

</body>

</html>

In this example, a value of 4 is returned because the search begins from the right of
the string and searches until, in this case, a capital J is found (because you’ve left the
default case-sensitive feature turned on), which happens to be the fourth letter from
the right of the string.

Replacing strings comes in handy in a variety of situations. Consider the following
code:

<html>

<body>

<%

User="Robert Smith"

NewString="We should tell you that username is a great ASP programmer!"

NewString=REPLACE(newstring, "username", User)

%>

A special message!

<hr>

<%=NewString%>

</body>

</html>

When this code executes, the text “We should tell you that Robert Smith is a great ASP
programmer!” appears on-screen under the boldface heading A special message!. As you can
see in the code listing, the REPLACE function is used to tell your code what to look for (in this
case, the word username) and replace it with the value assigned to the variable User.

Comparing One String to Another

At times, you want to compare two string values to see whether they are equal. Review
the following code:

<html>

<body>

TRICK

Untitled-1 2/25/03, 8:21 AM272

A
p

p
e
n

d
ix

A
V

B
S

c
rip

t V
a
ria

b
l e

R
e
fe

re
n

c
e

273<%

VarA="My name is John"

VarB="My name is John"

IF VarA=VarB THEN %>

The two values are equal!

<% ELSE %>

The two values are not equal!

<% END IF%>

</body>

</html>

In this example, the text “The two values are equal!” is displayed because the two vari-
ables, VarA and VarB, are equal.

You should be aware, however, that the = operator is case-sensitive. To avoid returning
false results when comparing strings (that is, returning a value indicating that the two
strings being compared are not equal even though they are equal but have different
capitalization), you can convert the strings to either uppercase or lowercase. Consider
the following example:

<html>

<body>

<%

VarA="My name is John"

IF Ucase(VarA)="MY NAME IS JOHN" THEN %>

The two values are equal!

<% END IF %>

</body>

</html>

In this example, the variable VarA is converted to all uppercase, so the comparison is true.

You can also convert to lowercase using the LCASE function in place of UCASE.

Finally, use the STRCOMP() function to compare two strings quickly, as shown in the fol-
lowing example:

<html>

<body>

<%=

STRCOMP("My name is John", "My name is John")

STRCOMP("My NAME is John", "My name is John")

STRCOMP("My NAME is John", "My name is John", 1)

%>

</body>

</html>

TRICK

Untitled-1 2/25/03, 8:21 AM273

274
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

What results are returned from this code listing? Take a look at each instance of the
STRCOMP() function illustrated in the code:

• In the first example, a value of 1 (a true value) is returned because the two strings
are identical.

• In the second example, a value of 0 (a false value) is returned because the two
strings are not equal in regard to case.

• In the final example, a value of 1 (a true value) is returned. Even though the two
strings are not identical in case, the inclusion of the ignore case argument (the 1
at the end of the third STRCOMP function) causes these two strings to compare as
true because they are the same, with the exception of case.

Extracting Strings

Similar in scope to the search string function, the ability to extract string information
is a powerful feature of VBScript and one you will use quite often.

In this section, you will take a look at the following functions:

• LEFT()

• RIGHT()

• MID()

Put simply, the LEFT function returns a specified number of characters starting from
the left side of a string. The RIGHT function returns a specified number of characters
starting from the right side of a string. Finally, the MID function returns a specified
number of characters starting from the left side of the string and continuing for a
specified number. Examine the following code example:

<html>

<body>

<%

ExampleText="My name is John, and I work with ASP"

%>

<%=LEFT(ExampleText, 7)%>

<%=RIGHT(ExampleText, 13)%>

<%=MID(ExampleText, 4, 4)%>

</body>

</html>

If this code were to execute, the following values would be returned:

• My name. This is representative of the LEFT function because it is returning the first
seven characters (starting with one) and counting from the left.

• work with ASP. This is representative of the RIGHT function because it is returning the
first 13 characters (starting with one) and counting from the right.

• name. This is representative of the MID function because it is returning a string of
four characters, starting from the fourth position and counting from the left.

Untitled-1 2/25/03, 8:21 AM274

A
p

p
e
n

d
ix

A
V

B
S

c
rip

t V
a
ria

b
l e

R
e
fe

re
n

c
e

275Replacing Strings

As you perform manipulations of your string functions, you will undoubtedly have a
need to replace one value with another. This is where the REPLACE function comes in
particularly handy:

<html>

<body>

<%=

TextValue="love"

NewTextValue="My name is John, and I like to program with ASP!"

NewTextValue=REPLACE(NewTextValue, "like", TextValue)

%>

<%=NewTextValue%>

</body>

</html>

Can you guess what happens when this executes? Take a look at each line of the code
so that you can see how the REPLACE function works:

• First, the two variables TextValue and NewTextValue are assigned values ("love" and "My
name is John, and I like to program with ASP!").

• Next, the REPLACE function is called into action. Because you want to replace some
element of the NewTextValue string, you reassign this variable again
(NextTextValue=REPLACE(NewTextValue…).

• The REPLACE function works like this: First, the variable you want to search through
is listed (in this case, the initial value of the NewTextValue variable). Next, a value
that you want to replace is listed (in this case, the word like). Finally, the variable
or string (the variable TextValue, in this case) is listed. In essence, the REPLACE func-
tion works like this: You name the variable in which you want to replace some-
thing, you give a value you want to use to replace that something, and you list
that something you want to replace.

If you’re starting to see some similarities between these various functions, at least
in syntax, you are becoming a savvy ASP programmer. The syntax of many string
manipulation functions is very similar. This is by design, to give VBScript a high
degree of uniformity, usability, and functionality.

Working with Date and Time Functions

Knowing how to manipulate string variables is important—you will do lots of this in
your work developing ASP. However, there are other common variable types you will
find a need to work with just as often: date and time variables.

There are very simple (yet useful) time and date functions available for your use within
VBScript:

• DATE(). This function returns the current date.

• TIME(). This function returns the current time.

TRICK

Untitled-1 2/25/03, 8:21 AM275

276
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

• NOW(). This function returns the date and time as they are currently being kept on
your Web server’s clock.

• MONTH(), DAY(), WEEKDAY(), and YEAR(). These functions allow you to break the DATE() func-
tion into smaller parts, returning (not surprisingly) the specific month, day, and
year of the current date.

• HOUR(), MINUTE(), and SECOND(). Like the preceding functions listed for deducing the
current date into smaller components, these three functions allow you to perform
similar tasks with the TIME() function by returning the exact hour, minute, and
second (as recorded on your Web server).

The syntax of all these functions is very simple. Consider the following code example:

<html>

<body>

 Here is exact information about the current date and time!

<hr>

The current month is: <%=MONTH(DATE)%><p>

The current day is: <%=DAY(DATE)%><p>

The current weekday is <%=WEEKDAY(DATE)%><p>

The current year is <%=YEAR(DATE)%><p>

<hr>

 And now, for some precise time measurements!

<hr>

The current hour is <%=HOUR(TIME)%><p>

The current minute is <%=MINUTE(TIME)%><p>

The current second is <%=SECOND(TIME)%><p>

</body>

</html>

Untitled-1 2/25/03, 8:21 AM276

TE
AM
FL
Y

Team-Fly®

B

T
hroughout this book, you have used

Structured Query Language (SQL) to

access and manipulate data in your

Access databases via your ASP Web pages. You’ve

come to the conclusion (I hope) that your Web

pages are far more useful and interesting when you

allow them to come alive and interact directly with

a data source such as an Access database.

This appendix has been written to provide you with

a general overview of the more common SQL com-

mands, functions, and logical operators so that you

can continue to utilize the power of SQL in your ASP

programming.

