
Slackware Linux Basics

For Slackware Linux 10.1

Daniël de Kok

Slackware Linux Basics: For Slackware Linux 10.1
by Daniël de Kok

Published Tue Jul 19 18:27:09 CEST 2005
Copyright © 2002, 2003, 2004, 2005 by Daniël de Kok

License

Redistribution and use in textual and binary forms, with or without modification, are permitted provided that the following conditions are

met:

1. Redistributions of this book must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. All advertising materials mentioning features or use of this book must display the following
acknowledgement: This product includes content written by Daniël de Kok.

3. The name of the author may not be used to endorse or promote products derived from this book without
specific prior written permission.

THIS BOOK IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE

LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,

BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR

BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS BOOK,

EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Linux is a registered trademark of Linus Torvalds. Slackware Linux is a registered trademark of Patrick Volkerding and Slackware Linux,

Inc. UNIX is a registered trademark of The Open Group.

Table of Contents
Preface .. i
I. Getting started.. i

1. About this book... 1
Availability .. 1
Conventions ... 1

File names .. 1
Commands ... 1
Screen output ... 1
Notes .. 1

2. An introduction to Slackware Linux ... 2
What is Linux? .. 2
What is GNU/Linux?... 2
What is Slackware Linux?... 2
The UNIX philosophy ... 2
Slackware Linux 10.1 features .. 3
Slackware Linux on CD-ROM .. 3

3. Sources of help.. 4
On your system.. 4

Linux HOWTO’s.. 4
Manual pages ... 4

On the internet ... 5
alt.os.linux.slackware... 5

4. General concepts ... 6
Multitasking... 6

Introduction.. 6
Processes and threads... 6

Filesystem hierarchy.. 7
Structure... 7
Mounting.. 8
Common directories... 8

Devices .. 9
Introduction.. 9
ATA and SCSI devices ... 10

5. Installing Slackware Linux ... 11
Booting the installation CD-ROM... 11
Partitioning a hard disk.. 11
Installing Slackware Linux.. 13

6. Custom installation ... 30
Partitioning a hard disk.. 30
Initializing and mounting filesystems.. 30
Installing packages .. 31
Post-install configuration... 32

fstab.. 32
LILO .. 32
Networking .. 33
Tuning startup scripts... 33
Configuring the dynamic linker run-time bindings.. 34
Setting the root password... 34
Setting the timezone... 34

i

Creating the X11 font cache .. 35
Automated installation script... 35

II. GNU/Linux Basics ... 40
7. The Bash shell ... 41

Introduction ... 41
Starting the shell .. 41
Shell basics .. 41

Executing commands ... 41
Browsing through shell commands.. 41
Completion... 42
Wildcards ... 42

Matching a string of characters .. 42
Matching single characters... 43
Matching characters from a set .. 43

Redirections and pipes ... 43
Redirection ... 43
pipes ... 44

8. Files and directories .. 45
Introduction ... 45
The basics .. 45

pwd... 45
ls... 45
cd.. 46
mkdir .. 46
cp.. 46
mv .. 47
rm ... 47

Permissions.. 47
A short introduction ... 47
chown... 48
chmod... 48

Archives... 49
Introduction.. 49
Extracting archives... 49
Creating archives.. 50

Extended attributes .. 51
Introduction.. 51
Installing the necessary utilities ... 51
Showing extended attributes .. 51
Setting extended attributes ... 51

Mounting filesystems... 52
Introduction.. 52
mount ... 52
umount ... 52
The fstab file .. 53

fs_spec.. 53
fs_file .. 53
fs_vfstype ... 53
fs_mntops ... 53
fs_freq... 54
fs_passno .. 54

ii

Encrypting and signing files .. 54
Introduction.. 54
Generating your private and public keys ... 54
Exporting your public key ... 57
Signatures... 57
Encryption.. 58

9. Text Utilities.. 59
Introduction ... 59
The basics .. 59

cat... 59
echo .. 60
wc... 60
tr ... 60
sort.. 61
uniq .. 62

10. Process management ... 63
Introduction ... 63
Process basics .. 63

ps .. 63
kill .. 64

Advanced process management... 64
Background processes.. 65
Stopping processes... 65
Altering priorities... 65

III. Editing and typesetting.. 67
11. LaTeX.. 68

Introduction ... 68
Preparing basic LaTeX documents .. 68

Minimal document structure .. 68
Generating printable formats ... 69
Sections .. 70
Font styles .. 71

IV. Electronic mail.. 72
12. Reading and writing e-mail with mutt .. 73

Introduction ... 73
Usage ... 73

Browsing the list of e-mails ... 73
Reading e-mails ... 73
Sending e-mails.. 73

Basic setup... 74
Customized headers ... 74
The sendmail binary... 74

Signing/encrypting e-mails.. 74
Introduction.. 75
Configuration ... 75
Usage.. 75

13. Sendmail.. 76
Introduction ... 76
Installation ... 76
Configuration... 76

Working with mc files .. 76

iii

Using a smarthost... 77
Alternative host/domain names.. 77
Virtual user table .. 77

14. Spamassassin... 79
Introduction ... 79
Installing spamassasin ... 79

SpamAssassin .. 79
Starting spamd ... 79

Using spamassassin with procmail .. 80
Marking messages as spam.. 80
Moving spam mail to a separate mailbox .. 80

V. System administration... 81
15. User management.. 82

Introduction ... 82
Adding and removing users... 82

useradd ... 82
passwd.. 83
adduser ... 83
userdel .. 84

Avoiding root usage with su .. 84
Restricting su access .. 85

Disk quota.. 85
Introduction.. 85
Enabling quota ... 85
Editing quota.. 86
Getting information about quota.. 87

16. Printer configuration ... 88
Introduction ... 88
Preparations ... 88
Configuration... 88
Access control ... 89
Ghostscript paper size.. 90

17. X11.. 91
X Configuration ... 91
Window manager... 91

18. Package Management.. 93
Pkgtools ... 93

Introduction.. 93
pkgtool ... 93
installpkg.. 93
upgradepkg... 93
removepkg.. 94

Slackpkg .. 94
Introduction.. 94
Configuration ... 94
Importing the Slackware Linux GPG key.. 94
Updating the package lists ... 95
Upgrading packages... 95
Installing packages... 96

Using rsync.. 96
Tagfiles... 97

iv

Introduction.. 97
Creating tagfiles ... 97
Using tagfiles ... 98

19. Building a kernel ... 100
Introduction ... 100
Configuration... 100
Compilation ... 101
Installation ... 101

Installing the kernel.. 102
Configuring LILO .. 102

20. System initialization.. 104
The bootloader... 104

LILO configuration .. 104
LILO installation.. 105

init.. 105
Initialization scripts ... 106
Hotplugging... 107

Executing scripts on hotplug events... 107
21. Security ... 110

Introduction ... 110
Closing services... 110

Introduction.. 110
Finding open ports ... 110
inetd.. 111

22. Miscellaneous.. 112
Scheduling tasks with cron.. 112
Hard disk parameters ... 113
Monitoring memory usage .. 114

vmstat... 114

VI. Network administration... 116
23. Networking configuration ... 117

Hardware ... 117
Configuration of interfaces .. 117
Configuration of interfaces (IPv6)... 118

Introduction.. 118
Slackware Linux IPv6 support... 119
Adding an IPv6 address to an interface ... 119

Wireless interfaces... 120
Resolving... 121
IPv4 Forwarding .. 122

24. IPsec .. 124
Theory.. 124
Kernel configuration .. 124
Installing IPsec-Tools .. 125
Setting up IPsec with manual keying .. 125

Introduction.. 125
Writing the configuration file... 125
Activating the IPsec configuration ... 127

Setting up IPsec with automatic key exchanging .. 127
Introduction.. 128
Using racoon with a preshared key .. 128

v

Activating the IPsec configuration ... 130
25. The internet super server ... 131

Introduction ... 131
Configuration... 131
TCP wrappers .. 131

26. Apache .. 133
Introduction ... 133
Installation ... 133
User directories.. 133
Virtual hosts... 133

27. BIND... 135
Introduction ... 135

Delegation .. 135
DNS records... 135
Masters and slaves ... 135

Making a caching nameserver ... 135

vi

List of Tables
5-1. Alternative kernels... 11
7-1. Bash wildcards .. 42
8-1. Archive file extensions .. 49
9-1. Special tr character sequences... 60
11-1. LaTeX document classes ... 69
11-2. LaTeX font styles .. 71
18-1. Tagfile fields .. 97
20-1. Hotplug device classes .. 107
23-1. Important IPv6 Prefixes... 119
27-1. DNS records .. 135

List of Figures
4-1. Forking a process... 6
4-2. The filesystem structure... 7
5-1. The cfdisk parition tool ... 12
5-2. The setup tool .. 13
5-3. Setting up the swap partition ... 13
5-4. Selecting a partition to initialize.. 14
5-5. Formatting the partition... 14
5-6. Selecting a filesystem type .. 15
5-7. Selecting the source medium... 16
5-8. Selecting the disk sets.. 16
5-9. Installing the kernel ... 17
5-10. Creating a bootdisk.. 17
5-11. Selecting the default modem ... 17
5-12. Enabling hotplugging .. 18
5-13. Selecting the kind of LILO installation... 18
5-14. Choosing the framebuffer resolution... 19
5-15. Adding kernel parameters ... 19
5-16. Choosing where LILO should be installed.. 20
5-17. Configuring a mouse ... 20
5-18. Choosing whether GPM should be started or not.. 21
5-19. Choosing whether you would like to configure network connectivity...................................... 21
5-20. Setting the host name .. 22
5-21. Setting the domain name ... 22
5-22. Manual or automatic IP address configuration.. 23
5-23. Setting the IP addres.. 23
5-24. Setting the netmask ... 24
5-25. Setting the gateway.. 24
5-26. Choosing whether you want to use a nameserver or not ... 25
5-27. Setting the nameserver(s) .. 25
5-28. Confirming the network settings ... 26
5-29. Enabling/disabling startup services ... 26
5-30. Choosing whether the clock is set to UTC.. 27
5-31. Setting the timezone .. 27
5-32. Choosing the default window manager ... 28
5-33. Setting the root password .. 28

i

5-34. Finished ... 29
7-1. Standard input and output.. 43
7-2. A pipeline .. 44
23-1. The anatomy of an IPv6 address ... 118
23-2. Router example.. 122

ii

Preface
This book aims to provide an introduction to Slackware Linux. It addresses people who have little or
no GNU/Linux experience, and covers the Slackware Linux installation, basic GNU/Linux
commands and the configuration of Slackware Linux. After reading this book, you should be
prepared to use Slackware Linux for your daily work, and more than that.

Thanks to the rapid development of opensource software, there are now comprehensive desktop
environments and applications for GNU/Linux. Most current distributions and books focus on using
GNU/Linux with such enviroments. I chose to ignore most of the graphical applications for this
book, and tried to focus this book on helping you, as a reader, to learn using GNU/Linux in a more
traditional UNIX-like way. I am convinced that this approach is often more powerful, and helps you
to learn GNU/Linux well, and not just one distribution or desktop environment. The UNIX
philosophy is described in the section called The UNIX philosophy in Chapter 2.

I wish everybody a good time with Slackware Linux, and I hope that you will find this book is useful
for you.

Daniël de Kok

i

I. Getting started

Chapter 1. About this book

Availability
This book was written in DocBook/XML, and converted to HTML and PDF with Jade. The latest
version of the book is always available from: http://www.slackbasics.org/.

Conventions
This section gives a short summary of the conventions in this book.

File names
File or directory names are printed as: /path/to/file. For example: /etc/fstab

Commands
Commands are printed as bold text. For example: ls -l

Screen output
Screen output is printed like this:

Hello world!

If commands are being entered in the screen output the commands will be printed as bold text:

$ command
Output

If a command is executed as root, the shell will be displayed as “#”. If a command is executed as a
normal non-privileged user, the shell will be displayed as “$”.

Notes
Some sections contain extra notes. It is not necessary to know the information in notes, but notes
may provide valuable information, or pointers to information. Notes are printed like this:

Note: This is a note.

1

Chapter 2. An introduction to Slackware Linux

What is Linux?
Linux is a UNIX-like kernel which is written by Linus Torvalds and other developers, who
communicate using the internet. Linux runs on many different architectures, for example on many
IA32, IA64, Alpha, m68k, SPARC and PowerPC machines. The latest kernel and more information
can be found at: http://www.kernel.org

Linux is often confused with the GNU/Linux system. Linux is only a kernel, not a complete
operating system. GNU/Linux consists of the GNU operating system with the Linux kernel. Please
read the following section for a more detailed explanation of GNU/Linux.

What is GNU/Linux?
At the beginning of the eighties Richard Stallman started an ambitious project with the goal to write
a free UNIX-like operating system. The name of this system is GNU (GNU is Not UNIX). At the
beginning of the nineties most important components of the GNU oparating system were written,
except for the kernel, which is still under development under the name HURD. HURD consists of
some servers which provide UNIX-like kernel functionality. In turn these servers run under the Mach
microkernel. At the beginning at the nineties the HURD team still had to wait till the Mach sources
were released as free software. In the meanwhile Linus started filling the gap with the Linux kernel.
GNU/Linux thus refers to the GNU system running on the Linux kernel. Right now the HURD kernel
is also in a usable state and can be downloaded in the form of the GNU/HURD operating system.
The Debian (http://www.debian.org/) project has even developed a version of the GNU operating
system which works with the NetBSD (http://www.netbsd.org/) kernel. We should call “Linux
distributions” “GNU/Linux distributions”, because GNU is a substantial part of most distributions.

What is Slackware Linux?
Slackware Linux is a GNU/Linux distribution which is maintained and developed by Patrick
Volkerding. In contrast to many other distributions Slackware Linux adheres to the so-called KISS
(keep it simple stupid) principle. This means that Slackware Linux does not have complex graphical
tools for configuring a system. For newbies this can be somwhat harsh, but it provides more
transperancy and flexibility. Besides that you will get to learn GNU/Linux to the bones with
Slackware Linux.

Another distinguishing aspect of Slackware Linux, that also “complies” with the KISS principe is
the Slackware Linux package manager. Slackware Linux does not have complex package manager
like RPM. Packages are normal tgz (tar/gzip) files, mostly with an additional installation script and a
package description. Tgz is much more powerful than RPM for novice users and avoids dependency
problems. Another famous feature of Slackware Linux are the BSD-like initialization scripts of
Slackware Linux. Slackware Linux has one initialization script for each runlevel insteas of a script
for eacht daemon. It allow you to tweak with your system easily, without the need to write net init
scripts yourself.

The packages in Slackware Linux are compiled with as little modifications as possible. This means
you can use most general GNU/Linux documentation.

2

Chapter 2. An introduction to Slackware Linux

The UNIX philosophy
Traditionally, UNIX had a distict philosophy that made it widely loved. Doug McIlroy summarized
the UNIX philosophy in a few simple rules:

• Write programs that do one thing and do it well.

• Write programs to work together.

• Write programs to handle text streams, because that is a universal interface.

Odds are that you do not intend to write programs for GNU/Linux, though even as a user these basic
UNIX rules can mean a lot to you. Once you get to know the basics commands that have been part of
UNIX for many years, you will be able to combine simple programs to solve complex problems. It
helps if you keep this in mind while you learn Slackware Linux and try to get a feeling of how you
can divide complex problems in simple combined operations.

Slackware Linux 10.1 features

• Linux 2.4.29 - Slackware Linux uses the proven 2.4 Linux kernel as the default kernel. Slackware
Linux 10.1 provides Linux 2.6.10 as an option. When a 2.6 kernel is booted, Slackware Linux will
automatically use udev, which is a daemon that automatically generates /dev device entries.

• X11R6.8.1 - This is the second Slackware Linux to provide the X Window System provided by
the X.org Foundation.

• GCC 3.3.4 - Version 3.3.4 of the GNU Compiler Collection is provided. GCC provides C, C++,
Objective-C, Fortran-77, and Ada 95 compilers.

• The K Desktop Environment (KDE) 3.3.2 - The full KDE environment is provided, which
includes KOffice, the Konqueror web browser, multimedia programs, development tools, and
many more useful applications.

• The GNU Network Object Model Environment (GNOME) 2.6.1 - GNOME is a popular GTK2
based desktop environment.

Slackware Linux on CD-ROM
Slackware Linux can be purchased at quite many (internet) shops. It is important to make a
distinction between the official CD-ROM set and cheap copies. When you buy the official CD set
you are financially supporting the development of Slackware Linux. So, if you would like to see
continuing development of Slackware Linux, buy the CD set! The Slackware Store can be found at:
http://store.slackware.com/

3

Chapter 3. Sources of help

On your system

Linux HOWTO’s
The famous Linux HOWTOs are a collection of documents which cover specific parts of a
GNU/Linux system. Most HOWTOs are distribution independent, and therefore very useful for
using them with Slackware Linux. The "linux-howtos" package in from the “f” disk set contains the
HOWTO collection. After installing this package the HOWTOs can be found in the
/usr/doc/Linux-HOWTOs/ directory. Slackware Linux also contains a collection of
Mini-HOWTOs, which are shorter and cover narrower topics. The Mini-HOWTOs can be found in
the /usr/doc/Linux-mini-HOWTOs/ directory after installing the “linux-mini-howtos” package.

Manual pages
Most UNIX-like commands are covered by the a traditional *nix help system called the manual
pages. You can read the manual page of a program by using the man command. Executing man with
the name of the command as a parameter shows the manual page for that command. For example:

$ man ls

If you do not know the exact name of a manual page or command, you can search a page using the
keyword (-k) parameter:

$ man -k routing
NETLINK_ROUTE [rtnetlink] (7) - Linux IPv4 routing socket
netstat (8) - Print network connections, routing tables, interface statistics, masquerade connections, and multicast memberships
route (8) - show / manipulate the IP routing table
routed (8) - network routing daemon
rtnetlink (7) - Linux IPv4 routing socket

We have to add that there are also manual pages that cover other things than commands. These
sections of manual pages are available:

1 Executable programs or shell commands
2 System calls (functions provided by the kernel)
3 Library calls (functions within program libraries)
4 Special files (usually found in /dev)
5 File formats and conventions eg /etc/passwd
6 Games
7 Miscellaneous (including macro packages and conven-

tions), e.g. man(7), groff(7)
8 System administration commands (usually only for root)
9 Kernel routines [Non standard]

If you would like to print a manual page to the default printer that you have set up, you can pipe the
output of man to the lpr. If the -t of man is used man will output the manual page in Postscript

4

Chapter 3. Sources of help

format, rather than ASCII. For example, you could use the following command to print the tar
manual page:

$ man -t tar | lpr

On the internet

alt.os.linux.slackware
alt.os.linux.slackware is a Slackware Linux newsgroup. You can read newsgroups with a newsreader
like tin or knode. Be careful: it is expected that you have read all necessary documentation before
posting to this newsgroup. If you have not the chance of getting “flamed” is really big.

5

Chapter 4. General concepts
This chapter gives an introduction to some general UNIX and GNU/Linux concepts. It is a good idea
to read this chapter thoroughly if you do not have any UNIX or GNU/Linux experience. Many
concepts covered in this chapter are used in this book and in GNU/Linux.

Multitasking

Introduction
One of Linux’ strengths is multi-tasking. Multi-tasking means that multiple processes can run at the
same time. You might wonder why this is important to you, because most people are using one
application at a time. Besides the more obvious reason that it is just handy to browse while you have
a word processor running in the background, multi-tasking is a bare necessity for UNIX-like
systems. Even if you have launched no applications there are a bunch of processes running in the
background. Some processes might provide network services, others sit there showing a login
prompt on other consoles, and there is even a process that executes scheduled tasks. These processes
that are running in the background are often called daemon (not to be confused with the word
demon, a daemon is a protective angel). At a later stage we are going to look at how you can move
processes to the background yourself (see Chapter 10).

Note: Note that on single-processor systems processes are not really running simultaneously. In
reality a smart scheduler in the kernel is dividing CPU time between processes, giving the
illusion that processes are running simultaneously.

Processes and threads
Applications run as one or more processes. To see what a process actually is we need to know what it
consists of. Every process basically has two areas; an area that is named text and an area that is
named data. The text area is the actual program code; it is used to tell the computer what to do. The
data area is used to store information that the process has to keep. The operating system makes sure
that every process gets its time to execute. New processes can be created by duplicating a running
process with a system call named fork. Figure 4-1 shows a fork in action schematically. The parent
process issues a fork() call, and as a result a new process is created.

6

Chapter 4. General concepts

Figure 4-1. Forking a process

The problem with processes is that they can get quite large, and that is not very efficient for
computers with more than one processor. This problem is solved by duplicating the text area of a
process. So, a threaded process is basically a program that has multiple instances of its executing
code running, but these instances share the data area of the process (unlike a fork). These threads can
be divided over multiple CPUs, making it possible to run one process on more than one CPU
simultaneously.

Filesystem hierarchy

Structure
Operating systems store data in filesystems. A filesystem is basically a collection of directories that
hold files, like the operating system, user programs and user data. In GNU/Linux there is only one
filesystem hierarchy, this means GNU/Linux doesn’t have multiple drives (e.g. A:, C:, D:), like
Windows. The filesystem looks like a tree, with a root directory (/) which has no parent directory,
branches, and leaves (directories with no subdirectories). Directories are separated using the “/”
character.

7

Chapter 4. General concepts

Figure 4-2. The filesystem structure

Figure 4-2 shows the structure of a filesystem. You can see that the root directory (/) has two child
directories; bin and home. The home directory has two child directories, joe and jack. The
diagram shows the full pathname of each directory. The same notation is used for files. Suppose that
there is a file named memo.txt in the /home/jack directory, the full path of the file is
/home/jack/memo.txt.

Each directory has to special entries, “.”, and “..”. “.” refers to the same directory, “..” to the
parent directory. These entries can be used for making relative paths. Suppose that you are working
in the jack directory. From this directory you can reference to the joe directory with ../joe.

Mounting
You might have started to wonder how it is possible to access other devices or partitions than the
hard disk partition which holds the root filesystem. Linux uses the same approach as UNIX for
accessing other mediums. Linux allows the system administrator to connect a device to any directory
in the filesystem structure. This process is named “mounting”. For example, one could mount the
CD-ROM drive to the /cdrom directory. If the mount was correct, the files on the CD-ROM can be
accessed through this directory. The mounting process is described in detail in the section called
Mounting filesystems in Chapter 8.

Common directories
The Filesystem Hierarchy Standard Group has attempted to create a standard that describes which
directories should be available on a GNU/Linux system. Nowadays most major distributions use the
Filesystem Hierarchy Standard (FHS) as a guideline. This section describes some mandatory
directories on GNU/Linux systems.

Please note that GNU/Linux does not have a separate directory for each application (like Windows),
files are ordered by function and type. For example, the binaries for most common user programs are
stored in /usr/bin, and their libraries in /usr/lib. This is a short overview of important
directories:

8

Chapter 4. General concepts

• /bin: essential user binaries that should still be available in case the /usr is not mounted.

• /dev: device files. These are special files used to access certain devices.

• /etc: the /etc directory contains all important configuration files.

• /home: contains home directories for individual users.

• /lib: essential system libraries (like glibc), and kernel modules.

• /root: home directory for the root user.

• /sbin: essential binaries that are used for system administration.

• /tmp: a world-writable directory for temporary files.

• /usr/X11R6: the X Window System.

• /usr/bin: stores the majority of the user binaries.

• /usr/lib: libraries that are not essential for the system to boot.

• /usr/sbin: non-essential system administration binaries.

• /var: variable data files, like logs.

Devices

Introduction
In UNIX and Linux almost everything is represented as a file, including devices. Each GNU/Linux
system has a a directory with special files, named /dev. Each file in the /dev directory represents a
device. You might wonder how this is done; a device file is a special file because it has two special
numbers, the major and the minor number. The kernel knows which device a device file represents
by these numbers. The following example shows these numbers for a device:

$ ls -l /dev/zero
crw-rw-rw- 1 root root 1, 5 Apr 22 2003 /dev/zero

The ls lists files and information about files. In this example information about the /dev/zero
device is listed. This particular device has 1 as the major device number, and 5 as the minor device
number.

Note: If you have the kernel sources unpacked after installing Slackware Linux, you can find a
comprehensive list of all major devices with their minor and major numbers in
/usr/src/linux/Documentation/devices.txt. An up-to-date list is also available online at:
ftp://ftp.kernel.org/pub/linux/docs/device-list/

For the Linux kernel there are two types of devices: character and block devices. Character devices
can be read byte by byte, block devices can not. Block devices are read per block (for example 4096
bytes at a time). Whether a device is a character or block device is determined by the nature of the
device. For example, most storage media are block devices, and most input devices are character
devices. Block devices have one distinctive advantage, namely that they can be cached. This means
that commonly read or written blocks are stored in a special area of the system memory, named the
cache. Memory is much faster than most storage media, so it is a huge performance benefit to

9

Chapter 4. General concepts

perform read and write operations on commonly used blocks in memory. Of course, eventually
changes have to be written to the storage medium.

ATA and SCSI devices
There are two categories of devices that we are going to look into in detail, because understanding
the naming of these devices can be crucial for partitioning a hard disk, or for mounting. Almost all
modern computers use ATA hard disks and CD-ROMs. Under Linux these devices are named in the
following way:

/dev/hda - master device on the first ATA channel
/dev/hdb - slave device on the first ATA channel
/dev/hdc - master device on the second ATA channel
/dev/hdd - slave device on the second ATA channel

On most computers the hard disk is the master device on the first ATA channel (/dev/hda), and the
CD-ROM the master device on the second ATA channel. Hard disk partitions have the device name
plus a number. For example, /dev/hda1 is the first partition on the /dev/hda disk.

Most average PCs do not have SCSI hard disks or CD-ROM drives, but SCSI is often used for USB
drives. Besides that Serial ATA (SATA) drives are also made available as SCSI disks. For SCSI
drives the following notation is used:

/dev/sda - First SCSI disk
/dev/sdb - Second SCSI disk
/dev/sdc - Third SCSI disk
/dev/scd0 - First CD-ROM
/dev/scd1 - Second CD-ROM
/dev/scd2 - Third CD-ROM

Partitions are notated in the same way as ATA disks; /dev/sda1 is the first partition on the first
SCSI disk.

10

Chapter 5. Installing Slackware Linux

Booting the installation CD-ROM
The easiest method for booting the installation system is by using the installation CD-ROM. The
Slackware Linux installation CD-ROM is a bootable CD, which means that the BIOS can boot the
CD, just like it can boot, for example, a floppy disk. Most modern systems have a BIOS which
supports CD-ROM booting.

If the CD is booted when you have the CD inserted in the CD-ROM drive during the system boot,
the boot sequence is probably not correctly configured in the BIOS. Enter the BIOS setup (usually
by this can be done by holding the or <Esc> key when the BIOS screen appears) and make
sure the CD-ROM is on the top of the list in the boot sequence. If you are using a SCSI CD-ROM
you may have to set the boot sequence in the SCSI BIOS instead of the system BIOS. Consult the
SCSI card manual for more information.

When the CD-ROM is booted, a pre-boot screen will appear. Normally you can just press <ENTER>
to proceed loading the default (bare.i) Linux kernel. If want to install Slackware Linux to a disk
that is attached to a SCSI or SATA controller, you have to boot an alternative kernel. You can boot an
alternative kernel by entering the kernel name on the prompt, and pressing <ENTER>. The
following table lists some of the alternative kernels, for a full list of kernels, refer to the
Slackware-HOWTO file on the CD-ROM.

Table 5-1. Alternative kernels

Kernel Description
adaptec.s This kernel provides support for most Adaptec

SCSI controllers, including VLB and EISA
models aside from the more modern PCI
controllers.

bareacpi.i This kernel is similar to the bare.i kernel, but
provides support for the Advanced
Configuration and Power Interface (ACPI).

ataraid.i This kernel provides support for some
commonly used ATA RAID controllers.

sata.i This kernel is similar to the bare.i kernel, but
provides support for commonly used SATA
controllers.

scsi.s/scsi2.s/scsi3.s These kernels provide support for various SCSI
controllers. Refer to the Slackware-HOWTO on
the CD-ROM for a list of controllers supported
by each kernel.

