
TLFeBOOK

solutions @ s y n g r e s s . c o m

Over the last few years, Syngress has published many best-selling and
critically acclaimed books, including Tom Shinder’s Configuring ISA
Server 2000, Brian Caswell and Jay Beale’s Snort 2.0 Intrusion
Detection, and Angela Orebaugh and Gilbert Ramirez’s Ethereal
Packet Sniffing. One of the reasons for the success of these books has
been our unique solutions@syngress.com program. Through this
site, we’ve been able to provide readers a real time extension to the
printed book.

As a registered owner of this book, you will qualify for free access to
our members-only solutions@syngress.com program. Once you have
registered, you will enjoy several benefits, including:

� Four downloadable e-booklets on topics related to the book.
Each booklet is approximately 20-30 pages in Adobe PDF
format. They have been selected by our editors from other
best-selling Syngress books as providing topic coverage that
is directly related to the coverage in this book.

� A comprehensive FAQ page that consolidates all of the key
points of this book into an easy to search web page, pro-
viding you with the concise, easy to access data you need to
perform your job.

� A “From the Author” Forum that allows the authors of this
book to post timely updates links to related sites, or addi-
tional topic coverage that may have been requested by
readers.

Just visit us at www.syngress.com/solutions and follow the simple
registration process. You will need to have this book with you when
you register.

Thank you for giving us the opportunity to serve your needs. And be
sure to let us know if there is anything else we can do to make your
job easier.

Register for Free Membership to

309_Desk_Ref_Fm.qxd 10/12/04 10:37 AM Page i

TLFeBOOK

Application Defense
www.appliacationdefense.com
Application Defense Specials

� Free Software with Purchase of Application Security
Services Program

� $1,000 Enterprise Language Special Until February 2005
with Proof of Purchase for Ultimate DeskRef.

Business Benefits
� Application Defense Developer Edition, strives to educate

individual developers on proper secure programming
techniques during the development cycle, thereby saving
thousands in post-development consulting

� Developmental education approach on secure develop-
ment strengthens your business at the core, its people

� Executive-level reporting allows your development team
to visually depict trending improvements, vulnerability
remediation, and high-risk segments of code

� Distributed Software Architecture permits development
teams to review their code centrally by a QA or Auditing
team or individually by the developers

� Industry-best multi-language support permits organiza-
tions to manage all their software development needs with
one application

Application Defense Technology Features:
� Industry leading analysis engine can parse and examine

entire software code base in under a minute
� Executive, technical, trending reports allow information to

be displayed for all audiences
� Flexible XML output allows easy integration with other

enterprise applications
� Unique IDE allows you to update results in real-time or in

batches to code base – No need to recreate code in multiple
locations!

� Custom developer code is analyzed by proprietary artificial
intelligence engine

� Project file storage allows developers to save analysis results
for later review or to save for continued analysis

� Real-time bug tracking system
� Interactive software interface allows developers to make

security decisions during analysis
� Able to input Visual Studio Project files
� Customizable reports allow you to specify company name,

application, auditor, and more…

309_Desk_Ref_Fm.qxd 10/12/04 10:37 AM Page ii

TLFeBOOK

Ultimate
SecurityD e s k Re f

Programmer’s

James C. Foster
Stephen C. Foster

309_Desk_Ref_Fm.qxd 10/12/04 10:38 AM Page iii

TLFeBOOK

Syngress Publishing, Inc., the author(s), and any person or firm involved in the writing, editing, or production (collec-
tively “Makers”) of this book (“the Work”) do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents.The Work is sold AS IS and
WITHOUT WARRANTY.You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other incidental or
consequential damages arising out from the Work or its contents. Because some states do not allow the exclusion or
limitation of liability for consequential or incidental damages, the above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working with com-
puters, networks, data, and files.

Syngress Media®, Syngress®,“Career Advancement Through Skill Enhancement®,”“Ask the Author UPDATE®,” and
“Hack Proofing®,” are registered trademarks of Syngress Publishing, Inc.“Syngress:The Definition of a Serious
Security Library”™,“Mission Critical™,” and “The Only Way to Stop a Hacker is to Think Like One™” are trade-
marks of Syngress Publishing, Inc. Brands and product names mentioned in this book are trademarks or service marks
of their respective companies.

KEY SERIAL NUMBER
001 HJIRTCV764
002 PO9873D5FG
003 829KM8NJH2
004 JKVBF54KM9
005 CVPLQ6WQ23
006 VBP965T5T5
007 HJJJ863WD3E
008 2987GVTWMK
009 629MP5SDJT
010 IMWQ295T6T

PUBLISHED BY
Syngress Publishing, Inc.
800 Hingham Street
Rockland, MA 02370

Programmer’s Ultimate Security DeskRef

Copyright © 2004 by Syngress Publishing, Inc.All rights reserved. Printed in the United States of America. Except as
permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form
or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher, with
the exception that the program listings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

Printed in the United States of America
1 2 3 4 5 6 7 8 9 0
ISBN: 1-932266-72-0

Publisher:Andrew Williams Page Layout and Art: Patricia Lupien
Acquisitions Editor: Jaime Quigley Copy Editor: Mike McGee
Cover Designer: Michael Kavish

Distributed by O’Reilly Media, Inc. in the United States and Canada.

For information on rights and translations, contact Matt Pedersen, Director of Sales and Rights, at Syngress Publishing;
email matt@syngress.com or fax to 781-681-3585.

309_Desk_Ref_Fm.qxd 10/12/04 10:38 AM Page iv

TLFeBOOK

v

For Mom and Dad
and Gabriel…

309_Desk_Ref_Fm.qxd 10/12/04 10:38 AM Page v

TLFeBOOK

Acknowledgments

Syngress would like to acknowledge the following people for their kindness and support
in making this book possible.

Syngress books are now distributed in the United States and Canada by O’Reilly Media,
Inc.The enthusiasm and work ethic at O’Reilly is incredible and we would like to thank
everyone there for their time and efforts to bring Syngress books to market:Tim
O’Reilly, Laura Baldwin, Mark Brokering, Mike Leonard, Donna Selenko, Bonnie
Sheehan, Cindy Davis, Grant Kikkert, Opol Matsutaro, Steve Hazelwood, Mark Wilson,
Rick Brown, Leslie Becker, Jill Lothrop,Tim Hinton, Kyle Hart, Sara Winge, C. J.
Rayhill, Peter Pardo, Leslie Crandell, Valerie Dow, Regina Aggio, Pascal Honscher,
Preston Paull, Susan Thompson, Bruce Stewart, Laura Schmier, Sue Willing, Mark
Jacobsen, Betsy Waliszewski, Dawn Mann, Kathryn Barrett, John Chodacki, and Rob
Bullington.

The incredibly hard working team at Elsevier Science, including Jonathan Bunkell, Ian
Seager, Duncan Enright, David Burton, Rosanna Ramacciotti, Robert Fairbrother,
Miguel Sanchez, Klaus Beran, Emma Wyatt, Rosie Moss, Chris Hossack, Mark Hunt, and
Krista Leppiko, for making certain that our vision remains worldwide in scope.

David Buckland, Marie Chieng, Lucy Chong, Leslie Lim,Audrey Gan, Pang Ai Hua, and
Joseph Chan of STP Distributors for the enthusiasm with which they receive our books.

Kwon Sung June at Acorn Publishing for his support.

David Scott, Tricia Wilden, Marilla Burgess, Annette Scott, Andrew Swaffer, Stephen
O’Donoghue, Bec Lowe, and Mark Langley of Woodslane for distributing our books
throughout Australia, New Zealand, Papua New Guinea, Fiji Tonga, Solomon Islands, and
the Cook Islands.

Winston Lim of Global Publishing for his help and support with distribution of Syngress
books in the Philippines.

309_Desk_Ref_Fm.qxd 10/12/04 10:38 AM Page vi

TLFeBOOK

vii

James C. Foster, Fellow is the Deputy Director of Global Security Solution
Development for Computer Sciences Corporation where he is responsible for the vision
and development of physical, personnel, and data security solutions. Prior to CSC, Foster
was the Director of Research and Development for Foundstone Inc. (acquired by McAfee)
and was responsible for all aspects of product, consulting, and corporate R&D initiatives.
Prior to joining Foundstone, Foster was an Executive Advisor and Research Scientist with
Guardent Inc. (acquired by Verisign) and an adjunct author at Information Security
Magazine(acquired by TechTarget), subsequent to working as Security Research Specialist
for the Department of Defense. With his core competencies residing in high-tech remote
management, international expansion, application security, protocol analysis, and search
algorithm technology, Foster has conducted numerous code reviews for commercial OS
components, Win32 application assessments, and reviews on commercial-grade cryptog-
raphy implementations.

Foster is a seasoned speaker and has presented throughout North America at conferences,
technology forums, security summits, and research symposiums with highlights at the
Microsoft Security Summit, Black Hat USA, Black Hat Windows, MIT Wireless Research
Forum, SANS, MilCon,TechGov, InfoSec World 2001, and the Thomson Security
Conference. He also is commonly asked to comment on pertinent security issues and has
been sited in USAToday, Information Security Magazine, Baseline, Computer World, Secure
Computing, and the MIT Technologist. Foster holds an A.S., B.S., MBA and numerous tech-
nology and management certifications and has attended or conducted research at the Yale
School of Business, Harvard University, the University of Maryland, and is currently a
Fellow at University of Pennsylvania’s Wharton School of Business.

Foster is also a well published author with multiple commercial and educational papers; and
has authored, contributed, or edited for major publications to include Snort 2.1 Intrusion
Detection (Syngress Publishing, ISBN: 1-931836-04-3), Hacking Exposed, Fourth Edition, Anti-
Hacker Toolkit, Second Edition,Advanced Intrusion Detection, Hacking the Code:ASP.NET Web
Application Security (Syngress, ISBN: 1-932266-65-8),Anti-Spam Toolkit, and the forth-
coming Google Hacking for Penetration Techniques (Syngress, ISBN: 1-931836-36-1) .

Author

309_Desk_Ref_Fm.qxd 10/12/04 10:38 AM Page vii

TLFeBOOK

viii

Steven C. Foster is a graduate student pursuing his Ph.D. in mathematics at the
University of North Carolina, Chapel Hill.There, he is studying applied mathematics,
most notably computational and geophysical fluid dynamics. He is currently being
supported under a grant from the Office of Naval Research, administered by Dr.
Christopher K. R.T. Jones in addition to a fellowship from the Statistical and
Mathematical Sciences Institute. Steven earned his bachelor of science degree at the
University of Maryland, Baltimore County under Dr. Matthias K. Gobbert. He has
worked as a computer security consultant at Computer Sciences Corporation,
including the development of the Hydra Expert Assessment Technology (HEAT), and
as a research mathematician at Northrop Grumman, specializing in the optimization
of radar design and signal processing. Steven has also provided his mathematical
expertise to Foundstone on their Foundstone Enterprise product and has significant
programming experience in C/C++, Perl, Python, HTML, Fortran, and Matlab.
Upon finishing his degree at UNC, Steven will pursue a career in computational
mathematics and a professional degree in finance.

Kevin Harriford an information security and programming expert, works on the
vulnerability assessment team for Computer Sciences Corporation. Mr. Harriford’s
areas of expertise include C and C++ development, security architectures, and analog
network security.

Jeremie Kregelka is a senior distributed applications development engineer at Johns
Hopkins University. With numerous development awards on his resume, Jeremie has
spent the last decade creating distributed applications in Java,ASP, ColdFusion,
and .Net. Jeremie has a B.S. in Software Engineering.

Contributing Author

Area Experts

309_Desk_Ref_Fm.qxd 10/12/04 10:38 AM Page viii

TLFeBOOK

ix

Chad Curtis, a research and development engineer at Foundstone Inc. (acquired by
McAfee), is responsible for emerging threat research and Foundstone Enterprise
product development. Chad has specialized in custom scripting language develop-
ment, Microsoft Windows’ code development, deep packet inspection, and vulnera-
bility research.

Conrad Smith is a security researcher with expertise in vulnerability testing, soft-
ware development, application security architecture, and security policies. Conrad has
consulted and conducted research for numerous government and private sector orga-
nizations in the US and the UK, while working for companies including Exodus
Communications, Insight Ltd UK, and most recently Foundstone (acquired by
McAfee.)

Michael Prentice, a recent graduate of Cornell University, has extensive experience
developing and testing educational and statistics software utilizing both graphical
interfaces and client/server architectures. He is currently engaged in freelance web
application and database development.

309_Desk_Ref_Fm.qxd 10/12/04 10:38 AM Page ix

TLFeBOOK

Author’s Acknowledgments

First and foremost, I’d like to thank my family for sticking with me and believing in me
through the tough times. Mom, Dad: thank you for instilling the importance of a strong
work ethic and continuous education. Steve, what can I say—you’ve always been there for
me.You continue to impress me, pushing me forward—thank you.

Jeremie, Kevin, Mike, Conrad, Chad, Johnny, and Mark:Your input, assistance, and
knowledge kept this book on the straight and narrow. Keep on rocking the technology
world—true experts.

I’d also like to take a well-deserved moment and thank Computer Sciences
Corporation for working with me on this publication and ensuring that it saw the light
of day. Reg, if it weren’t for you this book would still be in the database—a sincere thank
you for all of your help.Additionally, I’d like to thank Chris, Jason, Ron, Jen, and Mary.

For those of you in the industry leading interesting and innovative technologies and
business models: I salute you.

Last but certainly not least—Syngress you continue to redefine the publishing world
and I am truly honored to be part of such a great team and effort. I appreciate your will-
ingness and flexibility to publish a new kind of book in such an accelerated fashion.
Andrew and Jaime, I owe you two.

—James Foster

October 8, 2004

309_Desk_Ref_Fm.qxd 10/12/04 10:38 AM Page x

TLFeBOOK

xi

About the Book

The goals for this book are simple. Instill the proper programming techniques for the
world’s most popular and complex languages.Teach those who want to hone in on their
technical skills and increase their knowledge and overall marketability in the information
security industry by providing the reference for elite programming techniques that are the
backbones for the best security professionals in an easy-to-read format.And lastly, to be
the sole desk reference required and utilized on a day-by-day basis to ensure that all code
making it to production status is secure.The personal acquisition of these techniques
should be enough to get a promotion just about anywhere or potentially even join the
infosec industry from another similar vertical.

Each language covered in this book has received its own chapter. With this said, the C
chapter may contain the proper overlap for functions and methods utilized within the
complementary C++ and C# chapters. It’s imperative that when in search of a C++ or
C# reference, you first look at its corresponding chapter before checking to see if it has
been included in the C chapter.

Each function or method documented in this book is followed by a series of elements
created to help you, the reader, exercise each task responsibly by calling awareness to each
function’s purpose, risk, origin, resources, and more. Each function may incorporate some
or all of the following:

� Prototype This is the function’s prototype or method’s proper implementation
usage.

� Summary A one-line description of the function or method and its intended
use.

� Description The descriptions will be one paragraph and contain a detailed
explanation of how the function should be used and when it should not be
used. It will also contain explanations for any parameters the function or method
may accept as input in addition to providing detail on returned values.

� Risk The risk description informs the readers of the particular security threat
posed when implementing the function or method. In proper cases it recom-
mends more secure alternatives, secure usage, bolt-on alternatives, and other
types of clear developer-focused solutions.

309_Desk_Ref_Fm.qxd 10/12/04 10:38 AM Page xi

TLFeBOOK

xii

� Note Any additional comments or notes that pertain to the function.

� Additional Resources These resources are included for additional information on the
programmatic particulars of the language, function, or method.All resources will consist
of web links to educational websites, Microsoft, or other commercial powerhouses.

� Impact The impact will be High, Medium or Low, signifying a potential high-level
result that a poorly implemented function or method may have on the application.

� Cross Reference Cross references are similar functions and methods that are available
for use in the language. For example, the C language printf may have cross references of
sprintf and snprintf.

The information security industry is in a state of constant evolution with the rate of
automated malicious intent, increasing at a faster pace than that of defensive protections
and staff. With the release of every new “bleeding edge” bolt-on security product comes
the idea that this problem will not only completely secure your organization but it will
also be the only product required to accomplish such a task. However, if you have ever
spent the money to hire the best security consultants, you’d soon find out that their rec-
ommendation would be to layer security protections throughout your environment.
Supporting just about every security professional that’s been around for the past decade,
secure development will eventually supersede all of these other security initiatives.
Tackling the source is the key, but until now has been ridiculously difficult of a task.As
long as you believe that knowledge is power then the answer has arrived.

—Foster

309_Desk_Ref_Fm.qxd 10/12/04 10:38 AM Page xii

TLFeBOOK

Contents

xiii

Foreword .xv

Programmer’s Ultimate Security DeskRef: ASP 1

Programmer’s Ultimate Security DeskRef: C 23

Programmer’s Ultimate Security DeskRef: C++ 197

Programmer’s Ultimate Security DeskRef: C# 263

Programmer’s Ultimate Security DeskRef: ColdFusion 269

Programmer’s Ultimate Security DeskRef: JavaScript 335

Programmer’s Ultimate Security DeskRef: JScript 377

Programmer’s Ultimate Security DeskRef: LISP 407

Programmer’s Ultimate Security DeskRef: Perl 447

Programmer’s Ultimate Security DeskRef: PHP 469

Programmer’s Ultimate Security DeskRef: Python 499

Programmer’s Ultimate Security DeskRef: VBA 539

Programmer’s Ultimate Security DeskRef: VBScript 575

309_DeskRef_Toc.qxd 10/11/04 6:20 PM Page xiii

TLFeBOOK

309_DeskRef_Toc.qxd 10/11/04 6:20 PM Page xiv

TLFeBOOK

The software development community by and large understands that it is in
midst of a new crisis: our applications are insecure. Viruses, worms, spam, stolen
credit card numbers, and leaked personal information; this is a very different situ-
ation than the last crisis we faced.Y2K was pervasive, critical, and hard to fix.
The security crisis is all that and more. During Y2K we were fighting a natural
force: the passage of time.Time is relentless, but measurable and predictable.The
people attacking our computers and infrastructure are relentless too, but thus far,
they defy our abilities to predict and prepare.

The battle for software security is being fought one small programming
detail at a time.Arm yourself.

While the basic outline of the software security crisis is widely agreed upon,
there isn’t yet a consensus about the solution. Most believe that education has a
role to play, but what is it? Should security training be part of a programmer’s
core education? Certainly, apart from the specifics of any particular programming
language, algorithm, or development methodology, programmers are taught to
value efficiency, elegance and precision, and they can be taught to value security
too. Security training will help developers learn critical security principles to
include least privilege, defense in depth, and fail secure. Even though the result
will consist of better programmers and therefore better programs, this alone will
not resolve the security crisis.

The problem is that good software security means more than just good
design. It requires great attention to an enormous number of implementation
details. In software, the defender’s dilemma is acute.The attacker only needs to
find one problem in order to defeat the system, while the defender must guard
all fronts.The result is that more than half of all known exploits take advantage
of small implementation errors, not design defects.

Foreword

xv

309_Desk_Ref_Foreword.qxd 10/11/04 10:56 AM Page xv

TLFeBOOK

xvi Foreword

How does a programmer guard against implementation errors? The traditional answer is
testing, but for security purposes, testing is less than ideal. Without a doubt, testing is the way
that most bugs are identified in software. Understanding this, most bugs don’t make it off of
the programmer’s desktop. By running simple test cases during the process of development,
programmers find and fix most of their own bugs before the rest of the world has a chance
to see them. Unfortunately, security is a different beast. Security bugs are less likely to be
found during normal testing activities because many security problems don’t occur under
anything like normal conditions or through “user testing.”They require strange sets of char-
acters, strange combinations of boundary conditions, or unusual machine states in order to be
activated.

If testing isn’t an answer, perhaps we should return again to education. In addition to
being trained to think about security at a high level, programmers need to know how to get
all of the details right, and that’s exactly what the Ultimate Programmer’s Security DeskRef does.
Any function you call may have security implications, and most of them do. Some are
obvious (seteuid), but many aren’t (vsnprintf).As you learn more about how to make
your software secure, you’ll find that you return here more and more often.

—Brian Chess, PhD
Founder & Chief Scientist

Fortify Software

309_Desk_Ref_Foreword.qxd 10/11/04 10:56 AM Page xvi

TLFeBOOK

Programmer’s
Ultimate Security
DeskRef: ASP

application.lock
Prototype: Application.Lock

Summary: This method is used to prevent the modification of vari-
ables stored in the application object.

Description: The Lock method is used to prevent all clients,
excluding the current client, from accessing and manipulating vari-
ables stored in the application object.All variables will remain
locked until the corresponding “Unlock” method is called or the ses-
sion is terminated.

Risk: The application.lock method is designed to create
file/object locks to system variables. Uncontrolled access to this
method creates the ability to lock and unlock resources that may be
in use by other processes.This results in corrupted data or denied
access to necessary resources.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: Low

1

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 1

TLFeBOOK

asperror.aspcode
Prototype: ASPError.ASPCode()

Summary: This method is used to return an IIS generated error code.

Description: The aspcode method returns an IIS generated error code as a
string.

Risk: Error codes thrown by the application should be handled within the applica-
tion and not propagated to the end user. Malicious users can use error codes refer-
ence codes to gain additional error descriptions. It is critical to contain and prevent
end-user access since error information can result in the disclosure of vital system
information including: system configuration, application configuration, memory ref-
erences, etc.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: Low

asperror.aspdescription
Prototype: ASPError.ASPDescription()

Summary: This method is used to return a description of the error.

Description: The aspdescription method returns a full detailed description of
the error generated, if available.This description is returned as a string.

Risk: Error message associated with application functionality should be handled
within the application or be developers only. Error messages that are propagated to
the end user allow malicious users can further understanding to the internal work-
ings of the application.This allows the attacker an efficient means of analyzing attack
vectors for greater results. It is critical to contain and prevent end-user access since
error information can result in the disclosure of vital system information including:
system configuration, application configuration, memory references, etc.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

www.syngress.com

A
SP

2 ASP • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 2

TLFeBOOK

Impact: Low

asperror.category
Prototype: ASPError.Category()

Summary: This method is used to return the source of the error.

Description: The category method returns a string that is used to determined
whether the error was generated by IIS, scripting, or various components.

Risk: All errors associated with the application should be hidden from the end user.
Unnecessary understanding of the applications design and implementation could
expose flaws allowing attackers to gain access to sensitive information. Error codes
thrown by the application should be handled within the application and not propa-
gated to the end user. It is critical to contain and prevent end-user access since error
information can result in the disclosure of vital system information including: system
configuration, application configuration, memory references, etc.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: Low

asperror.description
Prototype: ASPError.Description()

Summary: This method is used to return a summary of the description of the
error.

Description: The description method returns a summary of the description of
the error generated, if available.This description is returned as a string.

Risk: A short description of the error being generated by malicious us of an appli-
cation may lead to further information gathering based on new attack methods. It is
vital to contain and prevent end-user access since error information can result in the
disclosure of vital system information including: system configuration, application
configuration, memory references, etc.Any additional information provided will
allow a malicious user to escalate attacks against an application.

www.syngress.com

A
SP

Programmer’s Ultimate Security DeskRef • ASP 3

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 3

TLFeBOOK

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: Low

asperror.file
Prototype: ASPError.File()

Summary: This method is used the return the file name that generated the error.

Description: The file method returns the name and extension of the file that
generated the error.This is returned as a string.

Risk: All error messages, including the filename originating the error, should be
hidden from the end user.Attackers can use such information to determine refer-
ence points in more complex attacks.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: Low

asperror.source
Prototype: ASPError.Source()

Summary: This method is used to return the code that caused the error.

Description: The source method returns the actual line of code that cased the
error, if available.This is returned as a string.

Risk: It is critical to contain and prevent end-user access since error information
can result in the disclosure of vital system information including: system configura-
tion, application configuration, memory references, etc. Giving the end user access
to the code that caused an error allows malicious users to determine memory
resources being used by the process and potentially provides access to data.

www.syngress.com

A
SP

4 ASP • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 4

TLFeBOOK

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: Low

attachment.delete
Prototype: objAttach.Delete()

Summary: This method is used to remove an attachment.

Description: The delete method is used to remove an attachment from the
attachment collection.This method requires the attachment object.

Risk: When using input from the client to determine which attachments to delete,
careful parsing of data should be performed to prevent the accidental or malicious
deletion of attachments. File descriptions should be constrained to the commoner
file name characters (A–Z, 0–9, -, _, etc.)

Note: ASP CDONTS External Library

Impact: Low

attachment.readfromfile
Prototype: objAttach.ReadFromFile(fileName)

Summary: This method is used to read the contents of a file and load them to the
output.

Description: The readfromfile method is used to read the contents of a file and
load them to the output.This method requires the attachment object as well as
the name of the file to read.

Risk: When using input data to determine files to be read and displayed out put,
file names should be carefully parsed to prevent the usage of such conventions as
‘../../../’, also known as dot dot attacks.

Note: ASP CDONTS External Library

Impact: Medium

www.syngress.com

A
SP

Programmer’s Ultimate Security DeskRef • ASP 5

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 5

TLFeBOOK

attachment.writetofile
Prototype: objAttach.WriteToFile(fileName)

Summary: This method is used to write the attachment to the server.

Description: The writetofile method is used to write the attachment to the
server filesystem. If there is currently a file on the file system with a same name as
the file you wish to write the file will be over written.This method requires the
attachment object as well as the name of the file to read.

Risk: When using input data to determine files to be written to file names should
be carefully parsed to prevent the usage of such conventions as ‘../../../’, also known
as dot dot attacks. Since the write method will overwrite existing files it becomes
especially important to guard against attacks which may overwrite system and appli-
cation logs.

Note: ASP CDONTS External Library

Impact: Low

attachments.add
Prototype: Set objAttach = collAttachments.Add([name] [,
type] [, source] [, ContentLocation] [, ContentBase])

Summary: This method is used to add a new attachment object to the attach-
ments collection.

Description: This method is used to add a new attachment object to the attach-
ments collection. It is possible to add the attachment data at the same time as adding
the object to the collection.This method requires the attachment object as well
as the name of the file to read.

Risk: To prevent excessive attachments from being posted to the system that may
use up system storage resources and cause elevated network usage in transfer, both
the files being attached, and the attachment collection should be regulated for size.

Note: ASP CDONTS External Library

www.syngress.com

A
SP

6 ASP • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 6

TLFeBOOK

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/iissdk/iis/com_components_for_iis.asp

Impact: Low

attachments.delete
Prototype: collAttachments.Delete()

Summary: This method is used to remove every attachment associated with the
attachments collection.

Description: The delete method is used to remove every attachment associated
with the attachments collection.This is a final process with no recursive action.

Risk: In multiuser applications, it may be possible for an attacker to execute mali-
cious code using the collAttachments.delete method to continually flush the
attachment collection of end users thus denying the ability to upload files. Usage of
the delete method should thus be strictly regulated.

Note: ASP CDONTS External Library

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/iissdk/iis/com_components_for_iis.asp

Impact: Low

message.delete
Prototype: objMessage.Delete()

Summary: This method is used to remove a message.

Description: The delete method is used to remove a message from the messages
collection.This method requires the message object.

Risk: This method can be used by a malicious user and a multiuser application to
deny or alter access to the system. For instance, in the case of a chat system a mali-
cious user might delete a certain users input and then use other methods to spoof
this users identity providing false information to the chat audience.

www.syngress.com

A
SP

Programmer’s Ultimate Security DeskRef • ASP 7

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 7

TLFeBOOK

Note: ASP CDONTS External Library

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library
/en-us/iissdk/iis/com_components_for_iis.asp

Impact: Low

message.send
Prototype: objMessage.Send()

Summary: This method is used to send the message to the specified addresses.

Description: This method is used to send the message to the specified addresses
through the default messaging service.This method requires the message object.

Risk: Unless properly filtered, this method could allow a malicious user to SPAM
user consoles with bogus or unrequested information.Additionally creating messages
exceeding application capabilities can result in a denial of service on the system.
Proper regulation of message distribution should be used to prevent usage abuse.

Note: ASP CDONTS External Library

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/iissdk/iis/com_components_for_iis.asp

Impact: Medium

messages.add
Prototype: Set objMessage = collMessages.Add([subject] [,
text] [, importance])

Summary: This method is used to add a new message object to the messages
collection.

Description: This method is used to add a new message object to the messages
collection. It is mandatory that all new messages are created in the Outbox of the
messaging service.This method requires the message object as well as the name of
the file to add.

www.syngress.com

A
SP

8 ASP • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 8

TLFeBOOK

Risk: Origins and content of messages added to the message collection should be
checked to ensure invalid or repetitive messages are not occupying the message col-
lection utilizing excess resources, which can lower application performance.

Note: ASP CDONTS External Library

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/iissdk/iis/com_components_for_iis.asp

Impact: Medium

messages.delete
Prototype: collMessages.Delete()

Summary: This method is used to remove every message associated with the mes-
sages collection.

Description: The delete method is used to remove every message associated
with the messages collection.This is a final process with no recursive action.

Risk: This method can be used by a malicious user and a multiuser application to
deny or alter access to the system. For instance, in the case of a chat system a mali-
cious user might delete a certain user’s input and then use other methods to spoof
this user’s identity, providing false information to the chat audience.

Note: ASP CDONTS External Library

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/iissdk/iis/com_components_for_iis.asp

Impact: Medium

newmail.attachfile
Prototype: objNewMail.AttachFile(Source [, FileName] [,
EncodingMethod])

Summary: This method is used to read a file and add it as the attachment to the
message.

www.syngress.com

A
SP

Programmer’s Ultimate Security DeskRef • ASP 9

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 9

TLFeBOOK

Description: The attachfile method is used to read a file and add it as the
attachment to the message.The method requires the NewMail object as well as the
name of the file to be attached.

Risk: To prevent excessive attachments from being posted to the system that may
use up system storage resources and cause elevated network usage in transfer, both
the files being attached, and the attachment collection should be regulated for size.

Note: ASP CDONTS External Library

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/iissdk/iis/com_components_for_iis.asp

Impact: High

newmail.attachurl
Prototype: objNewMail.AttachURL(Source, ContentLocation [,
ContentBase] [, EncodingMethod])

Summary: This method is used to associate a URL with the attachment to a message.

Description: The attachurl method is used to associate a URL with the attach-
ment to a message.

Risk: URLs should be stripped of query stings and special characters that could
cause the passing of parameters and data to a malicious third-party site.

Note: ASP CDONTS External Library

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/iissdk/iis/com_components_for_iis.asp

Impact: High

newmail.send
Prototype: objNewMail.Send([From] [, To] [, Subject] [, Body]
[, Importance])

www.syngress.com

A
SP

10 ASP • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 10

TLFeBOOK

Summary: This method is used to send the NewMail object to the specified
addresses.

Description: The send method is used to send the NewMail object to the speci-
fied addresses.

Risk: Unless properly filtered, this method could allow a malicious user to SPAM
user mail with bogus or unrequested information.Additionally creating mail
exceeding application capabilities can result in a denial of service on the system by
filling quotas and utilizing all of the system resources. Proper regulation of message
distribution should be used to prevent usage abuse.

Note: ASP CDONTS External Library

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/iissdk/iis/com_components_for_iis.asp

Impact: Low

newmail.setlocaleids
Prototype: objNewMail.SetLocaleIDs(CodePageID)

Summary: This method is used to set the local identifier.

Description: The setlocaleids method is used to set the local identifier. It
determines various information such as time zone, language, date, or currency.

Risk: When using setlocaleids, input values must be carefully regulated. In the
instance of currency, item A might cost 1 dollar, but cost 1.8 euros. If an attacker
managed to manipulate the lcid, he could then purchase an item for nearly half
price. In general input, data should be verified to prevent data manipulation which
can occur on the client end.

Note: ASP CDONTS External Library

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/iissdk/iis/com_components_for_iis.asp

Impact: Medium

www.syngress.com

A
SP

Programmer’s Ultimate Security DeskRef • ASP 11

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 11

TLFeBOOK

recipients.add
Prototype: Set objRecip = collRecips.Add([name] [, address]
[, type])

Summary: This method is used to add a new recipient to the recipients collection.

Description: The add method is used to add a new recipient to the recipients col-
lection.

Risk: Inputs to the recipients collection should be regulated to ensure additional
users are not added to the collection by mistake. Unintended users receive messages
by accident or malicious actions could result in the disclosure of sensitive
information.

Note: ASP CDONTS External Library

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/iissdk/iis/com_components_for_iis.asp

Impact: High

recipients.delete
Prototype: collRecips.Delete()

Summary: This method is used to remove every recipient associated with the
recipients collection.

Description: The delete method is used to remove every recipient associated
with the recipients collection.

Risk: On multiuser systems, the delete collection method could cause denial of ser-
vice on the system by allowing malicious code to continuous remove recipients
from the collection preventing the distribution of messages.

Note: ASP CDONTS External Library

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/iissdk/iis/com_components_for_iis.asp

Impact: High

www.syngress.com

A
SP

12 ASP • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 12

TLFeBOOK

request.binaryread
Prototype: Request.BinaryRead(count)

Summary: This method is used to read the data sent to the server via a post
request.

Description: The BinaryRead method is used to read the data sent the server
from the client via a post request (usually a form).This data is stored in a safe array.
BinaryRead does require that you tell it how much of the data is to be read (i.e.,
Request.TotalBytes). Once BinaryRead is called, any additional calls using
Request.Form will generate an error.

Risk: Even though the BinaryRead method prevents additional posting of infor-
mation once a transaction is complete, it does not account for transaction hijacking
which is unlikely but could still occur during a process.Any information obtained
from the BinaryRead method should be thoroughly analyzed before usage.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: Medium

request.cookiescollection
Prototype: Response.Cookies(name)[(key)|.attribute]=value
variablename=Request.Cookies(name)[(key)|.attribute]

Summary: The Cookies collection contains all cookies sent with a given
HTTP request.

Description: The Cookies collection is used to create, modify, delete or
retrieve a cookie. When a session is created with a server the values stored in a given
cookie are read into this collection.This collection holds all the information from
the cookies. Just like a form, one cookie can have multiple values stored in
key/value pairs.

Risk: This method provides access to all cookies obtained during a particular trans-
action.A malicious user could use this method to gain access to critical information

www.syngress.com

A
SP

Programmer’s Ultimate Security DeskRef • ASP 13

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 13

TLFeBOOK

provided in the session. It is a common mistake of Web developers to pass sensitive
information to the client via cookies in order to maintain state. Sensitive date should
be maintained on the server and never passed to the client where it can be manipu-
lated and fed back to the server.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: Medium

request.querystringcollection
Prototype: Request.QueryString(variable)[(index)|.Count]

Summary: The QueryString collection contains data sent in a request in
name/value pairs.

Description: The QueryString collection is used to retrieve the values that
are given in the HTTP query string.A QueryString is the additional information
that proceeds a ‘?’ after the file name in the URL box of a browser.These are
name/value pairs joined together by an ‘=’ and if multiple pairs are found the
groups are separated by an ‘&’.This data can be retrieved by either specifying the
key or a location.The QueryString collection is identical to that of the
ServerVariable Query_String.

Risk: QueryStrings are often used by malicious users in attacks such as SQL
injections. When using QueryStrings, it is important to filter all inputs and
ensure parameter integrity. Failure to do so may result in authentication bypass or
data compromise.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: High

request.servervariablescollection
Prototype: Request.ServerVariables (server_variable)

www.syngress.com

A
SP

14 ASP • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 14

TLFeBOOK

Summary: The ServerVariables collection contains information about
the server.

Description: The ServerVariables collection is used to retrieve HTTP
headers and various pieces of information about the server and the request.These
HTTP headers can contain information such as the Query_string, referring page,
script location, and client operating system.These headers are created every time a
request is sent to the Web server.

Risk: The ServerVariables method returns HTTP headers, which can contain
information such as the Query_string, referring page, script location, and client
operating system. Interception of this information may result in either server infor-
mation or client information exposure providing attackers with otherwise restricted
information.Additionally malicious users can falsify information disclosed to manip-
ulate application behavior.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: High

response.addheader
Prototype: response.AddHeader name,value

Summary: This method is used to add or modify an HTTP header

Description: The addHeader method is used to add or modify an HTTP header.
Once a header has been added it cannot be removed.

Risk: Malicious users can falsify information from the header to manipulate applica-
tion behavior.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: Medium

www.syngress.com

A
SP

Programmer’s Ultimate Security DeskRef • ASP 15

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 15

TLFeBOOK

response.appendtolog
Prototype: response.AppendToLog string

Summary: This method is used to add information to the Web log.

Description: The AppendtoLog method is used to add information to the Web
log for a given request.This information is usually a string giving more information
about the request.You may call this method multiple times in one script, each time
adding additional information to the log.This information will be included at the
end of the log entry.

Risk: This method should be regulated, otherwise an attacker can overwrite Web
logs or write excessive logs to fill file system capacity.This can effectively cause a
Denial of Service to an application or a system.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: Medium

response.binarywrite
Prototype: response.BinaryWrite data

Summary: This method is used to write data directly to the output.

Description: The BinaryWrite method is used to write data directly to the out
without any type of conversion.This could be useful for storing images in a database
or sending data to an image generator.This method does require that you specify
the data to be written.

Risk: Usage of BinaryWrite should be regulated to ensure malicious users do not
write to otherwise restricted data storage areas, or write over data segments without
proper privilege levels.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: Medium

www.syngress.com

A
SP

16 ASP • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 16

TLFeBOOK

response.flush
Prototype: Response.Flush

Summary: This method is used to immediately output all buffered HTML.

Description: The Flush method is used to output all buffered HTML data to the
client’s screen immediately.This useful if you are trying to output a larger file, the
flush method will be able to display data a little at a time. In order to use this
method successfully you must set the response.buffer = true, otherwise it will
generate an error.

Risk: Information contained in the buffer can be flushed to the client at any given
time. For this reason no vital data should be stored in buffer errors even for tempo-
rary storage.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: Low

response.redirect
Prototype: Response.Redirect URL

Summary: This method is used to redirect the client to a specified URL.

Description: The redirect method is called when you want the server to redi-
rect the client to a different Web page.This method does require that you specify
the URL you want to redirect to, this URL can be a relative path (If on the same
site) or a fully qualified URL beginning with http:// (if it is on an external site).

Risk: Redirects can be captured by an attacker and forged to force clients into
spoofed Web pages creating the potential for clients to disclose sensitive information
to malicious sites.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: Low

www.syngress.com

A
SP

Programmer’s Ultimate Security DeskRef • ASP 17

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 17

TLFeBOOK

response.write
Prototype: Response.Write string

Summary: This method is used to write a string to the output.

Description: The write method is used to write a specified string to the current
page. When calling this method, it is required that you specify the string to be
written.

Risk: All inputs to this method should be thoroughly parsed to prevent the poten-
tial for cross-site scripting attacks. Input parameters should be restricted to alphanu-
meric characters to prevent command executions during processing.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: Medium

server.execute
Prototype: Server.Execute(path)

Summary: This method is used to execute other ASP files out side of the current
document.

Description: The Execute method is used when you need to run another ASP
file from within an ASP file.After the outside file has been run to completion the
first page will finish executing its own code.This method does require the path to
the file that needs to be executed.

Risk: Any instance where an application calls an outside program should be tightly
restricted.Allowing execution of programs outside of the application opens the door
for malicious code to be executed with system or application privileges which can
be further escalated by an attacker.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: High

www.syngress.com

A
SP

18 ASP • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 18

TLFeBOOK

server.getlasterror
Prototype: Server.GetLastError()

Summary: This method is used to return an ASPError object for an error that
just occurred.

Description: The getlasterror method is used to return an ASPError object
for an error that just occurred.

Risk: Gaining access to errors caused by malicious code or queries, can allow the
attacker to determine payload information containing such data as system info,
application configuration, or memory storage.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: Medium

server.htmlencode
Prototype: Server.HTMLEncode(string)

Summary: This method applies HTML encoding to a given string.

Description: The htmlencode method is used to apply HTML encoding to a
given string.This is very useful when trying to output HTML code.This method
will encode all special characters that HTML usually interprets as identifiers.This
method requires that a string be passed to it.

Risk: Inputs received after encoding may need to be decoded before being pro-
cesses, otherwise there is the risk that malicious or otherwise invalid strings can be
passed through the application.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: Medium

www.syngress.com

A
SP

Programmer’s Ultimate Security DeskRef • ASP 19

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 19

TLFeBOOK

server.urlencode
Prototype: Server.URLEncode(string)

Summary: This method applies URL encoding to a given string.

Description: The urlencode method is used to apply URL encoding to a given
string.This is useful for passing URLs in query_strings. It will convert all char-
acters to valid URL characters to ensure data integrity.

Risk: Inputs received after encoding may need to be decoded before being pro-
cesses, otherwise there is the risk that malicious or otherwise invalid strings can be
passed through the application.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: Medium

session.lcid
Prototype: Session.LCID(=LCID)

Summary: This property is used to set the local identifier.

Description: The lcid property is used to set the local identifier.The lcid
determines various information such as time zone, language, date, or currency. If a
location identifier has not been installed, it cannot be set.

Risk: When using lcid, input values must be carefully regulated. In the instance of
currency, item A might cost 1 dollar, but cost 1.8 euros. If an attacker managed to
manipulate the lcid he could then purchase an item for nearly half off. In general,
input data should be verified to prevent any data manipulation that might occur on
the client end.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: High

www.syngress.com

A
SP

20 ASP • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 20

TLFeBOOK

session.sessionID
Prototype: Session.SessionID

Summary: This property is used to return a unique identifier for this session.

Description: The SessionID property is a unique identifier that is generated by
the server the instant a session is created and is unique to that particular session.This
property is read-only.

Risk: Relying solely on the ID for user authentication can lead to spoofed informa-
tion which may cause data corruption, or unauthorized access to Web content.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: High

session.session_onend
Prototype: session.session_onend()

Summary: This method is called when a session ends.

Description: The session_onend method is called every single time a client
ends a session.This could be useful in tracking total number of current active ses-
sions and would usually be found in your global.asa file.

Risk: The onend method can be used to close sessions preventing further access to
session data. User permissions should be closely regulated to prevent one session
from ending another upon exit.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: Low

www.syngress.com

A
SP

Programmer’s Ultimate Security DeskRef • ASP 21

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 21

TLFeBOOK

session.session_onstart
Prototype: session.session_onstart()

Summary: This method is called when a session begins.

Description: The session_onstart method is called every single time a client
creates a new session.This could be useful in tracking total number of current active
sessions and would usually be found in your global.asa file.

Risk: Using the onstart method a malicious user could continue to create new
sessions until the systems capacity to handle sessions was full.This would in effect
deny service to the application.To prevent permanent session locking, timing con-
trols should be established to timeout sessions on inactivity.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/cdo/html/_denali_newmail_object_cdonts_library_.asp

Impact: Low

www.syngress.com

A
SP

22 ASP • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_ASP.qxd 10/11/04 4:27 PM Page 22

TLFeBOOK

Programmer’s
Ultimate Security
DeskRef: C

_cprintf
Prototype: int _cprintf(const char *format [,
argument] ...)

Summary: This function formats and outputs a string to the
console.

Description: Using the input string “format” this function will
output a string to the console. It uses the inputs to define the format
of the output string and the content.The format (and content) is held
in the constant string “format”, and the argument (if any) provides
values to variables and additional content.The formatting is similar to
that of printf.The function returns the number of characters
printed to the console.

Risk: This function is potentially vulnerable to a format string attack
where an attacker could cause the application to crash unexpected or
execute arbitrary code. Format string bugs were discovered in 2000
and the problem is typically spawned from user input that is not
properly filtered. Both Microsoft .Net and SPI Dynamics to name
two have secure objects that can be implemented to check strings and

23

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 23

TLFeBOOK

24 C • Programmer’s Ultimate Security DeskRef

user input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt__cprintf.asp

Impact: Medium

Cross References: _cscanf, fprintf, printf, sprintf, vfprint

_cscanf
Prototype: int _cscanf(const char *format [, argument] ...)

Summary: This function reads and assigns formatted data from the console
command line.

Description: This function reads incoming formatted data from the console com-
mand line.The function input string “format” defines the formatting scheme for
the data, while the arguments (if any) provide locations for the data assignment.The
function returns the number of properly converted and assigned fields.A return
value of 0 means that no fields were assigned.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 24

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 25

printf(“%s”, malicious_string) instead of
printf(malicious_string).

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt__cscanf.asp

Impact: Medium

Cross References: _cprintf, fscanf, scanf, sscanf

_execl
Prototype: int _execl(const char *cmdname, const char *arg0,…
const char *argn, NULL)

Summary: This function executes a file from within the current shell.

Description: The function will execute a file pointed to by the argument “cmd-
name”, which contains the path to file to be executed.The other input arguments
(arg0, arg1, …, argN) are command line parameters to be used in the execu-
tion of the file. Ideally, the function does not return a value, as it does not return to
the calling process. However, upon an error, a value of -1 is returned and the global
variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 25

TLFeBOOK

26 C • Programmer’s Ultimate Security DeskRef

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__execl.2c_._wexecl.asp

Impact: High

Cross References: abort, atexit, exit, _onexit, _spawn, system, _wexecl

_execle
Prototype: int _execle(const char *cmdname, const char *arg0,
... const char *argn, NULL, const char *const *envp)

Summary: This function executes a file from within the current shell with an
additional argument for an array of environment parameters.

Description: The function will execute a file pointed to by the argument “cmd-
name”, which contains the path to file to be executed.The second set of input
arguments (arg0, arg1, …, argN) are command line parameters to be used in
the execution of the file.The final input argument is the array of pointers to envi-
ronmental parameters needed for file execution. Like _execl, the function does not
return a value unless an error occurs, as it does not return to the calling process.
However, upon an error, a value of -1 is returned and the global variable ERRNO
is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 26

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 27

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__execle.2c_._wexecle.asp

Impact: High

Cross References: abort, atexit, exit, _onexit, _spawn, system, _wexecle

_execlp
Prototype: int _execlp(const char *cmdname, const char *arg0,
... const char *argn, NULL)

Summary: This function executes a file from within the current shell, searching for
it from the PATH environment variable.

Description: The function will execute a file pointed to by the argument “cmd-
name”, searching in the system’s PATH for the file.The other input arguments
(arg0, arg1, …, argN) are command line parameters to be used in the execu-
tion of the file. Ideally, the function does not return a value, as it does not return to
the calling process. However, upon an error, a value of -1 is returned and the global
variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt__execlp.2c_._wexeclp.asp

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 27

TLFeBOOK

28 C • Programmer’s Ultimate Security DeskRef

Impact: High

Cross References: abort, atexit, exit, _onexit, _spawn, system, _
wexeclp

_execlpe
Prototype: int _execlpe(const char *cmdname, const char
*arg0, … const char *argn, NULL, const char *const *envp)

Summary: This function executes a file from within the current shell, searching for
it from the PATH environment variable, with a separate input for environmental
parameters.

Description: The function will execute a file pointed to by the argument “cmd-
name”, searching for it in the system’s PATH environment variable.The next input
arguments (arg0, arg1, …, argN) are command line parameters to be used in
the execution of the file.The final input argument is the array of pointers to envi-
ronmental parameters needed for file execution. Ideally, the function does not return
a value, as it does not return to the calling process. However, upon an error, a value
of -1 is returned and the global variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt__execlpe.2c_._wexeclpe.asp

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 28

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 29

Impact: High

Cross References: abort, atexit, exit, _onexit, _spawn, system, _wexeclpe

_execv
Prototype: int _execv(const char *cmdname, const char *const
*argv)

Summary: This function executes a file with an array of pointers to be passed to
the command line.

Description: The function will execute a file pointed to by the argument “cmd-
name”, which contains the path to the file to be executed.The other input argu-
ment, “argv”, is an array command line parameter to be used in the execution of
the file. Ideally, the function does not return a value, as it does not return to the
calling process. However, upon an error, a value of -1 is returned and the global
variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt__execv.2c_._wexecv.asp

Impact: High

Cross References: abort, atexit, exit, _onexit, _spawn, system, _wexecv

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 29

TLFeBOOK

30 C • Programmer’s Ultimate Security DeskRef

_execve
Prototype: int _execve(const char *cmdname, const char *const
*argv, const char *const *envp)

Summary: This function executes a file with an array of pointers to be passed to
the command line, keeping control over the environmental parameters.

Description: The function will execute a file pointed to by the argument “cmd-
name”, which contains the path to file to be executed.The next input argument,
“argv”, is an array of command line parameters to be used in the execution of the
file.The final input argument is an array of environmental parameters for file execu-
tion. Ideally, the function does not return a value, as it does not return to the calling
process. However, upon an error, a value of -1 is returned and the global variable
ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt__execve.2c_._wexecve.asp

Impact: High

Cross References: abort, atexit, exit, _onexit, _spawn, system, _
wexecve

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 30

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 31

_execvp
Prototype: int _execvp(const char *cmdname, const char *const
*argv)

Summary: This function executes a file with an array of pointers to be passed to
the command line using the environment variable PATH to find the file.

Description: The function will execute a file pointed to by the argument “cmd-
name”, searching for it using the environmental variable PATH.The other input
argument, “argv”, is an array command line parameters to be used in the execu-
tion of the file. Ideally, the function does not return a value, as it does not return to
the calling process. However, upon an error, a value of -1 is returned and the global
variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt__execvp.2c_._wexecvp.asp

Impact: High

Cross References: abort, atexit, exit, _onexit, _spawn, system, _
wexecvp

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 31

TLFeBOOK

32 C • Programmer’s Ultimate Security DeskRef

_execvpe
Prototype: int _execvpe(const char *cmdname, const char
*const *argv, const char *const *envp)

Summary: This function executes a file with an array of pointers to be passed to
the command line using the environment variable PATH, as well as another array of
pointers containing environmental parameters.

Description: The function will execute a file pointed to by the argument “cmd-
name”, searching for it using the environmental variable PATH.The next input
argument, “argv”, is an array command line parameters to be used in the execu-
tion of the file.The final input argument is another array of pointers to environ-
mental parameters to be used on execution. Ideally, the function does not return a
value, as it does not return to the calling process. However, upon an error, a value of
-1 is returned and the global variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt__execvpe.2c_._wexecvpe.asp

Impact: High

Cross References: abort, atexit, exit, _onexit, _spawn, system, _wexecvpe

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 32

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 33

_ftprintf
Prototype: int _ftprintf(FILE *stream, const _tchar *format
[, argument]...)

Summary: This function prints a string to a file stream.

Description: This function attempts to print a string to a filestream. It has two
format input arguments.The first is the filestream to be written to, while the second
is the t-character string to write. Informally, the function may have more arguments,
as the string could have its own arguments due to formatting.The function returns
the number of characters written to the stream. In the event of an error, the func-
tion returns a negative value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Formatted-Output-
Functions.html#Formatted%20Output%20Functions;
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt_fprintf.2c_.fwprintf.asp

Impact: Medium

Cross References: _cprintf, fscanf, sprintf

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 33

TLFeBOOK

34 C • Programmer’s Ultimate Security DeskRef

_ftscanf
Prototype: int _ftscanf(FILE *stream, const _tchar *format [,
argument]...)

Summary: This function reads pre-formatted data from a filestream.

Description: This function attempts to read formatted data from given filestream.
The function has two formal arguments: the filestream and the t-character string
which will house the new data read into it.The function may have informal argu-
ments due to the formatting of the data, and the requisite arguments needed for
compiler clarification in the string.The function will return the number of charac-
ters read. However, in the event of an error, it will return a negative number.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Formatted-Input-
Functions.html#Formatted%20Input%20Functions;
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt_fscanf.2c_.fwscanf.asp

Impact: Medium

Cross References: cscanf, fprintf, scanf, sscanf

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 34

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 35

_mbscat
Prototype: unsigned char *_mbscat(unsigned char *destination,
const unsigned char *source)

Summary: This function concatenates the multibyte-character source string onto
the multibyte-character destination string

Description: The function concatenates the multibyte-character source string onto
the multibyte-character destination string by overwriting the null character of the
destination with the first character of the source. It closes off the new string by
tacking on a null character to the end of the source string.The function is unde-
fined if the two strings overlap.The returned value is the new destination string,
with no defined value if an error occurs.

Risk: Multibyte strings have the potential to be very large strings that can be
potentially leveraged in a buffer overflow attack scenario.These strings should
restrict characters to include only those that are required by the application to func-
tion.Additionally, standard string manipulation functions should be utilized instead
of large multibyte strings in all cases possible. Ensure that the destination buffer is of
appropriate size and that the source buffer is limited to the size -1.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt_strcat.2c_.wcscat.2c_._mbscat.asp

Impact: Low

Cross References: strncat, strncmp, strncpy, _strnicmp, strrchr,
strspn, wcscat

_mbscpy
Prototype: unsigned char *_mbscpy(unsigned char *destination,
const unsigned char *source)

Summary: This function copies the multibyte-character source string to a multi-
byte-character destination string.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 35

TLFeBOOK

36 C • Programmer’s Ultimate Security DeskRef

Description: The function copies the multibyte-character source string into the
multibyte-character destination string. It closes off the new string by tacking on a
null character to the end of the source string.The function is undefined if the two
strings overlap.The returned value is the new destination string, with no defined
value if an error occurs.

Risk: Multibyte strings have the potential to be very large strings that can be
potentially leveraged in a buffer overflow attack scenario.These strings should
restrict characters to include only those that are required by the application to func-
tion.Additionally, standard string manipulation functions should be utilized instead
of large multibyte strings in all cases possible. Ensure that the destination buffer is of
appropriate size and that the source buffer is limited to the size -1.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt_strcpy.2c_.wcscpy.2c_._mbscpy.asp

Impact: Medium

Cross References: strcat, strcmp, strncat, strncmp, strncpy,
_strnicmp, strrchr, strspn, wcscpy

_mbslen
Prototype: size_t _mbslen(const unsigned char *string)

Summary: This function reads and returns the length of a multibyte-character
string.

Description: This function reads the multibyte-characeter string passed to it in the
input argument and returns the number of characters in the string (excluding the
null character).The return value is undefined in the case of an error.This function
does not do a validation check on the incoming string.

Risk: Multibyte strings have the potential to be very large strings that can be
potentially leveraged in a buffer overflow attack scenario.These strings should
restrict characters to include only those that are required by the application to func-
tion.Additionally, standard string manipulation functions should be utilized instead

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 36

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 37

of large multibyte strings in all cases possible. Ensure that the destination buffer is of
appropriate size and that the source buffer is limited to the size -1.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt_strlen.2c_.wcslen.2c_._mbslen.2c_._mbstrlen.asp

Impact: Low

Cross References: setlocale, strcat, strcmp, strcoll, strcpy, strrchr,
_strset, strspn, wcslen

_mbsnbcat
Prototype: unsigned char *_mbsnbcat(unsigned char *destina-
tion, const unsigned char *source, size_t count)

Summary: This function concatenates a multibyte-character string onto a multi-
byte-character string with a limiting variable.

Description: This function concatenates the multibyte-character string “source”
onto the end of “destination”, overwriting the null character in “destina-
tion” the function proceeds until the lesser of “count” or the length of
“source” is reached. It terminates the destination string with a null character.The
function returns the string “destination”.The return value is not set if an error
occurs during string concatenation.

Risk: Multibyte strings have the potential to be very large strings that can be
potentially leveraged in a buffer overflow attack scenario.These strings should
restrict characters to include only those that are required by the application to func-
tion.Additionally, standard string manipulation functions should be utilized instead
of large multibyte strings in all cases possible. Ensure that the destination buffer is of
appropriate size and that the source buffer is limited to the size -1.

Note: At time of publication, this function was designed for Windows compatibility.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 37

TLFeBOOK

38 C • Programmer’s Ultimate Security DeskRef

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt__mbsnbcat.asp

Impact: Low

Cross References: _mbsnbcmp, _mbsnbcnt, _mbsnccnt, _mbsnbcpy, _mbsnbicmp,
_mbsnbset, strncat

_mbsnbcpy
Prototype: unsigned char * _mbsnbcpy(unsigned char
*destination, const unsigned char *source, size_t count)

Summary: This function copies a multibyte-character string into another multi-
byte-character string with a limiting variable.

Description: This function copies the multibyte-character string “source” into
the multibyte-character string “destination”.The function proceeds until the
lesser of “count” or the length of “source” is reached. It terminates the destina-
tion string with a null character.The function returns the string “destination”.
The return value is not set if an error occurs during string copying.

Risk: Multibyte strings have the potential to be very large strings that can be
potentially leveraged in a buffer overflow attack scenario.These strings should
restrict characters to include only those that are required by the application to func-
tion.Additionally, standard string manipulation functions should be utilized instead
of large multibyte strings in all cases possible. Ensure that the destination buffer is of
appropriate size and that the source buffer is limited to the size -1.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resource
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt__mbsnbcpy.asp

Impact: Low

Cross References: _mbsnbcat, _mbsnbcmp, _mbsnbcnt, _mbsnccnt,
_mbsnbicmp, _mbsnbset, _mbsncpy

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 38

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 39

_mbsncpy
Prototype: unsigned char *_mbsncpy(unsigned char *destina-
tion, const unsigned char *source, size_t count)

Summary: This function copies a multibyte-character string into another multi-
byte-character string with a limiting variable.

Description: This function copies the multibyte-character string “source” into
the multibyte-character string “destination”.The function proceeds until the
lesser of “count” or the length of “source” is reached. It terminates the destina-
tion string with a null character.The function returns the string “destination”.
The return value is not set if an error occurs during string copying.

Risk: Multibyte strings have the potential to be very large strings that can be
potentially leveraged in a buffer overflow attack scenario.These strings should
restrict characters to include only those that are required by the application to func-
tion.Additionally, standard string manipulation functions should be utilized instead
of large multibyte strings in all cases possible. Ensure that the destination buffer is of
appropriate size and that the source buffer is limited to the size -1.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt_strncpy.2c_.wcsncpy.2c_._mbsncpy.asp

Impact: Low

Cross References: _mbsnbcpy, strcat, strcmp, strcpy, strncat, strncmp,
_strnicmp, strrchr, _strset, strspn

_snprintf
Prototype: int _snprintf(char *buffer, size_t count, const
char *format [, argument] ...)

Summary: This function prints a predetermined number of characters to a new
formatted string.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 39

TLFeBOOK

40 C • Programmer’s Ultimate Security DeskRef

Description: The function takes the string “format” and its arguments, printing
the resultant string to “buffer”. It copies only the number specified by the lesser
of “count” or the length of the string to be printed. It only appends a null char-
acter if “count” is less than the length of the string.The function is undefined if
overlapping occurs between the “format” and “buffer” strings. It returns the
number of bytes being stored in the string “buffer” (excluding the null character,
if it exists).

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt__snprintf.2c_._snwprintf.asp

Impact: Medium

Cross References: sprintf, fprintf, printf, scanf, sscanf, vprintf, _snwprintf

_snwprintf
Prototype: int _snwprintf(wchar_t *buffer, size_t count,
const wchar_t *format [, argument] ...)

Summary: This function prints a predetermined number of wide characters to a
new formatted string.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 40

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 41

Description: The function takes the wide-character string “format” and its argu-
ments, printing the resultant wide-character string to “buffer”. It copies only the
number specified by the lesser of “count” or the length of the string to be printed.
It only appends a null character if “count” is less than the length of the string.The
function is undefined if overlapping occurs between the “format” and “buffer”
strings. It returns the number of wide characters being stored in the string
“buffer” (excluding the null character, if it exists).

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt__snprintf.2c_._snwprintf.asp

Impact: Medium

Cross References: sprintf, fprintf, printf, scanf, sscanf, vprintf,
_snprintf

_spawnl
Prototype: int _spawnl(int mode, const char *cmdname, const
char *arg0, const char *arg1, ... const char *argn, NULL)

Summary: This function executes a file with control given over the execution
mode.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 41

TLFeBOOK

42 C • Programmer’s Ultimate Security DeskRef

Description: The function executes the file given by the path “cmdname”. It exe-
cutes it using the mode determined by “mode”.The remaining input arguments are
the parameters to passed to the command line with the execution of the file.The
function has two options for its timing, synchronous and asynchronous.The syn-
chronous timing function call returns the exit status of the executed file.The asyn-
chronous timing function call returns the handle of the process associated with the
file execution. In the case of an error, the value “errno” will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt__spawnl.2c_._wspawnl.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp,
_onexit, _setmbcp, system, _wspawnl

_spawnle
Prototype: int _spawnle(int mode, const char *cmdname, const
char *arg0, const char *arg1, ... const char *argn, NULL,

const char *const *envp)

Summary: This function executes a file with control given over the execution
mode and environmental parameters.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 42

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 43

Description: The function executes the file given by the path “cmdname”. It exe-
cutes it using the mode determined by “mode”.The next input arguments are the
parameters to passed to the command line with the execution of the file.The final
input arguments are the environmental parameters to be passed.The function has
two options for its timing, synchronous and asynchronous.The synchronous timing
function call returns the exit status of the executed file.The asynchronous timing
function call returns the handle of the process associated with the file execution. In
the case of an error, the value “errno” will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt__spawnle.2c_._wspawnle.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp,
_onexit, _setmbcp, system, _wspawnle

_spawnlp
Prototype: int _spawnlp(int mode, const char *cmdname, const
char *arg0, const char *arg1, ... const char *argn, NULL)

Summary: This function executes a file (in the environment variable PATH) with
control given over the execution mode.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 43

TLFeBOOK

44 C • Programmer’s Ultimate Security DeskRef

Description: The function executes the file given by “cmdname”, but that’s
located in the PATH environment variable. It executes it using the mode deter-
mined by “mode”.The remaining input arguments are the parameters to passed to
the command line with the execution of the file.The function has two options for
its timing, synchronous and asynchronous.The synchronous timing function call
returns the exit status of the executed file.The asynchronous timing function call
returns the handle of the process associated with the file execution. In the case of an
error, the value “errno” will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__spawnlp.2c_._wspawnlp.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp, _onexit, _setmbcp,
system, _wspawnlp

_spawnlpe
Prototype: int _spawnlpe(int mode, const char *cmdname, const
char *arg0, const char *arg1, ... const char *argn, NULL,

const char *const *envp)

Summary: This function executes a file (in the environment variable PATH) with
control given over the execution mode and the environmental parameters.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 44

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 45

Description: The function executes the file given by “cmdname” but that’s
located in the PATH environment variable. It executes it using the mode deter-
mined by “mode”.The next input arguments are the parameters to passed to the
command line with the execution of the file.The final input arguments are the
environmental parameters to be used during file execution.The function has two
options for its timing, synchronous and asynchronous.The synchronous timing func-
tion call returns the exit status of the executed file.The asynchronous timing func-
tion call returns the handle of the process associated with the file execution. In the
case of an error, the value “errno” will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt__spawnlpe.2c_._wspawnlpe.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp, _onexit, _setmbcp,
system, _wspwanlpe

_spawnv
Prototype: int _spawnv(int mode, const char *cmdname, const
char *const *argv)

Summary: This function executes a file with control given over the execution
mode.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 45

TLFeBOOK

46 C • Programmer’s Ultimate Security DeskRef

Description: The function executes the file given by the path “cmdname”. It exe-
cutes it using the mode determined by “mode”.The remaining input argument is a
pointer to the parameters to passed to the command line with the execution of the
file.The function has two options for its timing, synchronous and asynchronous.The
synchronous timing function call returns the exit status of the executed file.The
asynchronous timing function call returns the handle of the process associated with
the file execution. In the case of an error, the value “errno” will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt__spawnv.2c_._wspawnv.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp,
_onexit, _setmbcp, system, _wspawnv

_spawnve
Prototype: int _spawnve(int mode, const char *cmdname, const
char *const *argv, const char *const *envp)

Summary: This function executes a file with control given over the execution
mode and environmental parameters.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 46

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 47

Description: The function executes the file given by the path “cmdname”. It exe-
cutes it using the mode determined by “mode”.The next input argument is a
pointer to the parameters to passed to the command line with the execution of the
file.The last input argument is an array of pointers containing the environmental
parameters for file execution.The function has two options for its timing, syn-
chronous and asynchronous.The synchronous timing function call returns the exit
status of the executed file.The asynchronous timing function call returns the handle
of the process associated with the file execution. In the case of an error, the value
“errno” will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt__spawnve.2c_._wspawnve.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp, _onexit, _setmbcp,
system, _wspawnve

_spawnvp
Prototype: int _spawnvp(int mode, const char *cmdname, const
char *const *argv)

Summary: This function executes a file (from within the environmental variable
PATH) with control given over the execution mode.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 47

TLFeBOOK

48 C • Programmer’s Ultimate Security DeskRef

Description: The function executes the file given by “cmdname” but that’s
located in the PATH environment variable. It executes it using the mode deter-
mined by “mode”.The remaining input argument is an array containing the param-
eters to passed to the command line with the execution of the file.The function has
two options for its timing, synchronous and asynchronous.The synchronous timing
function call returns the exit status of the executed file.The asynchronous timing
function call returns the handle of the process associated with the file execution. In
the case of an error, the value “errno” will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt__spawnvp.2c_._wspawnvp.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp, _onexit, _setmbcp,
system, _wspawnvp

_spawnvpe
Prototype: int _spawnvpe(int mode, const char *cmdname, const
char *const *argv, const char *const *envp)

Summary: This function executes a file (from within the environmental variable
PATH) with control given over the execution mode and environmental parameters.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 48

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 49

Description: The function executes the file given by “cmdname” but that’s
located in the PATH environment variable. It executes it using the mode deter-
mined by “mode”.The next input argument is an array containing the parameters
to passed to the command line with the execution of the file.The final input argu-
ment is another array of pointers, though to the environmental parameters for file
execution.The function has two options for its timing, synchronous and asyn-
chronous.The synchronous timing function call returns the exit status of the exe-
cuted file.The asynchronous timing function call returns the handle of the process
associated with the file execution. In the case of an error, the value “errno” will
be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt__spawnvpe.2c_._wspawnvpe.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp, _onexit, _setmbcp,
system, _wspawnvpe

_stprintf
Prototype: int _stprintf (_tchar *buffer, const _tchar *tem-
plate)

Summary: This function prints a formatted array of characters to a string.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 49

TLFeBOOK

50 C • Programmer’s Ultimate Security DeskRef

Description: The function attempts to print a formatted array of t-characters to a
string. It has two formal arguments: the new string and the array to be printed.
However, as it can be formatted data, there can be subsequent, informal arguments.
The function will return the number of t-characters printed. However, in the event
of an error, the function returns a negative value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Formatted-Output-
Functions.html#Formatted%20Output%20Functions;
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt_sprintf.2c_.swprintf.asp

Impact: Medium

Cross References: _ftprintf, _tprintf, _tscanf

_stscanf
Prototype: int _stscanf(const _thar *buffer, const _tchar
*format [, argument])

Summary: The function reads a formatted array of characters from a string.

Description: The function attempts to scan a formatted array of t-characters from
a string. It has two formal arguments: the string which the function will read and

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 50

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 51

the array to be read in to. However, as it can be formatted data, there can be subse-
quent, informal arguments.The function will return the number of t-characters
read. However, in the event of an error, the function returns a negative value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Formatted-Input-
Functions.html#Formatted%20Input%20Functions;
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt_sscanf.2c_.swscanf.asp

Impact: Medium

Cross References: _ftscanf, _tscanf, _tsprintf

_tcscat
Prototype: _tchar *_tcscat(_thar *destination, const _tchar
*source)

Summary: This function concatenates a string onto the end of another.

Description: The function attempts to append one string onto the end of another.
It has two input arguments: the source and destination strings.The function will
return a pointer to the destination string when finished. In the event of an error, the

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 51

TLFeBOOK

52 C • Programmer’s Ultimate Security DeskRef

function can return a NULL pointer.All strings in this function are given as t-char-
acter strings.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Copying-
and-Concatenation.html#Copying%20and%20Concatenation;
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt_strcat.2c_.wcscat.2c_._mbscat.asp

Impact: Medium

Cross References: _tcscpy, _tcslen, _tcsncat, _tcsncpy

_tcscpy
Prototype: _tchar *_tcscpy(_tchar *destination, const _tchar
*source)

Summary: This function copies a string onto another.

Description: The function attempts to copy one string onto another. It has two
input arguments: the source and destination strings.The function will return a
pointer to the destination string when finished. In the event of an error, the func-
tion can return a NULL pointer.All of the strings in this function are to be given as
t-character strings.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 52

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 53

less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Copying-
and-Concatenation.html#Copying%20and%20Concatenation;
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt_strcpy.2c_.wcscpy.2c_._mbscpy.asp

Impact: Medium

Cross References: _tcscat, _tcslen, _tcsncat, _tcsncpy

_tcslen
Prototype: size_t _tcslen(const _tchar *string)

Summary: This function finds the length of a string.

Description: The function attempts to find the length of the t-character string. It
has only one input argument: the string to get the length of.The function will
return an integer indicating the length of the string. In the event that the string does
not exist or an error occurs, the function can return 0.

Risk: The length of a string is commonly ascertained before it is passed to a func-
tion that utilizes it to calculate the space required for a destination buffer. Ensure
that human users do not have the ability to modify this number thereby potentially
making it smaller than the destination. Calculate the length of the source then add
one byte so to avoid off-by-one application buffer overflow attacks.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources: www.gnu.org/software/libc/manual/html_node/String-
Length.html#String%20Length;
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt_strlen.2c_.wcslen.2c_._mbslen.2c_._mbstrlen.asp

Impact: Low

Cross References: _tcscat, _tcscpy, _tcsncat, _tcsncpy

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 53

TLFeBOOK

54 C • Programmer’s Ultimate Security DeskRef

_tcsncat
Prototype: _tchar *_tcsncat(_tchar *destination, const _tchar
*source, size_t count)

Summary: This function concatenates a string onto the end of another.

Description: The function attempts to append one t-character string onto the end
of another. It has three input arguments: the source and destination strings and the
max number oft-characters to concatenate.The function will return a pointer to the
destination string when finished. In the event of an error, the function can return a
NULL pointer.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources: www.gnu.org/software/libc/manual/html_node/
Copying-and-Concatenation.html#Copying%20and%20Concatenation;
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt_strncat.2c_.wcsncat.2c_._mbsncat.asp

Impact: Medium

Cross References: _tcscat, _tcscpy, _tcslen, _tcsncpy

_tcsncpy
Prototype: _tchar *_tcsncpy(_tchar *destination, const _tchar
*source, size_t count)

Summary: This function copies a string onto another.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 54

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 55

Description: The function attempts to copy one t-character string onto another
with control over the number of t-characters to copy. It has three input arguments:
the source and destination strings and the maximum number of t-characters to copy.
The function will return a pointer to the destination string when finished. In the
event of an error, the function can return a NULL pointer.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y, then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Copying-
and-Concatenation.html#Copying%20and%20Concatenation;
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt_strncpy.2c_.wcsncpy.2c_._mbsncpy.asp

Impact: Medium

Cross References: _tcscat, _tcscpy, _tcslen, _tcsncat

_tcsxfrm
Prototype: size_t strxfrm(_thar *destination, const _tchar

*source, size_t count)

Summary: This function transforms a string based off of the locale.

Description: The function attempts to transform a t-character string based on the
locale information of the system. It takes in three input arguments: the source and
destination strings and the maximum number of t-characters to put in the destina-
tion string.The function will return the length of the string written. In the event of
an error, the function returns -1.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 55

TLFeBOOK

56 C • Programmer’s Ultimate Security DeskRef

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Collation-
Functions.html#Collation%20Functions;
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt_strxfrm.2c_.wcsxfrm.asp

Impact: Medium

_texecl
Prototype: int _texecl(const _tchar *cmdname, const _tchar
*arg0, … const _tchar *argn, NULL)

Summary: This function executes a file from within the current shell.