SQL
Reference

A P P E N D I X

Untitled-1 2/25/03, 8:55 AM277

278
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

As I’ve said in other parts of this book, SQL is deceptively simple. Underneath those
basic-looking commands lies a tremendous amount of power for data manipulation.
This appendix touches only the surface of the fundamental SQL concepts. For more
detailed information, be sure to check out Microsoft SQL Server 7 Administrator’s
Guide (Premier Press, Inc.) for more information.

The examples in this appendix utilize the Music.mdb Access database, described
in Chapter 5, “Database Access with ADO.”

The SELECT Command

Use the SELECT command to return data from your database.

The following command returns all records from the Catalog table of the Music database:

SELECT * FROM CATALOG

The following command returns the record(s) from the Catalog table where the ID
field has a value of 8:

SELECT * FROM CATALOG WHERE ID=8

The following command returns all records from the Catalog table where the ID field
has a value between 25 and 30:

SELECT * FROM CATALOG WHERE ID >=25 AND WHERE ID <=30

The following command returns the record(s) from the Catalog table where the Artist
name equals The Beatles:

SELECT * FROM CATALOG WHERE ARTIST='The Beatles'

Be sure to include the single opening and closing quotation mark around any text
field, as in the preceding SELECT example. Otherwise, you will receive an error mes-
sage when the query is executed. Also, remember to use caution when including apos-
trophes in your queries. If you do use them, they must be doubled. For example:

SELECT * FROM CATALOG WHERE ARTIST = 'The Swanson's Beat'

would give an error, but the following code would function:
SELECT * FROM CATALOG WHERE ARTIST = 'The Swanson''s Beat'

As with many SQL commands illustrated in this appendix, you can generate queries
with literally millions of permutations. That is the true power of SQL. By providing a
simple syntax, you can access data in nearly any way imaginable. This holds true for
not only the SELECT command but also any other SQL query you can dream up.

The INSERT Command

You use the INSERT command to place new information into your database.

TRICK

TRAP

TRICK

Untitled-1 2/25/03, 8:55 AM278

A
p

p
e
n

d
ix

B
S

Q
L
 R

e
fe

r e
n

c
e

279The following example inserts a new record into the Catalog table. Note that all the
individual fields in the Catalog table are assigned a value, with the exception of the ID
field, which is an Autonumber field:

INSERT INTO CATALOG (Artist, Title, Price) VALUES ('Talking Heads',

'Remain in Light', '$8.99')

The next example inserts a new record into the Catalog table, but this time only the
Artist field is assigned a value. When the new record is inserted, the other fields re-
main blank, with the exception of the ID field, which is an Autonumber field:

INSERT INTO CATALOG (Artist) VALUES ('Kid Rock')

Remember, the INSERT command is used to place new information into a database table.
Use the UPDATE command to—you guessed it—update information that already exists.

The UPDATE Command

By using the UPDATE command, you change existing information in the database.

As illustrated in this section, you must be very careful when using the UPDATE state-
ment, making sure that you clearly specify which records you want to update. Using
the UPDATE statement without providing any qualifying statement about what to up-
date results in the updating of every record in your table. Although this is sometimes
the desired result, usually you want to update only specific records.

The following example updates the record in the Catalog table where the ID record is
equal to 15:

UPDATE CATALOG

SET Title='Sweetheart of the Rodeo'

WHERE ID=15

In the preceding example, note how the SQL query is broken up into three lines. This
type of formatting is useful in making the query syntax easier to read and easier to
troubleshoot if you need to address problems at a later date. Note, however, that you
can’t break up statements like this in VBScript because it will result in errors.

You can use conjunctions (discussed later in this appendix) with the UPDATE statement,
just as you can with other SQL commands. This is useful for gaining even more exact
control over which data you want to update:

UPDATE CATALOG

Set Price='$15.99'

WHERE ID=25 AND WHERE ID=30

You can also use the UPDATE command without specifying what should be updated. Con-
sider the following example:

UPDATE CATALOG

Set Artist='The Beatles'

TRICK

TRAP

Untitled-1 2/25/03, 8:55 AM279

280
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Can you guess what the result of this query would be? If you said that all records in the
Catalog table would have their Artist value set to The Beatles, you are absolutely right.
Again, there might be situations where you want to make this type of global update.
However, most of the time, you will be using the UPDATE command to make changes to a
unique record. Be sure that you clearly specify which record you want to update!

The DELETE Command

The basic SQL command you use most often is the DELETE command. From a syntax
perspective, it is similar to the UPDATE command:

DELETE FROM CATALOG

As with the UPDATE command, you must be very careful when using the DELETE command.
If the preceding example was executed, all rows of data in the Catalog table would be
deleted, wiping the table clean, in essence. Although you might have a need to per-
form this type of action, more than likely you will never want to delete all data from
your tables! Therefore, as with the UPDATE command, you must clearly specify which
data you want to delete. Consider the following example:

DELETE FROM CATALOG WHERE ID=15

In this example, only the record where the ID field is equal to 15 is deleted.

You can also use the DELETE statement to gain more exact control over which data is to
be removed:

DELETE FROM CATALOG

WHERE ID >= 20 AND WHERE ID <=30

AND WHERE

Artist='Billy Joel'

In this example, all records with an ID value greater than or equal to 20 and less than
or equal to 30 are deleted. Additionally, all records where the Artist field is equal to
Billy Joel are deleted.

Logical Operators

Often, you want to determine whether specific relationships exist in your data, based
on either information you have captured (from a Web form, for example) or the data
itself. You use logical operators to perform this type of analysis.

This section describes the following commonly used logical operators:

• IS NULL

• BETWEEN

• IN

• LIKE

The IS NULL Operator

Depending on the type of information you capture in your database, you can have
some records where not all fields are assigned a value. For example, imagine that you

Untitled-1 2/25/03, 8:55 AM280

A
p

p
e
n

d
ix

B
S

Q
L
 R

e
fe

r e
n

c
e

281ask visitors to your Web site to enter not only their name and address but also specific
contact information, such as telephone number, e-mail address, and fax. Although
most visitors will undoubtedly have an e-mail account (and probably a telephone and
fax, too), perhaps they won’t want to provide you with all this information. In that
case, when they complete the form your site uses to capture and insert their informa-
tion into the database, specific fields for their unique records will be blank.

Now imagine that you have been asked by your supervisor to contact everyone who has
a listing in your database. You’d rather not call everyone because this is too time-con-
suming, so you decide to use e-mail or fax. However, you are concerned that not all the
individuals listed in the database have, or have provided, an e-mail or fax contact.

You can use the IS NULL operator to search through your database table for individuals
whose records don’t have a value assigned to the e-mail or fax field. Such a query
might look like this:

SELECT * FROM CUSTOMERS WHERE EMAIL IS NULL AND WHERE FAX IS NULL

In this example, all the records in the Customers table where the Email and/or Fax
fields are blank are returned as part of the SELECT command.

Keep in mind that the following two queries are not the same:

SELECT * FROM CUSTOMERS WHERE EMAIL IS NULL

SELECT * FROM CUSTOMERS WHERE EMAIL=NULL

The first query returns all records where the Email field has a value of null. The
second query returns all records where the Email field has a textual value of the
word null. (Actually, this query would result in an error because it is missing the
single quotes around NULL). Keep this important distinction in mind when working
with the IS NULL operator.

The BETWEEN Operator

You use the very valuable BETWEEN operator to search for values that fall within a certain
range. Take a look at the following example:

SELECT * FROM CATALOG WHERE ID BETWEEN 30 AND 40

In this example, all records that have an ID field value greater than or equal to 30 but
less than or equal to 40 are returned.

The IN Operator

Imagine that you want to search through a specific table, looking for all records fields
that have a specified value. Consider the following query:

SELECT * FROM CATALOG WHERE ARTIST IN ('The Beatles', 'The Byrds', 'Led Zeppelin')

When this query is executed, the records returned by the SELECT command have an
Artist field where the value is equal to The Beatles, The Byrds, or Led Zeppelin. Use the
IN operator to search quickly through your records as you look for a match (or matches)
to a specified value.