After booting the installation system, you will be asked whether you are using a special (national)
keyboard layout or not. If you have a normal US/International keyboard, which are the most
common, you can just press <Enter> at this question. After that the login prompt will appear. Log on
as “root”, no password will be requested. After logging on the shell is started, and you can start
installing Slackware Linux. The installation procedure will be explained briefly in this chapter.

11

Chapter 5. Installing Slackware Linux

Partitioning a hard disk
Installing Slackware Linux requires at least one Linux partition, creating a swap partition is also
recommended. To be able to create a partition there has to be free unpartitioned space on the disk.
There are some programs that can resize partitions. For example, FIPS can resize FAT partitions.
Commercial programs like Partition Magic can also resize other partition types.

After booting the Slackware Linux CD-ROM and logging on, there are two partitioning programs at
your disposal: fdisk and cfdisk. cfdisk is the easiest of both, because it is controlled by a menu
interface. This section describes the cfdisk program.

To partition the first harddisk you can simply execute cfdisk. If you want to partition another disk or
a SCSI disk you have to specify which disk you want to partition (cfdisk /dev/device). An ATA hard
disks have the following device naming: /dev/hdn, “n” is replaced by a character. E.g. the “primary
master” is named /dev/hda, the “secondary slave” is named /dev/hdd. SCSI disks are named in
the following way: /dev/sdn, “n” is replaced by the device character (the first SCSI disk = a, the
fourth SCSI disk = d).

Figure 5-1. The cfdisk parition tool

After starting cfdisk currently existing partitions are shown, as well as the amount of free space. The
list of partitions can be navigated with the “up” and “down” arrow keys. At the bottom of the screen
some commands are displayed, which can be browsed with the “left” and “right” arrow keys. A
command can be executed with the <Enter> key.

You can create a Linux partition by selecting “Free Space” and executing the “New” command.
cfdisk will ask you whether you want to create a primary or logical partition. The number of primary
partitions is limited to four. Linux can be installed on both primary and logical partitions. If you
want to install other operating systems besides Slackware Linux that require primary partitions, it is
a good idea to install Slackware Linux onto a logical partition. The type of the new partition is
automatically set to “Linux Native”, so it is not necessary to set the partition type.

The creation of a swap partition involves the same steps as a normal Linux partition, but the type of
the partition has to be changed to “Linux Swap” after the partition is created. The suggested size of
the swap partition depends on your own needs. The swap partition is used to store programs if the
main (RAM) memory is full. If you have a harddisk of a reasonable size, it is a good idea to make a
256MB or 512MB swap partition, which should be enough for normal usage. After creating the
partition the partition type can be changed to “Linux Swap”, by selecting the “Type” command. The

12

Chapter 5. Installing Slackware Linux

cfdisk program will ask for the type number, “Linux Swap” partitions have type number 82.
Normally number 82 is already selected, so you can go ahead by pressing the <Enter> key.

If you are satisfied with the partitioning you can save the changes by executing the “Write”
command. This operation has to be confirmed by entering yes. After saving the changes you can
quite cfdisk with the Quit command. It is a good idea to reboot the computer before starting the
installation, to make sure that the partitioning changes are active. Press <ctrl> + <alt> + to
shut Linux down and restart the computer.

Installing Slackware Linux
The Slackware Linux installer is started by executing setup in the installation disk shell. Setup will
show a menu with several choices, you can see a screenshot of the installer in Figure 5-2. Every
option has to be completed to do a complete Slackware Linux installation, but once you start the
setup guide will guide you through the options.

Figure 5-2. The setup tool

The first part of the installation is named “ADDSWAP”. The setup tool will look for a partition with
the “Linux Swap” type, and ask you if you want to format and activate the swap partition (see figure
Figure 5-3). Normally you can just answer “Yes”.

13

Chapter 5. Installing Slackware Linux

Figure 5-3. Setting up the swap partition

After setting the swap up space the “TARGET” menu is launched, which you can see in Figure 5-4.
It is used to initialize the Slackware Linux partitions. Setup will display all partitions with the
“Linux native” type.

Figure 5-4. Selecting a partition to initialize

After selecting one partition, the setup tool will ask whether you want to format a partition or not,
and if you want to format it, whether you want to check the disk for bad sectors or not (Figure 5-5).
Checking the disk can take a lot of time.

14

Chapter 5. Installing Slackware Linux

Figure 5-5. Formatting the partition

After selecting whether you want to filesystem or not, you can specify which filesystem should be
used (Figure 5-6). Normally you can choose the ext2, ext3 and reiserfs filesystems. Ext2 was the
standard Linux filesystem for many years, the disadvantage is that Ext2 does not support journaling.
A journal is a special file or area of a partition in which all filesystem operations are logged. When
the system crashes the filesystem can be repaired rapidly, because the kernel can use the log to see
what disk operations were performed. Ext3 is the same filesystem as Ext2, but adds journaling.
Reiserfs is a newer filesystem, that also provides journaling. Besides that Reiserfs uses balanced
trees, which make many filesystem operations, especially when you are working with many small
files, faster than with Ext2 or Ext3. A disadvantage is that Reiserfs is newer, that is why it can be a
bit more unstable.

Figure 5-6. Selecting a filesystem type

The first initialized partition is automatically mounted as the root (/) partition. For other partitions the
mount point can be selected after the initialization. You could, for example make separate partitions
for /, /var, /tmp, /home and /usr. This provides extra protection against crashes. For example the,
/ partition is barely changed after the installation if you create these partitions. So, on the occasion

15

Chapter 5. Installing Slackware Linux

of a crash, the chance that the / partition was in the middle of a write operation is much smaller.

The next step is to select the source medium (Figure 5-7). This dialog offers several choices, like
installing Slackware Linux from a CD-ROM or installing Slackware Linux via NFS. Most of the
times Slackware Linux is installed from CD-ROM, so this is what we are going to look at. After
selecting “CD-ROM” you will be asked whether you want to let setup look for the CD-ROM itself
(“Auto”) or you want to select the CD-ROM device yourself (“Manual”). If you select “Manual” the
setup tool will show a list of devices. Select the device holding the Slackware Linux CD-ROM.

Figure 5-7. Selecting the source medium

After choosing an installation source the setup tool will ask you which disk sets (series) you want to
install packages from (Figure 5-8). A short description of each disk set is listed.

Figure 5-8. Selecting the disk sets

Now it is almost time to start the real installation. The next screen asks how you would like to install.
The most obvious choices are “full”, “menu” or “expert”. Selecting “full” will install all packages in
the selected disk sets. This is the easiest way of installing Slackware Linux. The disadvantage of this
choice is that it can take quite much disk space. The “menu” option will ask you for each disk set

16

Chapter 5. Installing Slackware Linux

which packages you want to install. The “expert” option is almost equal to the “menu” option, but
allows you to deselect some very important packages from the “a” disk set.

After the completion of the installation the setup tool will allow you to configure some parts of the
system. The first dialog will ask you where you would like to install the kernel from (see Figure 5-9).
Normally it is a good idea to install the kernel from the Slackware Linux CD-ROM, this will select
the kernel you installed Slackware Linux with. You can confirm this, or select another kernel.

Figure 5-9. Installing the kernel

At this point you can choose to make a bootdisk (Figure 5-10). It is a good idea to make a bootdisk,
you can use it to boot Slackware Linux if the LILO configuration is botched.

Figure 5-10. Creating a bootdisk

The following dialog can be used to make a link, /dev/modem, that points to your modem device.
(Figure 5-11). If you do not have a modem you can select no modem.

17

Chapter 5. Installing Slackware Linux

Figure 5-11. Selecting the default modem

The next step is to select whether you would like to use hotplug (Figure 5-12). Hotplug is used for
automatically configuring pluggable USB, PCMCIA and PCI devices. Generally speaking it is a
good idea to enable hotplugging, but some systems may have problems with the probing of the
hotplug scripts.

Figure 5-12. Enabling hotplugging

The following steps are important, the next dialogs will assist you with installing LILO, the Linux
bootloader. Unless you have experience in configuring LILO it is a good idea to choose to use the
simple option for configuration of LILO, which tries to configure LILO automatically (Figure 5-13).

18

Chapter 5. Installing Slackware Linux

Figure 5-13. Selecting the kind of LILO installation

After selecting the simple option the LILO configuration utility will asks you whether you would like
to use a framebuffer or not (Figure 5-14). Using a framebuffer will allow you to use the console in
several resolutions, with other dimensions than the usual 80x25 characters. Some people who use the
console extensively prefer to use a framebuffer, which allows them to keep more text on the screen.
If you do not want a framebuffer console, or if you are not sure, you can choose standard here.

Figure 5-14. Choosing the framebuffer resolution

After setting the framebuffer you can pass extra parameters to the kernel (Figure 5-15). This is
normally not necessary, if you do not want to pass extra parameters you can just press the <Enter>
key.

19

Chapter 5. Installing Slackware Linux

Figure 5-15. Adding kernel parameters

The last step of the LILO configuration is selecting where LILO should be installed (Figure 5-16).
MBR is the master boot record, the main boot record of PCs. Use this option if you want use
Slackware Linux as only OS, or if you want to use LILO the boot other operating systems. The Root
option will install LILO in the boot record of the Slackware Linux / partition. Use this option if you
use another bootloader.

Figure 5-16. Choosing where LILO should be installed

You will now be asked to configure your mouse. Select the mouse type from the dialog that appears
(Figure 5-17).

20

Chapter 5. Installing Slackware Linux

Figure 5-17. Configuring a mouse

You will then be asked whether the gpm program should be loaded at boot time or not (Figure 5-18).
gpm is a daemon that allows you to cut and paste text on the console.

Figure 5-18. Choosing whether GPM should be started or not

The next few steps will configure network connectivity. This is required on almost every networked
system. The Slackware Linux setup will ask you if you want to set up network connectivity (Figure
5-19). If you answer “No” you can skip the next few network-related steps.

21

Chapter 5. Installing Slackware Linux

Figure 5-19. Choosing whether you would like to configure network connectivity

You will now be asked to set the hostname (Figure 5-20). Please note that this is not the fully
qualified domain name (FQDN), just the part that represents the host (normally the characters before
the first dot in a FQDN).

Figure 5-20. Setting the host name

After setting the host name you can set the domain name part of the fully qualified domain name
(FQDN) (Figure 5-21).

22

Chapter 5. Installing Slackware Linux

Figure 5-21. Setting the domain name

The rest of the network configuration depends on how the IP address is set on the network the
machine is connected to. Some networks have a DHCP server that automatically assigns an IP
address to hosts in the network. If this is the case for the network the machine select DHCP during
this step of the installation (Figure 5-22). When DHCP is selected you will only be asked whether a
host name should be sent to the server, normally you can leave this blank. If you use DHCP you can
skip the rest of the network configuration described below.

If the network does not have a DHCP server you can choose the static IP option, which will allow
you to set the IP address and related settings manually.

Figure 5-22. Manual or automatic IP address configuration

The first step of the manual configuration is to set the IP address of the first interface (eth0) of the
machine (Figure 5-23).

23

Chapter 5. Installing Slackware Linux

Figure 5-23. Setting the IP addres

After setting the IP address you will be asked to enter the netmask. The netmask is usually
dependent on the IP address class (Figure 5-24).

Figure 5-24. Setting the netmask

You will then be asked to set the address of the gateway (Figure 5-25). The gateway is the machine
on the network that provides access to other networks by routing IP packets. If your network has no
network you can just hit the <ENTER> key.

24

Chapter 5. Installing Slackware Linux

Figure 5-25. Setting the gateway

The next dialog will ask you whether you want to use a nameserver or not (Figure 5-26). A
nameserver is a server that can provide the IP address for a hostname. For example, if you surf to
www.slackbasics.org, the nameserver will “convert” the www.slackbasics.org name to the
corresponding IP address.

Figure 5-26. Choosing whether you want to use a nameserver or not

If you chose to use a nameserver, you will be given the opportunity to set the IP address of the
nameserver (Figure 5-27).

25

Chapter 5. Installing Slackware Linux

Figure 5-27. Setting the nameserver(s)

The final network settings screen provides an overview of the settings, giving you the opportunity to
correct settings that have errors (Figure 5-28).

Figure 5-28. Confirming the network settings

After the network configuration you can set which services should be started (Figure 5-29). You can
mark/unmark services with the <SPACE> key.

26

Chapter 5. Installing Slackware Linux

Figure 5-29. Enabling/disabling startup services

Traditionally the system clock is set to the UTC timezone on UNIX(-like) systems. If this is the case,
select Yes during the next step (Figure 5-30). If you also use a non-UNIX(-like) OS on the same
system, like Windows, it is usually a good idea to choose No, because some PC operating systems do
not work with a separate system clock and software clock.

Figure 5-30. Choosing whether the clock is set to UTC

You will then be given the opportunity to select the time zone (Figure 5-31). This is especially
important on systems that have their system clock set to UTC, without selecting the correct timezone
the software clock will not match the local time.

27

Chapter 5. Installing Slackware Linux

Figure 5-31. Setting the timezone

If you installed the X Window System you can now set the default window manager (Figure 5-32).
The most basic functionality of a window manager is to provide basic window managing
functionality like title bars. But some options, like KDE provide a complete desktop environment.

Figure 5-32. Choosing the default window manager

The final step is to set the root password (Figure 5-33). The setup will ask you whether you would
like to set it or not. There is no reason not to do this, and without a root password your system is
dangerously insecure.

28

Chapter 5. Installing Slackware Linux

Figure 5-33. Setting the root password

At this point you have completed the Slackware Linux installation. You can now reboot the system
to start your fresh new Slackware Linux system. It was not that hard, was is? ;-)

Figure 5-34. Finished

29

Chapter 6. Custom installation
Sometimes you may want to do a custom installation of Slackware Linux, for example to learn better
how GNU/Linux systems work, or to prepare an automatic installation script. This chapter outlines
the steps that are required to install Slackware Linux manually. A sample installation script is also
provided in the section called Automated installation script.

Partitioning a hard disk
If you have performed a normal installation, you should not have any problems partitioning a disk.
You can use the fdisk and cfdisk commands to partition any disks. If you are scripting the
installation of Slackware Linux it is useful to know that you can also pipe fdisk commands to the
fdisk binary. For example:

fdisk /dev/hda << EOF
n
p
1

+10000M
n
p
2

+512M
t
2
82
w
EOF

This would create a primary Linux partition of 10000MB, and a primary Linux swap partition of
512MB. You could also store the fdisk commands into different disk profiles, and use one of the
profiles based on other information (e.g. the disk size). For example:

cat /usr/share/fdisk-profiles/smalldisk | fdisk

Initializing and mounting filesystems
After making at least a swap and Linux partition, you can initialize and mount the filesystems.
Especially on systems that are short on memory, it is a good idea to initialize, and use swap first. We
will use the partition layout listed above in the following examples. To set up and use swap, execute:

mkswap /dev/hda2
swapon /dev/hda2

The meaning of these commands is quite obvious. mkswap initializes the swap space, and swapon
puts it to use. You will only have to execute mkswap once, but swapon has to be executed during

30

Chapter 6. Custom installation

every system boot. This can be done automatically by adding an entry for the swap partition to
/etc/fstab, we will do this at a later step.

For now, it is important to initialize the target partitions. This can be done with the mkfs command.
You can specify which filesystem should be used by adding the -t parameter. mkfs will
automatically invoke a mkfs.filesystem command, based on the filesystem you chose. Be aware that
the filesystems that can be used is dependent on the installation kernel that you booted. If you booted
the bare.i kernel, you can use the ext3, ext3 and reiserfs filesystems. To initialize an ext3 filesystem,
and mount it, you should execute the following commands:

mkfs -t ext3 /dev/hda1
mount /dev/hda1 /mnt

If you have made separate partitions for certain directories in the root filesystem, e.g. /home, you
can also initialize them and mount them at this point. For example:

mkfs -t ext3 /dev/hda2
mkdir /mnt/home
mount /dev/hda2 /mnt/home

Finally, you will have to mount your source media. If you use a CD-ROM, this is easy. Suppose that
/dev/hdc is the CD-ROM device node, you can mount the CD-ROM with:

mount /dev/hdc /var/log/mount

Mounting the installation medium through NFS requires some more steps. First of all, you will have
to load the network disk. You can do this by running the network command and inserting a network
disk floppy. You can also load this disk from another medium, for example from an USB stick.
Suppose that you have mounted an USB stick on /var/log/mount, you could load the network disk
with: network /var/log/mount/network.dsk. After loading the network disk, you will have to
configure the network interface. If the NFS server is on the same network, you only have to assign an
IP address to the network interface. For example, to use the address 192.168.2.201, you could
execute the following command:

ifconfig eth0 192.168.2.201

You can then load the portmapper, which is necessary for the NFS client to function correctly:

/sbin/rpc.portmap

If the portmapper started correctly, you can finally mount the NFS volume. Suppose, that you want
to mount 192.168.2.1:/home/pub/slackware-current, you could issue the following command:

mount -r -t nfs -o nolock 192.168.2.1:/home/pub/slackware-current /var/log/mount

If there were no errors when the volume was mounted, it should be accessible through
/var/log/mount

31

Chapter 6. Custom installation

Installing packages
Everything is now set up to start installing packages from the installation medium. Since installpkg
is available during the installation, you can use it to install Slackware Linux packages. To install it to
the target partition(s) that is mounted on /mnt, add the -root. The following command installs all
packages from the source medium:

installpkg -root /mnt /var/log/mount/slackware/*/*.tgz

If you created tagfiles to define which packages should be installed, it is also possible to use them
now. Suppose that you have stored a tagfile for each disk set in
/usr/share/tagfiles/small-desktop, you can install packages based on the tagfiles in the
following manner:

for p in [a-z]*; do
installpkg -root /mnt -tagfile /usr/share/tagfiles/small-desktop/$p/tagfile /var/log/mount/slackware/$p/*.tgz
done

Post-install configuration

fstab
One of the necessary configuration steps is to create a fstab file, so that the system can look up what
volumes need mounting. The format of the /etc/fstab file is described in the section called The
fstab file in Chapter 8. As a bare minimum you will have to add entries for the / filesystem /proc

pseudo-filesystem, the devpts pseudo-filesystem, and the swap partition.

With the sample partitioning used earlier in this chapter, you could create a /etc/fstab like this:

cat > /mnt/etc/fstab << EOF
/dev/hda2 swap swap defaults 0 0
/dev/hda1 / ext3 defaults 1 1
devpts /dev/pts devpts gid=5,mode=620 0 0
proc /proc proc defaults 0 0

LILO
To make the system bootable you will have to configure and install the Linux Loader (LILO). The
configuration of LILO is covered in the section called The bootloader in Chapter 20. For this section
we will just show an example LILO configuration, that can be used with the partition layout
described in this chapter. The first step is to create the /etc/lilo.conf file:

cat > /mnt/etc/lilo.conf << EOF
boot = /dev/hda
vga = normal
timeout = 50
image=/boot/vmlinuz
root = /dev/hda2

32

Chapter 6. Custom installation

label = Slackware
read-only
EOF

You can then install LILO with /mnt as the LILO root. With /mnt as the root, /etc/lilo.conf
from the target partition will be used:

lilo -r /mnt

Networking
Configuration of networking in Slackware Linux is covered in Chapter 23. This section will cover
one example of a host that will use DHCP to get an IP address. The /etc/networks file contains
information about known Internet networks. Because we will get network information via DHCP, we
will just use 127.0.0.1 as the local network.

cat > /mnt/etc/networks << EOF
loopback 127.0.0.0
localnet 127.0.0.0
EOF

Since we will get a hostname via DHCP, we will set up a temporary hostname:

cat > /mnt/etc/HOSTNAME << EOF
sugaree.example.net
EOF

Now that we have set up the hostname, we should also take care of making the hostname and
localhost resolvable, by creating a /etc/hosts database:

cat > /mnt/etc/hosts << EOF
127.0.0.1 localhost
127.0.0.1 sugaree.example.net sugaree
EOF

We do not have to create a /etc/resolv.conf, since it will automatically be created by dhcpcd,
the DHCP client. So, finally, we can set up the interface in /etc/rc.d/rc.inet1.conf:

cat > /mnt/etc/rc.d/rc.inet1.conf << EOF
IPADDR[0]=""
NETMASK[0]=""
USE_DHCP[0]="yes"
DHCP_HOSTNAME[0]=""
EOF

33

Chapter 6. Custom installation

Tuning startup scripts
The final step is to decide which startup scripts should be started. The number of services that are
available depends on what packages you have installed. You can get simply get a list of available
scripts with ls:

ls -l /mnt/etc/rc.d/rc.*

If the executable bits are set on a script, it will be started, otherwise it will not. Obviously you should
keep essential scripts, like the runlevel scripts executable. You can set the executable bit on a script
with:

chmod +x /etc/rc.d/rc.scriptname

And remove it with:

chmod -x /etc/rc.d/rc.scriptname

Configuring the dynamic linker run-time bindings
GNU/Linux uses a cache for loading dynamic libraries, besides that many programs rely on generic
version numbers of libraries (e.g. /usr/lib/libgtk-x11-2.0.so, rather than
/usr/lib/libgtk-x11-2.0.so.0.600.8). The cache and library symlinks can be updates in
one ldconfig run:

chroot /mnt /sbin/ldconfig

You may not know the chroot command, it is a command that executes a command with a different
root than the active root. In this example the root directory is changed to /mnt, and from there Linux
runs /sbin/ldconfig. After the command has finished the system will return to the shell, which uses
the original root. To use chroot this ldconfig command has to be executed once first, because
without initializing the dynamic linker run-time bindings most commands will not execute, since the
system can not resolve the library dependencies.

Setting the root password
Now that the dynamic library cache and links are set up, you can execute commands on the installed
system. We will make use of that during this step to set the root password. The password can be
used to set the password for an existing user (the root user is part of the initial /etc/passwd file).
We will use the chroot again to execute the command on the target partition:

chroot /mnt /usr/bin/passwd root

34

Chapter 6. Custom installation

Setting the timezone
On UNIX-like systems setting the timezone is important. For instance, the timezone is used by NTP
to synchronize the system time correctly, or by different networking programs to compute the time
difference between a client and a server. On GNU/Linux the timezone can be set by linking
/etc/localtime to a timezone file. You can find the timezone for your region by browsing the
/mnt/usr/share/zoneinfo directory. For example to use Europe/Amsterdam as the timezone,
you can execute the following commands:

cd /mnt
rm -rf etc/localtime
ln -sf /usr/share/zoneinfo/Europe/Amsterdam etc/localtime

After setting the time zone, the system still does not know whether the hardware clock is set to the
local time, or to the Coordinated Universal Time (UTC). If you use another operating system on the
same machine that does not use use UTC it is best to set the hardware clock to the local time. On
UNIX(-like) systems it is the custom to set the system time to UTC. You can set what time the
system clock uses, by creating the file /etc/hardwareclock, and put the word localtime in it if
your clock is set to the local time, or UTC when it is set to UTC. For example, to use UTC, you
could create the file in the following manner:

cat > /mnt/etc/hardwareclock << EOF
UTC
EOF

Creating the X11 font cache
If you are going to use X11, you will have to initialize the font cache for TrueType and Type1 fonts.
This can be done with the fc-cache command:

chroot /mnt /usr/X11R6/bin/fc-cache

Automated installation script
It is easy to combine the steps of a custom installation into one script, which performs the steps
automatically. This is ideal for making default server installs or doing mass roll-outs of Linux
clients. This sections contains a sample script that was written by William Park. It is easy to add an
installation script to the Slackware Linux media, especially if you use an installation CD-ROM or
boot the installation from an USB stick.

The installation system is stored in one compressed image file, that is available on distribution media
as isolinux/initrd.img. You can make a copy of this image to your hard disk, and decompress
it with gunzip:

mv initrd.img initrd.img.gz
gunzip initrd.img.gz

35

Chapter 6. Custom installation

After decompressing the image, you can mount the the file as a disk, using the loopback device:

mount -o loop initrd.img /mnt/hd

You can now add a script to the initrd file by adding it to the directory structure that is available
under the mount point. After making the necessary changes, you can unmount the filesystem and
compress it:

umount /mnt/hd
gzip initd.img
mv initrd.img.gz initrd.img

You can now put the new initrd.img on the installation medium, and test the script.

#! /bin/sh
Copyright (c) 2003-2005 by William Park <opengeometry@yahoo.ca>.
All rights reserved.
#
Usage: slackware-install.sh

rm_ln () # Usage: rm_ln from to
{
rm -rf $2; ln -sf $1 $2
}

###
echo "Partitioning harddisk..."

(echo -ne "n\np\n1\n\n+1000M\n" # /dev/hda1 --> 1GB swap
echo -ne "n\np\n2\n\n+6000M\n" # /dev/hda2 --> 6GB /
echo -ne "t\n1\n82\nw\n"
) | fdisk /dev/hda

mkswap /dev/hda1 # swap
swapon /dev/hda1

mke2fs -c /dev/hda2 # /
mount /dev/hda2 /mnt

###
echo "Installing packages..."

mount -t iso9660 /dev/hdc /cdrom # actually, /var/log/mount
cd /cdrom/slackware
for p in [a-z]*; do # a, ap, ..., y
installpkg -root /mnt -priority ADD $p/*.tgz
done

cd /mnt

###
echo "Configuring /dev/* stuffs..."

36

Chapter 6. Custom installation

rm_ln psaux dev/mouse # or, ’input/mice’ for usb mouse
rm_ln ttyS0 dev/modem
rm_ln hdc dev/cdrom
rm_ln hdc dev/dvd

###
echo "Configuring /etc/* stuffs..."

cat > etc/fstab << EOF
/dev/hda1 swap swap defaults 0 0
/dev/hda2 / ext2 defaults 1 1
devpts /dev/pts devpts gid=5,mode=620 0 0
proc /proc proc defaults 0 0
#
/dev/cdrom /mnt/cdrom iso9660 noauto,owner,ro 0 0
/dev/fd0 /mnt/floppy auto noauto,owner 0 0
tmpfs /dev/shm tmpfs noauto 0 0
EOF

cat > etc/networks << EOF
loopback 127.0.0.0
localnet 192.168.1.0
EOF
cat > etc/hosts << EOF
127.0.0.1 localhost
192.168.1.1 node1.example.net node1
EOF
cat > etc/resolv.conf << EOF
search example.net
nameserver 127.0.0.1
EOF
cat > etc/HOSTNAME << EOF
node1.example.net
EOF

setup.05.fontconfig
chroot . /sbin/ldconfig # must be run before other program
chroot . /usr/X11R6/bin/fc-cache

chroot . /usr/bin/passwd root

setup.06.scrollkeeper
chroot . /usr/bin/scrollkeeper-update

setup.timeconfig
rm_ln /usr/share/zoneinfo/Canada/Eastern etc/localtime
cat > etc/hardwareclock << EOF
localtime
EOF

setup.liloconfig
cat > etc/lilo.conf << EOF
boot=/dev/hda
delay=100
vga=normal # 80x25 char
VESA framebuffer console:

37

Chapter 6. Custom installation

pixel char 8bit 15bit 16bit 24bit
----- ---- ---- ----- ----- -----
1600x1200 796 797 798 799
1280x1024 160x64 775 793 794 795
1024x768 128x48 773 790 791 792
800x600 100x37 771 787 788 789
640x480 80x30 769 784 785 786
image=/boot/vmlinuz # Linux
root=/dev/hda2
label=bare.i
read-only
other=/dev/hda1 # Windows
label=win
table=/dev/hda
EOF
lilo -r .

setup.xwmconfig
rm_ln xinitrc.fvwm95 etc/X11/xinit/xinitrc

###
echo "Configuring /etc/rc.d/rc.* stuffs..."

cat > etc/rc.d/rc.keymap << EOF
#! /bin/sh
[-x /usr/bin/loadkeys] && /usr/bin/loadkeys us.map
EOF
chmod -x etc/rc.d/rc.keymap

setup.mouse
cat > etc/rc.d/rc.gpm << ’EOF’
#! /bin/sh
case $1 in
stop)

echo "Stopping gpm..."
/usr/sbin/gpm -k
;;

restart)
echo "Restarting gpm..."
/usr/sbin/gpm -k
sleep 1
/usr/sbin/gpm -m /dev/mouse -t ps2
;;

start)
echo "Starting gpm..."
/usr/sbin/gpm -m /dev/mouse -t ps2
;;

*)
echo "Usage $0 {start|stop|restart}"
;;

esac
EOF
chmod +x etc/rc.d/rc.gpm

setup.netconfig
cat > etc/rc.d/rc.inet1.conf << EOF

38

Chapter 6. Custom installation

IPADDR=(192.168.1.1) # array variables
NETMASK=(255.255.255.0)
USE_DHCP=() # "yes" or ""
DHCP_HOSTNAME=()
GATEWAY=""
DEBUG_ETH_UP="no"
EOF

cat > etc/rc.d/rc.netdevice << EOF
/sbin/modprobe 3c59x
EOF
chmod +x etc/rc.d/rc.netdevice

setup.setconsolefont
mv etc/rc.d/rc.font{.sample,}
chmod -x etc/rc.d/rc.font

setup.services
chmod +x etc/rc.d/rc.bind
chmod +x etc/rc.d/rc.hotplug
chmod +x etc/rc.d/rc.inetd
chmod +x etc/rc.d/rc.portmap
chmod +x etc/rc.d/rc.sendmail
#
chmod -x etc/rc.d/rc.atalk
chmod -x etc/rc.d/rc.cups
chmod -x etc/rc.d/rc.httpd
chmod -x etc/rc.d/rc.ip_forward
chmod -x etc/rc.d/rc.lprng
chmod -x etc/rc.d/rc.mysqld
chmod -x etc/rc.d/rc.pcmcia
chmod -x etc/rc.d/rc.samba
chmod -x etc/rc.d/rc.sshd

39

II. GNU/Linux Basics

Chapter 7. The Bash shell

Introduction
The shell is the traditional interface used by UNIX and GNU/Linux. In contrast to the X Window
System it is an interface that works with commands. In the beginning this can be a bit awkward, but
the shell is very powerful. Even in these days the shell is almost unavoidable ;).