Description: The function will execute a file pointed to by the argument “cmd-
name” which contains the path to file to be executed.The other input arguments
(arg0, arg1, …, argN) are command line parameters to be used in the execu-
tion of the file. Both of these arguments are given as t-character strings or pointers
to strings. Ideally, the function does not return a value, as it does not return to the
calling process. However, upon an error, a value of -1 is returned and the global
variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 56

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 57

before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt__execl.2c_._wexecl.asp

Impact: High

Cross References: abort, atexit, _execl, exit, _onexit, _spawn, system

_texecle
Prototype: int _texecle(const _tchar *cmdname, const _tchar
*arg0, … const _tchar *argn, NULL, const _tchar *envp)

Summary: This function executes a file from within the current shell with control
over the environmental parameters.

Description: The function will execute a file pointed to by the t-character string
“cmdname” which contains the path to file to be executed.The other input argu-
ments (arg0, arg1, …, argN) are command line parameters to be used in the
execution of the file (given as t-character strings). Ideally, the function does not
return a value, as it does not return to the calling process. However, upon an error, a
value of -1 is returned and the global variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 57

TLFeBOOK

58 C • Programmer’s Ultimate Security DeskRef

data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__execle.2c_._wexecle.asp

Impact: High

Cross References: abort, atexit, _execle, exit, _onexit, _spawn, system

_texeclp
Prototype: int _texeclp(const _tchar *cmdname, const _tchar
*arg0, … const _tchar *argn, NULL)

Summary: This function executes a file from within the current shell, searching for
it from the PATH environment variable.

Description: The function will execute a file pointed to by the t-character string
“cmdname” searching for it in the system’s PATH.The other input arguments
(arg0, arg1, …, argN) are t-character strings containing command line param-
eters to be used in the execution of the file. Ideally, the function does not return a
value, as it does not return to the calling process. However, upon an error, a value of
-1 is returned and the global variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 58

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 59

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt__execlp.2c_._wexeclp.asp

Impact: High

Cross References: abort, atexit, _execlp, exit, _onexit, _spawn, system

_texeclpe
Prototype: int _texeclpe(const _tchar *cmdname, const _tchar
*arg0, … const _tchar *argn, NULL, const char *const *envp)

Summary: This function executes a file from within the current shell, searching for
it from the PATH environment variable, with a separate input for environmental
parameters.

Description: The function will execute a file pointed to by the t-character string
“cmdname” searching for it in the system’s PATH environment variable.The next
input arguments (arg0, arg1, …, argN) are command line parameters to be
used in the execution of the file.The final input argument is the array of pointers to
environmental parameters needed for file execution. Ideally, the function does not
return a value, as it does not return to the calling process. However, upon an error, a
value of -1 is returned and the global variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 59

TLFeBOOK

60 C • Programmer’s Ultimate Security DeskRef

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt__execlpe.2c_._wexeclpe.asp

Impact: High

Cross References: abort, atexit, _execlpe, exit, _onexit, _spawn,
system

_texecv
Prototype: int _texecv(const _tchar *cmdname, const _tchar
*const *argv)

Summary: This function executes a file with an array of pointers to be passed to
the command line.

Description: The function will execute a file pointed to by the t-character string
“cmdname” which contains the path to file to be executed.The other input argu-
ment, “argv”, is a t-character array command line parameters to be used in the
execution of the file. Ideally, the function does not return a value, as it does not
return to the calling process. However, upon an error, a value of -1 is returned and
the global variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 60

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 61

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt__execv.2c_._wexecv.asp

Impact: High

Cross References: abort, atexit, _execv, exit, _onexit, _spawn, system

_texecve
Prototype: int _texecve(const _tchar *cmdname, const _tchar
*const *argv, const _tchar *const *envp)

Summary: This function executes a file with an array of pointers to be passed to
the command line, keeping control over the environmental parameters.

Description: The function will execute a file pointed to by the t-character string
“cmdname” which contains the path to file to be executed.The next input argu-
ment, “argv”, is an array of t-character strings containing command line parame-
ters to be used in the execution of the file.The final input argument is an array of
t-character strings containing environmental parameters for file execution. Ideally,
the function does not return a value, as it does not return to the calling process.
However, upon an error, a value of -1 is returned and the global variable ERRNO
is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 61

TLFeBOOK

62 C • Programmer’s Ultimate Security DeskRef

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt__execve.2c_._wexecve.asp

Impact: High

Cross References: abort, atexit, _execve, exit, _onexit, _spawn, system

_texecvp
Prototype: int _texecvp(const _tchar *cmdname, const _tchar
*const *argv)

Summary: This function executes a file with an array of pointers to be passed to
the command line using the environment variable PATH to find the file.

Description: The function will execute a file pointed to by the t-character string
“cmdname” searching for it using the environmental variable PATH.The other
input argument, “argv”, is an array of t-character strings containing the command
line parameters to be used in the execution of the file. Ideally, the function does not
return a value, as it does not return to the calling process. However, upon an error, a
value of -1 is returned and the global variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt__execvp.2c_._wexecvp.asp

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 62

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 63

Impact: High

Cross References: abort, atexit, _execvp, exit, _onexit, _spawn, system

_texecvpe
Prototype: int _texecvpe(const _tchar *cmdname, const _tchar
*const *argv, const _tchar *const *envp)

Summary: This function executes a file with an array of pointers to be passed to
the command line using the environment variable PATH, as well as another array of
pointers containing environmental parameters.

Description: The function will execute a file pointed to by the t-character string
“cmdname” searching for it using the environmental variable PATH.The next
input argument, “argv”, is an array of t-character strings containing the command
line parameters to be used in the execution of the file.The final input argument is
another array of t-character strings with the environmental parameters to be used on
execution. Ideally, the function does not return a value, as it does not return to the
calling process. However, upon an error, a value of -1 is returned and the global
variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt__execvpe.2c_._wexecvpe.asp

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 63

TLFeBOOK

64 C • Programmer’s Ultimate Security DeskRef

Impact: High

Cross References: abort, atexit, _execvpe, exit, _onexit, _spawn,
system

_tprintf
Prototype: int _tprintf(const _tchar *format [, argument]...)

Summary: This function prints a formatted array of characters to the I/O stream.

Description: The function attempts to print a formatted array of t-characters to
the stream. It has only one formal argument: the array to be printed. However, as it
can be formatted data, there can be subsequent, informal arguments.The function
will return the number of t-characters printed. However, in the event of an error,
the function returns a negative value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Formatted-Output-
Functions.html#Formatted%20Output%20Functions;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_printf.2c_.wprintf.asp

Impact: Medium

Cross References: _fptrintf, _stprintf, _tscanf

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 64

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 65

_tscanf
Prototype: int _tscanf(const _tchar *format [,argument]...)

Summary: The function reads a formatted array of characters from the I/O stream.

Description: The function attempts to scan a formatted array of t-characters from
the stream. It has only one formal argument: the array to be read in to. However, as
it can be formatted data, there can be subsequent, informal arguments.The function
will return the number of t-characters read. However, in the event of an error, the
function returns a negative value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Formatted-Input-
Functions.html#Formatted%20Input%20Functions;
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt_scanf.2c_.wscanf.asp

Impact: Medium

Cross References: _ftscanf, _stprintf, _tprintf

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 65

TLFeBOOK

66 C • Programmer’s Ultimate Security DeskRef

_tspawnl
Prototype: int _tspawnl(int mode, const _tchar *cmdname,
const _tchar *arg0, const _tchar *arg1, … const _tchart

*argn, NULL)

Summary: This function executes a file with control given over the execution
mode.

Description: The function executes the file given by the t-character string con-
taining the path to “cmdname”. It executes it using the mode determined by
“mode”.The remaining input arguments are the parameters to passed to the com-
mand line (as t-character strings) with the execution of the file.The function has
two options for its timing, synchronous and asynchronous.The synchronous timing
function call returns the exit status of the executed file.The asynchronous timing
function call returns the handle of the process associated with the file execution. In
the case of an error, the value “errno” will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt__spawnl.2c_._wspawnl.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp,
_onexit, _setmbcp, _spawnl, system

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 66

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 67

_tspawnle
Prototype: int _tspawnle(int mode, const _tchar *cmdname,
const _tchar *arg0, const _tchar *arg1, ... const _tchar

*argn, NULL, const _tchar *const *envp)

Summary: This function executes a file with control given over the execution
mode and environmental parameters.

Description: The function executes the file given by the t-character string con-
taining the path of “cmdname”. It executes it using the mode determined by
“mode”.The next input arguments are the parameters to passed to the command
line with the execution of the file.The final input arguments are the environmental
parameters to be passed. Both are passed as t-character strings or arrays of t-character
strings.The function has two options for its timing, synchronous and asynchronous.
The synchronous timing function call returns the exit status of the executed file.
The asynchronous timing function call returns the handle of the process associated
with the file execution. In the case of an error, the value “errno” will be set
accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt__spawnle.2c_._wspawnle.asp

Impact: High

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 67

TLFeBOOK

68 C • Programmer’s Ultimate Security DeskRef

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp,
_onexit, _setmbcp, _spawnle, system

_tspawnlp
Prototype: int _tspawnlp(int mode, const _tchar *cmdname,
const _tchar *arg0, const _tchar *arg1, ... const _tchar

*argn, NULL)

Summary: This function executes a file (in the environment variable PATH) with
control given over the execution mode.

Description: The function executes the file given by t-character string “cmd-
name” but that’s located in the PATH environment variable. It executes it using the
mode determined by “mode”.The remaining input arguments are the parameters to
passed to the command line with the execution of the file.They are passed as t-
character strings.The function has two options for its timing, synchronous and asyn-
chronous.The synchronous timing function call returns the exit status of the
executed file.The asynchronous timing function call returns the handle of the pro-
cess associated with the file execution. In the case of an error, the value “errno”
will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt__spawnlp.2c_._wspawnlp.asp

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 68

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 69

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp,
_onexit, _setmbcp, _spawnlp, system

_tspawnlpe
Prototype: int _tspawnlpe(int mode, const _tchar *cmdname,
const _tchar *arg0, const _tchar *arg1, … const _tchar

*argn, NULL, const _tchar *const *envp)

Summary: This function executes a file (in the environment variable PATH) with
control given over the execution mode and the environmental parameters.

Description: The function executes the file given by the t-character string “cmd-
name”, but that’s located in the PATH environment variable. It executes it using the
mode determined by “mode”.The next input arguments are the parameters to
passed to the command line with the execution of the file.The final input argu-
ments are the environmental parameters to be used during file execution. Both are
passed as t-character strings or arrays of t-character strings.The function has two
options for its timing, synchronous and asynchronous.The synchronous timing func-
tion call returns the exit status of the executed file.The asynchronous timing func-
tion call returns the handle of the process associated with the file execution. In the
case of an error, the value “errno” will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 69

TLFeBOOK

70 C • Programmer’s Ultimate Security DeskRef

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__spawnlpe.2c_._wspawnlpe.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp,
_onexit, _setmbcp, _spwanlpe, system

_tspawnv
Prototype: int _tspawnv(int mode, const _tchar *cmdname,
const _tchar *const *argv)

Summary: This function executes a file with control given over the execution
mode.

Description: The function executes the file given by the t-character string con-
taining the path “cmdname”. It executes it using the mode determined by “mode”.
The remaining input argument is a pointer to an array of t-character strings with
the parameters to passed to the command line with the execution of the file.The
function has two options for its timing, synchronous and asynchronous.The syn-
chronous timing function call returns the exit status of the executed file.The asyn-
chronous timing function call returns the handle of the process associated with the
file execution. In the case of an error, the value “errno” will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 70

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 71

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__spawnv.2c_._wspawnv.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp,
_onexit, _setmbcp, _spawnv, system

_tspawnve
Prototype: int _tspawnve(int mode, const _tchar *cmdname,
const _tchar *const *argv, const _tchar *const *envp)

Summary: This function executes a file with control given over the execution
mode and environmental parameters.

Description: The function executes the file given by the t-character string con-
taining the path to “cmdname”. It executes it using the mode determined by
“mode”.The next input argument is a pointer to the t-character string array of
parameters to passed to the command line with the execution of the file.The last
input argument is an array of pointers to the t-character strings containing environ-
mental parameters for file execution.The function has two options for its timing,
synchronous and asynchronous.The synchronous timing function call returns the
exit status of the executed file.The asynchronous timing function call returns the
handle of the process associated with the file execution. In the case of an error, the
value “errno” will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 71

TLFeBOOK

72 C • Programmer’s Ultimate Security DeskRef

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__spawnve.2c_._wspawnve.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp,
_onexit, _setmbcp, _spawnve, system

_tspawnvp
Prototype: int _tspawnvp(int mode, const _tchar *cmdname,
const _tchar *const *argv)

Summary: This function executes a file (from within the environmental variable
PATH) with control given over the execution mode.

Description: The function executes the file given by the t-character string “cmd-
name” but that’s located in the PATH environment variable. It executes it using the
mode determined by “mode”.The remaining input argument is an array of t-char-
acter strings containing the parameters to passed to the command line with the exe-
cution of the file.The function has two options for its timing, synchronous and
asynchronous.The synchronous timing function call returns the exit status of the
executed file.The asynchronous timing function call returns the handle of the pro-
cess associated with the file execution. In the case of an error, the value “errno”
will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 72

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 73

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__spawnvp.2c_._wspawnvp.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp,
_onexit, _setmbcp, _spawnvp, system

_tspawnvpe
Prototype: int _tspawnvpe(int mode, const _tchar *cmdname,
const _tchar *const *argv, const _tchar *const

Summary: This function executes a file (from within the environmental variable
PATH) with control given over the execution mode and environmental parameters.

Description: The function executes the file given by the t-character string “cmd-
name” but that’s located in the PATH environment variable. It executes it using the
mode determined by “mode”.The next input argument is an array of t-character
strings containing the parameters passed to the command line with the execution of
the file.The final input argument is another array of pointers to t-character strings,
containing the environmental parameters for file execution.The function has two
options for its timing, synchronous and asynchronous.The synchronous timing func-
tion call returns the exit status of the executed file.The asynchronous timing func-
tion call returns the handle of the process associated with the file execution. In the
case of an error, the value “errno” will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 73

TLFeBOOK

74 C • Programmer’s Ultimate Security DeskRef

data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__spawnvpe.2c_._wspawnvpe.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp,
_onexit, _setmbcp, _spawnvpe, system

_vsnprintf
Prototype: int _vsnprintf(char *buffer, size_t count, const
char *format, const char *const *argv)

Summary: This function writes a highly formatted string with a pointer to a list of
arguments to be used.

Description: This function writes to the string “buffer” using the string
“format” as its basis. It will write the lesser of “count” or the length of
“buffer”.The input argument “argv” is a pointer to a list of arguments to be
used for the writing process.The function returns the number of characters written
(excluding the null character, if applicable).

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 74

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 75

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__vsnprintf.2c_._vsnwprintf.asp

Impact: Low

Cross References: fprintf, printf, sprintf, va_arg, _vsnwprintf

_vsnwprintf
Prototype: int _vsnwprintf(wchar_t *buffer, size_t count,
const wchar_t *format, va_list argptr)

Summary: This function writes a highly formatted, wide-character string with a
pointer to a list of arguments to be used.

Description: This function writes to the wide-character string “buffer” using
the wide-character string “format” as its basis. It will write the lesser of “count”
or the length of “buffer”.The input argument “argv” is a pointer to a list of
arguments to be used for the writing process.The function returns the number of
wide-characters written (excluding the null character, if applicable).

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Note: At time of publication, this function was designed for Windows compatibility.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 75

TLFeBOOK

76 C • Programmer’s Ultimate Security DeskRef

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__vsnprintf.2c_._vsnwprintf.asp

Impact: Low

Cross References: fprintf, printf, sprintf, va_arg, _vsnprint

_wexecl
Prototype: int _wexecl(const wchar_t *cmdname, const wchar_t
*arg0, ... const wchar_t *argn, NULL)

Summary: This function executes a file from within the current shell.

Description: The function will execute a file pointed to by the argument “cmd-
name” which contains the path to file to be executed.The other input arguments
(arg0, arg1, …, argN) are command line parameters to be used in the execu-
tion of the file. Both of these arguments are given as wide-character strings or
pointers to strings. Ideally, the function does not return a value, as it does not return
to the calling process. However, upon an error, a value of -1 is returned and the
global variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt__execl.2c_._wexecl.asp

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 76

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 77

Impact: High

Cross References: abort, atexit, _execl, exit, _onexit, _spawn, system

_wexecle
Prototype: int _wexecle(const wchar_t *cmdname, const wchar_t
*arg0, … const wchar_t *argn, NULL, const char *const *envp

)

Summary: This function executes a file from within the current shell with control
over the environmental parameters.

Description: The function will execute a file pointed to by the wide-character
string “cmdname” which contains the path to the file to be executed.The other
input arguments (arg0, arg1, …, argN) are command line parameters to be
used in the execution of the file (given as wide-character strings). Ideally, the func-
tion does not return a value, as it does not return to the calling process. However,
upon an error, a value of -1 is returned and the global variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt__execle.2c_._wexecle.asp

Impact: High

Cross References: abort, atexit, _execle, exit, _onexit, _spawn, system

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 77

TLFeBOOK

78 C • Programmer’s Ultimate Security DeskRef

_wexeclp
Prototype: int _wexeclp(const wchar_t *cmdname, const wchar_t
*arg0, ... const wchar_t *argn, NULL)

Summary: This function executes a file from within the current shell, searching for
it from the PATH environment variable.

Description: The function will execute a file pointed to by the wide-character
string “cmdname” searching for it in the system’s PATH.The other input argu-
ments (arg0, arg1, …, argN) are wide-character strings containing command
line parameters to be used in the execution of the file. Ideally, the function does not
return a value, as it does not return to the calling process. However, upon an error, a
value of -1 is returned and the global variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt__execlp.2c_._wexeclp.asp

Impact: High

Cross References: abort, atexit, _execlp, exit, _onexit, _spawn, system

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 78

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 79

_wexeclpe
Prototype: int _wexeclpe(const wchar_t *cmdname, const
wchar_t *arg0, ... const wchar_t *argn, NULL, const wchar_t

*const *envp)

Summary: This function executes a file from within the current shell, searching for
it from the PATH environment variable, with a separate input for environmental
parameters.

Description: The function will execute a file pointed to by the wide-character
string “cmdname” searching for it in the system’s PATH environment variable.The
next input arguments (arg0, arg1, …, argN) are command line parameters to
be used in the execution of the file.The final input argument is the array of pointers
to environmental parameters needed for file execution. Ideally, the function does not
return a value, as it does not return to the calling process. However, upon an error, a
value of -1 is returned and the global variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt__execlpe.2c_._wexeclpe.asp

Impact: High

Cross References: abort, atexit, _execlpe, exit, _onexit, _spawn, system

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 79

TLFeBOOK

80 C • Programmer’s Ultimate Security DeskRef

_wexecv
Prototype: int _wexecv(const wchar_t *cmdname, const wchar_t
*const *argv)

Summary: This function executes a file with an array of pointers to be passed to
the command line.

Description: The function will execute a file pointed to by the wide-character
string “cmdname” which contains the path to file to be executed.The other input
argument, “argv” is a wide-character array command line parameters to be used in
the execution of the file. Ideally, the function does not return a value, as it does not
return to the calling process. However, upon an error, a value of -1 is returned and
the global variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__execv.2c_._wexecv.asp

Impact: High

Cross References: abort, atexit, _execv, exit, _onexit, _spawn, system

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 80

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 81

_wexecve
Prototype: int _wexecve(const wchar_t *cmdname, const wchar_t
*const *argv, const wchar_t *const *envp)

Summary: This function executes a file with an array of pointers to be passed to
the command line, keeping control over the environmental parameters.

Description: The function will execute a file pointed to by the wide-character
string “cmdname” which contains the path to file to be executed.The next input
argument, “argv” is an array of wide-character strings containing command line
parameters to be used in the execution of the file.The final input argument is an
array of wide-character strings containing environmental parameters for file execu-
tion. Ideally, the function does not return a value, as it does not return to the calling
process. However, upon an error, a value of -1 is returned and the global variable
ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__execve.2c_._wexecve.asp

Impact: High

Cross References: abort, atexit, _execve, exit, _onexit, _spawn, system

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 81

TLFeBOOK

82 C • Programmer’s Ultimate Security DeskRef

_wexecvp
Prototype: int _wexecvp(const wchar_t *cmdname, const wchar_t
*const *argv)

Summary: This function executes a file with an array of pointers to be passed to
the command line using the environment variable PATH to find the file.

Description: The function will execute a file pointed to by the wide-character
string “cmdname” searching for it using the environmental variable PATH.The
other input argument, “argv”, is an array of wide-character strings containing the
command line parameters to be used in the execution of the file. Ideally, the func-
tion does not return a value, as it does not return to the calling process. However,
upon an error, a value of -1 is returned and the global variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__execvp.2c_._wexecvp.asp

Impact: High

Cross References: abort, atexit, _execvp, exit, _onexit, _spawn, system

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 82

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 83

_wexecvpe
Prototype: int _wexecvpe(const wchar_t *cmdname, const
wchar_t *const *argv, const wchar_t *const *envp)

Summary: This function executes a file with an array of pointers to be passed to
the command line using the environment variable PATH, as well as another array of
pointers containing environmental parameters.

Description: The function will execute a file pointed to by the wide-character
string “cmdname” searching for it using the environmental variable PATH.The
next input argument, “argv” is an array of wide-character strings containing the
command line parameters to be used in the execution of the file.The final input
argument is another array of wide-character strings with the environmental parame-
ters to be used on execution. Ideally, the function does not return a value, as it does
not return to the calling process. However, upon an error, a value of -1 is returned
and the global variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__execvpe.2c_._wexecvpe.asp

Impact: High

Cross References: abort, atexit, _execvpe, exit, _onexit, _spawn,
system

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 83

TLFeBOOK

84 C • Programmer’s Ultimate Security DeskRef

_wspawnl
Prototype: int _wspawnl(int mode, const wchar_t *cmdname,
const wchar_t *arg0, const wchar_t *arg1, ... const wchar_t

*argn, NULL)

Summary: This function executes a file with control given over the execution
mode.

Description: The function executes the file given by the wide-character string
containing the path to “cmdname”. It executes it using the mode determined by
“mode”.The remaining input arguments are the parameters to passed to the com-
mand line (as wide-character strings) with the execution of the file.The function
has two options for its timing, synchronous and asynchronous.The synchronous
timing function call returns the exit status of the executed file.The asynchronous
timing function call returns the handle of the process associated with the file execu-
tion. In the case of an error, the value “errno” will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt__spawnl.2c_._wspawnl.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp,
_onexit, _setmbcp, _spawnl, system

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 84

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 85

_wspawnle
Prototype: int _wspawnle(int mode, const wchar_t *cmdname,
const wchar_t *arg0, const wchar_t *arg1, ... const wchar_t

*argn, NULL, const wchar_t *const *envp)

Summary: This function executes a file with control given over the execution
mode and environmental parameters.

Description: The function executes the file given by the wide-character string
containing the path of “cmdname”. It executes it using the mode determined by
“mode”.The next input arguments are the parameters to passed to the command
line with the execution of the file.The final input arguments are the environmental
parameters to be passed. Both are passed as wide-character strings or arrays of wide-
character strings.The function has two options for its timing, synchronous and asyn-
chronous.The synchronous timing function call returns the exit status of the
executed file.The asynchronous timing function call returns the handle of the pro-
cess associated with the file execution. In the case of an error, the value “errno”
will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__spawnle.2c_._wspawnle.asp

Impact: High

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 85

TLFeBOOK

86 C • Programmer’s Ultimate Security DeskRef

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp, _onexit, _setmbcp,
_spawnle, system

_wspawnlp
Prototype: int _wspawnlp(int mode, const wchar_t *cmdname,
const wchar_t *arg0, const wchar_t *arg1, ... const wchar_t

*argn, NULL)

Summary: This function executes a file (in the environment variable PATH) with
control given over the execution mode.

Description: The function executes the file given by wide-character string “cmd-
name” but that’s located in the PATH environment variable. It executes it using the
mode determined by “mode”.The remaining input arguments are the parameters to
passed to the command line with the execution of the file.They are passed as wide-
character strings.The function has two options for its timing, synchronous and asyn-
chronous.The synchronous timing function call returns the exit status of the
executed file.The asynchronous timing function call returns the handle of the pro-
cess associated with the file execution. In the case of an error, the value “errno”
will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__spawnlp.2c_._wspawnlp.asp

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 86

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 87

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp,
_onexit, _setmbcp, _spawnlp, system

_wspawnlpe
Prototype: int _wspawnlpe(int mode, const wchar_t *cmdname,
const wchar_t *arg0, const wchar_t *arg1, ... const wchar_t

*argn, NULL, const wchar_t *const *envp)

Summary: This function executes a file (in the environment variable PATH) with
control given over the execution mode and the environmental parameters.

Description: The function executes the file given by the wide-character string
“cmdname” but that’s located in the PATH environment variable. It executes it
using the mode determined by “mode”.The next input arguments are the parame-
ters to passed to the command line with the execution of the file.The final input
arguments are the environmental parameters to be used during file execution. Both
are passed as wide-character strings or arrays of wide-character strings.The function
has two options for its timing, synchronous and asynchronous.The synchronous
timing function call returns the exit status of the executed file.The asynchronous
timing function call returns the handle of the process associated with the file execu-
tion. In the case of an error, the value “errno” will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 87

TLFeBOOK

88 C • Programmer’s Ultimate Security DeskRef

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__spawnlpe.2c_._wspawnlpe.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp,
_onexit, _setmbcp, _spwanlpe, system

_wspawnv
Prototype: int _wspawnv(int mode, const wchar_t *cmdname,
const wchar_t *const *argv)

Summary: This function executes a file with control given over the execution
mode.

Description: The function executes the file given by the wide-character string
containing the path “cmdname”. It executes it using the mode determined by
“mode”.The remaining input argument is a pointer to an array of wide-character
strings with the parameters to passed to the command line with the execution of
the file.The function has two options for its timing, synchronous and asynchronous.
The synchronous timing function call returns the exit status of the executed file.
The asynchronous timing function call returns the handle of the process associated
with the file execution. In the case of an error, the value “errno” will be set
accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 88

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 89

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__spawnv.2c_._wspawnv.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp,
_onexit, _setmbcp, _spawnv, system

_wspawnve
Prototype: int _wspawnve(int mode, const wchar_t *cmdname,
const wchar_t *const *argv, const wchar_t *const *envp)

Summary: This function executes a file with control given over the execution
mode and environmental parameters.

Description: The function executes the file given by the wide-character string
containing the path to “cmdname”. It executes it using the mode determined by
“mode”.The next input argument is a pointer to the wide-character string array of
parameters to passed to the command line with the execution of the file.The last
input argument is an array of pointers to the wide-character strings containing envi-
ronmental parameters for file execution.The function has two options for its timing,
synchronous and asynchronous.The synchronous timing function call returns the
exit status of the executed file.The asynchronous timing function call returns the
handle of the process associated with the file execution. In the case of an error, the
value “errno” will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 89

TLFeBOOK

90 C • Programmer’s Ultimate Security DeskRef

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__spawnve.2c_._wspawnve.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp,
_onexit, _setmbcp, _spawnve, system

_wspawnvp
Prototype: int _wspawnvp(int mode, const wchar_t *cmdname,
const wchar_t *const *argv)

Summary: This function executes a file (from within the environmental variable
PATH) with control given over the execution mode.

Description: The function executes the file given by the wide-character string
“cmdname” but that’s located in the PATH environment variable. It executes it
using the mode determined by “mode”.The remaining input argument is an array
of wide-character strings containing the parameters to passed to the command line
with the execution of the file.The function has two options for its timing, syn-
chronous and asynchronous.The synchronous timing function call returns the exit
status of the executed file.The asynchronous timing function call returns the handle
of the process associated with the file execution. In the case of an error, the value
“errno” will be set accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 90

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 91

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__spawnvp.2c_._wspawnvp.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp,
_onexit, _setmbcp, _spawnvp, system

_wspawnvpe
Prototype: int _wspawnvpe(int mode, const wchar_t *cmdname,
const wchar_t *const *argv, const wchar_t *const *envp)

Summary: This function executes a file (from within the environmental variable
PATH) with control given over the execution mode and environmental parameters.

Description: The function executes the file given by the wide-character string
“cmdname” but that’s located in the PATH environment variable. It executes it
using the mode determined by “mode”.The next input argument is an array of
wide-character strings containing the parameters to passed to the command line
with the execution of the file.The final input argument is another array of pointers
to wide-character strings, containing the environmental parameters for file execu-
tion.The function has two options for its timing, synchronous and asynchronous.
The synchronous timing function call returns the exit status of the executed file.
The asynchronous timing function call returns the handle of the process associated
with the file execution. In the case of an error, the value “errno” will be set
accordingly.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 91

TLFeBOOK

92 C • Programmer’s Ultimate Security DeskRef

data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__spawnvpe.2c_._wspawnvpe.asp

Impact: High

Cross References: abort, atexit, _exec, exit, _flushall, _getmbcp,
_onexit, _setmbcp, _spawnvpe, system

_wsystem
Prototype: int _wsystem(const wchar_t *command)

Summary: This function calls a system command from within the shell.

Description: The function calls a system command contained in the wide-char-
acter string “command”.You must either flush or close any open streams before
calling the function.The function will return one of several options. If the com-
mand interpreter is found in the PATH, then the function will return an arbitrary
non-zero integer for an empty “command” string or the value that the system
returns from the function call if “command” is not empty. If the command inter-
preter is not found, then the function returns 0 and sets “errno”. If a general error
occurs, then the function returns -1 and sets the variable “errno”.

Risk: This function is utilized to execute system-level commands from within an
application. Executing system-level commands are one of the most dangerous types
of operations that an application can hardcode into its backend logic. Multiple vec-
tors for potential attacks are available and must be addressed to secure your applica-
tion. User input should be reviewed and all non-alphanumeric characters removed.
Additionally, the directory structure should be limited to include only the directory
or directories where the desired executables reside.As an example, you would
restrict users to running commands or executables in /user/local/bin or c:/docu-
ments and settings/userX/programs/. Lastly, all output for the application should be
captured within the subprocess that has launched the executable. Fork,

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 92

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 93

CreateProcess, or CreateThread are examples of additional functions that can be
used to contain output.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_system.2c_._wsystem.asp

Impact: High

Cross References: _exec, exit, _flushall, _spawn, system

access
Prototype: int access (const char *filename, int type)

Summary: This function tests the permissions of a file.

Description: The function attempts to access the file contained in “filename”
with the requested privileges in “type”. The input argument “type” can be used
to test the read, write, and executable privileges of the file, as well as if the file exists.
The function returns a 0 if the file exists and can be accessed by the requested
“type”. Otherwise, the function returns a -1, setting the variable “errno” to the
appropriate error.

Risk: Testing the permissions of a file could potentially glean sensitive information
about that file or the underlying operating system. Ensure that the output of this
function is restricted to internal program use only and that humans are disallowed
from pointing this function to specific system-level files.

Note: This function has a Windows-compatible version called “_access”.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Testing-
File-Access.html#Testing%20File%20Access

Impact: Medium

Cross References: chmod, fopen, fwrite, getuid, setuid

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 93

TLFeBOOK

94 C • Programmer’s Ultimate Security DeskRef

AfxLoadLibrary
Prototype: HINSTANCE AFXAPI AfxLoadLibrary(LPCTSTR
lpszModuleName)

Summary: This function maps to a module (either DLL or EXE).

Description: This function takes a string containing the path to a module, and
links to it (if it exists).The function will return the handle of the loaded library if
successful. However, the function will return NULL if it fails for any reason.This
function should be used for DLL’s explicitly (and not LoadLibrary).You can later
unmap this DLL by using the complementary function AfxFreeLibrary.

Risk: By default, the AfxLoadLibrary function will search multiple locations for
both DLL and EXE modules. When you utilize this function, it is imperative that
you include the complete path to the desired module that you are implementing
within your application. If the complete path is not specified and a default multipath
search is conducted then the potential for a malicious program to be executed is
increased. For instance, if a Trojanized Microsoft DLL resides on a target system with
the name included in the executed application then it may be possible for a remote
user to launch that DLL through a vulnerable application.

Note: At time of publication, this function was written for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_core_loadlibrary_and_afxloadlibrary.asp;

Impact: Medium

Cross References: AfxFreeLibrary, LoadLibrary

basename
Prototype: char * basename (const char *filename)

Summary: This function returns the last part of the path indicated in the input
argument.

Description: The function takes in a constant string “filename” stripping it to its
last component and returning that as another string.The function has been over-

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 94

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 95

loaded (see the Additional Notes).This function can have differing effects on dif-
fering systems.This must be taken into account for the sake of portability. In the
event of an error, the function returns a null string.

Risk: The basename function is commonly utilized as a target point for attackers
looking to compromise applications via a race condition vulnerability. Race condi-
tions have multiple potential outcomes but in this scenario an attacker with access
to the application may be able to gain the ability to taken control of a process exe-
cuting a specific application.Additionally, this function takes in the name of a system
filename and as such the proper input and directory restrictions should be included
in the code to parse the passed data.

Note: This function is overloaded between two header files, <string.h>
and <libgen.h>. Whereas the function definition here is of the “base-
name” in <string.h>, precedence is taken for the header
<libgen.h> and its “basename” will be used.The defining difference
between the two is that the function in <libgen.h> can modify the path
(like removing trailing /’s).The function in <string.h> prevents that
from happening.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Finding-
Tokens-in-a-String.html#Finding%20Tokens%20in%20a%20String

Impact: High

bcopy
Prototype: void bcopy (const void *source, void *destination,
size_t size)

Summary: This function copies the data from one piece of memory to another.

Description: The function takes three inputs to define the copying procedure.The
pointer “source” defines the donor band of memory, while the variable “size”
tells the function the amount of memory to be copied.The function then copies the
band of memory to the new location at the pointer “destination”.The function
does not return any values. It is for this reason that this function has become fairly
obsolete.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 95

TLFeBOOK

96 C • Programmer’s Ultimate Security DeskRef

Risk: Even though this function is somewhat out-of-date, it is imperative that you
ensure the buffer size of the destination memory allocation address is larger or equal
to the space required by the source buffer. bcopy is a function that can be utilized
as a target for buffer overflow attacks. Memmove is the more commonly utilized
function for this purpose.

Note: This function has been updated and is more commonly replaced by the func-
tion “memmove”.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Copying-
and-Concatenation.html#Copying%20and%20Concatenation

Impact: Low

Cross References: memmove, strcpy

Funtion: bind
Prototype: bind SOCKET, NAME

Summary: This function attaches a handle to an open socket.

Description: The function attempts to label an open socket with a name or
address.The function has two input arguments: the open socket to be labeled and
the name to label it with.The function returns a Boolean TRUE or FALSE based
on the result of the function call. Note that the name should be properly assigned
for the socket used.

Risk: Raw network data received from a socket has the potential to be malicious in
nature due to the great number of attacks that are designed to be executed remotely.
Packet fragmentations can cause serious disruptions to the application and under-
lying operating system. If at all possible, packet reassembly should be conducted at
the OS-layer.

Additional Resources:
http://secu.zzu.edu.cn/book/Perl/Perl%20Bookshelf%20%5B3rd%20Ed%5D/prog/
ch29_02.htm, www.unix.org.ua/orelly/perl/perlnut/ch05_02.htm

Impact: Low

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 96

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 97

chmod
Prototype: int chmod (const char *filename, mode_t mode)

Summary: This function attempts to change the permissions of a file.

Description: The function takes two inputs, the file name and the requested per-
missions.The function takes in the constant string “filename” and attempts to
change its permissions to the values defined by “mode”. If the function is successful,
then it will return 0. However, if the function fails, it returns a -1 and sets the vari-
able “errno” to the appropriate value.

Risk: In addition to the potential race condition vulnerability that is associated with
this function it also handles potentially sensitive information.The function is inher-
ently flawed if two processes try to access and modify the permissions of a single file
simultaneously, one function could receive the overriding permissions from the
other. If the application is transmitting this information over the wire, it should uti-
lize strong point-to-point encryption to ensure that an attacker could not ascertain
the filename, path, old permissions, or new permissions.

Note: This function has Windows compatible version called “_chmod”.

Impact: High

Cross References: access, chown, chroot, fchmod, getumask, fopen,
umask

chown
Prototype: int chown (const char *filename, uid_t owner, gid_t
group)

Summary: This function is used to change the ownership of a file.

Description: The function takes three inputs: the name of the file to be changed,
the user to be made owner, and the group to be made owner.The function requires
that the user have the proper permissions to change the owner and group of the file.
It also requires that the file not be Read-Only. Each of latter are conditions that
“errno” will be set to in the event of a failure to change the file’s owner/group.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 97

TLFeBOOK

98 C • Programmer’s Ultimate Security DeskRef

The function returns a 0 if successful or a -1 if not. If the conversion is unsuc-
cessful, then the variable “errno” will be set appropriately.

Risk: The chown function is susceptible to multiple race condition attacks whereas
an attacker could attempt to modify the permissions of a file multiple times simulta-
neously. In addition to the race condition attacks, the chown function should only
be executed on files from a local perspective due to the sensitive nature of the infor-
mation required. If the application is designed to be run in a distributed matter, it is
pertinent that you encrypt all session data between the systems communicating,
since filenames and permissions are both included.

Additional Resources: www.gnu.org/software/libc/manual/html_node/File-
Owner.html#File%20Owner

Impact: High

Cross References: chmod, chroot, fopen, fclose

chroot
Prototype: int chroot (const char *Path)

Summary: This function causes a user-given directory to be treated as root.

Description: The function attempts to “reassign” the root directory to a dif-
ferent path.The function only takes in the path to the new “root” directory. If
successful, the function will have made the string passed to it the “effective”
root directory.The function returns a zero upon successful completion. In the event
of an error, the function returns a -1 and sets the variable “errno” to the appro-
priate value.

Risk: The chroot function is susceptible to race condition attacks thereby you
must ensure that only one instance of this function can be called at any given point
in time.Additionally, the chroot function is commonly targeted by attackers to see
if they can change the root directory of a target server to that of an Internet-acces-
sible directory. Internet accessible directories would include /public, /incoming,
/ftp/public, etc. It is critical that you verify that users do not have direct access to
the parameters taken by this function.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 98

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 99

Additional Resources:
http://nscp.upenn.edu/aix4.3html/libs/basetrf1/chroot.htm

Impact: High

Cross References: chdir

CoImpersonateClient
Prototype: HRESULT CoImpersonateClient(void)

Summary: This function allows a server to impersonate a client for a time.

Description: The function attempts to let the server impersonate a client for the
time of function call.The function does not require any input values.The return
values, on the other hand, are simple, preset values to indicate success and failure.

Risk: The following impersonate function can be utilized by an attacker if they
have direct access to the application and wish to simulate an attack on a third party
application. Verify that the function is called by an internal system routine and that
the output is contained within the application and not easily accessible by the end
user.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/com/htm/cmf_a2c_6mwk.asp

Impact: Low

Cross References: ImpersonateDdeClientWindow,
ImpersonateLoggedOnUser, ImpersonateNamedPipeClient,
ImpersonateSecurityContext

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 99

TLFeBOOK

100 C • Programmer’s Ultimate Security DeskRef

CopyMemory
Prototype: void CopyMemory(void* destination, const void*
source, size_t size)

Summary: This function copies one patch of memory to another.

Description: The purpose of the function’s is to copy a band of memory to
another. It takes three inputs: the pointer for the source of the copying, the pointer
to the destination, and the size of the band to copy.The function starts at the begin-
ning of the source, traversing and copying the memory to the destination for the
given size.The function does not return any values.

Risk: The CopyMemory function can facilitate a buffer overflow attack where an
attacker would attempt to send more data to the destination buffer than was allo-
cated. Buffer overflow attacks are some of the more dangerous and popular attacks
against static C and C++ applications. For this function, ensure that users can not
directly input data into the source or destination buffer while also ensuring that the
proper space is allocated for each memory slot.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/memory/base/copymemory.asp

Impact: Medium

Cross References: FillMemory, MoveMemory, SecureZeroMemory,
ZeroMemory

CreateProcess
Prototype: BOOL CreateProcess(LPCTSTR lpApplicationName,
LPTSTR lpCommandLine, LPSECURITY_ATTRIBUTES

lpProcessAttributes, LPSECURITY_ATTRIBUTES

lpThreadAttributes, BOOL bInheritHandles, DWORD

dwCreationFlags, LPVOID lpEnvironment, LPCTSTR

lpCurrentDirectory, LPSTARTUPINFO lpStartupInfo,

LPPROCESS_INFORMATION lpProcessInformation)

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 100

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 101

Summary: This function creates a new process and its primary thread.

Description: The function creates a new process and primary thread.The function
has ten input variables: the application name, the command line, process and thread
attributes, a few checks and balances, a pointer to the environmental block, the cur-
rent directory, a structure containing the startup info, and a structure for keeping
process information.The function only returns a Boolean variable indicating success
or failure.

Risk: CreateProcess can be leveraged in an attack in multiple ways and is espe-
cially common in launching Denial-of-Service attacks against the underlying oper-
ating system.Thus, you should deny human users from accessing or launching this
function or from controlling any type of execution for this function.Additionally,
you should close all processes as soon as their execution logic is complete while
being aware that it is extremely risky to ever launch a subprocess within an over-
arching process.

Note: At time of publication, this function was written for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/cre-
ateprocess.asp

Impact: Low

Cross References: CreateProcessAsUser, CreateProcessWithLogin

CreateProcessAsUser
Prototype: BOOL CreateProcessAsUser(HANDLE hToken, LPCTSTR
lpApplicationName, LPTSTR lpCommandLine,

LPSECURITY_ATTRIBUTES lpProcessAttributes,

LPSECURITY_ATTRIBUTES lpThreadAttributes, BOOL

bInheritHandles, DWORD dwCreationFlags, LPVOID

lpEnvironment, LPCTSTR lpCurrentDirectory, LPSTARTUPINFO

lpStartupInfo, LPPROCESS_INFORMATION lpProcessInformation

Summary: This function creates a new process and its primary thread.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 101

TLFeBOOK

102 C • Programmer’s Ultimate Security DeskRef

Description: The function creates a new process and primary thread, though under
the ownership of a given user.The function has 11 input variables: the handle the
indicates the primary user, the application name, the command line, process and
thread attributes, a few checks and balances, a pointer to the environmental block,
the current directory, a structure containing the startup info, and a structure for
keeping process information.The function only returns a Boolean variable indi-
cating success or failure.

Risk: CreateProcessAsUser can be leveraged in an attack in multiple ways and
is especially common in launching Denial-of-Service attacks against the underlying
operating system. Deny human users from accessing or launching this function or
from controlling any type of execution for this function.Additionally, you should
close all processes as soon as their execution logic is complete while being aware
that it is extremely risky to ever launch a subprocess within an over-arching process.

Note: At time of publication, this function was written for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/
createprocessasuser.asp

Impact: Low

Cross References: CreateProcess, CreateProcessWithLogin

CreateProcessWithLogonW
Prototype: BOOL CreateProcessWithLogonW(LPCWSTR lpUsername,
LPCWSTR lpDomain, LPCWSTR lpPassword, DWORD dwLogonFlags,

LPCWSTR lpApplicationName, LPWSTR lpCommandLine, DWORD

dwCreationFlags, LPVOID lpEnvironment, LPCWSTR

lpCurrentDirectory, LPSTARTUPINFOW lpStartupInfo,

LPPROCESS_INFORMATION lpProcessInfo)

Summary: This function creates a new process and its primary thread.

Description: The function creates a new process and primary thread.The function
has eleven input variables: strings containing the username, domain and password for
login, a flag for the login, the application name, the command line, a few checks and

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 102

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 103

balances, a pointer to the environmental block, the current directory, a structure
containing the startup info, and a structure for keeping process information.The
function only returns a Boolean variable indicating success or failure.

Risk: CreateProcessWithLogonWcan be leveraged in an attack in multiple ways
and is especially common in launching Denial-of-Service attacks against the under-
lying operating system.Thus, you should deny human users from accessing or
launching this function or from controlling any type of execution for this function.
Additionally, you should close all processes as soon as their execution logic is com-
plete while being aware that it is extremely risky to ever launch a subprocess within
an over-arching process.

Note: At time of publication, this function was written for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/cre-
ateprocesswithlogonw.asp

Impact: Low

Cross References: CreateProcess, CreateProcessAsUser

cuserid
Prototype: char * cuserid (char *string)

Summary: This function is used to retrieve the user ID of the owner of a process.

Description: The function is used to get the user ID of the owner of a process. It
takes in only one input, the pointer (possibly NULL) to where the string containing
the user ID is to be stored. It returns the same pointer after having put the user ID
there.

Risk: The cuserid function ascertains the ID owner of a process without veri-
fying the validity of that process. It is possible for an attacker to easily forge this pro-
cess ID with that of another owner which may lead to a further compromise of the
application later down the line. It is recommended that this function not be utilized
at all.

Note: This function is becoming obsolete and being phased out of several environ-
ments.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 103

TLFeBOOK

104 C • Programmer’s Ultimate Security DeskRef

Additional Resources: www.gnu.org/software/libc/manual/html_node/Who-
Logged-In.html#Who%20Logged%20In

Impact: Medium

Cross References: getlogin

dirname
Prototype: char * dirname (char *path)

Summary: This function is used to retrieve the parent directory of a file.

Description: The function is used to acquire the parent directory of a file. It takes
in only one input, the string containing the path of a file.The function returns
another string, this one containing the name of the parent directory to the file in
question. If the path name is NULL, empty, or does not contain any slashes, then the
function returns a single period (“”).

Risk: As with any function that is utilized to ascertain system-level information,
dirname is susceptible to a race condition attack.The race condition attack could
occur if two instances of this function are launched simultaneously. In addition to
this type of attack, it is recommended that you control the data that is passed to this
function as it may be susceptible to directory traversal attacks such as the ../../../
attack. Ensure that only the parent directory is viewable and that wildcards are
stripped from all input datastreams.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Finding-
Tokens-in-a-String.html#Finding%20Tokens%20in%20a%20String

Impact: Low

Cross References: basename

drand48
Prototype: double drand48 (void)

Summary: This function produces a random number.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 104

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 105

Description: The function produces a random number between 0 and 1. It pro-
duces a double-precision number. However, since a 64-bit, double precision number
is a 1-11-52 bit breakdown, this function only uses 48 of the 52 possible bits for the
non-exponential part of the number.The remaining four bits are taken to be 0 and
are the last bits of memory (i.e., the least significant).

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to bruteforce or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.gnu.org/software/libc/manual/html_node/SVID-
Random.html#SVID%20Random, www.burtleburtle.net/bob/rand/isaacafa.html

Impact: Medium

Cross References: erand48, jrand48, lrand48, mrand48, nrand48, seed48,
srand48

EnterCriticalSection
Prototype: void EnterCriticalSection(LPCRITICAL_SECTION
lpCriticalSection)

Summary: This function awaits the ownership of a critical section object.

Description: The function waits for ownership of a critical section object. It has
only single input argument: a pointer to the critical section object.The function call
ends when the ownership is transferred.The function does not return a value.

Risk: In most cases, direct human user input is passed to this function when it is
called. Restrict the input to that of the expected character base and disallow all
unauthorized users from potentially ascertaining ownership of the object.

Note: At time of publication, this function was designed for Windows compatibility.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 105

TLFeBOOK

106 C • Programmer’s Ultimate Security DeskRef

Cross References: InititalizeCriticalSection

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/entercriticalsection.asp

Impact: Low

Cross References: InititalizeCriticalSection

erand48
Prototype: double erand48 (unsigned short int xsubi[3])

Summary: This function produces a random number.

Description: This function also returns a random number between 0 and 1. It fol-
lows much of the same ideas of the “standard” function “drand48”. However,
this function can be passed an array with the description of the random number
generator (RNG) state.This ability is useful when wishing to seed the RNG or use
it to reproduce results.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to bruteforce or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.gnu.org/software/libc/manual/html_node/SVID-
Random.html#SVID%20Random

Impact: Medium

Cross References: drand48, jrand48, lrand48, mrand48, nrand48, seed48,
srand48

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 106

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 107

execl
Prototype: int execl (const char *filename, const char *arg0,)

Summary: This function is used to execute a command.

Description: The function will execute a file pointed to by the argument “file-
name” which contains the path to file to be executed.The other input arguments
(arg0, arg1, …, argN) are command line parameters to be used in the execu-
tion of the file. Ideally, the function does not return a value, as it does not return to
the calling process.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Executing-a-
File.html#Executing%20a%20File

Impact: High

Cross References: execle, execlp, execv, execve, execvp

execle
Prototype: int execle (const char *cmdname, const char *arg0,
const char *argn, NULL, const char *const *envp)

Summary: This function executes a file with control given over the environmental
parameters.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 107

TLFeBOOK

108 C • Programmer’s Ultimate Security DeskRef

Description: The function will execute a file pointed to by the argument “cmd-
name” which contains the path to file to be executed.The second set of input argu-
ments (arg0, arg1, …, argN) are command line parameters to be used in the
execution of the file.The final input argument is the array of pointers to environ-
mental parameters needed for file execution. Like _execl, the function does not
return a value unless an error occurs, as it does not return to the calling process.
However, upon an error, a value of -1 is returned and the global variable ERRNO
is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Executing-a-
File.html#Executing%20a%20File

Impact: High

Cross References: execl, execlp, execv, execve, execvp

execlp
Prototype: int execlp(const char *cmdname, const char *arg0,
const char *argn, NULL)

Summary: This function executes a file from within the current shell, searching for
it from the PATH environment variable.

Description: The function will execute a file pointed to by the argument “cmd-
name” searching in the system’s PATH for the file.The other input arguments
(arg0, arg1, …, argN) are command line parameters to be used in the execu-

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 108

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 109

tion of the file. Ideally, the function does not return a value, as it does not return to
the calling process. However, upon an error, a value of -1 is returned and the global
variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Executing-a-
File.html#Executing%20a%20File

Impact: High

Cross References: execl, execle, execv, execve, execvp

execv
Prototype: int execv(const char *cmdname, const char *const
*argv)

Summary: This function executes a file with an array of pointers to be passed to
the command line.

Description: The function will execute a file pointed to by the argument “cmd-
name” which contains the path to file to be executed.The other input argument,
“argv” is an array command line parameters to be used in the execution of the
file. Ideally, the function does not return a value, as it does not return to the calling
process. However, upon an error, a value of -1 is returned and the global variable
ERRNO is set.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 109

TLFeBOOK

110 C • Programmer’s Ultimate Security DeskRef

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Executing-a-
File.html#Executing%20a%20File

Impact: Medium

Cross References: execl, execle, execlp, execve, execvp

execve
Prototype: int execve(const char *cmdname, const char *const
*argv, const char *const *envp)

Summary: This function executes a file with an array of pointers to be passed to
the command line, keeping control over the environmental parameters.

Description: The function will execute a file pointed to by the argument “cmd-
name” which contains the path to file to be executed.The next input argument,
“argv”, is an array command line parameters to be used in the execution of the
file.The final input argument is an array of environmental parameters for file execu-
tion. Ideally, the function does not return a value, as it does not return to the calling
process. However, upon an error, a value of -1 is returned and the global variable
ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 110

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 111

as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Executing-a-
File.html#Executing%20a%20File

Impact: Medium

Cross References: execl, execle, execlp, execv, execvp

execvp
Prototype: int execvp(const char *cmdname, const char *const
*argv)

Summary: This function executes a file with an array of pointers to be passed to
the command line using the environment variable PATH to find the file.

Description: The function will execute a file pointed to by the argument “cmd-
name” searching for it using the environmental variable PATH.The other input
argument, “argv”, is an array command line parameters to be used in the execu-
tion of the file. Ideally, the function does not return a value, as it does not return to
the calling process. However, upon an error, a value of -1 is returned and the global
variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 111

TLFeBOOK

112 C • Programmer’s Ultimate Security DeskRef

data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Executing-a-
File.html#Executing%20a%20File

Impact: Medium

Cross References: execl, execle, execlp, execv, execve

fgetc
Prototype: int fgetc (FILE *stream)

Summary: This function retrieves a character from a filestream.

Description: This function reads the next character in a filestream, returning it as
an integer.The only input variable is the pointer to the filestream.The only output
is the integer version of the character read.The function will increment the
filestream during the read, and if it attempts to read the end of file, it will return
EOF.

Risk: The fgetc function is susceptible to buffer overflow attacks where the
filestream has malicious characters that could overwrite the allocated memory.
Developers should validate all user input and ensure that malicious data is controlled
within the internal fgetc buffer.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Character-
Input.html#Character%20Input;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_fgetc.2c_.fgetwc.2c_._fgetchar.2c_._fgetwchar.asp

Impact: Low

Cross References: fputc, getc

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 112

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 113

fgets
Prototype: char * fgets (char *string, int count, FILE
*stream)

Summary: This function reads a string from a filestream.

Description: The function attempts to retrieve a string from a given filestream. It
has three inputs, the string to the hold the incoming data, the size of our string, and
the filestream to read our data from.The size of the string should be set according
to the fact that a null character will be added to the end.The function will read new
line characters, but not null characters. It will append a null character at the end.
The function returns the string read from the filestream.

Risk: The fgets function is susceptible to buffer overflow attacks where the
filestream has malicious characters that could overwrite the allocated memory.
Developers should validate all user input and ensure that malicious data is controlled
within the internal fgets buffer. Because the function reads in streams of strings
(a.k.a., arrays of characters) it is mandatory to ensure that the strings are of expected
length.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Line-
Input.html#Line%20Input;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_fgets.2c_.fgetws.asp

Impact: Low

Cross References: fputs, gets, puts

fopen
Prototype: FILE *fopen(const char *filename, const char
*mode)

Summary: This function opens a file for processing.

Description: This function attempts to open a file for processing by the program.
It has two input arguments (both constant).They are the filename (and/or path to
the file) and the mode in which to open it.The function will return a pointer (or

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 113

TLFeBOOK

114 C • Programmer’s Ultimate Security DeskRef

handle) to the file if successful. However, in the event of an error, the function will
return a NULL pointer.

Risk: All special and wildcard characters should be removed before the filename is
computed on the local filesystem. Malicious filenames are interpreted differently on
varying systems and as such, directory control is critical to limiting the ability of an
attacker to potentially compromise files at varying levels within the application or
underlying subsystem.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Opening-
Streams.html#Opening%20Streams;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/HTML/_crt_fopen.2c_._wfopen.asp

Impact: Medium

Cross References: fclose, freopen, open

fork
Prototype: pid_t fork (void)

Summary: This function creates a new process.

Description: This attempts to open a new process for the program to manipulate.
The function does not take in any input variables.The only return variable for the
function is the process ID. If successful, the function returns a 0 to the child process
and the aforementioned process ID to the parent. However, if unsuccessful, the func-
tion returns a -1 to the parent process.

Risk: Fork can be leveraged in an attack in multiple ways and is especially
common in launching Denial-of-Service attacks against the underlying operating
system.Thus, you should deny human users from accessing or launching this func-
tion or from controlling any type of execution for this function.Additionally, you
should close all processes as soon as their execution logic is complete while being
aware that it is extremely risky to ever launch a subprocess within an over-arching
process.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Creating-
a-Process.html#Creating%20a%20Process

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 114

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 115

Impact: Low

Cross References: vfork

fprintf
Prototype: int fprintf(FILE *stream, const char *format [,
argument]...)

Summary: This function prints a string to a file stream.

Description: This function attempts to print a string to a filestream. It has two
format input arguments.The first is the filestream to be written to, while the second
is the actual string to write. Informally, the function may have more arguments, as
the string could have its own arguments due to formatting.The function returns the
number of characters written to the stream. In the event of an error, the function
returns a negative value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(““%s”“, malicious_string) instead of
printf(malicious_string).

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Formatted-Output-
Functions.html#Formatted%20Output%20Functions;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_fprintf.2c_.fwprintf.asp

Impact: Low

Cross References: _cprintf, fscanf, sprintf

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 115

TLFeBOOK

116 C • Programmer’s Ultimate Security DeskRef

fread
Prototype: size_t fread(void *buffer, size_t size, size_t
count, FILE *stream)

Summary: This function reads from a filestream into an array.

Description: This function attempts to read in data from a filestream into a general
patch of memory.The incremental data size is given by the input variable “size”.
The function will read “count” number objects from the filestream into the array
“buffer”.The function will return the total number of bytes written to the stream
upon completion.

Risk: All special and wildcard characters should be removed before the filename is
computed on the local filesystem. Malicious filenames are interpreted differently on
varying systems and as such, directory control is critical to limiting the ability of an
attacker to potentially compromise files at varying levels within the application or
underlying subsystem.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Block-
Input-Output.html#Block%20Input%2fOutput;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_fread.asp

Impact: Low

freopen
Prototype: FILE *freopen(const char *filename, const char
*mode, FILE *stream)

Summary: This function reassigns an open filestream to a different file.

Description: The function attempts to reassign an open/active filestream to a dif-
ferent file.There are three input arguments: the path to the new file, the processing
mode (read, write, etc…), and the filestream to reassign.The function returns only
one value, the new reassigned filestream. In the event of an error, the original
filestream is closed and the function returns a NULL pointer.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 116

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 117

Risk: The following function can be redirected to target an additional file where
potentially sensitive information could be stored. Restrict human data from being
passed to this function in addition to restricting (or static coding if possible) the des-
tination filename and location.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Opening-
Streams.html#Opening%20Streams;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_freopen.2c_._wfreopen.asp

Impact: Low

Cross References: fclose, fopen, open

fscanf
Prototype: int fscanf(FILE *stream, const char *format [,
argument]...)

Summary: This function reads preformatted data from a filestream.

Description: This function attempts to read formatted data from given filestream.
The function has two formal arguments: the filestream and the string, which will
house the new data read into it.The function may have informal arguments due to
the formatting of the data, and the requisite arguments needed for compiler clarifi-
cation in the string.The function will return the number of characters read.
However, in the event of an error, it will return a negative number.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 117

TLFeBOOK

118 C • Programmer’s Ultimate Security DeskRef

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Formatted-Input-
Functions.html#Formatted%20Input%20Functions;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_fscanf.2c_.fwscanf.asp

Impact: Medium

Cross References: _cscanf, fprintf, scanf, sscanf

fwprintf
Prototype: int fwprintf (FILE *stream, const wchar_t *format,
...)

Summary: This function prints a wide-character string to a filestream.

Description: This function attempts to print a string to a filestream. It has two
format input arguments.The first is the filestream to be written to, while the second
is the actual wide-character string to write. Informally, the function may have more
arguments, as the string could have its own arguments due to formatting.The func-
tion returns the number of characters written to the stream. In the event of an
error, the function returns a negative value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Note: This function is practically identical to “fprintf” with the exception of
using wide-character strings.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 118

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 119

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Formatted-Output-
Functions.html#Formatted%20Output%20Functions;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_fprintf.2c_.fwprintf.asp

Impact: Medium

Cross References: _cprintf, fscanf, sprintf

fwscanf
Prototype: int fwscanf(FILE *stream, const wchar_t *format [,
argument]...)

Summary: This function reads formatted data from a filestream into a wide-char-
acter string.

Description: This function attempts to read formatted data from given filestream.
The function has two formal arguments: the filestream and the wide-character string
which will house the new data read into it.The function may have informal argu-
ments due to the formatting of the data, and the requisite arguments needed for
compiler clarification in the string.The function will return the number of charac-
ters read. However, in the event of an error, it will return a negative number.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Note: This function is practically identical to “fscanf” with the exception of
using wide-character strings.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 119

TLFeBOOK

120 C • Programmer’s Ultimate Security DeskRef

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Formatted-Input-
Functions.html#Formatted%20Input%20Functions;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_fscanf.2c_.fwscanf.asp

Impact: Medium

Cross References: _cscanf, fprintf, scanf, sscanf

getc
Prototype: int getc(FILE *stream)

Summary: This function reads a character from a filestream.

Description: The function attempts to read a character from an open filestream.
The function has only one input: the open filestream. Upon reading the next char-
acter in the stream, it prompts the stream to read the next character.The function
returns only one value, the integer representation of the character read. However, in
the event of a failure or the end of the stream, the function will return the EOF
indicator.

Risk: The getc function is susceptible to buffer overflow attacks where the
filestream has malicious characters that could overwrite the allocated memory.
Developers should validate all user input and ensure that malicious data is controlled
within the internal getc buffer.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Character-
Input.html#Character%20Input;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_getc.2c_.getwc.2c_.getchar.2c_.getwchar.asp

Impact: Low

Cross References: fgetc, _getch, putc, ungetc

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 120

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 121

getchar
Prototype: int getchar (void)

Summary: This function retrieves a character from the “stdin” filestream.

Description: The function attempts to retrieve a character from the “stdin”
filestream.The function is identical to “getc” with the exception that it uses
“stdin” as the filestream.Accordingly, the function does not have any input vari-
ables.The function does return a value, the integer representation of the character
retrieved.To check for an error, however, the functions “ferror” or “feof” must
be used.

Risk: The getc function is susceptible to buffer overflow attacks where the
filestream has malicious characters that could overwrite the allocated memory.
Developers should validate all user input and ensure that malicious data is controlled
within the internal getc buffer.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Character-
Input.html#Character%20Input;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_getc.2c_.getwc.2c_.getchar.2c_.getwchar.asp

Impact: Low

Cross References: fgetc, _getch, putc, ungetc

getenv
Prototype: char *getenv(const char *varname)

Summary: This function gets a value for an environment variable.

Description: The function attempts to retrieve the value for an environment vari-
able.The function has only one input, the name of the variable.The function will
return the value of the variable as a string. If the function cannot find the environ-
ment variable, it will return NULL.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 121

TLFeBOOK

122 C • Programmer’s Ultimate Security DeskRef

be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Environment-
Access.html#Environment%20Access;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_getenv.2c_._wgetenv.asp

Impact: Medium

Cross References: clearenv, putenv, setenv, unsetenv

GetExtensionVersion
Prototype: virtual BOOL GetExtensionVersion(HSE_VERSION_INFO
*pVer)

Summary: This function gets the version information for a server.

Description: This function attempts to get the server’s version information. It takes
in a pointer to a HSE_VERSION_INFO structure, allowing the user to modify the
contents.The function will return a non-zero value if it is successful, and zero if it
fails.The information retrieved will be available in the structure upon successful
completion.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vcmfc98/html/_mfc_chttpserver.3a3a.getextensionversion.asp

Impact: Medium

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 122

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 123

gethostbyaddr
Prototype: struct hostent * gethostbyaddr (const char *addr,
size_t length, int format

Summary: This function gets an Internet host’s information by the address.

Description: The function attempts to get the host information at a given address.
The function takes three inputs: the host address, the size of the address, and the
format of the address.The function will return a “hostent” structure, containing
the desired information. However, in the event of an error, the function will return
a null pointer. It will also appropriately set the value “h_errno”.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Host-
Names.html#Host%20Names

Impact: Low

Cross References: gethostbyname

getlogin
Prototype: char * getlogin (void)

Summary: This function retrieves the username of the person logged into the pro-
cess’s terminal.

Description: The function will attempt to get the username of the person logged
into the terminal where the current process is running. It does not require any input
arguments.The function will return a string containing the requested username if
successful. If the username is unavailable or there is another error, the function will
return a null pointer. Subsequent calls to this function will overwrite the previous
call’s string.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 123

TLFeBOOK

124 C • Programmer’s Ultimate Security DeskRef

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Who-
Logged-In.html#Who%20Logged%20In

Impact: High

Cross References: cuserid

getopt
Prototype: int getopt (int argc, char **argv, const char
*options)

Summary: This function gets the next option argument from the “argv” and
“argc” lists.

Description: The function attempts to retrieve the next option argument from the
argument list “argv”.The function has three input variables: the input count
“argc” the argument list “argv” and the constant string “options”.The input
“options” is a string containing the characters that can be used for the program.
The function returns only one value, the integer representation of the option char-
acter.The function will return -1 if an error occurs or there are no more option
arguments to read.

Risk: While in general command line attacks are much more seldom and have con-
siderable less risk when compared to their remote code execution counterparts, it is
common to see attackers attempt to pass atypically large strings into a program’s
logic via the command line options. Ensure that all command line options are
restricted to alphanumeric characters and that the source data length is restricted to
a number less than that of the destination buffer.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Using-
Getopt.html#Using%20Getopt

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 124

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 125

Impact: Low

Cross References: getopt_long

getopt_long
Prototype: int getopt_long (int argc, char *const *argv, const
char *shortopts, const struct option *longopts, int *ind-

exptr)

Summary: This function retrieves the option arguments from the argument list
“argv”.

Description: The function works similarly to “getopt”. However, this function
replaces the string of all option arguments with two separate strings: one for
“short” arguments and one for “long” arguments. It also requires an index
pointer to keep track of its position.The function will return value of the next
option argument in “argv” unless it is at the end, when it will return a -1.

Risk: While in general command line attacks are much more seldom and have con-
siderable less risk when compared to their remote code execution counterparts, it is
common to see attackers attempt to pass atypically large strings into a program’s
logic via the command line options. Ensure that all command line options are
restricted to alphanumeric characters and that the source data length is restricted to
a number less than that of the destination buffer.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Getopt-
Long-Options.html#Getopt%20Long%20Options

Impact: Low

Cross References: getopt

getpass
Prototype: char * getpass (const char *prompt)

Summary: This function reads a password in from a terminal.

Description: The function attempts to read a password from the terminal.The
input variable “prompt” is output to the screen, signaling the user to enter the

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 125

TLFeBOOK

126 C • Programmer’s Ultimate Security DeskRef

password.The function reads the password and returns a string containing.There are
several precautions made to protect the password during the read stage (no echoing
of the terminal, flushed I/O, etc…).The function, if unsuccessful, will return a null
pointer.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Note: This function may have different attributes depending on the system used.
One possibility is that it will have a limit on the size of the password to read (and
thus not retrieve all of it).

Additional Resources:
www.gnu.org/software/libc/manual/html_node/getpass.html#getpass

Impact: High

gets
Prototype: char * gets (char *buffer)

Summary: This function gets a string from the I/O stream.

Description: The function will attempt to read a string in from the I/O stream.
The function has only one input argument, the location of where the new string
will be held.The function will read the I/O stream up to the next new line argu-
ment.The function returns the string, as read from the stream.

Risk: The gets function is susceptible to buffer overflow attacks where the
filestream has malicious characters that could overwrite the allocated memory.
Developers should validate all user input and ensure that malicious data is controlled
within the internal gets buffer. Because the function reads in streams of strings
(a.k.a., arrays of characters) it is mandatory to ensure that the strings are of expected
length.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Line-
Input.html#Line%20Input;

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 126

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 127

http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_gets.2c_.getws.asp

Impact: Low

Cross References: fgets, fputs, puts

GetTempFileName
Prototype: UINT GetTempFileName(LPCTSTR lpPathName, LPCTSTR
lpPrefixString, UINT uUnique, LPTSTR lpTempFileName)

Summary: This function creates a name for a temporary file.

Description: The function will attempt to create a temporary file to be use by the
program. It takes in four input arguments: the path to where the file will be, the
prefix for the file, a unique number to be used in file creation (after the prefix), and
the handle for the file.The function returns only one value, the unique number to
assigned after the prefix that was input.The function will return 0 in the event of an
error.

Risk: Temporary filenames are often created with static and easily guessable algo-
rithms such as the system time or application name appended with the day, month,
and year. If at all possible, do not use this function and instead store temporary
information in a secure memory space. If a temporary file is necessary, ensure that it
is removed upon exiting the program or in the case where a program exits unex-
pectedly is removed upon program relaunch. Consider utilizing a random number
generator such as ISAAC for creating secure random filenames.

Note: At the time of publication, this function was designed for Windows
compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/
gettempfilename.asp

Impact: Low

Cross References: GetTempFileNameA, GetTempFileNameW,
GetTempPath

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 127

TLFeBOOK

128 C • Programmer’s Ultimate Security DeskRef

GetTempFileNameW
Prototype: UINT GetTempFileNameW(LPCTSTR lpPathName, LPCTSTR
lpPrefixString, UINT uUnique, LPTSTR lpTempFileName)

Summary: This function creates a name for a temporary file.

Description: The function will attempt to create a temporary file to be use by the
program. It takes in four input arguments: the path to where the file will be, the
prefix for the file, a unique number to be used in file creation (after the prefix), and
the handle for the file.The function returns only one value, the unique number to
assigned after the prefix that was input.The function will return 0 in the event of an
error.

Risk: Temporary filenames are often created with static and easily guessable algo-
rithms such as the system time or application name appended with the day, month,
and year. If at all possible, do not use this function and instead store temporary
information in a secure memory space. If a temporary file is necessary, ensure that it
is removed upon exiting the program or in the case where a program exits unex-
pectedly is removed upon program relaunch. Consider utilizing a random number
generator such as ISAAC for creating secure random filenames.

Note: At the time of publication, this function was designed for Windows compati-
bility.This particular function is from the Windows Layer for Unicode and requires
additional files to be used in Win 95/98/Me.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/get-
tempfilename.asp

Impact: Low

Cross References: GetTempFileName, GetTempFileNameA, GetTempPath

GetTempPath
Prototype: DWORD GetTempPath(DWORD nBufferLength, LPTSTR
lpBuffer)

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 128

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 129

Summary: This function gets the path for the directory where temporary files are
stored.

Description: The function attempts to retrieve the path to where temporary files
are stored. It has two input variables: the length of the t-char string used to store the
path and the actual pointer to the string.The function returns the number of t-
char’s copied to the buffer.The path will also include a trailing slash (for easy con-
catenation of the file name). In the event of an error, the function will return a 0.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Note: At the time of publication, this function was designed for Windows compati-
bility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/get-
temppath.asp

Impact: Medium

Cross References: GetTempFileName, GetTempPathA, GetTempPathW

GetTempPathW
Prototype: DWORD GetTempPathW(DWORD nBufferLength, LPTSTR
lpBuffer) C

Summary: This function gets the path for the directory where temporary files are
stored.

Description: The function attempts to retrieve the path to where temporary files
are stored. It has two input variables: the length of the t-char string used to store the
path and the actual pointer to the string.The function returns the number of t-
char’s copied to the buffer.The path will also include a trailing slash (for easy con-
catenation of the file name). In the event of an error, the function will return a 0.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 129

TLFeBOOK

130 C • Programmer’s Ultimate Security DeskRef

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Note: At the time of publication, this function was designed for Windows compati-
bility.This particular function is from the Windows Layer for Unicode and requires
additional files to be used in Win 95/98/Me.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/base/get-
temppath.asp

Impact: Medium

Cross References: GetTempFileName, GetTempPath, GetTempPathA

ImpersonateLoggedOnUser
Prototype: BOOL ImpersonateLoggedOnUser(HANDLE hToken)C

Summary: This function attempts to impersonate a logged-on user.

Description: This function attempts to impersonate the security context of a
logged-on user.The function has only one input argument: the handle of the user to
impersonate.The function will return a non-zero value if successful, a zero if not.
The impersonation will last until the end of the current thread or the impersonation
is overtly stopped.