TRAP

Untitled-1 2/25/03, 8:55 AM281

282
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

The LIKE Operator

Imagine another scenario. You have a Web form that allows your customers to search
through an inventory table to determine whether you carry the product in which they
are interested. After you gather the desired product name from the customer, you use
a simple SELECT query to return all matches, as follows:

SELECT * FROM CATALOG WHERE TITLE='" & Request.Form("Title") & " ' "

In this example, the only records returned are those where the Title field has an exact
value specified by the customer. This is potentially useful, assuming that the customer
knows the exact title of the CD he or she is interested in buying.

Often, customers do not know exact information, or they have only partial informa-
tion. In this case, the preceding query would not work because it is looking for an
exact match to return any data.

You need to use the LIKE operator, which allows your queries to generate results where
the information provided is like what is found in the database table. Take a look at the
following example:

SELECT * FROM CATALOG WHERE TITLE LIKE '%Live%'

In this example, the query returns the following records from the Catalog table of the
Music.mdb database.

ID Artist Title

14 James Brown Live at the Apollo

16 Johnny Cash Live at Folsom Prison

54 Bob Seger Live Bullet

75 The Who Live at Leeds

By specifying the LIKE operator, using the syntax of %Live%, all records containing the
word Live in the Title field are returned—it doesn’t matter in what location the word
Live appears. For example, if the title of a CD was Absolutely Live, this would be re-
turned as well.

How you utilize the % or _ characters in the LIKE operator determines how this operator
performs in a query. In the following query, all records where the Title field has the
letters RO in the second and third position are returned:

SELECT * FROM CATALOG WHERE TITLE LIKE '_RO'

In the next example, all records that begin with the letter P are returned:

SELECT * FROM CATALOG WHERE TITLE LIKE 'P_%'

The next query returns all records in the Catalog table that have, in the Title field, a
value that ends with the letter P:

SELECT * FROM CATALOG WHERE TITLE LIKE '%P'

Untitled-1 2/25/03, 8:55 AM282

A
p

p
e
n

d
ix

B
S

Q
L
 R

e
fe

r e
n

c
e

283The following query returns all records in the Catalog table with a value in the Title
field that has the letter O in the second position and ends with the letter R:

SELECT * FROM CATALOG WHERE TITLE LIKE '%_O%R'

As you see from these examples, there is virtually no limit to the way you can use the
LIKE operator to help locate data based on partial information. As you develop more
advanced SQL queries in your ASP Web pages, you will return to the LIKE operator fre-
quently. Be sure to use its power to your advantage.

A useful spin on all these operators is the use of the word NOT before them. This
allows you to search for the reverse of the condition you are specifying in the opera-
tor statement. Consider the following example:

SELECT * FROM CATALOG WHERE ID NOT BETWEEN 40 AND 50

In this example, all records that have an ID value not between 40 and 50 are returned.

Take advantage of the NOT operator when you want to exclude records from being
returned that meet specific criteria.

Useful Data-Sorting Functions

In your ASP programming, you often want to return the minimum, maximum, sum,
and average values from a table of values. The specific SQL functions you use to help
with such tasks are discussed in this section.

The COUNT Function

Imagine that you want to return the number of records in a specific table. Using the
COUNT function, you can do just that. Examine the following query:

SELECT COUNT(*) FROM CATALOG

When this query is executed, the number 80 is returned because there are 80 records
in the Catalog table. (Note that if you run this query on your own Catalog table, the
number of records returned can vary, depending on which actions you have performed
on the table.)

Remember the IS NULL operator? You can use the COUNT function in a similar fashion:

SELECT COUNT (FAX) FROM CUSTOMERS

In this query, the number returned is all the records in the Customers table that have
a value (other than null) for the Fax field.

The SUM Function

You use the SUM function if you have a particular numeric field in a database table that
you want to sum for all records. Imagine that you have a Scores table to track how your
class of third-grade students is progressing. Each individual record you enter into this

TRICK

Untitled-1 2/25/03, 8:55 AM283

284
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

table has a value entered into the Point field (in this case, the Point field is used to
record the student’s score on each quiz, test, and so on). In the following example, the
executed query returns the sum of all points for all students:

SELECT SUM (POINT) FROM SCORES

Although this type of all-inclusive query is useful when you want to see the grand total
points achieved by all your students, you use the SUM function to return the total num-
ber of points for each student in the table. That said, consider the following query:

SELECT SUM (POINT) FROM SCORES WHERE STUDENT_ID=15

In this example, only the records where the Student_ID field equals 15 are totaled—
and again, only the Point field for each record is totaled.

The SUM function can be used only on fields that have a numeric value.

The AVG Function

Similar to the SUM function, you use the AVG function to return the average value across
rows in your database table. Using the same student database example, take a look at
the following query:

SELECT AVG (TOTAL_POINTS) FROM SCORES

When this query is executed, the average for all records that contain a value for the
Total_Points field is returned.

The MAX Function

Keeping with the student database example, take a look at an example of the MAX function:

SELECT MAX (TOTAL_POINTS) FROM SCORES

Can you guess what value is returned? That’s right—the maximum value in the
Total_Points field for all records that have a value in this field.

The MIN Function

The following query uses the MIN function:

SELECT MIN (TOTAL_POINTS) FROM SCORES

As I’m sure you guessed, when this query is executed, it returns the minimum value in
the Total_Points field for all records that have a value in this field.

TRAP

Untitled-1 2/25/03, 8:55 AM284

C

T
hroughout this book, I’ve shown you

how to integrate an Access 2000 database

with your ASP pages to produce Web

applications that sport far more functionality (and

fun!) than simple static Web pages. This short ap-

pendix has been written to serve as an Access

primer, a handy reference if you’re familiar with the

program and a comprehensive introduction if you’re

new to Access.

Access
Essentials

A P P E N D I X

286
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Access 2000 is a deceptively simple program. Don’t let that perceived simplicity
convince you that it is not a robust, powerful member of the Office 2000 suite. Check
out Microsoft Access 2002 Fast & Easy by Faithe Wempen (Premier Press, Inc.) for a
solid, more complete overview of Access.

You have learned how to program your Web pages to interact with an Access database—
or, more specifically, you’ve learned how to work with ADO and ASP to empower your
Web pages with a data source. In reality, you don’t need to know much at all about
Access to integrate your databases with your Web pages, but what if you need a re-
fresher in the fundamentals, such as how to create a database from scratch, insert
tables, and modify fields? Well, you’ve come to the right place! This short appendix
introduces you to Access essentials. Along the way, you can take a peek at some of the
query-generating tools that are also available in the application.

Creating an Access Database

To begin, take some time here to go through the process of creating a database from scratch:

1. Open Access. You are immediately presented with a dialog box, asking you to ei-
ther create a new database or open an existing file (see Figure C.1).

2. Select the Blank Access Database option, and click OK. You are presented with
the File New Database dialog box, asking you to which location you want to save
your new database (see Figure C.2).

TRICK

FIGURE C.1

Determining how to
create your new

Access database.

FIGURE C.2

In this example, I’m
saving the database

to my C: drive and
giving it the name

TestDatabase.

Untitled-3 2/25/03, 8:58 AM286

TE
AM
FL
Y

Team-Fly®

A
p

p
e
n

d
ix

C
A

c
c
e
s
s
 E

s
s
e
n

ti a
l s

287

3. Give your database a name (I named my database TestDatabase), and select a lo-
cation in which to save it.

4. Click the Create button (refer to Figure C.2). After a few seconds, your database is
created (see Figure C.3).

You are ready to begin working in your new database. Now I’ll show you some essential
functionality of the application by explaining how to create and modify tables and
specific fields in those tables.