The default shell on Slackware Linux is Bash. Bash means “Bourne-Again SHell”, which is a pun on
the name of one of the traditional UNIX shells, the “Bourne Shell”. Slackware Linux also provides
some other shells, but Bash is the main topic of this chapter.

Starting the shell
The procedure for starting the shell depends on whether you use a graphical or text-mode login. If
you are logging on in text-mode the shell is immediately started after entering the (correct)
password. If you are using a graphical login manager like gdm, log on as you would normally, and
look in your window manager or desktop environment menu for an entry named “XTerm”. XTerm is
a terminal emulator, after the terminal emulator is started the shell comes up.

The shell might remind some people of MS-DOS. Be happy, it has nothing to do with DOS, the only
similarity is that you can enter commands ;).

Shell basics
This chapter might be a difficult to read for the first time, because you might not know any shell
commands. Many important commands are described in the next chapters, but those chapters are not
really useful without any knowledge of the shell. So, it is not a bad idea to browse quickly through
this chapter, and the next few chapters, to get an idea what this shell thing is all about. After that
quick overview you should be able to understand this chapter.

Executing commands
The most important job for the shell is to execute your commands. Let’s look at a simple example.
Most UNIX variants have a command named whoami, which shows as which user you are logged
in. Try typing whoami, and press the <Enter> after that. The <Enter> tells the shell that it should
execute the command that you have typed on the current line. The output looks like this:

daniel@tazzy:~$ whoami
daniel
daniel@tazzy:~$

As you can see the control is handed back to the shell after the command is finished.

41

Chapter 7. The Bash shell

Browsing through shell commands
It often happens that you have to execute commands that you executed earlier. Fortunately, you do
not have to type them all over again. You can browse through the history of executed commands with
the up and down arrows. Besides that it is also possible to search for a command. Press <Control> +
<r> and start typing the command you want to execute. You will notice that bash will display the first
match it can find. If this is not the match you were looking for you can continue typing the command
(till it is unique and a match appears), or press <Control> + <r> once more to get the next match.
When you have found the command you were looking for, you can execute it by pressing <Enter>.

Completion
Completion is one of the most useful functionalities of UNIX-like shells. Suppose that you have a
directory with two files named websites and recipe. And suppose you want to cat the file
websites (cat shows the contents of a file), by specifying websites as a parameter to cat.
Normally you would type “cat websites”, and execute the command. Try typing “cat w”, and hit the
<Tab> key. Bash will automatically expand what you typed to “cat websites”.

But what happens if you have files that start with the same letter? Suppose that you have the
recipe1.txt and recipe2.txt files. Type “cat r” and hit <Tab>, Bash will complete the filename
as far as it can. It would leave you with “cat recipe”. Try hitting <Tab> again, and Bash will show
you a list of filenames that start with “recipe”, in this case both recipe files. At this point you have to
help Bash by typing the next character of the file you need. Suppose you want to cat recipe2, you
can push the <2> key. After that there are no problems completing the filename, and hitting <Tab>
completes the command to “cat recipe2.txt”.

It is worth noting that completion also works with commands. Most GNU/Linux commands are
quite short, so it will not be of much use most of the time.

It is a good idea to practice a bit with completion, it can save alot of keystrokes if you can handle
completion well. You can make some empty files to practive with using the touch command. For
example, to make a file named recipe3.txt, execute touch recipe3.txt.

Wildcards
Most shells, including Bash, support wildcards. Wildcards are special characters that can be used to
do pattern matching. The table listed below displays some commonly used wildcards. We are going
to look at several examples to give a general idea how wildcards work.

Table 7-1. Bash wildcards

Wildcard Matches
* A string of characters

? A single character

[] A character in an array of characters

Matching a string of characters

As you can see in the table above the “*” character matches a string of characters. For example,
.html matches everything ending with .html, d.html matches everything starting with a d and
ending with .html.

42

Chapter 7. The Bash shell

Suppose that you would like to list all files in the current directory with the .html extension, the
following command will do the job:

$ ls *.html
book.html installation.html pkgmgmt.html usermgmt.html
filesystem.html internet.html printer.html xfree86.html
gfdl.html introduction.html proc.html
help.html slackware-basics.html shell.html

Likewise we could remove all files starting with an in:

$ rm in*

Matching single characters

The “?” wildcard works as the “*” wildcard, but matches single characters. Suppose that we have
three files, file1.txt, file2.txt and file3.txt. The string file?.txt matches all three of these
files, but it does not match file10.txt (“10” are two characters).

Matching characters from a set

The “[]” wildcard matches every character between the brackets. Suppose we have the files from the
previous example, file1.txt, file2.txt and file3.txt. The string file[23].txt matches
file2.txt and file3.txt, but not file1.txt.

Redirections and pipes
One of the main features of UNIX-like shells are redirections and pipes. Before we start to look at
both techniques we have to look how most UNIX-like commands work. When a command is not
getting data from a file, it will open a special pseudo-file named stdin, and wait for data to appear on
it. The same principle can be applied for command output, when there is no explicit reason for
saving output to a file, the pseudo-file stdout will be opened for output of data. This principle is
shown schematically in Figure 7-1

Figure 7-1. Standard input and output

You can see stdin and stdout in action with the cat command. If cat is started without any parameters
it will just wait for input on stdin and output the same data on stdout. If no redirection is used
keyboard input will be used for stdin, and stdout output will be printed to the terminal:

$ cat
Hello world!
Hello world!

As you can see cat will print data to stdout after inputting data to stdin using the keyboard.

43

Chapter 7. The Bash shell

Redirection

The shell allows you to take use of stdin and stdout using the “<” and “>”. Data is redirected in
which way the sharp bracket points. In the following example we will redirect the md5 summaries
calculated for a set of files to a file named md5sums:

$ md5sum * > md5sums
$ cat md5sums
6be249ef5cacb10014740f61793734a8 test1
220d2cc4d5d5fed2aa52f0f48da38ebe test2
631172a1cfca3c7cf9e8d0a16e6e8cfe test3

As we can see in the cat output the output of the md5sum * output was redirected to the md5sums
file. We can also use redirection to provide input to a command:

$ md5sum < test1
6be249ef5cacb10014740f61793734a8 -

This feeds the contents of the test1 to md5sum.

pipes

You can also connect the input and output of commands using so-called pipes. A pipe between
commands can be made with the “|” character. Two or more combined commands are called a
pipeline. Figure 7-2 shows a schematic overview of a pipeline consisting of two commands.

Figure 7-2. A pipeline

The “syntax” of a pipe is: command1 | command2 ... | commandn. If you know how the most basic
UNIX-like commands work you can now let these commands work together. Let’s look at a quick
example:

$ cat /usr/share/dict/american-english | grep "aba" | wc -l
123

The first command, cat, reads the dictionary file /usr/share/dict/american-english. The
output of the cat command is piped to grep, which prints out all files containing the phrase “aba”. In
turn, the output of “grep” is piped to wc -l, which counts the number of lines it receives from stdin.
Finally, when the stream is finished wc prints the number of lines it counted. So, combined three
commands to count the number of words containing the phrase “aba” in this particular dictionary.

There are hundreds of small utilities that handle specific tasks. As you can imagine, together these
commands provide a very powerful toolbox by making combinations using pipes.

44

Chapter 8. Files and directories

Introduction
UNIX-like operating systems use a hierarchical filesystem to store files and directories. Directories
can contain files and other directories, the top directory (/) is named the root directory (not to be
confused with the /root directory). Most filesystems also support file links (which provide
alternative names for a file) and soft links. Other filesystems can be “connected” to an arbitrary
directory. This process is named “mounting”, and the directory in which the filesystem is mounted is
named the “mount point”.

This chapter covers the basic navigation of the filesystem, commands which are used to remove and
create directories, filesystem permissions, links and mounting.

The basics

pwd
pwd(1) is a simple utility which shows the directory you are currently working in. The pwd does not
require any parameters. This is an example output of pwd:

$ pwd
/home/danieldk

ls
ls is similar to the dir command in DOS and Windows. ls can be used to display files and directories
located in specific directories. Running the ls command without any parameters shows the contents
of the current directory:

$ ls
COPYING CVS Makefile README html images pdf src tex

Naturally it is also possible to show the contents of other directories. You can do this by specifying
the path as a parameter tot the ls command:

$ ls /
bin cdrom dev floppy initrd lost+found opt root sys usr windows
boot cdrom1 etc home lib mnt proc sbin tmp var

A disadvantage of the default output is that it provides little information about files and directories.
For example, it is not possible to see whether some entry is a file or directory, what size a file is, or
who the owner of the file is. The ls has the -l parameter to show more information:

$ ls -l
total 52
-rw-r--r-- 1 daniel daniel 20398 Jul 16 14:28 COPYING
drwxr-xr-x 2 daniel daniel 4096 Jul 16 14:28 CVS
-rw-r--r-- 1 daniel daniel 768 Jul 16 14:28 Makefile

45

Chapter 8. Files and directories

-rw-r--r-- 1 daniel daniel 408 Jul 16 14:28 README
drwxr-xr-x 3 daniel daniel 4096 Jul 16 14:28 html
drwxr-xr-x 3 daniel daniel 4096 Jul 16 14:28 images
drwxr-xr-x 3 daniel daniel 4096 Jul 16 14:28 pdf
drwxr-xr-x 3 daniel daniel 4096 Jul 20 00:11 src
drwxr-xr-x 3 daniel daniel 4096 Jul 16 14:28 tex

cd
Another important command is the cd command. It can be used to change the current working
directory:

$ cd /home/danieldk/

With the pwd command you can see it worked:

$ pwd
/home/danieldk

mkdir
As you might have guessed, the mkdir(1) command can be used to create directories. For example:

$ pwd
/home/danieldk
$ mkdir test
$ cd test
$ pwd
/home/danieldk/test

It might happen that you want to create a directory in a parent directory which does not exist yet. For
example, if you want to create the test2/hello/ directory, but the test2 directory does not yet
exist. In this case you can make both directories with only one mkdir command:

$ mkdir -p test2/hello

cp
Files can be copied with the cp(1) command, the basic syntax is cp source destination. For
example, suppose that we have a file named memo which we would like to copy to the writings
directory. You can do this with the following command:

$ cp memo writings/

It is also possible to copy a file in the same directory. For example, if we would like to make a new
memo based on memo, named memo2, we could execute the following command:

$ cp memo memo2

46

Chapter 8. Files and directories

It is also possible to copy directories recursively, this can be done by adding the -r parameter. The
following command copies the memos directory, and all subdirectories, and (sub)files to the
writings directory:

$ cp -r memos writings/

mv
The mv(1) command is comparable to cp, but it is used to move files. Suppose that we have the same
situation as in the first cp example, but you would rather like to move memo to the writings
directory. The following command would do that:

$ mv memo writings/

It is also possible to move directories. But, mv always works recursively. For example, the following
command will move the memos directory to the writings directory:

$ mv memos writings/

rm
The rm(1) command is used to remove files and directories. Let’s look at a simple example:

$ rm hello.c

This commands removes the file hello.c. Sometimes the rm asks for a confirmation. You can
ignore this with the -f parameter:

$ rm -f *

This command removes all files in the current directory without asking for confirmation. It is also
possible to delete directories or even whole directory trees. rm provides the -r parameter to do this.
Suppose that we want to delete the ogle directory and all subdirectories and files in that directory,
this can be done in the following way:

$ rm -r -f ogle/

Many commands allow you to combine parameters. The following example is equivalent to the last
one:

$ rm -rf ogle/

Permissions

A short introduction
Every file in GNU/Linux has permissions. As you might have noticed, file permissions can be shown
with the ls -l command:

47

Chapter 8. Files and directories

$ ls -l logo.jpg
-rw-r--r-- 1 danieldk users 9253 Dec 23 19:12 logo.jpg

The permissions are shown in the first column. Permissions that can be set are read(r), write(w) and
execute(x). These permissions can we set for three classes: owner(u), group(g) and others(o). The
permissions are visible in the second to ninth character in the first column. These nine characters are
divided in three groups. The first three characters represent the permissions for the owner, the next
three characters represent the permissions for the group, finally the last three characters represent the
permissions for other users. Thus, the example file shown above can be written to by the owner and
can be read by all three classes of users (owner, group and others).

Each GNU/Linux system has many distinct users (a list of users can be found in /etc/passwd), and
a user can be a member of certain groups. This kind of user management provides makes it possible
to manage detailed permissions for each file. In the example shown above danieldk is the owner of
the file and group permissions apply to the group users. In this example groups rights do not differ
from the rights of other users.

chown
The chown(1) command is used to set the file owner and to which group group permissions should
apply to. Suppose we want to make danieldk the owner of the file logo2.jpg, this can be done with
the chown:

chown danieldk logo2.jpg

Using the ls we can see that the owner is now danieldk:

ls -l logo2.jpg
-rw-r--r-- 1 root root 9253 Dec 29 11:35 logo2.jpg
chown danieldk logo2.jpg
ls -l logo2.jpg
-rw-r--r-- 1 danieldk root 9253 Dec 29 11:35 logo2.jpg

But group permissions still apply for the root group. This group can be changed by adding a colon
after the owner, followed by the name of the group (in this example the group is nedslackers):

chown danieldk:nedslackers logo2.jpg
ls -l logo2.jpg
-rw-r--r-- 1 danieldk nedslackers 9253 Dec 29 11:35 logo2.jpg

It is also possible to change ownership recursively, this can be done with the recursive (-R)
parameter:

chown -R danieldk:users oggs/

chmod
File permissions can be manipulated using the chmod(1) command. The most basic syntax of chmod
is chmod [u,g,o][+/-][r,w,x] filename. The first parameter consists of the following elements: 1.
which classes this manipulation permission applies to, 2. if the permissions should be added (+) or
removed (-), and 3. which permissions should be manipulated. Suppose we want to make the file
memo writable for the owner of the file and the groups for which the group permissions apply. This
can be done with the following command:

48

Chapter 8. Files and directories

$ chmod ug+w memo

As you can see below the memo is now writable for the file owner and group:

$ ls -l memo
-r--r--r-- 1 daniel users 12 Mar 9 16:28 memo
bash-2.05b$ chmod ug+w memo
bash-2.05b$ ls -l notes
-rw-rw-r-- 1 daniel users 12 Mar 9 16:28 memo

Just like the chown command it is also possible to do recursive (-R) operations. In the following
example the secret/, including subdirectories and files in this directory, is made unreadable for the
group set for this directory and other users:

$ chmod -R go-r secret/

Archives

Introduction
Sooner or later a GNU/Linux user will encounter tar archives, tar is the standard format for archiving
files on GNU/Linux. It is often used in conjunction with gzip or bzip2. Both commands can
compress files and archives. Table 8-1 lists frequently used archive extensions, and what they mean.

Table 8-1. Archive file extensions

Extension Meaning
.tar An uncompressed tar archive

.tar.gz A tar archive compressed with gzip

.tgz A tar archive compressed with gzip

.tar.bz2 A tar archive compressed with bzip2

.tbz A tar archive compressed with bzip2

The difference between bzip2 and gzip is that bzip2 can find repeating information in larger blocks,
resulting in better compression. But bzip2 is also a lot slower, because it does more data analysis.

Extracting archives
Since many software and data in the GNU/Linux world is archived with tar it is important to get
used to extracting tar archives. The first thing you will often want to do when you receive a tar
archive is to list its contents. This can be achieved by using the t parameter. However, if we just
execute tar with this parameter and the name of the archive it will just sit and wait until you enter
something to the standard input:

$ tar t test.tar

This happens because tar reads data from its standard input. If you forgot how redirection works, it

49

Chapter 8. Files and directories

is a good idea to reread the section called Redirections and pipes in Chapter 7. Let’s see what
happens if we redirect our tar archive to tar:

$ tar t < test.tar
test/
test/test2
test/test1

That looks more like the output you probably expected. This archive seems to contain a directory
test, which contains the files test2 and test2. It is also possible to specify the archive file name
as an parameter to tar, by using the f parameter:

$ tar tf test.tar
test/
test/test2
test/test1

This looks like an archive that contains useful files ;). We can now go ahead, and extract this archive
by using the x parameter:

$ tar xf test.tar

We can now verify that tar really extracted the archive by listing the contents of the directory with ls:

$ ls test/
test1 test2

Extracting or listing files from a gzipped or bzipped archive is not much more difficult. This can be
done by adding a z or b for respectively archives compressed with gzip or bzip2. For example, we
can list the contents of a gzipped archive with:

$ tar ztf archive2.tar.gz

And a bzipped archive can be extracted with:

$ tar bxf archive3.tar.bz2

Creating archives
You can create archives with the c parameter. Suppose that we have the directory test shown in the
previous example. We can make an archive with the test directory and the files in this directory
with:

$ tar cf important-files.tar test

This will create the important-files.tar archive (which is specified with the f parameter). We
can now verify the archive:

$ tar tf important-files.tar
test/
test/test2
test/test1

50

Chapter 8. Files and directories

Creating a gzipped or bzipped archive goes along the same lines as extracting compressed archives:
add a z for gzipping an archive, or b for bzipping an archive. Suppose that we wanted to create a
gzip compressed version of the archive created above. We can do this with:

tar zcf important-files.tar.gz test

Extended attributes

Introduction
Extended attributes (EAs) are relatively new on GNU/Linux. Extended attributes are a special kind
of values that are associated with a file or directory. EAs provide the means to add extra attributes
besides the common attributes (modification time, traditional file permissions, etc.). For example,
one could add the attribute “Photographer” to a collection of JPEG files. Extended attributes are not
physically stored in the file, but as meta-data in the filesystem.

Extended attributes are only supported by 2.6.x and newer 2.4.x kernels. Besides that they are not
supported on all filesystems, the commonly used Ext2, Ext3 and XFS filesystems do support
extended attributes.

Installing the necessary utilities
The extended attribute software is available in Slackware Linux through the xfsprogs package, which
can be found in the “a” disk set. Don’t be misled by the name of the package, the extended attribute
tools also work with other filesystems, like Ext3.

Showing extended attributes
Extended attributes can be queried using the getfattr command. Just using getfattr with a file as a
parameter will show the attributes that are known for that particular file, without the values set for
the attributes. For example:

$ getfattr note.txt
file: note.txt
user.Author

This file has one extended attribute, “user.Author”. An attribute has the following form:
“namespace.attribute”. There are four defined namespaces: “security”, “system”, “trusted”, and
“user”. The role of these namespaces are described in the attr(5) manual page. The “user” namespace
is of particular interest to us, because this namespace is used to assign arbitrary attributes to files.

The values associated with an attribute can be shown using the -d (dump) parameter. For example:

$ getfattr -d note.txt
file: note.txt
user.Author="Daniel"

In this example the attribute “user.Author” has the value “Daniel” for the file note.txt.

51

Chapter 8. Files and directories

Setting extended attributes
Attributes are set with the setfattr command. An attribute can be added to a file using the -n (name)
parameter, be sure to specify the namespace and the attribute name, for example:

$ setfattr -n user.Author note2.txt

The value of the attribute can be set using the -v (value) parameter:

$ setfattr -n user.Author -v Mike note2.txt

But it is also possible to add an attribute and setting its value in one run, by specifying both the -n
and -v parameters. For example, the following command adds the MD5 sum of the file as an
extended attribute:

$ setfattr -n user.MD5 -v ‘md5sum note2.txt‘ note2.txt
$ getfattr -d note2.txt
file: note2.txt
user.Author="Mike"
user.MD5="78be7a3148027ae7a897aad95e7d9c58"

Mounting filesystems

Introduction
Like most Unices Linux uses a technique named “mounting” to access filesystems. Mounting means
that a filesystem is connected to a directory in the root filesystem. One could for example mount a
CD-ROM drive to the /mnt/cdrom directory. Linux supports many kinds of filesystems, like Ext2,
Ext3, ReiserFS, JFS, XFS, ISO9660 (used for CD-ROMs), UDF (used on some DVDs) and
DOS/Windows filesystems, like FAT, FAT32 and NTFS. These filesystems can reside on many kinds
of media, for example hard drives, CD-ROMs and Flash drives. This section explains how
filesystems can be mounted and unmounted.

mount
The mount(8) is used to mount filesystems. The basic syntax is: “mount /dev/devname
/mountpoint”. The device name can be any block device, like hard disks or CD-ROM drives. The
mount point can be an arbitrary point in the root filesystem. Let’s look at an example:

mount /dev/cdrom /mnt/cdrom

This mounts the /dev/cdrom on the /mnt/cdrom mountpoint. The /dev/cdrom device name is
normally a link to the real CD-ROM device name (for example, /dev/hdc). As you can see, the
concept is actually very simple, it just takes some time to learn the device names ;). Sometimes it is
necessary to specify which kind of filesystem you are trying to mount. The filesystem type can be
specified by adding the -t parameter:

mount -t vfat /dev/sda1 /mnt/flash

This mounts the vfat filesystem on /dev/sda1 to /mnt/flash.

52

Chapter 8. Files and directories

umount
The umount(1) command is used to unmount filesystems. umount accepts two kinds of parameters,
mount points or devices. For example:

umount /mnt/cdrom
umount /dev/sda1

The first command unmounts the filesystem that was mounted on /mnt/cdrom, the second
commands unmounts the filesystem on /dev/sda1.

The fstab file
The GNU/Linux system has a special file, /etc/fstab, that specifies which filesystems should be
mounted during the system boot. Let’s look at an example:

/dev/hda10 swap swap defaults 0 0
/dev/hda5 / xfs defaults 1 1
/dev/hda6 /var xfs defaults 1 2
/dev/hda7 /tmp xfs defaults 1 2
/dev/hda8 /home xfs defaults 1 2
/dev/hda9 /usr xfs defaults 1 2
/dev/cdrom /mnt/cdrom iso9660 noauto,owner,ro 0 0
/dev/fd0 /mnt/floppy auto noauto,owner 0 0
devpts /dev/pts devpts gid=5,mode=620 0 0
proc /proc proc defaults 0 0

As you can see each entry in the fstab file has five entries: fs_spec, fs_file, fs_vfstype, fs_mntops,
fs_freq, and fs_passno. We are now going to look at each entry.

fs_spec

The fs_spec option specifies the block device, or remote filesystem that should be mounted. As you
can see in the example several /dev/hda partitions are specified, as well as the CD-ROM drive and
floppy drive. When NFS volumes are mounted an IP address and directory can be specified, for
example: 192.168.1.10:/exports/data.

fs_file

fs_file specifies the mount point. This can be an arbitrary directory in the filesystem.

fs_vfstype

This option specifies what kind of filesystem the entry represents. For example this can be: ext2,
ext3, reiserfs, xfs, nfs, vfat, or ntfs.

fs_mntops

The fs_mntops option specifies which parameters should be used for mounting the filesystem. The
mount(8) manual page has an extensive description of the available options. These are the most
interesting options:

53

Chapter 8. Files and directories

• noauto: filesystems that are listed in /etc/fstab are normally mounted automatically. When the
“noauto” option is specified, the filesystem will not be mounted during the system boot, but only
after issuing a mount command. When mounting such filesystem, only the mount point or device
name has to be specified, for example: mount /mnt/cdrom

• user: adding the “user” option will allow normal users to mount the filesystem (normally only the
superuser is allowed to mount filesystems).

• owner: the “owner” option will allow the owner of the specified device to mount the specified
device. You can see the owner of a device using ls, e.g. ls -l /dev/cdrom.

• noexec: with this option enabled users can not run files from the mounted filesystem. This can be
used to provide more security.

• nosuid: this option is comparable to the “noexec” option. With “nosuid” enabled SUID bits on
files on the filesystem will not be allowed. SUID is used for certain binaries to provide a normal
user to do something privileged. This is certainly a security threat, so this option should really be
used for removable media, etc. A normal user mount will force the nosuid option, but a mount by
the superuser will not!

• unhide: this option is only relevant for normal CD-ROMs with the ISO9660 filesystem. If
“unhide” is specified hidden files will also be visible.

fs_freq

If the “fs_freq” is set to 1 or higher, it specifies after how many days a filesystem dump (backup) has
to be made. This option is only used when dump(8) is set up correctly to handle this.

fs_passno

This field us used by fsck(8) to determine the order in which filesystems are checked during the
system boot.

Encrypting and signing files

Introduction
There are two security mechanisms for securing files: signing files and encrypting files. Signing a
file means that a special digital signature is generated for a file. You, or other persons can use the
signature to verify the integrity of the file. File encryption encodes a file in a way that only a person
for which the file was intended to read can read the file.

This system relies on two keys: the private and the public key. Public keys are used to encrypt files,
and files can only be decrypted with the private key. This means that one can sent his public key out
to other persons. Others can use this key to send encrypted files, that only the person with the private
key can decode. Of course, this means that the security of this system depends on how well the
private is kept secret.

Slackware Linux provides an excellent tool for signing and encrypting files, named GnuPG. GnuPG
can be installed from the “n” disk set.

54

Chapter 8. Files and directories

Generating your private and public keys
Generating public and private keys is a bit complicated, because GnuPG uses DSA keys by default.
DSA is an encryption algorithm, the problem is that the maximum key length of DSA is 1024 bits,
this is considered too short for the longer term. That is why it is a good idea to use 2048 bit RSA
keys. This section describers how this can be done.