Risk: Applications that have the ability to impersonate local systems, users, or secu-
rity information are extremely dangerous; furthermore, functions that leverage this
type of functionality should be controlled and only used as a last resort! All imper-
sonation functions should be controlled by internal application-specific routines in
addition to the controlled use of their output.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
hhttp://msdn.microsoft.com/library/default.asp?url=/library/en-us/security/secu-
rity/impersonateloggedonuser.asp

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 130

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 131

Impact: Medium

Cross References: CoImpersonateClient, ImpersonateDdeClientWindow,
ImpersonateNamedPipeClient, ImpersonateSecurityContext

initstate
Prototype: void * initstate (unsigned int seed, void *state,
size_t size)

Summary: This function initializes the random number generator state.

Description: The function attempts to initialize the random number generator
(RNG) state. It has three input variables: the seed for the RNG, an empty pointer,
and the size of the array that the pointer is associated with.The function will store
the state of the RNG in the array, and thus should large enough to suffice.The
function will return the pointer to the array upon completion.

Risk: The initialization for this weak random generator should be substituted with
a more secure algorithm.As with most standard random functions implemented
within the C and C++ libraries, this function is susceptible to bruteforce or easily
guessed number generating attacks due to a poor seed algorithm within the backend
code.Amongst numerous other secure random number generating functions,
Microsoft .Net has secure methods for implementing properly seeded numbers.
ISAAC, designed by Bob Jenkins, is a fast cryptographic random number generator
is as strong as they come.Available in multiple languages, ISAAC is a standard for
many freeware and commercial solutions and should be considered the next time a
random number is required within an application.

Additional Resources: www.gnu.org/software/libc/manual/html_node/BSD-
Random.html#BSD%20Random

Impact: Medium

Cross References: random, setstate, srandom

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 131

TLFeBOOK

132 C • Programmer’s Ultimate Security DeskRef

jrand48
Prototype: long int jrand48 (unsigned short int xsubi[3])

Summary: This function produces a random number.

Description: The function produces a random number between -2^31 and 2^31. It
produces a long integer.The function takes in as an input variable the array con-
taining the state of the random number generator.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to bruteforce or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.gnu.org/software/libc/manual/html_node/SVID-
Random.html#SVID%20Random

Impact: Medium

Cross References: drand48, erand48, lrand48, mrand48, nrand48, seed48,
srand48

lchown
Prototype: int lchown(const char *path, uid_t owner, gid_t
group)

Summary: This function changes the owner/group of a file or symbolic link.

Description: The function attempts to change the owner and or group associated
with a file. If, in the event, the file is a symbolic link, it will change the ownership
of the link.The function takes in three input arguments: the path to the file, the
new owner, and the new group.The function will return a 0 if successful or a -1 if

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 132

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 133

not. If the function is unsuccessful, then the variable “errno” will be set
appropriately.

Risk: The ownership of a file or symbolic link should be restricted to that of pre-
defined application logic or fully vetted human input. If human input is an option
then it should be mandatory to ensure that only the appropriate users are options
for switching ownership. For example, you would not want a malicious user to have
the ability to change the ownership of a file to bad_user_joe.

Additional Resources: www.scit.wlv.ac.uk/cgi-bin/mansec?2+lchown

Impact: High

Cross References: chown

lcong48
Prototype: void lcong48 (unsigned short int param[7])

Summary: This function is used to change the complete state of the random
number generator.

Description: The function changes the complete state of the random number gen-
erator.There is only one input argument for this function, and that is the array of
parameters to be sent to the random number generator.The function does not
return any values, and successful completion may be unknown.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to bruteforce or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.gnu.org/software/libc/manual/html_node/
SVID-Random.html#SVID%20Random

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 133

TLFeBOOK

134 C • Programmer’s Ultimate Security DeskRef

Impact: High

Cross References: seed48

link
Prototype: int link (const char *oldname, const char *newname)

Summary: This function creates a symbolic link between an old and new file.

Description: The function attempts to create a symbolic link between an old file
and a new name.The function takes two inputs: the string containing the path to
the old file and a string for which the “new” file will be known.The function
returns only a Boolean integer. If successful, the function returns 0. If not, the func-
tion will return a -1 and appropriately set “errno”.

Risk: Characters used in the filenames should be restricted to the alphanumeric
base or less depending on the underlying operating platform. Ensure that all links
are removed before the program executes or are cleaned up before program execu-
tion, in the case where a program crashes or exits unexpectedly.The link function is
commonly targeted in Denial-of-Service attacks attempting to consume all of the
local CPU or memory resources.

Additional Resources: www.gnu.org/software/libc/manual/html_node/
Hard-Links.html#Hard%20Links

Impact: Low

LoadLibrary
Prototype: HMODULE LoadLibrary(LPCTSTR lpFileName)

Summary: This function maps an executable module.

Description: The function attempts to map the calling process to an executable
module.The function has only one input argument: a string containing the path to
the executable file.The function will return a pointer to the address of the file. In
the event of an error, the function will return a NULL pointer.

Risk: By default, the LoadLibrary function will search multiple locations for
both DLL and EXE modules. When you utilize this function, it is imperative that

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 134

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 135

you include the complete path to the desired module that you are implementing
within your application. If the complete path is not specified and a default multi-
path search is conducted then the potential for a malicious program to be executed
is increased. For instance, if a Trojanized Microsoft DLL resides on a target system
with the name included in the executed application then it may be possible for a
remote user to launch that DLL through a vulnerable application.

Note: At time of publication, this function was written for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/loadlibrary.asp

Impact: Medium

Cross References: AfxLoadLibrary, FreeLibrary

lstat
Prototype: int lstat (const char *filename, struct stat
*buffer)

Summary: This function reads the attributes of a file.

Description: The function attempts to read the attributes of a file. It has two input
arguments: the path to a file and a pointer to a structure to house the file attributes.
The function can not follow symbolic links, so if the file pointed to in the path is a
symbolic link, the function will only return information on that particular file (not
the one linked to).The function, if successful, will return 0. If unsuccessful, it will
return a -1 and set “errno” appropriately.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to bruteforce or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 135

TLFeBOOK

136 C • Programmer’s Ultimate Security DeskRef

commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Reading-
Attributes.html#Reading%20Attributes

Impact: Low

Cross References: stat

lstrcat
Prototype: LPTSTR lstrcat(LPTSTR destination, LPTSTR source)

Summary: This function appends a string onto the end of another.

Description: The function attempts to copy one string onto the end of another.
The function has two input arguments: the source and destination strings. When
completed, the function will return the destination string. However, in the event of
an error, the function will return NULL. One must be careful in using this function,
as the destination string must be long enough hold all of the source string and the
null character.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y, then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/WinUI/WindowsUserInterface/Resources/Strings/StringReference/Strin
gFunctions/lstrcat.asp

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 136

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 137

Impact: Low

Cross References: lstrcpy

lstrcpy
Prototype: LPTSTR lstrcpy(LPTSTR destination, LPTSTR source)

Summary: This function copies one string to another.

Description: The function attempts to copy one string to another.The function
two input variables: the source and destination strings.The function will copy the
source string to the destination, and return the destination string.The destination
string must be long enough to hold the source string and the null character. In the
event of failure, the function will return NULL.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y, then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/WinUI/WindowsUserInterface/Resources/Strings/StringReference/Strin
gFunctions/lstrcpy.asp

Impact: Medium

Cross References: lstrcat, lstrcpyn

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 137

TLFeBOOK

138 C • Programmer’s Ultimate Security DeskRef

lstrcpyA
Prototype: static extern int lstrcpyA (string destination,
string source)

Summary: This function copies one string to another.

Description: The function attempts to copy one string to another.The function
two input variables: the source and destination strings.The function will copy the
source string to the destination, and return the number of characters copied.The
destination string must be long enough to hold the source string and the null char-
acter. In the event of failure, the function will return NULL.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y, then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources: http://custom.programming-in.net/articles/art9-
1.asp?f=lstrcpy

Impact: Medium

Cross References: lstrcpy

lstrcpynW
Prototype: LPTSTR lstrcpynW(LPWSTR destination, LPCWSTR
source, int count)

Summary: This function copies one string to another.

Description: The function attempts to copy one wide-character string to another.
The function three input variables: the source and destination wide-character strings
and a maximum number of characters to copy.The function will copy the source

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 138

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 139

string to the destination (stopping at “count”), and return the destination string.
The destination string must be long enough to hold the source string and the null
character. In the event of failure, the function will return NULL.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y, then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/archive/default.asp?url=/archive/en-
us/dx81_c/directx_cpp/htm/lstrcpynw.asp

Impact: Medium

Cross References: lstrcpy, lstrcpyn

lstrcpyW
Prototype: LPTSTR lstrcpyW(LPWSTR destination, LPCWSTR
source)

Summary: This function copies one string to another.

Description: The function attempts to copy one wide-character string to another.
The function two input variables: the source and destination wide-character strings.
The function will copy the source string to the destination), and return the destina-
tion string.The destination string must be long enough to hold the source string
and the null character. In the event of failure, the function will return NULL.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 139

TLFeBOOK

140 C • Programmer’s Ultimate Security DeskRef

your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y, then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/archive/default.asp?url=/archive/en-
us/dx81_c/directx_cpp/htm/lstrcpyw.asp

Impact: Medium

Cross References: lstrcpy, lstrcpy

mkdir
Prototype: int mkdir (const char *filename, mode_t mode)

Summary: This function creates a directory.

Description: The function attempts to create a new, empty directory. It has two
input arguments: the string containing the new directory name and the mode in
which to create it.The function will return a 0 if it completes the task successfully.
In the event of failure, the function returns -1 and sets “errno” appropriately.

Risk: Users should not be given free reign with this function and should be
restricted to only create directories from a desired list provided by the development
team.Also limit the parent directory of the new directory to a predefined or static
source thereby minimizing your risk of enabling an attacker to control your under-
lying operating system.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Creating-
Directories.html#Creating%20Directories

Impact: High

Cross References: mkdirp

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 140

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 141

mkdirp
Prototype: int mkdirp(const char *path, mode_t mode)

Summary: This function creates the missing directories in a given path.

Description: The function attempts to create all the necessary directories in a
given path.This means that function will attempt to create all the directories that do
not exist in the given path.The function has two input variables: the path and the
creation mode.The function will return a 0 if it completes successfully. If it fails,
however, it will return -1 and set “errno” appropriately.

Risk: Users should not be given free reign with this function and should be
restricted to only create directories from a desired list provided by the development
team.Also limit the parent directory of the new directory to a predefined or static
source thereby minimizing your risk of enabling an attacker to control your under-
lying operating system.

Impact: High

Cross References: mkdir

mkfifo
Prototype: int mkfifo (const char *filename, mode_t mode)

Summary: This function creates a special FIFO-type file.

Description: The function attempts to create a special FIFO-type file.This type of
file functions by having both ends opened for reading, acting similarly to a pipe.The
function has two input variables: the string containing the FIFO filename and the
mode in which to create it. If the function is successful, the function returns a 0.
Otherwise, the function returns a -1 and sets “errno” appropriately.

Risk: In 2002, a myriad of vulnerabilities were identified in Microsoft pipes; how-
ever, the implementation and exploitation of these vulnerabilities is not strictly lim-
ited to Microsoft Windows operating systems. Similar to socket-level vulnerabilities,
the pipe vulnerabilities exploit trusts between the clients and server on the ends of
the connection. Ensure that your compiler is up-to-date and that all parameters

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 141

TLFeBOOK

142 C • Programmer’s Ultimate Security DeskRef

passed to this function are derived from internal system information and not human
data. Human data should be scrubbed and presented with options for selections if
this function must be utilized.

Additional Resources: www.gnu.org/software/libc/manual/html_node/FIFO-
Special-Files.html#FIFO%20Special%20Files

Impact: High

Cross References: mknod

mknod
Prototype: int mknod (const char *filename, mode_t mode, int
dev)

Summary: This function is the basic function that was made to create special files.

Description: The function attempts to create a special file attached to or associated
with a device.The function has three input arguments.They are the filename, the
mode in which to create it, and the device to which the file will be associated.The
function will return a 0 if the file is successfully created. However, in the event of a
failure, the function will return a -1 and set “errno” appropriately.

Risk: This function must be controlled at the user level to ensure that only the
appropriate users or internal systems can have the ability to execute it. It poses min-
imal risk to your application; however, as with any function that can create a file on
the underlying subsystem, it’s important to protect the directory destination.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Making-
Special-Files.html#Making%20Special%20Files

Impact: High

Cross References: mkfifo

mrand48
Prototype: long int mrand48 (void)

Summary: This function produces a random integer.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 142

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 143

Description: The function produces a random integer between -2^31 and 2^31. It
produces the number based on the state of the random number generator.The func-
tion does not take in any input arguments.The return value, however, is a long
integer.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to bruteforce or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.gnu.org/software/libc/manual/html_node/SVID-
Random.html#SVID%20Random

Impact: Medium

Cross References: drand48, erand48, jrand48, lrand48, nrand48, seed48,
srand48

nrand48
Prototype: long int nrand48 (unsigned short int xsubi[3])

Summary: This function produces a random number.

Description: This function produces a random number between 0 and 2^31. It
follows much of the same ideas of the “standard” function “lrand48”.
However, this function can be passed an array with the description of the random
number generator (RNG) state.This ability is useful when wishing to seed the
RNG or use it to reproduce results.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to bruteforce or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 143

TLFeBOOK

144 C • Programmer’s Ultimate Security DeskRef

numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.gnu.org/software/libc/manual/html_node/SVID-
Random.html#SVID%20Random

Impact: Medium

Cross References: drand48, erand48, jrand48, lrand48, mrand48, seed48,
srand48

OemToAnsi (Class Member)
Prototype: void CStringT::OemToAnsi()

Summary: This class member converts the string of characters from the OEM
character set to the ANSI character set.

Description: This is a member of the class type CStringT.The member will con-
vert the character of the class object “String” from the OEM character set to the
ANSI character set. It does not return anything, as it modifies the class object itself.

Risk: Certain string manipulation functions to include OEM transition functions
are commonly leveraged in buffer overflow attacks.At the most basic level, these
functions read in data, perform analysis and execution logic, then output the data to
another type of string. It is imperative that the destination string be calculated
accordingly and that enough memory space is allocated. Special characters should
also be stricken from the conversion.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/vclr-
fcstringtoemtoansi.asp

Impact: Low

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 144

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 145

open
Prototype: int open (const char *filename, int flags[, mode_t
mode])

Summary: This function opens a file.

Description: This function attempts to create a new file handle.The function
opens a file with the given mode/flags, and returns the handle for the file.The func-
tion returns a 0 if it is opened correctly. However, if it fails, the function returns a -
1 and appropriately sets “errno”.

Risk: All special and wildcard characters should be removed before the filename is
computed on the local filesystem. Malicious filenames are interpreted differently on
varying systems and as such, directory control is critical to limiting the ability of an
attacker to potentially compromise files at varying levels within the application or
underlying subsystem.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Opening-
and-Closing-Files.html#Opening%20and%20Closing%20Files

Impact: Low

opendir
Prototype: DIR * opendir (const char *dirname)

Summary: This function opens a directory.

Description: The function attempts to open a given directory.The function has
only one input variable: a string containing the name of the directory to open.The
function returns a pointer to the directory. However, if something went wrong, the
function returns a NULL pointer and sets “errno” appropriately.

Risk: All special and wildcard characters should be removed before the filename is
computed on the local filesystem. Malicious filenames are interpreted differently on
varying systems and as such, directory control is critical to limiting the ability of an
attacker to potentially compromise files at varying levels within the application or
underlying subsystem.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 145

TLFeBOOK

146 C • Programmer’s Ultimate Security DeskRef

Additional Resources: www.gnu.org/software/libc/manual/html_node/Opening-
a-Directory.html#Opening%20a%20Directory

Impact: Low

pathconf
Prototype: long int pathconf (const char *filename, int
parameter)

Summary: This function retrieves the values of the file system parameters for a
given file.

Description: The function attempts to retrieve the file system parameters of a
given file.The function has two input arguments: a string containing the filename
and a parameter to check.The function will return that parameter value if it is suc-
cessful and the parameter value applies to the file. However, if the function either
fails or the value is not applicable, the function returns a -1. In the case that the
function fails, “errno” is set appropriately.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Pathconf.html#Pathconf

Impact: Medium

popen
Prototype: FILE * popen (const char *command, const char
*mode)

Summary: This function opens a process and keeps it open, leaving a pipe to the
process.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 146

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 147

Description: The function attempts to open and execute a process.The function,
however, does not wait until completion, but rather leaves open the process and cre-
ates a pipe to it.The function has two input arguments: a string containing the
system command to use and execution mode.The function will return the pipe if it
successful or a NULL pointer if not.

Risk: In 2002, myriad vulnerabilities were identified in Microsoft pipes; however,
the implementation and exploitation of these vulnerabilities is not strictly limited to
Microsoft Windows operating systems. Similar to socket-level vulnerabilities, the
pipe vulnerabilities exploit trusts between the clients and server on the ends of the
connection. Ensure that your compiler is up-to-date and that all parameters passed
to this function are derived from internal system information and not human data.
Human data should be scrubbed and presented with options for selections if this
function must be utilized.

Additional Resources: www.blakewatts.com,
www.gnu.org/software/libc/manual/html_node/Pipe-to-a-
Subprocess.html#Pipe%20to%20a%20Subprocess

Impact: Low

printf
Prototype: int printf(const char *format [, argument]...)

Summary: This function prints a formatted array of characters to the I/O stream.

Description: The function attempts to print a formatted array of characters to the
stream. It has only one formal argument: the array to be printed. However, as it can
be formatted data, there can be subsequent, informal arguments.The function will
return the number of characters printed. However, in the event of an error, the
function returns a negative value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 147

TLFeBOOK

148 C • Programmer’s Ultimate Security DeskRef

directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Formatted-Output-
Functions.html#Formatted%20Output%20Functions;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_printf.2c_.wprintf.asp

Impact: Medium

Cross References: fprintf, scanf, sprintf

random
Prototype: long int random (void)

Summary: This function generates a random number.

Description: The function generates a random number based on the sequence. It
will be between 0 and RAND_MAX.The function has no input variables. It
returns a long integer.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to bruteforce or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.gnu.org/software/libc/manual/html_node/BSD-
Random.html#BSD%20Random

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 148

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 149

Impact: Medium

Cross References: srandom

read
Prototype: ssize_t read (int filedes, void *buffer, size_t
size)

Summary: This function reads data from a file.

Description: The function attempts to read the information stored in a file. It has
three input arguments: the handle of the file to read, an array to store the informa-
tion read, and the size of the array.The function will read the file “blindly”
paying little attention to that which it is reading. It will also not append and special
characters (i.e., the null character).The function will return the number of bytes
read.The function will return a 0 if the function was already at the end-of-file
marker. If there is an error, the function returns -1 and sets “errno” appropriately.

Risk: This function parses input blindly.Additionally, logic should be incorporated
into the application to ensure that human supplied input does not contain poten-
tially malicious content. Data streams that are attached to external sources must first
verify the integrity of those sources before interpreting and implementing the data.
The destination buffer should be verified before any data is copied into memory or
another data stream as to minimize the risk for an attack against a buffer overflow.

Additional Resources: www.gnu.org/software/libc/manual/html_node/I-O-
Primitives.html#I%2fO%20Primitives

Impact: Low

readdir
Prototype: struct dirent * readdir (DIR *dirstream)

Summary: This function reads the next object from the directory stream.

Description: The function attempts to read the next object form the directory
stream. It has only one input argument, and that is the directory stream.The func-
tion will return a pointer to a structure that contains the necessary data about the

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 149

TLFeBOOK

150 C • Programmer’s Ultimate Security DeskRef

next object in the directory stream. It also increments the stream. If there is an error,
the function returns a null pointer and sets “errno” appropriately.

Risk: All special and wildcard characters should be removed before the filename is
computed on the local filesystem. Malicious filenames are interpreted differently on
varying systems and as such, directory control is critical to limiting the ability of an
attacker to potentially compromise files at varying levels within the application or
underlying subsystem.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Reading-
Closing-Directory.html#Reading%2fClosing%20Directory

Impact: Low

readlink
Prototype: int readlink (const char *filename, char *buffer,
size_t size)

Summary: This function retrieves the file pointed to by a symbolic link.

Description: The function attempts to retrieve the name of a file pointed to by a
symbolic link.The function has three input variables: the symbolic link’s name, an
empty string to house the link’s target name, and the maximum number of charac-
ters. Note that this function does not append a null character at the end of the
target name’s string.The function will return the number of characters copied. In
the event of failure, however, the function will return -1 and set “errno” appro-
priately.

Risk: All special and wildcard characters should be removed before the filename is
computed on the local filesystem. Malicious filenames are interpreted differently on
varying systems and as such, directory control is critical to limiting the ability of an
attacker to potentially compromise files at varying levels within the application or
underlying subsystem.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Symbolic-
Links.html#Symbolic%20Links

Impact: Low

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 150

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 151

readv
Prototype: ssize_t readv (int filedes, const struct iovec
*vector, int count)

Summary: This function reads and scatters data from a file into a vector of buffers.

Description: The function attempts to read and scatter data from a given file into a
vector of buffers.The function has three input variables: the file, a pointer to a
vector buffer structure, and the number of structures in the vector.The function will
return the number of bytes read and scattered. In the event of an end-of-file notifi-
cation or an error, the function will return a 0 or -1, respectively. If there is an
error, “errno” will be set appropriately.

Risk: This function parses input blindly.Additionally, logic should be incorporated
into the application to ensure that human supplied input does not contain poten-
tially malicious content. Data streams that are attached to external sources must first
verify the integrity of those sources before interpreting and implementing the data.
The destination buffer should be verified before any data is copied into memory or
another data stream as to minimize the risk for an attack against a buffer overflow.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Scatter-
Gather.html#Scatter-Gather

Impact: Low

realloc
Prototype: void * realloc (void *ptr, size_t newsize)

Summary: This function reassigns the size of an allocated piece of memory.

Description: The function attempts to resize a piece of allocated memory.The
function has two input variables: the pointer to the existing piece of memory and
the new size for it.The function will return a pointer to the reallocated piece of
memory. If a null pointer is passed into realloc, it acts identically to “malloc”. If
there is not enough memory to fulfill the request, then a null pointer is returned.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 151

TLFeBOOK

152 C • Programmer’s Ultimate Security DeskRef

Risk: The realloc function does not erase data that was previously stored in a
memory address and thereby should not be considered a secure method for
removing information.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Changing-Block-
Size.html#Changing%20Block%20Size

Impact: Low

realpath
Prototype: char * realpath (const char *name, char *resolved)

Summary: This function canonicalizes a path.

Description: The function attempts to canonicalize a path.The function will act
exactly like “canonicalize_file_name” if “resolved” is null. If it is not, then
the function copies the canonicalized path, resolved from “name” to the memory
pointed to by it.The function returns the pointer to where the string contains the
resolved path name.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Symbolic-
Links.html#Symbolic%20Links

Impact: Medium

recv
Prototype: int recv (int socket, void *buffer, size_t size,
int flags)

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 152

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 153

Summary: This function receives data from an open socket.

Description: The function attempts to resolve data from a socket and store it.The
function has four input variables: the socket to read from, the empty array for the
data, the size of the array, and a set of flags. If successful, the function returns the
number of bytes read. However, in the event of an error, the function returns a -1
and sets “errno” appropriately.

Risk: Raw network data received from a socket has the potential to be malicious in
nature due to the great number of attacks designed to be executed remotely. Packet
fragmentations can cause serious disruptions to the application and underlying oper-
ating system. If at all possible, packet reassembly should be conducted at the OS-
layer.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Receiving-
Data.html#Receiving%20Data

Impact: Low

Cross References: recvfrom

recvfrom
Prototype: int recvfrom (int socket, void *buffer, size_t
size, int flags, struct sockaddr *addr, socklen_t *length-

ptr)

Summary: This function reads the data from a socket.

Description: The function attempts to resolve the data packets from a socket.The
function has six input arguments: the socket, the empty array, the size of the array,
the flags to be set, a structure pointer to hold information about the socket, and the
size of the aforementioned pointer (array).The function returns the number of bytes
read, unless an error occurs. In the event of failure, the function returns a -1 and
sets “erno” appropriately.

Risk: Raw network data received from a socket has the potential to be malicious in
nature due to the numerous amount of attacks that are designed to be executed
remotely. Packet fragmentations can cause serious disruptions to the application and

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 153

TLFeBOOK

154 C • Programmer’s Ultimate Security DeskRef

underlying operating system. If at all possible, packet reassembly should be con-
ducted at the OS-layer.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Receiving-
Datagrams.html#Receiving%20Datagrams

Impact: Low

Cross References: recv

recvmsg
Prototype: int recvmsg(int socket, struct msghdr *message, int
flags)

Summary: This function receives information and/or a message from a socket.

Description: The function attempts to resolve the information, messages, and
addresses of a socket.The function has three input arguments: the socket, a structure
to hold the necessary information, and a set of flags.The benefit of this function is
that the sockets do not have to be connected to read the information from them.
The function will return the number of bytes received. However, in the event of
failure, the function will return a -1 and set “errno” appropriately.

Risk: Raw network data received from a socket has the potential to be malicious in
nature due to the great number of attacks that are designed to be executed remotely.
Packet fragmentations can cause serious disruptions to the application and under-
lying operating system. If at all possible, packet reassembly should be conducted at
the OS-layer.

Additional Resources: http://mkssoftware.com/docs/man3/recvmsg.3.asp

Impact: Low

Cross References: recv

remove
Prototype: int remove (const char *filename)

Summary: This function removes a file.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 154

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 155

Description: The function attempts to delete a file.The function has one input
variable: the file to be removed.The function will return a 0 if successful.
Otherwise, the function returns a -1 and sets “errno” appropriately.

Risk: In addition to the potential race condition bugs that are associated with this
function, a user could also attempt to execute a Denial-of-Service attack. Ensure
that only one instance of this function can be called at any given moment.All input
passed to this function should be analyzed closely to ensure that only desired
resources can be removed from the system. It is not uncommon for worms and
viruses to exploit application-layer vulnerabilities to cause damage to files they since
would not have had access to.

Impact: Low

Cross References: rmdir, unlink

rename
Prototype: int rename (const char *oldname, const char *new-
name)

Summary: This function renames a file.

Description: The function attempts to rename a file.The function has two input
variables: the old file name and the new file name.The function will return a 0 if
successful. If the function fails, however, it will return a -1 and set “errno” appro-
priately.

Risk: In addition to the potential race condition bugs that are associated with this
function, a user could also attempt to execute a Denial-of-Service attack. Ensure
that only one instance of this function can be called at any given moment.All input
passed to this function should be analyzed closely to ensure that only desired
resources can be removed from the system. It is not uncommon for worms and
viruses to exploit application-layer vulnerabilities to cause damage to files they since
would not have had access to by renaming all files within an operating system or
renaming files and directories to those that are commonly executed upon system
boot.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 155

TLFeBOOK

156 C • Programmer’s Ultimate Security DeskRef

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Renaming-
Files.html#Renaming%20Files

Impact: Low

rmdir
Prototype: int rmdir (const char *filename)

Summary: This function removes a directory.

Description: The function attempts to remove a given directory.The directory
must be empty before removal.The function has only one input argument: the
directory name.The function will return a 0 if it succeeds. However, the function
will return a -1 and set “errno” if it fails.

Risk: In addition to the potential race condition bugs that are associated with this
function, a user could also attempt to execute a Denial-of-Service attack. Ensure
that only one instance of this function can be called at any given moment.All input
passed to this function should be analyzed closely to ensure that only desired
resources can be removed from the system. It is not uncommon for worms and
viruses to exploit application-layer vulnerabilities to cause damage to files they since
would not have had access to.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Deleting-
Files.html#Deleting%20Files

Impact: Low

Cross References: remove, unlink

rmdirp
Prototype: int rmdirp (char *path, char *path1)

Summary: This function removes a directory.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 156

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 157

Description: The function attempts to remove a directory.This function, however,
will remove all directories in a path to get to the perceived root directory given in
the path.The directories must be empty except for the other directories being
removed.The function has two input arguments: the path of directories to remove,
and another string to hold a resultant path in case of error.The function returns a 0
if successful, and a -1 if not. In the case of failure, the function sets “errno” appro-
priately.

Risk: In addition to the potential race condition bugs that are associated with this
function, a user could also attempt to execute a Denial-of-Service attack. Ensure
that only one instance of this function can be called at any given moment.All input
passed to this function should be analyzed closely to ensure that only desired
resources can be removed from the system. It is not uncommon for worms and
viruses to exploit application-layer vulnerabilities to cause damage to files they since
would not have had access to.

Additional Resources: www.mcsr.olemiss.edu/cgi-bin/man-cgi?mkdirp+3

Impact: Low

scandir
Prototype: int scandir (const char *dir, struct dirent
***namelist, int (*selector) (const struct dirent *), int

(*cmp) (const void *, const void *))

Summary: This function scans a directory.

Description: The function attempts to scan a directory and store the information
that it acquires.The function has four input arguments: the directory name to scan,
an array of structures to hold the file information, and two sets of flags.The function
will return a 0 if it is successful, and a -1 if it is not.The function will also set the
variable “errno” if the case is necessary.

Risk: This function poses minimal risk, but the output of a file’s existence should
be limited to that of the desired resource. In other words, application users should
not be able to point this function at any directory or file on the underlying sub-
system to determine if the resource exists.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 157

TLFeBOOK

158 C • Programmer’s Ultimate Security DeskRef

Additional Resources: www.gnu.org/software/libc/manual/html_node/Scanning-
Directory-Content.html#Scanning%20Directory%20Content

Impact: Low

scanf
Prototype: int scanf(const char *format [,argument])

Summary: The function reads a formatted array of characters from the I/O stream.

Description: The function attempts to scan a formatted array of characters from
the stream. It has only one formal argument: the array to be read in to. However, as
it can be formatted data, there can be subsequent, informal arguments.The function
will return the number of characters read. However, in the event of an error, the
function returns a negative value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Formatted-Input-
Functions.html#Formatted%20Input%20Functions;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_scanf.2c_.wscanf.asp

Impact: Medium

Cross References: fscanf, printf, sprintf

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 158

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 159

seed48
Prototype: unsigned short int * seed48 (unsigned short int
seed16v[3])

Summary: This function sets the seed for the random number generator.

Description: The function attempts to initialize the random number generator. It
will give the ability to store the state of a random number generator so one can
keep track of the results.The function has only one input value and that is the array
that will hold the state of the random number generator upon completion. In the
event of a failure, the function returns a null pointer.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to bruteforce or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.gnu.org/software/libc/manual/html_node/SVID-
Random.html#SVID%20Random

Impact: Medium

setstate
Prototype: void * setstate (void *state)

Summary: This function sets the state for a random number generator.

Description: This function is used to reset the state of the random number gener-
ator to a previous value.The function receives and returns the same values: the
random number generator state.The function will return a null pointer, however, in
the event of failure.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 159

TLFeBOOK

160 C • Programmer’s Ultimate Security DeskRef

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to bruteforce or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.gnu.org/software/libc/manual/html_node/BSD-
Random.html#BSD%20Random

Impact: Low

signal
Prototype: sighandler_t signal (int signum, sighandler_t
action)

Summary: This function sets an action for a signal.

Description: The function attempts to set the action for a signal.The function has
two input arguments: the signal and the action for the signal.The function, if suc-
cessful, will return the previous action associated with the given signal. If not, the
function returns SIG_ERR and sets errno appropriately.

Risk: Functions that handle or pass data to signals could be open for attacks to race
condition bugs found within your logic. Ensure that only one instance of the signal
function can be called at any given period of time and that if utilized in multiple
locations within an application, a time delay routine be implemented to monitor the
function usage.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Basic-
Signal-Handling.html#Basic%20Signal%20Handling

Impact: Low

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 160

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 161

snprintf
Prototype: int snprintf (char *string, size_t count, const
char *template)

Summary: This function prints a formatted output string to another string.

Description: The function attempts to print a formatted string to another.The
function also specifies the maximum number of characters to write. It has three
formal arguments: the destination string, the max number of characters to write, and
the formatted string.The function may have other, informal arguments deriving
from the string formatting.The function will return the number of characters that
would have been generated (meaning that if your return value is greater than
“count”, there was information lost).

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Formatted-Output-
Functions.html#Formatted%20Output%20Functions

Impact: Medium

sprintf
Prototype: int sprintf (char *buffer, const char *template,
...)

Summary: This function prints a formatted array of characters to a string.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 161

TLFeBOOK

162 C • Programmer’s Ultimate Security DeskRef

Description: The function attempts to print a formatted array of characters to a
string. It has two formal arguments: the new string and the array to be printed.
However, as it can be formatted data, there can be subsequent, informal arguments.
The function will return the number of characters printed. However, in the event of
an error, the function returns a negative value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Formatted-Output-
Functions.html#Formatted%20Output%20Functions;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_sprintf.2c_.swprintf.asp

Impact: Medium

Cross References: fprintf, scanf, sprintf

srand
Prototype: void srand (unsigned int seed)

Summary: This function seeds the random number generator.

Description: The function attempts to seed the random number generator.The
function utilizes a seed passed in to set the random number generator state.The
function has only one input value: the seed for the random number generator.The
function will not return any values.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 162

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 163

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to bruteforce or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.gnu.org/software/libc/manual/html_node/ISO-Random.
html#ISO%20Random

Impact: Medium

srand48
Prototype: void srand48 (long int seedval)

Summary: This function seeds the random number generator.

Description: The function attempts to seed the random number generator.The
function utilizes a seed passed in to set the random number generator state.The
function has only one input value: the seed for the random number generator.The
function will not return any values.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to bruteforce or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 163

TLFeBOOK

164 C • Programmer’s Ultimate Security DeskRef

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.gnu.org/software/libc/manual/html_node/SVID-
Random.html#SVID%20Random

Impact: Medium

Cross References: drand48, erand48, jrand48, lrand48, mrand48,
nrand48, seed48

srandom
Prototype: void srandom (unsigned int seed)

Summary: This function seeds the random number generator.

Description: The function attempts to seed the random number generator.The
function utilizes a seed passed in to set the random number generator state.The
function has only one input value: the seed for the random number generator.The
function will not return any values.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to bruteforce or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.gnu.org/software/libc/manual/html_node/BSD-
Random.html#BSD%20Random

Impact: Medium

Cross References: random

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 164

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 165

sscanf
Prototype: int sscanf(const char *buffer, const char *format
[, argument])

Summary: The function reads a formatted array of characters from a string.

Description: The function attempts to scan a formatted array of characters from a
string. It has two formal arguments: the string (which the function will read) and
the array to be read in to. However, as it can be formatted data, there can be subse-
quent, informal arguments.The function will return the number of characters read.
However, in the event of an error, the function returns a negative value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Formatted-Input-
Functions.html#Formatted%20Input%20Functions;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_sscanf.2c_.swscanf.asp

Impact: Medium

Cross References: fscanf, scanf, sprintf

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 165

TLFeBOOK

166 C • Programmer’s Ultimate Security DeskRef

stat
Prototype: int stat (const char *filename, struct stat *buffer)

Summary: This function retrieves the attributes of a given file.

Description: The function attempts to acquire the attributes of a given file.The
function has two input variables: the string containing the file name and structure to
hold the requested information.The function will return a 0 if it is successful.The
resultant information will be in the structure. If the function is unsuccessful, it
returns a -1 and sets “errno” appropriately.

Risk: The stat function output should be restricted to trusted administrative-level
users or the internal workings of the application. stat output contains sensitive
information that an attacker could leverage to advance an attack scenario.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Reading-
Attributes.html#Reading%20Attributes

Impact: Low

strcadd
Prototype: char *strcadd (char *destination, const char
*source)

Summary: This function copies a string onto another.

Description: The function attempts to copy one string onto another.The function
has two input arguments: the source and destination strings. It also compresses the C
escape sequences to their respective characters.The function returns the pointer to
the destination string.This function is identical to “strccpy” except that the
pointer returned is to the null character at the end of the destination.The function
will return a null pointer in the event of an error.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 166

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 167

less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Additional Resources: http://docsrv.sco.com/cgi-bin/man/man?strccpy+3G

Impact: Low

Cross References: strccpy, streadd, strecpy

strcat
Prototype: char *strcat(char *destination, const char *source)

Summary: This function concatenates a string onto the end of another.

Description: The function attempts to append one string onto the end of another.
It has two input arguments: the source and destination strings.The function will
return a pointer to the destination string when finished. In the event of an error, the
function can return a NULL pointer.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions, where the strings are limited to a total length.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Copying-
and-Concatenation.html#Copying%20and%20Concatenation;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_strcat.2c_.wcscat.2c_._mbscat.asp

Impact: High

Cross References: strcpy, strlen, strncat, strncpy

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 167

TLFeBOOK

168 C • Programmer’s Ultimate Security DeskRef

strccpy
Prototype: char *strccpy (char *destination, const char
*source)

Summary: This function copies a string onto another.

Description: The function attempts to copy one string onto another.The function
has two input arguments: the source and destination strings. It also compresses the C
escape sequences to their respective characters.The function returns the pointer to
the destination string.This function is identical to “strcadd” except that the
pointer returned is to the first character of the destination string.The function will
return a null pointer in the event of an error.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y, then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Impact: Low

Cross References: strcadd, streadd, strecpy

strcpy
Prototype: char *strcpy(char *destination, const char
*source)

Summary: This function copies a string onto another.

Description: The function attempts to copy one string onto another. It has two
input arguments: the source and destination strings.The function will return a
pointer to the destination string when finished. In the event of an error, the func-
tion can return a NULL pointer.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 168

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 169

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y, then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Impact: High

Cross References: strcat, strlen, strncat, strncpy

streadd
Prototype: char *streadd (char *destination, const char
*source, const char *exceptions)

Summary: This function copies a string onto another.

Description: The function attempts to copy one string onto another.The function
has three input arguments: the source and destination strings and a string for excep-
tion handling. It also expands the C escape sequences from their respective charac-
ters.The function returns the pointer to the destination string.This function is
identical to “strecpy” except that the pointer returned is to the null character at
the end of the destination.The function will return a null pointer in the event of an
error.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 169

TLFeBOOK

170 C • Programmer’s Ultimate Security DeskRef

that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Impact: Low

Cross References: strcadd, strccpy, strecpy

strecpy
Prototype: char *strecpy (char *destination, const char
*source, const char *exceptions)

Summary: This function copies a string onto another.

Description: The function attempts to copy one string onto another.The function
has three input arguments: the source and destination strings and a string for excep-
tion handling. It also expands the C escape sequences from their respective charac-
ters.The function returns the pointer to the destination string.This function is
identical to “streadd” except that the pointer returned is to the first character of
the destination string.The function will return a null pointer in the event of an
error.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Impact: Low

Cross References: strcadd, strccpy, streadd

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 170

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 171

strfry
Prototype: char *strfry (char *string)

Summary: This function shuffles the order of characters in a string.

Description: The function attempts to shuffle a string’s contents.The function has
only one input variable: the string in question.The function, with uniform distribu-
tion, perturbs the characters in the string to create an anagram of the original string.
The function returns the pointer to the string.

Risk: This function should never be utilized to obfuscate data with the goal of pro-
tecting it from prying eyes. Only industry-standard cryptography algorithms should
be implemented to secure data.This function is out-of-date and should not be used!

Note: At time of publication, this function was designed for compatibility in the
GNU Library.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/strfry.html#strfry

Impact: High

strlen
Prototype: size_t strlen(const char *string)

Summary: This function finds the length of a string.

Description: The function attempts to find the length of the string. It has only one
input argument: the string to get the length of.The function will return an integer
indicating the length of the string. In the event that the string does not exist or an
error occurs, the function can return 0.

Risk: The length of a string is commonly ascertained before it is passed to a func-
tion that utilizes it to calculate the space required for a destination buffer. Ensure
that human users do not have the ability to modify this number thereby potentially
making it smaller than the destination. Calculate the length of the source then add
one byte so to avoid off-by-one application buffer overflow attacks.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 171

TLFeBOOK

172 C • Programmer’s Ultimate Security DeskRef

Additional Resources: www.gnu.org/software/libc/manual/html_node/String-
Length.html#String%20Length;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_strlen.2c_.wcslen.2c_._mbslen.2c_._mbstrlen.asp

Impact: Low

Cross References: strcat, strcpy, strncat, strncpy

strncat
Prototype: char *strncat(char *destination, const char
*source, size_t count)

Summary: This function concatenates a string onto the end of another.

Description: The function attempts to append one string onto the end of another.
It has three input arguments: the source and destination strings and the max number
of characters to concatenate.The function will return a pointer to the destination
string when finished. In the event of an error, the function can return a NULL
pointer.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Copying-
and-Concatenation.html#Copying%20and%20Concatenation;
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt_strncat.2c_.wcsncat.2c_._mbsncat.asp

Impact: High

Cross References: strcat, strcpy, strlen, strncpy

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 172

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 173

strncpy
Prototype: char *strncpy(char *destination, const char
*source, size_t count)

Summary: This function copies a string onto another.

Description: The function attempts to copy one string onto another with control
over the number of characters to copy. It has three input arguments: the source and
destination strings and the maximum number of characters to copy.The function
will return a pointer to the destination string when finished. In the event of an
error, the function can return a NULL pointer.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y, then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Copying-
and-Concatenation.html#Copying%20and%20Concatenation;
http://msdn.microsoft.com/library/default.asp?url=/library/
en-us/vccore98/html/_crt_strncpy.2c_.wcsncpy.2c_._mbsncpy.asp

Impact: High

Cross References: strcat, strcpy, strlen, strncat

strtrns
Prototype: char *strtrns (const char *source, const char *old,
const char *new, char *destination)

Summary: This function transforms a string and copies it to a new string.

Description: The function attempts to transform a source string under a given set
of parameters and copy the result to a new string.The function takes in four input

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 173

TLFeBOOK

174 C • Programmer’s Ultimate Security DeskRef

arguments: the source and destination strings, and the transformation parameter
strings.The function requires that the strings “old” and “new” be the same length.
It takes the letters in “old” searches for them in the source string, replaces them
with the corresponding character in “new” (i.e., in the same position), and copies
the resultant string to “destination”.The function then returns a pointer to the
destination string.

Risk: This function should never be utilized to obfuscate data with the goal of pro-
tecting it from prying eyes. Only industry-standard cryptography algorithms should
be implemented to secure data.This function is out-of-date and should not be used!

Impact: High

Cross References: strxfrm

strxfrm
Prototype: size_t strxfrm(char *destination, const char
*source, size_t count)

Summary: This function transforms a string based off of the locale.

Description: The function attempts to transform a string based on the locale infor-
mation of the system. It takes in three input arguments: the source and destination
strings and the maximum number of characters to put in the destination string.The
function will return the length of the string written. In the event of an error, the
function returns -1.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y, then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 174

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 175

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Collation-
Functions.html#Collation%20Functions;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_strxfrm.2c_.wcsxfrm.asp

Impact: Medium

Cross References: wcsxfrm

swprintf
Prototype: int swprintf (wchar_t *string, size_t size, const
wchar_t *format)

Summary: This function prints a formatted, wide-character string to another
string.

Description: This function attempts to print a formatted string to another string. It
has three format input arguments.The first is the string to be written to, while the
second is the length of that string.The final input argument is the formatted string
to write. Informally, the function may have more arguments, as the string could have
its own arguments due to the formatting.The function returns the number of char-
acters written to the string. In the event of an error, the function returns a negative
value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 175

TLFeBOOK

176 C • Programmer’s Ultimate Security DeskRef

Note: This function is practically identical to “sprintf” with the exception of
using wide-character strings.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Formatted-Output-
Functions.html#Formatted%20Output%20Functions

Impact: Medium

Cross References: sprintf, swscanf

swscanf
Prototype: int swscanf (const wchar_t *string, const char
*format)

Summary: This function reads a wide-character string into a formatted string.

Description: This function attempts to read a formatted, wide-character string
according to a given format. It has two formal input arguments: the string and the
format of it.The function may have additional arguments from the formatting.The
function returns the number of characters read or negative value in the event of
failure.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Formatted-Input-
Functions.html#Formatted%20Input%20Functions

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 176

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 177

Impact: Medium

Cross References: sscanf, swprintf

syslog
Prototype: void syslog (int facility_priority, char *message)

Summary: The function sends a message to the Syslog facility.

Description: The function attempts to send a message to the Syslog facility
through a Unix domain socket.The function has only two input variables: the mes-
sage and the priority of it.The function does not return any values. However, in the
event of failure, the function closes the socket.

Risk: The syslog facility is commonly utilized on Unix and Linux systems; however,
versions are available on Windows systems.Applications that leverage this type of
functionality are easily susceptible to attacks that could potentially leak confidential
information outside of the application and operating system. In general the UDP
cleartext nature of syslog allows attackers to quickly sniff sensitive information.This
function should never transmit critical or sensitive information.

Additional Resources: www.gnu.org/software/libc/manual/html_node/
syslog—vsyslog.html#syslog%3b%20vsyslog

Impact: High

system
Prototype: int system (const char *command)

Summary: This function executes a system shell command.

Description: The function attempts to execute a given command in the shell.The
function has only one input variable: the command to execute (held as a string).The
function has several exit scenarios. If the function succeeds, it returns the status of
the new process. If the function fails, it returns -1 and sets “errno” appropriately.
However, if the command is just a null string, it will return a 0.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 177

TLFeBOOK

178 C • Programmer’s Ultimate Security DeskRef

potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Additional Resources: www.gnu.org/software/libc/manual/html_node/
Running-a-Command.html#Running%20a%20Command

Impact: High

tempnam
Prototype: char * tempnam (const char *path, const char
*prefix)

Summary: This function creates a temporary file name.

Description: The function attempts to create a temporary file name.The function
has two input arguments: the path to where the file will be created and a prefix to
use. If the prefix is not null, up to five characters of the prefix string will be used in
the file name.The function returns a pointer to the string that has the new file
name.

Risk: Temporary filenames are often created with static and easily guessable algo-
rithms such as the system time or application name appended with the day, month,
and year. If at all possible, do not use this function and instead store temporary
information in a secure memory space. If a temporary file is necessary, ensure that it
is removed upon exiting the program or in the case where a program exits unex-
pectedly is removed upon program relaunch. Consider utilizing a random number
generator such as ISAAC for creating secure random filenames.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Temporary-
Files.html#Temporary%20Files

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 178

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 179

Impact: High

Cross References: tmpnam

tmpfile
Prototype: FILE * tmpfile (void)

Summary: This function creates a temporary file for modification.

Description: The function attempts to create a temporary file to use.The function
does not take any input arguments, and only returns a pointer to the new filestream.
The temporary file is automatically deleted when closed or when the program
closes.

Risk: Temporary filenames are often created with static and easily guessable algo-
rithms such as the system time or application name appended with the day, month,
and year. If at all possible, do not use this function and instead store temporary
information in a secure memory space. If a temporary file is necessary, ensure that it
is removed upon exiting the program or in the case where a program exits unex-
pectedly is removed upon program relaunch. Consider utilizing a random number
generator such as ISAAC for creating secure random filenames.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Temporary-
Files.html#Temporary%20Files

Impact: High

tmpnam
Prototype: char * tmpnam (char *destination)

Summary: This function creates a temporary file name.

Description: The function creates a temporary file name.The function has only
one input argument: the string to house the new file name. It returns the same
string (once modified).The function will return a null pointer if it fails.The func-
tion may also overwrite another temporary file if called too many times due to
finite number of temporary file names available.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 179

TLFeBOOK

180 C • Programmer’s Ultimate Security DeskRef

Risk: Temporary filenames are often created with static and easily guessable algo-
rithms such as the system time or application name appended with the day, month,
and year. If at all possible, do not use this function and instead store temporary
information in a secure memory space. If a temporary file is necessary, ensure that it
is removed upon exiting the program or in the case where a program exits unex-
pectedly is removed upon program relaunch. Consider utilizing a random number
generator such as ISAAC for creating secure random filenames.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Temporary-
Files.html#Temporary%20Files

Impact: High

Cross References: tempnam

ttyname
Prototype: char * ttyname (int file)

Summary: This function determines if a file is associated with a device.

Description: This function attempts to resolve if a file is associated with a terminal
device.The function takes only the file handle in as the input argument. It will
check if the file is associated with a device. If it is, the function returns the associ-
ated terminal file. Otherwise, the function returns a null pointer.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Is-It-a-
Terminal.html#Is%20It%20a%20Terminal

Impact: Low

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 180

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 181

unlink
Prototype: int unlink (const char *filename)

Summary: The function deletes a file and/or string containing the filename.

Description: The function attempts to delete the string containing a filename, and
if applicable, the associated file.The function takes in only the string containing the
filename in question. It checks if the filename has an associated file. If so, both are
deleted, and if not, only the filename string is.The function returns a 0 if successful,
or -1 if not and sets “errno” appropriately.

Risk: The unlink function can be leveraged to cause a denial of service on the
target application. If improperly secured, an attacker could unlink multiple files
required by the application to function thereby disrupting normal execution. Ensure
that human input is passed as a parameter for this function.

Additional Resources: www.gnu.org/software/libc/manual/html_node/
Deleting-Files.html#Deleting%20Files

Impact: Low

Cross References: remove, rmdir

vfork
Prototype: pid_t vfork (void)

Summary: This function creates a new process.

Description: This attempts to open a new process for the program to manipulate.
The function does not take in any input variables.The only return variable for the
function is the process ID. If successful, the function returns a 0 to the child process
and the aforementioned process ID to the parent. However, if unsuccessful, the func-
tion returns a -1 to the parent process. On many systems, this function is more effi-
cient than the similar function “fork”.

Risk: vfork can be leveraged in an attack in multiple ways and is especially
common in launching Denial-of-Service attacks against the underlying operating
system.Thus, you should deny human users from accessing or launching this func-
tion or from controlling any type of execution for this function.Additionally, you

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 181

TLFeBOOK

182 C • Programmer’s Ultimate Security DeskRef

should close all processes as soon as their execution logic is complete while being
aware that it is extremely risky to ever launch a subprocess within an over-arching
process.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Creating-
a-Process.html#Creating%20a%20Process

Impact: Low

Cross References: fork

vfprintf
Prototype: int vfprintf (FILE *stream, const char *format,
va_list varg)

Summary: This function prints a string to a file stream.

Description: The function attempts to print a formatted array of characters to the
stream. It has only three arguments: the file stream to print to, the array to be
printed and the list of arguments for the formatted data.The function will return
the number of characters printed. However, in the event of an error, the function
returns a negative value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources: www.gnu.org/software/libc/manual/html_node/Variable-
Arguments-Output.html#Variable%20Arguments%20Output

Impact: Medium

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 182

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 183

Cross References: vprintf, vfwprintf, vsprintf, vswprintf, vwprintf,
vscanf

vfscanf
Prototype: int vscanf (FILE *stream, const char *format,
va_list varg)

Summary: This function reads a string of formatted data from a filestream.

Description: The function attempts to scan a formatted array of characters from a
filestream. It has three arguments: the file stream to read, the array to be read in to
and the argument list for the formatted data.The function will return the number of
characters read. However, in the event of an error, the function returns a negative
value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources: www.gnu.org/software/libc/manual/html_node/Variable-
Arguments-Input.html#Variable%20Arguments%20Input

Impact: Medium

Cross References: vprintf, vscanf, vsscanf

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 183

TLFeBOOK

184 C • Programmer’s Ultimate Security DeskRef

vfwprintf
Prototype: int vfwprintf (FILE *stream, const wchar_t *format,
va_list varg)

Summary: This function prints a wide-character string to a filestream.

Description: This function attempts to print a string to a filestream. It has three
input arguments.The first is the filestream to be written to, while the second is the
actual wide-character string to write, the final argument is the formatting argument
list.The function returns the number of characters written to the stream. In the
event of an error, the function returns a negative value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources: www.gnu.org/software/libc/manual/html_node/
Variable-Arguments-Output.html#Variable%20Arguments%20Output

Impact: Medium

Cross References: vprintf, vfprintf, vsprintf, vswprintf, vwprintf,
vscanf

vprintf
Prototype: int vprintf (const char *format, va_list varg)

Summary: This function prints a string to the I/O stream.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 184

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 185

Description: The function attempts to print a formatted array of characters to the
stream. It has only two arguments: the array to be printed and the list of arguments
for the formatted data.The function will return the number of characters printed.
However, in the event of an error, the function returns a negative value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources: www.gnu.org/software/libc/manual/html_node/
Variable-Arguments-Output.html#Variable%20Arguments%20Output

Impact: Medium

Cross References: vfprintf, vfwprintf, vsprintf, vswprintf, vwprintf,
vscanf

vscanf
Prototype: int vscanf (const char *format, va_list varg)

Summary: This function reads a string of formatted data from the I/O stream.

Description: The function attempts to scan a formatted array of characters from
the stream. It has two arguments: the array to be read in to and the argument list for
the formatted data.The function will return the number of characters read.
However, in the event of an error, the function returns a negative value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 185

TLFeBOOK

186 C • Programmer’s Ultimate Security DeskRef

from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources: www.gnu.org/software/libc/manual/html_node/
Variable-Arguments-Input.html#Variable%20Arguments%20Input

Impact: Medium

Cross References: vprintf, vsfprintf, vsscanf

vsprintf
Prototype: int vsprintf (char *string, const char *format,
va_list varg)

Summary: This function prints a string to another string.

Description: The function attempts to print a formatted array of characters to a
string. It has only three arguments: the string to print to, the array to be printed and
the list of arguments for the formatted data.The function will return the number of
characters printed. However, in the event of an error, the function returns a negative
value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 186

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 187

printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources: www.gnu.org/software/libc/manual/html_node/
Variable-Arguments-Output.html#Variable%20Arguments%20Output

Impact: Medium

Cross References: vprintf, vfprintf, vfwprintf, vswprintf, vwprintf,
vscanf

vsscanf
Prototype: int vsscanf (const char *string, const char
*format, va_list varg)

Summary: This function reads a string of formatted data from a string.

Description: The function attempts to scan a formatted array of characters from a
string. It has three arguments: the string to read, the array to be read in to and the
argument list for the formatted data.The function will return the number of charac-
ters read. However, in the event of an error, the function returns a negative value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources: www.gnu.org/software/libc/manual/html_node/
Variable-Arguments-Input.html#Variable%20Arguments%20Input

Impact: Medium

Cross References: vprintf, vscanf, vfscanf

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 187

TLFeBOOK

188 C • Programmer’s Ultimate Security DeskRef

vswprintf
Prototype: int vswprintf (wchar_t *string, size_t count, const
wchar_t *format, va_list varg)

Summary: This function prints a string to another string.

Description: The function attempts to print a formatted array of wide-characters
to a wide-character string. It has four arguments: the string to print to, the size of
that string (i.e., the maximum size), the wide-character array to be printed and the
list of arguments for the formatted data.The function will return the number of
characters printed. However, in the event of an error, the function returns a negative
value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources: www.gnu.org/software/libc/manual/html_node/
Variable-Arguments-Output.html#Variable%20Arguments%20Output

Impact: Medium

Cross References: vprintf, vfprintf, vfwprintf, vsprintf, vwprintf,
vscanf

vwprintf
Prototype: int vwprintf (const wchar_t *format, va_list varg)

Summary: This function prints a string to the I/O stream.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 188

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 189

Description: The function attempts to print a formatted array of wide-characters
to the stream. It has only two arguments: the wide-character array to be printed and
the list of arguments for the formatted data.The function will return the number of
wide-characters printed. However, in the event of an error, the function returns a
negative value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources: www.gnu.org/software/libc/manual/html_node/
Variable-Arguments-Output.html#Variable%20Arguments%20Output

Impact: Medium

Cross References: vprintf, vfprintf, vfwprintf, vsprintf, vswprintf,
vscanf

wcscat
Prototype: wchar_t * wcscat (wchar_t *destination, const
wchar_t *source)

Summary: The function appends a string onto the end of another.

Description: This function attempts to concatenate one string onto the end of
another. It has two input arguments: the source and destination wide-character
strings.The function will copy the source string onto the end of the destination
string, overwriting the null character (if it exists).The function will return the desti-
nation string when completed.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 189

TLFeBOOK

190 C • Programmer’s Ultimate Security DeskRef

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Copying-
and-Concatenation.html#Copying%20and%20Concatenation

Impact: Low

Cross References: wcscpy, wcslen, wcsncat, wcsncpy

wcscpy
Prototype: wchar_t * wcscpy (wchar_t *destination, const
wchar_t *source)

Summary: The function copies a string onto another.

Description: This function attempts to copy one string onto another. It has two
input arguments: the source and destination wide-character strings.The function
will copy the source string onto destination string, writing the null character (if it
exists).The function will return the destination string when completed.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Additional Resources: www.gnu.org/software/libc/manual/html_node/
Copying-and-Concatenation.html#Copying%20and%20Concatenation

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 190

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 191

Impact: Low

Cross References: wcscat, wcslen, wcsncat, wcsncpy

wcslen
Prototype: size_t wcslen (const wchar_t *string)

Summary: This function finds the length of a string.

Description: The function attempts to find the length of the wide-character string.
It has only one input argument: the string to get the length of.The function will
return an integer indicating the length of the wide-character string. In the event
that the string does not exist or an error occurs, the function can return 0.

Risk: The length of a string is commonly ascertained before it is passed to a func-
tion that utilizes it to calculate the space required for a destination buffer. Ensure
that human users do not have the ability to modify this number thereby potentially
making it smaller than the destination. Calculate the length of the source then add
one byte so to avoid off-by-one application buffer overflow attacks.

Additional Resources: www.gnu.org/software/libc/manual/html_node/
String-Length.html#String%20Length

Impact: Low

Cross References: strlen

wcsncat
Prototype: wchar_t * wcsncat (wchar_t *destination, const
wchar_t *source, size_t count)

Summary: The function appends a string onto the end of another.

Description: This function attempts to concatenate one string onto the end of
another. It has three input arguments: the source and destination wide-character
strings, and the maximum number of characters to append.The function will copy
the source string onto the end of the destination string (up to the max count), over-
writing the null character (if it exists).The function will return the destination string
when completed.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 191

TLFeBOOK

192 C • Programmer’s Ultimate Security DeskRef

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y, then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Additional Resources: www.gnu.org/software/libc/manual/html_node/
Copying-and-Concatenation.html#Copying%20and%20Concatenation

Impact: Low

Cross References: wcscat, wcscpy, wcslen, wcsncpy

wcsncpy
Prototype: wchar_t * wcsncpy (wchar_t *destination, const
wchar_t *source, size_t count)

Summary: The function copies a string onto another.

Description: This function attempts to copy one string onto another. It has three
input arguments: the source and destination wide-character strings, and the max-
imum number of characters to copy.The function will copy the source string onto
destination string (up to the maximum count), writing the null character (if it
exists).The function will return the destination string when completed.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y, then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 192

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 193

Additional Resources: www.gnu.org/software/libc/manual/html_node/
Copying-and-Concatenation.html#Copying%20and%20Concatenation

Impact: Low

Cross References: wcscat, wcscpy, wcslen, wcsncat

wcsxfrm
Prototype: size_t strxfrm (wchar_t *destination, const wchar_t
*source, size_t count)

Summary: This function transforms a string based off of the locale.

Description: The function attempts to transform a wide-character string based on
the locale information of the system. It takes in three input arguments: the source
and destination wide-character strings and the maximum number of characters to
put in the destination string.The function will return the length of the string
written. In the event of an error, the function returns -1.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y, then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Collation-Functions.html#
Collation%20Functions

Impact: High

Cross References: strxfrm

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 193

TLFeBOOK

194 C • Programmer’s Ultimate Security DeskRef

wscanf
Prototype: int wscanf(const wchar_t *format)

Summary: The function reads a formatted array of characters from the I/O stream.

Description: The function attempts to scan a formatted array of wide-characters
from the stream. It has only one formal argument: the array to be read in to.
However, as it can be formatted data, there can be subsequent, informal arguments.
The function will return the number of wide-characters read. However, in the event
of an error, the function returns a negative value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Formatted-Input-
Functions.html#Formatted%20Input%20Functions;
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vccore98/html/_crt_scanf.2c_.wscanf.asp

Impact: Medium

Cross References: scanf, wprintf

wsprintf
Prototype: int wsprintf(LPTSTR string, LPCTSTR format)

Summary: This function prints a formatted string to another string.

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 194

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C 195

Description: The function attempts to print a formatted, wide-character string to
another string. It has two formal input arguments: the wide-character string and the
format for the string.The informal arguments may be necessary for the formatting.
The function returns the number of characters in the output string (not including
the null character). If the function fails, however, it will return an unexpected value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/WinUI/WindowsUserInterface/Resources/Strings/StringReference/
StringFunctions/wsprintf.asp

Impact: Medium

Cross References: wsprintfA, wsprintfW

www.syngress.com

C

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 195

TLFeBOOK

309_Desk_Ref_C.qxd 10/11/04 4:34 PM Page 196

TLFeBOOK

Programmer’s
Ultimate Security
DeskRef: C++

chdir
Prototype: int chdir (const char *Path)

Summary: This function changes the current directory.

Description: The function changes the directory to which the cur-
rent path points.The function only takes in the path to the new
directory.The function returns a zero upon successful completion. In
the event of an error, the function returns a -1 and sets the variable
errno to the appropriate value.

Risk: Directory information is sought after by attackers to ascertain
underlying operating system, configuration, and application-layer
information. Human options should be limited to only include the
desired directories via the appropriate access controls.

Additional Resources:
http://nscp.upenn.edu/aix4.3html/libs/basetrf1/chdir.htm

Impact: High

Cross References: chroot

197

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 197

TLFeBOOK

creat
Prototype: int creat (const char *filename, mode_t mode)

Summary: This function is used to open a file.

Description: This function is used to open a file for processing, whether that be
reading and/or writing.The function takes two inputs: the first being the filename
and the second being the mode in which to open the file.The function returns a 0
if it is successful, and a -1 if not. In the event of an unsuccessful attempt to open
the file, the variable errno will be set appropriately.

Risk: The creat function is susceptible to race condition attacks thereby it is
mandatory that you undertake the proper precautions when implementing this
function. Ensure that only a single instance of this function can execute at any given
time.Additionally, ensure the data for the filename is properly parsed and controlled.
Input should be verified to be without special characters and controls denying access
to unauthorized should be enabled within the application.

Note: There exists a Windows-compatible version of this function called _create,
as well as a Windows-compatible, wide-character-capable _wcreate.This function
is obsolete, and has been replaced by open.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Opening-
and-Closing-Files.html#Opening%20and%20Closing%20Files;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt__creat.2c_._wcreat.asp

Impact: Low

Cross References: open

gethostbyname
Prototype: struct hostent * gethostbyname (const char *name)

Summary: This function gets an Internet host’s information by the name.

Description: The function attempts to retrieve an Internet host’s information using
its name.The function takes only one input value, the name of the host.The func-
tion will return a hostent structure containing the requested information. In the

www.syngress.com

C
+

+

198 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 198

TLFeBOOK

event of a failure, the function will return a null pointer. It will also appropriately set
the variable h_errno.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Host-
Names.html#Host%20Names

Impact: Low

Cross References: gethostbyaddr

GetTempFileNameA
Summary: This function creates a name for a temporary file.

Description: This function attempts to create a temporary file name. It has four
input arguments: the path of the file, the prefix for the file, a unique number, and
the file handle.The function returns the unique number for the file name if suc-
cessful. However, if an error occurs, it will return 0.

Risk: Temporary filenames are often created with static and easily guessable algo-
rithms such as the system time or application name appended with the day, month,
and year. If at all possible, do not use this function and instead store temporary
information in a secure memory space. If a temporary file is necessary, ensure that it
is removed upon exiting the program or in the case where a program exits unex-
pectedly is removed upon program relaunch. Consider utilizing a random number
generator such as ISAAC for creating secure random filenames.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources: www.webtropy.com/articles/art9-
1.asp?f=GetTempFileName

Impact: Low

Cross References: GetTempFileName, GetTempFileNameW, GetTempPath

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 199

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 199

TLFeBOOK

ImpersonateNamedPipeClient
Prototype: BOOL ImpersonateNamedPipeClient(HANDLE hNamedPipe)

Summary: This function attempts to impersonate a named-pipe client application.

Description: This function attempts to impersonate the security context of a
named-pipe client application.The function has only one input argument: the
handle of the pipe to impersonate.The function will return a non-zero value if suc-
cessful, a zero if not.The impersonation will last until the end of the current thread
or the impersonation is overtly stopped.

Risk: Applications that have the ability to impersonate local systems, users, or secu-
rity information are extremely dangerous; furthermore, functions that leverage this
type of functionality should be controlled and only used as a last resort! All imper-
sonation functions should be controlled by internal application-specific routines in
addition to the controlled use of their output.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/security/secu-
rity/impersonatenamedpipeclient.asp

Impact: Medium

Cross References: CoImpersonateClient, ImpersonateDdeClientWindow,
ImpersonateLoggedOnUser, ImpersonateSecurityContext

ImpersonateSecurityContext
Prototype: SECURITY_STATUS SEC_Entry
ImpersonateSecurityContext(PCtxtHandle phContext)

Summary: This function attempts to impersonate a security context of a client
application.

Description: This function attempts to impersonate the security context of a client
application.The function has only one input argument: the handle of the application
to impersonate.The function will return SEC_E_OK if successful. If not, the function
returns SEC_E_INVALID_HANDLE.

www.syngress.com

C
+

+

200 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 200

TLFeBOOK

Risk: Applications that have the ability to impersonate local systems, users, or secu-
rity information are extremely dangerous; furthermore, functions that leverage this
type of functionality should be controlled and only used as a last resort! All imper-
sonation functions should be controlled by internal application-specific routines in
addition to the controlled use of their output.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/security/secu-
rity/impersonatesecuritycontext.asp

Impact: Medium

Cross References: CoImpersonateClient, ImpersonateDdeClientWindow,
ImpersonateLoggedOnUser, ImpersonateNamedPipeClient

InitializeCriticalSection
Prototype: void InitializeCriticalSection(LPCRITICAL_SECTION
lpCriticalSection)

Summary: This function initializes a critical section object.

Description: The function will attempt to initialize a critical section object.The
function only has one input argument: the pointer to the critical section object.The
function does not return any values. However, if memory consumption causes an
error, the STATUS_NO_MEMORY flag will be activated.

Risk: This function should be analyzed to ensure that the critical section object that
is initialized is restricted to the appropriate processes and users.All critical section
objects should be closed when their application execution logic is complete.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dllproc/base/ini-
tializecriticalsection.asp

Impact: Low

Cross References: EnterCriticalSection

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 201

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 201

TLFeBOOK

memcpy
Prototype: void * memcpy (void *destination, const void
*source, size_t size)

Summary: This function copies one band of memory to another.

Description: The function’s purpose is to copy a band of memory to another. It
takes three inputs: the pointer for the source of the copying, the pointer to the des-
tination, and the size of the band to copy.The function starts at the beginning of the
source, traversing and copying the memory to the destination for the given size.The
function does not return a pointer to the destination memory.

Risk: At the most basic level, these functions read in data, perform analysis, then
output the data to another location in memory. It is imperative that the destination
string be calculated accordingly and that enough memory space is allocated.This
function should not be utilized in any case and more secure functions for securely
copying memory allocations should be implemented.

Additional Resources: www.gnu.org/software/libc/manual/html_node/Copying-
and-Concatenation.html#Copying%20and%20Concatenation

Impact: Medium

MultiByteToWideChar
Prototype: int MultiByteToWideChar(UINT CodePage, DWORD
dwFlags, LPCSTR destination, int countD, LPWSTR source, int

countS)

Summary: This function translates a multibyte-character string to a wide-character
string.

Description: The function attempts to translate a source multibyte-character string
into a wide-character string.The function has six input arguments: the code page to
give the conversion data, a flag set, the source string and its size, and the destination
string and its size.The function will return an integer which can have several mean-
ings. Depending on the size of strings, the flag setting, and whether the function was
successful, it can return many different values. See the reference for more information.

www.syngress.com

C
+

+

202 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 202

TLFeBOOK

Risk: Multi-byte strings have the potential to be very large strings that can be
potentially leveraged in a buffer overflow attack scenario.These strings should
restrict characters to include only those that are required by the application to func-
tion.Additionally, standard string manipulation functions should be utilized instead
of large multi-byte strings in all cases possible. Ensure that the destination buffer is
of appropriate size and that the source buffer is limited to that size -1.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/intl/unicode_17si.asp

Impact: Low

Cross References: WideCharToMultiByte

OemToAnsiA(ClassMember)
Prototype: void CStringT::OemToAnsiA()

Summary: This class member converts the string of characters from the OEM
character set to the ANSI character set.

Description: This is a member of the class type CStringT.The member will con-
vert the character of the class object String from the OEM character set to the
ANSI character set. It does not return anything, as it modifies the class object itself.

Risk: Certain string manipulation functions to include OEM transition functions
are commonly leveraged in buffer overflow attacks.At the most basic level, these
functions read in data, perform analysis and execution logic, then output the data to
another type of string. It is imperative that the destination string be calculated
accordingly and that enough memory space is allocated. Special characters should
also be stricken from the conversion.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/vclr-
fcstringtoemtoansi.asp

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 203

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 203

TLFeBOOK

Impact: Low

OemToAnsiBuffA(ClassMember)
Prototype: void CStringT::OemToAnsiBuffA()

Summary: This class member converts the string of characters from the OEM
character set to the ANSI character set.

Description: This is a member of the class type CStringT.The member will con-
vert the character of the class object String from the OEM character set to the
ANSI character set. It does not return anything, as it modifies the class object itself.
This member, however, is careful with the use of 16-bit applications.

Risk: Certain string manipulation functions to include OEM transition functions
are commonly leveraged in buffer overflow attacks.At the most basic level, these
functions read in data, perform analysis and execution logic, then output the data to
another type of string. It is imperative that the destination string be calculated
accordingly and that enough memory space is allocated. Special characters should
also be stricken from the conversion.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/vclr-
fcstringtoemtoansi.asp

Impact: Low

OemToAnsiBuffW(ClassMember)
Prototype: void CStringT::OemToAnsiBuffW()

Summary: This class member converts the string of characters from the OEM
character set to the ANSI character set.

Description: This is a member of the class type CStringT.The member will con-
vert the character of the class object String from the OEM character set to the
ANSI character set. It does not return anything, as it modifies the class object itself.
This member, however, is careful with the use of 16-bit applications.

www.syngress.com

C
+

+

204 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 204

TLFeBOOK

Risk: Certain string manipulation functions to include OEM transition functions
are commonly leveraged in buffer overflow attacks.At the most basic level, these
functions read in data, perform analysis and execution logic, then output the data to
another type of string. It is imperative that the destination string be calculated
accordingly and that enough memory space is allocated. Special characters should
also be stricken from the conversion.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/vclr-
fcstringtoemtoansi.asp

Impact: Low

OemToAnsiW(ClassMember)
Prototype: void CStringT::OemToAnsiW()

Summary: This class member converts the string of characters from the OEM
character set to the ANSI character set.

Description: This is a member of the class type CStringT.The member will con-
vert the character of the class object String from the OEM character set to the
ANSI character set. It does not return anything, as it modifies the class object itself.