Creating Tables in Design View

To work with information in your database, you need a place to store that information.
This is where tables come into play.

Access tables are powerful repositories of data, allowing you to view your information
in a variety of ways—through the use of simple sorting features, not unlike Excel, as
well as SQL queries. Creating them is very easy, and I’ll show you how it’s done.

There are three ways to create a table with Access 2000: in Design view, through the
use of a wizard, or by entering data. For this example, you will go through the tradi-
tional process of table creation in Design view:

1. Double-click the Create Table in Design View option (refer to Figure C.3). The De-
sign view for a new table appears, as shown in Figure C.4.

2. Notice the three column names in Design view: Field Name, Data Type, and De-
scription. As you create specific fields in a table, each of these columns will con-
tain a value. Your cursor should be flashing in the first Field Name position; if it
is not, click there now.

3. For this example, you are going to create a table to store information for a per-
sonal address book. You will name the first field ID. Type ID in the first field col-
umn, and tab across so that your cursor is in the Data Type field (see Figure C.5).

It’s a good idea to name the first field ID or Recnum (short for record number) so you
have an easily identifiable field that can also be used as a primary key for the table.

FIGURE C.3

Your newly created
Access database.
Congratulations!.

TRICK

Untitled-3 2/25/03, 8:58 AM287

288
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

4. The Data Type column is where you specify the type of data you are going to be
storing in this field. Click the down arrow in the Data Type heading to display
the available data types (see Figure C.6).

5. You’re going to make this ID field the primary key field for your database. You
want it to increment automatically in values of 1 so that as new records are en-
tered into the database, they are assigned a unique identifier. In other words,
they are given a specific ID. From the Data Type menu, select AutoNumber as the
data type for this field (refer to Figure C.6).

A primary key field uniquely identifies each record stored in the table. By doing so,
this allows the full relational powers of Access to function because data can be
quickly located, sorted, and manipulated using this primary key. Every table should
have a primary key, usually named ID or Recnum (again, short for record number).

6. To assign the ID field as your primary key, right-click in the ID field column, and
select Primary Key from the menu that appears (see Figure C.7).

FIGURE C.4

Design view in a
new table. Note the

default naming
convention applied:

Table1.

FIGURE C.5

Naming your first
field ID. Notice that

when you tab
across to the Data
Type column, more

information
appears.

HINT

Untitled-3 2/25/03, 8:58 AM288

A
p

p
e
n

d
ix

C
A

c
c
e
s
s
 E

s
s
e
n

ti a
l s

289

7. Create a few other fields for your address book table. Say that you want to store
the following information about each person in your address book:

• First name

• Last name

• Street address

• City

• State

• Zip code

• Phone number

There are seven fields of information you want to store about each person in
your address book, so you need to create seven fields in your Access table. Place
your cursor in the field column directly under the ID field, and type Firstname
(no space between First and Name). Then, tab across to the Data Type field, and
select Text from the menu, just as you selected AutoNumber for the ID field (re-
fer to Figure C.6).

FIGURE C.6

Exploring the
various data types

available in
Access 2000.

FIGURE C.7

Assigning the ID
field as the primary
key for this table.

Untitled-3 2/25/03, 8:58 AM289

290
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

8. Notice the fields under the Field Properties section of Figure C.8. These fields
(Field Size, Format, and so on) allow you to assign specific characteristics to each
field in the table. For now, note these field properties:

• Field Size. Determines how many characters of information can be stored in
the field. Note that this can vary, depending on the type of field you select.

• Required. Determines whether information must be present in the field for the
specific record. Remember from the discussion of validating Web forms that if
users don’t enter a value for a form field, they are presented with an error mes-
sage? Think of the Required property in the same way. Some type of informa-
tion must be included if the Required field property is set to Yes.

• Allow Zero Length. This field property checks whether a zero-length input is
allowed or a blank space for the field is okay.

For the Firstname field, leave the Field Size property set to its default setting of
50. Then, set the Required property to Yes and the Allow Zero Length property to
No (see Figure C.9).

FIGURE C.8

Creating the
Firstname field and

assigning it as a
text field.

FIGURE C.9

Setting all
field attribute

properties for the
Firstname field.

Untitled-3 2/25/03, 8:58 AM290

A
p

p
e
n

d
ix

C
A

c
c
e
s
s
 E

s
s
e
n

ti a
l s

291Generally speaking, if you have the Required field property set to Yes, you should
set the Allow Zero Length property to No. This ensures that some type of information
will be entered into this field in your table.

9. You are now ready to create the fields for the remaining pieces of information
(last name, street address, and so on) for each record in your address book. Re-
peat steps 7 and 8 for each field you want to create for your address book, mak-
ing sure that you set the following attributes for each field:

• Data Type should be set to Text for each field.

• The Field Size property can be left at the default of 50 except for the
StreetAddress field, which you set to 255 (see Figure C.10).

• The Required property should be set to Yes.

• The Allow Zero Length property should be set to No.

When you finish creating all your fields, your table should like Figure C.10.

10. Now that you have created all the fields, it is time to save the table. Click the
Save icon on the toolbar (the icon that looks like a computer disc). The Save As
dialog box opens (see Figure C.11).

11. Your table is now saved (see Figure C.12). Close the Design view for this table by
selecting File, Close.

That’s it for table creation. Of course, this is a very quick introduction, to put it mildly!
This process is easy, but planning which tables to create and which fields to store in
them can be complex, depending on the amount of information you are storing and
the relationships you want to establish between specific tables. A complete discussion
of database creation is far beyond the scope of this book. For now, though, remember
the following tips to table creation:

HINT

FIGURE C.10

All fields have been
entered. Note that

the field size for the
StreetAddress field
changed from 50 to
the maximum of 255.

FIGURE C.11

Saving your new
table by giving it

a name.

Untitled-3 2/25/03, 8:58 AM291

292
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

• Set a primary key in each table you create.

• Assign data types (text, autonumber, and the like) and field properties for each
field you create.

• Plan ahead. Think about the kinds of information you want to store in tables and
how that information can be divided into fields. For example, in the AddressBook
table created here, you want to store the usual pieces of information for each per-
son listed in your address book (first name, last name, address, and so on). By de-
ciding which types of information you want to store, you make the table creation
process much easier and save yourself time later because you don’t have to go
back and add fields you forgot to create in the beginning.

Entering Data into a Table via the Datasheet
View

Now that you have created a table, it’s easy to enter data into the table from directly
within Access:

1. In your TestDatabase database, double-click the AddressBook table. The table ap-
pears in Datasheet view (see Figure C.13).

FIGURE C.12

Your AddressBook
table is now part of
the TestDatabase.

FIGURE C.13

Preparing to enter
data in the

Datasheet view.

Untitled-3 2/25/03, 8:58 AM292

A
p

p
e
n

d
ix

C
A

c
c
e
s
s
 E

s
s
e
n

ti a
l s

293

What’s the difference between Design view and Datasheet view? Use Design view
to create or modify your table (as you just did) so that you can easily designate your
names, data types, and field properties. Use Datasheet view to enter data.

2. Begin entering data (in this case, you are transcribing information from your
old-fashioned pen and paper address book into the high-tech world of an Access
database. Note that as you enter records, the ID field automatically increments
by 1 (see Figure C.14).

Modifying a Table That Contains Data

Imagine that you want to add a field to a table after you’ve begun entering data. Do
you have to start from the beginning again and lose all the data you already entered?

Of course not! Access 2000 makes it easy to insert a new field or delete an existing
field, for that matter, even if you’ve already started entering information into a table.

Inserting a New Field into an Existing Table

Follow these steps to insert a field quickly into an existing table:

1. Imagine that you want to add a Fax field to your existing AddressBook table. This is
easily done in Design view, so open the table in Design view now. See Figure C.15.