Note: 1024-bit keys were believed to be secure for a long time. But Bernstein’s paper Circuits for
Integer Factorization: a Proposal contests this, the bottom line is that it is quite feasible for
national security agencies to produce hardware that can break keys in a relatively short amount
of time. Besides that it has be shown that 512-bit RSA keys can be broken in a relatively short
time using common hardware. More information about these issues can by found in this e-mail to
the cypherpunks list: http://lists.saigon.com/vault/security/encryption/rsa1024.html

We can generate a key by executing:

$ gpg --gen-key

The first question is what kind of key you would like to make. We will choose (4) RSA (sign only):

Please select what kind of key you want:
(1) DSA and ElGamal (default)
(2) DSA (sign only)
(4) RSA (sign only)

Your selection? 4

You will then be asked what the size of the key you want to generate has to be. Type in 2048 to
generate a 2048 bit key, and press enter to continue.

What keysize do you want? (1024) 2048

The next question is simple to answer, just choose what you like. Generally speaking it is not a bad
idea to let the key be valid infinitely. You can always deactivate the key with a special revocation
certificate.

Please specify how long the key should be valid.
0 = key does not expire

<n> = key expires in n days
<n>w = key expires in n weeks
<n>m = key expires in n months
<n>y = key expires in n years

Key is valid for? (0) 0

GnuPG will then ask for confirmation. After confirming your name and e-mail address will be
requested. GnuPG will also ask for a comment, you can leave this blank, or you could fill in
something like “Work” or “Private”, to indicate what the key is used for. For example:

Real name: John Doe
Email address: john@doe.com
Comment: Work
You selected this USER-ID:

"John Doe (Work) <john@doe.com>"

GnuPG will the ask you to confirm your user ID. After confirming it GnuPG will ask you to enter a
password. Be sure to use a good password:

55

Chapter 8. Files and directories

You need a Passphrase to protect your secret key.

Enter passphrase:

After entering the password twice GnuPG will generate the keys. But we are not done yet. GnuPG
has only generated a key for signing information, not for encryption of information. To continue,
have a look at the output, and look for the key ID. In the information about the key you will see pub
2048R/ . The key ID is printed after this fragment. In this example:

public and secret key created and signed.
key marked as ultimately trusted.

pub 2048R/8D080768 2004-07-16 John Doe (Work) <john@doe.com>
Key fingerprint = 625A 269A 16B9 C652 B953 8B64 389A E0C9 8D08 0768

the key ID is 8D080768. If you lost the output of the key generation you can still find the key ID in
the output of the gpg --list-keys command. Use the key ID to tell GnuPG that you want to edit your
key:

$ gpg --edit-key <Key ID>

With the example key above the command would be:

$ gpg --edit-key 8D080768

GnuPG will now display a command prompt. Execute the addkey command on this command
prompt:

Command> addkey

GnuPG will now ask the password you used for your key:

Key is protected.

You need a passphrase to unlock the secret key for
user: "John Doe (Work) <john@doe.com>"
2048-bit RSA key, ID 8D080768, created 2004-07-16

Enter passphrase:

After entering the password GnuPG will ask you what kind of key you would like to create. Choose
RSA (encrypt only), and fill in the information like you did earlier (be sure to use a 2048 bit key). For
example:

Please select what kind of key you want:
(2) DSA (sign only)
(3) ElGamal (encrypt only)
(4) RSA (sign only)
(5) RSA (encrypt only)

Your selection? 5
What keysize do you want? (1024) 2048
Requested keysize is 2048 bits
Please specify how long the key should be valid.

0 = key does not expire
<n> = key expires in n days
<n>w = key expires in n weeks
<n>m = key expires in n months

56

Chapter 8. Files and directories

<n>y = key expires in n years
Key is valid for? (0) 0

And confirm that the information is correct. After the key is generated you can leave the GnuPG
command prompt, and save the new key with the save command:

Command> save

Congratulations! You have now generated the necessary keys to encrypt and decrypt e-mails and
files. You can now configure your e-mail client to use GnuPG. It is a good idea to store the contents
of the .gnupg directory on some reliable medium, and store that in a safe place! If your private key
is lost you can’t decrypt files and messages that were encrypted with your public key. If the private
key, and your password are stolen, the security of this system is completely compromised.

Exporting your public key
To make GnuPG useful, you have to give your public key to people who send you files or e-mails.
They can use your public key to encrypt files, or use it to verify whether a file has a correct signature
or not. The key can be exported using the --export parameter. It is also a good idea to specify the
--output parameter, this will save the key in a file. The following command would save the public
key of John Doe, used in earlier examples, to the file key.gpg:

$ gpg --output key.gpg --export john@doe.com

This saves the key in binary format. Often it is more convenient to use the so-called “ASCII armored
output”, which fits better for adding the key to e-mails, or websites. You export an ASCII armored
version of the key by adding the --armor parameter:

$ gpg --armor --output key.gpg --export john@doe.com

If you look at the key.gpg file you will notice that the ASCII armored key is a much more
comfortable format.

Signatures
With GPG you can make a signature for a file. This signature is unique, because your signature can
only be made with your private key. This means that other people can check whether the file was
really sent by you, and whether it was in any way altered or not. Files can be signed with the
--detach-sign parameter. Let us look at an example. This command will make a signature for
the memo.txt file. The signature will be stored in memo.txt.sig.

$ gpg --output memo.txt.sig --detach-sign memo.txt

You need a passphrase to unlock the secret key for
user: "John Doe (Work) <john@doe.com>"
2048-bit RSA key, ID 8D080768, created 2004-07-16

Enter passphrase:

As you can see, GnuPG will ask you to enter the password for your private key. After you have
entered the right key the signature file (memo.txt.sig) will be created.

57

Chapter 8. Files and directories

You can verify a file with its signature using the --verify parameter. Specify the signature file as
a parameter to the --verify parameter. The file that needs to be verified can be specified as the
final parameter:

$ gpg --verify memo.txt.sig memo.txt
gpg: Signature made Tue Jul 20 23:47:45 2004 CEST using RSA key ID 8D080768
gpg: Good signature from "John Doe (Work) <john@doe.com>"

This will confirm that the file was indeed signed by John Doe (Work) <john@doe.com>, with the
key 8D080768, and that the file is unchanged. Suppose the file was changed, GnuPG would have
complained about it loudly:

$ gpg --verify memo.txt.sig memo.txt
gpg: Signature made Tue Jul 20 23:47:45 2004 CEST using RSA key ID 8D080768
gpg: BAD signature from "John Doe (Work) <john@doe.com>"

Encryption
One of the main features of GnuPG is encryption. Due to its use of symmetric cryptography, the
person who encrypts a file and the person who decrypts a file do not need to share a key. You can
encrypt a file with the private key of another person, and she can decrypt it with her private key. You
can encrypt files with the --encrypt. If you do not specify a user ID for which the file should be
encrypted, GnuPG will prompt for the user ID. You can specify the user ID with the -r parameter. In
the following example, the file secret.txt will be encrypted for another person named John Doe:

$ gpg --encrypt -r "John Doe" secret.txt

The user ID is quoted with double quotes for making sure that the ID is interpreted as a single
program argument. After the encryption is completed, the encrypted version of the file will be
available as secret.txt.gpg.

The user who receives the file can decrypt it with the --decrypt parameter of the gpg command:

$ gpg --output secret.txt --decrypt secret.txt.gpg

You need a passphrase to unlock the secret key for
user: "John Doe (Work) <john@doe.com>"
2048-bit RSA key, ID 8D080768, created 2004-07-16 (main key ID EC3ED1AB)

Enter passphrase:

gpg: encrypted with 2048-bit RSA key, ID 8D080768, created 2004-07-16
"John Doe (Work) <john@doe.com>"

In this example the --output parameter is used store the decrypted content in secret.txt.

58

Chapter 9. Text Utilities

Introduction
On of the central ideas of UNIX(-like) operating systems is that “everything is a file”. Even devices
can be treated as a file. Basically there are three types of files in UNIX:

• Binary files, for example executables, and libraries.

• Device files, for example /dev/zero, and /dev/hda.

• Text files, pretty much anything else.

Due to the fact that text files have such an important role in UNIX-like operating systems, like
GNU/Linux, this book has a separate chapter dedicated to the subject of processing text files. In the
beginning its use may not be that obvious, but once you get used to these tools you will see that you
will probably use some of these tools on a daily basis.

Note: This chapter relies heavily on the use of pipes and redirection, so it it a good idea to read
the section called Redirections and pipes in Chapter 7 if you have not done that yet.

The basics

cat
The cat command is one of the simplest commands around. Its default behaviour is just to send
anything it receives on the standard input to the standard input until the end of file character (^D) is
sent to the standard input. You can see this by executing cat, and entering some text:

$ cat
Hello world!
Hello world!
Testing... 1 2 3
Testing... 1 2 3

You can also concatenate files with cat, by providing the files you would like to concatenate as an
argument. The concatenated files will be sent to the standard output:

$ cat test1
This is the content of test1.
$ cat test2
This is the content of test2.
$ cat test1 test2
This is the content of test1.
This is the content of test2.

59

Chapter 9. Text Utilities

As you can see it is also possible to send a file to the standard output by specifying one file as cat’s
argument. This is an alternative to redirection. For example, one could either of these command:

$ less < test1
$ cat test1 | less

echo
The echo is used to send something to the standard output by specifying it as an argument to echo.
For example, one could use echo to send a simple message to the standard output:

$ echo "Hello world!"
Hello world!

wc
One of the common things people often want to do with a text is counting the number of words, or
lines in a text. The wc command can be used for this purpose. The file to be counted can be specified
as an argument to wc

$ wc essay.txt
174 1083 8088 essay.txt

As you can see the default output returns three numbers. These are (in order): the number of lines,
the number of words, and the number of characters. It is also possibly to return only one of these
numbers, with respectively -l, -w , and -m. For example, if we only want to know the number of
lines in the file, we could do the following:

$ wc -l essay.txt
174 essay.txt

In some situations you might want to use the output of wc in a pipeline, or as an argument to another
command. The problem with specifying the file name as an argument is that wc will also show the
name of the file (as you can see in the example above). You can work around this behavior by
redirecting the file contents to wc. For example:

$ wc -l < essay.txt
174

tr
The tr is used to translate or delete characters. All uses of tr require one or two sets. A set is a string
of characters. You can specify most characters in a set. The tr(1) manual page provides an overview
of some character sequences with a special meaning. Table 9-1 describes some of the fequently used
special character sequences.

60

Chapter 9. Text Utilities

Table 9-1. Special tr character sequences

Sequence Meaning
\\ backslash (\)

\n new line

char1-char2 All characters from char1 to char2 (e.g. “a-z”)

[:alnum:] All alphanumeric characters

[:alpha:] All letters in the alphabet

[:punct:] Punctuation characters

Characters can be deleted from one text with the -d, and a set that specifies the characters that
should be deleted. Let’s start with an easy example: suppose that you want to remove all the new line
characters from a text stored in text, and that you would like to redirect the output to a file named
text-continuous. Obviously, we need a set with only one character, namely the new line
character, which is specified with “\n”. This can be accomplished with the following command:

$ cat text | tr -d "\n" > text-continuous

It happens quite often that you want to delete everything, but the characters that are specified in a set.
You can do this by using the -c, which automatically complements the specified set. For example, if
you would like to remove every character from a text, except for alphabetical characters, new lines,
and spaces, you can use the -c, and the following set: “[:alpha:]\n ”. Combined in a command it
would look like this:

$ cat text | tr -c -d "[:alpha:]\n "

Using tr for translating characters does not require any extra parameters, but two sets. In the two sets
the first character of the first set is replaced with the first character of the second set, etc. Suppose
that we use these two sets: “abc” and “def”. With these sets the following translations occur: “a ->
d”, “b -> e”, and “c -> f”. If the first set is longer than the second set, then the second set is expanded
by repeating the last character of the second set. If the second set is longer than the first set, extra
characters in the second set are ignored.

Translations can be useful for many purposes. For example, it can be used to make a wordlist from a
text. This can be done by replacing all spaces with a newline:

$ cat essay.txt | tr " " "\n" | less

As you can imagine the output might still contain non-alphabetic characters. We can combine the
command above with the delete functionality of tr to make a wordlist without unwanted characters:

$ cat essay.txt | tr " " "\n" | tr -c -d "[:alpha:]\n" > wordlist

sort
The command is used to sort lines in a file. To sort a text alphabetically, you can just pipe or redirect
the data to sort. sort also accepts file names as its parameters. When multiple files are specified, the
files will be concatenated before sorting the lines. Suppose that you have a word list that is

61

Chapter 9. Text Utilities

unordered, which is stored in the file wordlist_unsorted. You can sort the contents of the file,
and output it to wordlist_sorted with:

$ sort wordlist_unsorted > wordlist_sorted

The sort accepts many different parameters, which are all described in the sort(1) manual page. An
often-used parameter we will shortly discuss is -u. With this parameter only unique words will be
sent to stdout (in other words: double occurences will be ignored). By combining sort -u and the tr,
discussed in the section called tr, you can make a sorted wordlist of a text:

$ cat essay.txt | tr " " "\n" | tr -c -d "[:alpha:]\n" | sort -u > wordlist_sorted

If the command listed in this example is combined with wc, one could count the size of the used
vocabulary in the text. In the sorted word list each line represents an unique word from the original
text. So, we can count the total number of words that were used, by counting the total number of
lines in the sorted list:

$ cat essay.txt | tr " " "\n" | tr -c -d "[:alpha:]\n" | sort -u | wc -l

uniq
The uniq can be compared to the -u parameter of the sort; it removes all but one entry of successive
identical lines (in a sorted list). The main difference is that it provides some extra parameters that can
be used to manipulate the output. The default behavior works like sort -u, and reduces duplicate
entries:

$ sort wordlist_unsorted | uniq > wordlist_sorted

To make a list of how often a line occurs in a text, one could count how many identical lines the
sorted list contains of every line. Uniq can add the number of identical lines with the -c parameter.
To make a list of how many times each word occurs in a text, you can combine tr, sort, and uniq:

$ cat essay.txt | tr " " "\n" | tr -c -d "[:alpha:]\n" | sort | uniq -c > wordlist_sorted

62

Chapter 10. Process management

Introduction
UNIX-like operating systems work with processes. A process is an unit the operating system
schedules for CPU time and the memory manager manages memory for. Basically a process consists
of program code (named text), data (used by a program) and a stack. The stack is used by the
program to store variables. Programs are at least one process. A program/process can ask the system
to create a new copy of itself, which is called a fork. For example, a web server could fork itself to
let the new process handle a request.

A process can be parted in threads. The difference between forking a process and creating a thread is
that different threads share the address space of the process. A forked process is a separate process
with its own address space. Forking is more expensive in terms of memory requirement and CPU
time.

A user can control a process by sending signals to the process. For example, the SIGTERM
command is used to terminate a process, and the SIGHUP signal to restart a process.

Process basics
This section describes some basic commands that are used for process management.

ps
The ps(1) command is used to report which processes are currently active. By running ps without
any parameters you can see which processes are active in the current user session. Let’s look at an
example:

$ ps
PID TTY TIME CMD
1191 pts/2 00:00:00 bash
1216 pts/2 00:00:00 ps

In this example the bash and ps commands are running. As you can see each process has a process
ID (PID). You will need the process number if you want to send a signal to a process, for example a
kill signal. The ps has many parameters to modify the output. For example, the x shows all processes
without a controlling tty:

$ ps x
PID TTY STAT TIME COMMAND
1044 tty1 S 0:00 -bash
1089 tty1 S 0:00 /bin/sh /usr/X11R6/bin/startx
1100 tty1 S 0:00 xinit /home/daniel/.xinitrc --
1108 tty1 S 0:00 /usr/bin/wmaker
1113 tty1 S 0:00 sylpheed
1114 tty1 S 0:00 /bin/sh /opt/firefox/run-mozilla.sh /opt/firefox/fire
1120 tty1 S 0:52 /opt/firefox/firefox-bin
1125 tty1 S 0:00 /usr/libexec/gconfd-2 20
1146 tty1 S 0:00 xchat
1161 tty1 S 0:00 xterm -sb

63

Chapter 10. Process management

1163 pts/0 S 0:00 bash
1170 pts/0 S 0:00 vi proc.xml
1189 tty1 S 0:00 xterm -sb
1191 pts/2 S 0:00 bash
1275 pts/2 R 0:00 ps x

Have a look at the ps(1) manual page for a summary of available parameters.

kill
The kill(1) sends a signal to a process. If no signal is specified the TERM signal is send, which asks
a process to exit gracefully. Let’s have a look at the normal mode of execution:

$ ps ax | grep mc
1045 tty4 S 0:00 /usr/bin/mc -P /tmp/mc-daniel/mc.pwd.756
$ kill 1045
$ ps ax | grep mc
$

As you can see the ps is used to look for the mc process. There is one occurrence of mc running with
PID 1045. This process is killed, and the second ps command shows that the process is indeed
terminated.

As we said earlier the kill command can also be used to send other signals. The kill -l displays a list
of signals that can be sent:

1) SIGHUP 2) SIGINT 3) SIGQUIT 4) SIGILL
5) SIGTRAP 6) SIGABRT 7) SIGBUS 8) SIGFPE
9) SIGKILL 10) SIGUSR1 11) SIGSEGV 12) SIGUSR2
13) SIGPIPE 14) SIGALRM 15) SIGTERM 17) SIGCHLD
18) SIGCONT 19) SIGSTOP 20) SIGTSTP 21) SIGTTIN
22) SIGTTOU 23) SIGURG 24) SIGXCPU 25) SIGXFSZ
26) SIGVTALRM 27) SIGPROF 28) SIGWINCH 29) SIGIO
30) SIGPWR 31) SIGSYS

The SIGKILL signal is often used to kill processes that refuse to terminate with the default
SIGTERM signal. The signal can be specified by using the number as a parameter, for example, the
following command would send a SIGKILL signal to PID 1045:

$ kill -9 1045

It is also possible to specify the signal without the “SIG” letters as a parameter. In the following
example the SIGHUP signal is sent to the inetd to restart it:

ps ax | grep inetd
727 ? S 0:00 /usr/sbin/inetd

kill -HUP 727

64

Chapter 10. Process management

Advanced process management

Background processes
Normally a process takes over the screen and keyboard after it is started. It is also possible to start
processes as a background process, this means that the shell starts the process, but keeps control over
the terminal. In most shells a process can be started as a background process by placing an
ampersand (&) after the command. For example:

$ rm -rf ~/bunch/of/files &

A process that runs in the background can be brought to the foreground using the fg %<job ID>
command. You can see which jobs are running, with their job numbers, using the jobs command. For
example:

$ sleep 1000 &
[1] 947
$ jobs
[1]+ Running sleep 1000 &
$ fg %1
sleep 1000

The first command, sleep 1000 &, starts sleep in the background. sleep is a command does nothing
but waiting the number of seconds that are specified as a parameter. The output of the jobs command
shows that sleep is indeed running, with Job ID 1. Finally we move sleep to the foreground. As you
can see, the shell will print which command is moved to the foreground.

Stopping processes
A process that is running can be stopped by pressing the <Control> and <z> keys simultaneously.
Stopped processes can be moved to the foreground with the fg command. Running fg without any
parameters moves the last process that was stopped to the foreground. Other processes can be moved
to the foreground by specifying the job ID as a parameter to fg.

A stopped process can also be told to continue as a background process, by executing bg <job ID>.
Executing fg without any parameter will move the last stopped process to the background.

Altering priorities
The Linux kernel allows a user to change the priority of a program. For example, suppose that you
want to run a process that requires a lot of CPU time, but you do not want to hinder other users. In
this case you can start the process with a low priority, the process will only get CPU time when there
are not many other processes demanding CPU time. Or you can give processes that are important a
higher priority.

GNU/Linux provides two commands to alter the priority of a process. The nice(1) command can be
used to specify the priority when you are launching a process. With the renice(1) command you can
alter the priority of a process that is already running. The priority is a numerical value from -20
(highest priority) to 19 (lowest priority). Let’s start with an example of nice in action:

$ nice -n 19 ./setiathome

65

Chapter 10. Process management

As you can see the -n parameter is used to specify the priority value. In this case the ./setiathome
will have a very low priority. Be aware that only the superuser can use negative priority values. Thus,
a normal user cannot give a process a higher priority, as illustrated by this example:

$ nice -n -1 nice
nice: cannot set priority: Permission denied

But it will work as the root user:

$ su -c "nice -n -1 nice"
Password:
-1

The renice command has a somewhat different syntax. The easiest way to use it is to specify the new
priority and the process ID as parameters to the renice command, as is shown in the following
example:

$ renice +5 5811
5811: old priority 0, new priority 5

As with nice a non-root user cannot set negative priority values:

$ renice -5 5811
renice: 5811: setpriority: Permission denied

Note: A normal user can not increase the priority of the process beyond the default priority of 0.
Such facilities could be misused by careless users. After all, the command nice is derived from
being nice to the other users on the system ;^).

66

III. Editing and typesetting

Chapter 11. LaTeX

Introduction
LaTeX is a typesetting system that can be used to produce high-quality articles, books, letters and
other publications. LaTeX is based on TeX, a lower-level typesetting language that was designed by
Donald E. Knuth. LaTeX does not work like a WYSIWYG (what you see is what you get) word
processor, the kind of document preparation system most people are accustomed to. With LaTeX you
do not have to care about formatting the document, only about writing the document.

LaTeX files are plain-text files that contain LaTeX macros. LaTeX formats the document based on
the macros that are used. In the beginning using LaTeX may be a bit awkward to a new user. But
after a while you will discover that using LaTeX has some distinct advantages. To name a few:

• LaTeX-formatted documents look very professional.

• You do not have to care about the layout of your documents. You just add structure to your
documents, and LaTeX takes care of the formatting.

• LaTeX files are plain text, and can easily be changed using standard UNIX tools, such as vi, sed
or awk

• LaTeX provides very good support for typesetting things like mathematical formula, references
and Postscript images.

LaTeX is very extensive, so this chapter will only touch the surface of LaTeX. But it should be
enough to get you started to be able to make simple documents.

Preparing basic LaTeX documents

Minimal document structure
Each LaTeX document has some basic minimal structure that describes the document. Let’s look at
an example:

\documentclass[10pt,a4paper]{article} Ê

\title{The history of symmetric ciphers} Ë

\author{John Doe} Ì

\begin{document} Í

This is a basic document. Î

\end{document} Ï

You can already see the basic syntactical structure of LaTeX commands. A command is started with
a backslash, followed by the name of the command. Each macro has a mandatory argument that is
placed in accolades, and an optional argument that is placed in square brackets.

68

Chapter 11. LaTeX

Ê The first command in every document is the documentclass. This command specifies what kind
of document LaTeX is dealing with. The type of document is specified as a mandatory
parameter. You can also specify some optional parameters, such as the font size and the paper
size. In this case the font size is changed from the default 12pt to 10pt, and A4 is used as the
paper size. The document classes that are available in LaTeX are shown in Table 11-1.

Ë After the documentclass you can add some meta-information to the document, like the title of
the document. In this case the title is The history of symmetric ciphers.

Ì The author command specifies the author of the book.

Í The \begin command marks the beginning of an environment. There are many different
environments, but they all implicate certain typesetting conventions for the text that is in an
environment. In this case we start an document environment. This is a very basic environment,
LaTeX interprets everything in this environment as the body of the text.

Î The content of the document can be placed within the document, in this case a friendly warning
about the nature of the document.

Ï All environments eventually have to be closed. The document environment is the last
environment that is closed, because it denotes the end of the body of the text.

Table 11-1. LaTeX document classes

Class
article

book

letter

report

Generating printable formats
Once you have a LaTeX file, you can use the latex command to generate a DVI (Device Independent
format) file:

$ latex crypto.tex
This is pdfeTeX, Version 3.141592-1.21a-2.2 (Web2C 7.5.4)
entering extended mode
(./crypto.tex
LaTeX2e <2003/12/01>
Babel <v3.8d> and hyphenation patterns for american, french, german, ngerman, b
ahasa, basque, bulgarian, catalan, croatian, czech, danish, dutch, esperanto, e
stonian, finnish, greek, icelandic, irish, italian, latin, magyar, norsk, polis
h, portuges, romanian, russian, serbian, slovak, slovene, spanish, swedish, tur
kish, ukrainian, nohyphenation, loaded.
(/usr/share/texmf/tex/latex/base/article.cls
Document Class: article 2004/02/16 v1.4f Standard LaTeX document class
(/usr/share/texmf/tex/latex/base/size10.clo)) (./crypto.aux) [1] (./crypto.aux)
)
Output written on crypto.dvi (1 page, 248 bytes).
Transcript written on crypto.log.

As the LaTeX command reports a DVI file is created after running the latex command. You can view
this file with an X viewer for DVI files, xdvi:

69

Chapter 11. LaTeX

$ xdvi crypto.dvi

This file is not directly printable (although DVI files can be printed with xdvi). An ideal format for
printable files is Postscript. You can generate a Postscript file from the DVI file with one simple
command:

$ dvips -o crypto.ps crypto.dvi

The -o specifies the output (file) for the Postscript document. If this parameter is not specified, the
output will be piped through lpr, which will schedule the document to be printed.

PDF (Portable Document Format) is another popular format for electronic documents. PDF can
easily be generated from Postscript:

$ ps2pdf crypto.ps

The resulting output file will be the same as the input file, with the .ps extension replaced with .pdf.

Sections
Now that you know how to create a basic LaTeX document, it is a good time to add some more
structure. Structure is added using sections, subsections, and subsubsections. These structural
elements are made with respectively the \section, \subsection and \subsubsection commands. The
mandatory parameter for a section is the title for the section. Normal sections, subsections and
subsubsections are automatically numbered, and added to the table of contents. By adding a star after
a section command, for example \section*{title} section numbering is suppressed, and the section is
not added to the table of contents. The following example demonstrates how you can use sections:

\documentclass[10pt,a4paper]{article}

\title{The history of symmetric ciphers}
\author{John Doe}

\begin{document}

\section{Pre-war ciphers}

To be done.

\section{Modern ciphers}

\subsection*{Rijndael}

Rijndael is a modern block cipher that was designed by Joan Daemen and
Vincent Rijmen.

In the year 2000 the US National Institute of Standards and Technologies
selected Rijndael as the winner in the contest for becoming the Advanced
Encryption Standard, the successor of DES.

\end{document}

70

Chapter 11. LaTeX

The example above is pretty straightforward, but this is a good time to look at how LaTeX treats end
of line characters and empty lines. Empty lines are ignored by LaTeX, making the text a continuous
flow. An empty line starts a new paragraph. All paragraphs but the first paragraph are stared with a
extra space left of the first word.

Font styles
Usually you may want to work with different font styles too. LaTeX has some commands that can be
used to change the appearance of the current font. The most commonly used font commands are
\emph for emphasized text, and \textbf . Have a look at Table 11-2 for a more extensive list of font
styles. Emphasis and bold text are demonstrated in this example paragraph:

Working with font styles is easy. \emp{This text is emphasized} and
\textbf{this text is bold}.

Table 11-2. LaTeX font styles

Command Description
\emph Add emphasis to a font.

\textbf Print the text in bold.

\textit Use an italic font.

\textsl Use a font that is slanted.

\textsc Use CAPS.

\texttt Use a typewriter font.

\textsf Use a sans-serif font.

71

IV. Electronic mail

Chapter 12. Reading and writing e-mail with
mutt

Introduction
Mutt is a mail user agent (MUA) that can be used for reading and writing e-mail. Mutt is a text-mode
installation, meaning that it can be used on the console, over SSH and in an X terminal. Due to its
menu interface, it is very easy to read large amounts of e-mail in a short time, and mutt can be
configured to use your favorite text editor.

This chapter will discuss how you can customize mutt for your needs, how to use it, and how
PGP/GnuPG support is used.

Usage
Mutt is pretty simple to use, though it may take some time to get used to the keys that are used to
navigate, read and write e-mails. The next few sections describe some of the more important keys.
Mutt provides a more thorough overview of available keys after pressing the <h> key.

Browsing the list of e-mails
After invoking the mutt command, an overview of all e-mails will show up. You can browse through
the list of e-mails with the up and down arrow keys, or the <k> and >j> keys.