Risk: Certain string manipulation functions to include OEM transition functions
are commonly leveraged in buffer overflow attacks.At the most basic level, these
functions read in data, perform analysis and execution logic, then output the data to
another type of string. It is imperative that the destination string be calculated
accordingly and that enough memory space is allocated. Special characters should
also be stricken from the conversion.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/vclr-
fcstringtoemtoansi.asp

Impact: Low

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 205

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 205

TLFeBOOK

OemToChar
Prototype: BOOL OemToChar(LPCSTR source, LPTSTR destination)

Summary: This function converts string from the OEM character set to the ANSI
character set.

Description: The function attempts to translate a string in the OEM character to
the ANSI character set.The function has two input variables: the source OEM-char-
acter string and the destination ANSI-character string.The function will return
either 0 if unsuccessful or 1 if it succeeds.

Risk: Certain string manipulation functions to include OEM transition functions
are commonly leveraged in buffer overflow attacks.At the most basic level, these
functions read in data, perform analysis and execution logic, then output the data to
another type of string. It is imperative that the destination string be calculated
accordingly and that enough memory space is allocated. Special characters should
also be stricken from the conversion.

Note: At time of publication, this function was designed for Windows compatibility.
This function replaces OemToAnsi member of a CStringT type object.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/winui/windowsuserinterface/resources/strings/stringreference/stringfunc-
tions/oemtochar.asp

Impact: Low

Cross References: OemToCharBuff

OemToCharA
Prototype: BOOL OemToCharA(LPCSTR source, LPTSTR destination)

Summary: This function converts string from the OEM character set to the ANSI
character set.

Description: The function attempts to translate a string in the OEM character to
the ANSI character set.The function has two input variables: the source OEM-char-

www.syngress.com

C
+

+

206 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 206

TLFeBOOK

acter string and the destination ANSI-character string.The function will return
either 0 if unsuccessful or 1 if it succeeds.

Risk: Certain string manipulation functions to include OEM transition functions
are commonly leveraged in buffer overflow attacks.At the most basic level, these
functions read in data, perform analysis and execution logic, then output the data to
another type of string. It is imperative that the destination string be calculated
accordingly and that enough memory space is allocated. Special characters should
also be stricken from the conversion.

Note: At time of publication, this function was designed for Windows compatibility.
This function replaces OemToAnsiA member of a CStringT type object.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/winui/windowsuserinterface/resources/strings/stringreference/stringfunc-
tions/oemtochar.asp

Impact: Low

Cross References: OemToChar

OemToCharBuff
Prototype: BOOL OemToCharBuff(LPCTSTR source, LPTSTR destina-
tion, DWORD count)

Summary: This function translates a defined number of characters in a string from
the OEM character set to the ANSI character set.

Description: The function attempts to translate a string in the OEM character to
the ANSI character set.The function has three input variables: the source OEM-
character string, the destination ANSI-character string, and the maximum number of
characters to translate.The function will return either 0 if unsuccessful or 1 if it suc-
ceeds.

Risk: Certain string manipulation functions to include OEM transition functions
are commonly leveraged in buffer overflow attacks.At the most basic level, these
functions read in data, perform analysis and execution logic, then output the data to
another type of string. It is imperative that the destination string be calculated

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 207

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 207

TLFeBOOK

accordingly and that enough memory space is allocated. Special characters should
also be stricken from the conversion.

Note: At time of publication, this function was designed for Windows compatibility.
This function replaces OemToAnsiBuff member of a CStringT type object.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/WinUI/WindowsUserInterface/Resources/Strings/StringReference/Strin
gFunctions/OemToCharBuff.asp

Impact: Low

Cross References: OemToChar

OemToCharBuffA
Prototype: static extern int OemToCharBuffA(string source,
string destination, int count)

Summary: This function translates a defined number of characters in a string from
the OEM character set to the ANSI character set.

Description: The function attempts to translate a string in the OEM character to
the ANSI character set.The function has three input variables: the source OEM-
character string, the destination ANSI-character string, and the maximum number of
characters to translate.The function will return either 0 if unsuccessful or 1 if it suc-
ceeds.

Risk: Certain string manipulation functions to include OEM transition functions
are commonly leveraged in buffer overflow attacks.At the most basic level, these
functions read in data, perform analysis and execution logic, then output the data to
another type of string. It is imperative that the destination string be calculated
accordingly and that enough memory space is allocated. Special characters should
also be stricken from the conversion.

Note: At time of publication, this function was designed for Windows compatibility.
This function replaces OemToAnsiBuffA member of a CStringT type object.

Additional Resources: http://custom.programming-in.net/articles/art9-
1.asp?f=OemToCharBuff

www.syngress.com

C
+

+

208 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 208

TLFeBOOK

Impact: Low

Cross References: OemToCharBuff

OemToCharW
Prototype: BOOL OemToCharW(LPCSTR source, LPTSTR destination)

Summary: This function converts string from the OEM character set to the ANSI
character set.

Description: The function attempts to translate a string in the OEM character to
the ANSI character set.The function has two input variables: the source OEM-char-
acter string and the destination ANSI-character string.The function will return
either 0 if unsuccessful or 1 if it succeeds.

Risk: Certain string manipulation functions to include OEM transition functions
are commonly leveraged in buffer overflow attacks.At the most basic level, these
functions read in data, perform analysis and execution logic, then output the data to
another type of string. It is imperative that the destination string be calculated
accordingly and that enough memory space is allocated. Special characters should
also be stricken from the conversion.

Note: At time of publication, this function was designed for Windows compatibility.
This function replaces OemToAnsiW member of a CStringT type object.This par-
ticular function is from the Windows Layer for Unicode and requires additional files
to be used in Win 95/98/Me.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/winui/windowsuserinterface/resources/strings/stringreference/stringfunc-
tions/oemtochar.asp

Impact: Low

Cross References: OemToChar

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 209

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 209

TLFeBOOK

PathAddBackslash
Prototype: LPTSTR PathAddBackslash(LPTSTR path)

Summary: This function adds a backslash to the end of path string.

Description: The function attempts to add a backslash to the end of a path given
in a string.The function has one input argument: the string containing the path.The
function will add the backslash (as long as one is not already present) and return the
string.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/path/pathaddbackslash.asp

Impact: Medium

Cross References: PathAddBackslashA, PathAddBackslashW

PathAddBackslashA
Prototype: LPTSTR PathAddBackslashA(LPTSTR path)

Summary: This function adds a backslash to the end of path string.

Description: The function attempts to add a backslash to the end of a path given
in a string.The function has one input argument: the string containing the path.The

www.syngress.com

C
+

+

210 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 210

TLFeBOOK

function will add the backslash (as long as one is not already present) and return the
string.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/path/pathaddbackslash.asp

Impact: Medium

Cross References: PathAddBackslash, PathAddBackslashW

PathAddBackslashW
Prototype: LPTSTR PathAddBackslashW(LPCWSTR path)

Summary: This function adds a backslash to the end of path string.

Description: The function attempts to add a backslash to the end of a path given
in a wide-character string.The function has one input argument: the string con-
taining the path.The function will add the backslash (as long as one is not already
present) and return the resulting wide-character string.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 211

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 211

TLFeBOOK

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/path/pathaddbackslash.asp

Impact: Medium

Cross References: PathAddBackslash, PathAddBackslashA

PathAddExtension
Prototype: BOOL PathAddExtension(LPTSTR path, LPCTSTR
extension)

Summary: This function adds an extension (given as a string) to a path.

Description: This function attempts to add an extension to a given path.The func-
tion has two input values: the string containing the path and the string containing
the extension.The function will append the extension to the end of the path. It will
return 1 if the extension is added correctly, or a 0 if it fails.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/path/pathaddextension.asp

Impact: Medium

Cross References: PathAddExtensionA, PathAddExtensionW

www.syngress.com

C
+

+

212 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 212

TLFeBOOK

PathAddExtensionA
Prototype: BOOL PathAddExtensionA(LPTSTR path, LPCTSTR
extension)

Summary: This function adds an extension (given as a string) to a path.

Description: This function attempts to add an extension to a given path.The func-
tion has two input values: the string containing the path and the string containing
the extension.The function will append the extension to the end of the path. It will
return 1 if the extension is added correctly, or a 0 if it fails.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/path/pathaddextension.asp

Impact: Medium

Cross References: PathAddExtension, PathAddExtensionW

PathAddExtensionW
Prototype: BOOL PathAddExtensionW(LPWSTR path, LPCWSTR
extension)

Summary: This function adds an extension (given as a string) to a path.

Description: This function attempts to add an extension to a given path.The func-
tion has two input values: the wide-character string containing the path and the
wide-character string containing the extension.The function will append the exten-

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 213

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 213

TLFeBOOK

sion to the end of the path. It will return 1 if the extension is added correctly, or a
0 if it fails.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/path/pathaddextension.asp

Impact: Medium

Cross References: PathAddExtension, PathAddExtensionA

PathAppend
Prototype: BOOL PathAppend(LPTSTR destination, LPCTSTR
source)

Summary: This function appends a path onto the end of another.

Description: This function attempts to add an extension to a given path.The func-
tion has two input values: the string containing the destination path and the string
containing the source path to be appended.The function will append the source
path to the end of the destination path. It will return 1 if the extension is added
correctly, or a 0 if it fails.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only

www.syngress.com

C
+

+

214 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 214

TLFeBOOK

processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/path/pathappend.asp

Impact: Medium

Cross References: PathAppendA, PathAppendW

PathAppendA
Prototype: BOOL PathAppendA(LPTSTR destination, LPCTSTR
source)

Summary: This function appends a path onto the end of another.

Description: This function attempts to add an extension to a given path.The func-
tion has two input values: the string containing the destination path and the string
containing the source path to be appended.The function will append the source
path to the end of the destination path. It will return 1 if the extension is added
correctly, or a 0 if it fails.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/path/pathappend.asp

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 215

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 215

TLFeBOOK

Impact: Medium

Cross References: PathAppend, PathAppendW

PathAppendW
Prototype: BOOL PathAppendW(LPWSTR destination, LPCWSTR
source)

Summary: This function appends a path onto the end of another.

Description: This function attempts to add an extension to a given path.The func-
tion has two input values: the wide-character string containing the destination path
and the wide-character string containing the source path to be appended.The func-
tion will append the source path to the end of the destination path. It will return 1
if the extension is added correctly, or a 0 if it fails.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/path/pathappend.asp

Impact: Medium

Cross References: PathAppend, PathAppendA

PathCanonicalize
Prototype: BOOL PathCanonicalize(LPTSTR destination, LPCTSTR
source)

Summary: This function canonicalizes a path.

www.syngress.com

C
+

+

216 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 216

TLFeBOOK

Description: The function attempts to canonicalize a path.The function has two
input arguments: the source string for the path and a destination string for the
canonicalized path.The function will canonicalize the path by removing appropriate
directories from the path when objects like “.” and “..” are used in it.The func-
tion will return a 1 if it is successful and a 0 when not.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/path/pathcanonicalize.asp

Impact: Medium

Cross References: PathCanonicalizeA, PathCanonicalizeW

PathCanonicalizeA
Prototype: BOOL PathCanonicalizeA(LPTSTR destination, LPCTSTR
source)

Summary: This function canonicalizes a path.

Description: The function attempts to canonicalize a path.The function has two
input arguments: the source string for the path and a destination string for the

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 217

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 217

TLFeBOOK

canonicalized path.The function will canonicalize the path by removing appropriate
directories from the path when objects like “.” and “..” are used in it.The func-
tion will return a 1 if it is successful and a 0 when not.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/path/pathcanonicalize.asp

Impact: Medium

Cross References: PathCanonicalize, PathCanonicalizeW

PathCanonicalizeW
Prototype: BOOL PathCanonicalizeW(LPWSTR destination, LPCWSTR
source)

Summary: This function canonicalizes a path.

Description: The function attempts to canonicalize a path.The function has two
input arguments: the source wide-character string for the path and a destination
wide-character string for the canonicalized path.The function will canonicalize the
path by removing appropriate directories from the path when objects like “.” and
“..” are used in it.The function will return a 1 if it is successful and a 0 when not.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only

www.syngress.com

C
+

+

218 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 218

TLFeBOOK

processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/path/pathcanonicalize.asp

Impact: Medium

Cross References: PathCanonicalize, PathCanonicalizeA

PathCombine
Prototype: BOOL PathCombine(LPTSTR destination, LPCTSTR
sourceD, LPCTSTR sourceF)

Summary: This function combines a directory path and a file path.

Description: The function attempts to combine a directory path and a file path.
The function has three input arguments: the source string for the directory path, the
source string for the file path, and a destination string for the combined path.The
function will combine the paths by appending the file path onto the end of the
directory path and store it in the destination string.The function will return a 1 if it
is successful and a 0 when not.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/path/pathcombine.asp

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 219

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 219

TLFeBOOK

Impact: Medium

Cross References: PathCombineA, PathCombineW

PathCombineA
Prototype: BOOL PathCombineA(LPTSTR destination, LPCTSTR
sourceD, LPCTSTR sourceF)

Summary: This function combines a directory path and a file path.

Description: The function attempts to combine a directory path and a file path.
The function has three input arguments: the source string for the directory path, the
source string for the file path, and a destination string for the combined path.The
function will combine the paths by appending the file path onto the end of the
directory path and store it in the destination string.The function will return a 1 if it
is successful and a 0 when not.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/path/pathcombine.asp

Impact: Medium

Cross References: PathCombine, PathCombineW

www.syngress.com

C
+

+

220 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 220

TLFeBOOK

PathCombineW
Prototype: BOOL PathCombineW(LPWSTR destination, LPCWSTR
sourceD, LPCWSTR sourceF)

Summary: This function combines a directory path and a file path.

Description: The function attempts to combine a directory path and a file path.
The function has three input arguments: the source wide-character string for the
directory path, the source wide-character string for the file path, and a destination
wide-character string for the combined path.The function will combine the paths
by appending the file path onto the end of the directory path and store it in the
destination string.The function will return a 1 if it is successful and a 0 when not.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/path/pathcombine.asp

Impact: Medium

Cross References: PathCombine, PathCombineA

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 221

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 221

TLFeBOOK

QuerySecurityContextToken
Prototype: SECURITY_STATUS SEC_Entry QuerySecurityContextToken(
PCtxtHandle context, HANDLE* token)

Summary: This function acquires a token for client security context.

Description: The function attempts to retrieve a token for some client security
context.The function has two input arguments: the security context handle and the
token handle. If the function succeeds, it will return SEC_E_OK. If not, it will return
one of a variety of error codes.

Risk: Ensure that only administrative-level users have the ability to ascertain secu-
rity tokens from within the application.Also all security token information should
be transmitted securely through an encrypted tunnel and when stored utilize a
strong encryption algorithm. Ensure that security-sensitive information is removed
from memory upon application execution.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/security/secu-
rity/querysecuritycontexttoken.asp

Impact: Low

RpcImpersonateClient
Prototype: RPC_STATUS RPC_ENTRY RpcImpersonateClient(
RPC_BINDING_HANDLE BindingHandle)

Summary: This function allows a server to impersonate a client when running
remote procedure calls.

Description: The function attempts for a server to impersonate an active client
when running remote procedure calls.The function has one input variable: the
handle of the active client. If the function is successful, it will return RPC_S_OK.
However, it is unsuccessful, it will return one of a varied list of error handles.

Risk: Applications that have the ability to impersonate local systems, users, or secu-
rity information are extremely dangerous; furthermore, functions that leverage this

www.syngress.com

C
+

+

222 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 222

TLFeBOOK

type of functionality should be controlled and only used as a last resort! All imper-
sonation functions should be controlled by internal application-specific routines in
addition to the controlled use of their output.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/rpcim-
personateclient.asp

Impact: Low

SetSecurityDescriptorDacl
Prototype: BOOL SetSecurityDescriptorDacl(PSECURITY_DESCRIPTOR
pSecurityDescriptor, BOOL bDaclPresent, PACL pDacl, BOOL

bDaclDefaulted)

Summary: This function sets the information in a DACL of a security descriptor.

Description: The function attempts to set the information of a DACL in a security
descriptor. If a DACL already exists, it is overwritten.The function has four input
arguments: the handle for the security descriptor, two different Boolean flags, and
the DACL to be used.The function will return a non-zero value if it is successful,
and zero if not. In the event of an error, the function GetLastError can be called
to retrieve more information.

Risk: The access control list for a security descriptor contains highly targeted and
sensitive information. Ensure that only administrative-level users can access this data
and that if it must be stored externally to the application it is done so in a securely
encrypted manner.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/security/secu-
rity/setsecuritydescriptordacl.asp

Impact: High

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 223

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 223

TLFeBOOK

SetThreadToken
Prototype: BOOL SetThreadToken(PHANDLE Thread, HANDLE Token)

Summary: This function either allows or restricts a thread from using an imper-
sonation token.

Description: The function attempts to either set an impersonation token for a
thread, or it can stop a thread from using one. It has two input variables: the thread
handle and the token handle. If the token handle is set to NULL, then the function
stops the thread from using a token. If the function succeeds, it will return a 1. If
not, it returns a 0.

Risk: Applications that have the ability to impersonate local systems, users, or secu-
rity information are extremely dangerous; furthermore, functions that leverage this
type of functionality should be controlled and only used as a last resort! All imper-
sonation functions should be controlled by internal application-specific routines in
addition to the controlled use of their output.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/security/secu-
rity/setthreadtoken.asp

Impact: Low

ShellExecute
Prototype: HINSTANCE ShellExecute(HWND hwnd, LPCTSTR opera-
tion, LPCTSTR file, LPCTSTR parameters, LPCTSTR directory,

INT showCmd)

Summary: This function performs an operation on a file.

Description: The function attempts to perform a given operation on a file.The
function has six input arguments: the handle for process window, the string con-
taining the operation to be performed, the string containing the path to the file, the
string containing parameters for file execution (if the file is executable, otherwise it
is NULL), the string containing the default directory, and a flag defining how the file

www.syngress.com

C
+

+

224 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 224

TLFeBOOK

should be opened. If the function is successful, it will return a number greater than
32. However, in the event of an error, it will return a value less than 32 that will
correspond to a particular error that can be found in the reference.

Risk: This function is utilized to execute system-level commands from within an
application. Executing system-level commands are one of the most dangerous types
of operations that an application can hardcode into its backend logic. Multiple vec-
tors for potential attacks are available and must be addressed to secure your applica-
tion. User input should be reviewed and all non-alphanumeric characters removed.
Additionally, the directory structure should be limited to include only the directory
or directories where the desired executables reside.As an example, you would
restrict users to running commands or executables in /user/local/bin or c:/docu-
ments and settings/userX/programs/. Lastly, all output for the application should be
captured within the subprocess that has launched the executable. Fork,
CreateProcess, or CreateThread are examples of additional functions that can
be used to contain output.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/functions/shellexecute.asp

Impact: High

Cross References: ShellExecuteA, ShellExecuteW

ShellExecuteA
Prototype: HINSTANCE ShellExecuteA(HWND hwnd, LPCTSTR opera-
tion, LPCTSTR file, LPCTSTR parameters, LPCTSTR directory,

INT showCmd)

Summary: This function performs an operation on a file.

Description: The function attempts to perform a given operation on a file.The
function has six input arguments: the handle for process window, the string con-
taining the operation to be performed, the string containing the path to the file, the
string containing parameters for file execution (if the file is executable, otherwise it

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 225

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 225

TLFeBOOK

is NULL), the string containing the default directory, and a flag defining how the file
should be opened. If the function is successful, it will return a number greater than
32. However, in the event of an error, it will return a value less than 32 that will
correspond to a particular error that can be found in the reference.

Risk: This function is utilized to execute system-level commands from within an
application. Executing system-level commands are one of the most dangerous types
of operations that an application can hardcode into its backend logic. Multiple vec-
tors for potential attacks are available and must be addressed to secure your applica-
tion. User input should be reviewed and all non-alphanumeric characters removed.
Additionally, the directory structure should be limited to include only the directory
or directories where the desired executables reside.As an example, you would
restrict users to running commands or executables in /user/local/bin or c:/docu-
ments and settings/userX/programs/. Lastly, all output for the application should be
captured within the subprocess that has launched the executable. Fork,
CreateProcess, or CreateThread are examples of additional functions that can
be used to contain output.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/functions/shellexecute.asp

Impact: High

Cross References: ShellExecute, ShellExecuteW

ShellExecuteEx
Prototype: BOOL ShellExecuteEx(LPSHELLEXECUTEINFO information)

Summary: This function performs a requested action on a file.

Description: The function attempts to perform a given action on a file.The func-
tion has only one input argument: a pointer to a structure that contains all of the
necessary data for the action to be performed on a file.This function keeps track of
the information produced by the file action.The function returns a standard
Boolean depending on success or failure.

www.syngress.com

C
+

+

226 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 226

TLFeBOOK

Risk: This function is utilized to execute system-level commands from within an
application. Executing system-level commands are one of the most dangerous types
of operations that an application can hardcode into its backend logic. Multiple vec-
tors for potential attacks are available and must be addressed to secure your applica-
tion. User input should be reviewed and all non-alphanumeric characters removed.
Additionally, the directory structure should be limited to include only the directory
or directories where the desired executables reside.As an example, you would
restrict users to running commands or executables in /user/local/bin or c:/docu-
ments and settings/userX/programs/. Lastly, all output for the application should be
captured within the subprocess that has launched the executable. Fork,
CreateProcess, or CreateThread are examples of additional functions that can
be used to contain output.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/functions/shellexecuteex.asp

Impact: High

Cross References: ShellExecuteExA, ShellExecuteExW

ShellExecuteExA
Prototype: BOOL ShellExecuteExA(LPSHELLEXECUTEINFO
information)

Summary: This function performs a requested action on a file.

Description: The function attempts to perform a given action on a file.The func-
tion has only one input argument: a pointer to a structure that contains all of the
necessary data for the action to be performed on a file.This function keeps track of
the information produced by the file action.The function returns a standard
Boolean depending on success or failure.

Risk: This function is utilized to execute system-level commands from within an
application. Executing system-level commands are one of the most dangerous types
of operations that an application can hardcode into its backend logic. Multiple vec-

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 227

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 227

TLFeBOOK

tors for potential attacks are available and must be addressed to secure your applica-
tion. User input should be reviewed and all non-alphanumeric characters removed.
Additionally, the directory structure should be limited to include only the directory
or directories where the desired executables reside.As an example, you would
restrict users to running commands or executables in /user/local/bin or c:/docu-
ments and settings/userX/programs/. Lastly, all output for the application should be
captured within the subprocess that has launched the executable. Fork,
CreateProcess, or CreateThread are examples of additional functions that can
be used to contain output.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/functions/shellexecuteex.asp

Impact: High

Cross References: ShellExecuteEx, ShellExecuteExW

ShellExecuteExW
Prototype: BOOL ShellExecuteExW(LPSHELLEXECUTEINFO
information)

Summary: This function performs a requested action on a file.

Description: The function attempts to perform a given action on a file.The func-
tion has only one input argument: a pointer to a structure that contains all of the
necessary data for the action to be performed on a file.This function keeps track of
the information produced by the file action.The information stored in the structure
will be kept in wide-character strings when necessary.The function returns a stan-
dard Boolean depending on success or failure.

Risk: This function is utilized to execute system-level commands from within an
application. Executing system-level commands are one of the most dangerous types
of operations that an application can hardcode into its backend logic. Multiple vec-
tors for potential attacks are available and must be addressed to secure your applica-
tion. User input should be reviewed and all non-alphanumeric characters removed.

www.syngress.com

C
+

+

228 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 228

TLFeBOOK

Additionally, the directory structure should be limited to include only the directory
or directories where the desired executables reside.As an example, you would
restrict users to running commands or executables in /user/local/bin or c:/docu-
ments and settings/userX/programs/. Lastly, all output for the application should be
captured within the subprocess that has launched the executable. Fork,
CreateProcess, or CreateThread are examples of additional functions that can
be used to contain output.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/functions/shellexecuteex.asp

Impact: High

Cross References: ShellExecuteEx, ShellExecuteExA

ShellExecuteW
Prototype: HINSTANCE ShellExecuteW(HWND hwnd, LPCWSTR opera-
tion, LPCWSTR file, LPCWSTR parameters, LPCWSTR directory,

INT showCmd)

Summary: This function performs an operation on a file.

Description: The function attempts to perform a given operation on a file.The
function has six input arguments: the handle for process window, the wide-character
string containing the operation to be performed, the wide-character string con-
taining the path to the file, the wide-character string containing parameters for file
execution (if the file is executable, otherwise it is NULL), the wide-character string
containing the default directory, and a flag defining how the file should be opened.
If the function is successful, it will return a number greater than 32. However, in the
event of an error, it will return a value less than 32 that will correspond to a partic-
ular error that can be found in the reference.

Risk: This function is utilized to execute system-level commands from within an
application. Executing system-level commands are one of the most dangerous types
of operations that an application can hardcode into its backend logic. Multiple vec-

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 229

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 229

TLFeBOOK

tors for potential attacks are available and must be addressed to secure your applica-
tion. User input should be reviewed and all non-alphanumeric characters removed.
Additionally, the directory structure should be limited to include only the directory
or directories where the desired executables reside.As an example, you would
restrict users to running commands or executables in /user/local/bin or c:/docu-
ments and settings/userX/programs/. Lastly, all output for the application should be
captured within the subprocess that has launched the executable. Fork,
CreateProcess, or CreateThread are examples of additional functions that can
be used to contain output.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/functions/shellexecute.asp

Impact: High

Cross References: ShellExecute, ShellExecuteA

StrCat
Prototype: LPTSTR StrCat(LPTSTR destination, LPCTSTR source)

Summary: The function appends a string onto the end of another.

Description: This function attempts to concatenate one string onto the end of
another. It has two input arguments: the source and destination strings.The function
will copy the source string onto the end of the destination string, overwriting the
null character (if it exists).The function will return the destination string when
completed.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure

www.syngress.com

C
+

+

230 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 230

TLFeBOOK

that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strcat.asp

Impact: Medium

Cross References: StrCatA, StrCatW, StrCpy

StrCatA
Prototype: LPTSTR StrCatA(LPTSTR destination, LPCTSTR
source)

Summary: The function appends a string onto the end of another.

Description: This function attempts to concatenate one string onto the end of
another. It has two input arguments: the source and destination strings.The function
will copy the source string onto the end of the destination string, overwriting the
null character (if it exists).The function will return the destination string when
completed.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strcat.asp

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 231

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 231

TLFeBOOK

Impact: Medium

Cross References: StrCat, StrCatW

StrCatBuff
Prototype: LPTSTR StrCatBuff(LPTSTR destination, LPCTSTR
source, int count)

Summary: The function appends a string onto the end of another.

Description: This function attempts to concatenate one string onto the end of
another. It has three input arguments: the source and destination strings and the size
of the buffer.The function will copy the source string onto the end of the destina-
tion string, overwriting the null character (if it exists).The function will return the
destination string when completed.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strcatbuff.asp

Impact: Medium

Cross References: StrCatBuffA, StrCatBuffW, StrCpy

www.syngress.com

C
+

+

232 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 232

TLFeBOOK

StrCatBuffA
Prototype: LPTSTR StrCatBuffA(LPTSTR destination, LPCTSTR
source, int count)

Summary: The function appends a string onto the end of another.

Description: This function attempts to concatenate one string onto the end of
another. It has three input arguments: the source and destination strings and the size
of the buffer.The function will copy the source string onto the end of the destina-
tion string, overwriting the null character (if it exists).The function will return the
destination string when completed.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strcatbuff.asp

Impact: Medium

Cross References: StrCatBuff, StrCatBuffW

StrCatBuffW
Prototype: LPTSTR StrCatBuffW(LPWSTR destination, LPCWSTR
source, int count)

Summary: The function appends a string onto the end of another.

Description: This function attempts to concatenate one string onto the end of
another. It has three input arguments: the source and destination wide-character

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 233

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 233

TLFeBOOK

strings and the size of the buffer.The function will copy the source string onto the
end of the destination string, overwriting the null character (if it exists).The func-
tion will return the destination wide-character string when completed.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strcatbuff.asp

Impact: Medium

Cross References: StrCatBuff, StrCatBuffA

StrCatN
Prototype: LPTSTR StrCatN(LPTSTR destination, LPCTSTR source,
int count)

Summary: The function appends a string onto the end of another.

Description: This function attempts to concatenate one string onto the end of
another. It has three input arguments: the source and destination strings and the max
number of characters to append.The function will copy the source string onto the
end of the destination string, overwriting the null character (if it exists).The func-
tion will return the destination string when completed.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make

www.syngress.com

C
+

+

234 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 234

TLFeBOOK

your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strncat.asp

Impact: Medium

Cross References: StrCatNA, StrCatNW, StrCpy

StrCatNA
Prototype: LPTSTR StrCatNA(LPTSTR destination, LPCTSTR
source, int count)

Summary: The function appends a string onto the end of another.

Description: This function attempts to concatenate one string onto the end of
another. It has three input arguments: the source and destination strings and the max
number of characters to append.The function will copy the source string onto the
end of the destination string, overwriting the null character (if it exists).The func-
tion will return the destination string when completed.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 235

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 235

TLFeBOOK

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strncat.asp

Impact: Medium

Cross References: StrCatN, StrCatNW

StrCatNW
Prototype: LPTSTR StrCatNW(LPWSTR destination, LPCWSTR
source, int count)

Summary: The function appends a string onto the end of another.

Description: This function attempts to concatenate one string onto the end of
another. It has three input arguments: the source and destination wide-character
strings and the max number of characters to append.The function will copy the
source string onto the end of the destination string, overwriting the null character
(if it exists).The function will return the destination wide-character string when
completed.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strncat.asp

Impact: Medium

Cross References: StrCatN, StrCatNA

www.syngress.com

C
+

+

236 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 236

TLFeBOOK

StrCatW
Prototype: LPTSTR StrCatW(LPWSTR destination, LPCWSTR source)

Summary: The function appends a string onto the end of another.

Description: This function attempts to concatenate one string onto the end of
another. It has two input arguments: the source and destination wide-character
strings.The function will copy the source string onto the end of the destination
string, overwriting the null character (if it exists).The function will return the desti-
nation string when completed.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strcat.asp

Impact: Medium

Cross References: StrCat, StrCatA

StrCpy
Prototype: LPTSTR StrCpy(LPTSTR destination, LPCTSTR source)

Summary: The function copies a string into another.

Description: This function attempts to copy one string into another. It has two
input arguments: the source and destination strings.The function will copy the
source string into the destination string, as well as the null character (if it exists).The
function will return the destination string when completed.

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 237

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 237

TLFeBOOK

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strcpy.asp

Impact: High

Cross References: StrCat, StrCpyA, StrCpyW

StrCpyA
Prototype: LPTSTR StrCpyA(LPTSTR destination, LPCTSTR source)

Summary: The function copies a string into another.

Description: This function attempts to copy one string into another. It has two
input arguments: the source and destination strings.The function will copy the
source string into the destination string, as well as the null character (if it exists).The
function will return the destination string when completed.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

www.syngress.com

C
+

+

238 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 238

TLFeBOOK

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strcpy.asp

Impact: High

Cross References: StrCpy, StrCpyW

StrCpyN
Prototype: LPTSTR StrCpyN(LPTSTR destination, LPCTSTR source,
int count)

Summary: The function copies a string into another.

Description: This function attempts to copy one string into another. It has three
input arguments: the source and destination strings and the max number of charac-
ters to copy.The function will copy the source string into the destination string, as
well as the null character (if it exists).The function will return the destination string
when completed.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strcpyn.asp

Impact: High

Cross References: StrCatN, StrCpyNA, StrCpyNW

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 239

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 239

TLFeBOOK

StrCpyNA
Prototype: LPTSTR StrCpyNA(LPTSTR destination, LPCTSTR
source, int count)

Summary: The function copies a string into another.

Description: This function attempts to copy one string into another. It has three
input arguments: the source and destination strings and the max number of charac-
ters to copy.The function will copy the source string into the destination string, as
well as the null character (if it exists).The function will return the destination string
when completed.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strcpyn.asp

Impact: High

Cross References: StrCpyN, StrCpyNW

StrCpyNW
Prototype: LPTSTR StrCpyN(LPWSTR destination, LPWTSTR source,
int count)

Summary: The function copies a string into another.

Description: This function attempts to copy one string into another. It has three
input arguments: the source and destination wide-character strings and the max

www.syngress.com

C
+

+

240 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 240

TLFeBOOK

number of characters to copy.The function will copy the source string into the des-
tination string, as well as the null character (if it exists).The function will return the
destination wide-character string when completed.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strcpyn.asp

Impact: High

Cross References: StrCpyN, StrCpyNA

StrCpyW
Prototype: LPTSTR StrCpyW(LPWSTR destination, LPCWSTR source)

Summary: The function copies a string into another.

Description: This function attempts to copy one wide-character string into
another. It has two input arguments: the source and destination strings.The function
will copy the source string into the destination string, as well as the null character (if
it exists).The function will return the destination wide-character string when com-
pleted.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 241

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 241

TLFeBOOK

less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strcpy.asp

Impact: High

Cross References: StrCpy, StrCpyA

StrFormatByteSize
Prototype: LPTSTR StrFormatByteSize(DWORD value, LPSTR
buffer, UINT size)

Summary: This function converts a numeric value into a string.

Description: The function attempts to convert a numeric value into a string that is
a representation in bytes.This means that a numeric value of 750 becomes 750
bytes, 1500 becomes 1.5 KB, and so on.The function has three input values: the
number to convert, the string, and the size of the string. If the function is successful,
it will return the string. However, if unsuccessful, it will return NULL.

Risk: Certain string manipulation functions to include numeric to string transition
functions are commonly leveraged in buffer overflow attacks.At the most basic level,
these functions read in data, perform analysis and execution logic, then output the
data to another type of string. It is imperative that the destination string be calcu-
lated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion. Lastly, it is critical to ensure that the
number is restricted to a size desirable by the application.

Note: At time of publication, this function was designed for Windows compatibility.

www.syngress.com

C
+

+

242 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 242

TLFeBOOK

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strformatbytesizea.asp

Impact: Low

Cross References: StrFormatByteSizeA, StrFormatByteSizeW

StrFormatByteSize64
Prototype: LPTSTR StrFormatByteSize64(LONGLONG value, LPTSTR
buffer, UINT size)

Summary: This function converts a numeric value into a string.

Description: The function attempts to convert a numeric value into a string that is
a representation in bytes.This means that a numeric value of 750 becomes 750
bytes, 1500 becomes 1.5 KB, ans os on.The function has three input values: the
number to convert, the string, and the size of the string. If the function is successful,
it will return the string. However, if unsuccessful, it will return NULL.

Risk: Certain string manipulation functions to include numeric to string transition
functions are commonly leveraged in buffer overflow attacks.At the most basic level,
these functions read in data, perform analysis and execution logic, then output the
data to another type of string. It is imperative that the destination string be calcu-
lated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion. Lastly, it is critical to ensure that the
number is restricted to a size desirable by the application.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strformatbytesize64.asp

Impact: Low

Cross References: StrFormatByteSize64A, StrFormatByteSize64W

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 243

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 243

TLFeBOOK

StrFormatByteSize64A
Prototype: LPTSTR StrFormatByteSize64A(LONGLONG value, LPTSTR
buffer, UINT size)

Summary: This function converts a numeric value into a string.

Description: The function attempts to convert a numeric value into a string that is
a representation in bytes.This means that a numeric value of 750 becomes 750
bytes, 1500 becomes 1.5 KB, and so on.The function has three input values: the
number to convert, the string, and the size of the string. If the function is successful,
it will return the string. However, if unsuccessful, it will return NULL.

Risk: Certain string manipulation functions to include numeric to string transition
functions are commonly leveraged in buffer overflow attacks.At the most basic level,
these functions read in data, perform analysis and execution logic, then output the
data to another type of string. It is imperative that the destination string be calcu-
lated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion. Lastly, it is critical to ensure that the
number is restricted to a size desirable by the application.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strformatbytesize64.asp

Impact: Low

Cross References: StrFormatByteSize64, StrFormatByteSize64W

StrFormatByteSize64W
Prototype: LPTSTR StrFormatByteSize64W(LONGLONG value, LPWSTR
buffer, UINT size)

Summary: This function converts a numeric value into a string.

Description: The function attempts to convert a numeric value into a wide-char-
acter string that is a representation in bytes.This means that a numeric value of 750
becomes 750 bytes, 1500 becomes 1.5 KB, and so on.The function has three

www.syngress.com

C
+

+

244 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 244

TLFeBOOK

input values: the number to convert, the string, and the size of the string. If the
function is successful, it will return the string. However, if unsuccessful, it will return
NULL.

Risk: Certain string manipulation functions to include numeric to string transition
functions are commonly leveraged in buffer overflow attacks.At the most basic level,
these functions read in data, perform analysis and execution logic, then output the
data to another type of string. It is imperative that the destination string be calcu-
lated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion. Lastly, it is critical to ensure that the
number is restricted to a size desirable by the application.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strformatbytesize64.asp

Impact: Low

Cross References: StrFormatByteSize64, StrFormatByteSize64A

StrFormatByteSizeW
Prototype: LPTSTR StrFormatByteSizeW(LONGLONG value, LPWSTR
buffer, UINT size)

Summary: This function converts a numeric value into a string.

Description: The function attempts to convert a numeric value into a wide-char-
acter string that is a representation in bytes.This means that a numeric value of 750
becomes 750 bytes, 1500 becomes 1.5 KB, etc… The function has three input
values: the number to convert, the string, and the size of the string. If the function is
successful, it will return the string. However, if unsuccessful, it will return NULL.

Risk: Certain string manipulation functions to include numeric to string transition
functions are commonly leveraged in buffer overflow attacks.At the most basic level,
these functions read in data, perform analysis and execution logic, then output the

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 245

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 245

TLFeBOOK

data to another type of string. It is imperative that the destination string be calcu-
lated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion. Lastly, it is critical to ensure that the
number is restricted to a size desirable by the application.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strformatbytesizea.asp

Impact: Low

Cross References: StrFormatByteSize, StrFormatByteSizeA

StrFormatKBSize
Prototype: LPTSTR StrFormatKBSize(LONGLONG value, LPTSTR
buffer, UINT size)

Summary: This function converts a numeric value into a string.

Description: The function attempts to convert a numeric value into a string that is
a representation in bytes.This means that a numeric value of 750 becomes 0.75
KB, 1500 becomes 1.5 KB, etc… The function has three input values: the number
to convert, the string, and the size of the string. If the function is successful, it will
return the string. However, if unsuccessful, it will return NULL.

Risk: Certain string manipulation functions to include numeric to string transition
functions are commonly leveraged in buffer overflow attacks.At the most basic level,
these functions read in data, perform analysis and execution logic, then output the
data to another type of string. It is imperative that the destination string be calcu-
lated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion. Lastly, it is critical to ensure that the
number is restricted to a size desirable by the application.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strformatkbsize.asp

www.syngress.com

C
+

+

246 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 246

TLFeBOOK

Impact: Low

Cross References: StrFormatKBSizeA, StrFormatKBSizeW

StrFormatKBSizeA
Prototype: LPTSTR StrFormatKBSizeA(LONGLONG value, LPTSTR
buffer, UINT size)

Summary: This function converts a numeric value into a string.

Description: The function attempts to convert a numeric value into a string that is
a representation in bytes.This means that a numeric value of 750 becomes 0.75
KB, 1500 becomes 1.5 KB, etc… The function has three input values: the number
to convert, the string, and the size of the string. If the function is successful, it will
return the string. However, if unsuccessful, it will return NULL.

Risk: Certain string manipulation functions to include numeric to string transition
functions are commonly leveraged in buffer overflow attacks.At the most basic level,
these functions read in data, perform analysis and execution logic, then output the
data to another type of string. It is imperative that the destination string be calcu-
lated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion. Lastly, it is critical to ensure that the
number is restricted to a size desirable by the application.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strformatkbsize.asp

Impact: Low

Cross References: StrFormatKBSize, StrFormatKBSizeW

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 247

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 247

TLFeBOOK

StrFormatKBSizeW
Prototype: LPTSTR StrFormatKBSizeW(LONGLONG value, LPWSTR
buffer, UINT size)

Summary: This function converts a numeric value into a string.

Description: The function attempts to convert a numeric value into a wide-char-
acter string that is a representation in bytes.This means that a numeric value of 750
becomes 0.75 KB, 1500 becomes 1.5 KB, etc… The function has three input
values: the number to convert, the string, and the size of the string. If the function is
successful, it will return the string. However, if unsuccessful, it will return NULL.

Risk: Certain string manipulation functions to include numeric to string transition
functions are commonly leveraged in buffer overflow attacks.At the most basic level,
these functions read in data, perform analysis and execution logic, then output the
data to another type of string. It is imperative that the destination string be calcu-
lated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion. Lastly, it is critical to ensure that the
number is restricted to a size desirable by the application.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strformatkbsize.asp

Impact: Low

Cross References: StrFormatKBSize, StrFormatKBSizeA

StrFromTimeInterval
Prototype: int StrFromTimeInterval(LPTSTR buffer, UINT count,
DWORD time, int digits)

Summary: This function creates a string from a time interval.

Description: The function attempts to convert a given time interval into a string.
This means that a time interval of 73000 becomes 73 sec with two or more digits
of accuracy or 70 sec with one.The function has four input arguments: the desti-
nation string and its size, the time interval in milliseconds, and the number of digits

www.syngress.com

C
+

+

248 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 248

TLFeBOOK

of precision to use. If the function is successful, it returns the number or characters
in the string buffer.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strfromtimeinterval.asp

Impact: Low

Cross References: StrFromTimeIntervalA, StrFromTimeIntervalW

StrFromTimeIntervalA
Prototype: int StrFromTimeIntervalA(LPTSTR buffer, UINT
count, DWORD time, int digits)

Summary: This function creates a string from a time interval.

Description: The function attempts to convert a given time interval into a string.
This means that a time interval of 73000 becomes 73 sec with two or more digits
of accuracy or 70 sec with one.The function has four input arguments: the desti-
nation string and its size, the time interval in milliseconds, and the number of digits
of precision to use. If the function is successful, it returns the number or characters
in the string buffer.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Note: At time of publication, this function was designed for Windows compatibility.

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 249

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 249

TLFeBOOK

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strfromtimeinterval.asp

Impact: Low

Cross References: StrFromTimeInterval, StrFromTimeIntervalW

StrFromTimeIntervalW
Prototype: int StrFromTimeInterval(LPWSTR buffer, UINT count,
DWORD time, int digits)

Summary: This function creates a string from a time interval.

Description: The function attempts to convert a given time interval into a wide-
character string.This means that a time interval of 73000 becomes 73 sec with
two or more digits of accuracy or 70 sec with one.The function has four input
arguments: the destination string and its size, the time interval in milliseconds, and
the number of digits of precision to use. If the function is successful, it returns the
number or characters in the string buffer.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strfromtimeinterval.asp

Impact: Low

Cross References: StrFromTimeInterval, StrFromTimeIntervalW

www.syngress.com

C
+

+

250 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 250

TLFeBOOK

StrNCat
Prototype: LPTSTR StrNCat(LPTSTR destination, LPCTSTR source,
int count)

Summary: The function appends a string onto the end of another.

Description: This function attempts to concatenate one string onto the end of
another. It has three input arguments: the source and destination strings and the max
number of characters to append.The function will copy the source string onto the
end of the destination string, overwriting the null character (if it exists).The func-
tion will return the destination string when completed.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/strncat.asp

Impact: Low

WideCharToMultiByte
Prototype: int WideCharToMultiByte(UINT CodePage, DWORD
dwFlags, LPCWSTR source, int countS, LPSTR destination, int

countD, LPCSTR unmappable, LPBOOL unmappableFlag)

Summary: This function translates a wide-character string to a multibyte-character
string.

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 251

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 251

TLFeBOOK

Description: The function attempts to translate a source wide-character string into
a multibyte-character string.The function has eight input arguments: the code page
to give the conversion data, a flag set, the source string and its size, the destination
string and its size, a string for unmappable characters, and a flag for the unmappable
set.The function will return an integer that can have several meanings. Depending
on the size of strings, the flag setting, and whether the function was successful, it can
return many different values. See the reference for more information.

Risk: Multi-byte strings have the potential to be very large strings that can be
potentially leveraged in a buffer overflow attack scenario.These strings should
restrict characters to include only those that are required by the application to func-
tion.Additionally, standard string manipulation functions should be utilized instead
of large multi-byte strings in all cases possible. Ensure that the destination buffer is
of appropriate size and that the source buffer is limited to that size -1.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/intl/unicode_2bj9.asp

Impact: Low

Cross References: MultiByteToWideChar

WinExec
Prototype: UINT WinExec(LPCSTR lpCmdLine, UINT uCmdShow)

Summary: This function runs a given application.

Description: The function attempts to execute a given application. It has only two
input variables: the path to the application and a flag for determining the application
call.The function is compatible only with 16-bit Windows. It will return an integer
greater than 31 if it successfully completes the task. However, in the event of a
failure, the function will return an integer less than 31 that corresponds to an error.

www.syngress.com

C
+

+

252 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 252

TLFeBOOK

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is impera-
tive that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the desired
executables. Lastly, require that all executable output is controlled within a forked or
spawned process within the local application to ensure the integrity of the outputted
data. If possible, avoid calling dynamic programs from within applications. Static pro-
gram execution is more secure.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dllproc/base/winexec.asp

Impact: High

wnsprintf
Prototype: int wnsprintf(LPTSTR string, int count, LPCTSTR
format, …)

Summary: This function prints a formatted string to another string.

Description: The function attempts to print a formatted, wide-character string to
another string. It has three formal input arguments: the wide-character string, its
length (i.e., max length) and the format for the string.The informal arguments may
be necessary for the formatting.The function returns the number of characters in
the output string (not including the null character). If the function fails, however, it
will return an unexpected value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 253

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 253

TLFeBOOK

directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/
platform/shell/reference/shlwapi/string/wnsprintf.asp

Impact: Medium

Cross References: wnsprintfA, wnsprintfW

wnsprintfA
Prototype: int wnsprintfA(LPTSTR string, int count, LPCTSTR
format, …)

Summary: This function prints a formatted string to another string.

Description: The function attempts to print a formatted, wide-character string to
another string. It has three formal input arguments: the wide-character string, its
length (i.e., max length) and the format for the string.The informal arguments may
be necessary for the formatting.The function returns the number of characters in
the output string (not including the null character). If the function fails, however, it
will return an unexpected value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

www.syngress.com

C
+

+

254 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 254

TLFeBOOK

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/wnsprintf.asp

Impact: Medium

Cross References: wnsprintf, wnsprintfW

wnsprintfW
Prototype: int wnsprintfW(LPTSTR string, int count, LPCTSTR
format, …)

Summary: This function prints a formatted string to another string.

Description: The function attempts to print a formatted, wide-character string to
another string. It has three formal input arguments: the wide-character string, its
length (i.e., max length) and the format for the string.The informal arguments may
be necessary for the formatting.The function returns the number of characters in
the output string (not including the null character). If the function fails, however, it
will return an unexpected value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/wnsprintf.asp

Impact: Medium

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 255

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 255

TLFeBOOK

Cross References: wnsprintf, wnsprintfA

wprintf
Prototype: int wprintf(const wchar_t *format, ...)

Summary: This function prints a formatted array of characters to the I/O stream.

Description: The function attempts to print a formatted array of wide-characters
to the stream. It has only one formal argument: the array to be printed. However, as
it can be formatted data, there can be subsequent, informal arguments.The function
will return the number of characters printed. However, in the event of an error, the
function returns a negative value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources:
www.gnu.org/software/libc/manual/html_node/Formatted-Output-
Functions.html#Formatted%20Output%20Functions;
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vccore98/html/_crt_printf.2c_.wprintf.asp

Impact: Medium

Cross References: printf, wscanf

wsprintfA
Prototype: int wsprintfA(LPTSTR string, LPCTSTR format, …)

www.syngress.com

C
+

+

256 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 256

TLFeBOOK

Summary: This function prints a formatted string to another string.

Description: The function attempts to print a formatted, wide-character string to
another string. It has two formal input arguments: the wide-character string and the
format for the string.The informal arguments may be necessary for the formatting.
The function returns the number of characters in the output string (not including
the null character). If the function fails, however, it will return an unexpected value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/WinUI/WindowsUserInterface/Resources/Strings/StringReference/Strin
gFunctions/wsprintf.asp

Impact: None

Cross References: wsprintf, wsprintfW

wsprintfW
Prototype: int wsprintfW(LPTSTR string, LPCTSTR format, …)

Summary: This function prints a formatted string to another string.

Description: The function attempts to print a formatted, wide-character string to
another string. It has two formal input arguments: the wide-character string and the
format for the string.The informal arguments may be necessary for the formatting.

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 257

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 257

TLFeBOOK

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/wvnsprintf.asp

Impact: Medium

Cross References: wvnsprintfA, wvnsprintfW

wvnsprintfA
Prototype: int wvnsprintfA(LPTSTR string, int count, LPCTSTR
format, va_list arglist)

Summary: This function prints a formatted string to another string.

Description: The function attempts to print a formatted, wide-character string to
another string. It has four input arguments: the wide-character string, its length (i.e.,
max length), the format for the string, and a list of arguments for the formatting.
The function returns the number of characters in the output string (not including
the null character). If the function fails, however, it will return an unexpected value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 258

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 258

TLFeBOOK

The function returns the number of characters in the output string (not including
the null character). If the function fails, however, it will return an unexpected value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/WinUI/WindowsUserInterface/Resources/Strings/StringReference/Strin
gFunctions/wsprintf.asp

Impact: Medium

Cross References: wsprintf, wsprintfA

wvnsprintf
Prototype: int wvnsprintf(LPTSTR string, int count, LPCTSTR
format, va_list arglist)

Summary: This function prints a formatted string to another string.

Description: The function attempts to print a formatted, wide-character string to
another string. It has four input arguments: the wide-character string, its length (i.e.,
max length), the format for the string, and a list of arguments for the formatting.
The function returns the number of characters in the output string (not including
the null character). If the function fails, however, it will return an unexpected value.

www.syngress.com

C
+

+

259 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 259

TLFeBOOK

directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/wvnsprintf.asp

Impact: Medium

Cross References: wvnsprintf, wvnsprintfW

wvnsprintfW
Prototype: int wvnsprintfW(LPTSTR string, int count, LPCTSTR
format, va_list arglist)

Summary: This function prints a formatted string to another string.

Description: The function attempts to print a formatted, wide-character string to
another string. It has four input arguments: the wide-character string, its length (i.e.,
max length), the format for the string, and a list of arguments for the formatting.
The function returns the number of characters in the output string (not including
the null character). If the function fails, however, it will return an unexpected value.

Risk: This function is potentially vulnerable to a format string attack where an
attacker could cause the application to crash unexpected or execute arbitrary code.
Format string bugs were discovered in 2000 and the problem is typically spawned
from user input that is not properly filtered. Both Microsoft .Net and SPI Dynamics
to name two have secure objects that can be implemented to check strings and user
input gained from human sources within applications to protect against input-
directed vulnerabilities. It is critical that you verify the inputted data have only
proper and expected characters in addition to ensuring that your function is prop-
erly called. For example, the functions should always utilize their parameters such as
printf(“%s”, malicious_string) instead of
printf(malicious_string).

www.syngress.com

C
+

+

260 C++ • Programmer’s Ultimate Security DeskRef

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 260

TLFeBOOK

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/shellcc/plat-
form/shell/reference/shlwapi/string/wvnsprintf.asp

Impact: Medium

Cross References: wvnsprintf, wvnsprintfA

www.syngress.com

C
+

+

Programmer’s Ultimate Security DeskRef • C++ 261

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 261

TLFeBOOK

309_Desk_Ref_C++.qxd 10/11/04 5:03 PM Page 262

TLFeBOOK

Programmer’s
Ultimate Security
Desk Ref: C#

GetTempPathA
Prototype: static extern int GetTempPathA (int
nBufferLength, string lpBuffer)

Summary: This function gets the path for the directory where tem-
porary files are stored.

Description: The function attempts to retrieve the path to where
temporary files are stored. It has two input variables: the length of the
t-char string used to store the path and the actual pointer to the
string.The function returns the number of characters copied to the
buffer.The path will also include a trailing slash (for easy concatena-
tion of the file name). In the event of an error, the function will
return a 0.

Risk: System path information is constantly sought after by attackers
or malicious users profiling a target application or system. Path infor-
mation alone can potentially identify the underlying operating
system, installed applications, configurations, and in some cases user
and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the infor-

263

309_Desk_Ref_C#.qxd 10/11/04 4:28 PM Page 263

TLFeBOOK

264 C# • Programmer’s Ultimate Security DeskRef

mation is only processed internally by the application. Limit the end user’s ability to
ascertain or traverse path information.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources: www.webtropy.com/articles/art9-1.asp?f=GetTempPath

Impact: Low

Cross References: GetTempFileName, GetTempPath, GetTempPathW

ImpersonateDdeClientWindow
Prototype: BOOL ImpersonateDdeClientWindow(HWND hWndClient,
HWND hWndServer)

Summary: This function allows a DDE server application to impersonate a DDE
client’s context.

Description: The function attempts to impersonate a DDE client application’s
context.The function has two input arguments.The first is the handle of the client
to impersonate.The second is the handle of the server window.The function will
return a non-zero number if successful, zero if not.

Risk: Applications that have the ability to impersonate local systems, users, or secu-
rity information are extremely dangerous; furthermore, functions that leverage this
type of functionality should be controlled and only used as a last resort! All imper-
sonation functions should be controlled by internal application-specific routines in
addition to the controlled use of their output.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/winui/windowsuserinterface/dataexchange/dynamicdataexchange/dynam-
icdataexchangereference/dynamicdataexchangefunctions/impersonateddeclientwind
ow.asp

Impact: Low

Cross References: CoImpersonateClient, ImpersonateLoggedOnUser,
ImpersonateNamedPipeClient, ImpersonateSecurityContext

www.syngress.com

C
#

309_Desk_Ref_C#.qxd 10/11/04 4:28 PM Page 264

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C# 265

lstrcpyn
Prototype: LPTSTR lstrcpyn(LPTSTR destination, LPTSTR source,
int count)

Summary: This function copies one string to another.

Description: The function attempts to copy one string to another.The function
three input variables: the source and destination strings and a maximum number of
characters to copy.The function will copy the source string to the destination (stop-
ping at count), and return the destination string.The destination string must be
long enough to hold the source string and the null character. In the event of failure,
the function will return NULL.

Risk: Functions that are utilized to copy or concatenate strings are commonly mis-
used and fall victim to buffer overflow attacks. It is critical that you ensure before
execution of this function that the destination source is large enough to house the
source data.Additionally, limiting the source data memory space will not only make
your application more efficient, it will also add another layer of security by relying
less on the destination buffer. For example, if X should be copied to Y then ensure
that Y’s space is less than X-1’s total space allocation. It is similar for concatenation
functions where as the strings are limited to a total length.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/WinUI/WindowsUserInterface/Resources/Strings/StringReference/Strin
gFunctions/lstrcpyn.asp

Impact: Medium

Cross References: lstrcat, lstrcpy

OemToAnsiBuff (Class Member)
Prototype: void CStringT::OemToAnsiBuff()

Summary: This class member converts the string of characters from the OEM
character set to the ANSI character set.

www.syngress.com

C
#

309_Desk_Ref_C#.qxd 10/11/04 4:28 PM Page 265

TLFeBOOK

266 C# • Programmer’s Ultimate Security DeskRef

Description: This is a member of the class type CStringT.The member will con-
vert the character of the class object String from the OEM character set to the
ANSI character set. It does not return anything, as it modifies the class object itself.
This member, however, is careful with the use of 16-bit applications.

Risk: Certain string manipulation functions to include OEM transition functions
are commonly leveraged in buffer overflow attacks.At the most basic level, these
functions read in data, perform analysis and execution logic, then output the data to
another type of string. It is imperative that the destination string be calculated
accordingly and that enough memory space is allocated. Special characters should
also be stricken from the conversion.

Note: At time of publication, this function was designed for Windows compatibility.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vclib/html/vclr-
fcstringtoemtoansi.asp

Impact: Low

OemToCharBuffW
Prototype: BOOL OemToCharBuffW(LPCTSTR source, LPTSTR desti-
nation, DWORD count)

Summary: This function translates a defined number of characters in a string from
the OEM character set to the ANSI character set.

Description: The function attempts to translate a string in the OEM character to
the ANSI character set.The function has three input variables: the source OEM-
character string, the destination ANSI-character string, and the maximum number of
characters to translate.The function will return either 0 if unsuccessful or 1 if it suc-
ceeds.

Risk: Certain string manipulation functions to include OEM transition functions
are commonly leveraged in buffer overflow attacks.At the most basic level, these
functions read in data, perform analysis and execution logic, then output the data to
another type of string. It is imperative that the destination string be calculated

www.syngress.com

C
#

309_Desk_Ref_C#.qxd 10/11/04 4:28 PM Page 266

TLFeBOOK

Programmer’s Ultimate Security DeskRef • C# 267

accordingly and that enough memory space is allocated. Special characters should
also be stricken from the conversion.

Note: At time of publication, this function was designed for Windows compatibility.
This function replaces the OemToAnsiBuff member of a CStringT type object.
This particular function is from the Windows Layer for Unicode and requires addi-
tional files to be used in Win 95/98/Me.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/winui/WinUI/WindowsUserInterface/Resources/Strings/StringReference/Strin
gFunctions/OemToCharBuff.asp

Impact: Low

Cross References: OemToCharBuff

www.syngress.com

C
#

309_Desk_Ref_C#.qxd 10/11/04 4:28 PM Page 267

TLFeBOOK

C
+

+

309_Desk_Ref_C#.qxd 10/11/04 4:28 PM Page 268

TLFeBOOK

Programmer’s
Ultimate Security
Desk Ref:
ColdFusion

Access
Prototype: Access(path, mode)
Summary: This function is used to test the accessibility of a file.

Description: This function is used to test for the availability of a file.
The function requires two input arguments: the path to the file and
the mode in which to access it.The function tests the permissions of
the file compared to the requested mode.The function returns a 0 if
access is not allowed, it returns a 1 if the file is accessible.

Risk: Ensure that either the application logic or human users are
limited to the files that require analysis.Attackers could potentially
leverage this type of functionality while attempting to compromise a
specific file.

Impact: Low

ArrayInsertAt
Prototype: ArrayInsertAt(array, position, value)

Summary: This function inserts an element into an array.
269

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 269

TLFeBOOK

270 ColdFusion • Programmer’s Ultimate Security DeskRef

Description: The function attempts to insert an element into an array at a given
position.The function has three input variables: the array, the position, and the new
element.The function will return TRUE if successful, and FALSE if not.The func-
tion will recalculate the indexing, as well. Inserting an element at an interior posi-
tion will increase the position for all remaining elements in the array.

Risk: Elements in an array are common targets of SQL injection and manipulation
attacks in addition to cross-site scripting (CSS/XSS) attacks.These data elements are
commonly stored and allowed to pass through weakly vetted input streams and
during analysis within the program are executed thereby potentially putting addi-
tional data at risk. Restrict all input data for arrays that is human generated.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Medium

Cross References: ArrayDeleteAt, ArrayNew, ArrayToList

ArrayNew
Prototype: ArrayNew(dimension)

Summary: This function creates a new array.

Description: The function is used to declare a new array.The function has one
input variable: the number of dimensions in the new array (1,2, or 3).The array will
expand as needed, and no length needs to be declared. However, for some functions
to work properly, the function ArraySet must be used in conjunction with this
function.

Risk: Elements in an array are common targets of SQL injection and manipulation
attacks in addition to cross-site scripting (CSS/XSS) attacks.These data elements are
commonly stored and allowed to pass through weakly vetted input streams and
during analysis within the program are executed thereby potentially putting addi-
tional data at risk. Restrict all input data for arrays that is human generated.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 270

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 271

Cross References: ArrayDeleteAt, ArrayInsertAt, ArrayToList

ArrayToList
Prototype: ArrayToList(array [, delimiter])

Summary: This function converts an array to a list.

Description: The function creates a list from an array.The array must be one-
dimensional.There is one required and one optional input argument: the former
being the array to convert, and the latter being a delimiter to use to separate the
elements of the list.The default option for the delimiter is a comma.The list created
will be in the format of a string.

Risk: Elements in an array are common targets of SQL injection and manipulation
attacks in addition to cross-site scripting (CSS/XSS) attacks.These data elements are
commonly stored and allowed to pass through weakly vetted input streams and
during analysis within the program are executed thereby potentially putting addi-
tional data at risk. Restrict all input data for arrays that is human generated.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: ArrayDeleteAt, ArrayInsertAt, ArrayNew

Asc
Prototype: Asc(string)

Summary: This function determines the value of the first element of a string.

Description: The function attempts to ascertain the value of the first element of a
string.The function takes only one input argument: the string to analyze.The func-
tion returns the value in question. However, in the event that the string is empty, the
function returns zero.

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 271

TLFeBOOK

272 ColdFusion • Programmer’s Ultimate Security DeskRef

the data to another type of string. It is imperative that the destination string be cal-
culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

BitAnd
Prototype: BitAnd(number1, number2)

Summary: This function performs the logical and operator on two long integers.

Description: The function performs the logical “and” operator on two integers.
The function looks at the integers in binary form and performs the operation bit-
wise along the length of the integer.The function returns the result of the opera-
tion.

Risk: Ensure that the destination buffer is large enough for the source data stream.
First determining if the memory space available is sufficient will allow you to bypass
multiple buffer overflow attacks.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: BitSHLN, BitSHRN, BitXor

BitSHLN
Prototype: BitSHLN(number, count)

Summary: This function shifts an integer by a number of digits to the left.

Description: The function shifts an integer by a given number of digits.The func-
tion has two input variables: the number in question and the number of bits to shift.
The function takes the number in question (in binary form) and shifts it by the
given amount to the left.The function returns this shifted value.This function does

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 272

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 273

not rotate the bits either, meaning that if a bit “falls off ” the left side of the 32-bit
barrier, it does not reappear on the right.

Risk: This function should never be utilized to obfuscate data with the goal of pro-
tecting it from prying eyes. Only industry-standard cryptography algorithms should
be implemented to secure data.This function is out-of-date and should not be used!

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: BitAnd, BitSHRN, BitXor

BitSHRN
Prototype: BitSHRN(number, count)

Summary: This function shifts an integer by a number of digits to the right.

Description: The function shifts an integer by a given number of digits.The func-
tion has two input variables: the number in question and the number of bits to shift.
The function takes the number in question (in binary form) and shifts it by the
given amount to the right.The function returns this shifted value.This function
does not rotate the bits either, meaning that if a bit “falls off ” the right side of the
32-bit barrier, it does not reappear on the left.

Risk: This function should never be utilized to obfuscate data with the goal of pro-
tecting it from prying eyes. Only industry-standard cryptography algorithms should
be implemented to secure data.This function is out-of-date and should not be used!

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: BitAnd, BitSHLN, BitXor

BitXor
Prototype: BitXor(number1, number2)

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 273

TLFeBOOK

274 ColdFusion • Programmer’s Ultimate Security DeskRef

Summary: This function performs the logical exclusive or operator on two
long integers.

Description: The function performs the logical xor operator on two integers.The
function looks at the integers in binary form and performs the operation bitwise
along the length of the integer.The function returns the result of the operation.

Risk: This function should never be utilized to obfuscate data with the goal of pro-
tecting it from prying eyes. Only industry-standard cryptography algorithms should
be implemented to secure data.This function is out-of-date and should not be used!

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

Cross References: BitAnd, BitSHLN, BitSHRN

CreateObject
Prototype: CreateObject(type [, options])

Summary: This function creates a new Coldfusion object.

Description: The function attempts to create a new Coldfusion object.The func-
tion is overloaded to include several different objects.The first input argument is the
type of object to create.The remaining objects are dependent on the type being cre-
ated. For more information on the required arguments, see the Coldfusion docu-
mentation noted later.

Risk: This function does not have a significant security risk but is useful to deter-
mine where objects are created.All created objects should be released or deleted at
the end of execution.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 274

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 275

CreateODBCDate
Prototype: CreateODBCDate(date)

Summary: This function creates a date object, normalized in the ODBC format.

Description: The function attempts to create an ODBC-normalized date object
from a date.The function takes the date in as an input variable. It returns the nor-
malized date object.This function is not the same as CreateDate.

Risk: ODBC-enabled functions are utilized to aid in the connection and data trans-
mission to backend databases. It is imperative that all SQL injection and manipula-
tion characters are removed from strings that are stored or utilized to connect to
those databases. Such characters include all special characters and even words like
DELETE,ADD, and INSERT.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: CreateODBCDateTime, CreateODBCTime

CreateODBCDateTime
Prototype: CreateODBCDateTime(date)

Summary: This function creates an ODBC-normalized format Date-Time object.

Description: The function attempts to create an ODBC-normalized date-time
object from a date.The function takes the date in as an input variable. It returns the
normalized date-time object.This function is not the same as CreateDateTime.

Risk: ODBC-enabled functions are utilized to aid in the connection and data trans-
mission to backend databases. It is imperative that all SQL injection and manipula-
tion characters are removed from strings that are stored or utilized to connect to
those databases. Such characters include all special characters and even words like
DELETE,ADD, and INSERT.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 275

TLFeBOOK

276 ColdFusion • Programmer’s Ultimate Security DeskRef

Impact: Low

Cross References: CreateODBCDate, CreateODBCTime

CreateODBCTime
Prototype: CreateODBCTime(date)

Summary: This function creates an ODBC-normalized format Time object.

Description: The function attempts to create an ODBC-normalized time object
from a date.The function takes the date in as an input variable. It returns the nor-
malized time object.This function is not the same as CreateTime.

Risk: ODBC-enabled functions are utilized to aid in the connection and data trans-
mission to backend databases. It is imperative that all SQL injection and manipula-
tion characters are removed from strings that are stored or utilized to connect to
those databases. Such characters include all special characters and even words like
DELETE,ADD, and INSERT.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: CreateODBCDate, CreateODBCDateTime

CreateTime
Prototype: CreateTime(hour, minute, second)

Summary: This function creates a time object from a given time.

Description: The function creates an object of type time from a given time.The
function has three input arguments: the hour, the minute, and second.The function
returns the time object with the given values.This function is distinct from
CreateODEBCTime.

Risk: This function poses minimal risk, which is only realized if the local system
time is utilized to create the time object. If the local time is utilized then realize that

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 276

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 277

attackers could potentially ascertain geographical information about the target server
based on time receipts.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

CreateUUID
Prototype: CreateUUID()

Summary: This function creates a Universally Unique Identifier.

Description: The function attempts to create a UUID, which is a 35-character rep-
resentation of a 128-bit integer.The function creates a UUID of the format: 8-4-4-
16, where each non-dash character is a hexadecimal number (32 characters + 3
dashes = 35 total characters).The function returns this UUID. It is statistically
improbable to create the same UUID twice.

Risk: The internal UUID function creates easily guessable numbers that were not
generated with a secure random number generator. Number generators such as
ISAAC in combination with a time seed could be a suitable option instead of uti-
lizing the CreateUUID function.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Medium

DE
Prototype: DE(string)

Summary: This function postpones evaluation of a string.

Description: The function postpones the evaluation of a string.The function has
one input argument: the string.This function is best used in coordination with other
functions.

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 277

TLFeBOOK

278 ColdFusion • Programmer’s Ultimate Security DeskRef

Risk: This function does not pose a significant security risk when utilized alone but
ensure that the time of postponement is not driven from human user input.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: Evaluate

Decrypt
Prototype: Decrypt(encrypted_string, seed)

Summary: This function decrypts an encrypted string.

Description: The function attempts to decrypt an encrypted string.The function
has two input arguments: the encrypted string and the 32-bit key that was used to
encrypt the string.The function works in coordination with the Encrypt function
in Coldfusion.The function returns the decrypted string.

Risk: The use of this function indicates the use of the corresponding Encrypt()
function. Both of these functions are large security risks and as such neither should
be utilized. Only use strong commercial-grade cryptography implementations,
including AES, DES, Blowfisk, or RSA to name a few.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

Cross References: Encrypt

DirectoryExists
Prototype: DirectoryExists(absolute_path)

Summary: This function checks whether a target directory exists.

Description: The function ascertains whether a directory exists.The function has
only one input variable: the path to the target directory. If the target exists, then the
function returns TRUE. If not, then the function returns FALSE.

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 278

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 279

Risk: This function poses minimal risk but the output of a directory’s existence
should be limited to that of the desired resource. In other words, application users
should not be able to point this function at any directory on the underlying sub-
system to determine if a directory exists.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Medium

Cross References: ExpandPath, FileExists

Encrypt
Prototype: Encrypt(string, seed)

Summary: This function encrypts a string.

Description: The function attempts to encrypt a string.The function has two
input arguments: the string and the 32-bit key that will be used to encrypt the
string.The function works in coordination with the Decrypt function in
Coldfusion.The function returns the encrypted string.

Risk: This function should never be utilized to obfuscate data with the goal of pro-
tecting it from prying eyes. Only industry-standard cryptography algorithms should
be implemented to secure data.This function is out-of-date and should not be used!
It is recommended that a commercially accepted encryption algorithm be utilized
for any type of encryption.These types of implementations include DES,AES,
Blowfish, or RSA to mention a few.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

Cross References: Decrypt

Evaluate
Prototype: Evaluate(string_expression1 [, string_expression2
[, ...]])

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 279

TLFeBOOK

280 ColdFusion • Programmer’s Ultimate Security DeskRef

Summary: This function evaluates an expression.

Description: The function attempts to evaluate an expression in string format
(possibly many).The function takes as input variables the expressions to evaluate.
The function can handle multiple expressions, evaluating them left-to-right (i.e., the
first one entered is the first one evaluated).The function returns an object con-
taining the results of the last expression.

Risk: All special and wildcard characters should be removed before the filename is
computed on the local filesystem. Malicious filenames are interpreted differently on
varying systems and as such, directory control is critical to limiting the ability of an
attacker to potentially compromise files at varying levels within the application or
underlying subsystem.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Medium

Cross References: DE

ExpandPath
Prototype: ExpandPath(relative_path)

Summary: This function expands an abbreviated (or relative) path to its full coun-
terpart.

Description: The function expands a relative path to its full, platform-dependent
form.The function takes the relative path in as its input variable (though it can
handle a full path, as well).The function returns the full path.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limits the end-user’s ability to ascertain or
traverse path information.

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 280

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 281

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

Cross References: DirectoryExists, FileExists

FileExists
Prototype: FileExists(absolute_path)

Summary: This function checks whether a file exists.

Description: The function attempts to ascertain the existence of a given file.The
function takes in the absolute path of the file in question as the only input argu-
ment. If the file exists, the function returns TRUE. Otherwise, the function returns
FALSE.

Risk: This function poses minimal risk but the output of a file’s existence should be
limited to that of the desired resource. In other words, application users should not
be able to point this function at any directory or file on the underlying subsystem to
determine if the resource exists.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Medium

Cross References: DirectoryExists, ExpandPath

Find
Prototype: Find(substring, string [, start])

Summary: This function finds the first occurrence of a substring in a string.

Description: The function attempts to locate the first instance of a substring in a
given string.The function can start looking at a designated beginning position.The
function thus has three input variables: the substring to look for, the string, and the
place to start looking (if desired).The function returns the location of the beginning
of the substring (if it exists). Otherwise, the function returns zero.