2. You could simply tack on the field to the end of the field listing, after the Phone
field, but say that you want to place it right after the StreetAddress field. To do
so, click the City field to highlight it, as shown in Figure C.16, right-click to dis-
play the menu, and select Insert Rows.

3. There should now be a blank space between the StreetAddress and City fields.
Type Fax into this blank space, tab over, and select Text as the data type for this
new field, as illustrated in Figure C.17.

HINT

FIGURE C.14

Entering data into a
table via the

Datasheet view.

Untitled-3 2/25/03, 8:58 AM293

294
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

FIGURE C.15

Another look at the
AddressBook table

in Design view.

FIGURE C.16

Preparing to insert a
new field into an

existing table.

FIGURE C.17

You can easily add a
new field to an

existing table. Don’t
forget to set the

field data type and
properties.

Untitled-3 2/25/03, 8:58 AM294

A
p

p
e
n

d
ix

C
A

c
c
e
s
s
 E

s
s
e
n

ti a
l s

295

Now, when you view the table in Datasheet view, you see the new field in place. You
need to go back and enter the specified information (in this case, a fax number) for
each record that exists in the table (see Figure C.18).

Deleting a Field from an Existing Table

You can also delete fields easily from an existing table. To do so, follow these steps:

1. Open the AddressBook table in Design view.

2. Delete the newly created Fax field. Select it, right-click to display the menu, and
select Delete Rows, as illustrated in Figure C.19.

3. Before the deletion process goes any further, Access cautions you about the ac-
tion you are about to take, as shown in Figure C.20.

4. Click Yes. The field is deleted.

FIGURE C.18

You must add the
fax number for each

record in the
AddressBook table.

FIGURE C.19

Preparing to delete
a field in an

existing table.

Untitled-3 2/25/03, 8:58 AM295

296
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

Modifying a Field Data Type

Another modification you might want to make on an existing table is to change a
field’s data type:

1. Open the AddressBook field in Design view.

2. Place your cursor in the Data Type column for the Phone field.

3. Click the down arrow, and change the data type from Text to Number, as shown
in Figure C.21.

4. Save this table, but notice the dialog box that opens when you try to save (see
Figure C.22).

What does this mean? When you entered data into your AddressBook table for
the Phone field, you used the following format: (Area Code)XXX-XXXX. A typical
phone number was listed as (317)555-1212. Because this field is a text field, the
parentheses around the area code and the hyphen between the prefix and re-
maining four digits are okay, but now that you’re changing the field data type
from text to number, the parentheses and hyphen can no longer be part of the

FIGURE C.20

Use the Delete
action with caution.

FIGURE C.21

Changing a field’s
data type attribute.

FIGURE C.22

Again, Access
warns you about

potential data loss,
this time due to a
changing of data
type properties.

Untitled-3 2/25/03, 8:58 AM296

TE
AM
FL
Y

Team-Fly®

A
p

p
e
n

d
ix

C
A

c
c
e
s
s
 E

s
s
e
n

ti a
l s

297

FIGURE C.23

Two methods of
creating a query: in
Design view or with

a wizard.

number—they are text elements, not numbers. Access is telling you that, for the
data type change to occur, you have to delete the information previously entered
into the Phone field.

5. For this example, click Yes. If this were a real application, you’d have to go back
and re-enter the information into the Phone field (without any text elements
such as parentheses or hyphens).

Again, this example illustrates the need to do some planning before you start con-
structing your database tables or, at the very least, before you get too deep into enter-
ing data. Plan ahead as much as possible.

Using the Access 2000 Simple Query Wizard

Remember from previous discussions that a query is a way of sorting and looking at
your data in a specific way. The universal database language of SQL (Structured Query
Language) offers a powerful method for querying your data.

As with most things, Access has a helpful wizard to guide you through the process of
querying your data so that you don’t have to worry about learning SQL to manipulate
your data to see new informational relationships.

In this section, you will take a quick look at the Access Simple Query Wizard, which
does most of the legwork for you in sorting your data. You will be using the Music.mdb
sample database included on the enclosed CD-ROM and discussed in Chapter 5, “Data-
base Access with ADO.”

1. Open the Music.mdb file, and click the Queries tab. You will see two methods of
creating queries display (see Figure C.23).

2. Double-click the Create Query by Using Wizard option. After a few moments, the
first step of the Simple Query Wizard appears (see Figure C.24).

3. In the Tables/Queries field, select the Catalog table.

4. For this query, you will include the Artist and Price fields. One at a time, select
each of these fields, and click the > button to add them to the Selected Fields
(see Figure C.25).

5. Click Next. You are presented with the final dialog box for the Simple Query
Wizard (see Figure C.26).

Untitled-3 2/25/03, 8:58 AM297

298
A

S
P

 P
ro

g
r a

m
m

in
g

 f
o

r
t h

e
 A

b
s
o

lu
te

 B
e
g

i n
n

e
r

6. Leave the title of the query as the default, Catalog Query1. Also, leave the se-
lected radio button, Open the Query to View Information.

7. Click Finish. After a few moments, the Catalog table is sorted by artist and price,
as specified in your query (see Figure C.27).

FIGURE C.24

Beginning the query
creation process,

compliments of the
Simple Query

Wizard.

FIGURE C.25

Determining which
fields you want to

include in the query.

FIGURE C.26

The final steps in
the Simple Query

Wizard.

Untitled-3 2/25/03, 8:58 AM298

A
p

p
e
n

d
ix

C
A

c
c
e
s
s
 E

s
s
e
n

ti a
l s

299

FIGURE C.27

The Simple Query
Wizard can quickly

return your
information sorted

in the way you
specified.

Untitled-3 2/25/03, 8:58 AM299

This page intentionally left blank

Index

Symbols
& sign, 270
= operator, 273
<%=, use of, 44

A
Access Simple Query Wizard, 297–299
Access tables

database, creating, 286–287
Datasheet View, entering data via,

292–293
Data Type column, 288
deleting fields, 295–296
in Design View, 287–292
field data type, modifying, 296–297
Field Properties for, 290–291
fields, creating, 288–289
inserting new field in, 293–295
modifying tables with data, 293–295
primary key fields, 288
Simple Query Wizard, using, 297–299

ACTION attribute
of form, 47
in MadLibs game, 62
in Memory game, 135

ActiveX Data Object (ADO) component.
See ADO component

Administrative Tools screen, 8–9
AdminScripts subfolder, 7
ADO component

collection, 85–86
understanding, 84–85

Ad Rotator component
code calling for, 79
defined, 72
example of, 77–79
members of, 76–77
working with, 76–77

advertisements with Ad Rotator
component, 76

& sign, 270
Apache, 4
application development packages,

18–19
arctangent function, 168
arrays, 162–164

elements in array, defining, 163–164
ERASE() function, 166
ISARRAY() function, 166
UNBOUND() function, 165
zero-based arrays, 164–165

ASP+, 264–266
Internet information on, 266

ASP essentials, 268
.asp extensions, 2, 268
ASP.NET. See ASP+
AtEndOfLine property, 57
AtEndOfStream property, 57
Atn() function, 168
attributes of File object, 53
autogenerated ASP code, 243–244
AVG function, 284

B
Background section, Table Properties

dialog box, FrontPage 2000, 227–230
BETWEEN operator, 281
boldfacing

in FrontPage 2000, 222
in HTML forms, 114

Boolean variables, 269
Borders section, Table Properties dialog

box, FrontPage 2000, 227–230
borders with Ad Rotator component, 78
browser plug-ins, 258
byte variables, 269

Untitled-11 2/25/03, 10:33 AM301

302
I n

d
e
x

C
cable modems, 256
captions to tables, adding, 229
case sensitivity

converting lowercase and uppercase
characters, 273

of INSTR function, 271–272
CCur() function, 167
CDate() function, 167–168
cellular phones, Web-enabled, 264
Century Gothic font, 60
CGI programming, 111
CheckValue variable, 151
CheckVar variable, 123–124

in War Game, 187
ChooseContent method, Content

Rotator component, 79
Chr() function, 167
CInt() function, 167
Clickable property, 76
ClientCertificate collection, 47–48
client-side processing, 27–29
Clip Art Gallery dialog box, FrontPage