Reading e-mails
To read an e-mail, use the <Enter> key, after selecting an e-mail in the overview of e-mails. When
reading an e-mail you can use the <Page Up> and <Page Down> to browse through an e-mail. You
can still use the navigational keys used to browse the list of e-mail to browse to other e-mails.

If an e-mail has any attachments, you can see them by pressing the <v> key. You can view individual
attachments by selecting them and pressing the <Enter> key. To save an attachment to a file, press
the <s> key.

Sending e-mails
You can compose a new e-mail with the <c> key, or reply to a selected e-mail with the <r> key. Mutt
will ask you to specify the recipient (To:), and a subject (Subject:). After entering this information an
editor is launched (vi is used by default), which you can use to compose the e-mail. After saving the
e-mail, and quitting the editor, mutt will give you the opportunity to make any changes to the e-mail.
If you decide that you want to alter the e-mail, you can restart the editor with the <e> key. You can
change the recipient or the subject with respectively <t> or <s>. Finally, you can send the e-mail by
pressing <y>. If you would like to cancel the e-mail, press <q>. Mutt will ask you whether you want
to postpone the e-mail. If you do so, you will be given the opportunity to re-do the e-mail the next
time you compose a message.

73

Chapter 12. Reading and writing e-mail with mutt

Basic setup
There are a few mutt settings you often want to configure. This section describes these settings.
User-specific mutt customizations can be made in the .muttrc in the user’s home directory. You can
change global mutt settings in /etc/mutt/Muttrc.

Customized headers
Each e-mail has headers with various information. For example, the header contains information
about the path an e-mail has traversed after it has been sent. The sender (From:) and recipient (To:)
e-mail addresses are also stored in the headers, as well as the subject (Subject:) of an e-mail.

Note: In reality the To: header is not used to determine the destination of an e-mail during the
deliverance process of the e-mail. MTAs use the envelope address to determine the destination
of the e-mail. Though, most MUAs use the To: address that the user fills in as the envelope
address.

You can add your own headers to an e-mail with the my_hdr configuration option. This option has
the following syntax: my_hdr <header name>: <header contents>. For example, you can add
information about what OS you are running by adding the following line to your mutt configuration:

my_hdr X-Operating-System: Slackware Linux 10.1

You can also override some of the headers that are normally used, such as the sender address that is
specified in the From: header:

my_hdr From: John Doe <john.doe@example.org>

The sendmail binary
By default mutt uses the sendmail MTA to deliver e-mails that were sent. You can use another
command to send e-mail by altering the sendmail configuration variable. The sendmail replacement
must handle the same parameter syntax as sendmail. For example, if you have installed MSMTP to
deliver e-mails, you can configure mutt to use it by adding the following line to your mutt
configuration:

set sendmail="/usr/bin/msmtp"

When you have completely replaced sendmail with another MTA, for instance Postfix, it is usually
not needed to set this parameter, because most MTAs provide an alternative sendmail binary file.

74

Chapter 12. Reading and writing e-mail with mutt

Signing/encrypting e-mails

Introduction
Mutt provides excellent support for signing or encrypting e-mails with GnuPG. One might wonder
why he or she should use one of these techniques. While most people do not feel the need to encrypt
most of their e-mails, it generally is a good idea to sign your e-mails. There are, for example, a lot of
viruses these days that use other people’s e-mail addresses in the From: field of viruses. If the people
who you are communicating with know that you sign your e-mails, they will not open fake e-mail
from viruses. Besides that it looks much more professional if people can check your identity,
especially in business transactions. For example, who would you rather trust,
vampire_boy93853@hotmail.com, or someone using a professional e-mail address with digitally
signed e-mails?

This section describes how you can use GnuPG with mutt, for more information about GnuPG read
the section called Encrypting and signing files in Chapter 8.

Configuration
An example configuration for using GnuPG in mutt can be found in
/usr/share/doc/mutt/samples/gpg.rc. In general the contents of this file to your mutt
configuration will suffice. From the shell you can add the contents of this file to you .muttrc with
the following command:

$ cat /usr/share/doc/mutt/samples/gpg.rc >> ~/.muttrc

There are some handy parameters that you can additionally set. For example, if you always want to
sign e-mails, add the following line to your mutt configuration:

set crypt_autosign = yes

Another handy option is crypt_replyencrypt, which will automatically encrypt replies to messages
that were encrypted. To enable this, add the following line to your mutt configuration:

set crypt_replyencrypt = yes

Usage
If you have set some of the automatical options, like crypt_autosign GnuPG usage of mutt is mostly
automatic. If not, you can press the <p> key during the final step of sending an e-mail. In the bottom
of the screen various GnuPG/PGP options will appear, which you can access via the letters that are
enclosed in parentheses. For example, <s> signs e-mails, and <e> encrypts an e-mail. You can
always clear any GnuPG option you set by pressing <p> and then <c>.

75

Chapter 13. Sendmail

Introduction
Sendmail is the default Mail Transfer Agent (MTA) that Slackware Linux uses. sendmail was
originally written by Eric Allman, who still maintains sendmail. The primary role of the sendmail
MTA is delivering messages, either locally or remotely. Delivery is usually done through the SMTP
protocol. The means that sendmail can accept e-mail from remote sites through the SMTP port, and
that sendmail delivers site destined for remote sites to other SMTP servers.

Installation
Sendmail is available as the sendmail package in the “n” disk set. If you want to generate your own
sendmail configuration files, the sendmail-cf package is also required. For information about how to
install packages on Slackware Linux, refer to Chapter 18.

You can let Slackware Linux start sendmail during each boot by making the
/etc/rc.d/rc.sendmail executable. You can do this by executing:

chmod a+x /etc/rc.d/rc.sendmail

You can also start, stop and restart sendmail by using start, stop, and restart as a parameter to the
sendmail initialization script. For example, you can restart sendmail in the following way:

/etc/rc.d/rc.sendmail restart

Configuration
The most central sendmail configuration file is /etc/mail/sendmail.cf; this is where the
behavior of sendmail is configured, and where other files are included. The syntax of
/etc/mail/sendmail.cf is somewhat obscure, because this file is compiled from a much simpler
.mc files that uses M4 macros that are defined for sendmail.

Some definitions can easily be changed in the /etc/mail/sendmail.cf file, but for other changes
it is better to create your own .mc file. Examples in this chapter will be focused on creating a
customized mc file.

Working with mc files
In this section we will look how you can start off with an initial mc file, and how to compile your
own .cf file to a cf file. There are many interesting example mc files available in
/usr/share/sendmail/cf/cf. The most interesting examples are sendmail-slackware.mc
(which is used for generating the default Slackware Linux sendmail.cf), and
sendmail-slackware-tls.mc which adds TLS support to the standard Slackware Linux
sendmail configuration. If you want to create your own sendmail configuration, it is a good idea to

76

Chapter 13. Sendmail

start with a copy of the standard Slackware Linux mc file. For instance, suppose that we would like
to create a configuration file for the server named straw, we could execute:

cd /usr/share/sendmail/cf/cf
cp sendmail-slackware.mc sendmail-straw.mc

and start editing sendmail-straw.mc. After the configuration file is modified to our tastes, M4 can
be used to compile a cf file:

m4 sendmail-straw.mc > sendmail-straw.cf

If we want to use this new configuration file as the default configuration, we can copy it to
/etc/mail/sendmail.cf:

cp sendmail-straw.cf /etc/mail/sendmail.cf

Using a smarthost
If you would like to use another host to deliver e-mail to locations to which the sendmail server you
are configuring can not deliver you can set up sendmail to use a so-called “smart host”. Sendmail
will send the undeliverable e-mail to the smart host, which is in turn supposed to handle the e-mail.
You do this by defining SMART_HOST in your mc file. For example, if you want to use
smtp2.example.org as the smart host, you can add the following line:

define(‘SMART_HOST’,‘stmp2.example.org’)

Alternative host/domain names
By default sendmail will accept mail destined for localhost, and the current hostname of the system.
You can simply add additional hosts or domains to accept e-mail for. The first step is to make sure
that the following line is added to your mc configuration:

FEATURE(‘use_cw_file’)dnl

When this option is enabled you can add host names and domain names to accept mail for to
/etc/mail/local-host-names. This file is a newline separated database of names. For example,
the file could look like this:

example.org
mail.example.org
www.example.org

77

Chapter 13. Sendmail

Virtual user table
Often you may want to map e-mail addresses to user names. This is needed when the user name
differs from the part before the “@” part of an e-mail address. To enable this functionality, make sure
the following line is added to your mc file:

FEATURE(‘virtusertable’,‘hash -o /etc/mail/virtusertable.db’)dnl

The mappings will now be read from /etc/mail/virtusertable.db. This is a binary database
file that should not directly edit. You can edit /etc/mail/virtusertable instead, and generate
/etc/mail/virtusertable.db from that file.

The /etc/mail/virtusertable file is a simple plain text file. That has a mapping on each line,
with an e-mail address and a user name separated by a tab. For example:

john.doe@example.org john
john.doe@mail.example.org john

In this example both e-mail for john.doe@example.org and john.doe@mail.example.org will be
delivered to the john account. It is also possible to deliver some e-mail destined for a domain that is
hosted on the server to another e-mail address, by specifying the e-mail address to deliver the e-mail
to in the second in the second column. For example:

john.doe@example.org john.doe@example.com

After making the necessary changes to the virtusertable file you can generate the database with
the following command:

makemap hash /etc/mail/virtusertable < /etc/mail/virtusertable

78

Chapter 14. Spamassassin

Introduction
Spam E-Mail is one of the major problems of the current Internet. Fortunately there are some tools
which can help you reducing the amount of spam you get. One of them is using blacklists. A
blacklist is a list of known open e-mail relays. With a blacklist you can block e-mails which are sent
using one of these open relays. Unfortunately there are a few problems with this method, first of all
the database of open relays can never be complete. Besides that some spam is sent using normal
ISP-specific SMTP servers.

Another method is scanning the incoming e-mails for common characteristics of spam. This method
is comparable with a virus scanner; a filter program knows a large number of spam characteristics
and gives each characteristic found in a mail a point. If a defined number of points is exceeded the
mail is marked as spam. Spamassassin is that kind of filter.

Installing spamassasin

SpamAssassin
SpamAssassin is written in Perl, and is available through CPAN (Comprehensive Perl Archive
Network). You can install SpamAssassin through the CPAN shell. Execute the following command
to enter the CPAN shell:

perl -MCPAN -e shell

Once the shell is started you can install SpamAssassin:

o conf prerequisites_policy ask
install Mail::SpamAssassin

The first command will make the installation of dependencies interactive (in other words, the CPAN
shell will ask you to confirm their installation). The second command asks the CPAN shell to install
SpamAssassin.

During the installation you will be asked to fill in the e-mail address of the e-mail address or URL
that should be used in the report that is sent when something is suspected to be spam. You will also
be asked whether you would like to conduct some tests or not. You can answer “n” to these questions.

Starting spamd
It is not a bad idea to start a daemonized version of SpamAssassin which runs in the background.
This will speed up mail filtering. The daemon can be started using the following command:

spamd -c -d

79

Chapter 14. Spamassassin

It is a good idea tot add this to /etc/rc.local, so spamd will automatically be started during the
initialization process.

Using spamassassin with procmail
Sendmail will use procmail automatically on the default Slackware Linux installation if procmail is
installed. Procmail is a program which processes e-mails and allows you to apply filters. At first we
are going to have a look at how to add spamassassin headers to a processed e-mail, after that we are
going to look at a method to separate spam from normal e-mail.

Marking messages as spam
The first step is to mark messages as either spam or non-spam. Create a /etc/procmailrc file, if
you do not already have one. This is the system-wide procmail configuration file, and applies to all
incoming e-mails. Use the ~/.procmailrc file if you want to enable spam marking for an
individual account. Add the following lines to the configuration file:

:0 fw

* < 256000
| /usr/bin/spamc -f

The first line says we want to pipe all messages to an external command. The second line makes sure
only messages smaller than 256000 bytes are filtered. Spam messages are usually not that large, and
adding this line can decrease the system load. Finally, the third line specifies that the messages
should be piped through /usr/bin/spamc with the -f parameter.

Moving spam mail to a separate mailbox
Procmail can also be used to move spam to a separate mailbox file. It is not a bad idea to configure
this on a user basis, because some users might want to use the filters of their e-mail program to
separate spam. In the following example we will move spam messages to the ~/mail/spam mailbox
file. To do this add the following lines to ~/.procmailrc:

MAILDIR=$HOME/mail

:0:

* ^X-Spam-Status: Yes
spam

First of all MAILDIR is defined, this will create and use the mailboxes in ~/mail/. In the next two
lines we say that we want to filter out e-mails with the X-Spam-Status: Yes header, which is added by
spamassassin if it believes an e-mail is spam. Finally the mailbox to which the e-mails should be
moved is specified.

80

V. System administration

Chapter 15. User management

Introduction
GNU/Linux is a multi-user operating system. This means that multiple users can use the system, and
they can use the system simultaneously. The GNU/Linux concepts for user management are quite
simple. First of all, there are several user accounts on each system. Even on a single user system
there are multiple user accounts, because GNU/Linux uses unique accounts for some tasks. Users
can be members of groups. Groups are used for more fine grained permissions, for example, you
could make a file readable by a certain group. There are a few reserved users and groups on each
system. The most important of these is the root account. The root user is the system administrator. It
is a good idea to avoid logging in as root, because this greatly enlarges security risks. You can just
log in as a normal user, and perform system administration tasks using the su and sudo commands.

The available user accounts are specified in the /etc/passwd. You can have a look at this file to get
an idea of which user account are mandatory. As you will probably notice, there are no passwords in
this file. Passwords are kept in the separate /etc/shadow file, as an encrypted string. Information
about groups is stored in /etc/group. It is generally speaking not a good idea to edit these files
directly. There are some excellent tools that can help you with user and group administration. This
chapter will describe some of these tools.

Adding and removing users

useradd
The useradd is used to add user accounts to the system. Running useradd with a user name as
parameter will create the user on the system. For example:

useradd bob

Creates the user account bob. Please be aware that this does not create a home directory for the user.
Add the -m parameter to create a home directory. For example:

useradd -m bob

This would add the user bob to the system, and create the /home/bob home directory for this user.
Normally the user is made a member of the users group. Suppose that we would like to make crew
the primary group for the user bob. This can be done using the -g parameter. For example:

useradd -g crew -m bob

It is also possible to add this user to secondary groups during the creation of the account with the -G.
Group names can be separated with a comma. The following command would create the user bob,
which is a member of the crew group, and the www-admins and ftp-admins secondary groups:

useradd -g crew -G www-admins,ftp-admins -m bob

82

Chapter 15. User management

By default the useradd only adds users, it does not set a password for the added user. Passwords can
be set using the passwd command.

passwd
As you probably guessed the passwd command is used to set a password for a user. Running this
command as a user without a parameter will change the password for this user. The password
command will ask for the old password,once and twice for the new password:

$ passwd
Changing password for bob
(current) UNIX password:
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

The root user can set passwords for users by specifying the user name as a parameter. The passwd
command will only ask for the new password. For example:

passwd bob
Enter new UNIX password:
Retype new UNIX password:
passwd: password updated successfully

adduser
The adduser command combines useradd and passwd in an interactive script. It will ask you to fill
in information about the account to-be created. After that it will create an account based on the
information you provided. The screen listing below shows a sample session.

adduser

Login name for new user []: john

User ID (’UID’) [defaults to next available]: <Enter>

Initial group [users]: <Enter>

Additional groups (comma separated) []: staff

Home directory [/home/john] <Enter>

Shell [/bin/bash] <Enter>

Expiry date (YYYY-MM-DD) []: <Enter>

New account will be created as follows:

Login name.......: john
UID..............: [Next available]
Initial group....: users

83

Chapter 15. User management

Additional groups: [None]
Home directory...: /home/john
Shell............: /bin/bash
Expiry date......: [Never]

This is it... if you want to bail out, hit Control-C. Otherwise, press
ENTER to go ahead and make the account.
<Enter>

Creating new account...

Changing the user information for john
Enter the new value, or press ENTER for the default

Full Name []: John Doe
Room Number []: <Enter>
Work Phone []: <Enter>
Home Phone []: <Enter>
Other []: <Enter>

Changing password for john
Enter the new password (minimum of 5, maximum of 127 characters)
Please use a combination of upper and lower case letters and numbers.
New password: password
Re-enter new password: password

Account setup complete.

You can use the default values, or leave some fields empty, by tapping the <Enter> key.

userdel
Sometimes it is necessary to remove a user account from the system. GNU/Linux offers the userdel
tool to do this. Just specify the username as a parameter to remove that user from the system. For
example, the following command will remove the user account bob from the system:

userdel bob

This will only remove the user account, not the user’s home directory and mail spool. Just add the
-r parameter to delete the user’s home directory and mail spool too. For example:

userdel -r bob

Avoiding root usage with su
It is a good idea to avoid logging in as root. There are many reasons for not doing this. Accidentally
typing a wrong command could cause bad things to happen, and malicious programs can make a lot
of damage when you are logged in as root. Still, there are many situations in which you need to have

84

Chapter 15. User management

root access. For example, to do system administration, or to install new software. Fortunately the su
can give you temporal root privileges.

Using su is very simple. Just executing su will ask you for the root password, and will start a shell
with root privileges after the password is correctly entered:

$ whoami
bob
$ su
Password:
whoami
root
exit
exit
$ whoami
bob

In this example the user bob is logged on, the whoami output reflects this. The user executes su and
enters the root password. su launches a shell with root privileges, this is confirmed by the whoami
output. After exiting the root shell, control is returned to the original running shell running with the
privileges of the user bob.

It is also possible to execute just one command as the root user with the -c parameter. The following
example will run lilo:

$ su -c lilo

If you want to give parameters to the command you would like to run, use quotes (e.g. su -c "ls -l
/"). Without quotes su cannot determine whether the parameters should be used by the specified
command, or by su itself.

Restricting su access
You can refine access to su with suauth(5). It is a good security practice to only allow members of a
special group to su to root. For instance, you can restrict root su-ing in a BSD fashion to members of
the wheel group by adding the following line to /etc/suauth:

root:ALL EXCEPT GROUP wheel:DENY

Disk quota

Introduction
Disk quota is a mechanism that allows the system administrator to restrict the number of disk blocks
and inodes that a particular user and group can use. Not all filesystems supported by Linux support
quota, widely used filesystems that support quota are ext2, ext3 and XFS. Quota are turned on and
managed on a per filesystem basis.

85

Chapter 15. User management

Enabling quota
Quota can be enabled per filesystem in /etc/fstab, by using the usrquota and grpquota
filesystem options. For example, suppose that we have the following entry for the /home partition in
/etc/fstab:

/dev/hda8 /home xfs defaults 1 2

We can now enable user quota by adding the usrquota filesystem option:

/dev/hda8 /home xfs defaults,usrquota 1 2

At this point the machine can be rebooted, to let the Slackware Linux initialization scripts enable
quota. You can also enable quota without rebooting the machine, by remounting the partition, and
running the quotaon command:

mount -o remount /home
quotaon -avug

Editing quota
User and group quotas can be edited with the “edquota” utility. This program allows you to edit
quotas interactively with the vi editor. The most basic syntax of this command is edquota
username. For example:

edquota joe

This will launch the vi editor with the quota information for the user joe. It will look like this:

Disk quotas for user joe (uid 1143):
Filesystem blocks soft hard inodes soft hard
/dev/hda5 2136 0 0 64 0 0

In this example quotas are only turned on for one file system, namely the filesystem on /dev/hda5.
As you can see there are multiple columns. The blocks column shows how many block the user uses
on the file system, and the inodes column the number of inodes a user occupies. Besides that there
are soft and hard columns after both blocks and inodes. These columns specify the soft and hard
limits on blocks and inodes. A user can exceed the soft limit for a grace period, but the user can
never exceed the hard limit. If the value of a limit is 0, there is no limit.

Note: The term “blocks” might be a bit confusing in this context. In the quota settings a block is
1KB, not the block size of the file system.

Let’s look at a simple example. Suppose that we would like to set the soft limit for the user joe to
250000, and the hard limit to 300000. We could change the quotas listed above to:

Disk quotas for user joe (uid 1143):
Filesystem blocks soft hard inodes soft hard

86

Chapter 15. User management

/dev/hda5 2136 250000 300000 64 0 0

The new quota settings for this user will be active after saving the file, and quitting vi.

Getting information about quota
It is often useful to get statistics about the current quota usage. The repquota command can be used
to get information about what quotas are set for every user, and how much of each quota is used. You
can see the quota settings for a specific partition by giving the name of the partition as a parameter.
The -a parameter will show quota information for all partitions with quota enabled. Suppose that
you would like to see quota information for /dev/hda5, you can use the following command:

repquota /dev/hda5

*** Report for user quotas on device /dev/hda5
Block grace time: 7days; Inode grace time: 7days

Block limits File limits
User used soft hard grace used soft hard grace
--
root -- 0 0 0 3 0 0
[..]
joe -- 2136 250000 300000 64 0 0
[..]

87

Chapter 16. Printer configuration

Introduction
GNU/Linux supports a large share of the available USB, parallel and network printers. Slackware
Linux provides two printing systems, CUPS (Common UNIX Printing System) and LPRNG (LPR
Next Generation). This chapter covers the CUPS system.

Independent of which printing system you are going to use, it is a good idea to install some printer
filter collections. These can be found in the “ap” disk set. If you want to have support for most
printers, make sure the following packages are installed:

a2ps
enscript
espgs
gimp-print
gnu-gs-fonts
hpijs
ifhp

Both printing systems have their own advantages and disadvantages. If you do not have much
experience with configuring printers under GNU/Linux, it is a good idea to use CUPS, because
CUPS provides a comfortable web interface which can be accessed through a web browser.

Preparations
To be able to use CUPS the “cups” package from the “a” disk set has to be installed. After the
installation CUPS can be started automatically during each system boot by making
/etc/rc.d/rc.cups executable. This can be done with the following command:

chmod a+x /etc/rc.d/rc.cups

After restarting the system CUPS will also be restarted automatically. You can start CUPS on a
running system by executing the following command:

/etc/rc.d/rc.cups start

Configuration
CUPS can be configured via a web interface. The configuration interface can be accessed with a web
browser at the following URL: http://localhost:631/. Some parts of the web interface require that you
authenticate yourself. If an authentication window pops up you can enter “root” as the user name,
and fill in the root account password.

A printer can be added to the CUPS configuration by clicking on “Administrate”, and clicking on the
“Add Printer” button after that. The web interface will ask for three options:

88

Chapter 16. Printer configuration

• Name - the name of the printer. Use a simple name, for example “epson”.

• Location - the physical location of the printer. This setting is not crucial, but handy for larger
organizations.

• Description - a description of the printer, for example “Epson Stylus Color C42UX”.

You can proceed by clicking the “Continue” button. On the next page you can configure how the
printer is connected. If you have an USB printer which is turned on, the web interface will show the
name of the printer next to the USB port that is used. After configuring the printer port you can
select the printer brand and model. After that the printer configuration is finished, and the printer will
be added to the CUPS configuration.

An overview of the configured printers can be found on the “Printers” page. On this page you can
also do some printer operations. For example, “Print Test Page” can be used to check the printer
configuration by printing a test page.

Access control
The CUPS printing system provides a web configuration interface, and remote printer access through
the Internet Printing Protocol (IPP). The CUPS configuration files allow you to configure
fine-grained access control to printers. By default access to printers is limited to localhost
(127.0.0.1).

You can refine access control in the central CUPS daemon configuration file,
/etc/cups/cupsd.conf, which has a syntax that is comparable to the Apache configuration file.
Access control is configured through Location sections. For example, the default global (IPP root
directory) section looks like this:

<Location />
Order Deny,Allow
Deny From All
Allow From 127.0.0.1
</Location>

As you can see deny statements are handled first, and then allow statements. In the default
configuration access is denied from all hosts, except for 127.0.0.1, localhost. Suppose that you would
like to allow hosts from the local network, which uses the 192.168.1.0/24 address space, to use the
printers on the system you are configuring CUPS on. In this case you could add the line that is bold:

<Location />
Order Deny,Allow
Deny From All
Allow From 127.0.0.1
Allow From 192.168.1.0/24
</Location>

You can refine other locations in the address space by adding additional location sections. Settings
for sub-directories override global settings. For example, you could restrict access to the epson
printer to the hosts with IP addresses 127.0.0.1 and 192.168.1.203 by adding the following section:

<Location /printers/epson>
Order Deny,Allow
Deny From All

89

Chapter 16. Printer configuration

Allow From 127.0.0.1
Allow From 192.168.1.203
</Location>

Ghostscript paper size
Ghostscript is a PostStript and Portable Document Format (PDF) interpreter. Both PostScript and
PDF are languages that describe data that can be printed. Ghostscript is used to convert PostScript
and PDF to raster formats that can be displayed on the screen or printed. Most UNIX programs
output PostScript, the CUPS spooler uses GhostScript to convert this PostScript to rasterized format
that a particular printer understands.

There are some Ghostscript configuration settings that may be useful to change in some situations.
This section describes how you can change the default paper size that Ghostscript uses.

Note: Some higher-end printers can directly interpret PostScript. Rasterization is not needed for
these printers.

By default Ghostscript uses US letter paper as the default paper size. The paper size is configured in
/usr/share/ghostscript/x.xx/lib/gs_init.ps, in which x.xx should be replaced by the
Ghostscript version number. Not far after the beginning of the file there are two lines that are
commented out with a percent (%) sign, that look like this:

% Optionally choose a default paper size other than U.S. letter.
% (a4) /PAPERSIZE where { pop pop } { /PAPERSIZE exch def } ifelse

You can change the Ghostscript configuration to use A4 as the default paper size by removing the
percent sign and space that are at the start of the second line, changing it to:

% Optionally choose a default paper size other than U.S. letter.
(a4) /PAPERSIZE where { pop pop } { /PAPERSIZE exch def } ifelse

It is also possible to use another paper size than Letter or A4 by replacing a4 in the example above
with the paper size you want to use. For example, you could set the default paper size to US Legal
with:

% Optionally choose a default paper size other than U.S. letter.
(legal) /PAPERSIZE where { pop pop } { /PAPERSIZE exch def } ifelse

It is also possible to set the paper size per invocation of Ghostscript by using the
-sPAPERSIZE=size parameter of the gs command. For example, you could use add
-sPAPERSIZE=a4 parameter when you start gs to use A4 as the paper size for an invocation of
Ghostscript.

An overview of supported paper sizes can be found in the gs_statd.ps, that can be found in the
same directory as gs_init.ps.

90

Chapter 17. X11

X Configuration
The X11 configuration is stored in /etc/X11/xorg.conf. Many distributions provide special
configuration tools for X, but Slackware Linux only provides the standard X11 tools (which are
actually quite easy to use). In most cases X can be configured automatically, but sometimes it is
necessary to edit /etc/X11/xorg.conf manually.

Automatical configuration
The X11 server provides an option to automatically generate a configuration file. X11 will load all
available driver modules, and will try to detect the hardware, and generate a configuration file.
Execute the following command to generate a xorg.conf configuration file:

$ X -configure

If X does not output any errors, the generated configuration can be copied to the /etc/X11
directory. And X can be started to test the configuration:

$ cp /root/xorg.conf /etc/X11/
$ startx

Interactive configuration
X11 provides two tools for configuring X interactively, xorgcfg and xorgconfig. xorgcfg tries to
detect the video card automatically, and starts a tool which can be used to tune the configuration.
Sometimes xorgcfg switches to a video mode which is not supported by the monitor. In that case
xorgcfg can also be used in text-mode, by starting it with xorgcfg -textmode.

xorgconfig differs from the tools described above, it does not detect hardware and will ask detailed
questions about your hardware. If you only have little experience configuring X11 it is a good idea to
avoid xorgconfig.

Window manager
The “look and feel” of X11 is managed by a so-called window manager. Slackware Linux provides
the following widely user window managers:

• WindowMaker: A relatively light window manager, which is part of the GNUStep project.