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 281

TLFeBOOK

282 ColdFusion • Programmer’s Ultimate Security DeskRef

Risk: Functions that search for patterns open files and input their datastreams into
allocated memory spaces. Outside of the race condition bugs that could occur if you
attempted to open a file more than once simultaneously, a buffer overflow attack
may also open up memory space for a root-level attack. Ensure that the files or
datastreams that are passed for analysis to these functions are properly controlled and
vetted by application logic. Users should not have the ability to identify if strings are
within operating system resources such as configuration or log files.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: FindOneOf

FindOneOf
Prototype: FindOneOf(set, string [, start])

Summary: This function looks for the first instance of set of characters in a string.

Description: The function looks for the first instance of a set of characters in a
string.The function can start the search at a designated position.The function can
have three input arguments: the set of characters, the string to search, and the start
position (if desired).The function returns the position of the first instance of one of
the characters. If none exist, then the function returns zero.

Risk: Functions that search for patterns open files and input their datastreams into
allocated memory spaces. Outside of the race condition bugs that could occur if you
attempted to open a file more than once simultaneously, a buffer overflow attack
may also open up memory space for a root-level attack. Ensure that the files or
datastreams that are passed for analysis to these functions are properly controlled and
vetted by application logic. Users should not have the ability to identify if strings are
within operating system resources such as configuration or log files.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: Find

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 282

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 283

FormatBaseN
Prototype: FormatBaseN(number, radix)

Summary: This function converts a number (in a given base) to a string.

Description: The function converts a number in a given base to a string.The func-
tion has two input variables: the number to convert, and the base in which it is.The
function returns a string that contains the value.

Risk: Functions that search for patterns open files and input their datastreams into
allocated memory spaces. Outside of the race condition bugs that could occur if you
attempted to open a file more than once simultaneously, a buffer overflow attack
may also open up memory space for a root-level attack. Ensure that the files or
datastreams that are passed for analysis to these functions are properly controlled and
vetted by application logic. Users should not have the ability to identify if strings are
within operating system resources such as configuration or log files.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: InputBaseN

GetAuthUser
Prototype: GetAuthUser()

Summary: This function gets the name of an authorized user.

Description: The function attempts to get the name of an authorized user.The
function does not have any input arguments. It returns the name of a user.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 283

TLFeBOOK

284 ColdFusion • Programmer’s Ultimate Security DeskRef

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

GetBaseTagData
Prototype: GetBaseTagData(tagname [, instancenumber])

Summary: This function attempts to get the data from its ancestor’s tag.

Description: The function tries to retrieve the data from one of its ancestors form
the tag.The function has optional arguments as well. It takes the tag name (of the
ancestor) and can handle the number of generations to skip when looking for this
ancestor.The function returns the data of the ancestor. However, an error can occur
if the data is unavailable or the ancestor does not exist.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: GetBaseTagList

GetBaseTagList
Prototype: GetBaseTagList()

Summary: This function attempts to make a list of its ancestors.

Description: The function attempts to create a list of its ancestors. Starting with
itself, then its parent, etc… the function creates a list of all its ancestors.The func-
tion does not require any input variables. It returns a comma-delimited list of the
ancestor’s tag names.

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 284

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 285

Risk: System-specific information should be treated as sensitive data and should not
be open for users to ascertain data that could lead to an educated attack from a
remote perspective. Do not use this function unless it is absolutely necessary!

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: GetBaseTagData

GetBaseTemplatePath
Prototype: GetBaseTemplatePath()

Summary: This function gets the full path name of an application’s base page.

Description: The function attempts to ascertain the full path of an application’s
base page.The function does not require any input parameters.The function returns
a string containing the absolute path of the base page.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: GetCurrentTemplatePath

GetClientVariablesList
Prototype: GetClientVariablesList()

Summary: This function creates a list of variables to which a page has write
permission.

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 285

TLFeBOOK

286 ColdFusion • Programmer’s Ultimate Security DeskRef

Description: The function creates a list of variables that a page can modify.The
function does not require any input variables.The function then returns a comma-
delimited list of write-permission-enabled variables.The list returned can then be
used in any of the other ColdFusion list-enabled functions.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Medium

GetCurrentTemplatePath
Prototype: GetCurrentTemplatePath()

Summary: This function gets the path of the page that called it.

Description: The function gets the full path of the page that called this function.
The function does not need an input variable.The function returns the full path of
the calling page in string form.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limits the end-user’s ability to ascertain or
traverse path information.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Medium

Cross References: GetBaseTemplatePath

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 286

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 287

GetDirectoryFromPath
Prototype: GetDirectoryFromPath(path)

Summary: This function returns the top-most directory from a path.

Description: The function gets the top-layer directory from a given path.The
function has only one input argument. It is the full path of the directory (including
the trailing slash or back-slash) as a string.The function returns a string containing
the requested directory.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limits the end-user’s ability to ascertain or
traverse path information.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

GetEncoding
Prototype: GetEncoding(scope_name)

Summary: This function gets the character encoding of an object.

Description: The function attempts to ascertain the character encoding of a partic-
ular object.The function has one input parameter: the object to look at (whether
that be a URL, database form, or any other user provided input).The function
returns a string containing the encoding scheme for the character set.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 287

TLFeBOOK

288 ColdFusion • Programmer’s Ultimate Security DeskRef

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/html-
docs/function.htm#wp3082862

Impact: Medium

GetException
Prototype: GetException(object)

Summary: This function retrieves a Java exception object from a Java object.

Description: The function attempts to get a Java exception object from a given
Java object.The function will take one input argument: the Java object.The function
examines the object for an exception object. If it exists, then the function returns it
as an object.The function will overwrite previous calls of itself.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limits the end-user’s ability to ascertain or
traverse path information.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

GetFileFromPath
Prototype: GetFileFromPath(path)

Summary: This function retrieves the file name from a full path.

Description: The function takes the full path name and extracts the file name from
it.The function has only one input argument. It is the full path name.The function
returns, as a string, the file name.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 288

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 289

be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/html-
docs/function.htm#wp3082862

Impact: Low

GetFunctionList
Prototype: GetFuncionList()

Summary: This function retrieves a list of the available ColdFusion functions.

Description: This function creates a list of the available ColdFusion functions.The
function does not require any input arguments.The function returns a structure
containing the list of functions.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

GetHttpRequestData
Prototype: GetHttpRequestData()

Summary: This function retrieves a structure of data about an HTTP page.

Description: The function is used to pull information about an HTTP page for
use in ColdFusion pages.The function does not require an input parameter.The
function returns a ColdFusion structure.The structure contains assorted information
about the calling HTTP page, including the headers, content, etc…

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 289

TLFeBOOK

290 ColdFusion • Programmer’s Ultimate Security DeskRef

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

GetHttpTimeString
Prototype: GetHttpTimeString(date_time_object)

Summary: This function gets the current time.

Description: This function gets the current time in the Universal Time Code
format.The function takes an input variable: a date-time object.The function reads
the time, and outputs it in a string format.The returned time is consistent with
HTTP time standard.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

GetK2ServerDocCount
Prototype: GetK2ServerDocCount()

Summary: This function finds the number of documents that a K2 server can
search.

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 290

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 291

Description: The function attempts to determine the total number of documents
that can be searched on a ColdFusion-registered K2 server.The function does not
take any input arguments.The return value is the number of metadata items col-
lected.This function is currently being phased out, and its expensive computational
time should be considered when using it.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Medium

Cross References: GetK2ServerDocCountLimit

GetK2ServerDocCountLimit
Prototype: GetK2ServerDocCountLimit()

Summary: This function finds the total number of documents that a K2 server is
allowed to search.

Description: The function attempts to determine the total number of documents
that can be searched on a ColdFusion-registered K2 server.The function does not
take any input arguments.The return value is the allowable number of documents
that can be searched.This limit is imposed by the particular version of ColdFusion
used.This function is currently being phased out.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 291

TLFeBOOK

292 ColdFusion • Programmer’s Ultimate Security DeskRef

Impact: Medium

Cross References: GetK2ServerDocCount

GetLocale
Prototype: GetLocale()

Summary: This function gets the current value for the geographic and/or language
locale.

Description: This function retrieves the current locale information.The function
does not require any input arguments.The function returns a string containing the
desired information.This function is primarily used in conjunction with the
SetLocale function.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Medium

Cross References: SetLocale

GetMetaData
Prototype: GetMetaData(object)

Summary: This function gets the metadata associated with an object from a server.

Description: The function retrieves the metadata linked to an object on a
ColdFusion server.The function has one input argument: the object.The function
returns the metadata.This can include the name, parameters, methods, etc… of an
object.

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 292

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 293

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

GetMetricData
Prototype: GetMetricData(mode)

Summary: This function retrieves the metrics for server performance.

Description: The function attempts to retrieve the measurements of server perfor-
mance.The function has one input variable: a string that tells the function what
kind of data to get.The function returns different types of values depending on the
mode requested.The most common return value is a ColdFusion object containing
all possible metrics.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

GetProfileSections
Prototype: GetProfileSections(iniFile)

Summary: This function reads an initialization file into a ColdFusion structure.

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 293

TLFeBOOK

294 ColdFusion • Programmer’s Ultimate Security DeskRef

Description: This function reads an .ini file into a ColdFusion structure.The func-
tion takes one input parameter: the full path of the .ini file to be read.The function
reads the entire file, and parses it appropriately. It then returns a ColdFusion struc-
ture containing the data from the file.

Risk: This function parses input blindly.Additionally, logic should be incorporated
into the application to ensure that human supplied input does not contain poten-
tially malicious content. Data streams that are attached to external sources must first
verify the integrity of those sources before interpreting and implementing the data.
The destination buffer should be verified before any data is copied into memory or
another data stream as to minimize the risk for an attack against a buffer overflow.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: GetProfileString, SetProfileString

GetProfileString
Prototype: GetProfileString(iniFile, section, entry)

Summary: This function gets a value of a configuration variable in an initialization
file.

Description: The function attempts to retrieve the value of a configuration vari-
able.The function requires three input parameters: the full path of the initialization
file, the section in which the variable resides, and the variable name.The function
then returns, as a string, the value of the variable.The function returns an empty
string if the variable does not exist.

Risk: This function parses input blindly.Additionally, logic should be incorporated
into the application to ensure that human supplied input does not contain poten-
tially malicious content. Data streams that are attached to external sources must first
verify the integrity of those sources before interpreting and implementing the data.
The destination buffer should be verified before any data is copied into memory or
another data stream as to minimize the risk for an attack against a buffer overflow.

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 294

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 295

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Medium

Cross References: GetProfileSections, SetProfileString

GetTempDirectory
Prototype: GetTempDirectory()

Summary: This function gets the full path of a ColdFusion-administered tempo-
rary directory.

Description: The function attempts to retrieve the path of a ColdFusion-used
temporary directory.This directory will depend on the account used and other
assorted reasons.The function does not require an input parameter.The function
returns the full path of the directory if successful.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limits the end-user’s ability to ascertain or
traverse path information.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: GetTempFile

GetTempFile
Prototype: GetTempFile(dir, prefix)

Summary: This function creates a temporary ColdFusion file.

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 295

TLFeBOOK

296 ColdFusion • Programmer’s Ultimate Security DeskRef

Description: The function attempts to create a temporary file.The function takes
two input parameters: the full path of the directory in which to place the temporary
directory and up to a three-digit prefix to use for the file.The function returns, as a
string, the name of the temporary file created.

Risk: Temporary filenames are often created with static and easily guessable algo-
rithms such as the system time or application name appended with the day, month,
and year. If at all possible, do not use this function and instead store temporary
information in a secure memory space. If a temporary file is necessary, ensure that it
is removed upon exiting the program or in the case where a program exits unex-
pectedly is removed upon program relaunch. Consider utilizing a random number
generator such as ISAAC for creating secure random filenames.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: GetTempDirectory

GetTickCount
Prototype: GetTickCount

Summary: This function gets the value of the system clock.

Description: This function attempts to retrieve the value of the internal system
clock (in milliseconds).The function does not require any input parameters.The
function returns, in milliseconds, the system time.The time is represented as a string.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 296

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 297

GetTimeZoneInfo
Prototype: GetTimeZoneInfo()

Summary: This function retrieves the information for the time zone on the com-
puter called.

Description: The function attempts to ascertain the time zone information of the
calling computer.The function does not take any input parameters.The function
returns a structure.The structure contains the time offset in seconds, minutes, and
hours, as well as whether Daylight Savings Time was on.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Hash
Prototype: Hash(string)

Summary: This function converts a string to a 32-byte, hexadecimal string.

Description: The function attempts to transform a string into a special 32-byte,
hexadecimal string using the MD5 algorithm.The function takes only one input
value: the string to convert.The function returns the 32-byte converted string.The
original string cannot be retrieved once converted, i.e. this is irreversible.

Risk: This function should never be utilized to obfuscate data with the goal of pro-
tecting it from prying eyes. Only industry-standard cryptography algorithms should
be implemented to secure data. Do not use this function!

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 297

TLFeBOOK

298 ColdFusion • Programmer’s Ultimate Security DeskRef

Impact: High

HTMLCodeFormat
Prototype: HTMLCodeFormat(string [, version])

Summary: This function converts a string into its HTML equivalent.

Description: The function attempts to convert a string into its HTML equivalent.
The takes one required input parameter: the string in question. However, an
optional argument can be added: the HTML version number.The function replaces
any special characters in the string with the HTML version and adds the header and
footer for the string.The function then returns the converted string.

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be cal-
culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

Cross References: HTMLEditFormat

HTMLEditFormat
Prototype: HTMLEditFormat(string [, version])

Summary: This function converts a string into its HTML equivalent (without spe-
cial header/footer).

Description: The function attempts to convert a string into its HTML equivalent.
The takes one required input parameter: the string in question. However, an
optional argument can be added: the HTML version number.The function replaces
any special characters in the string with the HTML version.The function then
returns the converted string.

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 298

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 299

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be cal-
culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

Cross References: HTMLCodeFormat

Insert
Prototype: Insert(substring, string, position)

Summary: This function inserts a substring into a string at a given position.

Description: The function attempts to insert a string into another string at some
given position.The function has three input arguments: the substring to insert, the
string to be inserted into, and the position in which to insert it.The function
returns the complete string.The string is also dynamically allocated, i.e. if a substring
is inserted into a 4-character string at position 6, there will be an empty placeholder
in between.

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be cal-
culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: RemoveChars

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 299

TLFeBOOK

300 ColdFusion • Programmer’s Ultimate Security DeskRef

IsBinary
Prototype: IsBinary(value)

Summary: This function determines whether a data-value is binary.

Description: The function attempts to ascertain whether a value is stored in binary
format.The function takes only one input variable: the value in question.The func-
tion returns TRUE if it is binary. It returns FALSE otherwise.

Risk: This function poses little risk; however, believe it or not, some developers
have been obfuscating data in binary payloads, which is not a secure way to store or
transmit sensitive data. Ensure that sensitive data is not simply being converted to
binary out of convenience.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: ToBinary, ToBase64

IsK2ServerABroker
Prototype: IsK2ServerABroker()

Summary: This function checks if a given ColdFusion server is a broker.

Description: The function attempts to ascertain whether a K2 server is a broker.
The function does not take any input arguments.The function returns TRUE if it is
a broker, FALSE if not.This function is currently being phased out.

Risk: Connecting to your K2 server from within your application poses minimal
risk to your embedded application; however, data received from your server should
be taken with a grain of salt. Multiple vulnerabilities have been identified in the K2
server and as such only data that is required should be collected from the server.The
greatest risk of connecting to your K2 server resides in the link. If sensitive data is
going to be transferred over the web then SSL should be utilized.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 300

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 301

Impact: Low

Cross References: GetK2ServerDocCountLimit,
IsK2ServerDocCountExceeded, IsK2ServerOnline

IsK2ServerDocCountExceeded
Prototype: IsK2ServerDocCountExceeded()

Summary: This function checks if the maximum document count is surpassed on
a server.

Description: The function determines if the maximum count is violated for docu-
ments on a K2 server.The function does not require any input arguments.The func-
tion returns TRUE if the count is exceeded, FALSE if not.This function is being
phased out.

Risk: Connecting to your K2 server from within your application poses minimal
risk to your embedded application; however, data received from your server should
be taken with a grain of salt. Multiple vulnerabilities have been identified in the K2
server and as such only data that is required should be collected from the server.The
greatest risk of connecting to your K2 server resides in the link. If sensitive data is
going to be transferred over the web then SSL should be utilized.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: GetK2ServerDocCountLimit, IsK2ServerABroker,
IsK2ServerOnline

IsK2ServerOnline
Prototype: IsK2ServerOnline()

Summary: This function checks if the K2 server is running and available for
searches.

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 301

TLFeBOOK

302 ColdFusion • Programmer’s Ultimate Security DeskRef

Description: The function determines if the K2 server is online and available.The
function does not require any input arguments.The function returns TRUE if the
server is online, FALSE if not.This function is being phased out.

Risk: Connecting to your K2 server from within your application poses minimal
risk to your embedded application; however, data received from your server should
be taken with a grain of salt. Multiple vulnerabilities have been identified in the K2
server and as such only data that is required should be collected from the server.The
greatest risk of connecting to your K2 server resides in the link. If sensitive data is
going to be transferred over the web then SSL should be utilized.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: GetK2ServerDocCountLimit, IsK2ServerABroker,
IsK2ServerDocCountExceeded

IsQuery
Prototype: IsQuery(value)

Summary: This function checks whether a given value is a query.

Description: The function attempts to ascertain whether a given value is a query.
The function takes only one input argument: the value to check.The function
checks whether it is a query or not, and returns an appropriate Boolean.

Risk: Queries commonly hide attacks in payloads that closely resemble legitimate
application requests. Either hard code all queries then execute them solely on appli-
cation logic or thoroughly vet all human user input.This will indeed be a medium
exploited by attackers.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: QueryAddRow

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 302

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 303

IsWDDX
Prototype: IsWDDX(value)

Summary: This function checks if a value is a well-defined WDDX packet.

Description: The function attempts to ascertain if the given value is a well-defined
WDDX packet.The function takes one input parameter: the value to check.The
function returns a Boolean value based on the status of the value.

Risk: Raw network data received from a socket has the potential to be malicious in
nature due to the numerous amounts of attacks designed to be executed remotely.
Packet fragmentations can cause serious disruptions to the application and under-
lying operating system. If at all possible, packet reassembly should be conducted at
the OS-layer.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

IsXmlDoc
Prototype: IsXmlDoc(value)

Summary: This function checks if a given value is an XML document object.

Description: The function attempts to determine if a given value is an XML doc-
ument object.The function takes only one input parameter: the value in question.
The function returns a Boolean value based on the status of the object.

Risk: Functions that evaluate XML data must first open files or data streams for
processing. During this period, its critical to ensure that the destination buffer is
large enough for the processed data in addition to limiting the resources that can be
analyzed for XML compatibility.This function poses minimal risk; but as “a rule of
thumb” do not trust your XML data source and prepare for the worst.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 303

TLFeBOOK

304 ColdFusion • Programmer’s Ultimate Security DeskRef

Cross References: IsXmlElem, IsXmlRoot

IsXmlElem
Prototype: IsXmlElem(value)

Summary: This function checks if a given value is an XML document object ele-
ment.

Description: The function attempts to determine if a given value is an XML doc-
ument object element.The function takes only one input parameter: the value in
question.The function returns a Boolean value based on the status of the value.

Risk: Functions that evaluate XML data must first open files or data streams for
processing. During this period, its critical to ensure that the destination buffer is
large enough for the processed data in addition to limiting the resources that can be
analyzed for XML compatibility.This function poses minimal risk; but as “a rule of
thumb” do not trust your XML data source and prepare for the worst.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: IsXmlDoc, IsXmlRoot

IsXmlRoot
Prototype: IsXmlRoot(value)

Summary: This function checks if a given value is the root element of an XML
document object.

Description: The function attempts to determine if a given value is the root ele-
ment of an XML document object.The function takes only one input parameter:
the value in question.The function returns a Boolean value based on the status of
the value.

Risk: Functions that evaluate XML data must first open files or data streams for
processing. During this period, its critical to ensure that the destination buffer is
large enough for the processed data in addition to limiting the resources that can be

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 304

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 305

analyzed for XML compatibility.This function poses minimal risk; but as “a rule of
thumb” do not trust your XML data source and prepare for the worst.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Medium

Cross References: IsXmlDoc, IsXmlElem

JavaCast
Prototype: JavaCast(type, variable)

Summary: This function converts a Coldfusion variable to a Java object.

Description: This function attempts to convert a Coldfusion variable to a Java
object.The function takes two input arguments: the type of object to convert vari-
able to and the variable itself. It should only be used for numerical or string objects.
The function returns the variable in the new type of object.

Risk: The JavaCast function has little inherent risk associated with the general use
of the function; however, the data should not be implicitly trusted by either the Java
application.Attackers could potentially compromise any Java object that is created
and stored in cleartext outside the object. Ensure that the files are stored in a secure
manner and are not executable for lesser-privileged user accounts.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Lcase
Prototype: LCase(string)

Summary: This function converts the letters of a string to lower case.

Description: The function attempts to convert the letters of a string to the lower
case.The function takes only one input argument: the string.The function will
return the resultant string, once the letters have been converted.

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 305

TLFeBOOK

306 ColdFusion • Programmer’s Ultimate Security DeskRef

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be cal-
culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: Ucase

ListChangeDelims
Prototype: ListChangeDelims(list, new_delimiter [, delimiters
])

Summary: This function changes the parsing delimiter of a list.

Description: This function attempts to change the delimiter of a list.The function
has two required input arguments: the list and the new delimiter. In the event that
the list is not comma delimited to start with, then the function requires a third
argument giving the list’s current delimiter. The function then returns the list with
the new delimiter.

Risk: Functions that modify lists commonly go unnoticed when verifying human
user input or validating the security Access Control Lists (ACLs). It is highly recom-
mended that you verify that the list input cannot have malicious data and that only
the proper users and processes have access to the appropriate lists.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

ListDeleteAt
Prototype: ListDeleteAt(list, position [, delimiters])

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 306

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 307

Summary: This function deletes a member of a list.

Description: The function attempts to remove an element of a list at a given posi-
tion.The function requires two input arguments: the list and the position. However,
in the event that the list is not comma-delimited, then the function requires the spe-
cial delimiter.The function returns the new list (missing the deleted member).

Risk: Functions that modify lists commonly go unnoticed when verifying human
user input or validating the security Access Control Lists (ACLs). It is highly recom-
mended that you verify that the list input cannot have malicious data and that only
the proper users and processes have access to the appropriate lists.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: ListInsertAt

ListFind
Prototype: ListFind(list, value [, delimiters])

Summary: This function finds the first instance of a given value in a list.

Description: The function attempts to determine the position of the first occur-
rence of given value in a list.The function has two required input variables: the list
and the value to find. If the list is not comma-delimited, then the function requires
the special delimiter, as well.The function returns the position of the value. If it is
not in the list, the function returns zero.

Risk: Functions that search for patterns open files and input their datastreams into
allocated memory spaces. Outside of the race condition bugs that could occur if you
attempted to open a file more than once simultaneously, a buffer overflow attack
may also open up memory space for a root-level attack. Ensure that the files or
datastreams that are passed for analysis to these functions are properly controlled and
vetted by application logic. Users should not have the ability to identify if strings are
within operating system resources such as configuration or log files.

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 307

TLFeBOOK

308 ColdFusion • Programmer’s Ultimate Security DeskRef

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

ListInsertAt
Prototype: ListInsertAt(list, position, value [, delimiters])

Summary: This function inserts a value into a list at a given position.

Description: The function attempts to insert a value into a list at some position.
The function requires three input arguments: the list, the position, and the value to
insert.The function also requires the special delimiter if the list is not comma-sepa-
rated.The function returns the new list.

Risk: Functions that modify lists commonly go unnoticed when verifying human
user input or validating the security Access Control Lists (ACLs). It is highly recom-
mended that you verify that the list input cannot have malicious data and that only
the proper users and processes have access to the appropriate lists.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: ListDeleteAt

ListPrepend
Prototype: ListPrepend(list, value [, delimiters])

Summary: This function inserts a value at the beginning of a list.

Description: The function attempts to insert a value into a list in the first position.
The function requires only two input values: the list and the value to insert.The
function also requires the special delimiter if the function is not comma-separated.

Risk: Functions that modify lists commonly go unnoticed when verifying human
user input or validating the security Access Control Lists (ACLs). It is highly recom-
mended that you verify that the list input cannot have malicious data and that only
the proper users and processes have access to the appropriate lists.

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 308

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 309

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: ListInsertAt, ListSetAt

ListSetAt
Prototype: ListSetAt(list, position, value [, delimiters])

Summary: This function replaces an element of the list with a new one.

Description: The function attempts to replace a member of the list with a new a
given position.The function requires three input values: the list, the position, and
the value to use.The function will also require the list delimiter if it is not comma-
separated.The function will return the new list.

Risk: Functions that modify lists commonly go unnoticed when verifying human
user input or validating the security Access Control Lists (ACLs). It is highly recom-
mended that you verify that the list input cannot have malicious data and that only
the proper users and processes have access to the appropriate lists.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: ListInsertAt

LSIsDate
Prototype: LSIsDate(string)

Summary: This function checks whether a string is in proper date format.

Description: The function attempts to determine if a given string is in date
format.The function takes only one input argument: the string in question.The
function then checks if the string is in valid date/time format for the current locale.
The function returns TRUE if it is valid, and FALSE if not.

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 309

TLFeBOOK

310 ColdFusion • Programmer’s Ultimate Security DeskRef

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be cal-
culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

LSTimeFormat
Prototype: LSTimeFormat(time [, mask])

Summary: This function formats the time part of a date-time object into a string.

Description: The function attempts to extract the time from a date-time object
and put it into a string.The function requires only the time object to proceed.
However, in the event that there is a special masking associated with the time, it
must be specified.The function returns the string form of the time.

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be cal-
culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Now
Prototype: Now()

Summary: This function gets the current date and time.

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 310

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 311

Description: The function attempts to retrieve the date and time from the
ColdFusion server.The function does not require any input arguments.The function
returns a date-time object.This object is suitable to use similar time and date object
functions.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

PreserveSingleQuotes
Prototype: PreserveSingleQuotes(variable)

Summary: This function prevents ColdFusion from escaping a string containing
single quotation marks.

Description: The function tries to keep ColdFusion from escaping out of a string
containing single quotation marks.The function has one input argument: the string
(possibly containing single quotation marks).The function does return anything, per
se. ColdFusion does not evaluate the string when using this function.

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be cal-
culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 311

TLFeBOOK

312 ColdFusion • Programmer’s Ultimate Security DeskRef

QueryAddColumn
Prototype: QueryAddColumn(query, column-name, array-name)

Summary: This function adds a new column to a query.

Description: This function attempts to add a column to an existing query.The
function inserts a column into the query, filling its rows with the members of an
array. It takes three input arguments: the query, the new column’s name, and the
array to fill the column’s elements.The function will return the column number
that was added when completed successful.

Risk: In most scenarios, query functions are utilized to execute launched attacks on
backend databases.These query functions should be analyzed and stripped of any
potentially malicious characters commonly utilized in database attacks. Such charac-
ters include <, >, /, %, *, and &.Additionally, ensure that human input
is strictly monitored and controlled within the application so that raw queries
cannot be created and injected into the application.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

Cross References: QueryNew, QueryAddRow, QuerySetCell

QueryAddRow
Prototype: QueryAddRow(query [, number])

Summary: This function adds a row (or several) to an existing query.

Description: The function attempts to append one/many rows to an existing
query.The function requires only the query name to add the default number of
rows: one. However, an optional argument exists that allows the user to specify the
number of rows to add.The function will return the total number rows in the query
upon completion.

Risk: In most scenarios, query functions are utilized to execute launched attacks on
backend databases.These query functions should be analyzed and stripped of any
potentially malicious characters commonly utilized in database attacks. Such charac-

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 312

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 313

ters include <, >, /, %, *, and &;.Additionally, ensure that human input is strictly
monitored and controlled within the application so that raw queries cannot be cre-
ated and injected into the application.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

Cross References: IsQuery, QueryAddColumn, QuerySetCell, QueryNew

QueryNew
Prototype: QueryNew(columnlist)

Summary: This function creates an empty query.

Description: The function attempts to create a new, empty query.The function has
only one input argument: the list of column names for the query.A user is allowed
to send an empty string for the column list and add columns later.The function will
return the query object when completed.

Risk: In most scenarios, query functions are utilized to execute launched attacks on
backend databases.These query functions should be analyzed and stripped of any
potentially malicious characters commonly utilized in database attacks. Such charac-
ters include <, >, /, %, *, and &;.Additionally, ensure that human input is strictly
monitored and controlled within the application so that raw queries cannot be cre-
ated and injected into the application.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

Cross References: QueryAddColumn, QueryAddRow, QuerySetCell

QuerySetCell
Prototype: QuerySetCell(query, column_name, value [,
row_number])

Summary: This function changes the value of a single cell in a query.

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 313

TLFeBOOK

314 ColdFusion • Programmer’s Ultimate Security DeskRef

Description: The function attempts to alter the value of a cell in an existing query.
The function requires three input values: the query’s name, the name of the column
in which the cell exists, and the value to change it to.The function will default to
the last row of the query if the function is not given the optional input argument:
the row number.The function will return TRUE if completed successfully, FALSE
if not.

Risk: In most scenarios, query functions are utilized to execute launched attacks on
backend databases.These query functions should be analyzed and stripped of any
potentially malicious characters commonly utilized in database attacks. Such charac-
ters include <, >, /, %, *, and &;.Additionally, ensure that human input is strictly
monitored and controlled within the application so that raw queries cannot be cre-
ated and injected into the application.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

Cross References: QueryAddColumn, QueryAddRow, QueryNew

QuotedValueList
Prototype: QuotedValueList(query.column [, delimiter])

Summary: This function creates a list from the members of a column in a query.

Description: This function makes a list and fills it with the members of a column
of an existing query.The function requires only one input argument: query/column
in a period separated form (i.e., query.column). However, if a user wishes to have a
delimiter other than commas, that can be specified in an optional input argument.
The function returns the complete list when finished. Each list member is sur-
rounded with single quotes.

Risk: Functions that modify lists commonly go unnoticed when verifying human
user input or validating the security Access Control Lists (ACLs). It is highly recom-
mended that you verify that the list input cannot have malicious data and that only
the proper users and processes have access to the appropriate lists.

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:29 PM Page 314

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 315

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Medium

Cross References: ValueList

Rand
Prototype: Rand()

Summary: This function generates a random number.

Description: The function creates a random number.The function does not
require any input arguments.The function returns the random number (between 0
and 1).This function works best when called after the “Randomize” function.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html, http://
livedocs.macromedia.com/coldfusion/6.1/htmldocs/function.htm#wp3082862

Impact: Medium

Cross References: Randomize, RandRange

Randomize
Prototype: Randomize(number)

Summary: This function seeds the random number generator.

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 315

TLFeBOOK

316 ColdFusion • Programmer’s Ultimate Security DeskRef

Description: The function uses a given number to seed ColdFusion’s random
number generator.The function takes only one input variable: the number to use
when seeding the generator.The function returns a non-random number between 0
and 1 when completed.This function is best used before the “Rand” function.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html, http://
livedocs.macromedia.com/coldfusion/6.1/htmldocs/function.htm#wp3082862

Impact: Medium

Cross References: Rand, RandRange

RandRange
Prototype: RandRange(number1, number2)

Summary: This function generates a random number within a desired range.

Description: The function attempts to create a random number within a given
range.The function takes two input arguments: the two integers that serve as bounds
for the random number generator.The function returns the random number.There
is a functional-imposed limit for the bounds.The function will not take any num-
bers over 100,000,000 for the bounds to prevent overflow.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 316

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 317

Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Medium

Cross References: Rand, Randomize

REFind
Prototype: REFind(reg_expression, string [, start] [,
returnsubexpressions])

Summary: This function searches for a pattern in strings.

Description: The function uses regular expressions to search a string for case-sensi-
tive patterns.The function requires two input arguments: the expression and the
string to search. It has two optional arguments: a start position to search the string
and whether the substrings containing the regular expressions should be returned.
The function normally returns the position at which the regular expression begins.
However, if the Boolean option argument for the return of the subexpressions is
TRUE, then it will return two arrays—“len” and “pos”—giving the details on the
existence of the subexpressions.

Risk: Functions that search for patterns open files and input their datastreams into
allocated memory spaces. Outside of the race condition bugs that could occur if you
attempted to open a file more than once simultaneously, a buffer overflow attack
may also open up memory space for a root-level attack. Ensure that the files or
datastreams that are passed for analysis to these functions are properly controlled and
vetted by application logic. Users should not have the ability to identify if strings are
within operating system resources such as configuration or log files.

Note: This function is identical to REFindNoCase, except that this function is
case-sensitive.

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 317

TLFeBOOK

318 ColdFusion • Programmer’s Ultimate Security DeskRef

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html, http://
livedocs.macromedia.com/coldfusion/6.1/htmldocs/function.htm#wp3082862

Impact: Low

Cross References: Find, REFindNoCase

REFindNoCase
Prototype: REFindNoCase(reg_expression, string [, start] [,
returnsubexpressions])

Summary: This function searches for a string for a given pattern.

Description: The function uses regular expressions to search a string for case-
insensitive patterns.The function requires two input arguments: the expression and
the string to search. It has two optional arguments: a start position to search the
string and whether the substrings containing the regular expressions should be
returned.The function normally returns the position at which the regular expression
begins. However, if the Boolean option argument for the return of the subexpres-
sions is TRUE, then it will return two arrays—“len” and “pos”—giving the details on
the existence of the subexpressions.

Risk: Functions that search for patterns open files and input their datastreams into
allocated memory spaces. Outside of the race condition bugs that could occur if you
attempted to open a file more than once simultaneously, a buffer overflow attack
may also open up memory space for a root-level attack. Ensure that the files or
datastreams that are passed for analysis to these functions are properly controlled and
vetted by application logic. Users should not have the ability to identify if strings are
within operating system resources such as configuration or log files.

Note: This function is identical to REFind, except that this function is case-
insensitive.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: Find, REFind

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 318

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 319

ReleaseComObject
Prototype: ReleaseComObject(objectName)

Summary: This function releases a COM object.

Description: This function releases a COM object and frees its resources.The
function takes only input argument: the COM object to release.The function does
not return anything.This function also frees the children COM objects of the
requested COM object.

Risk: Ensure that only the proper COM objects have been accessed and are
released. Human users should not be able to launch or pass data to this function, nor
should the use of this function be made aware of to the application user base.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

RemoveChars
Prototype: RemoveChars(string, start, count)

Summary: This function deletes a given number of characters from a string.

Description: The function attempts to remove a series of characters from a string.
The function takes three input arguments: the string, the position to start deleting
characters, and the number to delete.The function requires that the position be pos-
itive. It will return the resultant string, unless no characters are removed. In this case,
the function returns zero.

Risk: This function poses minimal threat to an enterprise application; however,
ensure that users not intended to see the output are restricted from doing so.
Additionally, ensure that only the proper strings can be modified via application
logic.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: Insert

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 319

TLFeBOOK

320 ColdFusion • Programmer’s Ultimate Security DeskRef

ReplaceList
Prototype: ReplaceList(string, list1, list2)

Summary: This function replaces instances of a string in one list with members of
another list.

Description: The function searches a list for a given string and replaces occur-
rences of this string with members of a different list.The function requires three
input parameters: the string to search for, the list to search, and the list housing the
replacements.The function returns the resultant list.This search is case-sensitive (like
REFind).

Risk: In addition to the potential race condition bugs that are associated with this
function, a user could also attempt to execute a denial of service attack. Ensure that
only one instance of this function can be called at any given moment.All input
passed to this function should be analyzed closely to ensure that only desired
resources can be removed from the system. It is not uncommon for worms and
viruses to exploit application-layer vulnerabilities to cause damage to files they since
would not have had access to.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: Find, REFind

Reverse
Prototype: Reverse(string)

Summary: This function reverses the order of a string (or number, array, etc…).

Description: The function attempts to reverse the order of some collection of
items. Given a multi-digit number, string, array, etc, the function reverses the order
and returns this.The function takes only one input argument: the object to reverse
the order.The function returns the reversed object.

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 320

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 321

Risk: This function should never be utilized to obfuscate data with the goal of pro-
tecting it from prying eyes. Only industry-standard cryptography algorithms should
be implemented to secure data.This function is out-of-date and should not be used!

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

SetEncoding
Prototype: SetEncoding(scope_name,charset)

Summary: This function sets the character set for a given object.

Description: The function attempts to set the encoding scheme for some object
(whether it is a page, form, etc…).The function requires two input arguments: the
object to set the scheme and the character set to use.The function does not return
anything. For a list of available character sets, see the MacroMedia documentation.

Risk: This function should never be utilized to obfuscate data with the goal of pro-
tecting it from prying eyes. Only industry-standard cryptography algorithms should
be implemented to secure data.This function is out-of-date and should not be used!

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

Cross References: GetEncoding, URLDecode, URLEncodedFormat

SetLocale
Prototype: SetLocale(new_locale)

Summary: This function changes the locale.

Description: The function attempts to alter the current locale for ColdFusion pro-
cessing purposes.The function takes only one input parameter: the new locale.The
function returns the old locale information when completed.The locale information
determines how the time, date, etc… values are stored/displayed.

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 321

TLFeBOOK

322 ColdFusion • Programmer’s Ultimate Security DeskRef

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases, this function is not truly required and should be removed before an applica-
tion gets released as production.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Medium

Cross References: GetHttpTimeString, GetLocale

SetProfileString
Prototype: SetProfileString(iniPath, section, entry, value)

Summary: This function sets the value of an entry in an initialization file.

Description: The function attempts to set value of a profile entry in an .ini file.
The function takes four input parameters: the .ini file, the section to search, the
name of the profile entry, and the value to use.The function will return an empty
string when complete. However, if the function fails, an error message will be gener-
ated.

Risk: All special and wildcard characters should be removed before the filename is
computed on the local filesystem. Malicious filenames are interpreted differently on
varying systems and as such, directory control is critical to limiting the ability of an
attacker to potentially compromise files at varying levels within the application or
underlying subsystem.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: GetProfileSections, GetProfileString

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 322

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 323

StripCR
Prototype: StripCR(string)

Summary: This function removes the carriage-return characters from a string.

Description: The function attempts to delete the return characters from a string.
The function takes only one input variable: the string to strip.The function returns
a copy of the resultant carriage-return-free string.

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be cal-
culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

StructClear
Prototype: StructClear(structure)

Summary: This function clears the data from ColdFusion structure.

Description: The function deletes the data from a ColdFusion structure.The func-
tion has only one input argument: the structure to clear.The function returns TRUE
if successful, and FALSE if not.This function can also handle XML objects.

Risk: Functions that modify structures commonly go unnoticed when verifying
human user input or validating the security Access Control Lists (ACLs). It is highly
recommended that you verify that the structure input cannot have malicious data
and that only the proper users and processes have the appropriate access.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 323

TLFeBOOK

324 ColdFusion • Programmer’s Ultimate Security DeskRef

Impact: Low

Cross References: StructDelete, StructGet, StructInsert,
StructUpdate

StructDelete
Prototype: StructDelete(structure, key [, indicatenotexisting])

Summary: This function removes an element from a structure.

Description: The function attempts to delete an element from an existing struc-
ture.The function requires two input arguments: the structure and the element to
delete.The function also has a Boolean flag optional argument that changes the
return value depending on whether the field to delete exists.The function returns
normally TRUE if successful or the field does not exist. However, if the flag is acti-
vated, the function returns TRUE if successful and the field existed.

Risk: Functions that modify structures commonly go unnoticed when verifying
human user input or validating the security Access Control Lists (ACLs). It is highly
recommended that you verify that the structure input cannot have malicious data
and that only the proper users and processes have the appropriate access.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: StructClear, StructGet, StructInsert,
StructUpdate

StructGet
Prototype: StructGet(pathDesired)

Summary: This function retrieves a structure from a given path.

Description: The function attempts to grab a structure from a given path.The
function takes only one input argument: the path to the structure.The function
returns a variable alias to the struct pointed to in the path.The function is dynamic,

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 324

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 325

creating required structures and/or arrays to make the path given valid (i.e., you can
create a new structure).

Risk: This function parses input blindly.Additionally, logic should be incorporated
into the application to ensure that human supplied input does not contain poten-
tially malicious content. Data streams that are attached to external sources must first
verify the integrity of those sources before interpreting and implementing the data.
The destination buffer should be verified before any data is copied into memory or
another data stream as to minimize the risk for an attack against a buffer overflow.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: StructClear, StructDelete, StructInsert,
StructUpdate

StructInsert
Prototype: StructInsert(structure, key, value [,
allowoverwrite])

Summary: This function inserts a field-value pair into an existing structure.

Description: The function attempts to insert a field and value into a ColdFusion
structure.The function requires three input arguments: the structure, the field, and
the value. However, an optional flagging argument exists to allow overwriting (the
default value is FALSE).The function returns TRUE if successful. However,
depending on the state of the flagging input, the existence of the structure, etc, the
function may return FALSE.

Risk: Functions that modify structures commonly go unnoticed when verifying
human user input or validating the security Access Control Lists (ACLs). It is highly
recommended that you verify that the structure input cannot have malicious data
and that only the proper users and processes have the appropriate access.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 325

TLFeBOOK

326 ColdFusion • Programmer’s Ultimate Security DeskRef

Impact: Low

Cross References: StructClear, StructDelete, StructGet,
StructUpdate

StructUpdate
Prototype: StructUpdate(structure, key, value)

Summary: This function updates the value in a particular field of a ColdFusion
structure.

Description: The function attempts to update the value in a field of some
ColdFusion structure.The function takes three input parameters: the structure, the
field, and the new value to use. It returns TRUE if successful, FALSE if not.This
function can be used on XML objects.

Risk: Functions that modify structures commonly go unnoticed when verifying
human user input or validating the security Access Control Lists (ACLs). It is highly
recommended that you verify that the structure input cannot have malicious data
and that only the proper users and processes have the appropriate access.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: StructClear, StructDelete, StructGet,
StructInsert

ToBase64
Prototype: ToBase64(string or binary_object[, encoding]

Summary: This function computes the base-64 representation of a binary or string
object.

Description: The function attempts to convert a binary or string object into its
base-64 representation.The function requires one input parameter: the object to
convert.The function also takes one optional argument, in the event that an object

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 326

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 327

is a string: the encoding of the string.The function returns the base-64 representa-
tion of the object.

Risk: This function should never be utilized to obfuscate data with the goal of pro-
tecting it from prying eyes. Only industry-standard cryptography algorithms should
be implemented to secure data. Do not use this function!

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

Cross References: IsBinary, ToBinary, ToString

ToBinary
Prototype: ToBinary(string_in_Base64 or binary_value)

Summary: This function converts an object to binary format.

Description: The function attempts to convert an object to binary format.The
function takes only one input argument: the object to convert.The function also
acts similar to IsBinary if the function is given a binary object to convert. It
checks the validity of the binary object. It returns the binary representation of the
input object.

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be cal-
culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

Cross References: IsBinary, ToBase64, ToString

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 327

TLFeBOOK

328 ColdFusion • Programmer’s Ultimate Security DeskRef

ToString
Prototype: ToString(any_value[, encoding])

Summary: This function converts any given value to a string.

Description: The function attempts to convert a given value to its string represen-
tation.The function requires only one input parameter: the value to convert.
However, the function can handle an optional argument stipulating the character set
to use for the resultant string.The function defaults to the encoding of the page that
calls it.The function returns the string representation of the given value (in the
requested encoding scheme, if applicable).

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be cal-
culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: ToBase64, ToBinary

Ucase
Prototype: UCase(string)

Summary: This function converts the letters of a string to upper case.

Description: The function attempts to convert the letters of a string to the upper
case.The function takes only one input argument: the string.The function will
return the resultant string, once the letters have been converted.

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be cal-

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 328

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 329

culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: Lcase

URLDecode
Prototype: URLDecode(urlEncodedString[, charset])

Summary: This function decodes an URL-encoded string.

Description: The function attempts to decode an URL-encoded string.The func-
tion requires only one input parameter: the encoded string.The function, though,
can handle an optional argument that gives encoding scheme of the string.The
function returns, upon completion, the decoded string.

Risk: The fact that this function is utilized may mean that the
URLEncodedFormat function was already called.These functions do not pose
immediate danger or risk to an application unless they are utilized to obfuscate sen-
sitive information.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

Cross References: URLEncodedFormat

URLEncodedFormat
Prototype: URLEncodedFormat(string [, charset])

Summary: This function URL-encodes a given string.

Description: The function attempts to encode a given string in a URL scheme.
The function requires only input argument: the string to encode. However, the

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 329

TLFeBOOK

330 ColdFusion • Programmer’s Ultimate Security DeskRef

function can take an optional argument stipulating the encoding format to use.The
function returns the URL-encoded string when completed.

Risk: This function should never be utilized to obfuscate data with the goal of pro-
tecting it from prying eyes. Only industry-standard cryptography algorithms should
be implemented to secure data.This function is out-of-date and should not be used!

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

Cross References: URLDecode

URLSessionFormat
Prototype: URLSessionFormat(request_URL)

Summary: This function determines the format of an URL session.

Description: The function attempts to ascertain the format of the URL session.
The function works in two ways, depending on whether cookies are being accepted
by a client computer. If accepted, the function does not append any client informa-
tion and sends only the required. However, if cookies are not being accepted by the
client computer, the function appends the client information to any data sent.The
function returns a URL, and if cookies are not accepted, the client information.

Risk: Functions that modify lists commonly go unnoticed when verifying human
user input or validating the security Access Control Lists (ACLs). It is highly recom-
mended that you verify that the list input cannot have malicious data and that only
the proper users and processes have access to the appropriate lists.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: High

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 330

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 331

ValueList
Prototype: ValueList(query.column [, delimiter])

Summary: This function creates a delimited list from a column of a query.

Description: The function attempts to create a list populated with the columns of
an existing query.The function requires only one input parameter: the query and
column name in period-separated format (i.e., query.column).The function can
handle a second, optional argument stipulating the delimiter to use in the list (the
default is a comma). It returns the resultant list. However, unlike
QuotedValueList, the members do not have single quotes around them.

Risk: Functions that modify lists commonly go unnoticed when verifying human
user input or validating the security Access Control Lists (ACLs). It is highly recom-
mended that you verify that the list input cannot have malicious data and that only
the proper users and processes have access to the appropriate lists.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: QuotedValueList

XmlFormat
Prototype: XmlFormat(string)

Summary: This function converts a string into the XML-appropriate format.

Description: The function attempts to convert a string into an XML-capable
format.The function escapes the special characters of string, allowing the string to
be interpreted properly in XML. It takes only one input parameter: the string to
convert.The function returns the corrected/converted string.

Risk: Functions that evaluate XML data must either open or save the information
to a file or data stream for processing. During this period, its critical to ensure that
the destination buffer is large enough for the processed data in addition to limiting
the resources that can be analyzed for XML compatibility.This function poses min-

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 331

TLFeBOOK

332 ColdFusion • Programmer’s Ultimate Security DeskRef

imal risk; but as “a rule of thumb” do not trust your XML data source and prepare
for the worst.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: IsXmlDoc, XmlNew, XmlTransform

XmlNew
Prototype: XmlNew([caseSensitive])

Summary: This function creates a new XML document object.

Description: The function attempts to create a new XML document. It does not
require any input parameters. However, the function can handle one optional argu-
ment: a flag to tell ColdFusion to whether to consider case in this object.The func-
tion returns the new, empty XML document object when complete.

Risk: Functions that evaluate XML data must either open or save the information
to a file or data stream for processing. During this period, its critical to ensure that
the destination buffer is large enough for the processed data in addition to limiting
the resources that can be analyzed for XML compatibility.This function poses min-
imal risk; but as “a rule of thumb” do not trust your XML data source and prepare
for the worst.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: IsXmlDoc, XmlFormat, XmlTransform

XmlTransform
Prototype: XmlTransform(xmlString or xmlObj, xslString)

Summary: This function transforms an XML document or string to another
format.

www.syngress.com

C
o

ld
Fu

sio
n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 332

TLFeBOOK

Programmer’s Ultimate Security DeskRef • ColdFusion 333

Description: The function attempts to convert an XML document/string to a dif-
ferent format.The function applies the transformation to either a string or the entire
XML document.The function thus takes two input arguments: the object to convert
(either a string or document) and the conversion format.The function returns the
converted string or document.

Risk: Functions that evaluate XML data must either open or save the information
to a file or data stream for processing. During this period, its critical to ensure that
the destination buffer is large enough for the processed data in addition to limiting
the resources that can be analyzed for XML compatibility.This function poses min-
imal risk; but as “a rule of thumb” do not trust your XML data source and prepare
for the worst.

Additional Resources: http://livedocs.macromedia.com/coldfusion/6.1/
htmldocs/function.htm#wp3082862

Impact: Low

Cross References: IsXmlDoc, XmlFormat, XmlNew

www.syngress.com

C
o

ld
Fu

si
o

n

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 333

TLFeBOOK

309_Desk_Ref_ColdFusion.qxd 10/11/04 4:30 PM Page 334

TLFeBOOK

Programmer’s
Ultimate Security
Desk Ref: JavaScript

alert
Prototype: alert(message)

Summary: Displays a modal dialog window with a message and an
OK button.

Description: This method is attached to the window object. When
called it displays a modal dialog with the specified message, dismissed
with the OK button. Use it to inform users of errors, important
actions, or results. Since the only user input is dismissing the dialog,
no value is returned. Example: alert(“You need to enter a valid tele-
phone number.”)

Risk: Input boxes are commonly misused for password and other
types of sensitive information storage. Sensitive information should
never be transmitted from clients to servers via Web page input boxes.
In addition, SSL should be implemented when transferring sensitive
data. Lastly, ensure that all user input is fully scrutinized whereas non-
alphanumeric characters are removed where possible.

335

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 335

TLFeBOOK

336 JavaScript • Programmer’s Ultimate Security DeskRef

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/
reference/window.html#1201497

Impact: Medium

Cross Reference: confirm, prompt

apply
Prototype: apply(newThis[, argsArray])

Summary: Changes the this object used in a method call.

Description: When an object calls a method, it is implicitly passed to the method
as this.The apply method allows you to explicitly change the object passed.This
is useful for chaining object constructors. One can initialize the fields specific to the
current object, then pass the unused arguments to the next object’s constructor.The
only required argument is the new this object.You can also pass an optional Array
of method arguments.

Risk: Ensure that only site administrators have access to modify or statically pass
parameters to this function. Strip all special characters before passing the
parameter(s) to this function.

Notes: Not yet in the ECMA spec, but expected in the next revision.

Proper Usage: otherObj.apply(otherObj, [arg1, arg2, ..])

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
function.html#1194017

Impact: Low

Cross Reference: call

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 336

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 337

captureEvents
Prototype: captureEvents(type1[| type2 | ..])

Summary: Allows a window to capture all events of the specified type that occur
within it.

Description: The captureEvents method allows a window to capture all events
that occur within it.This is useful for capturing events that occur in a frame con-
tained in the window, even frames containing contents from a different server.The
method accepts an event mask. Use requires the browser’s
UniversalBrowserWrite privilege and the enableExternalCapture
method.

Risk: Input boxes are commonly misused for password and other types of sensitive
information storage. Sensitive information should never be transmitted from clients
to servers via Web page input boxes. In addition, SSL should be implemented when
transferring sensitive data. Lastly, ensure that all user input is fully scrutinized
whereas non-alphanumeric characters are removed where possible.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
window.html#1201687

Impact: Medium

Cross Reference: enableExternalCapture, releaseEvents, routeEvent,
handleEvent, disableExternalCapture

clearTimeout
Prototype: clearTimeout(timeoutID)

Summary: Clears a timeout on the window object previously set by
setTimeout.

Description: When setTimeout is called it returns a timeout ID. Call
clearTimeout with this ID and that timeout is cleared for the window.

Risk: The clearTimeout function could be leveraged by an attacker to clear pre-
viously set timeouts instantiated by earlier function routines.

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 337

TLFeBOOK

338 JavaScript • Programmer’s Ultimate Security DeskRef

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
window.html#1201775

Impact: Medium

Cross Reference: setTimeout

compile
Prototype: compile(pattern[, flags])

Summary: Compiles a regular expression.

Description: The compile method compiles a regular expression so that it can be
efficiently re-used. It accepts a pattern and optional flags.The flag is one of “g”,“i”,
or “gi”, for global match, ignore case, or both.

Risk: This function is used to compile code. Syntax errors in the string being exe-
cuted can lead to errors in other areas of the code.To ensure code continues to be
executed as intended it is important to guard the usage of this function carefully.
Otherwise, unpredictable results may occur which can compromise the system.

Notes: Deprecated in JavaScript 1.5.

Proper Usage: compile(“match[0-9]+”, “g”)

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
regexp.html#1194687

Impact: Low

disableExternalCapture
Prototype: disableExternalCapture()

Summary: Disables external event capturing on the window.

Description: The disableExternalCapture method disables external event
capturing on the window set by enableExternalCapture. It has no arguments.

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 338

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 339

Risk: Capturing windows events may enable a malicious developer to ascertain sen-
sitive pieces of information about a user to include usernames, passwords, personal
information, and even financial information. Ensure that all captured data, if data is
indeed being captured is stored securely on a backend server.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
window.html#1202117

Impact: Low

Cross Reference: enableExternalCapture, captureEvents

enableExternalCapture
Prototype: enableExternalCapture()

Summary: Allows a window to capture all events that occur within it.

Description: The enableExternalCapture method allows a window to cap-
ture external events, for example those that originate in a contained frame.This
method has no arguments. Requires the UniversalBrowserWrite privilege.
Used in conjunction with the captureEvents method.

Risk: Capturing windows events may enable a malicious developer to ascertain sen-
sitive pieces of information about a user to include usernames, passwords, personal
information, and even financial information. Ensure that all captured data, if data is
indeed being captured, is stored securely on a backend server.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
window.html#1202163

Impact: Low

Cross Reference: disableExternalCapture, captureEvents

eval
Prototype: object eval(string)

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 339

TLFeBOOK

340 JavaScript • Programmer’s Ultimate Security DeskRef

Summary: Evaluates and runs a string containing JavaScript code.

Description: The eval method accepts a string containing JavaScript code and
evaluates it in the current JavaScript context.The result is returned.Any argument
other than a string is returned unchanged.An error may occur if eval is called
indirectly, for example if eval is assigned to a function object of a different name.

Risk: This function is used to compile code. Syntax errors in the string being exe-
cuted can lead to errors in other areas of the code.To ensure code continues to be
executed as intended it is important to guard the usage of this function carefully.
Otherwise, unpredictable results may occur which can compromise the system.

Notes: Deprecated as a method of Object in JavaScript 1.5, moved to top level.

Proper Usage: eval(code)

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
toplev.html#1063795

Impact: Medium

exec
Prototype: Array exec(string)

Summary: Executes a regular expression on a string.

Description: The exec method executes the RegExp object’s pattern on a given
string.The method accepts a string argument and returns a match Array if a match
is found, or NULL otherwise. When used with the global flag, exec can be used mul-
tiple times to find successive matches.The first element of the match Array is a
string containing the characters of the match found.The succeeding elements are
matching parenthesized substrings from the regular expression, if any.

Risk: This function is used to compile code. Syntax errors in the string being exe-
cuted can lead to errors in other areas of the code.To ensure code continues to be
executed as intended it is important to guard the usage of this function carefully.
Otherwise, unpredictable results may occur which can compromise the system.

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 340

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 341

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/regexp.
html#1194735

Impact: Low

Cross Reference: test, search

fileupload
Summary: The JavaScript object created by an HTML tag with type “file”.

Description: A FileUpload object is created for each input tag of type “file”.A
FileUpload object is stored in the elements array of the Form containing it.The
value property contains the name of the file the user has selected to upload.

Risk: Uploaded files are one of the most commons ways that viruses enter corpo-
rate networks today. If you intend to let users upload files to a central server of any
kind, it should be required that these files are first scanned by leading virus scanning
technologies such as Symantec, McAfee, or TrendMicro. Visit their sites to learn
more about their Web-based APIs for scanning for viruses.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
fileup.html

Impact: High

find
Prototype: Boolean find(string[, caseSensitive[,
searchBackwards]])

Summary: Finds a string in the current window.

Description: The find method performs a search for a given string in the contents
of the window. It accepts the string to search for, and optional Booleans indicating
whether the search is case sensitive, and whether the search should be performed
backwards. Returns TRUE if the specified string is found in the window, FALSE
otherwise.

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 341

TLFeBOOK

342 JavaScript • Programmer’s Ultimate Security DeskRef

Risk: Functions that search for patterns open files and input their datastreams into
allocated memory spaces. Outside of the race condition bugs that could occur if you
attempted to open a file more than once simultaneously, a buffer overflow attack
may also open up memory space for a root-level attack. Ensure that the files or
datastreams that are passed for analysis to these functions are properly controlled and
vetted by application logic. Users should not have the ability to identify if strings are
within operating system resources such as configuration or log files.

Proper Usage: find(“hello”, false)

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
window.html#1202197

Impact: Low

getDate
Prototype: integer getDate()

Summary: Returns the day of the month in a Date object.

Description: The getDate method returns the day of the month for a Date
object, adjusted for local time if necessary. It has no arguments. Returns an integer
between 1 and 31.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

Cross Reference: getUTCDate

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 342

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 343

getDay
Prototype: integer getDay()

Summary: Returns the day of the week in a Date object.

Description: The getDay method returns an integer representation of the day of
the week represented by a Date object, adjusted for local time if necessary. It has no
arguments. Returns 0 for Sunday through 6 for Saturday.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

Cross Reference: getUTCDay

getFullYear
Prototype: integer getFullYear()

Summary: Returns the year in a Date object.

Description: The getFullYear method returns the 4-digit (for years between
1000 and 9999) year represented by a Date object, adjusted for local time if neces-
sary. It has no arguments. Use this method instead of the getYear method for full
Y2K compliance.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 343

TLFeBOOK

344 JavaScript • Programmer’s Ultimate Security DeskRef

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

Cross Reference: getUTCFullYear

getHours
Prototype: integer getHours()

Summary: Returns the hour in a Date object.

Description: The getHours method returns the integer value of the hour con-
tained in a Date object, adjusted to local time if necessary. It has no arguments.
Returns an integer between 0 and 23.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

Cross Reference: getUTCHours

getMilliseconds
Prototype: integer getMilliseconds()

Summary: Returns the milliseconds part of a Date object.

Description: The getMilliseconds method returns the integer value of the
milliseconds contained in a Date object. It has no arguments. Returns an integer
between 0 and 999.

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 344

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 345

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

Cross Reference: getUTCMilliseconds

getMinutes
Prototype: integer getMinutes()

Summary: Returns the minutes part of a Date object.

Description: The getMinutes method returns the integer value of the minutes
contained in a Date object. It has no arguments. Returns an integer between 0 and
59.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

Cross Reference: getUTCMinutes

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 345

TLFeBOOK

346 JavaScript • Programmer’s Ultimate Security DeskRef

getMonth
Prototype: integer getMonth()

Summary: Returns the month part of a Date object.

Description: The getMonth method returns the integer value of the month con-
tained in a Date object, adjusted for local time if necessary. It has no arguments.
Returns an integer from 0 (for January) through 11 (for December).

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

Cross Reference: getUTCMonth

getSeconds
Prototype: integer getSeconds()

Summary: Returns the seconds part of a Date object.

Description: The getSeconds method returns the integer value of the seconds
contained in a Date object. It has no arguments. Returns an integer between 0 and
59.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 346

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 347

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

Cross Reference: getUTCSeconds

getSelection
Prototype: string getSelection()

Summary: Returns the current selection in the document.

Description: The getSelection method returns a string with the text of the
current document’s selection.This method works only on the currently active docu-
ment. It has no arguments.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
document.html#1195981

Impact: Low

getTime
Prototype: integer getTime()

Summary: Returns the numeric value of the time in a Date object, adjusted for
local time if necessary.

Description: The getTime method returns the numeric value of a Date, adjusted
for local time if necessary. It has no arguments. Returns the number of milliseconds
since midnight of January 1, 1970 (1 January 1970 00:00:00).

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 347

TLFeBOOK

348 JavaScript • Programmer’s Ultimate Security DeskRef

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

getTimezoneOffset
Prototype: integer getTimezoneOffset()

Summary: Returns the current locale’s time-zone offset from GMT.

Description: The getTimezoneOffset method returns the offset of the current
locale’s time zone from Greenwich Mean Time (GMT). It has no arguments.
Returns the number of minutes, so divide the result by 60 for the number of hours.
This value can change with daylight savings time.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

getUTCDate
Prototype: integer getUTCDate()

Summary: Returns the day of the month in a Date object, according to universal
time.

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 348

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 349

Description: The getUTCDate method returns the day of the month in universal
time for a Date object, an integer between 1 and 31. It has no arguments.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

Cross Reference: getDate

getUTCDay
Prototype: integer getUTCDay()

Summary: Returns the day of the week in a Date object, according to universal
time.

Description: The getUTCDay method returns an integer representation of the day
of the week represented by a Date object, in universal time. It has no arguments.
Returns 0 for Sunday through 6 for Saturday.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

Cross Reference: getDay

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 349

TLFeBOOK

350 JavaScript • Programmer’s Ultimate Security DeskRef

getUTCFullYear
Prototype: integer getUTCFullYear()

Summary: Returns the year in a Date object, according to universal time.

Description: The getUTCFullYear method returns the 4-digit (for years
between 1000 and 9999) year represented by a Date object, in universal time. It has
no arguments.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

Cross Reference: getFullYear

getUTCHours
Prototype: integer getUTCHours()

Summary: Returns the hour in a Date object, according to universal time.

Description: The getUTCHours method returns the integer value of the hour
contained in a Date object, in universal time. It has no arguments. Returns an
integer between 0 and 23.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 350

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 351

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

Cross Reference: getHours

getUTCMilliseconds
Prototype: integer getUTCMilliseconds()

Summary: Returns the milliseconds in a Date object, according to universal time.

Description: The getUTCMilliseconds method returns the integer value of the
milliseconds contained in a Date object. It has no arguments. Returns an integer
between 0 and 999. In practice this produces the same result as
date.getMilliseconds().

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

Cross Reference: getMilliseconds

getUTCMinutes
Prototype: integer getUTCMinutes()

Summary: Returns the minutes in a Date object, according to universal time.

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 351

TLFeBOOK

352 JavaScript • Programmer’s Ultimate Security DeskRef

Description: The getUTCMinutes method returns the integer value of the min-
utes contained in a Date object. It has no arguments. Returns an integer between 0
and 59. In practice, this produces the same result as date.getMinutes().

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

Cross Reference: getMinutes

getUTCMonth
Prototype: integer getUTCMonth()

Summary: Returns the month of the year in a Date object, according to universal
time.

Description: The getMonth method returns the integer value of the month con-
tained in a Date object, in universal time. It has no arguments. Returns an integer
between 0 (for January) and 11 (for December).

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

Cross Reference: getMonth

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 352

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 353

getUTCSeconds
Prototype: integer getUTCSeconds()

Summary: Returns the seconds in a Date object, according to universal time.

Description: The getUTCSeconds method returns the integer value of the sec-
onds contained in a Date object. It has no arguments. Returns an integer between
0 and 59. In practice this produces the same result as date.getSeconds().

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

Cross Reference: getSeconds

go
Prototype: go(delta), go(URL)

Summary: Jumps to a URL in the browser’s history.

Description: The go method is used to load a URL from the browser’s history. It
accepts an integer offset from the current location, or a string containing all or part
of a URL in the history. If given a string, go will attempt a case-insensitive match of
the string to a URL in its history, and jump to the closest match. If given a positive
integer greater than the number of forward entries, it will attempt to go back that
number of entries. For example, to go back one page, use history.go(-1).

Risk: This function is extremely dangerous as it could potentially allow a malicious
developer to access target browser history data. Such history data could include vis-
ited Web sites, frequency visited, and visitation times. It is critical to ensure that you
inform your site users that you will be accessing their historical data, in addition to

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 353

TLFeBOOK

354 JavaScript • Programmer’s Ultimate Security DeskRef

transmitting and storing all sensitive information in a secure manner—for example,
use SSL.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
history.html#1193970

Impact: High

javaEnabled
Prototype: Boolean javaEnabled()

Summary: Returns whether the navigator object is Java-enabled.

Description: The javaEnabled method is part of the navigator object. It has
no arguments. Returns TRUE if Java is enabled, FALSE otherwise. Java can be
enabled/disabled by the user.

Risk: A function with minimal risk; however, ensure that the results of this query
are transmitted securely as it is local system information that could be utilized by an
attacker sniffing the wire. Version information may also be transmitted.

Proper Usage: navigator.javaEnabled()

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
nav.html#1193894

Impact: Low

lastIndexOf
Prototype: integer lastIndexOf(string[, fromIndex])

Summary: Returns the last position of a substring in a string.

Description: The lastIndexOf method returns the last position of a substring in
a string object, or -1 if no match is found. It accepts a string containing the text to
find, and an optional index argument between 0 and the length of the string.

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 354

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 355

lastIndexOf searches backwards from the given index, which is the length of the
string by default.

Risk: Functions that search for patterns open files and input their datastreams into
allocated memory spaces. Outside of the race condition bugs that could occur if you
attempted to open a file more than once simultaneously, a buffer overflow attack
may also open up memory space for a root-level attack. Ensure that the files or
datastreams that are passed for analysis to these functions are properly controlled and
vetted by application logic. Users should not have the ability to identify if strings are
within operating system resources such as configuration or log files.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
string.html#1197005

Impact: Low

link
Prototype: Link link(URL)

Summary: Creates an HTML link from a string.

Description: The link method accepts a URL and returns a Link object.The
string’s text becomes the contents of the Link object.The URL specifies the
Link’s href attribute. Example: “google”.link(“www.google.com/”)
returns google

Risk: Inputs received after encoding may need to be decoded before being pro-
cesses, otherwise there is the risk that malicious or otherwise invalid strings can be
passed through the application.

Proper Usage: document.write(someText.link(someURL))

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
string.html#1198070

Impact: Low

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 355

TLFeBOOK

356 JavaScript • Programmer’s Ultimate Security DeskRef

load
Prototype: load(URL, width)

Summary: Loads content into a layer.

Description: The load method accepts a URL string and an integer width and
loads the content of the URL into a layer of the specified width.The width
parameter forces the contents to wrap at the specified width.This is useful for cre-
ating dynamically resizable contents of a Web page when combined with mouse
drag events.

Risk: Input boxes are commonly misused for password and other types of sensitive
information storage. Sensitive information should never be transmitted from clients
to servers via Web page input boxes. In addition, SSL should be implemented when
transferring sensitive data. Lastly, ensure that all user input is fully scrutinized
whereas non-alphanumeric characters are removed where possible.

Additional Resources: http://developer.netscape.com/docs/manuals/
communicator/dynhtml/layers38.htm

Impact: Low

open
Prototype: open(URL, name[, features])

Summary: Opens a new browser window.

Description: The open method creates a new browser window. It accepts a URL
argument, a window name, and an optional string containing a comma-separated list
of window features. If the URL argument is an empty string, an empty window is
created.A comprehensive list of possible new window features can be found at
Netscape’s DevEdge JavaScript site.

Risk: Opening a new browser window can be extremely dangerous for both the
developer and end user of an enterprise application. Initially, it details that you have
some level of comfort with a Web-based application. Secondly, the site that is open
in the new window may also contain malicious code. Ensure that the site is secure
before referring a client to it.Also, ensure that a client cannot directly change or

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 356

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 357

access the parameters for the open function, especially if the main site is considered
to be in a trusted zone.

Notes: I found two possibilities: window.open and document.open. I’ve
included records for both.

Proper Usage: open(URL, name)

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
window.html#1202731

Impact: Medium

password
Summary: The JavaScript object created by an HTML input tag with type
“password”.

Description: A Password object is created for each input tag of type password.
A Password object is stored in the elements array of the Form containing it.The
value field contains the currently entered password in plaintext, so do not store it in
a cookie.

Risk: The password function is extremely risky and should not be used to store
or transmit sensitive information such as an account password. It should only be
used to obfuscate letters from viewers at the interface level. It is imperative that you
ensure all passwords are transmitted across the wire via strong SSL encryption.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
password.html

Impact: High

preference
Prototype: value preference(prefName[, newValue])

Summary: Allows a script to get and set certain browser preferences, if security
privileges allow.

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 357

TLFeBOOK

358 JavaScript • Programmer’s Ultimate Security DeskRef

Description: The preference method of the navigator object can be used to
retrieve or set some browser preferences.Accepts a string containing the preference
name to get or set. If a new value is passed in, the specified preference is set to the
new value. Returns the value of the specified preference, or the new value if one is
set. Requires the UniversalPreferencesRead privilege to read, or the
UniversalPreferencesWrite privilege to write.

Risk: A highly controversial feature, it is pertinent that you inform your users that
you may be retrieving private browser configuration information from their system
before using this function.Additionally, ensure that all configuration information is
being transmitted over a SSL-encrypted tunnel to ensure that no prying eyes are
viewing potentially sensitive information.

Proper Usage: useJava =
navigator.preference(“security.enable_java”)

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
nav.html#1194000

Impact: High

random
Prototype: float random()

Summary: Returns a pseudo-random number between 0 and 1.

Description: The Math.random method returns a pseudo-random number
between 0 and 1, generated using the current time as a seed. It has no arguments.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to bruteforce or easily guessed number-
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 358

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 359

commercial solutions and should be considered the next time a random number is
required within an application.

Proper Usage: luckyNumber = Math.random()

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
math.html#1197697

Impact: High

reload
Prototype: reload([forceGet])

Summary: Reloads the current document.

Description: The reload method forces the current document to reload, using
the location.href property.An optional true argument can be used to force a
new HTTP GET from the server, bypassing the user’s cache.This can cause an
unnecessary load on the server, so use only when the server document is likely to
have changed.

Risk: Ensure that all data currently inputted into the main viewing area is wiped
from memory before the document is reloaded into the browser’s window.

Proper Usage: location.reload()

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference
/location.html#1194198

Impact: High

reset
Prototype: reset()

Summary: Resets an HTML form.

Description: When called on an HTML form, the reset method causes the
form’s information to reset to its default state.The result is the same as activating the
form’s reset button.The reset method has no arguments.

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 359

TLFeBOOK

360 JavaScript • Programmer’s Ultimate Security DeskRef

Risk: Resetting an HTML form has minimal risk associated with the calling func-
tion; however, ensure that all data entered into the application is completely wiped
from the browser’s memory.

Proper Usage: document.myForm.reset()

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
form.html#1194089

Impact: Medium

reverse
Prototype: reverse()

Summary: Reverses the elements of an Array.

Description: The reverse method reverses the ordering of an Array’s elements,
so that the last element becomes the first. It has no arguments.

Risk: This function should never be utilized to obfuscate data with the goal of pro-
tecting it from prying eyes. Only industry-standard cryptography algorithms should
be implemented to secure data.This function is out-of-date and should not be used!

Proper Usage: myArray.reverse()

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
array.html#1193641

Impact: Medium

scriptEngine
Prototype: string ScriptEngine()

Summary: Returns the scripting language currently in use.

Description: The ScriptEngine function returns a string containing the name
of the scripting language currently in use. Returns one of “JScript”,“VBA”, or
“VBScript”. It has no arguments.

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 360

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 361

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/jscript7/
html/jsoriFunctions.asp

Impact: Medium

Cross Reference: ScriptEngineBuildVersion,
ScriptEngineMajorVersion, ScriptEngineMinorVersion

setDate
Prototype: setDate(day)

Summary: Sets the day of the month for a Date object.