2000, 224
Close method for TextStream object, 57
collections. See also QueryString

collection
ADO object collection, 85–86
object collections, 47–52

Column property, 57
command object, 85
comments on VBScript code, 39–40
components. See also specific types

defined, 72–73
FrontPage components, 231–233

concatenating
If...Then...Else statement, values

with, 151
strings, 269–275

configuring
ASP, system for, 262–263
Web servers for ASP, 4
for Windows 2000, 4–5

connection object, 85
constants in VBScript, declaring, 31–32
Content Linking component

defined, 72
example of, 74–76
members of, 74

working with, 73–74
Content Rotator component

defined, 73
example of, 80
methods used by, 79
working with, 79–80

convert functions, 167–168
ConvertFunctions.asp, 167–168
cookies collections, 48
copy File object method, 54
Cos() function, 168
cosine function, 168
COUNT function, 283
Create New Data Source dialog box, 147
CreateTextFile, 56

File object method, 54, 56
cross-compatibility with browsers, 3
currency

CCur() function, 167
subtype, 31
variables, 269

D
database.asp, 193–194
Database Results Wizard.

See FrontPage 2000
databases

Access database, creating, 286–287
data source compared, 86
integrating ASP Web pages with, 264
MadLibs, integration of, 207–209
Memory Game database, 116–120

data binding, 266
data-sorting functions, 283–284
data sources, 86
data verification for forms, 116
Date function, 27, 173–174

CDate() function, 167–168
DateTimeFunctions.asp, 173–174
of File object, 53
in VBScript, 173–174, 275–276

date subtype, 31
DateTimeFunctions.asp, 173–174
Date variables, 269
Day() function, 276
default home page, displaying,

15–18
delete

Access table fields, 295–296

Untitled-11 2/25/03, 10:33 AM302

In
d

e
x

303File object method, 54
DELETE statement, 102–103

WHERE clause with, 103
working with, 280

DHTML effects, 256–258, 266
DIM statements with arrays, 164
Do loop, 124–125
Double variables, 269
Do Until loop, 187
Do While loop, 104

in dynamic form, 196–197
in Fortune Teller game, 157

Drive of File object, 53
drop-down menus, 195

with dynamic form elements, 196–197
DSN (Data Source Name), 86–88

creating, 86–88
referring to, 89

dynamic form elements, 194–197
dynamic hyperlinks, creating,

197–199
dynamic QueryStrings, creating, 197,

199–201

E
Else If statement, 186
Else statement, 36

use of, 150
e-mail

with FrontPage Webs, 255–256
IS NULL operator with, 281

End If statement, 34
EOF (End of File), 91
= operator, 273
ERASE() function, 166
Exp() function, 168
exponential values function, 168
extracting strings, 274

F
File object, 52–56

example of, 54–56
MadLibs game, saving, 66–69
methods, 54
properties of, 53–54

file pointers, 57
FirstName variable, 114
folder hierarchy, 17
Folders view, FrontPage 2000, 220

fonts
for Fortune Teller game, 148
in FrontPage 2000, 221–222
in HTML forms, 114
for MadLibs, 60

form.asp, 196–197
formatting

e-mail, 256
FrontPage Web tables, 227–230

Formatting toolbar, FrontPage 2000,
221–222

form collections, 48–52
forms. See also hidden form fields;

HTML forms
control, 266
Database Results Wizard, integrating

forms with, 244–249
data verification, 116
dynamic form elements, 194–197
FrontPage forms, validating, 234–239
hard coded form elements, 194–196
working with, 111–113

For...Next loop, 37–39, 144
connections, insertion between, 125
with Content Linking component, 75–76
with ConvertFunctions.asp, 168
efficiency of using, 153
in HTML tables, 192
in Memory game, 138
random number generation, 123

Fortune.mdb database. See Fortune
Teller game

Fortune Teller game, 144–159
basics of, 145–146
building Fortune Teller Wizard, 154–159
font for, 148
Fortune_Info.asp data input page,

creating, 148–149
Fortune_Process.asp

creating, 154–156
header information, defining, 156
magic number, generating, 157–158
new fortune, displaying, 158–159
previous fortunes, reading, 156–157

If...Then...Else statements, 150–151
If...Then statements in, 149–150
ODBC connection, creating, 146–147

Fortune Wizard. See Fortune Teller game
<frame name> tags, 254

Untitled-11 2/25/03, 10:33 AM303

304
I n

d
e
x

frames. See FrontPage 2000
FrontPage 2000, 19–20

advantages and disadvantages of, 259
basics of interface, 220–221
building a FrontPage Web, 216–218
components, working with, 231–233
Database Results Wizard, 240–249

form processing page, creating,
246–249

forms, integrating, 244–249
viewing automatically generated ASP

code, 243–244
DHTML effects, 256–258
e-mail, integrating, 255–256
field validation features, 172
Folders view, 220
fonts, selecting, 221–222
formatting text on Web page, 221–223
Formatting toolbar, 221–222
forms

Database Results Wizard, integrating
forms with, 244–249

validating forms, 234–239
frames

filenames translated to, 254
mechanics, understanding, 253–255
saving frame pages, 252
working with, 249–255

graphics
inserting, 223–226
tables, adding to, 230–231

.htm extension, 219
Hyperlinks view, 221
marquees, inserting, 231–233
naming FrontPage Web, 216–218
Navigation view, 221
new pages, adding, 218–219
Page view, 220
Pictures toolbar, 225–226
placing text on Web page, 221–223
radio buttons, validating, 239
Reports view, 220
required form fields, determining,

235–237
saving

frame pages, 252
Web pages, 218–219, 234

SearchForm.asp, 247–249
Server Extensions, IIS with, 7
System Data Sources on Web Server

dialog box, FrontPage 2000, 241
tables

captions, adding, 229
cell properties, formatting, 228–229
formatting tables, 227–230
graphics, adding, 230–231
organization of information with,

226–227
splitting/merging cells in, 229–230

Tasks view, 221
testing form validation in browser,

237–238
Text Format properties of form

element, using, 236
validating forms in, 234–239

ftproot subfolder, 7
functionality of ASP, confirming, 13–15
functions. See also specific functions

array functions, 165–166
VBScript, 167–174

G
GameStart form, 141
Gates, Bill, 259
GetAdvertisement method, 76
GetAllContent method, Content Rotator

component, 79
GetListCount member, 74
GetListIndex member, 74
GetNextDescription member, 74
GetNextURL member, 74
GetNthDescription member, 74
GetNthUrl member, 74
GetPreviousDescription member, 74
GetPreviousURL member, 74
graphics. See also FrontPage 2000

manipulating, 225
tables, adding to, 230–231

Guesses form, 141

H
hard-coding, 25

form elements, 194–196
header information for pages, 156

Untitled-11 2/25/03, 10:33 AM304

In
d

e
x

305Hello, World! program, 40–41
hidden form fields

in Memory Game, 141
in War Game, 180

History database, 117
hit counters in FrontPage 2000, 231
Hits method, Page Counter

component, 81
home page

bookmarking address, 16
default home page, displaying, 15–18
IIS home page, displaying, 17–18
in MadLibs game, 61–63

home page address, 8–9
Home Page Wizard, 13
HomeSite, 19–20
Hour() function, 173, 276
hover buttons in FrontPage 2000, 231
.htm extension, 219
.html extensions, 2
HTML forms, 111–113

boldfacing in, 114
fonts in, 114

HTML (Hypertext Markup Language)
DHTML effects, 256–258
formatting, 190–201
manual updating, 25
tables, coding for, 190–192
VBScript, integrating, 268