• BlackBlox: Light window manager, BlackBox has no dependencies except the X11 libraries.

• KDE: A complete desktop environment, including browser, e-mail program and an office suite
(KOffice).

• GNOME: Like KDE a complete desktop environment. It is worth noting that Dropline Systems
(http://www.dropline.net/) provides a special GNOME environment for Slackware Linux.

91

Chapter 17. X11

If you are used to a desktop environment, using KDE or GNOME is a logical choice. But it is a good
idea to try some of the lighter window managers. They are faster, and consumer less memory, besides
that most KDE and GNOME applications are perfectly usable under other window managers.

On Slackware Linux the following command can be used to select a window manager:

$ xwmconfig

This configuration program shows the installed window managers, from which you can choose one.
You can set the window manager globally by executing xwmconfig as root.

92

Chapter 18. Package Management

Pkgtools

Introduction
Slackware Linux does not use a complex package system, unlike many other Linux distributions.
Package have the .tgz extension, and are usually ordinary tarballs which contain two extra files: an
installation script and a package description file. Due to the simplicity of the packages the Slackware
Linux package tools do not have the means to handle dependencies. But many Slackware Linux
users prefer this approach, because dependencies often cause more problems than they solve.

Slackware Linux has a few tools to handle packages. The most important tools will be covered in
this chapter. To learn to understand the tools we need to have a look at package naming. Let’s have a
look at an example, imagine that we have a package with the file name bash-2.05b-i386-2.tgz.
In this case the name of the package is bash-2.05b-i386-2. In the package name information about
the package is separated by the ’-’ character. A package name has the following meaning:
programname-version-architecture-packagerevision

pkgtool
The pkgtool command provides a menu interface for some package operations. De most important
menu items are Remove and Setup. The Remove option presents a list of installed packages. You can
select which packages you want to remove with the space bar and confirm your choices with the
return key. You can also deselect a package for removal with the space bar.

The Setup option provides access to a few tools which can help you with configuring your system,
for example: netconfig, pppconfig and xwmconfig.

installpkg
The installpkg command is used to install packages. installpkg needs a package file as a parameter.
For example, if you want to install the package bash-2.05b-i386-2.tgz execute:

installpkg bash-2.05b-i386-2.tgz

upgradepkg
upgradepkg can be used to upgrade packages. In contrast to installpkg it only installs packages
when there is an older version available on the system. The command syntax is comparable to
installpkg. For example, if you want to upgrade packages using package in a directory execute:

upgradepkg *.tgz

As said only those packages will be installed of which an other version is already installed on the
system.

93

Chapter 18. Package Management

removepkg
The removepkg can be used to remove installed packages. For example, if you want to remove the
“bash” package (it is not recommended to do that!), you can execute:

removepkg bash

As you can see only the name of the package is specified in this example. You can also remove a
package by specifying its full name:

removepkg bash-2.05b-i386-2

Slackpkg

Introduction
Slackpkg is a package tool written by Roberto F. Batista and Evaldo Gardenali. It helps users to
install and upgrade Slackware Linux packages using one of the Slackware Linux mirrors. Slackpkg
is included in the extra/ directory on the second CD of the Slackware Linux CD set.

Configuration
Slackpkg is configured through some files in /etc/slackpkg. The first thing you should do is
configuring which mirror slackpkg should use. This can be done by editing the
/etc/slackpkg/mirrors. This file already contains a list of mirrors, you can just uncomment a
mirror close to you. For example:

ftp://ftp.nluug.nl/pub/os/Linux/distr/slackware/slackware-10.1/

This will use the Slackware Linux 10.1 tree on the ftp.nluug.nl mirror. Be sure to use a tree that
matches your Slackware Linux version. If you would like to track slackware-current you would
uncomment the following line instead (when you would like to use the NLUUG mirror):

ftp://ftp.nluug.nl/pub/os/Linux/distr/slackware/slackware-current/

Slackpkg will only accept one mirror. Commenting out more mirrors will not work.

Importing the Slackware Linux GPG key
By default slackpkg checks packages using the package signatures and the public Slackware Linux
GPG key. Since this is a good idea from a security point of view, you probably do not want to change
this behaviour. To be able to verify packages you have to import the security@slackware.com GPG
key. If you have not used GPG before you have to create the GPG directory in the home directory of
the root user:

94

Chapter 18. Package Management

mkdir ~/.gnupg

The next step is to search for the public key of security@slackware.com. We will do this by querying
the pgp.mit.edu server:

gpg --keyserver pgp.mit.edu --search security@slackware.com
gpg: keyring ‘/root/.gnupg/secring.gpg’ created
gpg: keyring ‘/root/.gnupg/pubring.gpg’ created
gpg: searching for "security@slackware.com" from HKP server pgp.mit.edu
Keys 1-2 of 2 for "security@slackware.com"
(1) Slackware Linux Project <security@slackware.com>

1024 bit DSA key 40102233, created 2003-02-25
(2) Slackware Linux Project <security@slackware.com>

1024 bit DSA key 40102233, created 2003-02-25
Enter number(s), N)ext, or Q)uit >

As you can see we have got two (identical) hits. Select the first one by entering “1”. GnuPG will
import this key in the keyring of the root user:

Enter number(s), N)ext, or Q)uit > 1
gpg: key 40102233: duplicated user ID detected - merged
gpg: /root/.gnupg/trustdb.gpg: trustdb created
gpg: key 40102233: public key "Slackware Linux Project <security@slackware.com>" imported
gpg: Total number processed: 1
gpg: imported: 1

Be sure to double check the key you received. The key ID and fingerprint of this particular key can
be found on the Internet on many trustworthy sites. The key ID is, as mentioned above 40102233.
You can get the key fingerprint with the --fingerprint parameter:

gpg --fingerprint security@slackware.com
pub 1024D/40102233 2003-02-26 Slackware Linux Project <security@slackware.com>

Key fingerprint = EC56 49DA 401E 22AB FA67 36EF 6A44 63C0 4010 2233
sub 1024g/4E523569 2003-02-26 [expires: 2012-12-21]

Once you have imported and checked this key you can start to use slackpkg, and install packages
securely.

Updating the package lists
Before upgrading and installing packages you have to let slackpkg download the package lists from
the mirror you are using. It is a good idea to do this regularly to keep these lists up to date. The latest
package lists can be fetched with:

$ slackpkg update

95

Chapter 18. Package Management

Upgrading packages
The upgrade parameter is used to upgrade installed packages. You have to add an extra parameter
to actually tell slackpkg what you want to upgrade, this differs for a stable Slackware Linux version
and slackware-current. Upgrades for stable Slackware Linux releases are in the patches directory
of FTP mirrors. You can update a slackware-stable installation (e.g. Slackware Linux 10.1) with:

slackpkg upgrade patches

In this case slackpkg will use the packages from the patches directory. In slackware-current
updated packages are put in the normal slackware package sub-directories. So, we can pass that as
an parameter to slackpkg upgrade:

slackpkg upgrade slackware

You can also upgrade individual packages by specifying the name of the package to be upgraded, for
example:

slackpkg upgrade pine

Installing packages
The install is used to install packages:

slackpkg install rexima

Be aware that neither slackpkg, nor the Slackware Linux package tools do dependency checking. If
some program does not work due to missing libraries, you have to add them yourself with slackpkg.

Using rsync
Another popular method of keeping Slackware Linux up to date is by keeping a local mirror. The
ideal way of doing this is via rsync. rsync is a program that can synchronize two trees of files. The
advantage is that rsync only transfers the differences in files, making it very fast. After syncing with
a mirror you can upgrade Slackware Linux with upgradepkg, or make a new installation CD. The
following example synchronizes a local current tree with an up-to-date tree from on a mirror:

rsync -av --delete \
--exclude=slackware/kde \
--exclude=slackware/kdei \
--exclude=slackware/gnome \
--exclude=bootdisks \
--exclude=extra \
--exclude=testing \
--exclude=pasture \
--exclude=rootdisks \
--exclude=source \
--exclude=zipslack \

96

Chapter 18. Package Management

rsync://fill-in-mirror/pub/slackware/slackware-current/ \
/usr/share/mirrors/slackware-current

The -a parameter implies a few other options that try to make a copy that is as exact as possible (in
terms of preserving symlinks, permissions and owners). The --delete deletes files that are not
available on the mirror anymore. It is good idea to use this parameter, because otherwise your tree
may get bloated very quickly with older package versions. With the --exclude parameter you can
specify which files or directories should be ignored.

After syncing the tree you can use upgradepkg to update your Slackware Linux installation. For
example:

upgradepkg /usr/share/mirrors/slackware-current/slackware/*/*.tgz

Tagfiles

Introduction
Tagfiles are a relatively unknown feature of Slackware Linux. A tagfile is a file that can be used to
instruct installpkg what packages should be installed from a collection of packages. For instance,
the Slackware Linux installer generates a tagfile during the Expert and Menu installation methods to
store which packages should be installed during the installation process.

The nice aspect of tagfiles is that you can easily create tagfiles yourself. By writing your own tagfiles
you can automate the package installation, which is ideal for larger client or server roll-outs (or
smaller set-ups if it gives you more comfort than installing packages manually). The easiest way to
create your own tagfiles is by starting out with the tagfiles that are part of the official Slackware
Linux distribution. In the following sections we are going to look at how this is done.

Creating tagfiles
Tagfiles are simple plain-text files. Each line consists of a package name and a flag, these two
elements are separated by a colon and a space. The flag specifies what should be done with a
package. The fields are described in Table 18-1. Let’s look at a few lines from the tagfile in the “a”
disk set:

aaa_base: ADD
aaa_elflibs: ADD
acpid: REC
apmd: REC
bash: ADD
bin: ADD

It should be noted that you can also add comments to tagfiles with the usual comment (#) character.
As you can see in the snippet above there are different flags. The table listed below describes the four
different flags.

97

Chapter 18. Package Management

Table 18-1. Tagfile fields

Flag Meaning
ADD A package marked by this flag will

automatically be installed

SKP A package marked by this flag will
automatically be skipped

REC Ask the user what to do, recommend installation
of the package.

OPT Ask the user what to do, the package will be
described as optional.

As you can read from the table installpkg will only act automatically when either ADD or SKP is
used.

It would be a bit tedious to write a tagfile for each Slackware Linux disk set. The official Slackware
Linux distribution contains a tagfile in the directory for each disk set. You can use these tagfiles as a
start. The short script listed below can be used to copy the tagfiles to the current directory, preserving
the disk set structure.

#!/bin/sh

if [! $# -eq 1] ; then
echo "Syntax: $0 [directory]"
exit

fi

for i in $1/*/tagfile; do
setdir=‘echo $i | egrep -o ’\w+/tagfile$’ | xargs dirname‘
mkdir $setdir
cp $i $setdir

done

After writing the script to a file you can execute it, and specify a slackware/ directory that
provides the disk sets. For example:

$ sh copy-tagfiles.sh /mnt/flux/slackware-current/slackware

After doing this the current directory will contain a directory structure like this, in which you can
edit the individual tag files:

a/tagfile
ap/tagfile
d/tagfile
e/tagfile
[...]

Using tagfiles
On an installed system you can let installpkg use a tagfile with the -tagfile parameter. For
example:

98

Chapter 18. Package Management

installpkg -root /mnt-small -tagfile a/tagfile /mnt/flux/slackware-current/slackware/a/*.tgz

Of course, tagfiles would be useless if they cannot be used during the installation of Slackware
Linux. This is certainly possible: after selecting which disk sets you want to install you can choose in
what way you want to select packages (the dialog is named SELECT PROMPTING MODE. Select
tagpath from this menu. You will then be asked to enter the path to the directory structure with the
tagfiles. The usual way to provide tagfiles to the Slackware Linux installation is to put them on a
floppy or another medium, and mounting this before or during the installation. E.g. you can switch to
the second console with by pressing the <ALT> and <F2> keys, and create a mount point and mount
the disk with the tagfiles:

mkdir /mnt-tagfiles
mount /dev/fd0 /mnt/mnt-tagfiles

After mounting the disk you can return to the virtual console on which you run setup, by pressing
<ALT> and <F1>.

99

Chapter 19. Building a kernel

Introduction
The Linux kernel is shortly discussed in the section called What is Linux? in Chapter 2. One of the
advantages of Linux is that the full sources are available (as most of the Slackware Linux system).
This means that you can recompile the kernel. There are many situations in which recompiling the
kernel is useful. For example:

• Making the kernel leaner: One can disable certain functionality of the kernel, to decrease its size.
This is especially useful in environments where memory is scarce.

• Optimizing the kernel: it is possible to optimize the kernel. For instance, by compiling it for a
specific processor.

• Hardware support: Support for some hardware is not enabled by default in the Linux kernel
provided by Slackware Linux. A common example is support for SMP systems.

• Using custom patches: There are many unofficial patches for the Linux kernel. Generally
speaking it is a good idea to avoid unofficial patches. But some third party software, like Win4Lin
(http://www.netraverse.com), require that you install an additional kernel patch.

This chapter focuses on the default kernel series used in Slackware Linux 10.1, Linux 2.4, though
most of these instructions also apply to Linux 2.6. Compiling a kernel is not really difficult, just keep
around a backup kernel that you can use when something goes wrong. Kernel compilation involves
these steps:

• Configuring the kernel.

• Making dependencies.

• Building the kernel.

• Building modules.

• Installing the kernel and modules.

• Updating the LILO configuration.

In this chapter, we suppose that the kernel sources are available in /usr/src/linux. If you have
installed the kernel sources from the “k” disk set, the kernel sources are available in
/usr/src/linux-kernelversion, and /usr/src/linux is a symbolic link to the real kernel
source directory. So, if you use the standards Slackware Linux kernel package you are set to go.

Configuration
As laid out above, the first step is to configure the kernel source. To ease the configuration of the
kernel, it is a good idea to copy the default Slackware Linux kernel configuration to the kernel
sources. The Slackware Linux kernel configuration files are stored on the distribution medium as
kernels/<Kernel>/config. Suppose that you use the bare.i kernel (which is the default
kernel), and that you have a Slackware Linux CD-ROM mounted at /mnt/cdrom, you can copy the
Slackware Linux kernel configuration with:

cp /mnt/cdrom/kernels/bare.i/config /usr/src/linux/.config

100

Chapter 19. Building a kernel

At this point you can start to configure the kernel. There are three configuration front-ends to the
kernel configuration. The first one is config, which just asks you what you want to do for each
kernel option. This takes a lot of time. So, normally this is not a good way to configure the kernel. A
more user friendly approach is the menuconfig front-end, which uses a menuing system that you
can use to configure the kernel. There is also an X front-end, named xconfig. You can start a
configuration front-end by going to the kernel source directory, and executing make <front-end>.
For example, to configure the kernel with the menu front-end you can use the following commands:

cd /usr/src/linux
make menuconfig

In the kernel configuration there are basically three options for each choice: “n” disables
functionality, “y” enables functionality, and “m” compiles the functionality as a module. The default
Slackware Linux kernel configuration is a very good configuration, it compiles only the bare
functionality needed to boot the system in the kernel, the rest is compiled as a module. Whatever
choices you make, you need to make sure that both the driver for your IDE/SCSI chip set is available
in the kernel and the filesystem driver. If they are not, the kernel is not able to mount the root
filesystem, and no further modules can be loaded.

Compilation
The first step of the kernel compilation is to let the kernel build infrastructure check the
dependencies. This can be done with make depend:

cd /usr/src/linux
make depend

If make depend quits because there are errors, you have to recheck the kernel configuration. The
output of this command will usually give some clues where things went wrong. If everything went
fine, you can start compiling the kernel with:

make bzImage

This will compile the kernel and make a compressed kernel image named bzImage in
/usr/src/linux/arch/i386/boot. After compiling the kernel you have to compile the modules
separately:

make modules

When the module compilation is done you are ready to install the kernel and the kernel modules.

101

Chapter 19. Building a kernel

Installation

Installing the kernel
The next step is to install the kernel and the kernel modules. We will start with installing the kernel
modules, because this can be done with one command within the kernel source tree:

make modules_install

This will install the modules in /lib/modules/<kernelversion>. If you are replacing a kernel
with the same version number, it is a good idea to remove the old modules before installing the new
ones. E.g.:

rm -rf /lib/modules/2.4.26

You can “install” the kernel by copying it to the /boot directory. You can give it any name you
want, but it is a good idea to use some naming convention. E.g. vmlinuz-somename-version. For
instance, if we would name it vmlinuz-custom-2.4.28, we can copy it from within the kernel
source tree with:

cp arch/i386/boot/bzImage /boot/vmlinuz-custom-2.4.28

At this point you are almost finished. The last step is to add the new kernel to the Linux boot loader.

Configuring LILO
LILO (Linux Loader) is the default boot loader that Slackware Linux uses. The configuration of
LILO works in two steps; the first step is to alter the LILO configuration in /etc/lilo.conf. The
second step is to run the lilo, which will write the LILO configuration to the boot loader. The LILO
configuration already has an entry for the current kernel you are running. It is a good idea to keep
this entry, as a fall-back option if your new kernel does not work. If you scroll down to the bottom of
/etc/lilo.conf you will see this entry, it looks comparable to this:

Linux bootable partition config begins
image = /boot/vmlinuz
root = /dev/hda5
label = Slack
read-only # Non-UMSDOS filesystems should be mounted read-only for checking

Linux bootable partition config ends

The easiest way to add the new kernel is to duplicate the existing entry, and then editing the first
entry, changing the image, and label options. After changing the example above it would look
like this:

Linux bootable partition config begins
image = /boot/vmlinuz-custom-2.4.28
root = /dev/hda5
label = Slack
read-only # Non-UMSDOS filesystems should be mounted read-only for checking

102

Chapter 19. Building a kernel

image = /boot/vmlinuz
root = /dev/hda5
label = SlackOld
read-only # Non-UMSDOS filesystems should be mounted read-only for checking

Linux bootable partition config ends

As you can see the image points to the new kernel in the first entry, and we changed the label of the
second entry to “SlackOld”. LILO will automatically boot the first image. You can now install this
new LILO configuration with the lilo command:

lilo
Added Slack *
Added SlackOld

The next time you boot both entries will be available, and the “Slack” entry will be booted by default.

Note: If you want LILO to show a menu with the entries configured via lilo.conf on each boot,
make sure that you add a line that says

prompt

to lilo.conf. Otherwise LILO will boot the default entry that is set with default=<name>, or the
first entry when no default kernel is set. You can access the menu with entries at any time by
holding the <Shift> key when LILO is started.

103

Chapter 20. System initialization
This chapter describes the initialization of Slackware Linux. Along the way various configuration
files that are used to manipulate the initialization process are described.

The bootloader
Arguably the most important piece of an operating system is the kernel. The kernel manages
hardware resources and software processes. The kernel is started by some tiny glue between the
system BIOS (Basic Input/Output System) and the kernel, called the bootloader. The bootloader
handles the complications that come with loading a specific (or less specific) kernel.

Most bootloader actually work in two stages. The first stage loader loads the second stage loader,
that does the real work. The boot loader is divided in two stages on x86 machines, because the BIOS
only loads one sector (the so-called boot sector) that is 512 bytes in size.

Slackware Linux uses the LILO (LInux LOader) boot loader. This bootloader has been in
development since 1992, and is specifically written to load the Linux kernel. Lately LILO has been
replaced by the GRUB (GRand Unified Bootloader) in most GNU/Linux distributions. GRUB is
available as an extra package on the Slackware Linux distribution media.

LILO configuration
LILO is configured through the /etc/lilo.conf configuration file. Slackware Linux provides an
easy tool to configure LILO. This configuration tool can be started with the liloconfig command, and
is described in the installation chapter (the section called Installing Slackware Linux in Chapter 5).

Manual configuration of LILO is pretty simple. The LILO configuration file usually starts off with
some global settings:

Start LILO global section
boot = /dev/sda Ê

#compact # faster, but won’t work on all systems.
prompt Ë

timeout = 50 Ì

Normal VGA console
vga = normal Í

Ê The boot option specifies where the LILO bootloader should be installed. If you want to use
LILO as the main bootloader for starting Linux and/or other operating systems, it is a good idea
to install LILO in the MBR (Master Boot Record) of the hard disk that you use to boot the
system. LILO is installed to the MBR by omitting the partition number, for instance /dev/hda
or /dev/sda. If you want to install LILO to a specific partition, add a partition number, like
/dev/sda1. Make sure that you have another bootloader in the MBR, or that the partition is
made active using fdisk. Otherwise you may end up with an unbootable system.

Be cautious if you use partitions with a XFS filesystem! Writing LILO to an XFS partition will
overwrite a part of the filesystem. If you use an XFS root (/) filesystem, create a non-XFS
/boot filesystem to which you install LILO, or install LILO to the MBR.

104

Chapter 20. System initialization

Ë The prompt option will set LILO to show a boot menu. From this menu you can select which
kernel or operating system should be booted. If you do not have this option enabled, you can
still access the bootloader menu by holding the <Shift> key when the bootloader is started.

Ì The timeout value specifies how long LILO should wait before the default kernel or OS is
booted. The time is specified in tenths of a second, so in the example above LILO will wait 5
seconds before it proceeds with the boot.

Í You can specify which video mode the kernel should use with the vga option. When this is set
to normal the kernel will use the normal 80x25 text mode.

The global options are followed by sections that add Linux kernels or other operating systems. Most
Linux kernel sections look like this:

image = /boot/vmlinuz Ê

root = /dev/sda5 Ë

label = Slack Ì

read-only Í

Ê The image option specifies the kernel image that should be loaded for this LILO item.

Ë The root parameter is passed to the kernel, and will be used by the kernel as the root (/)
filesystem.

Ì The label text is used as the label for this entry in the LILO boot menu.

Í read-only specifies that the root filesystem should be mounted read-only. The filesystem has to
be mounted in read-only state to conduct a filesystem check.

LILO installation
LILO does not read the /etc/lilo.conf file during the second stage. So, you will have to write
changes to the second stage loader when you have changed the LILO configuration. This is also
necessary if you install a new kernel with the same filename, since the position of the kernel on the
disk may have changed. Reinstalling LILO can simply be done with the lilo command:

lilo
Added Slack26 *
Added Slack

init
After the kernel is loaded and started, the kernel will start the init command. init is the parent of all
processes, and takes care of starting the system initialization scripts, and spawning login consoles
through agetty. The behavior of init is configured in /etc/inittab.

The /etc/inittab file is documented fairly well. It specifies what scripts the system should run
for different runlevels. A runlevel is a state the system is running in. For instance, runlevel 1 is single
user mode, and runlevel 3 is multiuser mode. We will have a short look at a line from
/etc/inittab to see how it works:

105

Chapter 20. System initialization

rc:2345:wait:/etc/rc.d/rc.M

This line specifies that /etc/rc.d/rc.M should be started when the system switches to runlevel 2, 3, 4
or 5. The only line you probably ever have to touch is the default runlevel:

id:3:initdefault:

In this example the default runlevel is set to 3 (multiuser mode). You can set this to another runlevel
by replacing 3 with the new default runlevel. Runlevel 4 can particularly be interesting on desktop
machines, since Slackware Linux will try to start the GDM, KDM or XDM display manager (in this
particular order). These display managers provide a graphical login, and are respectively part of
GNOME, KDE and X11.

Another interesting section are the lines that specify what command should handle a console. For
instance:

c1:1235:respawn:/sbin/agetty 38400 tty1 linux

This line specifies that agetty should be started on tty1 (the first virtual terminal) in runlevels 1, 2, 3
and 5. The agetty command opens the tty port, and prompts for a login name. agetty will then spawn
login to handle the login. As you can see from the entries, Slackware Linux only starts one console
in runlevel 6, namely tty6. One might ask what happened to tty0, tty0 certainly exists, and represents
the active console.

Since /etc/inittab is the right place to spawn agetty instances to listen for logins, you can also let one
or more agetties listen to a serial port. This is especially handy when you have one or more terminals
connected to a machine. You can add something like the following line to start an agetty instance
that listens on COM1:

s1:12345:respawn:/sbin/agetty -L ttyS0 9600 vt100

Initialization scripts
As explained in the init (the section called init) section, init starts some scripts that handle different
runlevels. These scripts perform jobs and change settings that are necessary for a particular runlevel,
but they may also start other scripts. Let’s look at an example from /etc/rc.d/rc.M, the script that
init executes when the system switches to a multiuser runlevel:

Start the sendmail daemon:
if [-x /etc/rc.d/rc.sendmail]; then
. /etc/rc.d/rc.sendmail start

fi

These lines say “execute /etc/rc.d/rc.sendmail start if /etc/rc.d/rc.sendmail is executable”.
This indicates the simplicity of the Slackware Linux initialization scripts. Different functionality, for
instance network services, can be turned on or off, by twiddling the executable flag on their
initialization script. If the initialization script is executable, the service will be started, otherwise it
will not. Setting file flags is described in the section called chmod in Chapter 8, but we will have a
look at a quick example how you can enable and disable sendmail.

106

Chapter 20. System initialization

To start sendmail when the system initializes, execute:

chmod +x /etc/rc.d/rc.sendmail

To disable starting of sendmail when the system initializes, execute:

chmod -x /etc/rc.d/rc.sendmail

Most service-specific initialization scripts accept three parameters to change the state of the service:
start, restart and stop. These parameters are pretty much self descriptive. For example, if you would
like to restart sendmail, you could execute:

/etc/rc.d/rc.sendmail restart

If the script is not executable, you have to tell the shell that you would like to execute the file with
sh. For example:

sh /etc/rc.d/rc.sendmail start

Hotplugging
Slackware Linux has supported hotplugging since Slackware Linux 9.1. When enabled, the kernel
passes notifications about device events to the hotplug command. If a device was added to the
system, the hotplugging system will look whether there are any module mappings for the device. If
there are, the appropriate device driver module for the device is automatically loaded. Hotplug will
remove the module when the device is removed.

The hotplugging system is initialized in /etc/rc.d/rc.M by executing /etc/rc.d/rc.hotplug start.
As with most functionality, you can enable or disable hotplugging by twiddling the executable flag
of the /etc/rc.d/rc.hotplug script (see the section called Initialization scripts).

If hotplug automatically loads modules that you do not want to load, you can add them to the
/etc/hotplug/blacklist file. This file lists modules that should never be loaded by the
hotplugging system, module entries are line separated.

Executing scripts on hotplug events
One of the useful aspects of the hotplug scripts is that you can execute scripts when a device is added
or removed. When a device event occurs, hotplug will execute all scripts with the .hotplug suffix
in /etc/hotplug.d/<class>/, in which <class> denotes the class in which the device is in that
caused the event. There most important classes are:

Table 20-1. Hotplug device classes

Prefix Description
default Scripts for this device class are started after any

hotplug event.

ieee1394 IEEE1394/Firewire devices.

107

Chapter 20. System initialization

Prefix Description
input Input devices like keyboards and mice.

net Network devices. Network devices will also
trigger bus-specific hotplug events.

pci Devices on the PCI bus.

scsi SCSI disks, CD-ROM and tape devices.

usb Devices that use the USB bus.

Besides the device class, there is something some other convention that is worth observing: it is best
to add a number and a dash as a prefix to the script, because this will allow you to order the priority
of the scripts. For example, 10-dosomething.hotplug will be executed before
20-dosomething.hotplug.

Note: There is black no magic going on with the priority of the script :^). /sbin/hotplug uses a
wildcard to loop through the scripts, and 10 matches earlier than 20:

for I in "${DIR}/$1/"*.hotplug "${DIR}/"default/*.hotplug ; do

Hopefully this will give some taste of the power of shell scripting.