Description: The setDate method sets the day of the month for a Date object,
given in local time.Accepts an integer argument between 1 and 31.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Notes: Integers outside the range 1 to 31 are modded in Mozilla’s JavaScript imple-
mentation. I could not find support in the specification for this.

Proper Usage: theIdes.setDate(15)

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Medium

Cross Reference: setUTCDate

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 361

TLFeBOOK

362 JavaScript • Programmer’s Ultimate Security DeskRef

setFullYear
Prototype: setFullYear(year)

Summary: Sets the 4-digit year for a Date object.

Description: The setFullYear method sets the year for a Date object, given in
local time. Four-digit years are between 1000 and 9999.Accepts an integer argu-
ment specifying the full year of the Date object.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Proper Usage: moon.setFullYear(1969)

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Medium

Cross Reference: setUTCFullYear

setHours
Prototype: setHours(hour)

Summary: Sets the hour of the day for a Date object.

Description: The setHours method sets the hour of the day for a Date object,
given in local time.Accepts an integer argument between 0 and 23.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Notes: Integers outside the range 0 to 23 are modded in Mozilla’s JavaScript imple-
mentation. I could not find support in the specification for this.

Proper Usage: witches.setHour(0)

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 362

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 363

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Medium

Cross Reference: setUTCHours

setInterval
Prototype: intervalID setInterval(expression, time),
intervalID setInterval(function, time[, args])

Summary: Performs a task every specified number of milliseconds.

Description: The setInterval method is used to execute tasks that need to be
repeated at a specified interval.The first argument can be a string containing an
expression to be evaluated, or a function to be called.The second argument is the
interval time in milliseconds. If a function is specified, extra arguments are passed to
it. setInterval returns an interval ID.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Proper Usage: annoying = setInterval(alert, 10000, “10 seconds
have passed!”)

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
window.html#1203669

Impact: Medium

Cross Reference: setTimeout

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 363

TLFeBOOK

364 JavaScript • Programmer’s Ultimate Security DeskRef

setMilliseconds
Prototype: setMilliseconds(milliseconds)

Summary: Sets the milliseconds for a Date object.

Description: The setMilliseconds method sets the milliseconds for a Date
object, given in local time.Accepts an integer argument between 0 and 999.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Medium

Cross Reference: setUTCMilliseconds

setMinutes
Prototype: setMinutes(minutes)

Summary: Sets the minutes for a Date object.

Description: The setMinutes method sets the minutes for a Date object, given
in local time.Accepts an integer argument between 0 and 59.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Medium

Cross Reference: setUTCMinutes

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 364

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 365

setMonth
Prototype: setMonth(month)

Summary: Sets the month of the year for a Date object.

Description: The setMonth method sets the month of the year for a Date
object, given in local time.Accepts an integer argument between 0 for January
and 11 for December.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Medium

Cross Reference: setUTCMonth

setSeconds
Prototype: setSeconds(seconds[, milliseconds])

Summary: Sets the seconds for a Date object.

Description: The setSeconds method sets the seconds for a Date object, given
in local time.Accepts an integer argument between 0 and 59. Optionally accepts
a millisecond argument between 0 and 999, equivalent to setMilliseconds.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 365

TLFeBOOK

366 JavaScript • Programmer’s Ultimate Security DeskRef

Impact: Medium

Cross Reference: setUTCSeconds

setTime
Prototype: setTime(milliseconds)

Summary: Sets the exact time of a Date object.

Description: The setTime method accepts an integer parameter representing
the number of milliseconds elapsed since January 1, 1970 (1 January 1970 00:00:00),
given in local time.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Notes: Can be useful for storing and retrieving dates across sessions.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Medium

setTimeout
Prototype: timeoutID setTimeout(expression, time), timeoutID
setTimeout(function, time[, args])

Summary: Performs a task after a specified number of milliseconds has elapsed.

Description: The setTimeout method is used to execute tasks that need to be
done once after a specified period of time has elapsed.The first argument can be a
string containing an expression to be evaluated, or a function to be called.The
second argument is the timeout in milliseconds. If a function is specified, extra argu-
ments are passed to it. setTimeout returns a timeout ID.

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 366

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 367

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Proper Usage: errorTimeout = setTimeout(alert, 60000, “Error:
task timed out after 1 minute.”)

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
window.html#1203758

Impact: Medium

Cross Reference: setInterval

setUTCDate
Prototype: setUTCDate(day)

Summary: Sets the day of the month for a Date object.

Description: The setUTCDate method sets the day of the month for a Date
object, given in universal time.Accepts an integer argument between 1 and 31.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Notes: Integers outside the range 1 to 31 are modded in Mozilla’s JavaScript imple-
mentation. I could not find support in the specification for this.

Proper Usage: valentine.setDate(14)

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Medium

Cross Reference: setDate

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 367

TLFeBOOK

368 JavaScript • Programmer’s Ultimate Security DeskRef

setUTCFullYear
Prototype: setUTCFullYear(year)

Summary: Sets the 4-digit year for a Date object.

Description: The setUTCFullYear method sets the year for a Date object,
given in universal time. Four-digit years are between 1000 and 9999.Accepts an
integer argument specifying the full year of the Date object.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Proper Usage: orwell.setUTCFullYear(1984)

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Medium

Cross Reference: setFullYear

setUTCHours
Prototype: setUTCHours(hour)

Summary: Sets the hour of the day for a Date object.

Description: The setUTCHours method sets the hour of the day for a Date
object, given in universal time.Accepts an integer argument between 0 and 23.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Notes: Integers outside the range 0 to 23 are modded in Mozilla’s JavaScript imple-
mentation. I could not find support in the specification for this.

Proper Usage: coffee.setUTCHours(5)

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 368

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 369

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Medium

Cross Reference: setHours

setUTCMilliseconds
Prototype: setUTCMilliseconds(milliseconds)

Summary: Sets the milliseconds for a Date object.

Description: The setUTCMilliseconds method sets the milliseconds for a
Date object, given in local time.Accepts an integer argument between 0 and
999. In practice, this method is the same as setMilliseconds.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Medium

Cross Reference: setMilliseconds

setUTCMinutes
Prototype: setUTCMinutes(minutes)

Summary: Sets the minutes for a Date object.

Description: The setUTCMinutes method sets the minutes for a Date object,
given in local time.Accepts an integer argument between 0 and 59. In practice,
this method is the same as setMinutes.

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 369

TLFeBOOK

370 JavaScript • Programmer’s Ultimate Security DeskRef

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Medium

Cross Reference: setMinutes

setUTCMonth
Prototype: setUTCMonth(month)

Summary: Sets the month of the year for a Date object.

Description: The setUTCMonth method sets the month of the year for a Date
object, given in universal time.Accepts an integer argument between 0 for
January and 11 for December.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Medium

Cross Reference: setMonth

setUTCSeconds
Prototype: setUTCSeconds(seconds[, milliseconds])

Summary: Sets the seconds for a Date object.

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 370

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 371

Description: The setUTCSeconds method sets the seconds for a Date object,
given in universal time.Accepts an integer argument between 0 and 59. In prac-
tice, this method is the same as setSeconds. Optionally accepts a millisecond
argument between 0 and 999, equivalent to setUTCMilliseconds.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Medium

Cross Reference: setSeconds

submit
Prototype: submit()

Summary: Submits an HTML form.

Description: The HTML Form’s submit method submits the form to the form’s
target URL. It has the same effect as activating the form’s Submit button. It has no
arguments. Requires UniversalSendMail privilege to submit to a mailto: or
news: URL.

Risk: Ensure that any sensitive data that is being submitted back to the Web server
is done so in an SSL-encrypted tunnel. In nearly all cases, forms are utilized and
submitted with personal customer or user information. It may be a privacy infrac-
tion to transmit that data in a insecure manner without the user realizing it’s going
across the wire in cleartext. Rule of Thumb: when in doubt use SSL.

Proper Usage: document.myForm.submit()

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
form.html#1194123

Impact: High

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 371

TLFeBOOK

372 JavaScript • Programmer’s Ultimate Security DeskRef

test
Prototype: Boolean test(string)

Summary: Tests whether a string matches a regular expression.

Description: The test method accepts a string and tests whether it matches the
RegExp object’s pattern. Returns TRUE if a match is found, FALSE otherwise.

Risk: All special and wildcard characters should be removed before the filename is
computed on the local filesystem. Malicious filenames are interpreted differently on
varying systems and as such, directory control is critical to limiting the ability of an
attacker to potentially compromise files at varying levels within the application or
underlying subsystem.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
regexp.html#1194128

Impact: Low

toLocaleString
Prototype: string toLocaleString()

Summary: Converts a Date object to a string using the current locale and plat-
form conventions.

Description: The toLocaleString method converts the Date object to a
human-readable string. It uses the current locale and relies on the underlying plat-
form to format the string, so the results are platform-dependant. It has no argu-
ments.

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be
calculated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 372

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 373

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

Cross Reference: toUTCString

toUTCString
Prototype: string toUTCString()

Summary: Converts a Date object to a string using universal time and platform
conventions.

Description: The toUTCString method converts the Date object to a human-
readable string. It uses universal time but relies on the underlying platform to format
the string, so the results are platform-dependant. It has no arguments.

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be cal-
culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.5/reference/
date.html

Impact: Low

Cross Reference: toLocaleString

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 373

TLFeBOOK

374 JavaScript • Programmer’s Ultimate Security DeskRef

write
Prototype: write(string1[, string2, ..])

Summary: Writes JavaScript expressions to the specified document.

Description: The write method writes the results of JavaScript expressions to the
document. It takes an unspecified number of arguments, evaluates each one in turn,
and writes the result to the document stream.

Risk: All inputs to this method should be thoroughly parsed to prevent the poten-
tial for cross-site scripting attacks. Input parameters should be restricted to alphanu-
meric characters to prevent command executions during processing.

Proper Usage: document.write(“<h1>Sunday Sunday
Sunday!</h1>”)

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/
document.html#1221642

Impact: Medium

Cross Reference: writeln

writeln
Prototype: writeln(string1[, string2, ..])

Summary: Writes JavaScript expressions to the specified document, followed by a
newline.

Description: The writeln method writes the results of JavaScript expressions to
the document. It takes an unspecified number of arguments, evaluates each one in
turn, and writes the result to the document stream. writeln appends a newline
character at the end of its write.

Risk: All inputs to this method should be thoroughly parsed to prevent the poten-
tial for cross-site scripting attacks. Input parameters should be restricted to alphanu-
meric characters to prevent command executions during processing.

www.syngress.com

JavaScrip
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 374

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JavaScript 375

Additional Resources:
http://devedge.netscape.com/library/manuals/2000/javascript/1.3/reference/docu-
ment.html#1194456

Impact: Medium

Cross Reference: write

www.syngress.com

Ja
va

Sc
ri

p
t

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 375

TLFeBOOK

309_Desk_Ref_JavaScript.qxd 10/11/04 4:30 PM Page 376

TLFeBOOK

Programmer’s
Ultimate Security
DeskRef: JScript

compile
Prototype: compile(pattern[, flags])

Summary: Compiles a regular expression.

Description: The compile method compiles a regular expression
so that it can be efficiently re-used. It accepts a pattern and optional
flags.The flag is any combination of “g”,“i”, or “m”, for global
match, ignore case, or multiline search.

Risk: This function is used to compile code. Syntax errors in the
string being executed can lead to errors in other areas of the code.To
ensure code continues to be executed as intended it is important to
guard the usage of this function carefully. Otherwise, unpredictable
results may occur which can compromise the system.

Proper Usage: compile(“match[0-9]+”, “g”)

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsorimethods.asp

Impact: Low
377

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 377

TLFeBOOK

378 JScript • Programmer’s Ultimate Security DeskRef

encodeURI
Prototype: string encodeURI(string)

Summary: Encodes a string into a URI.

Description: The encodeURI method encodes a string into a Uniform Resource
Identifier. It accepts the string to be encoded and returns a string containing the
valid URI.This method will not encode the characters “:”,“/”,“;”, or “?”.

Risk: Inputs received after encoding may need to be decoded before being pro-
cesses, otherwise there is the risk that malicious or otherwise invalid strings can be
passed through the application.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsorimethods.asp

Impact: Medium

Cross Reference: encodeURIComponent

encodeURIComponent
Prototype: string encodeURIComponent(string)

Summary: Encodes a string into a URI.

Description: The encodeURIComponent method encodes a string into a
Uniform Resource Identifier. It accepts the string to be encoded and returns a
string containing the valid URI.This method will encode all characters, so be
careful or you could end up with an unusable URI.

Risk: Inputs received after encoding may need to be decoded before being pro-
cesses, otherwise there is the risk that malicious or otherwise invalid strings can be
passed through the application.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsorimethods.asp

www.syngress.com

JScrip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 378

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JScript 379

Impact: Medium

Cross Reference: encodeURI

exec
Prototype: Array exec(string)

Summary: Executes a regular expression on a string.

Description: The exec method executes the RegExp object’s pattern on a given
string.The method accepts a string argument and returns a match Array if a match
is found, or null otherwise. When used with the global flag, exec can be used mul-
tiple times to find successive matches.The first element of the match Array is a
string containing the characters of the match found.The succeeding elements are
matching parenthesized substrings from the regular expression, if any.

Risk: This function is used to compile code. Syntax errors in the string being exe-
cuted can lead to errors in other areas of the code.To ensure code continues to be
executed as intended it is important to guard the usage of this function carefully.
Otherwise, unpredictable results may occur which can compromise the system.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsorimethods.asp

Impact: Low

getDate
Prototype: integer getDate()

Summary: Returns the day of the month in a Date object.

Description: The getDate method returns the day of the month for a Date
object, adjusted for local time if necessary. It has no arguments. Returns an integer
between 1 and 31.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All

www.syngress.com

JS
cr

ip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 379

TLFeBOOK

380 JScript • Programmer’s Ultimate Security DeskRef

analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Low

Cross Reference: getUTCDate

getDay
Prototype: integer getDay()

Summary: Returns the day of the week in a Date object.

Description: The getDay method returns an integer representation of the day of
the week represented by a Date object, adjusted for local time if necessary. It has no
arguments. Returns 0 for Sunday through 6 for Saturday.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Low

Cross Reference: getUTCDay

getFullYear
Prototype: integer getFullYear()

Summary: Returns the year in a Date object.

Description: The getFullYear method returns the 4-digit (for years between
1000 and 9999) year represented by a Date object, adjusted for local time if

www.syngress.com

JScrip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 380

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JScript 381

necessary. It has no arguments. Use this method instead of the getYear method for
full Y2K compliance.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Low

Cross Reference: getUTCFullYear

getHours
Prototype: integer getHours()

Summary: Returns the hour in a Date object.

Description: The getHours method returns the integer value of the hour con-
tained in a Date object, adjusted to local time if necessary. It has no arguments.
Returns an integer between 0 and 23.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Low

Cross Reference: getUTCHours

www.syngress.com

JS
cr

ip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 381

TLFeBOOK

382 JScript • Programmer’s Ultimate Security DeskRef

getItem
Prototype: Object getItem(index1, index2)

Summary: Accesses items in a VBArray.

Description: The getItem method allows a JScript expression to access a
VBArray. It accepts two indices as arguments and returns the object located at those
indices.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsorimethods.asp

Impact: Low

getTime
Prototype: integer getTime()

Summary: Returns the numeric value of the time in a Date, adjusted for local
time if necessary.

Description: The getTime method returns the numeric value of a Date object,
adjusted for local time if necessary. It has no arguments. Returns the number of mil-
liseconds since midnight of January 1, 1970 (1 January 1970 00:00:00). Dates prior
to 1970 are indicated with negative integers.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

www.syngress.com

JScrip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 382

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JScript 383

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Low

getTimezoneOffset
Prototype: integer getTimezoneOffset()

Summary: Returns the current locale’s time-zone offset from GMT.

Description: The getTimezoneOffset method returns the offset of the current
locale’s time-zone from Greenwich Mean Time (GMT). It has no arguments.
Returns the number of minutes, so divide the result by 60 for the number of hours.
This value can change with daylight savings time. Positive integers represent offsets
to the west of GMT, negative integers to the east.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Low

getUTCDate
Prototype: integer getUTCDate()

Summary: Returns the day of the month in a Date object, according to universal
time.

Description: The getUTCDate method returns the day of the month in universal
time for a Date object, an integer between 1 and 31. It has no arguments.

www.syngress.com

JS
cr

ip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 383

TLFeBOOK

384 JScript • Programmer’s Ultimate Security DeskRef

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Low

Cross Reference: getDate

getUTCDay
Prototype: integer getUTCDay()

Summary: Returns the day of the week in a Date object, according to universal
time.

Description: The getUTCDay method returns an integer representation of the day
of the week represented by a Date object, in universal time. It has no arguments.
Returns 0 for Sunday through 6 for Saturday.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Low

Cross Reference: getDay

www.syngress.com

JScrip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 384

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JScript 385

getUTCFullYear
Prototype: integer getUTCFullYear()

Summary: Returns the year in a Date object, according to universal time.

Description: The getUTCFullYear method returns the 4-digit (for years
between 1000 and 9999) year represented by a Date object, in universal time. It has
no arguments.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Low

Cross Reference: getFullYear

getUTCHours
Prototype: integer getUTCHours()

Summary: Returns the hour in a Date object, according to universal time.

Description: The getUTCHours method returns the integer value of the hour
contained in a Date object, in universal time. It has no arguments. Returns an
integer between 0 and 23.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

www.syngress.com

JS
cr

ip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 385

TLFeBOOK

386 JScript • Programmer’s Ultimate Security DeskRef

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Low

Cross Reference: getHours

getUTCMilliseconds
Prototype: integer getUTCMilliseconds()

Summary: Returns the milliseconds in a Date object, according to universal time.

Description: The getUTCMilliseconds method returns the integer value of the
milliseconds contained in a Date object. It has no arguments. Returns an integer
between 0 and 999. In practice this produces the same result as
date.getMilliseconds().

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Low

Cross Reference: getMilliseconds

getUTCMinutes
Prototype: integer getUTCMinutes()

Summary: Returns the minutes in a Date object, according to universal time.

Description: The getUTCMinutes method returns the integer value of the min-
utes contained in a Date object. It has no arguments. Returns an integer between 0
and 59. In practice this produces the same result as date.getMinutes().

www.syngress.com

JScrip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 386

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JScript 387

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Low

Cross Reference: getMinutes

getUTCMonth
Prototype: integer getUTCMonth()

Summary: Returns the month of the year in a Date object, according to universal
time.

Description: The getMonth method returns the integer value of the month con-
tained in a Date object, in universal time. It has no arguments. Returns an integer
between 0 (for January) and 11 (for December).

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Low

Cross Reference: getMonth

www.syngress.com

JS
cr

ip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 387

TLFeBOOK

388 JScript • Programmer’s Ultimate Security DeskRef

getUTCSeconds
Prototype: integer getUTCSeconds()

Summary: Returns the seconds in a Date object, according to universal time.

Description: The getUTCSeconds method returns the integer value of the sec-
onds contained in a Date object. It has no arguments. Returns an integer between
0 and 59. In practice this produces the same result as date.getSeconds().

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Low

Cross Reference: getSeconds

getYear
Summary: Returns a 2-digit year for dates between 1900 and 1999, 4-digit years
otherwise.

Description: The getYear method is included only for backwards compatibility
with previous versions of JScript. It assumes a 2-digit year for the period 1900-
1999, and a 4-digit year otherwise. It has no arguments.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Notes: Deprecated. Use getFullYear instead.

Impact: Low

www.syngress.com

JScrip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 388

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JScript 389

link
Prototype: Link link(URL)

Summary: Creates an HTML link from a string.

Description: The link method accepts a URL and returns a Link object.The
string’s text becomes the contents of the Link.The URL specifies the Link’s href
attribute. Example: “google”.link(“www.google.com/”) returns google

Risk: Inputs received after encoding may need to be decoded before being pro-
cesses, otherwise there is the risk that malicious or otherwise invalid strings can be
passed through the application.

Proper Usage: document.write(someText.link(someURL))

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Low

open
Prototype: stream open([mimeType[, “replace”]])

Summary: Opens a document stream for writing.

Description: The document’s open method readies the document for writing.This
can be used to create new content in a document or replace the document’s current
contents.A MIME type for the document may be specified. For the MIME type
text/html, an optional replace argument will cause the new content to replace
the old content without creating a new history entry. Returns the stream, or null if
no stream could be initialized. When writing to the stream is complete, call docu-
ment.close() to display the new content.

Risk: Any time functions are called with system access, all parameters passed to the
function from user input should be carefully analyzed to prevent access to or over-
writing of system files.Additionally, this function is capable of creating files on a
system. Files should never be created automatically as a result of an action such as a

www.syngress.com

JS
cr

ip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 389

TLFeBOOK

390 JScript • Programmer’s Ultimate Security DeskRef

form submittal. Excessive submits by a malicious user can result in exhausting file
nodes on the server.

Notes: I found two possibilities: window.open and document.open. I’ve
included text for both.

Proper Usage: document.open(“text/html”, “replace”)

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

Cross Reference: reload, replace

random
Prototype: float random()

Summary: Returns a pseudo-random number between 0 and 1.

Description: The Math.random method returns a pseudo-random number
between 0 and 1.The random number seed is generated when JScript is loaded. It
has no arguments.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to bruteforce or easily guessed number-
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Proper Usage: luckyNumber = Math.random()

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: High

www.syngress.com

JScrip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 390

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JScript 391

reverse
Prototype: Array reverse()

Summary: Reverses the elements of an Array.

Description: The reverse method reverses the ordering of an Array’s ele-
ments, so that the last element becomes the first. It returns the reversed Array. It
has no arguments.The reversal is done in-place, so no new Array is created.

Risk: This function should never be utilized to obfuscate data with the goal of pro-
tecting it from prying eyes. Only industry-standard cryptography algorithms should
be implemented to secure data.This function is out-of-date and should not be used!

Proper Usage: myArray.reverse()

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

ScriptEngineBuildVersion
Prototype: integer ScriptEngineBuildVersion()

Summary: Returns the build version of the current scripting engine.

Description: The ScriptEngineBuildVersion function returns an integer
corresponding to the build version of the scripting engine in use. It is equivalent to
the version information for the scripting engine’s dynamic link library (DLL). It has
no arguments.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

www.syngress.com

JS
cr

ip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 391

TLFeBOOK

392 JScript • Programmer’s Ultimate Security DeskRef

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriFunctions.asp

Impact: Medium

Cross Reference: ScriptEngine, ScriptEngineMajorVersion,
ScriptEngineMinorVersion

ScriptEngineMajorVersion
Prototype: integer ScriptEngineMajorVersion()

Summary: Returns the major version number of the current scripting engine.

Description: The ScriptEngineMajorVersion function returns an integer
corresponding to the major version of the scripting engine in use. It is equivalent to
the version information for the scripting engine’s dynamic link library (DLL). It has
no arguments.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriFunctions.asp

Impact: Medium

Cross Reference: ScriptEngine, ScriptEngineBuildVersion,
ScriptEngineMinorVersion

ScriptEngineMinorVersion
Prototype: integer ScriptEngineMinorVersion()

Summary: Returns the minor version number of the current scripting engine.

www.syngress.com

JScrip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 392

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JScript 393

Description: The ScriptEngineMinorVersion function returns an integer
corresponding to the minor version of the scripting engine in use. It is equivalent to
the version information for the scripting engine’s dynamic link library (DLL). It has
no arguments.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriFunctions.asp

Impact: Medium

Cross Reference: ScriptEngine, ScriptEngineMajorVersion,
ScriptEngineBuildVersion

setDate
Prototype: setDate(day)

Summary: Sets the day of the month for a Date object.

Description: The setDate method sets the day of the month for a Date object,
given in local time.Accepts an integer argument between 1 and 31. If a number out
of range of the current month is given, the number of days in the current month
are subtracted and the month is incremented until a valid date is reached.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Proper Usage: theIdes.setDate(15)

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

www.syngress.com

JS
cr

ip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 393

TLFeBOOK

394 JScript • Programmer’s Ultimate Security DeskRef

Impact: Medium

Cross Reference: setUTCDate

setFullYear
Prototype: setFullYear(year)

Summary: Sets the 4-digit year for a Date object.

Description: The setFullYear method sets the year for a Date object, given in
local time. Four-digit years are between 1000 and 9999.Accepts an integer argu-
ment specifying the full year of the Date object.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Proper Usage: moon.setFullYear(1969)

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

Cross Reference: setUTCFullYear

setHours
Prototype: setHours(hour)

Summary: Sets the hour of the day for a Date object.

Description: The setHours method sets the hour of the day for a Date object,
given in local time.Accepts an integer argument between 0 and 23. If a value
greater than 23 is given, the date and all other fields are modified accordingly.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

www.syngress.com

JScrip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 394

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JScript 395

Proper Usage: witches.setHour(0)

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/jscript7/html/jsoriMethodsNode.asp

Impact: Medium

Cross Reference: setUTCHours

setTime
Prototype: setTime(milliseconds)

Summary: Sets the exact time of a Date object.

Description: The setTime method accepts an integer parameter representing the
number of milliseconds elapsed since January 1, 1970 (1 January 1970 00:00:00),
given in local time.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Notes: Can be useful for storing and retrieving dates across sessions.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

setUTCDate
Prototype: setUTCDate(day)

Summary: Sets the day of the month for a Date object.

Description: The setUTCDate method sets the day of the month for a Date
object, given in universal time.Accepts an integer argument between 1 and 31. If
a number out of range of the current month is given, the number of days in the

www.syngress.com

JS
cr

ip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 395

TLFeBOOK

396 JScript • Programmer’s Ultimate Security DeskRef

current month are subtracted and the month is incremented until a valid date is
reached.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Proper Usage: valentine.setDate(14)

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

Cross Reference: setDate

setUTCFullYear
Prototype: setUTCFullYear(year)

Summary: Sets the 4-digit year for a Date object.

Description: The setUTCFullYear method sets the year for a Date object,
given in universal time. Four-digit years are between 1000 and 9999.Accepts an
integer argument specifying the full year of the Date object.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Proper Usage: orwell.setUTCFullYear(1984)

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

Cross Reference: setFullYear

www.syngress.com

JScrip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 396

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JScript 397

setUTCHours
Prototype: setUTCHours(hour)

Summary: Sets the hour of the day for a Date object.

Description: The setUTCHours method sets the hour of the day for a Date
object, given in universal time.Accepts an integer argument between 0 and 23. If
a value greater than 23 is given, the date and all other fields are modified accord-
ingly.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Proper Usage: coffee.setUTCHours(5)

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

Cross Reference: setHours

setUTCMilliseconds
Prototype: setUTCMilliseconds(milliseconds)

Summary: Sets the milliseconds for a Date object.

Description: The setUTCMilliseconds method sets the milliseconds for a Date
object, given in local time.Accepts an integer argument between 0 and 999. In
practice, this method is the same as setMilliseconds. If a value greater than 999
is given, the seconds are added and all other fields are modified accordingly.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

www.syngress.com

JS
cr

ip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 397

TLFeBOOK

398 JScript • Programmer’s Ultimate Security DeskRef

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

Cross Reference: setMilliseconds

setUTCMinutes
Prototype: setUTCMinutes(minutes)

Summary: Sets the minutes for a Date object.

Description: The setUTCMinutes method sets the minutes for a Date object,
given in local time.Accepts an integer argument between 0 and 59. In practice,
this method is the same as setMinutes. If a value greater than 59 is given, the
hours are added and all other fields are modified accordingly.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

Cross Reference: setMinutes

setUTCMonth
Prototype: setUTCMonth(month)

Summary: Sets the month of the year for a Date object.

Description: The setUTCMonth method sets the month of the year for a Date
object, given in universal time.Accepts an integer argument between 0 for
January and 11 for December. If a value greater than 11 is given, the year is added
and all other fields are modified accordingly.

www.syngress.com

JScrip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 398

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JScript 399

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

Cross Reference: setMonth

setUTCSeconds
Prototype: setUTCSeconds(seconds[, milliseconds])

Summary: Sets the seconds for a Date object.

Description: The setUTCSeconds method sets the seconds for a Date object,
given in universal time.Accepts an integer argument between 0 and 59. In prac-
tice, this method is the same as setSeconds. Optionally accepts a millisecond
argument between 0 and 999, equivalent to setUTCMilliseconds. If a value
greater than 59 is given, the minutes are added and all other fields are modified
accordingly.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

Cross Reference: setSeconds

www.syngress.com

JS
cr

ip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 399

TLFeBOOK

400 JScript • Programmer’s Ultimate Security DeskRef

setYear
Prototype: setYear(year)

Summary: Sets the year for a Date object.

Description: The setYear method is included only for backwards compatibility
with previous versions of JScript. It assumes a 2-digit year for the period 1900-
1999, and a 4-digit year otherwise. It accepts an integer year as an argument.

Risk: This function should only be accessed and launched by administrative-level
users or systems that wish to affect the underlying operating system. In nearly all
cases this function is not truly required and should be removed before an application
gets released as production.

Notes: Deprecated. Use setFullYear instead.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

toLocaleDateString
Prototype: string toLocaleDateString()

Summary: Returns a date string formatted to the current locale.

Description: The toLocaleDateString returns the date, in the current locale
and time zone format, as a string. It has no arguments.

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be cal-
culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

www.syngress.com

JScrip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 400

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JScript 401

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

toLocaleLowerCase
Prototype: string toLocaleLowerCase()

Summary: Returns a date string formatted to the current locale, with all the letters
converted to lowercase.

Description: The toLocaleDateString returns the date, in the current locale
and time zone format, as a lower case string. It has no arguments.

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be cal-
culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

toLocaleString
Prototype: string toLocaleString()

Summary: Converts a Date object to a string using the current locale and plat-
form conventions.

Description: The toLocaleString method converts the Date object to a
human-readable string. It uses the current locale and relies on the underlying host to
format the string, so the results are platform-dependant. It has no arguments.

www.syngress.com

JS
cr

ip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 401

TLFeBOOK

402 JScript • Programmer’s Ultimate Security DeskRef

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be cal-
culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

Cross Reference: toUTCString

toLocaleTimeString
Prototype: string toLocaleTimeString()

Summary: Converts a Date object to a time string using the current locale and
time zone.

Description: The toLocaleTimeString method converts the Date object to a
human-readable string. It uses the current locale, host settings, and time zone to
format the string. It has no arguments.

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be cal-
culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

www.syngress.com

JScrip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 402

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JScript 403

toLocaleUpperCase
Prototype: string toLocaleUpperCase()

Summary: Returns a date string formatted to the current locale, with all the letters
converted to uppercase.

Description: The toLocaleDateString returns the date, in the current locale
and time zone format, as an upper case string. It has no arguments.

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be cal-
culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

toUTCString
Prototype: string toUTCString()

Summary: Converts a Date object to a string using universal time and platform
conventions.

Description: The toUTCString method converts the Date object to a human-
readable string. It uses universal time but relies on the underlying platform to format
the string, so the results are host-dependant. It has no arguments.

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be cal-
culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

www.syngress.com

JS
cr

ip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 403

TLFeBOOK

404 JScript • Programmer’s Ultimate Security DeskRef

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

Cross Reference: toLocaleString

UTC
Prototype: integer UTC(year, month, day[, hours[, minutes[,
seconds[, milliseconds]]]])

Summary: Returns the number of milliseconds between the supplied date and 1
January 1970 00:00:00 using universal time.

Description: The UTC method accepts a date in universal time and returns the
number of milliseconds between that date and midnight of January 1, 1970. Zeroes
are assumed for any optional arguments not specified.

Risk: Certain string manipulation functions to include string and character transi-
tion functions are commonly leveraged in buffer overflow attacks.At the most basic
level, these functions read in data, perform analysis and execution logic, then output
the data to another type of string. It is imperative that the destination string be cal-
culated accordingly and that enough memory space is allocated. Special characters
should also be stricken from the conversion where possible.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

write
Prototype: write(string1[, string2, ..])

Summary: Writes JScript expressions to the specified document.

Description: The write method writes the results of JScript expressions to the
document. It takes an unspecified number of arguments, evaluates each one in turn,
and writes the result to the document stream.

www.syngress.com

JScrip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 404

TLFeBOOK

Programmer’s Ultimate Security DeskRef • JScript 405

Risk: All inputs to this method should be thoroughly parsed to prevent the poten-
tial for cross-site scripting attacks. Input parameters should be restricted to alphanu-
meric characters to prevent command executions during processing.

Proper Usage: document.write(“<h1>Sunday Sunday
Sunday!</h1>”)

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

Cross Reference: writeln

writeln
Prototype: writeln(string1[, string2, ..])

Summary: Writes JScript expressions to the specified document, followed by a
newline.

Description: The writeln method writes the results of JScript expressions to the
document. It takes an unspecified number of arguments, evaluates each one in turn,
and writes the result to the document stream. writeln appends a newline character
at the end of its write.

Risk: All inputs to this method should be thoroughly parsed to prevent the poten-
tial for cross-site scripting attacks. Input parameters should be restricted to alphanu-
meric characters to prevent command executions during processing.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
jscript7/html/jsoriMethodsNode.asp

Impact: Medium

Cross Reference: write

www.syngress.com

JS
cr

ip
t

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 405

TLFeBOOK

309_Desk_Ref_JScript.qxd 10/11/04 4:33 PM Page 406

TLFeBOOK

Programmer’s
Ultimate Security
DeskRef: LISP

bit-xor
Prototype: bit-xor 1array 2array

Summary: This function returns TRUE if exactly one but not both
of the two conditions are true

Description: This function compares two bit-arrays against an argu-
ment and returns TRUE if exactly one but not both of the two condi-
tions are true. Deceiving by name, this function does XOR or “flip” a
specified target bit.

Risk: This function is commonly misused and mistaken for a bit-flip-
ping XOR function. Ensure that it is not being used to obfuscate data
and that the allocated memory spaces are properly cleaned once this
function is finished executing.

Notes: Shouldn’t that be: does NOT xor or flip a target bit?

Additional Resources:
http://ugweb.cs.ualberta.ca/~c325/gcl/gcl_15.html

407

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 407

TLFeBOOK

408 LISP • Programmer’s Ultimate Security DeskRef

Impact: High

Cross References: bit-arrays

break
Prototype: break &;optional format-string &;rest
format-args

Summary: This function stops execution and enters debugging mode

Description: This function stops execution and calls the debugger, allowing exami-
nation of the stack.A format string with the appropriate arguments can be used to
display a message when it occurs.

Risk: The break function can be potentially compromised by an attacker to gain
access to sensitive memory-resistant data. In many cases, memory is not effectively
cleaned before the application exists if a series of break functions are encountered. It
is critical to ensure that an application user may not execute this function on
demand, in addition to cleaning all application data from memory before fully
exiting the program.

Additional Resources: www.webweasel.com/lisp/doc/b.htm

Impact: Low

Cross References: continue

catch
Prototype: catch tag {form}*

Summary: This special form acts as the target for a Throw

Description: This acts as a return point for a throw function, and is specified
using an object tag. Catch evaluates the forms of the Body and returns a value from
the last Body form

Risk: While the throw function has minimal risk associated with using it, it is
imperative that you ensure attackers do not gain the ability to call this function out-
side the program nor is the memory data viewable by such users.

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 408

TLFeBOOK

Programmer’s Ultimate Security DeskRef • LISP 409

Additional Resources: www.gnu.org/software/emacs/elisp-manual/html_node/
elisp_130.html

Impact: Low

Cross References: throw, tag

catenate
Prototype: catenate &;rest series-inputs

Summary: This function combines multiple series into a single series

Description: This function combines two or more series by appending them and is
commonly utilized to add one string onto the tail or end of another string.

Risk: The input and output of the Catenate function should be controlled to the
point where human users do not have the ability to call the internal function with
known parameters.Attackers have been known to compromise or leverage this
function in order to read a previously sensitive and private data string by attaching it
to another public string.

Additional Resources: www-
2.cs.cmu.edu/Groups/AI/html/cltl/clm/node353.html

Impact: Medium

Cross References: choose, split, expand, subseries, postion, mask,
mingle, chunk

cell-error
Prototype: cell-error condition

Summary: This type consists of error conditions occurring when accessing a
location

Description: This type consists of an error condition that occurs when accessing a
location, and is a subfunction of error. It is initialized with a name, and accessible
using cell-Error-Name.

www.syngress.com

LI
SP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 409

TLFeBOOK

410 LISP • Programmer’s Ultimate Security DeskRef

Risk: System and application error messages commonly have sensitive information
that an attacker could leverage to gain a foothold on a system to potentially assist in
a more complicated or dangerous attack. Error information can have memory,
internal configuration, function, and parameter data to include other types of data
that could be sought after by a malicious user.

Additional Resources: www.cs.queensu.ca/software_docs/gnudev/gcl-ansi/
gcl_601.html

Impact: Medium

Cross References: cell-error-name

cell-error-name
Prototype: cell-error-name condition

Summary: This function returns the name of an offending cell involved in the sit-
uation represented by condition.

Description: This function returns a cell name based upon a condition of type,
cell-error.

Risk: System and application error messages commonly have sensitive information
that an attacker could leverage to gain a foothold on a system to potentially assist in
a more complicated or dangerous attack. Error information can have memory,
internal configuration, function, and parameter data to include other types of data
that could be sought after by a malicious user.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node346.html

Impact: Medium

Cross References: cell-error

cerror
Prototype: cerror continue-format-string error-format-string
&;rest args

Summary: This function signals continual errors.

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 410

TLFeBOOK

Programmer’s Ultimate Security DeskRef • LISP 411

Description: This function signals an error and enters the debugger, from which
the error can be resolved and code execution continued, starting immediately after
the cerror call.

Risk: System and application error messages commonly have sensitive information
that an attacker could leverage to gain a foothold on a system to potentially assist in
a more complicated or dangerous attack. Error information can have memory,
internal configuration, function, and parameter data to include other types of data
that could be sought after by a malicious user.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node220.html

Impact: Medium

Cross References: error

collect-hash
Prototype: collect-hash keys values &;key :test :size :rehash-
size :rehash-threshold

Summary: This function returns values based upon a specified series of keys and
groups of corresponding valuesan association lists.This includes a property list and a
hash table.

Description: This function returns values based upon a specified series of keys and
groups of corresponding valuesan association lists, a property list, and a hash table.
The keyword arguments of collect-hash specify attributes of the hash table pro-
duced.

Risk: Collecting hash data may allow a malicious user the ability to gain access to
potentially sensitive application-stored data. In most associative arrays or hash tables,
all data is not supposed to be gleaned by end users.Access control lists, human input
analysis, and field protections aid in protecting arrays to ensure that only the desired
and appropriate data is viewable by end users.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node354.html

www.syngress.com

LI
SP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 411

TLFeBOOK

412 LISP • Programmer’s Ultimate Security DeskRef

Impact: High

Cross References: collect-alist, collect-plist

compile
Prototype: compile name &;optional definition

Summary: This function compiles a specified interpreted function.

Description: This function produces a compiled function and requires a name for
the source and compiled functions. warnings-p, failure-p returns FALSE if the
compilation of neither is detected by the compiler.

Risk: LISP is an interpreted scripting language.The compile function should be
controlled by internal application logic only. Restrict human input for secure usage!

Additional Resources: www.cs.queensu.ca/software_docs/gnudev/gcl-ansi/
gcl_255.html

Impact: Low

Cross References: error-output, compile-verbose, compile-print

compiled-function-p
Prototype: compiled-function-p object => generalized-
boolean

Summary: This function returns true only if the specified object is of a com-
piled-function.

Description: This function returns true if the specified object is of a compiled-
function, and otherwise, returns false.

Risk: Utilizing an internal compiler function contains nearly all the dangers of let-
ting an attacker control a local compiler. Such compile functions should be strictly
controlled and under no circumstance should an attacker or malicious user be able
to execute this function at will or control the parameters of this function. Function
parameters should also be controlled whereas users do not have the ability direct a

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 412

TLFeBOOK

Programmer’s Ultimate Security DeskRef • LISP 413

specific data stream whether internal or external to the application.This function is
usually removed before an application matures to “production status.”

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node73.html

Impact: Low

Cross References: compile, compile-file, compiled-function

compile-file
Prototype: compile-file input-pathname &;key :output-file :ver-
bose :print

Summary: This function compiles the contents of a specified input file, creating a
binary output-file.

Description: This function produces a binary output-file from the compiled con-
tents of an input-file. The verbose option can be used to display compiler messages.
The print option sends the information about the file to standard-out, and external-
format specifies the external file format.

Risk: Utilizing an internal compiler function contains nearly all the dangers of let-
ting an attacker control a local compiler. Such compile functions should be strictly
controlled and under no circumstance should an attacker or malicious user be able
to execute this function at will or control the parameters of this function. Function
parameters should also be controlled whereas users do not have the ability direct a
specific data stream whether internal or external to the application.This function is
usually removed before an application matures to “production status.”

Additional Resources: www.lisp.org/HyperSpec/Body/fun_compile-file.html

Impact: Low

Cross References: compile, error-output, compile-verbose, compile-
print

www.syngress.com

LI
SP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 413

TLFeBOOK

414 LISP • Programmer’s Ultimate Security DeskRef

compile-file-pathname
Prototype: compile-file-pathname pathname &;key :output-file

Summary: This function returns the pathname that compile-file would write to.

Description: This function takes input-file, output-file values, returns the logical
pathname. If input-file is a logical pathname, it is translated into a physical pathname
as if by calling.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node211.html

Impact: Low

Cross References: compile-file, pathname, logical-pathname, trans-
late-logical-pathname

compile-file-truename
Summary: This value is the physical pathname used by compile-name

Description: This value is a pathname based on the physical location a file being
compiled

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 414

TLFeBOOK

Programmer’s Ultimate Security DeskRef • LISP 415

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node224.html

Impact: Low

Cross References: compile-file

compile-print
Summary: This value is a Boolean that determines whether compiler outputs
input-file form data to standard-out.

Description: This Boolean is an argument of compile-file, and determines
whether input-file form data is outputted to standard-out

Risk: Utilizing an internal compiler function contains nearly all the dangers of let-
ting an attacker control a local compiler. Such compile functions should be strictly
controlled and under no circumstance should an attacker or malicious user be able
to execute this function at will or control the parameters of this function. Function
parameters should also be controlled, whereas users do not have the ability direct a
specific datastream whether internal or external to the application.This function is
usually removed before an application matures to “production status.”

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node224.html

Impact: Low

Cross References: compile-file

compiler-let
Prototype: compiler-let ({var | (var value)}*) {form}*

Summary: This special form causes processing of the body by the compiler with
special variables.

Description: This special form causes processing of the body by the compiler with
special variables bound to indicated values in the execution context of the compiler.

www.syngress.com

LI
SP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 415

TLFeBOOK

416 LISP • Programmer’s Ultimate Security DeskRef

Risk: Utilizing an internal compiler function contains nearly all the dangers of let-
ting an attacker control a local compiler. Such compile functions should be strictly
controlled and under no circumstance should an attacker or malicious user be able
to execute this function at will or control the parameters of this function. Function
parameters should also be controlled whereas users do not have the ability direct a
specific data stream whether internal or external to the application.This function is
usually removed before an application matures to “production status.”

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node83.html

Impact: Low

Cross References: let

compiler-macroexpand
Summary: This function expands compiler macro functions.

Description: This function calls a compiler macro function and expands repeatedly
until it’s no longer possible to expand.

Risk: Utilizing an internal compiler function contains nearly all the dangers of let-
ting an attacker control a local compiler. Such compile functions should be strictly
controlled and under no circumstance should an attacker or malicious user be able
to execute this function at will or control the parameters of this function. Function
parameters should also be controlled whereas users do not have the ability direct a
specific data stream whether internal or external to the application.This function is
usually removed before an application matures to “production status.”

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node101.html

Impact: Low

Cross References: macroexpand

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 416

TLFeBOOK

Programmer’s Ultimate Security DeskRef • LISP 417

compiler-macroexpand1
Summary: This function expands compiler macro functions.

Description: This function calls a compiler macro function once.

Risk: Utilizing an internal compiler function contains nearly all the dangers of let-
ting an attacker control a local compiler. Such compile functions should be strictly
controlled and under no circumstance should an attacker or malicious user be able
to execute this function at will or control the parameters of this function. Function
parameters should also be controlled whereas users do not have the ability direct a
specific data stream whether internal or external to the application.This function is
usually removed before an application matures to “production status.”

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node101.html

Impact: Low

Cross References: compile-macroexpand, macroexpand

compiler-macro-function
Prototype: compiler-macro-function name {&;optional environ-
ment} => function

Summary: This function accesses a specified macro function.

Description: This function calls the specified macro function in an environment.

Risk: Utilizing an internal compiler function contains nearly all the dangers of let-
ting an attacker control a local compiler. Such compile functions should be strictly
controlled and under no circumstance should an attacker or malicious user be able
to execute this function at will or control the parameters of this function. Function
parameters should also be controlled whereas users do not have the ability direct a
specific data stream whether internal or external to the application.This function is
usually removed before an application matures to “production status.”

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node101.html

www.syngress.com

LI
SP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 417

TLFeBOOK

418 LISP • Programmer’s Ultimate Security DeskRef

Impact: Low

Cross References: define-compiler-macro

compile-verbose
Summary: This value is a Boolean that determines whether compiler displays
information.

Description: This Boolean is an argument of compile-file, and if set to true it
will cause useful information to be displayed when compiling.

Risk: Utilizing an internal compiler, function contains nearly all the dangers of let-
ting an attacker control a local compiler. Such compile functions should be strictly
controlled and under no circumstance should an attacker or malicious user be able
to execute this function at will or control the parameters of this function. Function
parameters should also be controlled whereas users do not have the ability direct a
specific data stream whether internal or external to the application.This function is
usually removed before an application matures to “production status.”

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node224.html

Impact: Medium

Cross References: compile-file

debugger-hook
Summary: This value is used prior to normal entry into the debugger, due to a call
to invoke-debugger or automatic entry.

Description: This value is used prior to normal entry into the debugger with a
condition that is not handled by error or cerror.The function can either handle
the condition by transferring control or return normally, allowing the standard
debugger to run.

Risk: Functions that launch or invoke system debuggers have the ability to allow
local application users to view and access sensitive memory-resident data. It is crit-
ical to control these functions to disallow users from accessing these functions.

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 418

TLFeBOOK

Programmer’s Ultimate Security DeskRef • LISP 419

Ensure that human user input is not permitted to call these functions or directly pass
data as parameters. Special characters should be stripped as a part of vetting human
user input.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node345.html

Impact: Medium

Cross References: invoke-debugger, error, cerror

debug-io
Summary: This value is a stream to be used for interactive debugging purposes.

Description: This variable a standardized I/O customization variable, and can be
bound or assigned in order to change the default destinations for input and/or
output used by various standardized operators and facilities

Risk: Functions that launch or invoke system debuggers have the ability to allow
local application users to view and access sensitive memory-resident data. It is crit-
ical to control these functions to disallow users from accessing these functions.
Ensure that human user input is not permitted to call these functions or directly pass
data as parameters. Special characters should be stripped as a part of vetting human
user input.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node183.html

Impact: Medium

Cross References: error-output, query-io, standard-input, standard-
output, trace-output

delete
Prototype: delete item sequence &;key :from-end :test :test-
not :start :end :count :key

Summary: This function returns a sequence from which the elements that satisfy
the test have been removed.

www.syngress.com

LI
SP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 419

TLFeBOOK

420 LISP • Programmer’s Ultimate Security DeskRef

Description: This function returns a modified sequence from which elements have
been removed using specified criteria.The sequence returned will be of the same
data type.

Risk: In addition to the potential race condition bugs that are associated with this
function, a user could also attempt to execute a denial of service attack. Ensure that
only one instance of this function can be called at any given moment.All input
passed to this function should be analyzed closely to ensure that only desired
resources can be removed from the system. It is not uncommon for worms and
viruses to exploit application-layer vulnerabilities to cause damage to files they since
would not have had access to.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node144.html

Impact: Low

Cross References: delete-if, delete-if-not, remove, remove-if,
remove-if-not

delete-duplicates
Prototype: delete-duplicates sequence &;key :from-end :test
:test-not :start :end :key

Summary: This function returns a modified sequence from which any element
that matches another element occurring in sequence has been removed.

Description: This function returns a modified sequence from which any element
matching another element occurring in same sequence has been removed.The
from-end argument states which end to start from, start-end defines the sequence
range, and result-sequence the modified sequence.The Test and test-not argu-
ments are function designators for two arguments that return a Boolean.

Risk: In addition to the potential race condition bugs that are associated with this
function, a user could also attempt to execute a denial of service attack. Ensure that
only one instance of this function can be called at any given moment.All input
passed to this function should be analyzed closely to ensure that only desired
resources can be removed from the system. It is not uncommon for worms and

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 420

TLFeBOOK

Programmer’s Ultimate Security DeskRef • LISP 421

viruses to exploit application-layer vulnerabilities to cause damage to files they since
would not have had access to.

Additional Resources:
www.franz.com/support/documentation/6.2/ansicl/dictentr/remove-d.htm

Impact: Low

Cross References: remove-duplicates

delete-file
Prototype: delete-file file

Summary: This function deletes a specified file.

Description: This function deletes a file specified by the filespec argument, and
returns true if successful.

Risk: In addition to the potential race condition bugs that are associated with this
function, a user could also attempt to execute a denial of service attack. Ensure that
only one instance of this function can be called at any given moment.All input
passed to this function should be analyzed closely to ensure that only desired
resources can be removed from the system. It is not uncommon for worms and
viruses to exploit application-layer vulnerabilities to cause damage to files they since
would not have had access to.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node216.html

Impact: Medium

Cross References: pathname, logical-pathname

delete-if
Prototype: delete-if predicate sequence &;key :from-end :start
:end :count :key

Summary: This function returns a sequence from which the elements have been
conditionally removed.

www.syngress.com

LI
SP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 421

TLFeBOOK

422 LISP • Programmer’s Ultimate Security DeskRef

Description: This function returns a modified sequence with those satisfying the
define conditions deleted.A sequence can be destroyed and used to construct the
result.

Risk: In addition to the potential race condition bugs that are associated with this
function, a user could also attempt to execute a denial of service attack. Ensure that
only one instance of this function can be called at any given moment.All input
passed to this function should be analyzed closely to ensure that only desired
resources can be removed from the system. It is not uncommon for worms and
viruses to exploit application-layer vulnerabilities to cause damage to files they since
would not have had access to.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node144.html

Impact: Low

Cross References: delete, delete-if-not, remove, remove-if, remove-
if-not

delete-if-not
Prototype: delete-if predicate sequence &;key :from-end :start
:end :count :key

Summary: This function returns a sequence from which the elements have been
conditionally removed.

Description: This function returns a modified sequence with those satisfying the
define conditions deleted.A sequence can be destroyed and used to construct the
result.

Risk: In addition to the potential race condition bugs that are associated with this
function, a user could also attempt to execute a denial of service attack. Ensure that
only one instance of this function can be called at any given moment.All input
passed to this function should be analyzed closely to ensure that only desired
resources can be removed from the system. It is not uncommon for worms and
viruses to exploit application-layer vulnerabilities to cause damage to files they since
would not have had access to.

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 422

TLFeBOOK

Programmer’s Ultimate Security DeskRef • LISP 423

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node144.html

Impact: Low

Cross References: delete, delete-if, remove, remove-if, remove-if-not

delete-package
Prototype: delete-package package

Summary: This function deletes a specified package from all package system data
structures.

Description: This function deletes a specified package and returns true if suc-
cessful. Deleting a package causes package names and nicknames to no longer be
recognized package names.

Risk: In addition to the potential race condition bugs that are associated with this
function, a user could also attempt to execute a denial of service attack. Ensure that
only one instance of this function can be called at any given moment.All input
passed to this function should be analyzed closely to ensure that only desired
resources can be removed from the system. It is not uncommon for worms and
viruses to exploit application-layer vulnerabilities to cause damage to files they since
would not have had access to.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node118.html

Impact: Low

Cross References: unuse-package

error
Prototype: error format-string &;rest args

Summary: This function signals an error.

Description: This function signals a fatal error, after which it is impossible to
return to the caller and continue.

www.syngress.com

LI
SP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 423

TLFeBOOK

424 LISP • Programmer’s Ultimate Security DeskRef

Risk: System and application error messages commonly have sensitive information
that an attacker could leverage to gain a foothold on a system to potentially assist in
a more complicated or dangerous attack. Error information can have memory,
internal configuration, function, and parameter data to include other types of data
that could be sought after by a malicious user.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node220.html

Impact: Medium

Cross References: cerror, warn, break

error-output
Prototype: error-output stream

Summary: This variable identifies a stream to which error messages are sent.

Description: This variable identifies the output stream for error messages, usually
same as standard-output.

Risk: System and application error messages commonly have sensitive information
that an attacker could leverage to gain a foothold on a system to potentially assist in
a more complicated or dangerous attack. Error information can have memory,
internal configuration, function, and parameter data to include other types of data
that could be sought after by a malicious user.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node183.html

Impact: Medium

Cross References: standard-output, error

file-author
Prototype: file-author file

Summary: This function returns the author of a specified file.

Description: This function returns the author name of a file as a string.The file
argument can be a stream open to a file, or a filename.

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 424

TLFeBOOK

Programmer’s Ultimate Security DeskRef • LISP 425

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node216.html

Impact: Low

Cross References: delete-file, file-write-date, probe-file, file-length

file-error-pathname
Prototype: file-error-pathname condition

Summary: This function returns the offending pathname of a condition of type
file-error.

Description: This function returns the offending pathname of a condition of type
file-error.

Risk: System and application error messages commonly have sensitive information
that an attacker could leverage to gain a foothold on a system to potentially assist in
a more complicated or dangerous attack. Error information can have memory,
internal configuration, function, and parameter data to include other types of data
that could be sought after by a malicious user.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node346.html

Impact: Low

Cross References: file-error

www.syngress.com

LI
SP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 425

TLFeBOOK

426 LISP • Programmer’s Ultimate Security DeskRef

file-write-date
Prototype: file-write-date file

Summary: This function returns the creation of last modified date of a specified
file.

Description: This function returns the creation or last written date as an integer in
universal time format.The file argument can be a stream open to a file, or a file-
name.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node216.html

Impact: Low

Cross References: delete-file, file-author, probe-file, file-length

get-internal-real-time
Prototype: get-internal-real-time

Summary: This function returns the current time in internal time units.

Description: This function returns as an integer the current time in internal time
units, relative to an arbitrary time base.The difference between the values of two
calls to this function is the amount of elapsed real time between the two calls.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 426

TLFeBOOK

Programmer’s Ultimate Security DeskRef • LISP 427

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node232.html

Impact: Medium

Cross References: internal-time-units-per-second

get-internal-run-time
Prototype: get-internal-run-time

Summary: This function returns the current run time in internal time units.

Description: This function returns the current run time in internal time units as
an integer, and can measure real time, run time, CPU cycles, or some other quantity

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node232.html

Impact: Medium

Cross References: internal-time-units-per-second

get-properties
Prototype: get-properties place indicator-list

Summary: This function returns any of several property list entries all at once.

Description: This function searches the property list stored in place for any of the
indicators in an indicator-list until it finds the first property in the property list
whose indicator is one of the elements of indicator-list.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All

www.syngress.com

LI
SP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 427

TLFeBOOK

428 LISP • Programmer’s Ultimate Security DeskRef

analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node108.html

Impact: Medium

Cross References: get, getf

get-universal-time
Prototype: get-universal-time

Summary: This function returns the time in Universal Time format.

Description: This function returns the current time as a single integer in Universal
Time format. Universal Time format is represented as a non-negative integer
number of seconds.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node232.html

Impact: Low

Cross References: decode-universal-time, encode-universal-time

hash-table-rehash-threshold
Prototype: hash-table-rehash-threshold hash-table

Summary: This function returns the current rehash threshold of hash-table

Description: This function returns the current rehash threshold of a hash-table,
suitable for use in a call to make-hash-table in order to produce a hash table with
state corresponding to the current state of the hash-table.

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 428

TLFeBOOK

Programmer’s Ultimate Security DeskRef • LISP 429

Risk: Hash tables or associative arrays can be utilized to store large amounts of
information. It is critical to control human user access to such data structures.
Human user input should be analyzed and vetted, user access control put on the
tables, and output restricted to certain public information. Since this function passes
potentially sensitive memory information as its output, it should be mandatory to
only use this function were necessary.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node155.html

Impact: Medium

Cross References: make-hash-table, hash-table-rehash-size

host-namestring
Prototype: host-namestring pathname

Summary: This function returns the host name portion of a pathname.

Description: This function takes a pathname value and returns the host name.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node214.html

Impact: Medium

Cross References: truename, merge-pathnames, pathname, logical-
pathname

import
Prototype: import symbols &;optional package

Summary: This function adds a single symbol or symbols to the package.

www.syngress.com

LI
SP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 429

TLFeBOOK

430 LISP • Programmer’s Ultimate Security DeskRef

Description: This function adds a single symbol or symbols to the package, and
checks for name conflicts with existing symbols.

Risk: All special and wildcard characters should be removed before the filename is
computed on the local filesystem. Malicious filenames are interpreted differently on
varying systems and as such, directory control is critical to limiting the ability of an
attacker to potentially compromise files at varying levels within the application or
underlying subsystem.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node118.html

Impact: Low

Cross References: shadow, export

invoke-debugger
Prototype: invoke-debugger condition

Summary: This function invokes the debugger.

Description: This function attempts interactive handling of its argument, which
must be a condition by invoking the debugger.

Risk: Functions that launch or invoke system debuggers have the ability to allow
local application users to view and access sensitive memory-resident data. It is crit-
ical to control these functions to disallow users from accessing these functions.
Ensure that human user input is not permitted to call these functions or directly pass
data as parameters. Special characters should be stripped as a part of vetting human
user input.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node345.html

Impact: High

Cross References: error, break

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 430

TLFeBOOK

Programmer’s Ultimate Security DeskRef • LISP 431

lisp-implementation-type
Prototype: lisp-implementation-type

Summary: This function returns the name of the current Lisp implementation.

Description: This function returns a string identifying the name of the particular
implementation in use.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node233.html

Impact: High

Cross References: lisp-implementation-version

lisp-implementation-version
Prototype: lisp-implementation-version

Summary: This function returns the version number of the current Lisp imple-
mentation.

Description: This function returns a string identifying the version number of the
particular implementation in use.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node233.html

www.syngress.com

LI
SP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 431

TLFeBOOK

432 LISP • Programmer’s Ultimate Security DeskRef

Impact: High

Cross References: lisp-implementation-name

make-random-state
Prototype: make-random-state &;optional state

Summary: This function returns an new random-state value.

Description: This function returns a fresh object of type random-state, suitable for
use as the value of random-state. If the state is a random state object, the new-state
is a copy of that object. If state is nil, the new-state is a copy of the current random
state. If state is t, the new-state is a fresh random state object that has been randomly
initialized by some means.

Risk: As with most standard random functions implemented within the program-
ming and scripting libraries, this function is susceptible to bruteforce or easily
guessed number generating attacks due to a poor seed algorithm within the backend
code.Amongst numerous other secure random number generating functions,
Microsoft .Net has secure methods for implementing properly seeded numbers.
ISAAC, designed by Bob Jenkins, is a fast cryptographic random number generator
is as strong as they come.Available in multiple languages, ISAAC is a standard for
many freeware and commercial solutions and should be considered the next time a
random number is required within an application.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node133.html

Impact: High

Cross References: random, random-state

mapping
Prototype: mapping ({({var | ({var}*)} value)}*) {declara-
tion}* {form}*

Summary: This macro helps specify uses of map-fn.

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 432

TLFeBOOK

Programmer’s Ultimate Security DeskRef • LISP 433

Description: This macro helps specify uses of map-fn where type is t and the func-
tion is a literal lambda. he binding list specifies zero or more variables that are
bound in parallel to successive values of series.The value part of each pair is an
expression that must produce a series.The declarations and forms are treated as the
body of a lambda expression that is mapped over the series values.A series of the
first values returned by this lambda expression is returned as the result of mapping.

Risk: Ensure that the output of this function is viewable only by the appropriate
human-user parties and that output geared for internal application usage is vetted
directly after parsing.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node351.html

Impact: Low

Cross References: let

nreverse
Prototype: nreverse sequence

Summary: This function returns a sequence of the same kind as a specified
sequence, containing the same elements, but in reverse order.

Description: This function can modify and return a new sequence of the same
kind as a sequence containing the same elements, but in reverse order.The new
sequence

Risk: This function should never be utilized to obfuscate data with the goal of pro-
tecting it from prying eyes. Only industry-standard cryptography algorithms should
be implemented to secure data.This function is out-of-date and should not be used!

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node142.html

Impact: Low

Cross References: reverse

www.syngress.com

LI
SP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 433

TLFeBOOK

434 LISP • Programmer’s Ultimate Security DeskRef

open
Prototype: open filename &;key :direction :element-type :if-
exists :if-does-not-exist :external-format

Summary: This function creates, opens, and returns a file stream to the specified
file.

Description: This function creates, opens, and returns a file stream connected to
the specified file.The keyword arguments specify the characteristics of the file
stream that is returned, and how to handle errors

Risk: All special and wildcard characters should be removed before the filename is
computed on the local filesystem. Malicious filenames are interpreted differently on
varying systems and as such, directory control is critical to limiting the ability of an
attacker to potentially compromise files at varying levels within the application or
underlying subsystem.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node215.html

Impact: Low

Cross References: with-open-file, close, pathname, logical-pathname

open-stream-p
Prototype: open-stream-p stream

Summary: This function returns a Boolean value if the specified stream is open.

Description: This function returns true if a specified stream is an open stream, and
otherwise returns false. Streams are open until they have been explicitly closed with
close, or until they are implicitly closed.

Risk: Human users should not have the ability to execute this function at will.
Control the output of this function as it may pass information to an attacker who
could use it to determine targeted network and filesystem information.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node185.html

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 434

TLFeBOOK

Programmer’s Ultimate Security DeskRef • LISP 435

Impact: Low

Cross References: close, with-output-to-string, with-open-file,
with-input-from-string, with-open-stream

output-stream-p
Prototype: output-stream-p stream

Summary: This function returns a Boolean value if the specified stream is an
output stream.

Description: This function returns TRUE if stream is an output stream, and other-
wise returns FALSE.

Risk: Human users should not have the ability to execute this function at will.
Control the output of this function as it may pass information to an attacker who
could use it to determine targeted network and filesystem information.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node185.html

Impact: Low

Cross References: input-stream-p

pathname
Prototype: pathname pathname

Summary: This function returns a pathname from the supplied pathname.

Description: This function returns a pathname from the supplied argument, which
can be a string, symbol or stream. Pathname represents the name used to access a
file. Valid pathnames consist of a host, device, directory, name, type, and version.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only

www.syngress.com

LI
SP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 435

TLFeBOOK

436 LISP • Programmer’s Ultimate Security DeskRef

processed internally by the application. Limit the end-user’s ability to ascertain or
traverse path information.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node214.html

Impact: Low

Cross References: pathname-device, pathname-directory, pathname-
host, pathname-match-p, pathname-name, pathname-type, pathname-
version, pathnamep

pathname-device
Prototype: pathname-device pathname

Summary: This function returns pathname device component from the supplied
pathname.

Description: This function returns the pathname device component from the sup-
plied pathname argument which can be a string, symbol, or stream.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end-user’s ability to ascertain or
traverse path information.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node214.html

Impact: Low

Cross References: pathname, pathname-directory, pathname-host,
pathname-match-p, pathname-name, pathname-type, pathname-version,
pathnamep

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 436

TLFeBOOK

Programmer’s Ultimate Security DeskRef • LISP 437

pathname-directory
Prototype: pathname-directory pathname

Summary: This function returns the directory component from the supplied path-
name.

Description: This function returns the pathname directory component from the
supplied pathname argument, which can be a string, symbol, or stream.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end-user’s ability to ascertain or
traverse path information.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node214.html

Impact: Low

Cross References: pathname-device, pathname, pathname-host, path-
name-match-p, pathname-name, pathname-type, pathname-version,
pathnamep

pathname-host
Prototype: pathname-host pathname

Summary: This function returns the host component from the supplied pathname.

Description: This function returns the pathname host component from the sup-
plied pathname argument which can be a string, symbol or stream.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only

www.syngress.com

LI
SP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 437

TLFeBOOK

438 LISP • Programmer’s Ultimate Security DeskRef

processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node214.html

Impact: Low

Cross References: pathname-device, pathname-directory, pathname,
pathname-match-p, pathname-name, pathname-type, pathname-version,
pathnamep

pathname-match-p
Prototype: pathname-match-p pathname wildname

Summary: This function returns true if a pathname matches a supplied argument.

Description: This function returns TRUE if a supplied wildcard and pathname
arguments match, and FALSE otherwise.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node207.html

Impact: Low

Cross References: pathname-device, pathname-directory, pathname-
host, pathname, pathname-name, pathname-type, pathname-version,
pathnamep

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 438

TLFeBOOK

Programmer’s Ultimate Security DeskRef • LISP 439

pathname-name
Prototype: pathname-name pathname &;key :case

Summary: This function returns the name component from the supplied path-
name.

Description: This function returns the pathname name component from the sup-
plied pathname argument which can be a string, symbol or stream.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end-user’s ability to ascertain or
traverse path information.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node214.html

Impact: Low

Cross References: pathname-device, pathname-directory, pathname-
host, pathname-match-p, pathname, pathname-type, pathname-version,
pathnamep

pathnamep
Prototype: pathnamep object

Summary: This function returns TRUE if an object is a valid pathname.

Description: This function returns TRUE if an object is a valid pathname, other-
wise FALSE.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only

www.syngress.com

LI
SP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 439

TLFeBOOK

440 LISP • Programmer’s Ultimate Security DeskRef

processed internally by the application. Limit the end-user’s ability to ascertain or
traverse path information.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node214.html

Impact: Low

Cross References: pathname-device, pathname-directory, pathname-
host, pathname-match-p, pathname-name, pathname-type, pathname-
version

pathname-type
Prototype: pathname-type pathname &;key :case

Summary: This function returns the type component from the supplied pathname
argument.

Description: This function returns the pathname type component from the sup-
plied pathname argument which can be a string, symbol or stream.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node214.html

Impact: Low

Cross References: pathname-device, pathname-directory, pathname-
host, pathname-match-p, pathname-name, pathname, pathname-version,
pathnamep

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 440

TLFeBOOK

Programmer’s Ultimate Security DeskRef • LISP 441

pathname-version
Prototype: pathname-version pathname

Summary: This function returns the version component from the supplied path-
name argument.

Description: This function returns the pathname version component from the
supplied pathname argument which can be a string, symbol or stream.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and in
some cases user and security information. Ensure that non-alphanumeric characters
are removed from the string before it is processed and that the information is only
processed internally by the application. Limit the end user’s ability to ascertain or
traverse path information.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node214.html

Impact: Low

Cross References: pathname-device, pathname-directory, pathname-
host, pathname-match-p, pathname-name, pathname-type, pathname,
pathnamep

random
Prototype: random number &;optional state

Summary: This function returns a random number.

Description: This function returns a pseudo-random number between zero and a
supplied number.

Risk: As with most standard random functions implemented within the program-
ming and scripting libraries, this function is susceptible to bruteforce or easily guessed
number-generating attacks due to a poor seed algorithm within the backend code.
Amongst numerous other secure random number generating functions, Microsoft
.Net has secure methods for implementing properly seeded numbers. ISAAC,

www.syngress.com

LI
SP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 441

TLFeBOOK

442 LISP • Programmer’s Ultimate Security DeskRef

designed by Bob Jenkins, is a fast cryptographic random number generator is as
strong as they come.Available in multiple languages, ISAAC is a standard for many
freeware and commercial solutions and should be considered the next time a random
number is required within an application.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node133.html

Impact: High

Cross References: random-state, random-state-p

random-state
Summary: This type of object contains state information used by the random
number generator.

Description: This object is used to maintain the state of the random-number gen-
erator and is altered when a random operation occurs.

Risk: As with most standard random functions implemented within the program-
ming and scripting libraries, this function is susceptible to bruteforce or easily
guessed number-generating attacks due to a poor seed algorithm within the
backend code.Amongst numerous other secure random number generating func-
tions, Microsoft .Net has secure methods for implementing properly seeded num-
bers. ISAAC, designed by Bob Jenkins, is a fast cryptographic random number
generator is as strong as they come.Available in multiple languages, ISAAC is a stan-
dard for many freeware and commercial solutions and should be considered the next
time a random number is required within an application.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node133.html

Impact: High

Cross References: random, random-state-p

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 442

TLFeBOOK

Programmer’s Ultimate Security DeskRef • LISP 443

remove
Prototype: remove item sequence &;key :from-end :test :test-
not :start :end :count :key

Summary: This function returns a sequence without the elements satisfying the
specified test.

Description: This function returns a sequence without the elements satisfying the
specified test.

Risk: In addition to the potential race condition bugs that are associated with this
function, a user could also attempt to execute a denial of service attack. Ensure that
only one instance of this function can be called at any given moment.All input
passed to this function should be analyzed closely to ensure that only desired
resources can be removed from the system. It is not uncommon for worms and
viruses to exploit application-layer vulnerabilities to cause damage to files they since
would not have had access to.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node144.html

Impact: Low

Cross References: delete, delete-duplicates, delete-if, delete-if-
not, delete-package, delete-file

shadow
Prototype: shadow symbols &;optional package

Summary: This function assures symbols with names specified by symbol-names
are present in the package.

Description: This function assures that symbols with names given by symbol-
names are present in the package.Any missing symbol is created and inserted into
the package as an inserted-symbol.

Risk: Under no circumstance should shadow functions be utilized to obfuscate sen-
sitive information. Only industry-standard cryptography algorithms should be
implemented to secure data.This function is out-of-date and should not be used! It

www.syngress.com

LI
SP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 443

TLFeBOOK

444 LISP • Programmer’s Ultimate Security DeskRef

is recommended that a commercially accepted encryption algorithm be utilized for
any type of encryption.These types of implementations include DES,AES, Blowfish,
or RSA to mention a few.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node118.html

Impact: High

Cross References: package-shadowing-symbols

shadowing-import
Prototype: shadowing-import symbols &;optional package

Summary: This function inserts symbols into a package as an internal symbol.

Description: This function inserts symbols into a package as an internal symbol,
but does not signal an error even if the importation of a symbol would shadow
some symbol already accessible in the package.

Risk: Under no circumstance should shadow functions be utilized to obfuscate sen-
sitive information. Only industry-standard cryptography algorithms should be
implemented to secure data.This function is out-of-date and should not be used! It
is recommended that a commercially accepted encryption algorithm be utilized for
any type of encryption.These types of implementations include DES,AES, Blowfish,
or RSA to mention a few.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node118.html

Impact: High

Cross References: import, unintern, package-shadowing-symbols

software-type
Prototype: software-type

Summary: This function returns the name of any supporting software.

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 444

TLFeBOOK

Programmer’s Ultimate Security DeskRef • LISP 445

Description: This function returns a string containing the generic name of any rel-
evant supporting software.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node233.html

Impact: Medium

Cross References: software-version

software-version
Prototype: software-version

Summary: This function returns the version information for any supporting soft-
ware.

Description: This function returns a string containing the version information for
any relevant supporting software.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node233.html

Impact: Medium

Cross References: software-type

www.syngress.com

LI
SP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 445

TLFeBOOK

446 LISP • Programmer’s Ultimate Security DeskRef

warn
Prototype: warn format-string &;rest args

Summary: This function signals a condition or situation.