Hyperlink.asp, 198–199
hyperlinks. See also Content Linking

component
dynamic hyperlinks, creating,

197–199
FrontPage 2000 view, 221

I
If Request.form, 135
If...Then...Else statements, 35–36

concatenating values with, 151
loops, power of, 151–153
using, 150–151

If...Then statements, 33–37, 144
in Fortune Teller game, 149–150
looping with, 38–39
magic number in Fortune Teller game

with, 157–158

IIS (Internet Information Server)
FrontPage Web in, 216
INSERT statement, 98–99
working with ASP on, 262–263

iissamples subfolder, 7
impression for image display, 78
Inetpub folder, 7–8

organizing pages in, 16
IN operator, 281
InsertCheck variable, 125
INSERT statement, 97–99

permissions, setting, 98–99
working with, 278–279

Insert Table dialog box, FrontPage 2000,
226–227

installing
Internet Information Server (IIS), 5–7
Personal Web Server (PWS), 10–12

INSTR function, 271–272
integer subtype, 31
Integer variables, 269
intelligent data, 265
Internet Explorer, 3, 219

DHTML with, 257
JavaScript Web pages with, 28
marquees in, 232
tables in, 230
VBScript with, 3

Internet Information Server (IIS)
configuring ASP for, 4–5
confirming installation of, 7–10
default IIS home page, displaying, 17–18
description information, 6
guided tour of features, 9–10
installing, 5–7
as staging platform, 9

Internet Information Services control
panel, 8

Internet Services Manager, 8
ISARRAY() function, 166
IsDate() function, 170
IsEmpty() function, 170
IsFunctionForm.asp, 170
IsFunctionProcess.asp, 170–172
Is functions, 169–173
IsNull() function, 170
IS NULL operator, 280–281

Untitled-11 2/25/03, 10:33 AM305

306
I n

d
e
x

IsNumeric() function, 170
illustration of, 172–173

ISPs (Internet service providers)
development of ASP-enabled Web pages

with, 4
FrontPage 2000 with, 259

J
JavaScript, 2

client-side processing and, 28
comparing ASP to, 3
DHTML effects with, 257
Form Validation message box using, 237

L
LastName variable, 114
Layout section, Table Properties dialog

box, FrontPage 2000, 227–230
Left() function, 274
LIKE operator, 282–283
Line property, 57
LinkName variable, 198–199
logarithm function, 168
Log() function, 168
logical operators, 280–283
Long variables, 269
loops, 37–38

efficiency with, 153
lowercase characters, converting, 273

M
Macromedia HomeSite, 19–20
MadLibs, 61–69

database, integrating with, 207–209
data input form, 61–63
dynamic form elements and, 202–207
dynamic page formatting, 209–213
home page, 61–63
MadLibHome.asp, 203–204
MadLibHome_Rev.asp, 209–211
MadLibProcess.asp, 204–207
MadLibProcess_Rev.ASP, 211–213
ODBC connection, establishing, 208
processing page, 63–67
saving, 66–69
TextStream object in, 57

MagicNumber variable, 158
manual updating, 25

marquees in FrontPage 2000, 231–233
MatchData table, 116–117, 121, 123–124

WinCheck connection, 140
mathematical functions, 168–169
MathFunctions.asp, 169
MAX function, 284
Memory Game, 110–111

database, 116–120
design overview, 115–116
hidden form fields, 141
Memory_Home.asp page, 126–127
Memory_Process.asp, 127–141

generating game board, 136–138
playing game, 136–138
random number generation, 138–141
setting up game, code for, 134–136

ODBC connectivity, establishing, 117–119
permissions, establishing, 119–120
programming for, 120–126
random number generation, 120–126

Memory Properties dialog box, 119–120
merging cells in tables, 229–230
methods of File object, 54
Microsoft. See also FrontPage 2000

Access Driver, 86–87, 147
Microsoft SQL Server Administrator’s

Guide, 89
Microsoft Access Setup dialog box, 88
Mid() function, 274
MIN function, 284
Minute() function, 173, 276
Monotype Corsiva font, 148–149
Month() function, 173, 276
Move File object method, 54

N
names

File object returning, 53
for MadLibs game files, 68–69

Navigation view, FrontPage 2000, 221
nested.asp, 37
Netscape Communicator, 3
Netscape Navigator, 219

DHTML with, 257
JavaScript Web pages with, 28
tables in, 230

New dialog box, FrontPage 2000, 216–217
NewFortune variable, 159

Untitled-11 2/25/03, 10:33 AM306

TE
AM
FL
Y

Team-Fly®

In
d

e
x

307New Page dialog box, FrontPage 2000, 250
Next statement, 38–39
NOT, use with operators, 283
Notepad, 18, 244
Now() function, 173, 276

O
objects. See also ADO component;

specific types
closing, 56
collections, 47–52
variables, 269

ODBC Data Source Administrator
dialog box, 86–87

ODBC Microsoft Access Setup dialog
box, 147

ODBC (Open Database Connectivity), 84
for Fortune.mdb database, 146–147
MadLibs, integrating database

with, 208
for Memory Game, 117–119

OLE-DB (Object Linking and Embedding
Database), 84

on-line help, use of, 18
OpenAsTextStream, 56

File object method, 54
OpenTextFile, 56

P
Page Counter component

defined, 73
example of, 80
methods of, 81
working with, 81

PageHit method, Page Counter
component, 81

Page view, FrontPage 2000, 220
Palm Pilot, 264
ParentFolder, 53
path

File object returning, 53
MadLibs game files, saving, 69

permissions
INSERT statement, setting for, 98–99
Memory Game permissions, 119–120

Personal Web Manager
control panel, 8–9
features of, 12–13

Personal Web Server (PWS), 262
confirming installation, 12–13
default home page, displaying, 18
FrontPage Web in, 216
hanging after installation, 11
installing, 10–12
as staging platform, 13
Tour option, 13

Pictures toolbar, FrontPage 2000, 225–226
Player form, 141
plug-ins, 258
POST method, 52
PrevFortune variable, 157
primary key fields, 288
privacy. See security
properties

of File object, 53–54
of TextStream object, 57

Publishing Wizard, 13

Q
QueryString.asp, 200–201
QueryString collection, 48

Request object QueryString collection,
51–52

URLs (Uniform Resource Locators) and, 52
QueryStrings

assigning values to, 199
dynamic QueryStrings, creating, 197,

199–201
for sensitive information, 201

R
Radio Button Validation dialog box,

FrontPage 2000, 239
RANDOMIZE function, 157–158
random number generation, 120–126,

138–141
ReadA11() method for TextStream

object, 57, 60
Read (a number) method for TextStream

object, 57, 60
reading from text files, 59–60
Readline method, 57, 60
recordsets

object, 85
returned recordset, 91
working with, 103–105

Untitled-11 2/25/03, 10:33 AM307

308
I n

d
e
x

REPLACE function, 275
replacing strings, 270–272, 275
Reports view, FrontPage 2000, 220
Request object, 44–47

collections, 47–48
form collection, 47–51
forms, working with, 113–115
MadLibs game, saving, 68
QueryString collection, 51–52

Request.QueryString method, 201
Reset method, Page Counter

component, 81
Response object, 44–47
returned recordset, 91
Right() function, 274
RndCheck variable, 124

S
Save As dialog box, FrontPage 2000,

218–219, 234
Save Embedded Files dialog box,

FrontPage 2000, 234
saving. See also FrontPage 2000

MadLibs game, 66–69
Saving Results of Form dialog box,

FrontPage 2000, 256
scripting editors, 89
search forms in FrontPage 2000, 231
searching and replacing strings,

270–272
Second() function, 173, 276
security

on ASP+, 265
cautions about, 120
need for, 265
QueryStrings and, 201
of server-side processing, 30
server-side processing and, 3

Select Database dialog box, 87–88
SELECT statement, 91–97

in Fortune Teller game, 157
in Memory Game, 138
for random number generation, 123
working with, 278

servers. See IIS (Internet Information
Server); Personal Web Server (PWS)

server-side processing, 2
advantages of, 2–3
client-side processing vs., 27–29

reasons for using, 28
security of, 30

ServerVariables collection, 48
ShortName, File object returning, 53
ShortPath, File object returning, 53
sine function, 168
Sin() function, 168
Single variables, 269
Size, File object returning, 53
Skip (a number) method for TextStream

object, 57, 60
SkipLine method for TextStream object,

57, 60
SomeNumber value, 150
speed of performance, 3
splitting/merging cells in tables, 229–230
SQL (Structured Query Language), 85.