Now, let’s look at an example stub script, that does nothing besides outputting debug messages:

#!/bin/sh

cd /etc/hotplug
. ./hotplug.functions

DEBUG=yes export DEBUG

debug_mesg "arguments ($*) env (‘env‘)"

case $ACTION in
add|register)
Stub

;;
remove|unregister)
Stub

;;
esac

By default, the hotplug scripts log at the notice level. The standard syslog configuration on
Slackware Linux does not log this. To debug hotplugging scripts, it is best to change the logging
level. You can do this by replacing the following line in /etc/hotplug/hotplug.functions:

$LOGGER -t $(basename $0)"[$$]" "$@"

to:

$LOGGER -p user.info -t $(basename $0)"[$$]" "$@"

108

Chapter 20. System initialization

After this change hotplug debug messages will be visible in /var/log/messages.

As you can see the script makes use of the $ACTION variable to see what kind of hotplug action
took place. Let’s take a look at an example action when this script is used for handling USB events,
and named 10-stub.hotplug:

Jul 19 16:13:23 mindbender 10-stub.hotplug[18970]: arguments (usb) env
(SUBSYSTEM=usb OLDPWD=/ DEVPATH=/devices/pci0000:00/0000:00:10.0/usb2/2-1/2-1.3/2-1.3:1.2
PATH=/bin:/sbin:/usr/sbin:/usr/bin ACTION=add PWD=/etc/hotplug HOME=/ SHLVL=2
DEVICE=/proc/bus/usb/002/009 PHYSDEVDRIVER=snd-usb-audio INTERFACE=1/2/0
PRODUCT=d8d/651/1 TYPE=0/0/0 DEBUG=yes PHYSDEVBUS=usb SEQNUM=1528 _=/usr/bin/env)

That is nice, when I plugged an USB device, the script gets loaded (a couple of times, this is just one
of the interesting bits). Actually, this is my USB Phone, which is represented as an USB audio
device under GNU/Linux. The problem with USB audio devices is that the device volumes that are
saved with alsactl store are not automatically set when the device is plugged. But right know we can
easily execute alsactl restore when the device is plugged. Please note that the script gets very useful
information through some environment variables.

To solve the volume problem, we can create a script, say
/etc/hotplug.d/usb/50-usb-audio-volume.hotplug, that looks like this:

#!/bin/sh

cd /etc/hotplug
. ./hotplug.functions
DEBUG=yes export DEBUG

debug_mesg "arguments ($*) env (‘env‘)"

case $ACTION in
add|register)
if [$PHYSDEVDRIVER = "snd-usb-audio"]; then
/usr/sbin/alsactl restore

fi
;;
remove|unregister)
;;

*)
debug_mesg "Unknown action ’$ACTION’"

;;
esac

Based on the environment variables this script can be refined to restrict running alsactl for specific
USB audio devices.

109

Chapter 21. Security

Introduction
With the increasing usage of the Internet and wireless networks security is getting more important
every day. It is impossible to cover this subject in a single chapter of an introduction to GNU/Linux.
This chapter covers some basic security techniques that provide a good start for desktop and server
security.

Before we go on to specific subjects, it is a good idea to make some remarks about passwords.
Computer authorization largely relies on passwords. Be sure to use good passwords in all situations.
Avoid using words, names, birth dates and short passwords. These passwords can easily be cracked
with dictionary attacks or brute force attacks against hosts or password hashes. Use long passwords,
ideally eight characters or longer, consisting of random letters (including capitals) and numbers.

Closing services

Introduction
Many GNU/Linux run some services that are open to a local network or the Internet. Other hosts can
connect to these services by connecting to specific ports. For example, port 80 is used for WWW
traffic. The /etc/services file contains a table with all commonly used services, and the port
numbers that are used for these services.

A secure system should only run the services that are necessary. So, suppose that a host is acting as a
web server, it should not have ports open (thus servicing) FTP or SMTP. With more open ports
security risks increase very fast, because there is a bigger chance that the software servicing a port
has a vulnerability, or is badly configured. The following few sections will help you tracking down
which ports are open, and closing them.

Finding open ports
Open ports can be found using a port scanner. Probably the most famous port scanner for
GNU/Linux is nmap. nmap is available through the “n” disk set.

The basic nmap syntax is: nmap host. The host parameter can either be a hostname or IP address.
Suppose that we would like to scan the host that nmap is installed on. In this case we could specify
the localhost IP address, 127.0.0.1:

$ nmap 127.0.0.1

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on localhost (127.0.0.1):
(The 1596 ports scanned but not shown below are in state: closed)
Port State Service
21/tcp open ftp
22/tcp open ssh
23/tcp open telnet
80/tcp open http

110

Chapter 21. Security

6000/tcp open X11

Nmap run completed -- 1 IP address (1 host up) scanned in 0 seconds

In this example you can see that the host has five open ports that are being serviced; ftp, ssh, telnet,
http and X11.

inetd
There are two ways to offer TCP/IP services: by running server applications stand-alone as a daemon
or by using the internet super server, inetd(8). inetd is a daemon which monitors a range of ports. If
a client attempts to connect to a port inetd handles the connection and forwards the connection to the
server software which handles that kind of connection. The advantage of this approach is that it adds
an extra layer of security and it makes it easier to log incoming connections. The disadvantage is that
it is somewhat slower than using a stand-alone daemon. It is thus a good idea to run a stand-alone
daemon on, for example, a heavily loaded FTP server.

You can check whether inetd is running on a host or not with ps, for example:

$ ps ax | grep inetd
2845 ? S 0:00 /usr/sbin/inetd

In this example inetd is running with PID (process ID) 2845. inetd can be configured using the
/etc/inetd.conf file. Let’s have a look at an example line from inetd.conf:

File Transfer Protocol (FTP) server:
ftp stream tcp nowait root /usr/sbin/tcpd proftpd

This line specifies that inetd should accept FTP connections and pass them to tcpd. This may seem a
bit odd, because proftpd normally handles FTP connections. You can also specify to use proftpd
directly in inetd.conf, but it is a good idea to give the connection to tcpd. This program passes the
connection to proftpd in turn, as specified. tcpd is used to monitor services and to provide host
based access control.

Services can be disabled by adding the comment character (#) at the beginning of the line. It is a
good idea to disable all services and enable services you need one at a time. After changing
/etc/inetd.conf inetd needs to be restarted to activate the changes. This can be done by sending
the HUP signal to the inetd process:

ps ax | grep ’inetd’
2845 ? S 0:00 /usr/sbin/inetd

kill -HUP 2845

If you do not need inetd at all, it is a good idea to remove it. If you want to keep it installed, but do
not want Slackware Linux to load it at the booting process, execute the following command as root:

chmod a-x /etc/rc.d/rc.inetd

111

Chapter 22. Miscellaneous

Scheduling tasks with cron
Slackware Linux includes an implementation of the classic UNIX cron daemon that allows users to
schedule tasks for execution at regular intervals. Each user can create, remove, or modify an
individual crontab file. This crontab file specifies commands or scripts to be run at specified time
intervals. Blank lines in the crontab or lines that begin with a hash (“#”) are ignored.

Each entry in the crontab file must contain 6 fields separated by spaces. These fields are minute,
hour, day, month, day of week, and command. Each of the first five fields may contain a time or the
“*” wildcard to match all times for that field. For example, to have the date command run every day
at 6:10 AM, the following entry could be used.

10 6 * * * date

A user crontab may be viewed with the crontab -l command. For a deeper introduction to the syntax
of a crontab file, let us examine the default root crontab.

crontab -l
If you don’t want the output of a cron job mailed to you, you have to direct
any output to /dev/null. We’ll do this here since these jobs should run
properly on a newly installed system, but if they don’t the average newbie
might get quite perplexed about getting strange mail every 5 minutes. :^)
#
Run the hourly, daily, weekly, and monthly cron jobs.
Jobs that need different timing may be entered into the crontab as before,
but most really don’t need greater granularity than this. If the exact
times of the hourly, daily, weekly, and monthly cron jobs do not suit your
needs, feel free to adjust them.
#
Run hourly cron jobs at 47 minutes after the hour:
47Ê *Ë *Ì *Í *Î /usr/bin/run-parts /etc/cron.hourly 1> /dev/nullÏ

#
Run daily cron jobs at 4:40 every day:
40 4 * * * /usr/bin/run-parts /etc/cron.daily 1> /dev/null
#
Run weekly cron jobs at 4:30 on the first day of the week:
30 4 * * 0 /usr/bin/run-parts /etc/cron.weekly 1> /dev/null
#
Run monthly cron jobs at 4:20 on the first day of the month:
20 4 1 * * /usr/bin/run-parts /etc/cron.monthly 1> /dev/null

Ê The first field, 47, specifies that this job should occur at 47 minutes after the hour.

Ë The second field, *, is a wildcard, so this job should occur every hour.

Ì The third field, *, is a wildcard, so this job should occur every day.

Í The fourth field, *, is a wildcard, so this job should occur every month.

Î The fifth field, *, is a wildcard, so this job should occur every day of the week.

Ï The sixth field, /usr/bin/run-parts /etc/cron.hourly 1> /dev/null, specifies the command that
should be run at the time specification defined in the first five fields.

112

Chapter 22. Miscellaneous

The default root crontab is setup to run scripts in /etc/cron.monthly on a monthly basis, the
scripts in /etc/cron.weekly on a weekly basis, the scripts in /etc/cron.daily on a daily
basis, and the scripts in /etc/cron.hourly on an hourly basis. For this reason it is not strictly
necessary for an administrator to understand the inner workings of cron at all. With Slackware
Linux, you can simply add a new script to one of the above directories to schedule a new periodic
task. Indeed, perusing those directories will give you a good idea of the work that Slackware Linux
does behind the scenes on a regular basis to keep things like the slocate database updated.

Hard disk parameters
Many modern disks offer various features for increasing disk performance and improving integrity.
Many of these features can be tuned with the hdparm command. Be careful with changing disk
settings with this utility, because some changes can damage data on your disk.

You can get an overview of the active settings for a disk by providing the device node of a disk as a
parameter to hdparm:

hdparm /dev/hda

/dev/hda:
multcount = 0 (off)
IO_support = 1 (32-bit)
unmaskirq = 1 (on)
using_dma = 1 (on)
keepsettings = 0 (off)
readonly = 0 (off)
readahead = 256 (on)
geometry = 65535/16/63, sectors = 78165360, start = 0

A common cause for bad disk performance is that DMA was not automatically used by the kernel for
a disk. DMA will speed up I/O throughput and offload CPU usage, by making it possible for the disk
to directly transfer data from the disk to the system memory. If DMA is turned off, the overview of
settings would shows this line:

using_dma = 0 (off)

You can easily turn on DMA for this disk with the -d parameter of hdparm:

hdparm -d 1 /dev/hda

/dev/hda:
setting using_dma to 1 (on)
using_dma = 1 (on)

You can do this during every boot by adding the hdparm command to /etc/rc.d/rc.local.

The -i parameter of hdparm is also very useful, because it gives detailed information about a disk:

hdparm -i /dev/hda
/dev/hda:

Model=WDC WD400EB-00CPF0, FwRev=06.04G06, SerialNo=WD-WCAAT6022342

113

Chapter 22. Miscellaneous

Config={ HardSect NotMFM HdSw>15uSec SpinMotCtl Fixed DTR>5Mbs FmtGapReq }
RawCHS=16383/16/63, TrkSize=57600, SectSize=600, ECCbytes=40
BuffType=DualPortCache, BuffSize=2048kB, MaxMultSect=16, MultSect=off
CurCHS=16383/16/63, CurSects=16514064, LBA=yes, LBAsects=78163247
IORDY=on/off, tPIO={min:120,w/IORDY:120}, tDMA={min:120,rec:120}
PIO modes: pio0 pio1 pio2 pio3 pio4
DMA modes: mdma0 mdma1 mdma2
UDMA modes: udma0 udma1 udma2 udma3 udma4 *udma5
AdvancedPM=no WriteCache=enabled
Drive conforms to: device does not report version:

* signifies the current active mode

Monitoring memory usage
In some situations it is handy to diagnose information about how memory is used. For example, on a
badly performing server you may want to look whether RAM shortage is causing the system to swap
pages, or maybe you are setting up a network service, and want to find the optimum caching
parameters. Slackware Linux provides some tools that help you analyse how memory is used.

vmstat
vmstat is a command that can provide statistics about various parts of the virtual memory system.
Without any extra parameters vmstat provides a summary of some relevant statistics:

vmstat
procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa
0 0 0 286804 7912 98632 0 0 198 9 1189 783 5 1 93 1

Since we are only looking at memory usage in this section, we will only have a look at the memory
and swap fields.

• swpd: The amount of virtual memory being used.

• free: The amount of memory that is not used at the moment.

• buff : The amount of memory used as buffers.

• cache: The amount of memory used as cached.

• si: The amount of memory that is swapped in from disk per second.

• si: The amount of memory that is swapped to disk per second.

It is often useful to see how memory usage changes over time. You can add an interval as a
parameter to vmstat, to run vmstat continuously, printing the current statistics. This interval is in
seconds. So, if you want to get updated statistics every second, you can execute:

vmstat 1
procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa
2 0 0 315132 8832 99324 0 0 189 10 1185 767 5 1 93 1

114

Chapter 22. Miscellaneous

1 0 0 304812 8832 99324 0 0 0 0 1222 6881 24 8 68 0
0 0 0 299948 8836 99312 0 0 0 0 1171 1824 41 9 49 0
[...]

Additionally, you can tell vmstat how many times it should output these statistics (rather than doing
this infinitely). For example, if you would like to print these statistics every two seconds, and five
times in total, you could execute vmstat in the following manner:

vmstat 2 5
procs -----------memory---------- ---swap-- -----io---- --system-- ----cpu----
r b swpd free buff cache si so bi bo in cs us sy id wa
2 0 0 300996 9172 99360 0 0 186 10 1184 756 5 1 93 1
0 1 0 299012 9848 99368 0 0 336 0 1293 8167 20 8 21 51
1 0 0 294788 11976 99368 0 0 1054 0 1341 12749 14 11 0 76
2 0 0 289996 13916 99368 0 0 960 176 1320 17636 22 14 0 64
2 0 0 284620 16112 99368 0 0 1086 426 1351 21217 25 18 0 58

115

VI. Network administration

Chapter 23. Networking configuration

Hardware

Network cards (NICs)
Drivers for NICs are installed as kernel modules. The module for your NIC has to be loaded during
the initialization of Slackware Linux. On most systems the NIC is automatically detected and
configured during the installation of Slackware Linux. You can reconfigure your NIC with the
netconfig command. netconfig adds the driver (module) for the detected card to
/etc/rc.d/rc.netdevice.

It is also possible to manually configure which modules should be loaded during the initialization of
the system. This can be done by adding a modprobe line to /etc/rc.d/rc.modules. For
example, if you want to load the module for 3Com 59x NICs (3c59x.o), add the following line to
/etc/rc.d/rc.modules

/sbin/modprobe 3c59x

PCMCIA cards
Supported PCMCIA cards are detected automatically by the PCMCIA software. The pcmcia-cs
packages from the “a” disk set provides PCMCIA functionality for Slackware Linux.

Configuration of interfaces
Network cards are available under Linux through so-called “interfaces”. The ifconfig(8) command
can be used to display the available interfaces:

ifconfig -a
eth0 Link encap:Ethernet HWaddr 00:20:AF:F6:D4:AD

inet addr:192.168.1.1 Bcast:192.168.1.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1301 errors:0 dropped:0 overruns:0 frame:0
TX packets:1529 errors:0 dropped:0 overruns:0 carrier:0
collisions:1 txqueuelen:100
RX bytes:472116 (461.0 Kb) TX bytes:280355 (273.7 Kb)
Interrupt:10 Base address:0xdc00

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:16436 Metric:1
RX packets:77 errors:0 dropped:0 overruns:0 frame:0
TX packets:77 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0
RX bytes:8482 (8.2 Kb) TX bytes:8482 (8.2 Kb)

Network cards get the name ethn, in which n is a number, starting with 0. In the example above, the
first network card (eth0) already has an IP address. But unconfigured interfaces have no IP address,
the ifconfig will not show IP addresses for unconfigured interfaces. Interfaces can be configured in

117

Chapter 23. Networking configuration

the /etc/rc.d/rc.inet1.conf file. You can simply read the comments, and fill in the required
information. For example:

Config information for eth0:
IPADDR[0]="192.168.1.1"
NETMASK[0]="255.255.255.0"
USE_DHCP[0]=""
DHCP_HOSTNAME[0]=""

In this example the IP address 192.168.1.1 with the 255.255.255.0 netmask is assigned to the first
ethernet interface (eth0). If you are using a DHCP server you can change the USE_DHCP="" line to
USE_DHP[n]="yes" (swap “n” with the interface number). Other variables, except
DHCP_HOSTNAME are ignored when using DHCP. For example:

IPADDR[1]=""
NETMASK[1]=""
USE_DHCP[1]="yes"
DHCP_HOSTNAME[1]=""

The same applies to other interfaces. You can activate the settings by rebooting the system or by
executing /etc/rc.d/rc.inet1. It is also possible to reconfigure only one interface with
/etc/rc.d/rc.inet1 ethX_restart, in which ethX should be replaced by the name of the interface that
you would like to reconfigure.

Configuration of interfaces (IPv6)

Introduction
IPv6 is the next generation internet protocol. One of the advantages is that it has a much larger
address space. In IPv4 (the internet protocol that is commonly used today) addresses are 32-bit, this
address space is almost completely used right now, and there is a lack of IPv4 addresses. IPv6 uses
128-bit addresses, which provides an unimaginable huge address space (2^128 addresses). IPv6 uses
another address notation, first of all hex numbers are used instead of decimal numbers, and the
address is noted in pairs of 16-bits, separated by a colon (“:”). Let’s have a look at an example
address:

fec0:ffff:a300:2312:0:0:0:1

A block of zeroes can be replaced by two colons (“::”). Thus, thee address above can be written as:

fec0:ffff:a300:2312::1

Each IPv6 address has a prefix. Normally this consists of two elements: 32 bits identifying the
address space the provider provides you, and a 16-bit number that specifies the network. These two
elements form the prefix, and in this case the prefixlength is 32 + 16 = 48 bits. Thus, if you have a
/48 prefix you can make 2^16 subnets and have 2^80 hosts on each subnet. The image below shows
the structure of an IPv6 address with a 48-bit prefix.

118

Chapter 23. Networking configuration

Figure 23-1. The anatomy of an IPv6 address

There are a some specially reserved prefixes, most notable include:

Table 23-1. Important IPv6 Prefixes

Prefix Description
fe80:: Link local addresses, which are not routed.

fec0:: Site local addresses, which are locally routed,
but not on or to the internet.

2002:: 6to4 addresses, which are used for the transition
from IPv4 to IPv6.

Slackware Linux IPv6 support
The Linux kernel binaries included in Slackware Linux do not support IPv6 by default, but support is
included as a kernel module. This module can be loaded using modprobe:

modprobe ipv6

You can verify if IPv6 support is loaded correctly by looking at the kernel output using the dmesg:

$ dmesg
[..]
IPv6 v0.8 for NET4.0

IPv6 support can be enabled permanently by adding the following line to /etc/rc.d/rc.modules:

/sbin/modprobe ipv6

Interfaces can be configured using ifconfig. But it is recommended to make IPv6 settings using the
ip command, which is part of the “iputils” package that can be found in the extra/ directory of the
Slackware Linux tree.

Adding an IPv6 address to an interface
If there are any router advertisers on a network there is a chance that the interfaces on that network
already received an IPv6 address when the IPv6 kernel support was loaded. If this is not the case an
IPv6 address can be added to an interface using the ip utility. Suppose we want to add the address
“fec0:0:0:bebe::1” with a prefix length of 64 (meaning “fec0:0:0:bebe” is the prefix). This can be
done with the following command syntax:

ip -6 addr add <ip6addr>/<prefixlen> dev <device>

For example:

ip -6 addr add fec0:0:0:bebe::1/64 dev eth0

119

Chapter 23. Networking configuration

Wireless interfaces
Wireless interfaces usually require some additional configuration, like setting the ESSID, WEP keys
and the wireless mode. Interface settings that are specific to wireless interfaces can be set in the
/etc/rc.d/rc.wireless.conf file. The /etc/rc.d/rc.wireless script configures wireless
interfaces based on descriptions from /etc/rc.d/rc.wireless.conf. In rc.wireless.conf

settings are made per interface MAC address. By default this file has a section that matches any
interface:

NOTE : Comment out the following five lines to activate the samples below ...
--------- START SECTION TO REMOVE -----------
Pick up any Access Point, should work on most 802.11 cards

*)
INFO="Any ESSID"
ESSID="any"
;;

---------- END SECTION TO REMOVE ------------

It is generally a good idea to remove this section to make per-card settings. If you are lazy and only
have one wireless card, you can leave this section in and add any configuration parameters you need.
Since this section matches any wireless interface the wireless card you have will be matched and
configured. You can now add a sections for your wireless interfaces. Each section has the following
format:

<MAC address>)
<settings>

;;

You can find the MAC address of an interface by looking at the ifconfig output for the interface. For
example, if a wireless card has the eth1 interface name, you can find the MAC address the following
way:

ifconfig eth1
eth1 Link encap:Ethernet HWaddr 00:01:F4:EC:A5:32

inet addr:192.168.2.2 Bcast:192.168.2.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:0 errors:0 dropped:0 overruns:0 frame:0
TX packets:4 errors:1 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:0 (0.0 b) TX bytes:504 (504.0 b)
Interrupt:5 Base address:0x100

The hexadecimal address that is printed after HWaddr is the MAC address, in this case
00:01:F4:EC:A5:32. When you have found the MAC address of the interface you can add a section
for the device to /etc/rc.d/rc.wireless.conf. For example:

00:01:F4:EC:A5:32)
INFO="Cabletron Roamabout WLAN NIC"
ESSID="home"
CHANNEL="8"
MODE="Managed"
KEY="1234-5678-AB"
;;

This will set the interface with MAC address 00:01:F4:EC:A5:32 to use the ESSID home, work in
Managed mode on channel 8. The key used for WEP encryption is 1234-5678-AB. There are many

120

Chapter 23. Networking configuration

other parameters that can be set. For an overview of all parameters, refer to the last example in
rc.wireless.conf.

After configuring a wireless interface, you can activate the changes by executing the network
initialization script /etc/rc.d/rc.inet1. You can see the current wireless settings with the iwconfig
command:

eth1 IEEE 802.11-DS ESSID:"home" Nickname:"HERMES I"
Mode:Managed Frequency:2.447 GHz Access Point: 02:20:6B:75:0C:56
Bit Rate:2 Mb/s Tx-Power=15 dBm Sensitivity:1/3
Retry limit:4 RTS thr:off Fragment thr:off
Encryption key:1234-5678-AB
Power Management:off
Link Quality=0/92 Signal level=134/153 Noise level=134/153
Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0
Tx excessive retries:27 Invalid misc:0 Missed beacon:0

Resolving

Hostname
Each computer on the internet has a hostname. If you do not have a hostname that is resolvable with
DNS, it is still a good idea to configure your hostname, because some software uses it. You can
configure the hostname in /etc/HOSTNAME. A single line with the hostname of the machine will
suffice. Normally a hostname has the following form: host.domain.tld, for example
darkstar.slackfans.org. Be aware that the hostname has to be resolvable, meaning that GNU/Linux
should be able to convert the hostname to an IP address. You can make sure the hostname is
resolvable by adding it to /etc/hosts. Read the following section for more information about this
file.

/etc/hosts
/etc/hosts is a table of IP addresses with associated hostnames. This file can be used to name
computers in a small network. Let’s look at an example of the /etc/hosts file:

127.0.0.1 localhost
192.168.1.1 tazzy.slackfans.org tazzy
192.168.1.169 flux.slackfans.org

The localhost line should always be present. It assigns the name localhost to a special interface, the
loopback. In this example the names tazzy.slackfans.org and tazzy are assigned to the IP address
192.168.1.1, and the name flux.slackfans.org is assigned to the IP address 192.168.1.169. On the
system with this file both computers are available via the mentioned hostnames.

It is also possible to add IPv6 addresses, which will be used if your system is configured for IPv6.
This is an example of a /etc/hosts file with IPv4 and IPv6 entries:

IPv4 entries
127.0.0.1 localhost
192.168.1.1 tazzy.slackfans.org tazzy
192.168.1.169 gideon.slackfans.org

121

Chapter 23. Networking configuration

IPv6 entries
::1 localhost
fec0:0:0:bebe::2 flux.slackfans.org

Please note that “::1” is the default IPv6 loopback.

/etc/resolv.conf
The /etc/resolv.conf file is used to specify which nameservers the system should use. A
nameserver converts hostnames to IP addresses. Your provider should have given you at least two
name name server addresses (DNS servers). You can add these nameservers to /etc/resolv.conf

by adding the line nameserver ipaddress for each nameserver. For example:

nameserver 192.168.1.1
nameserver 192.168.1.169

You can check wether the hostnames are tranlated correctly or not with the host hostname
command. Swap hostname with an existing hostname, for example the website of your internet
service provider.

IPv4 Forwarding
IPv4 forwarding connects two or more networks by sending packets which arrive on one interface to
another interface. This makes it possible to let a GNU/Linux machine act as a router. For example,
you can connect multiple networks, or your home network with the internet. Let’s have a look at an
example:

Figure 23-2. Router example

In dit example there are two networks, 192.168.1.0 and 192.168.2.0. Three hosts are connected to
both network. One of these hosts is connected to both networks with interfaces. The interface on the
192.168.1.0 network has IP address 192.168.1.3, the interface on the 192.168.2.0 network has IP
address 192.168.2.3. If the host acts as a router between both networks it forwards packets from the
192.168.1.0 network to the 192.168.2.0 network and vise versa. Routing of normal IPv4 TCP/IP
packages can be enabled by enabling IPv4 forwarding.

122

Chapter 23. Networking configuration

IPv4 forwarding can be enabled or disabled under Slackware Linux by changing the executable bit
of the /etc/rc.d/rc.ip_forward file. If the executable bit is set on this file, IP forwarding will
be enabled during the system boot, otherwise it will not. You can check whether the executable bit is
enabled with ls -l (a description of the ls command can be found in the section called ls in Chapter 8).

It is also possible to enable IPv4 forwarding on a running system with the following command (0
disables forwarding, 1 enables forwarding):

echo 0 > /proc/sys/net/ipv4/ip_forward

Be cautious! By default there are no active packet filters. This means that anyone can access other
networks. Traffic can be filtered and logged with the iptables kernel packet filter. Iptables can be
administrated through the iptables command. NAT (Network Address Translation) is also a subset
of iptables, and can be controlled and enabled through the iptables command. NAT makes it possible
to “hide” a network behind one IP address. This allows you to use the internet on a complete
network with only one IP address.

123

Chapter 24. IPsec

Theory
IPsec is a standard for securing IP communication through authentication, and encryption. Besides
that it can compress packets, reducing traffic. The following protocols are part of the IPsec standard:

• AH (Authentication Header) provides authenticity guarantee for transported packets. This is done
by checksumming the packages using a cryptographic algorithm. If the checksum is found to be
correct by the receiver, the receiver can be assured that the packet is not modified, and that the
packet really originated from the reported sender (provided that the keys are only known by the
sender and receiver).

• ESP (Encapsulating Security Payload) is used to encrypt packets. This makes the data of the
packet confident, and only readable by the host with the right decryption key.

• IPcomp (IP payload compression) provides compression before a packet is encrypted. This is
useful, because encrypted data generally compresses worse than unencrypted data.

• IKE (Internet Key Exchange) provides the means to negotiate keys in secrecy. Please note that
IKE is optional, keys can be configured manually.

There are actually two modes of operation: transport mode is used to encrypt normal connections
between two hosts, tunnel mode encapsulates the original package in a new header. In this chapter
we are going to look at the transport mode, because the primary goal of this chapter is to show how
to set up a secure connection between two hosts.

There are also two major methods of authentication. You can use manual keys, or an Internet Key
Exchange (IKE) daemon, like racoon, that automatically exchanges keys securely betwoon two
hosts. In both cases you need to set up a policy in the Security Policy Database (SPD). This database
is used by the kernel to decide what kind of security policy is needed to communicate with another
host. If you use manual keying you also have to set up Security Association Database (SAD) entries,
which specifies what encryption algorithmn and key should be used for secure communication with
another host. If you use an IKE daemon the security associations are automatically established.