Description: This function signals a mild error with the supplied arguments.

Risk: Warning messages commonly have sensitive information that an attacker
could leverage to gain a foothold on a system to potentially assist in a more compli-
cated or dangerous attack. Language-internal warning functions are out-of-date and
should not be utilized in production or publicly accessible applications.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node343.html

Impact: Low

Cross References: warning

warning
Summary: This type consists of all types of warnings.

Description: This type consists of all types of warnings and is a subtype of condi-
tion.

Risk: Warning messages commonly have sensitive information that an attacker
could leverage to gain a foothold on a system to potentially assist in a more compli-
cated or dangerous attack. Language-internal warning functions are out-of-date and
should not be utilized in production or publicly-accessible applications.

Additional Resources: www-2.cs.cmu.edu/Groups/AI/html/cltl/clm/
node346.html

Impact: Low

Cross References: warn, condition

www.syngress.com

LISP

309_Desk_Ref_LISP.qxd 10/11/04 4:38 PM Page 446

TLFeBOOK

Programmer’s
Ultimate Security
DeskRef: Perl

ArrayDeleteAt
Prototype: ArrayDeleteAt(array, position)

Summary: This function deletes an element from an array.

Description: The function attempts to delete the element located
at a given position.The function has two input variables: the array
and the position.The function will return TRUE if successful, and
FALSE if not.The function will recalculate the indexing, as well,
when deleting the member of the array.Thus, when deleting mul-
tiple elements, this fact must be considered.

Risk: Elements in an array are common targets of SQL injection
and manipulation attacks in addition to cross-site scripting
(CSS/XSS) attacks.These data elements are commonly stored and
allowed to pass through weakly vetted input streams and during
analysis within the program are executed thereby potentially putting
additional data at risk. Restrict all input data for arrays that is human
generated.

447

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 447

TLFeBOOK

448 Perl • Programmer’s Ultimate Security DeskRef

Impact: Low

Cross References: ArrayInsertAt, ArrayNew, ArrayToList

chdir
Prototype: chdir EXPR, chdir

Summary: This function changes the current, active directory.

Description: The function attempts to change the working directory of the active
process.The function can handle one argument: the new target directory. However,
if the user does not specify, the function will attempt to change the directory to the
user’s home directory.The function returns a Boolean value upon completion:
TRUE for success, FALSE for failure.

Risk: This function poses minimal risk but the result of the changed directory
should be limited to a set of directories for the desired resource—in other words,
application users should not be able to point this function at any directory on the
underlying subsystem. Execution and binary-residing directories are the most
common targets.

Additional Resources: www.perl.org/docs.html

Impact: High

chmod
Prototype: chmod LIST

Summary: This function changes the permissions of a file.

Description: This function attempts to change the permissions of a list of files.
The first entry of the list is the mode to which the function will change the per-
missions.The function will then read the list of files that follow.The function will
attempt to change the permissions and will return an integer value ranging from
zero to the total count of files.The function will not count in the return value any

www.syngress.com

Perl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 448

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Perl 449

files that failed. Possible reasons for failure is not having the proper access to change
the permissions of a file.

Risk: In addition to the potential race condition vulnerability that is associated
with this function it also handles potentially sensitive information.The function is
inherently flawed if two processes try to access and modify the permissions of a
single file simultaneously, one function could receive the overriding permissions
from the other. If the application is transmitting this information over the wire, it
should utilize strong point-to-point encryption to ensure that an attacker could not
ascertain the filename, path, old permissions, or new permissions.

Additional Resources: www.perl.org/docs.html

Impact: High

chown
Prototype: chown LIST

Summary: This function changes the owner/group associations of a file.

Description: This function attempts to change the owner of a list of files.The first
entries of the list are the user ID number and group ID number for the function to
use.The function will then read the list of files that follow.The function will
attempt to change the ownership and will return an integer value ranging from
zero to the total count of files.The function will not count in the return value any
files that failed. Possible reasons for failure are not having the proper access to
change the ownership of a file.

Risk: The chown function is susceptible to multiple race condition attacks whereas
an attacker could attempt to modify the permissions of a file multiple times simul-
taneously. In addition to the race condition attacks, the chown function should
only be executed on files from a local perspective due to the sensitive nature of the
information required. If the application is designed to run in a distributed matter, it
is pertinent that you encrypt all session data between the systems communicating,
since filenames and permissions are both included.

www.syngress.com

Pe
rl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 449

TLFeBOOK

450 Perl • Programmer’s Ultimate Security DeskRef

Additional Resources: www.perl.org/docs.html

Impact: High

chroot
Prototype: chroot DIRNAME, chroot

Summary: This function changes the root directory of a process.

Description: The function attempts to change the root directory of the current
process.The function will attempt to set the root to the path indicated in the input
argument. If no argument is given, the function will attempt to set root as the user’s
home directory.There is no way to undo this function call, and it requires superuser
access is required.

Risk: The chroot function is susceptible to race condition attacks thereby you
must ensure that only one instance of this function can be called at any given point
in time.Additionally, the chroot function is commonly targeted by attackers to see
if they can change the root directory of a target server to that of an Internet-acces-
sible directory. Internet accessible directories would include /public, /incoming,
/ftp/public, etc. It is critical that you verify that users do not have direct access to
the parameters taken by this function.

Note: This function was written for Unix-based systems.

Additional Resources: www.perl.org/docs.html

Impact: High

connect
Prototype: connect SOCKET, NAME

Summary: This function connects to another process.

Description: The function attempts to connect to another active process in the
system. It takes two input arguments: the socket to connect to and the name of the

www.syngress.com

Perl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 450

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Perl 451

address to connect to.The function call will expect the process it is attempting to
connect to to be in a state of “accept.”The function returns TRUE if successful,
FALSE if not.

Risk: Processes that connect to externally available or other processes should be
considered highly dangerous. Unless the goal of the application is to ascertain
output from another process then that process output and direction should either
not be used or called again from within the application.

Additional Resources: www.perl.org/docs.html

Impact: Low

eval
Prototype: eval STRING, eval BLOCK, eval

Summary: This function handles exceptions.

Description: The function is an overloaded form for exception handling.The
function, in one form, catches errors and keeps the program running.The second
form actually can compile bits of code and catch the exceptions in that.The second
version is a more generalized version of the first, but is much slower.The function
returns the value of the last correctly evaluated statement.

Risk: Error and exception handling could stop numerous attacks against your
application gained from data ascertained from sensitive error information.All error
information should be suppressed for end users and written in backend logs for
administrators or developers only.

Additional Resources: www.perl.org/docs.html

Impact: Low

www.syngress.com

Pe
rl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 451

TLFeBOOK

452 Perl • Programmer’s Ultimate Security DeskRef

exec
Prototype: exec COMMAND

Summary: This function terminates the current Perl script and executes a com-
mand.

Description: The function executes a command given by the string COMMAND.
The function, however, shuts down the current Perl script, and thus, can not be
recovered.

Risk: This function is utilized to execute system-level commands from within an
application. Executing system-level commands are one of the most dangerous types
of operations that an application can hardcode into its backend logic. Multiple vec-
tors for potential attacks are available and must be addressed to secure your applica-
tion. User input should be reviewed and all non-alphanumeric characters removed.
Additionally, the directory structure should be limited to include only the directory
or directories where the desired executables reside.As an example, you would restrict
users to running commands or executables in /user/local/bin or c:/documents and
settings/userX/programs/. Lastly, all output for the application should be captured
within the subprocess that has launched the executable. Fork, CreateProcess, or
CreateThread are examples of additional functions that can be used to contain
output.

Note: This function was written for Unix-based systems.

Additional Resources: www.perl.org/docs.html

Impact: High

Cross References: system

fcntl
Prototype: fcntl FILEHANDLE, FUNCTION, ARG

Summary: This function executes a file control function.

www.syngress.com

Perl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 452

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Perl 453

Description: The function attempts to execute a file control function on a given
file.The function takes three input arguments: the file to open, the function to use,
and the way in which to access the file (given as a scalar constant).The function
requires (obviously) that the file control function be implemented and will cause an
error if not.The function will return a value corresponding to the Unix-based
function fcntl that gets called from within the Perl function.

Risk: Functions that execute control functions are commonly called within appli-
cations derived from static application logic.The output should be controlled and
human users should be restricted from executing this function at all times!

Note: This function was written for Unix-based systems.

Additional Resources: www.perl.org/docs.html

Impact: High

Cross References: ioctl

fork
Prototype: fork

Summary: This function spawns a child process.

Description: The function spawns a new child process.This child process will be
the active process until it is killed off somehow (usually with exit).The script then
returns to the original process.The function will return the ID for the child process
to the parent and a zero to the child.

Risk: Fork can leveraged in an attack in multiple ways and is especially common in
launching Denial-of-Service attacks against the underlying operating system. Deny
human users from accessing or launching this function or from controlling any type
of execution for this function.Additionally, you should close all processes as soon as
their execution logic is complete while being aware that it is extremely risky to
ever launch a subprocess within an over-arching process.

Note: This function was written for Unix-based systems.

www.syngress.com

Pe
rl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 453

TLFeBOOK

454 Perl • Programmer’s Ultimate Security DeskRef

Additional Resources: www.perl.org/docs.html

Impact: Low

getc
Prototype: getc FILEHANDLE, getc

Summary: This function retrieves a character from a stream.

Description: The function attempts to retrieve a character from a stream.The
function will read the next character in the stream from a file pointed to with a
handle given in the input argument or if no handle is given, the standard I/O
stream. It returns the value of the character captured.

Risk: This function parses input blindly.Additionally, logic should be incorporated
into the application to ensure that human supplied input does not contain poten-
tially malicious content. Data streams that are attached to external sources must first
verify the integrity of those sources before interpreting and implementing the data.
The destination buffer should be verified before any data is copied into memory or
another data stream as to minimize the risk for an attack against a buffer overflow.

Additional Resources: www.perl.org/docs.html

Impact: Low

gethostbyaddr
Prototype: gethostbyaddr ADDR, ADDRTYPE

Summary: This function gets a host’s name from its fully qualified address.

Description: The function attempts to get a host’s name from its fully qualified
address.The function has two input arguments: the address and the address type.
The function is used mostly with IP addresses, and will default to that if the address
type is omitted.The function returns a list containing the name, aliases, and so on
associated with the address.

www.syngress.com

Perl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 454

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Perl 455

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: www.perl.org/docs.html

Impact: Low

Cross References: gethostbyname

gethostbyname
Prototype: gethostbyname NAME

Summary: This function gets a host’s address from its fully qualified name.

Description: The function attempts to get a host’s address from its fully qualified
name.The function has one input argument: the name.The function returns a list
containing the address, aliases, and so on associated with the host name.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in clear-text.

Additional Resources: www.perl.org/docs.html

Impact: Low

Cross References: gethostbyaddr

www.syngress.com

Pe
rl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 455

TLFeBOOK

456 Perl • Programmer’s Ultimate Security DeskRef

glob
Prototype: glob EXPR

Summary: This function expands a file name.

Description: The function expands a filename (taking care of wildcards, etc.).The
function returns the value of the expanded name.This is the internal function that
implements the ‘* ‘ operator.

Risk: All special and wildcard characters should be removed before the filename is
computed on the local filesystem. Malicious filenames are interpreted differently on
varying systems and as such, directory control is critical to limiting the ability of an
attacker to potentially compromise files at varying levels within the application or
underlying subsystem.

Additional Resources: www.perl.org/docs.html

Impact: Low

ioctl
Prototype: ioctl FILEHANDLE, FUNCTION, ARG

Summary: This function executes an I/O control function.

Description: The function attempts to execute an I/O control function on a
given file.The function takes three input arguments: the file to open, the function
to use, and the way in which to access the file (given as a scalar constant).The
function requires (obviously) that the I/O control function be implemented and
will cause an error if not.The function will return a value corresponding to the
Unix-based function ioctl that gets called from within the Perl function.

Risk: Functions that execute control functions are commonly called within appli-
cations derived from static application logic.The output should be controlled and
human users should be restricted from executing this function at all times!

Note: This function was written for Unix-based systems.

Additional Resources: www.perl.org/docs.html

www.syngress.com

Perl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 456

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Perl 457

Impact: Low

Cross References: fcntl

kill
Prototype: kill SIGNAL, LIST

Summary: This function sends kill signals to processes of process groups.

Description: The function sends kill signals to a list of processes.The function has
two input arguments: the signal to send and the list of processes to send it to. If the
signal is negative, the function kills process groups and not just processes.The func-
tion return value is undefined.

Risk: This function can be leveraged an attack by a local user to cause disruptions
in normal execution of the application. Ensure that human users do not have the
ability to modify the parameters for this function nor the ability to launch this
function at will. It is commonly utilized in localized Denial-of-Service attacks.

Additional Resources: www.perl.org/docs.html

Impact: Low

link
Prototype: link OLDFILE, NEWFILE

Summary: This function creates a link between two files.

Description: The function creates a file and links it to another file. It has two
input arguments: the old file (the one to which the link will point) and the new
file.The old file should be on the same file system as the new one.The function
returns TRUE for success, and FALSE for failure.

Risk: Characters used in the filenames should be restricted to the alphanumeric
base or less depending on the underlying operating platform. Ensure that all links
are removed before the program executes or are cleaned up before program execu-
tion, in the case where a program crashes or exits unexpectedly.The link function is
commonly targeted in Denial-of-Service attacks attempting to consume all of the
local CPU or memory resources.

www.syngress.com

Pe
rl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 457

TLFeBOOK

458 Perl • Programmer’s Ultimate Security DeskRef

Note: This function was written for Unix-based systems.

Additional Resources: www.perl.org/docs.html

Impact: Low

Cross References: symlink, unlink

mkdir
Prototype: mkdir FILENAME, MODE

Summary: This function creates a new directory.

Description: The function attempts to create a new directory.The function has
two input arguments: the new directory’s name and the mode in which to create it.
The function will return TRUE if successful, FALSE if not.

Risk: Users should not be given free reign with this function and should be
restricted to only create directories from a desired list provided by the development
team.Also limit the parent directory of the new directory to a predefined or static
source thereby minimizing your risk of enabling an attacker to control your under-
lying operating system.

Additional Resources: www.perl.org/docs.html

Impact: Low

open
Prototype: open FILEHANDLE, MODE, LIST

Summary: This function opens a file.

Description: The function attempts to open a file.The function has three argu-
ments: the filehandle to associate to the file, the mode in which to open it, and the
path to the file (given by EXPR).The function will open the file if successful. If
completed with success, the function returns a non-zero value.

Risk: All special and wildcard characters should be removed before the filename is
computed on the local filesystem. Malicious filenames are interpreted differently on
varying systems and as such, directory control is critical to limiting the ability of an

www.syngress.com

Perl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 458

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Perl 459

attacker to potentially compromise files at varying levels within the application or
underlying subsystem.

Additional Resources: www.perl.org/docs.html

Impact: Low

rand
Prototype: rand EXPR

Summary: This function generates a random number.

Description: The function attempts to generate a random number.The function
has an input argument: a maximum number or ceiling for the random number.
However, if an input argument is omitted, the function defaults to 1.The function
produces a floating point number between 0 and the ceiling (or 1) and returns it.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.perl.org/docs.html

Impact: Medium

Cross References: srand

www.syngress.com

Pe
rl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 459

TLFeBOOK

460 Perl • Programmer’s Ultimate Security DeskRef

read
Prototype: read FILEHANDLE, $VAR, LENGTH, OFFSET

Summary: This function reads a string of data into a variable.

Description: The function will read a string a data from a file into a new variable.
The function takes the file’s handle, the variable to save the string to, and the length
as its primary arguments.An optional offsetting argument exists (allowing the
function to read into the middle of the variable).The function will return the
number of bytes read, or 0 if at the end-of-file.

Risk: This function parses input blindly.Additionally, logic should be incorporated
into the application to ensure that human supplied input does not contain poten-
tially malicious content. Data streams that are attached to external sources must first
verify the integrity of those sources before interpreting and implementing the data.
The destination buffer should be verified before any data is copied into memory or
another data stream as to minimize the risk for an attack against a buffer overflow.

Additional Resources: www.perl.org/docs.html

Impact: Low

readdir
Prototype: readdir DIRHANDLE

Summary: This function reads directory entries.

Description: The function attempts to read directory entries.The function takes
the directory handle in as the input argument. It will then read the directory
entries (mostly file names, etc.). It returns the entries in a LIST format, unless there
are no entries, and the list is empty.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only

www.syngress.com

Perl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 460

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Perl 461

be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: www.perl.org/docs.html

Impact: Low

rmdir
Prototype: rmdir FILENAME

Summary: This function removes an empty directory

Description: The function attempts to remove a directory.The function takes the
directory name in as its input argument.The function will fail if the directory is
not empty.The function returns TRUE if successful, FALSE if not.

Risk: In addition to the potential race condition bugs that are associated with this
function, a user could also attempt to execute a Denial-of-Service attack. Ensure
that only one instance of this function can be called at any given moment.All input
passed to this function should be analyzed closely to ensure that only desired
resources can be removed from the system. It is not uncommon for worms and
viruses to exploit application-layer vulnerabilities to cause damage to files they
since would not have had access to.

Additional Resources: www.perl.org/docs.html

Impact: Low

setpgrp
Prototype: setpgrp PID, PGRP

Summary: This function changes the active process group of a specific process.

Description: The function attempts to change the process group of a process.The
function has two input arguments: the process ID and the new process group.The
function requires the system call setpgrp is actually implemented, as well.The
function will return TRUE if successful, FALSE if not.

www.syngress.com

Pe
rl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 461

TLFeBOOK

462 Perl • Programmer’s Ultimate Security DeskRef

Risk: Ensure that only administrative-users can modify the group of a system-level
or application process.

Additional Resources: www.perl.org/docs.html

Impact: Low

setpriority
Prototype: setpriority WHICH, WHO, PRIORITY

Summary: This function sets the priority of a process, process group, or user.

Description: The function attempts to change the priority of a process, process
group, or user.The function has three input arguments: an identifier flag (telling the
function if it is changing a process, process group, or user), the ID number of the
target, and the new priority.The function has set values to use for the priority.The
function will return TRUE if successful, FALSE if not.

Risk: Ensure that only administrative-users can increase the priorities of a system-
level or application process.

Additional Resources: www.perl.org/docs.html

Impact: Low

srand
Prototype: srand EXPR

Summary: This function seeds the random number generator.

Description: The function sets the seed for the random number generator rand.
The function can handle an input argument to help set the seed. However, if
omitted, the function will use a default value it takes from the kernel.The function
can use the time, process ID, and so on to help facilitate the randomness of the
function rand.

www.syngress.com

Perl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 462

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Perl 463

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.perl.org/docs.html

Impact: Medium

Cross References: rand

symlink
Prototype: symlink OLDFILE, NEWFILE

Summary: This function creates a symbolic link between two files.

Description: The function creates a file and symbolically links it to another file. It
has two input arguments: the old file (the one to which the link will point) and the
new file.The old file should be on the same file system as the new one.The func-
tion returns TRUE for success, and FALSE for failure.

Risk: Ensure that users do not have the ability to specify which files are linked
together and that application logic drives this function.

Note: This function was written for Unix-based systems.

Additional Resources: www.perl.org/docs.html

Impact: Low

Cross References: link, unlink

www.syngress.com

Pe
rl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 463

TLFeBOOK

464 Perl • Programmer’s Ultimate Security DeskRef

syscall
Prototype: syscall LIST

Summary: This function makes a system call.

Description: The function attempts to make a system call.The function has a
LIST input argument.The first member of the list must be the system call to use.
The remaining members of the list (which are be optional) are arguments for the
system call.The function returns the value that the system call returns.

Risk: This function is utilized to execute system-level commands from within an
application. Executing system-level commands are one of the most dangerous types of
operations that an application can hardcode into its backend logic. Multiple vectors
for potential attacks are available and must be addressed to secure your application.
User input should be reviewed and all non-alphanumeric characters removed.
Additionally, the directory structure should be limited to include only the directory
or directories where the desired executables reside.As an example, you would restrict
users to running commands or executables in /user/local/bin or c:/documents and
settings/userX/programs/. Lastly, all output for the application should be captured
within the subprocess that has launched the executable. Fork, CreateProcess, or
CreateThread are examples of additional functions that can be used to contain
output.

Additional Resources: www.perl.org/docs.html

Impact: High

sysread
Prototype: sysread FILEHANDLE, SCALAR, LENGTH, OFFSET

Summary: This function reads data into a variable.

Description: The function will read a string a data from a file into a new variable.
The function takes the file’s handle, the variable to save the string to, and the length
as its primary arguments.An optional offsetting argument exists (allowing the
function to read into the middle of the variable).The function will return the
number of bytes read, or 0 if at the end-of-file.This function is distinct from the

www.syngress.com

Perl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 464

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Perl 465

Perl function read because it uses the lower-level system call read in the imple-
mentation.

Risk: All special and wildcard characters should be removed before the filename is
computed on the local filesystem. Malicious filenames are interpreted differently on
varying systems and as such, directory control is critical to limiting the ability of an
attacker to potentially compromise files at varying levels within the application or
underlying subsystem.

Additional Resources: www.perl.org/docs.html

Impact: Low

system
Prototype: system COMMAND

Summary: This function executes a command.

Description: The function is practically identical to the function exec. However,
the function does not kill the Perl script; it calls a fork before execution.The
function takes the system command to execute in as input, and returns the exit
status of the call. If the return value is wanted, there are a variety of ways to capture
that.

Risk: This function is utilized to execute system-level commands from within an
application. Executing system-level commands are one of the most dangerous types
of operations that an application can hardcode into its backend logic. Multiple vec-
tors for potential attacks are available and must be addressed to secure your applica-
tion. User input should be reviewed and all non-alphanumeric characters removed.
Additionally, the directory structure should be limited to include only the directory
or directories where the desired executables reside.As an example, you would
restrict users to running commands or executables in /user/local/bin or c:/docu-
ments and settings/userX/programs/. Lastly, all output for the application should be
captured within the subprocess that has launched the executable. Fork,
CreateProcess, or CreateThread are examples of additional functions that
can be used to contain output.

www.syngress.com

Pe
rl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 465

TLFeBOOK

466 Perl • Programmer’s Ultimate Security DeskRef

Additional Resources: www.perl.org/docs.html

Impact: High

Cross References: exec

truncate
Prototype: truncate FILEHANDLE, LENGTH

Summary: This function truncates a file.

Description: The function attempts to truncate a given file.The function has two
input arguments.The file handle of the target file is used, and the length bytes to
allow (i.e., where to truncate the file).The function requires that an equivalent
system call be implemented.The function returns TRUE if successful, and is unde-
fined otherwise.

Risk: All special and wildcard characters should be removed before the filename is
computed on the local filesystem. Malicious filenames are interpreted differently on
varying systems and as such, directory control is critical to limiting the ability of an
attacker to potentially compromise files at varying levels within the application or
underlying subsystem.

Additional Resources: www.perl.org/docs.html

Impact: Low

umask
Prototype: umask EXPR

Summary: This function sets the umask for the process.

Description: The function changes the umask for the current process.The func-
tion takes an input argument: the new umask.The function returns the old umask
if successful. It is undefined if the function fails.

Risk: Setting the umask for any file could adversely affect other applications uti-
lizing that file. Unless this function was designed as a greater part of a umask appli-
cation the function should not be used!

www.syngress.com

Perl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 466

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Perl 467

Additional Resources: www.perl.org/docs.html

Impact: Medium

unlink
Prototype: unlink LIST

Summary: This function deletes a list of files.

Description: The attempts to remove a list of files.The function will follow linked
files if in a Unix-based system, and no other links point to the target.The func-
tion’s only input is the list of files to delete.The function returns the number of
files successfully deleted.

Risk: This function can be leveraged an attack by a local user to cause disruptions
in normal execution of the application. Ensure that human users do not have the
ability to modify the parameters for this function nor the ability to launch this
function at will. It is commonly utilized in localized Denial-of-Service attacks.

Additional Resources: www.perl.org/docs.html

Impact: Low

Cross References: link, symlink

www.syngress.com

Pe
rl

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 467

TLFeBOOK

309_Desk_Ref_Perl.qxd 10/11/04 4:39 PM Page 468

TLFeBOOK

Programmer’s
Ultimate Security
DeskRef: PHP

basename
Prototype: string basename (string path [, string
suffix])

Summary: This function is used to strip path information and file
extensions from a filename.

Description: The basename function is used to remove directory
information and optionally file extension from a path string for a file.
The first parameter is used to determine the full path of the file.All
directory names in the path defined by a “/” or “\” are removed
leaving only the filename.Additionally, a suffix may be used (file
extension) which will be removed from the end of the name. For
example, the string variable
$path=“/var/www/html/index.html” would return
index.html when run through basename as follows base-
name($path). If .html was added as the suffix, then only index
would be returned.

Risk: basename allows for imprecise file instructions to be sent to
the systems processing. When using basename as a means to

469

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 469

TLFeBOOK

470 PHP • Programmer’s Ultimate Security DeskRef

normalize filenames it is possible to interpret two different files with identical names
that exist in different directory structures.This can lead to file corruption and unin-
tentional disclosure of data. When using this function it is imperative that directory
structures are not ignored.

Additional Resources: www.php.net/manual/en/function.basename.php

Impact: Low

Cross References: dirname

bzopen
Prototype: resource bzopen (string filename, string mode)

Summary: Similar to fopen, this function is used to open bzip2 files.

Description: The bzopen function is used in a manner similar to fopen, to open
a bzip2 file (.bz2) These files can be opened and assigned to a resource (file pointer)
with read or write capabilities which are determined based on the characters “r” and
“w”.The “r” stands for read and the “w” stands for write.

Risk: Anytime functions are called with system access, all parameters passed to the
function from user input should be carefully analyzed to prevent access to or over-
writing of system files.Additionally, this function is capable of creating files on a
system. Files should never be created automatically as a result of an action such as a
form submittal. Excessive submits by a malicious user can result in exhausting file
nodes on the server.

Additional Resources: www.php.net/manual/en/function.bzopen.php,
http:/www.php.net/manual/en/function.fopen.php

Impact: Medium

Cross References: bzread, fopen

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 470

TLFeBOOK

Programmer’s Ultimate Security DeskRef • PHP 471

bzread
Prototype: string bzread (resource bz [, int length])

Summary: bzread is a function designed to read bzip2 files in a binary safe
manner.

Description: The bzread function is used in a manner similar to fread, to open
and read a bzip2 file (.bz2) These files can be read and assigned to a resource (file
pointer) up to an integer length of bytes or the end of file character depending on
which occurs first.

Risk: Anytime functions are called with system access, all parameters passed to the
function from user input should be carefully analyzed to prevent access to or over-
writing of system files.

Additional Resources: www.php.net/manual/en/function.bzread.php,
www.php.net/manual/en/function.fread.php

Impact: Medium

Cross References: bzopen, fread

chmod
Prototype: bool chmod (string filename, int mode)

Summary: Changes the mode on system files permissions.

Description: Similar to the chmod function found in Unix, this function allows
PHP to manipulate file properties such as readable, writable, executable, etc. Note
the number passed as the mode change must be represented as a 4-digit octal begin-
ning with a zero. Unlike the Unix version of chmod, the PHP chmod function can
not be interpreted.

Risk: When embedded into server functionality utilizing client input, this function
allows the Web client to modify file permissions. In instances where a file is actually
a symbolic link pointing to a file, the file being pointed to will change permissions,
and not the symbolic link.

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 471

TLFeBOOK

472 PHP • Programmer’s Ultimate Security DeskRef

Additional Resources: www.php.net/manual/en/function.chmod.php

Impact: High

chown
Prototype: bool chown (string filename, mixed user)

Summary: Changes ownership properties of a file.

Description: Similar to the chown function found in Unix, this function allows
PHP to manipulate file properties such as user and group owner ship of a file. Note:
Web servers depend on ownership of files to display content, therefore changes to
file ownership may prevent files from being displayed by the Web server.

Risk: When embedded into server functionality utilizing client input, this function
allows the web client to modify file ownership. In instances where a file is actually a
symbolic link pointing to a file, the file being pointed to will change ownership, and
not the symbolic link. Most Web servers require ownership of files in order to dis-
play their contents. Changing file ownership properties could prevent accessibility.

Additional Resources: www.php.net/manual/en/function.chown.php

Impact: High

chroot
Prototype: bool chroot (string directory)

Summary: Changes the root directory.

Description: chroot changes the root directory of the current active process.This
new directory is will then be used for all relative paths in execution and file access.

Risk: Allowing web users to access chroot command statements via inputs pro-
vided to the browser may allow commands in a public directory to be executed
with server access permissions. Public directories are often writable, this in effect
allows a malicious user to execute to execute externally written code on the system.

Additional Resources: www.php.net/manual/en/function.chroot.php

Impact: High

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 472

TLFeBOOK

Programmer’s Ultimate Security DeskRef • PHP 473

dirname
Prototype: string dirname (string path)

Summary: Returns the directory name from a path.

Description: The dirname function takes an input string containing the path of a
file and returns the directory containing the file from the path. In essence this func-
tion strips out the file name from the path and returns the remainder.

Risk: When parsing input data to obtain pathing for output, It is important to
ensure user input does not contain strings such as ../../ which is commonly used
to gain access to restricted files.

Additional Resources: www.php.net/manual/en/function.dirname.php

Impact: Low

Cross References: basename

eval
Prototype: mixed eval (string code_str)

Summary: Executes a string as a PHP command.

Description: Takes a string containing valid PHP code and executes it.This allows
administrators to store commands in a database or file and use at later times in the
code.The string given to eval must be in proper PHP syntax including all termi-
nating characters, or else the script will error and cause problems during execution.
Additionally, any variables or other data modified as a result of the evaluation will be
maintained after execution having the same scope as the calling function. On exit,
this function will return null unless the execution string tells it to return another
value.

Risk: This function is used to execute PHP code. Syntax errors in the string being
executed can lead to errors in other areas of the code.To ensure code continues to
be executed as intended it is important to guard the usage of this function carefully.
Otherwise, unpredictable results may occur which can compromise the system.

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 473

TLFeBOOK

474 PHP • Programmer’s Ultimate Security DeskRef

Additional Resources: www.php.net/manual/en/function.eval.php

Impact: Medium

exec
Prototype: string exec (string command [, array &output
[, int &return_var]])

Summary: Executes an external command.

Description: Executes a string containing a system command or external program.
The last line of the results is returned by the function.Additionally an array passed
in as the second parameter will store all lines of the command’s output.This infor-
mation will be appended to the array the array if it is already populated.

Risk: This function executes external commands or programs with the access privi-
leges provided by the calling user. In most cases the Web server.Anytime external
code is executed on a server, restrictions need to be implemented to prevent unau-
thorized user access. If a user can execute custom code, it will become possible for
that user to gain unauthorized access to the system.

Additional Resources: www.php.net/manual/en/function.exec.php

Impact: High

Cross References: system, passthru

fgets
Prototype: string fgets (resource handle [, int length])

Summary: Return a string comprised of a line from a file.

Description: Pulls a string up to 1024 characters as a line unless otherwise speci-
fied by the length argument.The function will continue to read a line up to length
characters, or until it encounters a new line/EOF character. Note if the file pointer
is currently in the middle of a line, the fgets function will begin reading the next
complete line and ignore the current line.

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 474

TLFeBOOK

Programmer’s Ultimate Security DeskRef • PHP 475

Risk: Results read from a file should be carefully parsed before used as program
inputs. Otherwise, improper formatting can lead to data corruption in the output.

Additional Resources: www.php.net/manual/en/function.fgets.php

Impact: Low

Cross References: fgetss

fgetss
Prototype: string fgetss (resource handle [, int length [,
string allowable_tags]])

Summary: Return a string comprised of a line from a file with HTML tags taken
out.

Description: Pulls a string up to 1024 characters as a line unless otherwise speci-
fied by the length argument.The function will continue to read a line up to length
characters, or until it encounters a new line/EOF character. Note that if the file
pointer is currently in the middle of a line, the fgets function will begin reading
the next complete line and ignore the current line.Additionally, all html tags will be
stripped from the resulting string.

Risk: Results read from a file should be carefully parsed before used as program
inputs. Otherwise improper formatting can lead to data corruption in the output.

Additional Resources: www.php.net/manual/en/function.fgetss.php

Impact: Low

Cross References: fgets

file
Prototype: array file (string filename [, int use_include_path
[, resource context]])

Summary: Reads a file into an array.

Description: This function reads an entire file from a string containing the file
name, into an array. Each element of the array contains the information of each line

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 475

TLFeBOOK

476 PHP • Programmer’s Ultimate Security DeskRef

of the file, including its new line character. If file() is unable to open or otherwise
access the file, it will return false. If it successfully reads the file, it will return an
array containing the file data.

Risk: Results read from a file should be carefully parsed before used as program
inputs. Otherwise improper formatting can lead to data corruption in the output.

Additional Resources: www.php.net/manual/en/function.file.php

Impact: Medium

filegroup
Prototype: int filegroup (string filename)

Summary: Returns the group ownership of a file.

Description: Returns the file group ID of a file specified by the filename string.
All file groups are returned in numerical format so you must use another function
such as posix_getgrgid() to resolve group names.

Risk: Reveals unnecessary file information to an external user when results are
passed to output screen.Additionally, may result in lower system security since it
may be used to override privileges. Instead, programmers should implement system
and server authentication methods.

Additional Resources: www.php.net/manual/en/function.filegroup.php

Impact: Low

Cross References: fileowner, fileperms

fileowner
Prototype: int fileowner (string filename)

Summary: Return the owner of a file.

Description: Returns the file owner ID of a file specified by the filename string.
All file owner is returned in numerical format so you must use another function
such as posix_getpwuid() to resolve owner names.

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 476

TLFeBOOK

Programmer’s Ultimate Security DeskRef • PHP 477

Risk: Reveals unnecessary file information to an external user when results are
passed to output screen.Additionally, may result in lower system security since it
may be used to override privileges. Instead, programmers should implement system
and server authentication methods.

Additional Resources: www.php.net/manual/en/function.fileowner.php

Impact: Low

Cross References: filegroup, fileperms

fileperms
Prototype: int fileperms (string filename)

Summary: Returns permissions for a file.

Description: Returns the permissions on a file, or false if unable to obtain file
access.

Risk: Reveals unnecessary file information to an external user when results are
passed to output screen.Additionally, may result in lower system security since it
may be used to override privileges. Instead programmers should implement system
and server authentication methods.

Additional Resources: www.php.net/manual/en/function.fileperms.php

Impact: Medium

Cross References: fileowner, filegroup

fopen
Prototype: resource fopen (string filename, string mode [,
bool use_include_path [, resource zcontext]])

Summary: Opens a file or URL as a file pointer.

Description: Similar to fopen found in C, this function binds a file or URL to a
file pointer with read or write capabilities which are determined based on the char-
acters as follows:

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 477

TLFeBOOK

478 PHP • Programmer’s Ultimate Security DeskRef

‘r’ Open for reading only; place the file pointer at the beginning of the file.

‘r+’ Open for reading and writing; place the file pointer at the beginning of
the file.

‘w’ Open for writing only; place the file pointer at the beginning of the file
and truncate the file to zero length. If the file does not exist, attempt to
create it.

‘w+’ Open for reading and writing; place the file pointer at the beginning of
the file and truncate the file to zero length. If the file does not exist,
attempt to create it.

‘a’ Open for writing only; place the file pointer at the end of the file. If the
file does not exist, attempt to create it.

‘a+’ Open for reading and writing; place the file pointer at the end of the file.
If the file does not exist, attempt to create it.

‘x’ Create and open for writing only; place the file pointer at the beginning
of the file. If the file already exists, the fopen() call will fail by returning
FALSE and generating an error of level E_WARNING. If the file does not
exist, attempt to create it.

‘x+’ Create and open for reading and writing; place the file pointer at the
beginning of the file. If the file already exists, the fopen() call will fail by
returning FALSE and generating an error of level E_WARNING. If the file
does not exist, attempt to create it.

Risk: Anytime functions are called with system access, all parameters passed to the
function from user input should be carefully analyzed to prevent access to or over-
writing of system files.Additionally, this function is capable of creating files on a
system. Files should never be created automatically as a result of an action such as a
form submittal. Excessive submits by a malicious user can result in exhausting file
nodes on the server.

Additional Resources: www.php.net/manual/en/function.fopen.php

Impact: Low

Cross References: bzopen, bzread

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 478

TLFeBOOK

Programmer’s Ultimate Security DeskRef • PHP 479

fread
Prototype: string fread (resource handle, int length)

Summary: Reads up to length bytes from a file pointer.

Description: Pulls a string up to 1024 characters from a file unless otherwise speci-
fied by the length argument.The function will continue to read a file up to length
characters, or until it encounters a new line/EOF character.

Risk: Anytime functions are called with system access, all parameters passed to the
function from user input should be carefully analyzed to prevent access to or over-
writing of system files.

Additional Resources: www.php.net/manual/en/function.fread.php

Impact: Low

Cross References: bzopen, bzread

fscanf
Prototype: mixed fscanf (resource handle, string format [,
mixed &...])

Summary: Reads a file and parses input based on c-style scanf formatting.

Description: This function is similar to the fscanf function found in C. It is used
to read input from a file in a specified format.The format string is composed of
zero or more directives: ordinary characters (excluding %) that are copied directly to
the result, and conversion specifications, each of which results in fetching its own
parameter.The following are the types of directives usable by fscanf.

% A literal percent character. No argument is required.

b The argument is treated as an integer, and presented as a binary number.

c The argument is treated as an integer, and presented as the character with
that ASCII value.

d The argument is treated as an integer, and presented as a (signed) decimal
number.

e The argument is treated as scientific notation (e.g., 1.2e+2).

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 479

TLFeBOOK

480 PHP • Programmer’s Ultimate Security DeskRef

u The argument is treated as an integer, and presented as an unsigned decimal
number.

f The argument is treated as a float, and presented as a floating-point number.

o The argument is treated as an integer, and presented as an octal number.

s The argument is treated as and presented as a string.

x The argument is treated as an integer and presented as a hexadecimal
number (with lowercase letters).

X The argument is treated as an integer and presented as a hexadecimal
number (with uppercase letters).

Risk: Results read from a file should be carefully parsed before used as program
inputs. Otherwise, improper formatting can lead to data corruption in the output.

Additional Resources: www.php.net/manual/en/function.fscanf.php

Impact: Low

Cross References: bzopen, bzread, fopen, fread

fsockopen
Prototype: resource fsockopen (string target, int port [, int
&errno [, string &errstr [, float timeout]]])

Summary: Opens a network socket connection.

Description: Creates a socket connection and returns a file pointer to the socket
on success. If the connection fails, then fsockopen returns a false.

Risk: Opens a network socket which may be used by an attacker to gain access to
the system. When using sockets, one should carefully regulate all incoming and out-
going data traffic.

Additional Resources: www.php.net/manual/en/function.fsockopen.php

Impact: High

Cross References: pfsockopen

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 480

TLFeBOOK

Programmer’s Ultimate Security DeskRef • PHP 481

getallheaders
Prototype: array getallheaders (void)

Summary: Gets all HTTP request headers.

Description: Getallheaders() returns an associative array of all the HTTP
headers in the current request.This is only supported when PHP runs as an Apache
module. It is essentially an alias of apache_request_headers().

Risk: When used to process all headers in the array as a whole, malicious users
could pass custom headers to pass to the server for processing. Instead of retrieving
all headers one should query specific headers for information.

Additional Resources: www.php.net/manual/en/function.getallheaders.php

Impact: Medium

getenv
Prototype: string getenv (string varname)

Summary: Returns an environment variable.

Description: Returns the value of the environment variable requested as a string
varname, or FALSE if there is an error.

Risk: May reveal sensitive system information that can lead to further understanding
and ability to gain control of a system.

Additional Resources: www.php.net/manual/en/function.getenv.php

Impact: Medium

gzfile
Prototype: array gzfile (string filename [, int
use_include_path])

Summary: Reads a gzip file into an array.

Description: This function reads an entire file from a string containing the file
name, into an array. Each element of the array contains the information of each line

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 481

TLFeBOOK

482 PHP • Programmer’s Ultimate Security DeskRef

of the file, including its new line character. If file() is unable to open or otherwise
access the file, it will return false. If it successfully reads the file, it will return an
array containing the file data.

Risk: Results read from a file should be carefully parsed before used as program
inputs. Otherwise improper formatting can lead to data corruption in the output.

Additional Resources: www.php.net/manual/en/function.gzfile.php

Impact: Low

Cross References: gzgetc, gzgets, gzgetss, gzopen, gzread

gzgetc
Prototype: string gzgetc (resource zp)

Summary: Read a character from a gzip file pointer.

Description: Reads a single uncompressed character at a time from a gzip-com-
pressed file.The file pointer must be a gz file pointer handling gzip file.

Risk: Results read from a file should be carefully parsed before used as program
inputs. Otherwise, improper formatting can lead to data corruption in the output.

Additional Resources: www.php.net/manual/en/function.gzgetc.php

Impact: Low

Cross References: gzfile, gzgets, gzgetss, gzopen, gzread

gzgets
Prototype: string gzgets (resource zp, int length)

Summary: Reads a line from a gzip file.

Description: Pulls a string up to 1024 characters as a line unless otherwise speci-
fied by the length argument from a gzip file.The function will continue to read a
line up to length characters, or until it encounters a new line/EOF character. Note
if the file pointer is currently in the middle of a line, the fgets function will begin
reading the next complete line and ignore the current line.

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 482

TLFeBOOK

Programmer’s Ultimate Security DeskRef • PHP 483

Risk: Results read from a file should be carefully parsed before used as program
inputs. Otherwise improper formatting can lead to data corruption in the output.

Additional Resources: www.php.net/manual/en/function.gzgets.php

Impact: Low

Cross References: gzgetc, gzfile, gzgetss, gzopen, gzread

gzgetss
Prototype: string gzgetss (resource zp, int length [, string
allowable_tags])

Summary: Reads a line from a file while stripping HTML tags.

Description: Pulls a string up to 1024 characters as a line unless otherwise speci-
fied by the length argument from a gzip file.The function will continue to read a
line up to length characters, or until it encounters a new line/EOF character. Note
if the file pointer is currently in the middle of a line, the fgets function will begin
reading the next complete line and ignore the current line.Additionally all html tags
will be stripped from the resulting string.

Risk: Results read from a file should be carefully parsed before used as program
inputs. Otherwise, improper formatting can lead to data corruption in the output.

Additional Resources: www.php.net/manual/en/function.gzgetss.php

Impact: Low

Cross References: gzgetc, gzgets, gzfile, gzopen, gzread

gzopen
Prototype: resource gzopen (string filename, string mode [,
int use_include_path])

Summary: Opens a gzip file.

Description: The gzopen function is used in a manner similar to fopen, to open
a gzip file (.gz) These files can be opened and assigned to a resource (file pointer)

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 483

TLFeBOOK

484 PHP • Programmer’s Ultimate Security DeskRef

with read or write capabilities which are determined based on the characters “r” and
“w”.The “r” stands for read and the “w” stands for write.

Risk: Anytime functions are called with system access, all parameters passed to the
function from user input should be carefully analyzed to prevent access to or over-
writing of system files.Additionally, this function is capable of creating files on a
system. Files should never be created automatically as a result of an action such as a
form submittal. Excessive submits by a malicious user can result in exhausting file
nodes on the server.

Additional Resources: www.php.net/manual/en/function.gzopen.php

Impact: Low

Cross References: gzgetc, gzgets, gzgetss, gzfile, gzread

gzread
Prototype: string gzread (resource zp, int length)

Summary: Read up to length bytes from a gzip file.

Description: The gzread function is used in a manner similar to fread, to open
and read a gzip file (.gz).These files can be read and assigned to a resource (file
pointer) up to an integer length of bytes or the end of file character depending on
which occurs first.

Risk: Anytime functions are called with system access, all parameters passed to the
function from user input should be carefully analyzed to prevent access to or over-
writing of system files.

Additional Resources: www.php.net/manual/en/function.gzread.php

Impact: Low

Cross References: gzgetc, gzgets, gzgetss, gzopen, gzfile

Highlight_file
Prototype: mixed highlight_file (string filename [, bool
return])

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 484

TLFeBOOK

Programmer’s Ultimate Security DeskRef • PHP 485

Summary: Outputs a file with syntax highlights.

Description: Reads in the file addressed by the string filename and outputs it
with highlighted syntax information for code contained in the file. When the
second argument is set to true, the highlighted code will be returned as a string
instead of being sent to output.

Risk: May be used by a malicious user to gain further understanding on how to use
a particular function or file in the server path.

Additional Resources: www.php.net/manual/en/function.highlight_file.php,
www.php.net/manual/en/function.show_source.php

Impact: Low

is_dir
Prototype: bool is_dir (string filename)

Summary: Determines whether a file is a directory.

Description: Checks to see if a file exists and is a directory. If these conditions are
true, it will return true, otherwise it will return false.

Risk: Is_dir can be used to determine file properties which may help an attacker
determine vital information about a specific file, which may assist in an attack.

Additional Resources: www.php.net/manual/en/function.is_dir.php

Impact: Low

Cross References: is_executable, is_file, is_link, is_readable,
is_writable, is_writeable

is_executable
Prototype: bool is_executable (string filename)

Summary: Determines whether a file is an executable

Description: Checks to see if a file exists and is executable. If these conditions are
true it will return true, otherwise it will return false.

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 485

TLFeBOOK

486 PHP • Programmer’s Ultimate Security DeskRef

Risk: is_executable can be used to determine file properties which may help
an attacker determine vital information about a specific file, which may assist in an
attack.

Additional Resources: www.php.net/manual/en/function.is_executable.php

Impact: Low

Cross References: is_dir, is_file, is_link, is_readable, is_writable,
is_writeable

is_file
Prototype: bool is_file (string filename)

Summary: Determines whether a file is a regular file.

Description: Checks to see if a file exists and is an actual file. If these conditions
are true, it will return true, otherwise it will return false.

Risk: is_file can be used to determine file properties that may help an attacker
determine vital information about a specific file, which may assist in an attack.

Additional Resources: www.php.net/manual/en/function.is_file.php

Impact: Low

Cross References: is_executable, is_dir, is_link, is_readable,
is_writable, is_writeable

is_link
Prototype: bool is_link (string filename)

Summary: Determines whether a file is a link.

Description: Checks to see if a file exists and is a link. If these conditions are true
it will return true, otherwise it will return false.

Risk: is_link can be used to determine file properties that may help an attacker
determine vital information about a specific file, which may assist in an attack.

Additional Resources: www.php.net/manual/en/function.is_link.php

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 486

TLFeBOOK

Programmer’s Ultimate Security DeskRef • PHP 487

Impact: Low

Cross References: is_executable, is_file, is_dir, is_readable,
is_writable, is_writeable

is_readable
Prototype: bool is_readable (string filename)

Summary: Determines whether a file is readable.

Description: Checks to see if a file exists and is a readable. If these conditions are
true, it will return true, otherwise it will return false.

Risk: is_readable can be used to determine file properties that may help an
attacker determine vital information about a specific file, which may assist in an
attack.

Additional Resources: www.php.net/manual/en/function.is_readable.php

Impact: Low

Cross References: is_executable, is_file, is_link, is_dir,
is_writable, is_writeable

is_writable
Prototype: bool is_writable (string filename)

Summary: Determines whether a file is writable.

Description: Checks to see if a file exists and is writable. If these conditions are
true, it will return true, otherwise it will return false.

Risk: is_writable can be used to determine file properties that may help an
attacker determine vital information about a specific file, which may assist in an
attack.

Additional Resources: www.php.net/manual/en/function.is_writable.php,
www.php.net/manual/en/function.is_writeable.php

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 487

TLFeBOOK

488 PHP • Programmer’s Ultimate Security DeskRef

Impact: Low

Cross References: is_executable, is_file, is_link, is_readable,
is_dir, is_writeable

is_writeable
Prototype: bool is_writeable (string filename)

Summary: Determines whether a file is writeable.

Description: An alias of is_writable(). Checks to see if a file exists and is
writable. If these conditions are true, it will return true, otherwise it will return false.

Risk: is_writeable can be used to determine file properties that may help an
attacker determine vital information about a specific file, which may assist in an
attack.

Additional Resources: www.php.net/manual/en/function.is_writeable.php,
www.php.net/manual/en/function.is_writable.php

Impact: Low

Cross References: is_executable, is_file, is_link, is_readable,
is_writable, is_dir

leak
Prototype: void leak (int bytes)

Summary: Leaks a specific amount of memory.

Description: Used to dump out leaked memory before the memory manager has a
chance to clean up leaked memory.

Risk: When using dynamic memory, it is possible to lose sensitive information in
memory. If this memory is then leaked to an outside source, information can be
exposed to a malicious user.

Additional Resources:
http://aspn.activestate.com/ASPN/docs/PHP/function.leak.html

Impact: High

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 488

TLFeBOOK

Programmer’s Ultimate Security DeskRef • PHP 489

link
Prototype: bool link (string target, string link)

Summary: Creates a hard link to a target.

Description: Creates a hard link to a file; returning TRUE on success and FALSE
on failure.

Risk: Creating links to files may allow users to gain access to information while
simultaneously overriding file permissions. Since the link can have different access
rights than the file, users unauthorized to access the file may still access the link.
Additionally, this function is capable of creating files on a system. Files should never
be created automatically as a result of an action such as a form submittal. Excessive
submits by a malicious user can result in exhausting file nodes on the server.

Additional Resources: www.php.net/manual/en/function.link.php

Impact: Low

Cross References: unlink

lstat
Prototype: array lstat (string filename)

Summary: Provides statistics for a file.

Description: Returns the status of a file or symbolic link. Nearly identical to
stat() except it does not follow the link and display target file info, it returns
status of the link itself.

Risk: May reveal sensitive system information that can lead to further understanding
and ability to gain control of a system.

Additional Resources: www.php.net/manual/en/function.lstat.php

Impact: Low

Cross References: stat

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 489

TLFeBOOK

490 PHP • Programmer’s Ultimate Security DeskRef

mkdir
Prototype: bool mkdir (string pathname [, int mode [, bool
recursive [, resource context]]])

Summary: Creates a directory.

Description: Similar to the mkdir command in Unix, this function creates a
directory with the 0777 permission set.This allows full access to the directory by all
users. File permissions can be set in the second argument as a 4-digit octal number
with leading zero.

Risk: Anytime functions are called with system access, all parameters passed to the
function from user input should be carefully analyzed to prevent access to or over-
writing of system files.Additionally, this function is capable of creating files on a
system. Files should never be created automatically as a result of an action such as a
form submittal. Excessive submits by a malicious user can result in exhausting file
nodes on the server.

Additional Resources: www.php.net/manual/en/function.mkdir.php

Impact: Low

Cross References: opendir, rmdir

opendir
Prototype: resource opendir (string path)

Summary: Opens a directory handle.

Description: Opens a directory to be read from and later closed. Is only affective if
directory permissions allow access.

Risk: Anytime functions are called with system access, all parameters passed to the
function from user input should be carefully analyzed to prevent access to or over-
writing of system files.Additionally, this function is capable of creating files on a
system. Files should never be created automatically as a result of an action such as a
form submittal. Excessive submits by a malicious user can result in exhausting file
nodes on the server.

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 490

TLFeBOOK

Programmer’s Ultimate Security DeskRef • PHP 491

Additional Resources: www.php.net/manual/en/function.opendir.php

Impact: Low

Cross References: mkdir, rmdir

passthru
Prototype: void passthru (string command [, int
&return_var])

Summary: Executes an external command and displays raw output.

Description: A binary safe execution command similar to exec and system.This
function executes external commands and returns output to display.

Risk: This function executes external commands or programs with the access privi-
leges provided by the calling user. In most cases the Web server.Anytime external
code is executed on a server, restrictions need to be implemented to prevent unau-
thorized user access. If a user can execute custom code, it will become possible for
that user to gain unauthorized access to the system.

Additional Resources: www.php.net/manual/en/function.passthru.php

Impact: High

Cross References: system, exec

pfsockopen
Prototype: resource pfsockopen (string hostname, int port [,
int &errno [, string &errstr [, int timeout]]])

Summary: Open a persistent network socket.

Description: Opens a network socket connection similar to fsockopen. Unlike
fsockopen, this connection is persistent and is maintained even after script com-
pletion.

Risk: Opens a persistent network socket that maybe used by an attacker to gain
access to the system. When using sockets, one should carefully regulate all incoming
and outgoing data traffic.

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 491

TLFeBOOK

492 PHP • Programmer’s Ultimate Security DeskRef

Additional Resources: www.php.net/manual/en/function.pfsockopen.php

Impact: High

Cross References: fsockopen

popen
Prototype: resource popen (string command, string mode)

Summary: Creates a file pointer to a process fork.

Description: Opens a special file pointer, which serves as a unidirectional commu-
nication pipe to a forked command process.

Risk: Anytime functions are called with system access, all parameters passed to the
function from user input should be carefully analyzed to prevent access to or over-
writing of system files.Additionally, this function is capable of creating files on a
system. Files should never be created automatically as a result of an action such as a
form submittal. Excessive submits by a malicious user can result in exhausting file
nodes on the server.

Additional Resources: www.php.net/manual/en/function.popen.php

Impact: Low

posix_getlogin
Prototype: string posix_getlogin (void)

Summary: Returns the login name for the current process owner.

Description: Returns the login name for the owner of the current running pro-
cess. Usually the process executing the PHP file.

Risk: May reveal sensitive system information that can lead to further understanding
and ability to gain control of a system.

Additional Resources: www.php.net/manual/en/function.posix_getlogin.php

Impact: Medium

Cross References: posix_mkfifo, posix_ttyname

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 492

TLFeBOOK

Programmer’s Ultimate Security DeskRef • PHP 493

posix_mkfifo
Prototype: bool posix_mkfifo (string pathname, int mode)

Summary: Creates a named bidirectional pipe.

Description: Creates a special FIFO file which serves as a bidirectional communi-
cation pipe for different process. Permissions can be set on this file with the second
mode argument, which is comprised of a 4-digit octal with a leading zero.

Risk: Opens a bidirectional communication pipe that maybe used by an attacker to
gain access to the system. When using FIFOs, one should carefully regulate all
incoming and outgoing data traffic.

Additional Resources: www.php.net/manual/en/function.posix_mkfifo.php

Impact: Medium

Cross References: posix_getlogin, posix_ttyname

posix_ttyname
Prototype: string posix_ttyname (int fd)

Summary: Returns the terminal device name.

Description: Returns the terminal device name of the current process.

Risk: May reveal sensitive system information that can lead to further understanding
and ability to gain control of a system.

Additional Resources: www.php.net/manual/en/function.posix_ttyname.php

Impact: Medium

Cross References: posix_mkfifo, posix_getlogin

readfile
Prototype: int readfile (string filename [, bool
use_include_path [, resource context]])

Summary: Outputs a file.

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 493

TLFeBOOK

494 PHP • Programmer’s Ultimate Security DeskRef

Description: Reads a file and prints it to the output buffer then returns the
number of bytes read if successful.

Risk: Results read from a file should be carefully parsed before used as program
inputs. Otherwise, improper formatting can lead to data corruption in the output.

Additional Resources: www.php.net/manual/en/function.readfile.php

Impact: Low

rename
Prototype: bool rename (string oldname, string newname [,
resource context])

Summary: Renames a file or directory.

Description: Renames a file directly from the old name to a new name specified
by the first and second arguments respectively.

Risk: If malicious users are able to discern file execution based on paths, he may be
able to move malicious code into it the execution path using this function to
rename directories or files.

Additional Resources: www.php.net/manual/en/function.rename.php

Impact: Low

rmdir
Prototype: bool rmdir (string dirname [, resource context])

Summary: Deletes a directory.

Description: Removes a directory of the provided name if the directory is empty.
If the directory is not empty, it returns false and does not remove the directory.
Otherwise it returns true and removes the directory.

Risk: Since this function is capable of deleting directories from the system, usage of
this function should be carefully controlled to prevent the accidental or malicious
deletion of critical files.

Additional Resources: www.php.net/manual/en/function.rmdir.php

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 494

TLFeBOOK

Programmer’s Ultimate Security DeskRef • PHP 495

Impact: Low

Cross References: opendir, mkdir

show_source
Prototype: mixed show_source (string filename [, bool return])

Summary: Outputs a file with syntax highlights

Description: An alias for highlight_file. Reads in the file addressed by the
string filename and outputs it with highlighted syntax information for code con-
tained in the file. When the second argument is set to true, the highlighted code
will be returned as a string instead of being sent to output.

Risk: Maybe be used by a malicious user to gain further understanding on how to
use a particular function or file in the server path.

Additional Resources: www.php.net/manual/en/function.show_source.php,
www.php.net/manual/en/function.highlight_file.php

Impact: Low

stat
Prototype: array stat (string filename)

Summary: Returns information about a file.

Description: Creates an array of statistical information about a file. If the file is
actually a symbolic link, it will create statistics on the file pointed to by the link.

Numeric Associative Description

0 dev device number

1 ino inode number

2 mode inode protection mode

3 nlink number of links

4 uid userid of owner

5 gid groupid of owner

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 495

TLFeBOOK

496 PHP • Programmer’s Ultimate Security DeskRef

6 rdev device type, if inode device*

7 size size in bytes

8 atime time of last access (Unix timestamp

9 mtime time of last modification (Unix timestamp)

10 ctime tine of last inode change (Unix timestamp

11 clksize blocksize of filesystem IO*

12 blocks number of blocks allocated
Risk: May reveal sensitive system information which can lead to further under-
standing and ability to gain control of a system.

Additional Resources: www.php.net/manual/en/function.stat.php

Impact: Medium

Cross References: lstat

symlink
Prototype: bool symlink (string target, string link)

Summary: Creates a symbolic link.

Description: Much like the syslink command in Unix, this function creates a
symbolic link with a specifiable name to a target file or directory.

Risk: Creating links to files may allow users to gain access to information while
simultaneously overriding file permissions. Since the link can have different access
rights than the file, users unauthorized to access the file may still access the link.
Additionally, this function is capable of creating files on a system. Files should never
be created automatically as a result of an action such as a form submittal. Excessive
submits by a malicious user can result in exhausting file nodes on the server.

Additional Resources: www.php.net/manual/en/function.symlink.php

Impact: High

Cross References: link, unlink

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 496

TLFeBOOK

Programmer’s Ultimate Security DeskRef • PHP 497

system
Prototype: string system (string command [, int
&return_var])

Summary: Executes an external command and displays program output.

Description: This function executes an external command.The results of the pro-
gram will then be output to the screen unless output to a file or written to a vari-
able.The PHP script will wait for program completion if output is sent directly to
the display.

Risk: This function executes external commands or programs with the access privi-
leges provided by the calling user. In most cases the Web server.Anytime external
code is executed on a server, restrictions need to be implemented to prevent unau-
thorized user access. If a user can execute custom code, it will become possible for
that user to gain unauthorized access to the system.

Additional Resources: www.php.net/manual/en/function.system.php

Impact: High

Cross References: exec, passthru

unlink
Prototype: bool unlink (string filename [, resource context])

Summary: Deletes a file.

Description: Used to delete a file from the system. Returns a Boolean value signi-
fying true for success and false for failure.

Risk: Since this function is capable of deleting files from the system, usage of this
function should be carefully controlled to prevent the accidental or malicious dele-
tion of critical files.

Additional Resources: www.php.net/manual/en/function.unlink.php

Impact: Low

Cross References: link, symlink

www.syngress.com

PH
P

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 497

TLFeBOOK

309_Desk_Ref_PHP.qxd 10/11/04 4:40 PM Page 498

TLFeBOOK

Programmer’s
Ultimate Security
DeskRef: Python

betavariate
Prototype: betavariate(alpha, beta)

Summary: This function draws a pseudo-random number from a
beta distribution.

Description: The function generates a pseudo-random number
from the beta probability distribution.The function requires two
input arguments: the alpha and beta parameters for the distribution.
To generate the Beta distribution, both alpha and beta must be
less than -1.The function returns a number between 0 and 1.

Risk: As with most standard random functions implemented within
the C and C++ libraries, this function is susceptible to brute-force
or easily guessed number generating attacks due to a poor seed algo-
rithm within the backend code.Amongst numerous other secure
random number generating functions, Microsoft .Net has secure
methods for implementing properly seeded numbers. ISAAC,
designed by Bob Jenkins, is a fast cryptographic random number
generator is as strong as they come.Available in multiple languages,
ISAAC is a standard for many freeware and commercial solutions

499

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 499

TLFeBOOK

500 Python • Programmer’s Ultimate Security DeskRef

and should be considered the next time a random number is required within an
application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.python.org/doc/

Impact: Medium

chmod
Prototype: chmod(path, mode)

Summary: This function is used to change the permissions of a file.

Description: The function attempts to change the permissions of a file.The func-
tion requires two input arguments: the path to the file and the accessibility to
change it to.The function returns a Boolean value depending on the success of the
change.The function returns a 1 if successful and 0 if not.

Risk: In addition to the potential race condition vulnerability that is associated
with this function it also handles potentially sensitive information.The function is
inherently flawed if two processes try to access and modify the permissions of a
single file simultaneously, one function could receive the overriding permissions
from the other. If the application is transmitting this information over the wire, it
should utilize strong point-to-point encryption to ensure that an attacker could not
ascertain the filename, path, old permissions, or new permissions.

Additional Resources: www.python.org/doc/

Impact: Medium

choice
Prototype: choice(seq)

Summary: This function is used to draw a random element from a given
sequence.

Description: This function is used to simulate a random choice from a sequence.
The function requires only one input argument: the sequence to choose the value
from.The function can choose from any sequence. It returns the “chosen” value.

www.syngress.com

Pyth
o

n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 500

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Python 501

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.python.org/doc/

Impact: Medium

chown
Prototype: chown(path, uid, gid)

Summary: This function is used to change the ownership of a file.

Description: The function attempts to change the ownership of a given file. It can
attempt to change the individual and group ownership associated with the file.The
function requires three input values: the path to the file, the user identification for
the new owner, and the group identifier.The function will return a 1 upon com-
pletion, and a 0 in the event of failure.

Risk: The chown function is susceptible to multiple race condition attacks whereas
an attacker could attempt to modify the permissions of a file multiple times simul-
taneously. In addition to the race condition attacks, the chown function should only
be executed on files from a local perspective due to the sensitive nature of the
information required. If the application is designed to run in a distributed matter, it
is pertinent that you encrypt all session data between the systems communicating,
since filenames and permissions are both included.

Additional Resources: www.python.org/doc/

Impact: High

www.syngress.com

Py
th

o
n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 501

TLFeBOOK

502 Python • Programmer’s Ultimate Security DeskRef

compile
Prototype: compile(string, filename, kind[, flags[,
dont_inherit]])

Summary: This function is used to compile a code object.

Description: This function is used to compile code into an executable code
object.The function takes three input parameters: the string for compilation, the
filename, and the kind of code to compile.The function also takes two optional
input arguments: a set of flags for the compiler and a tag for whether to inherit
those flags.The function returns a 1 if successful, and 0 if not.

Risk: Python is an interpreted scripting language.The compile function should
be controlled by internal application logic only. Restrict human input for secure
usage!

Additional Resources: www.python.org/doc/

Impact: Medium

cunifvariate
Prototype: cunifvariate(mean, arc)

Summary: This function draws a pseudo-random number from a circular-uniform
distribution.

Description: The function generates a pseudo-random number from the circular-
uniform probability distribution.The function requires two input arguments: the
mean angle and arc (range of motion) parameters for the distribution.To generate
the distribution, both mean and arc must be between 0 and pi.The function
returns a normalized value between 0 and pi.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they

www.syngress.com

Pyth
o

n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 502

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Python 503

come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.python.org/doc/

Impact: Medium

eval
Prototype: eval(expression[, globals[, locals]])

Summary: This function is used to evaluate an expression in the shell.

Description: The function attempts to evaluate a given expression in the shell. It
has one required input argument: the expression. However, the function can handle
lists of global and local parameters to be used in the shell.These lists are both
optional.The function will return the value that the shell receives from the evalu-
ated expression.

Risk: This function is utilized to execute system-level commands from within an
application. Executing system-level commands are one of the most dangerous types
of operations that an application can hardcode into its backend logic. Multiple vec-
tors for potential attacks are available and must be addressed to secure your applica-
tion. User input should be reviewed and all non-alphanumeric characters removed.
Additionally, the directory structure should be limited to include only the directory
or directories where the desired executables reside.As an example, you would
restrict users to running commands or executables in /user/local/bin or c:/docu-
ments and settings/userX/programs/. Lastly, all output for the application should be
captured within the subprocess that has launched the executable. Fork,
CreateProcess, or CreateThread are examples of additional functions that
can be used to contain output.

Additional Resources: www.python.org/doc/

Impact: High

www.syngress.com

Py
th

o
n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 503

TLFeBOOK

504 Python • Programmer’s Ultimate Security DeskRef

execfile
Prototype: execfile(filename[, globals[, locals]])

Summary: This function is used to execute a file in the shell.

Description: The function attempts to execute a given file in the shell. It has one
required input argument: the filename. However, the function can handle lists of
global and local parameters to be used in execution in the shell.These lists are both
optional.The function will return the value that the shell receives from the exe-
cuted program/file.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is imper-
ative that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the
desired executables. Lastly, require that all executable output is controlled within a
forked or spawned process within the local application to ensure the integrity of
the outputted data. If possible, avoid calling dynamic programs from within applica-
tions. Static program execution is more secure.

Additional Resources: www.python.org/doc/

Impact: High

execl
Prototype: execl (path, arg0, ...)

Summary: This function is used to execute a command.

Description: The function will execute a file pointed to by the argument path,
which contains the path to file to be executed.The other input arguments (arg0,
arg1, …, argN) are command-line parameters to be used in the execution of the
file. Ideally, the function does not return a value, as it does not return to the calling
process.

www.syngress.com

Pyth
o

n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 504

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Python 505

Risk: This function is utilized to execute system-level commands from within an
application. Executing system-level commands are one of the most dangerous types
of operations that an application can hardcode into its backend logic. Multiple vec-
tors for potential attacks are available and must be addressed to secure your applica-
tion. User input should be reviewed and all non-alphanumeric characters removed.
Additionally, the directory structure should be limited to include only the directory
or directories where the desired executables reside.As an example, you would
restrict users to running commands or executables in /user/local/bin or c:/docu-
ments and settings/userX/programs/. Lastly, all output for the application should be
captured within the subprocess that has launched the executable. Fork,
CreateProcess, or CreateThread are examples of additional functions that
can be used to contain output.

Additional Resources: www.python.org/doc/

Impact: High

execle
Prototype: execle (path, arg0, … , envp)

Summary: This function executes a file with control given over the environ-
mental parameters.

Description: The function will execute a file pointed to by the argument path,
which contains the path to file to be executed.The second set of input arguments
(arg0, arg1, …, argN) are command-line parameters to be used in the execution
of the file.The final input argument is the array of pointers to environmental
parameters needed for file execution. Like _execl, the function does not return a
value unless an error occurs, as it does not return to the calling process. However,
upon an error, a value of -1 is returned and the global variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is imper-
ative that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the

www.syngress.com

Py
th

o
n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 505

TLFeBOOK

506 Python • Programmer’s Ultimate Security DeskRef

desired executables. Lastly, require that all executable output is controlled within a
forked or spawned process within the local application to ensure the integrity of
the outputted data. If possible, avoid calling dynamic programs from within applica-
tions. Static program execution is more secure.

Additional Resources: www.python.org/doc/

Impact: High

execlp
Prototype: execlp(filename, arg0, ...)

Summary: This function executes a file from within the current shell, searching
for it from the PATH environment variable.

Description: The function will execute a file pointed to by the argument file-
name, searching in the system’s PATH for the file.The other input arguments
(arg0, arg1, …, argN) are command-line parameters to be used in the execution
of the file. Ideally, the function does not return a value, as it does not return to the
calling process. However, upon an error, a value of -1 is returned and the global
variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is imper-
ative that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the
desired executables. Lastly, require that all executable output is controlled within a
forked or spawned process within the local application to ensure the integrity of
the outputted data. If possible, avoid calling dynamic programs from within applica-
tions. Static program execution is more secure.

Additional Resources: www.python.org/doc/

Impact: High

www.syngress.com

Pyth
o

n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 506

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Python 507

execv
Prototype: execv(path, argv)

Summary: This function executes a file with an array of pointers to be passed to
the command line.

Description: The function will execute a file pointed to by the argument path,
which contains the path to file to be executed.The other input argument, argv, is
an array command-line parameter used in the execution of the file. Ideally, the
function does not return a value, as it does not return to the calling process.
However, upon an error, a value of -1 is returned and the global variable ERRNO is
set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is imper-
ative that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the
desired executables. Lastly, require that all executable output is controlled within a
forked or spawned process within the local application to ensure the integrity of
the outputted data. If possible, avoid calling dynamic programs from within applica-
tions. Static program execution is more secure.

Additional Resources: www.python.org/doc/

Impact: High

execve
Prototype: execve(path, argv, envp)

Summary: This function executes a file with an array of pointers to be passed to
the command line, keeping control over the environmental parameters.

Description: The function will execute a file pointed to by the argument path,
which contains the path to file to be executed.The next input argument, argv, is
an array command-line parameter used in the execution of the file.The final input
argument is an array of environmental parameters for file execution. Ideally, the

www.syngress.com

Py
th

o
n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 507

TLFeBOOK

508 Python • Programmer’s Ultimate Security DeskRef

function does not return a value, as it does not return to the calling process.
However, upon an error, a value of -1 is returned and the global variable ERRNO
is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is imper-
ative that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the
desired executables. Lastly, require that all executable output is controlled within a
forked or spawned process within the local application to ensure the integrity of
the outputted data. If possible, avoid calling dynamic programs from within applica-
tions. Static program execution is more secure.

Additional Resources: www.python.org/doc/

Impact: High

execvp
Prototype: execvp(filename, argv)

Summary: This function executes a file with an array of pointers to be passed to
the command line using the environment variable PATH to find the file.

Description: The function will execute a file pointed to by the argument file-
name, searching for it using the environmental variable PATH.The other input
argument, argv, is an array command-line parameter to be used in the execution
of the file. Ideally, the function does not return a value, as it does not return to the
calling process. However, upon an error, a value of -1 is returned and the global
variable ERRNO is set.

Risk: This function has the ability to execute a file on the local system.Attackers
commonly target functions similar to this since they have the ability to launch
potentially dangerous or malicious executables with differing privileges. It is imper-
ative that you filter all input and never allow a user direct access to passing variables
as the parameters for this function. Ensure that all special characters are stripped
before the data is parsed and passed in addition to limiting access to only the

www.syngress.com

Pyth
o

n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 508

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Python 509

desired executables. Lastly, require that all executable output is controlled within a
forked or spawned process within the local application to ensure the integrity of
the outputted data. If possible, avoid calling dynamic programs from within applica-
tions. Static program execution is more secure.

Additional Resources: www.python.org/doc/

Impact: High

expovariate
Prototype: expovariate(lambd)

Summary: This function generates a pseudo-random number from the exponen-
tial distribution.

Description: This function is used to generate a pseudo-random number from the
exponential probability distribution.The function requires only the parameter
lambd be passed to it.This parameter is the reciprocal of the desired mean of the
distribution.The function returns a value between 0 and infinity (i.e., the largest
number representable on the machine).