See also DELETE statement; INSERT
statement; SELECT statement;
UPDATE statement

Access tables with, 297–299
AVG function, 284
BETWEEN operator, 281
COUNT function, 283
data-sorting functions, 283–284
IN operator, 281
introduction to, 88–92
IS NULL operator, 280–281
LIKE operator, 282–283
logical operators, 280–283
MAX function, 284
MIN function, 284
returned recordset, 91
SUM function, 283–284

Sqr() function, 168
square root function, 168
strings, 269–275. See also QueryStrings

comparing string values, 272–274
concatenating, 269–270
extracting strings, 274
replacing strings, 270–272, 275
searching for, 270–272

string variables, 31, 269
SUM function, 283–284

T
TableCount variable, 138
Table Properties dialog box, FrontPage

2000, 227–230

Untitled-11 2/25/03, 10:33 AM308

In
d

e
x

309tables. See also Access tables; FrontPage
2000

arrays as, 164
captions, adding, 229
cell properties, formatting, 228–229
graphics, adding, 230–231
HTML code for, 190–192
MatchData table, 121, 123–124
splitting/merging cells in, 229–230

<table> tag, 192
Tan() function, 168
tangent function, 168
TargetFrame property, 77
Tasks view, FrontPage 2000, 221
Tear() function, 276
TestPage.asp, 15
Text Box Properties dialog box,

FrontPage 2000, 235
Text Box Validation dialog box,

FrontPage 2000, 235–236
text files

with Ad Rotator component, 77–78
with Content Linking component, 74–76
with Content Rotator component, 79–80
MadLibs game, saving, 66–69
reading from, 59–60
writing to, 57–59

TextFormat variable, 60
TextStream object, 56–60

properties of, 57
reading from text files, 59–60
writing to text files, 57–59

tick marks for comments, 39–40
Time function, 173

in VBScript, 173–174, 275–276
tools, selecting, 263
Tour option, 13
trigonometric functions, 168–169
troubleshooting PWS installation, 11
Type, File object returning, 53

U
UNBOUND() function, 165
UPDATE statement, 99–102, 124

working with, 279–280
uppercase characters, converting, 273
URLs (Uniform Resource Locators), 15–16

with Ad Rotator component, 78
with Content Linking component, 73–74

QueryString collection and, 52
User Data Sources list, 147
UserName variable, 31–32
UserText value, 151

V
Value variable in arrays, 164
variables. See VBScript
VBScript, 3–4

in client-side processing, 28
commenting on code, 39–40
constants, declaring, 31–32
convert functions, 167–168
currency subtype, 31
date subtype, 31
essential of, 268
For...Next statement, 37–39
functions, 167–174
If...Then statements, 33–37
integer subtype, 31
integrating with ASP, 24–27
Is functions, 169–173
mathematical functions, 168–169
programming ASP pages with, 263
simple program example, 32–33
string variables, 31
time and date functions, 173–174
variables

subtypes, 269
understanding, 29–31

verification of form data, 116
Visual Basic, 3

W
War Game, 174–188

ASPWar_Home.asp, 179–180
ASPWar_Play.asp, 179–188
hidden form fields in, 180
rules of, 175–178

War.mdb.database, 179
Web Site button, 13
Weekday() function, 276
weight for image display, 78
WHERE clause, 94–96

with DELETE statement, 103
WinCheck connection, 140
Windows 2000, configuring IIS for, 4–5
Windows Components Wizard dialog

box, 6

Untitled-11 2/25/03, 10:33 AM309

Windows NT, IIS support for, 5
wizards, use of, 18
Write (a string) method for TextStream

object, 57, 60
WriteBlankLines (a number) method for

TextStream object, 57, 60
WriteLine (a string) method for

TextStream object, 57, 60
WriteLine method, 56

writing to text files, 57–59
wwwroot folder, 15

X
XML (eXtensible Markup Language),

265

Z
zero-based arrays, 164–165

310
I n

d
e
x

Untitled-11 2/25/03, 10:33 AM310

Untitled-11 2/25/03, 10:33 AM311Untitled-10 2/25/03, 10:32 AM4

This page intentionally left blank

License Agreement/Notice of Limited Warranty

By opening the sealed disc container in this book, you agree to the following terms
and conditions. If, upon reading the following license agreement and notice of lim-
ited warranty, you cannot agree to the terms and conditions set forth, return the un-
used book with unopened disc to the place where you purchased it for a refund.

License:

The enclosed software is copyrighted by the copyright holder(s) indicated on the software
disc. You are licensed to copy the software onto a single computer for use by a single user
and to a backup disc. You may not reproduce, make copies, or distribute copies or rent or
lease the software in whole or in part, except with written permission of the copyright
holder(s). You may transfer the enclosed disc only together with this license, and only if
you destroy all other copies of the software and the transferee agrees to the terms of the
license. You may not decompile, reverse assemble, or reverse engineer the software.

Notice of Limited Warranty:

The enclosed disc is warranted by Premier Press, Inc. to be free of physical defects in
materials and workmanship for a period of sixty (60) days from end user’s purchase
of the book/disc combination. During the sixty-day term of the limited warranty,
Premier Press will provide a replacement disc upon the return of a defective disc.

Limited Liability:

THE SOLE REMEDY FOR BREACH OF THIS LIMITED WARRANTY SHALL CONSIST EN-
TIRELY OF REPLACEMENT OF THE DEFECTIVE DISC. IN NO EVENT SHALL PREMIER OR
THE AUTHORS BE LIABLE FOR ANY OTHER DAMAGES, INCLUDING LOSS OR CORRUP-
TION OF DATA, CHANGES IN THE FUNCTIONAL CHARACTERISTICS OF THE HARDWARE
OR OPERATING SYSTEM, DELETERIOUS INTERACTION WITH OTHER SOFTWARE, OR
ANY OTHER SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES THAT MAY ARISE,
EVEN IF PREMIER AND/OR THE AUTHORS HAVE PREVIOUSLY BEEN NOTIFIED THAT
THE POSSIBILITY OF SUCH DAMAGES EXISTS.

Disclaimer of Warranties:

PREMIER AND THE AUTHORS SPECIFICALLY DISCLAIM ANY AND ALL OTHER WARRAN-
TIES, EITHER EXPRESS OR IMPLIED, INCLUDING WARRANTIES OF MERCHANTABILITY,
SUITABILITY TO A PARTICULAR TASK OR PURPOSE, OR FREEDOM FROM ERRORS. SOME
STATES DO NOT ALLOW FOR EXCLUSION OF IMPLIED WARRANTIES OR LIMITATION OF
INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THESE LIMITATIONS MIGHT NOT AP-
PLY TO YOU.

Other:

This Agreement is governed by the laws of the State of Indiana without regard to choice
of law principles. The United Convention of Contracts for the International Sale of
Goods is specifically disclaimed. This Agreement constitutes the entire agreement be-
tween you and Premier Press regarding use of the software.

Untitled-11 2/25/03, 10:33 AM312

	sample.pdf
	sterling.com
	Welcome to Sterling Software