Kernel configuration
Native IPsec support is only available in Linux 2.6.x kernels. Earlier kernels have no native IPsec
support. So, make sure that you have a 2.6.x kernel. The 2.6 kernel is available in Slackware Linux
10.0 and 10.1 from the testing directory on CD2 of the Slackware Linux CD sets, or any of the
official Slackware Linux mirrors. The default Slackware Linux 2.6 kernel has support for AH, ESP
and IPcomp in for both IPv4 and IPv6. If you are compiling a custom kernel enable use at least the
following options in your kernel configuration:

CONFIG_INET_AH=y
CONFIG_INET_ESP=y
CONFIG_INET_IPCOMP=y

Or you can compile support for IPsec protocols as a module:

CONFIG_INET_AH=m

124

Chapter 24. IPsec

CONFIG_INET_ESP=m
CONFIG_INET_IPCOMP=m

In this chapter we are only going to use AH and ESP transformations, but it is not a bad idea to
enable IPComp transformation for further configuration of IPsec.

When you choose to compile IPsec support as a module, make sure that the required modules are
loaded. For example, if you are going to use ESP for IPv4 connections, load the esp4 module.

Compile the kernel as usual and boot it.

Installing IPsec-Tools
The next step is to install the IPsec-Tools (http://ipsec-tools.sourceforge.net). These tools are ports of
the KAME (http://www.kame.net) IPsec utilities. Download the latest sources and unpack, configure
and install them:

tar jxf ipsec-tools-x.y.z.tar.bz2
cd ipsec-tools-x.y.z
CFLAGS="-O2 -march=i486 -mcpu=i686" \
./configure --prefix=/usr \

--sysconfdir=/etc \
--localstatedir=/var \
--enable-hybrid \
--enable-natt \
--enable-dpd \
--enable-frag \
i486-slackware-linux

make
make install

Replace x.y.z with the version of the downloaded sources. The most notable flags that we specify
during the configuration of the sources are:

• --enable-dpd: enables dead peer detection (DPD). DPD is a method for detecting wether any of
the hosts for which security associations are set up is unreachable. When this is the case the
security associations to that host can be removed.

• --enable-natt: enables NAT traversal (NAT-T). Since NAT alters the IP headers, this causes
problems for guaranteeing authenticity of a packet. NAT-T is a method that helps overcoming this
problem. Configuring NAT-T is beyond the scope of this article.

Setting up IPsec with manual keying

Introduction
We will use an example as the guideline for setting up an encrypted connection between to hosts.
The hosts have the IP addresses 192.168.1.1 and 192.168.1.169. The “transport mode” of operation
will be used with AH and ESP transformations and manual keys.

125

Chapter 24. IPsec

Writing the configuration file
The first step is to write a configuration file we will name /etc/setkey.conf. On the first host
(192.168.1.1) the following /etc/setkey.conf configuration will be used:

#!/usr/sbin/setkey -f

Flush the SAD and SPD
flush;
spdflush;

add 192.168.1.1 192.168.1.169 ah 0x200 -A hmac-md5
0xa731649644c5dee92cbd9c2e7e188ee6;
add 192.168.1.169 192.168.1.1 ah 0x300 -A hmac-md5
0x27f6d123d7077b361662fc6e451f65d8;

add 192.168.1.1 192.168.1.169 esp 0x201 -E 3des-cbc
0x656c8523255ccc23a66c1917aa0cf30991fce83532a4b224;
add 192.168.1.169 192.168.1.1 esp 0x301 -E 3des-cbc
0xc966199f24d095f3990a320d749056401e82b26570320292

spdadd 192.168.1.1 192.168.1.169 any -P out ipsec
esp/transport//require
ah/transport//require;

spdadd 192.168.1.169 192.168.1.1 any -P in ipsec
esp/transport//require
ah/transport//require;

The first line (a line ends with a “;”) adds a key for the header checksumming for packets coming
from 192.168.1.1 going to 192.168.1.169. The second line does the same for packets coming from
192.168.1.169 to 192.168.1.1. The third and the fourth line define the keys for the data encryption
the same way as the first two lines. Finally the “spadd” lines define two policies, namely packets
going out from 192.168.1.1 to 192.168.1.169 should be (require) encoded (esp) and “signed” with
the authorization header. The second policy is for incoming packets and it is the same as outgoing
packages.

Please be aware that you should not use these keys, but your own secretly kept unique keys. You can
generate keys using the /dev/random device:

dd if=/dev/random count=16 bs=1 | xxd -ps

This command uses dd to output 16 bytes from /dev/random. Don’t forget to add “0x” at the
beginning of the line in the configuration files. You can use the 16 byte (128 bits) for the hmac-md5
algorithm that is used for AH. The 3des-cbc algorithm that is used for ESP in the example should be
fed with a 24 byte (192 bits) key. These keys can be generated with:

dd if=/dev/random count=24 bs=1 | xxd -ps

Make sure that the /etc/setkey.conf file can only be read by the root user. If normal users can
read the keys IPsec provides no security at all. You can do this with:

chmod 600 /etc/setkey.conf

126

Chapter 24. IPsec

The same /etc/setkey.conf can be created on the 192.168.1.169 host, with inverted -P in and
-P out options. So, the /etc/setkey.conf will look like this:

#!/usr/sbin/setkey -f

Flush the SAD and SPD
flush;
spdflush;

add 192.168.1.1 192.168.1.169 ah 0x200 -A hmac-md5
0xa731649644c5dee92cbd9c2e7e188ee6;
add 192.168.1.169 192.168.1.1 ah 0x300 -A hmac-md5
0x27f6d123d7077b361662fc6e451f65d8;

add 192.168.1.1 192.168.1.169 esp 0x201 -E 3des-cbc
0x656c8523255ccc23a66c1917aa0cf30991fce83532a4b224;
add 192.168.1.169 192.168.1.1 esp 0x301 -E 3des-cbc
0xc966199f24d095f3990a320d749056401e82b26570320292

spdadd 192.168.1.1 192.168.1.169 any -P in ipsec
esp/transport//require
ah/transport//require;

spdadd 192.168.1.169 192.168.1.1 any -P out ipsec
esp/transport//require
ah/transport//require;

Activating the IPsec configuration
The IPsec configuration can be activated with the setkey command:

setkey -f /etc/setkey.conf

If you want to enable IPsec permanently you can add the following line to /etc/rc.d/rc.local

on both hosts:

/usr/sbin/setkey -f /etc/setkey.conf

After configuring IPsec you can test the connection by running tcpdump and simultaneously
pinging the other host. You can see if AH and ESP are actually used in the tcpdump output:

tcpdump -i eth0
tcpdump: listening on eth0
11:29:58.869988 terrapin.taickim.net > 192.168.1.169: AH(spi=0x00000200,seq=0x40f): ESP(spi=0x00000201,seq=0x40f) (DF)
11:29:58.870786 192.168.1.169 > terrapin.taickim.net: AH(spi=0x00000300,seq=0x33d7): ESP(spi=0x00000301,seq=0x33d7)

127

Chapter 24. IPsec

Setting up IPsec with automatic key exchanging

Introduction
The subject of automatical key exchange is already touched shortly in the introduction of this
chapter. Put simply, IPsec with IKE works in the following steps.

1. Some process on the host wants to connect to another host. The kernel checks whether there is a
security policy set up for the other host. If there already is a security association corresponding
with the policy the connection can be made, and will be authenticated, encrypted and/or
compressed as defined in the security association. If there is no security association, the kernel
will request a user-land IKE daemon to set up the necessary security association(s).

2. During the first phase of the key exchange the IKE daemon will try to verify the authenticity of
the other host. This is usually done with a preshared key or certificate. If the authentication is
successful a secure channel is set up between the two hosts, usually called a IKE security
association, to continue the key exchange.

3. During the second phase of the key exchange the security associations for communication with
the other host are set up. This involves choosing the encryption algorithm to be used, and
generating keys that are used for encryption of the communication.

4. At this point the first step is repeated again, but since there are now security associations the
communication can proceed.

The racoon IKE daemon is included with the KAME IPsec tools, the sections that follow explain
how to set up racoon.

Using racoon with a preshared key
As usual the first step to set up IPsec is to define security policies. In contrast to the manual keying
example you should not set up security associations, because racoon will make them for you. We
will use the same host IPs as in the example above. The security policy rules look like this:

#!/usr/sbin/setkey -f

Flush the SAD and SPD
flush;
spdflush;

spdadd 192.168.1.1 192.168.1.169 any -P out ipsec
esp/transport//require;

spdadd 192.168.1.169 192.168.1.1 any -P in ipsec
esp/transport//require;

Cautious souls have probably noticed that AH policies are missing in this example. In most
situations this is no problem, ESP can provide authentication. But you should be aware that the
authentication is more narrow; it does not protect information outside the ESP headers. But it is
more efficient than encapsulating ESP packets in AH.

With the security policies set up you can configure racoon. Since the connection-specific
information, like the authentication method is specified in the phase one configuration. We can use a

128

Chapter 24. IPsec

general phase two configuration. It is also possible to make specific phase two settings for certain
hosts. But generally speaking a general configuration will often suffice in simple setups. We will also
add paths for the preshared key file, and certification directory. This is an example of
/etc/racoon/racoon.conf with the paths and a general phase two policy set up:

path pre_shared_key "/etc/racoon/psk.txt";
path certificate "/etc/racoon/certs";

sainfo anonymous {
{
pfs_group 2;
lifetime time 1 hour;
encryption_algorithm 3des, blowfish 448, rijndael;
authentication_algorithm hmac_sha1, hmac_md5;
compression_algorithm deflate;
}

The sainfo identifier is used to make a block that specifies the settings for security associations.
Instead of setting this for a specific host, the anonymous parameter is used to specify that these
settings should be used for all hosts that do not have a specific configuration. The pfs_group
specifies which group of Diffie-Hellman exponentiations should be used. The different groups
provide different lengths of base prime numbers that are used for the authentication process. Group 2
provides a 1024 bit length if you would like to use a greater length, for increased security, you can
use another group (like 14 for a 2048 bit length). The encryption_algorithm specifies which
encryption algorithms this host is willing to use for ESP encryption. The
authentication_algorithm specifies the algorithm to be used for ESP Authentication or
AH. Finally, the compression_algorithm is used to specify which compression algorithm
should be used when IPcomp is specified in an association.

The next step is to add a phase one configuration for the key exchange with the other host to the
racoon configuration. For example:

remote 192.168.1.169
{
exchange_mode aggressive, main;
my_identifier address;
proposal {
encryption_algorithm 3des;
hash_algorithm sha1;
authentication_method pre_shared_key;
dh_group 2;
}
}

The remote block specifies a phase one configuration. The exchange_mode is used to configure
what exchange mode should be used for phase. You can specify more than one exchange mode, but
the first method is used if this host is the initiator of the key exchange. The my_identifier
option specifies what identifier should be sent to the remote host. If this option committed address
is used, which sends the IP address as the identifier. The proposal block specifies parameter that
will be proposed to the other host during phase one authentication. The
encryption_algorithm, and dh_group are explained above. The hash_algorithm
option is mandatory, and configures the hash algorithm that should be used. This can be md5, or
sha1. The authentication_method is crucial for this configuration, as this parameter is used
to specify that a preshared key should be used, with pre_shared_key .

129

Chapter 24. IPsec

With racoon set up there is one thing left to do, the preshared key has to be added to
/etc/racoon/psk.txt. The syntax is very simple, each line contains a host IP address and a key.
These parameters are separated with a tab. For example:

192.168.1.169 somekey

Activating the IPsec configuration
At this point the configuration of the security policies and racoon is complete, and you can start to
test the configuration. It is a good idea to start racoon with the -F parameter. This will run racoon in
the foreground, making it easier to catch error messages. To wrap it up:

setkey -f /etc/setkey.conf
racoon -F

Now that you have added the security policies to the security policy database, and started Racoon,
you can test your IPsec configuration. For instance, you could ping the other host to start with. The
first time you ping the other host, this will fail:

$ ping 192.168.1.169
connect: Resource temporarily unavailable

The reason for this is that the security associations still have to be set up. But the ICMP packet will
trigger the key exchange. ping will trigger the key exchange. You can see whether the exchange was
succesful or not by looking at the Racoon log messages in /var/log/messages, or the racoon
output if you started racoon in the foreground. A succesful key exhange looks like this:

Apr 4 17:14:58 terrapin racoon: INFO: IPsec-SA request for 192.168.1.169 queued due to no phase1 found.
Apr 4 17:14:58 terrapin racoon: INFO: initiate new phase 1 negotiation: 192.168.1.1[500]<=>192.168.1.169[500]
Apr 4 17:14:58 terrapin racoon: INFO: begin Aggressive mode.
Apr 4 17:14:58 terrapin racoon: INFO: received Vendor ID: DPD
Apr 4 17:14:58 terrapin racoon: NOTIFY: couldn’t find the proper pskey, try to get one by the peer’s address.
Apr 4 17:14:58 terrapin racoon: INFO: ISAKMP-SA established 192.168.1.1[500]-192.168.1.169[500] spi:58c4669f762abf10:60593eb9e3dd7406
Apr 4 17:14:59 terrapin racoon: INFO: initiate new phase 2 negotiation: 192.168.1.1[0]<=>192.168.1.169[0]
Apr 4 17:14:59 terrapin racoon: INFO: IPsec-SA established: ESP/Transport 192.168.1.169->host1ip; spi=232781799(0xddff7e7)
Apr 4 17:14:59 terrapin racoon: INFO: IPsec-SA established: ESP/Transport 192.168.1.1->192.168.1.169 spi=93933800(0x59950e8)

After the key exchange, you can verify that IPsec is set up correctly by analyzing the packets that go
in and out with tcpdump. tcpdump is available in the n diskset. Suppose that the outgoing
connection to the other host goes through the eth0 interface, you can analyze the packats that go
though the eth0 interface with tcpdump -i eth0. If the outgoing packets are encrypted with ESP, you
can see this in the tcpdump output. For example:

tcpdump -i eth0
tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 96 bytes
17:27:50.241067 IP terrapin.taickim.net > 192.168.1.169: ESP(spi=0x059950e8,seq=0x9)
17:27:50.241221 IP 192.168.1.169 > terrapin.taickim.net: ESP(spi=0x0ddff7e7,seq=0x9)

130

Chapter 25. The internet super server

Introduction
There are two ways to offer TCP/IP services: by running server applications standalone as a daemon
or by using the internet super server, inetd(8). inetd is a daemon which monitors a range of ports. If
a client attempts to connect to a port inetd handles the connection and forwards the connection to the
server software which handles that kind of connection. The advantage of this approach is that it adds
an extra layer of security and it makes it easier to log incoming connections. The disadvantage is that
it is somewhat slower than using a standalone daemon. It is thus a good idea to run a standalone
daemon on, for example, a heavily loaded FTP server.

Configuration
inetd can be configured using the /etc/inetd.conf file. Let’s have a look at an example line from
inetd.conf:

File Transfer Protocol (FTP) server:
ftp stream tcp nowait root /usr/sbin/tcpd proftpd

This line specifies that inetd should accept FTP connections and pass them to tcpd. This may seem a
bit odd, because proftpd normally handles FTP connections. You can also specify to use proftpd
directly in inetd.conf, but Slackware Linux normally passes the connection to tcpd. This program
passes the connection to proftpd in turn, as specified. tcpd is used to monitor services and to
provide host based access control.

Services can be disabled by adding the comment character (#) at the beginning of the line. It is a
good idea to disable all services and enable services you need one at a time. After changing
/etc/inetd.conf inetd needs to be restarted to activate the changes. This can be done by sending
the HUP signal to the inetd process:

ps ax | grep ’inetd’
64 ? S 0:00 /usr/sbin/inetd

kill -HUP 64

Or you can use the rc.inetd init script to restart inetd:

/etc/rc.d/rc.inetd restart

TCP wrappers
As you can see in /etc/inetd.conf connections for most protocols are made through tcpd,
instead of directly passing the connection to a service program. For example:

File Transfer Protocol (FTP) server:
ftp stream tcp nowait root /usr/sbin/tcpd proftpd

In this example ftp connections are passed through tcpd. tcpd logs the connection through syslog
and allows for additional checks. One of the most used features of tcpd is host-based access control.

131

Chapter 25. The internet super server

Hosts that should be denied are controlled via /etc/hosts.deny, hosts that should be allowed via
/etc/hosts.allow. Both files have one rule on each line of the following form:

service: hosts

Hosts can be specified by hostname or IP address. The ALL keyword specifies all hosts or all
services.

Suppose we want to block access to all services managed through tcpd, except for host
“trusted.example.org”. To do this the following hosts.deny and hosts.allow files should be
created.

/etc/hosts.deny:

ALL: ALL

/etc/hosts.allow:

ALL: trusted.example.org

In the hosts.deny access is blocked to all (ALL) services for all (ALL) hosts. But hosts.allow
specifies that all (ALL) services should be available to “trusted.example.org”.

132

Chapter 26. Apache

Introduction
Apache is the most popular web server since April 1996. It was originally based on NCSA httpd, and
has grown into a full-featured HTTP server. Slackware Linux currently uses the 1.3.x branch of
Apache. This chapter is based on Apache 1.3.x.

Installation
Apache can be installed by adding the apache pacakge from the “n” disk set. If you also want to use
PHP, the php (“n” disk set) and mysql (“ap” disk set) are also required. MySQL is required, because
the precompiled PHP depends on MySQL shared libraries. You do not have to run MySQL itself.
After installing Apache it can be started automatically while booting the system by making the
/etc/rc.d/rc.httpd file executable. You can do this by executing:

chmod a+x /etc/rc.d/rc.httpd

The Apache configuration can be altered in the /etc/apache/httpd.conf file. Apache can be
stopped/started/restarted every moment with the apachectl command, and the stop, start and
restart parameters. For example, execute the following command to restart Apache:

apachectl restart
/usr/sbin/apachectl restart: httpd restarted

User directories
Apache provides support for so-call user directories. This means every user gets webspace in the
form of http://host/~user/ . The contents of “~user/” is stored in a subdirectory in the home directory
of the user. This directory can be specified using the “UserDir” option in httpd.conf, for example:

UserDir public_html

This specifies that the public_html directory should be used for storing the webpages. For
example, the webpages at URL http://host/~snail/ are stored in /home/snail/public_html.

Virtual hosts
The default documentroot for apache under Slackware Linux is /var/www/htdocs. Without using
virtual hosts every client connecting to the Apache server will receive the website in this directory.
So, if we have two hostnames pointing to the server, “www.example.org” and “forum.example.org”,
both will display the same website. You can make seperate sites for different hostnames by using
virtual hosts.

In this example we are going to look how you can make two virtual hosts, one for
“www.example.org”, with the documentroot /var/www/htdocs-www, and “forum.example.org”,
with the documentroot /var/www/htdocs-forum. First of all we have to specify which IP

133

Chapter 26. Apache

addresses Apache should listen to. Somewhere in the /etc/apache/httpd.conf configuration
file you will find the following line:

#NameVirtualHost *:80

This line has to be commented out to use name-based virtual hosts. Remove the comment character
(#) and change the parameter to “BindAddress IP:port”, or “BindAddress *:port” if you want
Apache to bind to all IP addresses the host has. Suppose we want to provide virtual hosts for IP
address 192.168.1.201 port 80 (the default Apache port), we would change the line to:

NameVirtualHost 192.168.1.201:80

Somewhere below the NameVirtualHost line you can find a commented example of a virtualhost:

#<VirtualHost *:80>
ServerAdmin webmaster@dummy-host.example.com
DocumentRoot /www/docs/dummy-host.example.com
ServerName dummy-host.example.com
ErrorLog logs/dummy-host.example.com-error_log
CustomLog logs/dummy-host.example.com-access_log common
#</VirtualHost>

You can use this example as a guideline. For example, if we want to use all the default values, and
we want to write the logs for both virtual hosts to the default Apache logs, we would add these lines:

<VirtualHost 192.168.1.201:80>
DocumentRoot /var/www/htdocs-www
ServerName www.example.org
</VirtualHost>

<VirtualHost 192.168.1.201:80>
DocumentRoot /var/www/htdocs-forum
ServerName forum.example.org
</VirtualHost>

134

Chapter 27. BIND

Introduction
The domain name system (DNS) is used to convert human-friendly host names (for example
www.slackware.com) to IP addresses. BIND (Berkeley Internet Name Domain) is the most widely
used DNS daemon, and will be covered in this chapter.

Delegation
One of the main features is that DNS requests can be delegated. For example, suppose that you own
the “linuxcorp.com” domain. You can provide the authorized nameservers for this domain, you
nameservers are authorative for the “linuxcorp.com”. Suppose that there are different branches
within your company, and you want to give each branch authority over their own zone, that is no
problem with DNS. You can delegate DNS for e.g. “sales.linuxcorp.com” to another nameserver
within the DNS configuration for the “linuxcorp.com” zone.

The DNS system has so-called root servers, which delegate the DNS for millions of domain names
and extensions (for example, country specific extensions, like “.nl” or “.uk”) to authorized DNS
servers. This system allows a branched tree of delegation, which is very flexible, and distributes
DNS traffic.

DNS records
The following types are common DNS records:

Table 27-1. DNS records

Prefix Description
A An A records points to an IP address.

CNAME A CNAME record points to another DNS entry.

MX A MX record specifies which should handle mail
for the domain.

Masters and slaves
Two kinds of nameservers can be provided for a domain name: a master and slaves. The master
server DNS records are authorative. Slave servers download their DNS record from the master
servers. Using slave servers besides a master server is recommended for high availability and can be
used for load-balancing.

Making a caching nameserver
A caching nameserver provides DNS services for a machine or a network, but does not provide DNS

135

Chapter 27. BIND

for a domain. That means it can only be used to convert hostnames to IP addresses. Setting up a
nameserver with Slackware Linux is fairly easy, because BIND is configured as a caching
nameserver by default. Enabling the caching nameserver takes just two steps: you have to install
BIND and alter the initialization scripts. BIND can be installed by adding the bind package from the
“n” disk set. After that bind can be started by executing the named(8) command. If want to start
BIND by default, make the /etc/rc.d/rc.bind file executable. This can be done by executing the
following command as root:

chmod a+x /etc/rc.d/rc.bind

If you want to use the nameserver on the machine that runs BIND, you also have to alter
/etc/resolv.conf.

136

	Table of Contents
	List of Tables
	List of Figures
	Preface
	Chapter 1. About this book
	Availability
	Conventions
	File names
	Commands
	Screen output
	Notes

	Chapter 2. An introduction to Slackware Linux
	What is Linux?
	What is GNU/Linux?
	What is Slackware Linux?
	The UNIX philosophy
	Slackware Linux 10.1 features
	Slackware Linux on CDROM

	Chapter 3. Sources of help
	On your system
	Linux HOWTO's
	Manual pages

	On the internet
	alt.os.linux.slackware

	Chapter 4. General concepts
	Multitasking
	Introduction
	Processes and threads

	Filesystem hierarchy
	Structure
	Mounting
	Common directories

	Devices
	Introduction
	ATA and SCSI devices

	Chapter 5. Installing Slackware Linux
	Booting the installation CDROM
	Partitioning a hard disk
	Installing Slackware Linux

	Chapter 6. Custom installation
	Partitioning a hard disk
	Initializing and mounting filesystems
	Installing packages
	Postinstall configuration
	fstab
	LILO
	Networking
	Tuning startup scripts
	Configuring the dynamic linker runtime bindings
	Setting the root password
	Setting the timezone
	Creating the X11 font cache

	Automated installation script

	Chapter 7. The Bash shell
	Introduction
	Starting the shell
	Shell basics
	Executing commands
	Browsing through shell commands
	Completion
	Wildcards
	Matching a string of characters
	Matching single characters
	Matching characters from a set

	Redirections and pipes
	Redirection
	pipes

	Chapter 8. Files and directories
	Introduction
	The basics
	pwd
	ls
	cd
	mkdir
	cp
	mv
	rm

	Permissions
	A short introduction
	chown
	chmod

	Archives
	Introduction
	Extracting archives
	Creating archives

	Extended attributes
	Introduction
	Installing the necessary utilities
	Showing extended attributes
	Setting extended attributes

	Mounting filesystems
	Introduction
	mount
	umount
	The fstab file
	fsspec
	fsfile
	fsvfstype
	fsmntops
	fsfreq
	fspassno

	Encrypting and signing files
	Introduction
	Generating your private and public keys
	Exporting your public key
	Signatures
	Encryption

	Chapter 9. Text Utilities
	Introduction
	The basics
	cat
	echo
	wc
	tr
	sort
	uniq

	Chapter 10. Process management
	Introduction
	Process basics
	ps
	kill

	Advanced process management
	Background processes
	Stopping processes
	Altering priorities

	Chapter 11. LaTeX
	Introduction
	Preparing basic LaTeX documents
	Minimal document structure
	Generating printable formats
	Sections
	Font styles

	Chapter 12. Reading and writing email with mutt
	Introduction
	Usage
	Browsing the list of emails
	Reading emails
	Sending emails

	Basic setup
	Customized headers
	The sendmail binary

	Signing/encrypting emails
	Introduction
	Configuration
	Usage

	Chapter 13. Sendmail
	Introduction
	Installation
	Configuration
	Working with mc files
	Using a smarthost
	Alternative host/domain names
	Virtual user table

	Chapter 14. Spamassassin
	Introduction
	Installing spamassasin
	SpamAssassin
	Starting spamd

	Using spamassassin with procmail
	Marking messages as spam
	Moving spam mail to a separate mailbox

	Chapter 15. User management
	Introduction
	Adding and removing users
	useradd
	passwd
	adduser
	userdel

	Avoiding root usage with su
	Restricting su access

	Disk quota
	Introduction
	Enabling quota
	Editing quota
	Getting information about quota

	Chapter 16. Printer configuration
	Introduction
	Preparations
	Configuration
	Access control
	Ghostscript paper size

	Chapter 17. X11
	X Configuration
	Window manager

	Chapter 18. Package Management
	Pkgtools
	Introduction
	pkgtool
	installpkg
	upgradepkg
	removepkg

	Slackpkg
	Introduction
	Configuration
	Importing the Slackware Linux GPG key
	Updating the package lists
	Upgrading packages
	Installing packages

	Using rsync
	Tagfiles
	Introduction
	Creating tagfiles
	Using tagfiles

	Chapter 19. Building a kernel
	Introduction
	Configuration
	Compilation
	Installation
	Installing the kernel
	Configuring LILO

	Chapter 20. System initialization
	The bootloader
	LILO configuration
	LILO installation

	init
	Initialization scripts
	Hotplugging
	Executing scripts on hotplug events

	Chapter 21. Security
	Introduction
	Closing services
	Introduction
	Finding open ports
	inetd

	Chapter 22. Miscellaneous
	Scheduling tasks with cron
	Hard disk parameters
	Monitoring memory usage
	vmstat

	Chapter 23. Networking configuration
	Hardware
	Configuration of interfaces
	Configuration of interfaces (IPv6)
	Introduction
	Slackware Linux IPv6 support
	Adding an IPv6 address to an interface

	Wireless interfaces
	Resolving
	IPv4 Forwarding

	Chapter 24. IPsec
	Theory
	Kernel configuration
	Installing IPsecTools
	Setting up IPsec with manual keying
	Introduction
	Writing the configuration file
	Activating the IPsec configuration

	Setting up IPsec with automatic key exchanging
	Introduction
	Using racoon with a preshared key
	Activating the IPsec configuration

	Chapter 25. The internet super server
	Introduction
	Configuration
	TCP wrappers

	Chapter 26. Apache
	Introduction
	Installation
	User directories
	Virtual hosts

	Chapter 27. BIND
	Introduction
	Delegation
	DNS records
	Masters and slaves

	Making a caching nameserver