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.python.org/doc/

Impact: Medium

www.syngress.com

Py
th

o
n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 509

TLFeBOOK

510 Python • Programmer’s Ultimate Security DeskRef

fork
Prototype: fork()

Summary: This function creates a child process.

Description: The function creates a child process off of the master.The function
does not require any input arguments. It returns a zero to the child process, sig-
naling a good call.The function also returns to the parent program the ID of the
child process.

Risk: Fork can be leveraged in an attack in multiple ways and is especially
common in launching Denial-of-Service attacks against the underlying operating
system. Deny human users from accessing or launching this function or from con-
trolling any type of execution for this function.Additionally, you should close all
processes as soon as their execution logic is complete while being aware that it is
extremely risky to ever launch a subprocess within an over-arching process.

Additional Resources: www.python.org/doc/

Impact: Low

gammavariate
Prototype: gammavariate(alpha, beta)

Summary: This function generates a pseudo-random number using the Gamma
distribution.

Description: The function attempts to generate a pseudo-random number using
the Gamma probability distribution.The function requires two input values: the
alpha and beta parameters of the distribution. Both of these parameters must be
greater than zero.The function returns only the random number.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they

www.syngress.com

Pyth
o

n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 510

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Python 511

come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.python.org/doc/

Impact: Medium

gauss
Prototype: gauss(mu, sigma)

Summary: This function generates a pseudo-random number from the Gaussian
distribution.

Description: The function draws a pseudo-random number from the Gaussian
probability distribution.The function requires two input values: the parameters mu
and sigma of the distribution (mean and the standard deviation).The mean has no
restrictions on it, but the standard deviation should be greater than zero.The func-
tion returns the random number, whose only restriction is the numbers that a
machine can represent in binary.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.python.org/doc/

Impact: Medium

www.syngress.com

Py
th

o
n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 511

TLFeBOOK

512 Python • Programmer’s Ultimate Security DeskRef

gethostbyaddr
Prototype: gethostbyaddr(ip_address)

Summary: This function retrieves a host’s name information from the IP address.

Description: The function attempts to retrieve a given host’s information based
on an IP address.The function takes only one input argument: the IP address.The
function returns a triplet of information.The triplet contains the host name, a list
of possible aliases, and a list of other IP addresses associated with the host name.
The second and third parts of the triplet will many times give little new informa-
tion.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: www.python.org/doc/

Impact: Low

gethostbyname
Prototype: gethostbyname(hostname)

Summary: This function translates a hostname into the IP address associated with
it.

Description: The function attempts to resolve a hostname and return the associ-
ated IP address.The function requires only the hostname as an input parameter.The
function returns only the IP address in single quotes.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

www.syngress.com

Pyth
o

n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 512

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Python 513

Additional Resources: www.python.org/doc/

Impact: Low

gethostbyname_ex
Prototype: gethostbyname_ex(hostname)

Summary: This function collects a host’s information using its hostname.

Description: The function attempts to resolve a hostname and return the associated
information.The function requires only the hostname as an input parameter.The
function returns a triplet of information.The triplet contains the host name, a list of
possible aliases, and a list of other IP addresses associated with the host name.The
second and third parts of the triplet will many times give little new information.

Risk: Temporary filenames are often created with static and easily guessable algo-
rithms such as the system time or application name appended with the day, month,
and year. If at all possible, do not use this function and instead store temporary
information in a secure memory space. If a temporary file is necessary, ensure that it
is removed upon exiting the program or in the case where a program exits unex-
pectedly is removed upon program relaunch. Consider utilizing a random number
generator such as ISAAC for creating secure random filenames.

Additional Resources: www.python.org/doc/

Impact: Low

getlogin
Prototype: getlogin()

Summary: This function retrieves the name of the user logged onto the control-
ling process.

Description: This function attempts to resolve the user name associated with the
current (i.e., controlling) process.The function does not require any input argu-
ments.The function returns the requested user name when completed. In the event
of failure, the function returns an empty string.

www.syngress.com

Py
th

o
n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 513

TLFeBOOK

514 Python • Programmer’s Ultimate Security DeskRef

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: www.python.org/doc/

Impact: High

getstate
Prototype: getstate()

Summary: This function is used to retrieve the state of the random number gen-
erator.

Description: The function is used to retrieve the internal state of the random
number generator.The function does not require any input arguments.The func-
tion returns an object describing the state.This object is passable to the function
setstate for the reclamation of a previous state.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.python.org/doc/

Impact: Medium

www.syngress.com

Pyth
o

n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 514

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Python 515

input
Prototype: input([command])

Summary: This function executes a Python command.

Description: This function is used similarly to the eval function. It is used to
evaluate Python-capable commands.The function will work without an input
argument (though it will do nothing). Otherwise, it uses a string to be issued as a
command.The function returns the value that the command issued returns.

Risk: This function is utilized to execute system-level commands from within an
application. Executing system-level commands are one of the most dangerous types
of operations that an application can hardcode into its backend logic. Multiple vec-
tors for potential attacks are available and must be addressed to secure your applica-
tion. User input should be reviewed and all non-alphanumeric characters removed.
Additionally, the directory structure should be limited to include only the directory
or directories where the desired executables reside.As an example, you would
restrict users to running commands or executables in /user/local/bin or c:/docu-
ments and settings/userX/programs/. Lastly, all output for the application should be
captured within the subprocess that has launched the executable. Fork,
CreateProcess, or CreateThread are examples of additional functions that
can be used to contain output.

Additional Resources: www.python.org/doc/

Impact: High

jumpahead
Prototype: jumpahead(n)

Summary: This function is used to change the internal state of the random
number generator.

Description: The function attempts to change the internal state of the random
number generator.The function requires a number “n” used to alter the state.The
function does not return any values.This function can be used to alter the states of
several incarnations of the random number generator to distinct states.

www.syngress.com

Py
th

o
n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 515

TLFeBOOK

516 Python • Programmer’s Ultimate Security DeskRef

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.python.org/doc/

Impact: High

link
Prototype: link(src, dst)

Summary: This function is used to create a linker file.

Description: The function creates a linker file.The function requires two input
arguments: the source file (path) and the name of the new linker file.The function
creates a hard-wired link from the destination file pointing to the source file.The
function returns a Boolean value signaling success with a 1 and failure with a 0.

Risk: Characters used in the filenames should be restricted to the alphanumeric
base or less depending on the underlying operating platform. Ensure that all links
are removed before the program executes or are cleaned up before program execu-
tion, in the case where a program crashes or exits unexpectedly.The link function is
commonly targeted in Denial-of-Service attacks attempting to consume all of the
local CPU or memory resources.

Additional Resources: www.python.org/doc/

Impact: Low

www.syngress.com

Pyth
o

n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 516

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Python 517

listdir
Prototype: listdir(path)

Summary: This function retrieves a list of the contents of a directory.

Description: The function attempts to resolve the contents of a given directory.
The function takes only one input argument: the path to the directory in question.
The function returns a list of the contents of that directory.The list is in no partic-
ular order and does not contain the linker files “.” and “..”.

Risk: Attackers commonly seek out the contents of a directory to see where
potentially powerful or vulnerable files are located. Ensure that the only the desired
directory’s contents is viewable and that wildcards and special characters are
removed from the passed string.

Additional Resources: www.python.org/doc/

Impact: Low

lognormvariate
Prototype: lognormvariate(mu, sigma)

Summary: This function generates a pseudo-random number from the log-
normal distribution.

Description: The function attempts to retrieve a pseudo-random number by
drawing from the log-normal probability distribution.The function is basically the
exponential of the normal distribution (i.e., taking the natural logarithm of this dis-
tribution results in the normal distribution).The function thus requires the same
parameters as the normal distribution: the mean (mu) and standard deviation
(sigma).The function returns a pseudo-random number.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they

www.syngress.com

Py
th

o
n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 517

TLFeBOOK

518 Python • Programmer’s Ultimate Security DeskRef

come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.python.org/doc/

Impact: Medium

lstat
Prototype: lstat(path)

Summary: This function retrieves information on an object in the given path.

Description: The function attempts to resolve the information in the structure
stat for an object in the given path.The function requires only the path of the
object in question.The function does not follow links (both symbolic and hard-
wired), unlike the stat function.This function returns an object of the stat
structure containing the requested information.

Risk: The stat function output should be restricted to trusted administrative-
level users or the internal workings of the application. stat output contains sensi-
tive information that an attacker could leverage to advance an attack scenario.

Additional Resources: www.python.org/doc/

Impact: Low

mkdir
Prototype: mkdir(path[, mode])

Summary: This function is used to create a directory.

Description: The function attempts to create a new directory.The function
requires only one input value: the path for the new directory. However, a second,
optional argument can be handled. It is a permissions creation mode.The function
returns 1 upon successful completion, a 0 in the event of failure.

www.syngress.com

Pyth
o

n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 518

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Python 519

Risk: Users should not be given free reign with this function and should be
restricted to only create directories from a desired list provided by the development
team.Also limit the parent directory of the new directory to a predefined or static
source thereby minimizing your risk of enabling an attacker to control your under-
lying operating system.

Additional Resources: www.python.org/doc/

Impact: Low

mkfifo
Prototype: mkfifo(path[, mode])

Summary: This function is used to create a new FIFO pipe.

Description: The function attempts to create a new pipe in the file system.The
function requires only one input parameter: the path of the new pipe. It also can
handle an additional, optional argument.That optional parameter is a mode-cre-
ation handle.The function returns a 1 if completed successfully, a 0 if not.

Risk: In 2002, a myriad of vulnerabilities were identified in Microsoft pipes; how-
ever, the implementation and exploitation of these vulnerabilities is not strictly lim-
ited to Microsoft Windows operating systems. Similar to socket-level vulnerabilities,
the pipe vulnerabilities exploit trusts between the clients and server on the ends of
the connection. Ensure that your compiler is up-to-date and that all parameters
passed to this function are derived from internal system information and not human
data. Human data should be scrubbed and presented with options for selections if
this function must be utilized.

Additional Resources: www.python.org/doc/

Impact: Low

normalvariate
Prototype: normalvariate(mu, sigma)

Summary: This function generates a pseudo-random number from the normal
distribution.

www.syngress.com

Py
th

o
n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 519

TLFeBOOK

520 Python • Programmer’s Ultimate Security DeskRef

Description: The function attempts to retrieve a pseudo-random number by
drawing from a normal probability distribution.The function requires two input
parameters: the mean (mu) and standard deviation (sigma) of the distribution.The
parameter mu can be any value, while the parameter sigma should be greater than
zero.The function returns the number when completed.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.python.org/doc/

Impact: Medium

open
Prototype: open(filename[, mode[, bufsize]])

Summary: This function is used to open a given file.

Description: The function attempts to open a file for use in the program.The
function requires only one input value: the filename (and/or path to it). However,
there are two optional parameters: the mode in which to open the file (defaults to
‘r’) and the buffer size to use with the file (defaults to system’s choice).The func-
tion returns address of the location of the file (i.e., the handle).

Risk: All special and wildcard characters should be removed before the filename is
computed on the local filesystem. Malicious filenames are interpreted differently on
varying systems and as such, directory control is critical to limiting the ability of an
attacker to potentially compromise files at varying levels within the application or
underlying subsystem.

www.syngress.com

Pyth
o

n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 520

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Python 521

Additional Resources: www.python.org/doc/

Impact: Low

paretovariate
Prototype: paretovariate(alpha)

Summary: This function is used to draw a pseudo-random number from a
Pareto distribution.

Description: The function generates a pseudo-random number from the Pareto
probability distribution.The function requires only one input value: the shape
parameter of the distribution.The function’s input value alpha will affect the
mean and standard deviation and should be chosen with care.The function returns
the number when completed.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.python.org/doc/

Impact: Medium

pathconf
Prototype: pathconf(path, name)

Summary: This function is used to retrieve configuration information for a file.

Description: The function attempts to resolve configuration information given a
path to a file in question.The function requires two input parameters: the path of

www.syngress.com

Py
th

o
n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 521

TLFeBOOK

522 Python • Programmer’s Ultimate Security DeskRef

the file and the name of the information wanted.The function’s response to the
name parameter varies according to the system running it.The function returns the
requested information when completed.

Risk: System path information is constantly sought after by attackers or malicious
users profiling a target application or system. Path information alone can potentially
identify the underlying operating system, installed applications, configurations, and
in some cases user and security information. Ensure that non-alphanumeric charac-
ters are removed from the string before it is processed and that the information is
only processed internally by the application. Limit the end-user’s ability to ascertain
or traverse path information.

Additional Resources: www.python.org/doc/

Impact: Low

popen
Prototype: popen(filename [, mode[, bufsize]])

Summary: This function is used to open a pipe.

Description: The function attempts to open a given pipe.The function requires
only one input command: the pipe name.The function can handle two additional,
optional arguments: the mode in which to open the file and the buffer size.The
mode defaults to “r” when not specified and the buffer size choice defaults to the
operating system’s default.The function returns the handle for the opened pipe
when completed.

Risk: In 2002, a myriad of vulnerabilities were identified in Microsoft pipes; how-
ever, the implementation and exploitation of these vulnerabilities is not strictly lim-
ited to Microsoft Windows operating systems. Similar to socket-level vulnerabilities,
the pipe vulnerabilities exploit trusts between the clients and server on the ends of
the connection. Ensure that your compiler is up-to-date and that all parameters
passed to this function are derived from internal system information and not
human data. Human data should be scrubbed and presented with options for selec-
tions if this function must be utilized.

www.syngress.com

Pyth
o

n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 522

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Python 523

Additional Resources: www.python.org/doc/

Impact: Low

randint
Prototype: randint(a, b)

Summary: The function generates a pseudo-random integer from a given range.

Description: The function attempts to draw a pseudo-random integer from a
range specified by the user.The function requires two input parameters: the lower
and upper bounds of the range (inclusive).The function draws an integer from the
range [a, b].The integer is returned when completed.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.python.org/doc/

Impact: Medium

random
Prototype: random()

Summary: This function generates a random number.

Description: The function attempts to create a random number in the range [0,
1].The function uses the internal state of the random number generator to draw
the number. It does not require any input parameters.The function returns the
random number when complete.

www.syngress.com

Py
th

o
n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 523

TLFeBOOK

524 Python • Programmer’s Ultimate Security DeskRef

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.python.org/doc/

Impact: Medium

randrange
Prototype: randrange([start,] stop[, step])

Summary: This function is used to pick an object from a range of numbers.

Description: The function attempts to grab a pseudo-random element from a
generated range.The function is best used with three input parameters: the start and
stopping points of the range and the step size to take.The function temporarily
generates the range object, picks one element at random, destroys the range object,
and then returns randomized element.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

www.syngress.com

Pyth
o

n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 524

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Python 525

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.python.org/doc/

Impact: Medium

raw_input
Prototype: raw_input([prompt])

Summary: This function is used to write to standard output and read the subse-
quent standard input.

Description: The function is used to write a prompt to the standard output and
then read any input from the user up to a new line.The function does not require
any input arguments, though a prompt is recommended.The function outputs the
prompt (if used) and waits for the user input to finish with a new line character.
The function then saves the input and returns it.

Risk: Raw network data received from a socket has the potential to be malicious
in nature due to the great number of attacks that are designed to be executed
remotely. Packet fragmentations can cause serious disruptions to the application and
underlying operating system. If at all possible, packet reassembly should be con-
ducted at the OS-layer.

Additional Resources: www.python.org/doc/

Impact: Medium

read
Prototype: read(file, n)

Summary: This function is used to read data from a file.

Description: The function attempts to read a given amount of data from a file.
The function requires two input parameters: the file handle and the maximum
number of bytes to read from the file.The function will read the file until an EOF
is encountered or the maximum number of bytes is reached.The function returns
the data as a string.

www.syngress.com

Py
th

o
n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 525

TLFeBOOK

526 Python • Programmer’s Ultimate Security DeskRef

Risk: All special and wildcard characters should be removed before the filename is
computed on the local filesystem. Malicious filenames are interpreted differently on
varying systems and as such, directory control is critical to limiting the ability of an
attacker to potentially compromise files at varying levels within the application or
underlying subsystem.

Additional Resources: www.python.org/doc/

Impact: Low

recv
Prototype: recv(bufsize[, flags])

Summary: This function is used to receive information from an open socket.

Description: The function is used to read incoming information from an open
socket.The function has only one required input parameter: the buffer size for the
incoming data to be read to.There is an additional argument (optional) that can be
tripped to include several flags (see the Unix Man pages for more details on what
these can be).The function returns the buffer of data read from the incoming data
stream.

Risk: Raw network data received from a socket has the potential to be malicious
in nature due to the numerous amounts of attacks that are designed to be executed
remotely. Packet fragmentations can cause serious disruptions to the application and
underlying operating system. If at all possible, packet reassembly should be con-
ducted at the OS-layer.

Additional Resources: www.python.org/doc/

Impact: Low

recvfrom
Prototype: recvfrom(bufsize[, flags])

Summary: This function is used to receive information from an open socket.

Description: The function is used to read incoming information from an open
socket.The function has only one required input parameter: the buffer size for the

www.syngress.com

Pyth
o

n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 526

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Python 527

incoming data to be read to.There is an additional argument (optional) that can be
tripped to include several flags (see the Unix Man pages for more details on what
these can be).The function returns the buffer of data read from the incoming data
stream as well as the address for the source of the incoming data.

Risk: Raw network data received from a socket has the potential to be malicious
in nature due to the great number of attacks that are designed to be executed
remotely. Packet fragmentations can cause serious disruptions to the application and
underlying operating system. If at all possible, packet reassembly should be con-
ducted at the OS-layer.

Additional Resources: www.python.org/doc/

Impact: Low

remove
Prototype: remove(path)

Summary: This function is used to remove file.

Description: The function attempts to delete a file in a given path.The function
has only one input argument: the path of the file in question.The function deletes
the file, and if successful returns a 0. In the event of failure, the function returns a -
1.

Risk: In addition to the potential race condition bugs that are associated with this
function, a user could also attempt to execute a Denial-of-Service attack. Ensure
that only one instance of this function can be called at any given moment.All input
passed to this function should be analyzed closely to ensure that only desired
resources can be removed from the system. It is not uncommon for worms and
viruses to exploit application-layer vulnerabilities to cause damage to files they
since would not have had access to.

Additional Resources: www.python.org/doc/

Impact: Low

www.syngress.com

Py
th

o
n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 527

TLFeBOOK

528 Python • Programmer’s Ultimate Security DeskRef

rename
Prototype: rename(source, dest)

Summary: This function is used to rename a given file.

Description: The function attempts to change the name of a given file.The func-
tion requires two input arguments: the path of the source file and the new name
(destination path).The function requires that the user have the file permissions to
achieve the name change.The function returns a 0 if completed successfully, and a
-1 if not.

Risk: In addition to the potential race condition bugs that are associated with this
function, a user could also attempt to execute a Denial-of-Service attack. Ensure
that only one instance of this function can be called at any given moment.All input
passed to this function should be analyzed closely to ensure that only desired
resources can be removed from the system. It is not uncommon for worms and
viruses to exploit application-layer vulnerabilities to cause damage to files they
since would not have had access to by renaming all files within an operating system
or renaming files and directories to those that are commonly executed upon system
boot.

Additional Resources: www.python.org/doc/

Impact: Low

rmdir
Prototype: rmdir(path)

Summary: This function is used to remove a given directory.

Description: The function attempts to remove a given directory.The function
requires only the path to directory in question.The target directory must be empty
to complete the operation.The function returns a 0 when successful, and a -1 if
not.

Risk: In addition to the potential race condition bugs that are associated with this
function, a user could also attempt to execute a Denial-of-Service attack. Ensure
that only one instance of this function can be called at any given moment.All input

www.syngress.com

Pyth
o

n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 528

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Python 529

passed to this function should be analyzed closely to ensure that only desired
resources can be removed from the system. It is not uncommon for worms and
viruses to exploit application-layer vulnerabilities to cause damage to files they
since would not have had access to.

Additional Resources: www.python.org/doc/

Impact: Low

seed
Prototype: seed([x])

Summary: This function is used to “seed” the general random number generator.

Description: The function attempts to seed the random number generator for
future use.The function does not require any input parameters (as it will use the
current system time). However, any hashable object can be passed to the function
to use as a seed.The function does not return any values.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.burtleburtle.net/bob/rand/isaacafa.html,
www.python.org/doc/

Impact: High

setstate
Prototype: setstate(state)

Summary: This function is used to set the state of the random number generator.

www.syngress.com

Py
th

o
n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 529

TLFeBOOK

530 Python • Programmer’s Ultimate Security DeskRef

Description: The function attempts to set the current state of the random gener-
ator.The function requires one input argument: a state structure to use to set the
random number generator.The function is used in conjunction with the get-
state function to duplicate results.The function returns a Boolean value depen-
dent on successful completion.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.python.org/doc/

Impact: Medium

shuffle
Prototype: shuffle(x[, random])

Summary: This function is used to permute a list.

Description: The function attempts to randomize a given list.The function
requires only one input value: the list in question.The function can handle an addi-
tional input argument: a function requiring no input parameters that returns a float
in the range [0,1.0].This is used to set the state for the permutations.The function
returns the shuffled list when complete.

Risk: The shuffle function should never be utilized to obfuscate data with the goal
of protecting it from prying eyes. Only industry-standard cryptography algorithms
should be implemented to secure data. Do not use this function!

Additional Resources: www.python.org/doc/

Impact: High

www.syngress.com

Pyth
o

n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 530

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Python 531

signal
Prototype: signal(signalnum, handler)

Summary: This function sets the handler for a given signal.

Description: The function attempts to change the handler name for a given
signal.The function requires two input parameters: the signal and the new handler
name.The function can only be called from the main thread when using multiple
threads.The function returns the previous signal handler name when complete.

Risk: Functions that handle or pass data to signals could be open for attacks to race
condition bugs found within your logic. Ensure that only one instance of the signal
function can be called at any given period of time and that if utilized in multiple
locations within an application, a time delay routine be implemented to monitor
the function usage.

Additional Resources: www.python.org/doc/

Impact: Low

stat
Prototype: stat(path)

Summary: This function retrieves information on an object in the given path.

Description: The function attempts to resolve the information in the structure
stat for an object in the given path.The function requires only the path of the
object in question.The function does will follow links (both symbolic and hard-
wired), unlike the lstat function.This function returns an object of the stat
structure containing the requested information.

Risk: The stat function output should be restricted to trusted administrative-level
users or the internal workings of the application. stat output contains sensitive
information that an attacker could leverage to advance an attack scenario.

Additional Resources: www.python.org/doc/

Impact: Low

www.syngress.com

Py
th

o
n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 531

TLFeBOOK

532 Python • Programmer’s Ultimate Security DeskRef

system
Prototype: system(command)

Summary: This function executes a command in the shell.

Description: The function is used to execute a command in the system’s shell.
The function requires only one input argument: the command.The function exe-
cutes the command in a new shell. When complete, the function returns the output
of the command run in the shell.

Risk: This function is utilized to execute system-level commands from within an
application. Executing system-level commands are one of the most dangerous types
of operations that an application can hardcode into its backend logic. Multiple vec-
tors for potential attacks are available and must be addressed to secure your applica-
tion. User input should be reviewed and all non-alphanumeric characters removed.
Additionally, the directory structure should be limited to include only the directory
or directories where the desired executables reside.As an example, you would
restrict users to running commands or executables in /user/local/bin or c:/docu-
ments and settings/userX/programs/. Lastly, all output for the application should be
captured within the subprocess that has launched the executable. Fork,
CreateProcess, or CreateThread are examples of additional functions that
can be used to contain output.

Additional Resources: www.python.org/doc/

Impact: High

tmpfile
Prototype: tmpfile()

Summary: This function is used to create a temporary file.

Description: The function creates a new file to use as a temporary source of
information.The function does not require any input arguments. It creates the file,
sets the creation to the “update” mode, and will delete it when it is “closed.”The
function returns the file descriptor (ID).

www.syngress.com

Pyth
o

n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 532

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Python 533

Risk: Temporary filenames are often created with static and easily guessable algo-
rithms such as the system time or application name appended with the day, month,
and year. If at all possible, do not use this function and instead store temporary
information in a secure memory space. If a temporary file is necessary, ensure that it
is removed upon exiting the program or in the case where a program exits unex-
pectedly is removed upon program relaunch. Consider utilizing a random number
generator such as ISAAC for creating secure random filenames.

Additional Resources: www.python.org/doc/

Impact: Low

tmpnam
Prototype: tmpnam()

Summary: This function is used to create a unique name for a temporary file.

Description: The function attempts to create a unique, temporary file name.The
function does not require any input arguments, and returns a string containing the
new file name.There is no automatic cleaning associated with this file, unlike the
function tmpfile.

Risk: Temporary file names are often created with static and easily guessable algo-
rithms such as the system time or application name appended with the day, month,
and year. If at all possible, do not use this function and instead store temporary
information in a secure memory space. If a temporary file is necessary, ensure that it
is removed upon exiting the program or in the case where a program exits unex-
pectedly is removed upon program relaunch. Consider utilizing a random number
generator such as ISAAC for creating secure random filenames.

Additional Resources: www.python.org/doc/

Impact: Medium

ttyname
Prototype: ttyname(file)

Summary: This function is used to determine the device associated with a file.

www.syngress.com

Py
th

o
n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 533

TLFeBOOK

534 Python • Programmer’s Ultimate Security DeskRef

Description: The function attempts to resolve the device associated with a partic-
ular file.The function requires one input parameter: the file handle (descriptor).
The function returns the device associated with the file in question.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Additional Resources: www.python.org/doc/

Impact: Low

uniform
Prototype: uniform(a, b)

Summary: This function generates a pseudo-random number from an interval.

Description: The function attempts to generate a random number from a given
interval.The function will choose a number using the given interval boundaries. It
requires two input parameters: the lower and upper bounds, respectively.The func-
tion uses the uniform distribution, so each number has equally likely weight. It
returns the chosen number when complete.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.python.org/doc/

Impact: Medium

www.syngress.com

Pyth
o

n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 534

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Python 535

unlink
Prototype: unlink(path)

Summary: This function is used to remove a file.

Description: The function attempts to remove a given file.The function requires
only input value: the path of the file in question.The function will return a modi-
fied Boolean value when completed. It returns a 0 if successful, a -1 if not.

Risk: The unlink function can be leveraged to cause a Denial-of-Service attack
on the target application. If improperly secured, an attacker could unlink multiple
files required by the application to function thereby disrupting normal execution.
Ensure that human input is passed as a parameter for this function.

Additional Resources: www.python.org/doc/

Impact: Low

vonmisesvariate
Prototype: vonmisesvariate(mu, kappa)

Summary: This function generates a pseudo-random number using the Von Mises
distribution.

Description: The function attempts to generate a random number using the Von
Mises probability distribution.The function requires two input parameters: the
mean angle (mu) and the concentration index (kappa).The parameter mu should be
in radians coming from the interval [0, 2*pi), while the parameter kappa should be
greater than or equal to zero.The function returns the random number when
completed.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and

www.syngress.com

Py
th

o
n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 535

TLFeBOOK

536 Python • Programmer’s Ultimate Security DeskRef

commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.python.org/doc/

Impact: Medium

weibullvariate
Prototype: weibullvariate(alpha, beta)

Summary: This function generates a pseudo-random number using the Weibull
distribution.

Description: The function attempts to generate a random number using the
Weibull probability distribution.The function requires two input parameters: the
scale (alpha) and shape (beta) parameters of the distribution.The distribution
requires that both parameters be greater than zero.The function returns the random
number when completed.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.python.org/doc/

Impact: Medium

whseed
Prototype: whseed([x])

Summary: This function is used to seed the internal state of the random number
generator.

www.syngress.com

Pyth
o

n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 536

TLFeBOOK

Programmer’s Ultimate Security DeskRef • Python 537

Description: The function attempts to seed the internal state of the random
number generator. It does not require any input parameters, as it will default to
using the system clock to set the state. However, any number may be passed to set
the state.The function returns the previous state of the random number generator
when finished.This function is obsolete.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute-force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

Additional Resources: www.python.org/doc/

Impact: High

www.syngress.com

Py
th

o
n

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 537

TLFeBOOK

309_Desk_Ref_Python.qxd 10/11/04 4:42 PM Page 538

TLFeBOOK

Programmer’s
Ultimate Security
DeskRef: VBA

AddFile
Prototype: object.AddFile (ByVal pathname As String,
[relateddocument As Boolean]) As VBComponent

Summary: This method is used to return a newly added component
to a VBComponent object.

Description: The AddFile method is a part of the
VBComponents collection, and is used to add a file to a
VBComponent object.This method takes two parameters, one
required and the other optional.The first parameter is the
pathname; it is a path and filename of a file to open as a template.
The second optional parameter is the relateddocument; it’s a
Boolean expression specifying whether the file is to be treated as a
standard module or a document.

Risk: All parameters passed to the function from user input should
be carefully analyzed to prevent access to or overwriting of compo-
nents. Invalid adds into the collection class can result in data corrup-
tion or unauthorized execution of code.

539

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 539

TLFeBOOK

540 VBA • Programmer’s Ultimate Security DeskRef

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vbext98/html/vbmthaddfilemethod.asp

Impact: Medium

BuildPath
Prototype: object.BuildPath(path, name)

Summary: This method is used to append a name to an existing path for a
FileSystemObject object.

Description: The BuildPath method is a part of the FileSystemObject
object, it is used to append a name to an existing path.This method takes two
required parameters.The first parameter is the path; it is a path to which the name
parameter is to be appended.The second parameter is the name that needs to be
appended to the existing path.

Risk: When parsing input data to obtain pathing for output, It is important to
ensure user input does not contain strings commonly used to gain access to
restricted files, such as “../../”.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vbenlr98/html/vamthbuildpath.asp

Impact: Medium

Command
Prototype: Public Function Command() As String

Summary: This function is used to gather all switches that follow a VB application
when run on a command line.

Description: The Command function is used to gather all the arguments that
follow a VB application when it is run from the command line.The Command func-
tion has no input arguments.The function returns a string containing all requested
information following the executable when run from the command line.

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 540

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBA 541

Risk: When using the command function it is important to carefully parse the input
arguments provided, otherwise invalid arguments can be passed on to the program
and cause program errors. Visual Basic applications are typically not run from the
command line therefore, debugging arguments that are used by developers to test
functionality create unnecessary risk based on the developer assumptions of security
through obscurity.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vblr7/html/
vafctcommand.asp

Impact: High

CreateObject
Prototype: CreateObject(class,[servername])

Summary: This function creates and returns a reference to an ActiveX object.

Description: This function creates a reference to an ActiveX object and then
returns it.The CreateObject function has two parameters, one required and the
other optional.The first parameter is a string containing the application name and
object name, the two separated by a “.”.The second optional parameter is a string
containing the location of the ActiveX object, if left blank it is defaulted to the local
machine.The returned value is reference to the created ActiveX object.

Risk: The CreateObject function permits the creation of or access to any object
available on any machine accessible.This function is available in VBScript and used
in Web pages and html-enabled e-mail and is very frequently used in cross-site
scripting to give a user access to data manipulation capabilities not intended for
users.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vbenlr98/html/vafctCreateObject.asp

Impact: Low

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 541

TLFeBOOK

542 VBA • Programmer’s Ultimate Security DeskRef

CurDir
Prototype: Public Overloads Function CurDir([ByVal Drive As
Char]) As String

Summary: This function returns the current drive and letter.

Description: The CurDir function returns the current directory and drive.This
function has one optional string parameter, when left empty the function returns
the current drive and current directory. When the parameter contains a letter that
corresponds with an existing drive letter that drive letter with its current directory is
returned.The returned value is a string containing the current directory.

Risk: Unchecked, this function has the ability to disclose the current execution path
to the user.This functions use should be restricted to the application and carefully
controlled when output is being passed to the user.The results of this function may
give an attacker a better understanding of the system architecture.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vblr7/
html/vafctcurdir.asp

Impact: Low

Date
Prototype: Public Function Date() As Date

Summary: This function is used to retrieve the current date.

Description: The Date function is used to retrieve the current date.There are no
parameters associated with the Date function. It returns the date as a Date object.

Risk: The Date function relies on the system clock; accordingly, applications that
depend on the Date function to control trail licenses and other control elements
can be fooled by simply resetting the system clock.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/
html/vsfctdate.asp

Impact: Low

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 542

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBA 543

Dir
Prototype: Public Overloads Function Dir() As String -OR-
Public Overloads Function Dir(Optional ByVal PathName As

String, Optional ByVal Attributes As FileAttribute =

FileAttribute.Normal) As String

Summary: This function is used to gain a file, directory, or folder that matches a
set of parameters.

Description: This function returns a file, directory or folder based on a specified
pattern, file attribute, or the volume label of a drive. It contains two parameters both
are optional.The first optional parameter is a string containing a path name to be
searched.The second optional parameter is a FileAttribute.The returned value
is a string containing the file, directory or folder that matches the request.

Risk: The Dir function can be used to obtain directory listing and file properties
similar to the dir command in DOS. When used in an application, input should be
carefully parsed to prevent a user from gaining access to the file system structures
and layout that may assist an attacker in gaining unnecessary understanding of the
application or system.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vblr7/
html/vafctdir.asp

Impact: Medium

DoEvents
Prototype: DoEvents()

Summary: This function hands over execution to the operating system so that it
can process events.

Description: The DoEvents function stops the controlling process. It provides
control of the program to the operating system so that the OS can process other
open events.The DoEvents function has no parameters and returns an integer
stating the number of forms open.

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 543

TLFeBOOK

544 VBA • Programmer’s Ultimate Security DeskRef

Risk: If the DoEvents function is used it can cause a denial of service condition to
take place. If the procedure is executed again from a different point in the applica-
tion it could cause unpredictable results to take place. Because of the dated nature
and lack of current support it is advised to refrain from using the DoEvents func-
tion in server applications.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbenlr98/
html/vafctdoevents.asp

Impact: Medium

DriveExists
Prototype: object.DriveExists(drivespec)

Summary: This method is used to determine if a FileSystemObject object
drive exists.

Description: The DriveExists method is a part of the FileSystemObject
object. It is used to determine if a drive exists.This method takes a single required
parameter: the drive letter or a complete path specification.The function returns a
Boolean TRUE if the drive exists, and FALSE if not.

Risk: Can be used to determine file properties that may help an attacker determine
vital information about a specific file, which may assist in an attack.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vbenlr98/html/vamthdriveexists.asp

Impact: Medium

Environ
Prototype: Overloads Function Environ(ByVal Expression As
Integer) As String -OR- Overloads Function Environ(ByVal

Expression As String) As String

Summary: This function is used to return operating system environment variables.

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 544

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBA 545

Description: The Environ function is used to gain operating system environment
variables.The Environ function is an overloaded function that takes one parameter,
either an integer or a string. When an integer is provided as a parameter the string
occupying that environment variable is returned. When a string is provided as a
parameter a string value of the occupying number of that environment variable is
returned.

Risk: This function may reveal sensitive information about the operating system. It
is possible that when used in a server application, a remote user could access this
function and cause an unintentional information disclosure. In general, environment
information should be restricted to program internals for access to libraries or other
objects.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vblr7/
html/vafctenviron.asp

Impact: High

EOF
Prototype: Public Function EOF(ByVal FileNumber As Integer) As
Boolean

Summary: This function is used to determine if the end of the file has been
reached.

Description: The EOF function or “End of File” function is used to determine if
the end of the file has been reached.The EOF function contains a required
integer parameter; this integer should be any valid file number.The EOF function
returns a Boolean true if the end of the file has been reached, and false if not.

Risk: This function should be used to ensure errors do not occur from going past
the last record.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vblr7/
html/vafcteof.asp

Impact: Low

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 545

TLFeBOOK

546 VBA • Programmer’s Ultimate Security DeskRef

EstablishConnection
Prototype: object.EstablishConnection(prompt, readonly,
options)

Summary: This method is used to establish a connection for a
RemoteDataObject object.

Description: The EstablishConnection method is a part of the
RemoteDataObject object, it is used to make a connection to an ODBC server.
This method takes three optional parameters.The first parameter is the prompt; it is
an integer value indicating ODBC prompting characteristic.The second parameter
is a Boolean value for whether it should be a read-only connection.The third
parameter is the options value; it’s an integer value indicating connections options.

Risk: Opens a network connection to a ODBC Server which maybe used by an
attacker to gain access to the system. When using external, one should carefully reg-
ulate all incoming and outgoing data traffic.An attacker could perform a man in the
middle attack to intercept traffic to the database and provide altered content.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rdo98/
html/rdmthestablishconnection.asp

Impact: High

Execute
Prototype: Sub Execute(ByVal path As String)

Summary: This method is used to execute the current page using another page.

Description: The Execute method is a part of the HttpServerUtility object.
It is used to execute the current page using another page at the specified URL path.
This method takes one parameter: the URL path of the new page.

Risk: This method relies on external servers to execute internal content.The
external server may manipulate the content of the current object causing users to
enter invalid or unintended results.This method is subject to cross-site scripting
attacks.All results passed to this function should be carefully controlled.

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 546

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBA 547

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/
frlrfsystemwebhttpserverutilityclassexecutetopic1.asp

Impact: High

FileExists
Prototype: object.FileExists(filespec)

Summary: This method is used to determine if a FileSystemObject object
exists.

Description: The FileExists method is a part of the FileSystemObject
object. It is used to determine if a file exists at a specific location.This method takes
a single required parameter: the complete path to the requested object.The function
returns a Boolean TRUE if it exists, and FALSE if not.

Risk: Can be used to determine file properties that may help an attacker determine
vital information about a specific file, which may assist in an attack.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vbenlr98/html/vamthfileexists.asp

Impact: Medium

FreeFile
Prototype: FreeFile() As Integer

Summary: This function returns an integer for the next available file number.

Description: The FreeFile function provides the next available unused file
number.The FreeFile function has an optional argument stipulating the range
from which to draw the next file number.The function returns the integer value for
the next file to open.

Risk: When calling this function it is important to regulate user input that may
result in a call to the FreeFile function. Unchecked, users could exhaust the file
numbers and cause errors in the application process.

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 547

TLFeBOOK

548 VBA • Programmer’s Ultimate Security DeskRef

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vblr7/html/
vafctfreefile.asp

Impact: Low

GetAbsolutePathName
Prototype: object.GetAbsolutePathName(pathspec)

Summary: This method is used to return a complete and unambiguous path for
FileSystemObject object.

Description: The GetAbsolutePathName method is a part of the
FileSystemObject object. It is used to retrieve a complete and unambiguous
path.This method takes a single required parameter: a path specification that needs
to be changed to a complete and unambiguous path.The function returns the abso-
lute path name as a string.

Risk: If results are directed to user output, an attacker can use the information con-
tained in the absolute path to gain an understanding of system architecture that will
assist him in performing system attacks.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbenlr98/
html/vamthgetabsolutepathname.asp

Impact: Medium

GetAllSettings
Prototype: Public Function GetAllSettings(ByVal AppName As
String, ByVal Section As String) As String(,)

Summary: This function returns a list of key settings and their values.

Description: The GetAllSettings function returns a list of key settings from an
application’s entries into the Windows Registry. It contains two required argument
inputs and returns a string value.The first parameter is a string containing the appli-
cations name.The second parameter is a string containing the section of which key
settings being acquired.

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 548

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBA 549

Risk: This function reveals sensitive information about the Registry entries.
Applications should avoid authorizing users access to results. When using this func-
tion for application internals is necessary, it is important to parse user input to pre-
vent access to restricted files and restricted Registry entries.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vblr7/html/
vafctgetallsettings.asp

Impact: Medium

GetAttr
Prototype: Public Function GetAttr(ByVal PathName As String)
As FileAttribute

Summary: This function returns the attributes of a file, directory or folder.

Description: The GetAttr function provides information about the attributes of a
file, directory or folder.The attributes revealed include: Normal, ReadOnly,
Hidden, System, Directory, Archive, and Alias. It contains one required
parameter the PathName.The PathName is a string that specifies a file, directory or
folder name.The returned value is a FileAttribute constant.

Risk: This function reveals sensitive information about the files and permissions.
Applications should avoid authorizing users access to results. When using this func-
tion for application internals is necessary, it is important to parse user input to pre-
vent access to restricted files.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vblr7/html/
vafctgetattr.asp

Impact: Medium

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 549

TLFeBOOK

550 VBA • Programmer’s Ultimate Security DeskRef

GetAutoServerSettings
Prototype: object.GetAutoServerSettings([progid], [clsid])

Summary: This function returns information about the state of an ActiveX com-
ponent’s registration.

Description: The GetAutoServerSettings function returns information about
an ActiveX components registration, specifically whether or not its registered locally
and if not local the name of the server it is registered on.This function must be run
against an ActiveX object and has two optional parameters.The first parameter is the
progid that must evaluate to Programmatic Identifier for the component.The
second parameter is the clsid, which must evaluate to a class ID for the component.

Risk: This function reveals sensitive information about the ActiveX components.
Applications should avoid authorizing users access to this function’s results.This
function should be used to ensure ActiveX components being processed are from
the proper machine to avoid the execution of malicious ActiveX components.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vb98/html/
vbfctgetautoserversettingsfunction.asp

Impact: Medium

GetDrive
Prototype: object.GetDrive drivespec

Summary: This method is used to return the drive object for a specified path.

Description: The GetDrive method is a part of the FileSystemObject object.
It is used to retrieve the drive object for a specified path.This method takes a
single required parameter: a drive letter (c), a drive letter with a colon (c:), a drive
letter with a colon and path separator appended (c:\), or any network share specifi-
cation.The function will

Risk: If results are directed to user output, an attacker can use the information con-
tained in the absolute path to gain an understanding of system architecture that will
assist him in performing system attacks.

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 550

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBA 551

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbenlr98/
html/vamthgetdrive.asp

Impact: Medium

GetDriveName
Prototype: object.GetDriveName(path)

Summary: This method is used to return the name of the drive for a specified
path.

Description: The GetDriveName method is a part of the FileSystemObject
object. It is used to retrieve the drive for a specified path.This method takes a single
required parameter: a string specifying the path to a component whose drive name
is to be returned.

Risk: If results are directed to user output, an attacker can use the information con-
tained in the absolute path to gain an understanding of system architecture that will
assist him in performing system attacks.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbenlr98/html/
vamthgetdrivename.asp

Impact: Medium

GetExtensionName
Prototype: object.GetExtensionName(path)

Summary: This method is used to return the extension name for the last compo-
nent in the path.

Description: The GetExtensionName method is a part of the
FileSystemObject object. It is used to retrieve the last component in a path.
This method takes a single required parameter. It is a string specifying the path for
the component whose extension name is to be returned.

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 551

TLFeBOOK

552 VBA • Programmer’s Ultimate Security DeskRef

Risk: Access to files based on file extensions may result in corrupt data or the exe-
cution otherwise restricted processes. Data returned via the GetExtensionName
should be verified to insure integrity.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbenlr98/
html/vamthgetextensionname.asp

Impact: Low

GetFile
Prototype: object.GetFile(filespec)

Summary: This method is used to return the file object of the file in a specified
path.

Description: The GetFile method is a part of the FileSystemObject object.
It is used to retrieve the file object of the file in a specified path.This method takes
a single required parameter. It is a string used to specify the path to a file.

Risk: If control of inputs is not carefully regulated, users may gain access to other-
wise privileged files. When parsing input data to obtain pathing for output, It is
important to ensure user input does not contain strings commonly used to gain
access to restricted files, such as “../../”.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/
html/jsmthgetfile.asp

Impact: High

GetFileName
Prototype: object.GetFileName(pathspec)

Summary: This method is used to return the last component of the specified path.

Description: The GetFileName method is a part of the FileSystemObject
object. It is used to retrieve the last component in a path that is not part of the drive

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 552

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBA 553

specification.This method takes a single required parameter. It is a string to specify
the path to a file.

Risk: The basename function is used to remove directory information and
optionally file extension from a path string for a file.The first parameter is used to
determine the full path of the file.All directory names in the path defined by a ‘/’ or
‘\’ are removed leaving only the filename.Additionally, a suffix may be used (file
extension) which will be removed from the end of the name. For example, the
string variable $path=“/var/www/html/index.html” would return
“index.html” when run through basename as follows basename($path). If
.html were added as the suffix, then only “index” would be returned.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbenlr98/
html/vamthgetfilename.asp

Impact: Medium

GetObject
Prototype: Public Function GetObject(Optional ByVal PathName
As String = Nothing, Optional ByVal Class As String =

Nothing) As Object

Summary: This function returns an object provided by a COM component.

Description: The GetObject function returns an object provided by a COM
component for use by an application. It has two string parameters, however only one
of the two may be omitted.The first optional string parameter is the path name of a
target object, if left blank the second parameter is required.The second parameter is
the class parameter that has a format of “name of the application” dot “object type
it supports”.The return value is an object that can be used in an application.

Risk: The GetObject function is available in VB script and used in Web pages
and html enabled email. When used in by malicious users as a Web page or html
enabled email it is possible for outside attackers to view files on a remote system.

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 553

TLFeBOOK

554 VBA • Programmer’s Ultimate Security DeskRef

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vblr7/
html/vafctgetobject.asp

Impact: Medium

GetSetting
Prototype: Public Function GetSetting(ByVal AppName As
String, ByVal Section As String, ByVal Key As String,

Optional ByVal Default As String = ““) As String

Summary: This function is used to retrieve the key setting value from an applica-
tions Windows Registry entry.

Description: The GetSetting function is used to retrieve the key setting value
created by an application that resides in the Windows Registry. It possesses four
parameters, three required and the fourth optional.The first parameter is a string
value for the application or project which key setting is being requested.The second
parameter is the section in which the key setting can be found.The third parameter
is the name of the key setting that is being returned.The fourth optional parameter is
the default setting; this is what gets returned if no key is discovered in that location.

Risk: This function reveals sensitive information about the Registry entries.
Applications should avoid authorizing users access to results. When using this func-
tion for application internals is necessary, it is important to parse user input to pre-
vent access to restricted files and restricted Registry entries.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vblr7/html/
vafctgetsetting.asp

Impact: Medium

GetTempName
Prototype: object.GetTempName

Summary: This method is used to return a randomly generated temporary file or
folder.

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 554

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBA 555

Description: The GetTempName method provides a name for a temporary file or
folder.The GetTempName function has no parameters. It returns a string containing
the name to use. It does not create the file.

Risk: This method is used for temporary files and folders that are intended for dele-
tion once an application terminates it is important to delete these files and folder
along with any other forms of caching after they become no longer necessary, in
order to restrict access to sensitive information. In general, sensitive information
should not be placed in these files and folder since temporary files tend to have
lower access restrictions.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vbenlr98/html/vamthgettempname.asp

Impact: Low

GetText
Prototype: object.GetText (format)

Summary: This method is used to return a text string from a Clipboard object.

Description: The GetText method is a part of the Clipboard object. It is used
to retrieve a text string from a Clipboard object.This method takes a single
optional parameter, a flag signifying the Clipboard object format.

Risk: The Clipboard object is not restricted to the calling program.This makes it
possible for users to manipulate data in the clipboard and potentially corrupt
expected results.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vb98/html/vbmthgettext.asp

Impact: Low

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 555

TLFeBOOK

556 VBA • Programmer’s Ultimate Security DeskRef

Hide
Prototype: objMMC.Hide

Summary: This method is used to set the visible property of any Microsoft
Management Console (MMC) applications.

Description: The Hide method is a part of any Microsoft Management Console
(MMC) application and is used to set the visible property.Applications that have
their visible property set to hide are still running, however.The functions run in the
background.This method has no input parameters and does not return any values.

Risk: Malicious applications often have visible properties set to hide in order to
prevent users from seeing they are running. Hidden application will still show up in
the task manager.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/mmc/
mmc/application_hide.asp

Impact: High

Insert
Prototype: Insert(int index, string item)

Summary: This method adds an item to a collection object.

Description: The Insert method adds an item to a specific location to a col-
lection object. It takes two parameters.The first parameter is an integer indicating
the index that will be its location in the collection.The second parameter is a string
that is the item to be added to the collection.

Risk: All parameters passed to the function from user input should be carefully ana-
lyzed to prevent access to or overwriting of system files. Invalid inserts into the col-
lection class can result in data corruption or unauthorized execution of code.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/mwsdk/
html/mwlrfinsertmethod.asp

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 556

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBA 557

Impact: Low

InsertFile
Prototype: expression.InsertFile(FileName, Range,
ConfirmConversions, Link, Attachment)

Summary: This method is used to insert a file into a Word object.

Description: The InsertFile method is apart of the Word object; it is used to
insert a file into a Word object.This method has five parameters.The first and only
required parameter is a string; this is the file name and location of the file that is
intended on being inserted. If no path is provided, Word will work from the current
folder.The second parameter, which is optional, is a variant for the range; if the file
is a Word document this parameter is a bookmark.The third parameter which is
optional is a variant; it is the ConfirmConversion when set to “TRUE”, it will
prompt you to confirm conversion when inserting files in formats other then the
Word Document format.The fourth parameter is the link.This is optional. If set to
“TRUE”, it will insert the file by using the INCLUEDTEXT field.The fifth parameter
is a variant; this is optional. If set to “TRUE”, it will insert the file as an attachment
to an e-mail message.

Risk: All parameters passed to the function from user input should be carefully ana-
lyzed to prevent access to or overwriting of system files.Additionally, this method is
capable of creating files on a system. Files should never be created automatically as a
result of an action such as a form submittal. Excessive submits by a malicious user
can result in exhausting file nodes on the server.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
vbawd11/html/womthinsertfile1.asp

Impact: Medium

IMEStatus
Prototype: IMEStatus() as Integer

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 557

TLFeBOOK

558 VBA • Programmer’s Ultimate Security DeskRef

Summary: This function returns the Input Method Editor (IME) mode. (This
function is only available in east-Asian versions only.)

Description: This function returns the value of the current Input Method Editor
(IME) mode.This function has no input arguments. It returns an integer value indi-
cating what the IME the system is currently using.

Risk: This function contains no known vulnerabilities. Because of the nature of this
function is revealing sensitive information about the operating system it is possible
that when used in a server application a remote user could access this function and
cause an unintentional information disclosure.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbenlr98/
html/vafctimestatus.asp

Impact: Medium

Import
Prototype: object.Import(filename)

Summary: This function is used to add a component to an existing project.

Description: The Import function is part of the VBComponents object.The
function has one input parameter: the path/name of the file to add to the current
project. It can be used to add a component, form, module, class, etc… The function
returns the name of the file that was added to the project.

Risk: When using this function to add components to projects, it is important to
verify the integrity of the component being imported. Developers often rely on
third party components without fully understanding the details of the components
design.As a result developers can unintentionally build in malicious or poorly
written code.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vb98/
html/vbmthKillDoc.asp

Impact: High

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 558

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBA 559

Input
Prototype: Public Sub Input(FileNumber As Integer, ByRef
Value As Object)

Summary: This function reads data from a sequential file into an application.

Description: The input function reads data from a sequential file and loads those
values into variables. It contains two required input arguments.The first argument is
the FileNumber; it is an integer of a valid file.The second input argument is the
value; this is an object variable that is assigned the values that are read from the
file.

Risk: The input function poses a security risk when it is used to determine the
content of a file. When reading a file, do not make decisions about the file type
based on the file extension type. Doing so can lead to unintended programs or files
being executed that are mistakenly and/or deliberately mislabeled. Syntax used for
input values should be carefully parsed to prevent the malicious execution of code
or data corruption.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vblr7/html/
vastminputdata.asp

Impact: Medium

InputBox
Prototype: Public Function InputBox(ByVal Prompt As String,
Optional ByVal Title As String = ““, Optional ByVal

DefaultResponse As String = ““, Optional ByVal XPos As

Integer = -1, Optional ByVal YPos As Integer = -1) As

String

Summary: This function is used to gain input from a user.

Description: This function creates an input box to retrieve data from a user.The
function has one required and five optional input arguments.The required input
(which can be NULL) is a string containing the prompt for the user.The optional

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 559

TLFeBOOK

560 VBA • Programmer’s Ultimate Security DeskRef

arguments control the title, size, and location of the input box, as well as the help
file location.The function returns a string containing the user’s input.

Risk: The return value of the InputBox function is a string; VB strings are of vari-
able length.Thus the length of the user supplied input while it will not affect the
InputBox this input can be potentially dangerous if supplied to a non VB string or if
passed to another application. Syntax used for input should be carefully parsed to
prevent the malicious execution of code or data corruption.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vblr7/html/
vafctinputbox.asp

Impact: Medium

KillDoc
Prototype: object.KillDoc

Summary: This method is used to terminate the current print job of a printer
object.

Description: The KillDoc method is a part of the printer object. It is used to
terminate the current print job that a printer object may be working on.This
method has no parameters.

Risk: Usage of this method should be carefully regulated to prevent users from
accidental or malicious usage. Unchecked a malicious user could effectively denial of
service a printer by continuously canceling print jobs.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vb98/
html/vbmthkilldoc.asp

Impact: Medium

Listen
Prototype: Public Sub Listen(ByVal backlog As Integer)

Summary: This method is used to place a socket object into a listening state.

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 560

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBA 561

Description: The Listen method is a part of the socket object, and is used to
place the socket object into a listening state.This method takes a single required
parameter; it is for the backlog which is the maximum length of the pending con-
nections queue.

Risk: Opens a network socket that maybe used by an attacker to gain access to the
system. When using sockets, one should carefully regulate all incoming and outgoing
data traffic to prevent malicious data from compromising a system.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/
frlrfsystemnetsocketssocketclasslistentopic.asp

Impact: High

LoadFile
Prototype: Overloads Public Sub LoadFile(ByVal path As String
)

Summary: This method is used to load Text Format (RTF) or standard ASCII text
into a RichTextBox control.

Description: The LoadFile method is a part of the RichTextBox control. It is
used to load the contents of the text file into the text property of the RichTextBox.
This method has a single required parameter; it is a string containing the name and
location of the file to load into the control.

Risk: Any time functions are called with system access, all parameters passed to the
function from user input should be carefully analyzed to prevent access to restricted
or unprivileged system files.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpref/html/
frlrfsystemwindowsformsrichtextboxclassloadfiletopic1.asp

Impact: High

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 561

TLFeBOOK

562 VBA • Programmer’s Ultimate Security DeskRef

LoadPicture
Prototype: LoadPicture(picturename)

Summary: This function is used to display pictures to the screen.

Description: The LoadPicture function is used to convert a number of graphics
file types into a picture object recognized by most VB components.The
LoadPicture function has a several parameters, including a string indicating the
path/name of the picture file needed to be loaded, as well as optional size arguments
for the picture. Other optional arguments are for the depth of the color field to use
and a separate size control.

Risk: Any time functions are called with system access, all parameters passed to the
function from user input should be carefully analyzed to prevent access to restricted
or unprivileged system files.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/
html/vsfctloadpicture.asp

Impact: Medium

LoadResData
Prototype: LoadResData(index, format)

Summary: This function loads the contents of a resource (.res) file and returns a
byte array.

Description: The LoadResData function loads the contents of a resource (.res)
file and returns a byte array.The function contains two required input arguments.
The first argument is the index; it is an integer or string specifying the identifier of
data in a resource file.The second input argument is the format; this value could be
one of many types, including bitmap.

Risk: Any time functions are called with system access, all parameters passed to the
function from user input should be carefully analyzed to prevent access to restricted
or unprivileged system data.

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 562

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBA 563

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/vb98/html/vbmthloadresdata.asp

Impact: High

LoadResPicture
Prototype: LoadResPicture(index, format)

Summary: This function loads an image file into an application.

Description: The LoadResPicture loads icons, bitmap and cursor images into
an application for use by a form or control to use. It contains two input arguments.
The first argument is the index; it is an integer or string specifying the identifier of
data in a resource file.The second input argument is the format; this value could be
one of many types including bitmap.

Risk: Any time functions are called with system access, all parameters passed to the
function from user input should be carefully analyzed to prevent access to restricted
or unprivileged system files.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vb98/
html/vbmthloadrespicture.asp

Impact: High

LoadResString
Prototype: LoadResString(index)

Summary: This function loads a string from a resource (.res) file.

Description: The LoadResString loads a string into an application from a
resource (.res) file in order to improve performance and facilitates easier localization
of an application. It contains one input argument.The argument is the index; it is an
integer or string specifying the identifier of data in a resource file.

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 563

TLFeBOOK

564 VBA • Programmer’s Ultimate Security DeskRef

Risk: Any time functions are called with system access, all parameters passed to the
function from user input should be carefully analyzed to prevent access to restricted
or unprivileged system files.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vb98/
html/vbmthloadresstring.asp

Impact: Low

LOF
Prototype: Public Function LOF(ByVal FileNumber As Integer) As
Long

Summary: This function is used to get the length of a file in bytes.

Description: The LOF function or “Length of File” function is used to gain the
length of a file opened with the FileOpen function.The LOF function has a single
parameter an integer value that is the FileNumber of the file.The function returns
the length of the file (in bytes) as Long integer.

Risk: This function should be used to ensure errors do not occur from going past
the last character in a record.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vblr7/
html/vafctlof.asp

Impact: Low

MsgBox
Prototype: Public Function MsgBox(ByVal Prompt As Object,
Optional ByVal Buttons As MsgBoxStyle = MsgBoxStyle.OKOnly,

Optional ByVal Title As Object = Nothing) As MsgBoxResult

Summary: This function is used to display a common message box to the user.

Description: This function posts a simple message box to the screen to accommo-
date a number of common situations. It contains three format input arguments.The

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 564

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBA 565

first required argument is the prompt; this is the body of the message box.The
second parameter is a flag for the buttons, an optional integer value that indicates
the number of buttons, default selection and also what icon gets displayed in the
message box.The third option is also optional; it is a string value for the title.
Omission of this value results in the title bar displaying the name of the project.The
return value is an integer value indicating which button was selected.

Risk: ActiveX objects allowed by the MsgBox can be triggered by a local user or by
a cross-site scripting attack that has the MsgBox function available to them.These
objects can be used to display information with server application privileges that are
higher then that of the user who called the ActiveX object.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vblr7/
html/vafctmsgbox.asp

Impact: High

Now
Prototype: Public Function Now() As Date

Summary: This function is used to retrieve the current date.

Description: The Now function is used to retrieve the current date and time.There
are no parameters associated with the now function.This function returns the
requested information in a modified Date object.

Risk: The Now function relies on the system clock; accordingly, applications that
depend on the Date function to control trail licenses and other control elements
can be fooled by simply resetting the system clock.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/
html/vsfctnow.asp

Impact: Low

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 565

TLFeBOOK

566 VBA • Programmer’s Ultimate Security DeskRef

RandomDataFill
Prototype: object.RandomDataFill

Summary: This method fills a data grid with random values for a DataGrid
object.

Description: The RandomDataFill is a method of the DataGrid object. It is
used to fill a data grid with random values.This method has no parameters.

Risk: Since this method can be used to generate random data fields it is important
to carefully control objects this function is executed on. Otherwise, there is a poten-
tial to overwrite sensitive data or corrupt the data flow of an application.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/mschrt/
html/vbmthrandomdatafillmethod.asp

Impact: High

RandomFillColumns
Prototype: object.RandomFillColumns (column, count)

Summary: This method fills a number of data grid columns with random values
for a DataGrid object.

Description: The RandomFillColumns is a method of the DataGrid object. It
is used to fill a number of data grid columns associated with a chart with random
values.This method takes two parameters, both required.The first parameter is the
column; it is an integer value and identifies the first column you wish to fill.The
second parameter is the count; it is an integer value specifying the number of
columns you wan to fill with random data.

Risk: Since this method can be used to generate random data fields it is important
to carefully control objects this function is executed on. Otherwise, there is a poten-
tial to overwrite sensitive data or corrupt the data flow of an application.

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 566

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBA 567

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/mschrt/
html/vbmthrandomfillcolumnsmethod.asp

Impact: High

RandomFillRows
Prototype: object.RandomFillRows (row, count)

Summary: This method fills a number of data grid rows with random values for a
DataGrid object.

Description: The RandomFillRows is a method of the DataGrid object, it is
used to fill a number of data grid rows associated with a chart with random values.
This method takes two parameters, both required.The first parameter is the row; it
is an integer value and identifies the first row you wish to fill.The second parameter
is the count; it is an integer value specifying the number of rows you wan to fill
with random data.

Risk: Since this method can be used to generate random data fields it is important
to carefully control objects this function is executed on. Otherwise, there is a poten-
tial to overwrite sensitive data or corrupt the data flow of an application.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/mschrt/
html/vbmthrandomfillrowsmethod.asp

Impact: High

ReadAll
Prototype: object.ReadAll

Summary: This method is used to read an entire TextStream file from a
TextStream object.

Description: The ReadAll method is a member of the TextStream object. It is
used to read an entire TextStream file from a TextStream object.This method
does not take any parameters.

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 567

TLFeBOOK

568 VBA • Programmer’s Ultimate Security DeskRef

Risk: For large files, using the ReadAll method wastes memory resources and
could be the source of a denial of service condition if applied to a server. Other
techniques should be used to input a file, such as reading a file line by line.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbenlr98/
html/vamthreadall.asp

Impact: Low

ReadFromFile
Prototype: object.ReadFromFile filenumber

Summary: This method loads an object form a data file.

Description: The ReadFromFile loads an object from a data file created using
the SaveToFile method.This method takes one required parameter; a numeric
expression specifying the file number used when loading an object.This number
must correspond to an open, binary file.

Risk: Any time functions are called with system access, all parameters passed to the
function from user input should be carefully analyzed to prevent access to restricted
or unprivileged system files.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vb98/html/
vbmthreadfromfile.asp

Impact: Medium

ReadProperty
Prototype: object.ReadProperty(DataName[, DefaultValue])

Summary: This method returns a saved value from a PropertyBag object.

Description: The ReadProperty method is a part of the PropertyBag object,
it is used to return the saved value.This method takes two parameters.The first
parameter is the DataName; it is a string expression that represents a data value in

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 568

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBA 569

the property bag.The second optional parameter is the DefaultValue; this is the
value to be returned if no value is present.

Risk: All inputs property requests passed to this method should be carefully parsed
to prevent access to sensitive information about property data for other data mem-
bers in the PropertyBag object.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vb98/
html/vbmthreadpropertymethod.asp

Impact: Medium

ReleaseInstance
Prototype: object.ReleaseInstance

Summary: This method is used to release an instance of a Webclass object.

Description: The ReleaseInstance method is used by Webclass objects to
destroy a specific instance that has been kept alive across HTTP requests.This
method has no parameters.

Risk: Calls to this method should be carefully controlled to prevent accidental dele-
tion of necessary Webclass objects owed by the user, or malicious deletion of
other user’s objects.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vb98/html/
vbmthsetcompletemethod_x.asp

Impact: High

Reload
Prototype: expression.Reload

Summary: This method is used to reload a cached document for a Document
object.

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 569

TLFeBOOK

570 VBA • Programmer’s Ultimate Security DeskRef

Description: The Reload method is used by the Document object by reloading
the cached document resolving hyperlinks to the document and downloading it.
This method has no parameters.

Risk: The Reload method takes place asynchronously, thus procedures following
the Reload command may execute before the reload is complete and may cause
unexpected results.All data processed after a reload method call should be treated
as if it was from the original load to prevent corruption of data as a result of docu-
ment cache tampering.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbawd11/
html/womthreload1.asp

Impact: Medium

Rnd
Prototype: Rnd[(number)]

Summary: This function is used to produce a random number.

Description: The Rnd function is used to generate random numbers.This function
takes one optional numeric parameter, a flag for determining how the random
number will be generated.The returned value is a random single-precision floating-
point number.

Risk: In order for the numbers produced by the Rnd function to be random a call
to the Randomize statement with no arguments must be made. Since this function
can be used to generate random encryption keys it is important that the numbers be
random, failure to use randomize will result in easily decipherable keys.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/script56/
html/vsfctrnd.asp

Impact: High

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 570

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBA 571

Replace
Prototype: Public Function Replace(ByVal Expression As
String, ByVal Find As String, ByVal Replacement As String,

Optional ByVal Start As Integer = 1, Optional ByVal Count As

Integer = -1, Optional ByVal Compare As CompareMethod =

CompareMethod.Binary) As String

Summary: This function is used to parse out and replace a piece of a string from a
larger string.

Description: This function returns a string where a substring has been replaced by
another string a certain number of times. It contains six input arguments, three
required and three optional.The first argument is required and it is the expression
string or the larger string which contains a smaller string that needs replacement.
The next expression also required is the find string, this is the substring that needs
to be searched out and replaced.The third expression is required and is the replace-
ment string; this is the string that will be in the place of the searched out substring.
The fourth argument is the start point; this is optional and will default to 1 if not
stated.The start point is a numeric value to indicate where to start the search for the
substring.The fifth argument is an optional parameter; it is the count vector that
indicates how many times the replacement substring should be done.This value
defaults to -1, which indicates it must replace every occurrence of the substring.
The final parameter is the compare argument; this can be either a binary compar-
ison or a textual comparison.

Risk: The replace function is one of many forbidden functions that can provide a
malicious Web site the ability to inflict harm to visitors. Most Web browsers limit the
permissions and scope of the VB Script version of the replace function that could
pose a problem when it is employed in a Web application. Content filtering should
be employed if a user has any access to the values for the replaced parameter,
string parameter, or find parameter.This could provide a means for a malicious
user to write to areas of a file or string that the user is not intended to write to.

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 571

TLFeBOOK

572 VBA • Programmer’s Ultimate Security DeskRef

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vblr7/html/
vafctreplace.asp

Impact: High

Shell
Prototype: Shell(pathname[,windowstyle])

Summary: This function is used to run executable programs.

Description: This function runs an executable program and returns a double value
that is the program’s task ID, if an error occurs it returns zero. Shell contains two
parameters, one required and one optional.The first parameter is the pathname;
this is a string value that contains the name of the executable file with switches of
applicable, drive, and folder.The second optional parameter is the window style; this
is an integer value that will default to minimize with focus.

Risk: The Shell function has the ability to run any executable on a system with
the same privileges as the executing user.Any time external code is executed on a
server, restrictions need to be implemented to prevent unauthorized user access. If a
user can execute custom code, it will become possible for that user to gain unautho-
rized access to the system.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbenlr98/
html/vafctShell.asp

Impact: Medium

Time
Prototype: Public Function Time() As Date

Summary: This function is used to retrieve the current time.

Description: The Time function is used to retrieve the current time.There are no
parameters associated with the time function.The time is returned in a modified
Date object.

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 572

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBA 573

Risk: The Time function relies on the system clock; accordingly, applications that
depend on the Date function to control trail licenses and other control elements
can be fooled by simply resetting the system clock. For instance a program which
uses the time function to restrict the execution of elements to an hour in order to
prevent overload, could cause a system overload when someone resets there time for
daylight savings or similar events.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/script56/html/vsfcttime.asp

Impact: Medium

www.syngress.com

V
B

A

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 573

TLFeBOOK

309_Desk_Ref_VBA.qxd 10/11/04 4:43 PM Page 574

TLFeBOOK

Programmer’s
Ultimate Security
DeskRef: VBScript

Date
Prototype: Date

Summary: This function returns the current system date.

Description: The VBScript Date function returns the current local
time and date of the underlying operating system in its native
format.As with most VBScript functions, Date is a reserved word
that takes no parameters nor does it first need to be prototyped or
initialized.

Risk: The local server time could be utilized to ascertain geog-
raphy-specific information on a cyber target.This information could
then be leveraged to advance an attack. Ensure that it is acceptable to
release the system’s time and date settings to external parties before
outputting the results of this function to human users.

Note: In general, this function was written for Microsoft Windows-
based operating systems.

575

309_Desk_Ref_VBScript.qxd 10/11/04 4:45 PM Page 575

TLFeBOOK

576 VBScript • Programmer’s Ultimate Security DeskRef

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
script56/html/vtoriVBScript.asp

Impact: Low

Cross References: Now, Time, Cdate

Debug.write
Prototype: debug.write(string1, string2,… stringX)

Summary: This function sends a string to the Microsoft script debugger.

Description: The Write method is extended from the VBScript Debug object.
The VBScript Write method sends strings to the active script debugger. While
there is no limitation on the number of strings that can be sent to the debugger for
contextual analysis, it is a function that has the potential to put a lag on system
resources. In most cases, it’s beneficial to enable just-in-time (JIT) debugging when
utilizing this method.

Risk: Methods that utilize a backend debugger are in danger of putting underlying
executables and applications at risk when that debugger is called. It is not
uncommon for bugs or vulnerabilities to be identified in closed source applications
to include Microsoft applications. Once launched, the application will send datas-
treams to the debugger for execution.All transmitted data should be analyzed and
stripped of potentially malicious content.

Note: In general, VBScript functionality is geared for Microsoft operating systems
only.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
script56/html/vtoriVBScript.asp

Impact: Medium

Cross References: debug.writeline

www.syngress.com

V
B

Scrip
t

309_Desk_Ref_VBScript.qxd 10/11/04 4:45 PM Page 576

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBScript 577

Debug.writeline
Prototype: debug.writeline(string1, string2,… stringX)

Summary: This function sends a string to the Microsoft script debugged with an
appended newline character.

Description: The Writeline method is extended from the VBScript Debug
object.The VBScript Writeline method sends strings followed by a newline
character “/n” to the active script debugger. While there is no limitation on the
number of strings that can be sent to the debugger for contextual analysis, it is a
function that has the potential to put a lag on system resources. In most cases, it’s
beneficial to enable just-in-time (JIT) debugging when utilizing this method.

Risk: Methods that utilize a backend debugger are in danger of putting underlying
executables and applications at risk when that debugger is called. It is not
uncommon for bugs or vulnerabilities to be identified in closed source applications
to include Microsoft applications. Once launched, the application will send datas-
treams to the debugger for execution.All transmitted data should be analyzed and
stripped of potentially malicious content.

Note: In general, VBScript functionality is geared for Microsoft operating systems
only.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
script56/html/vtoriVBScript.asp

Impact: Medium

Cross References: debug.write

GetLocale
Prototype: GetLocale()

Summary: This function returns the current system Locale.

Description: The GetLocale function returns the value of the locale ID for the
current system. In general the locale can contain information to include local user

www.syngress.com

V
B

Sc
ri

p
t

309_Desk_Ref_VBScript.qxd 10/11/04 4:45 PM Page 577

TLFeBOOK

578 VBScript • Programmer’s Ultimate Security DeskRef

configurations and settings, country, or even keyboard layout.The returned value is
a 32-bit number that can be cross-referenced with Microsoft’s Locale ID chart.

Risk: Output of this function could be enough to field an educated attack on a vul-
nerable system.This function handles highly sensitive system-specific sensitive infor-
mation that an attacker could leverage during a period of target reconnaissance.This
function should only be utilized if it is absolutely necessary for proper execution of
the application.All analysis for the output of this function should be conducted
securely within the application and never sent across the wire in cleartext.

Note: In general, VBScript functionality is geared for Microsoft operating systems
only.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
script56/html/vsmsclcid.asp,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
script56/html/vtoriVBScript.asp

Impact: Medium

Cross References: SetLocale

InputBox
Prototype: InputBox(prompt, title, default, xpos, ypos, help-
file, context)

Summary: This function is utilized to create an input box for gathering human
user input.

Description: The VBScript InputBox prompts a user with a custom-crafted Web-
based dialog box.This box usually requires action before it removed from the fore-
most position on the screen that usually happens to be human user input text or
the acknowledged click of a button. If a text box is used, then the text would be
returned, while buttons usually return Boolean or whole integer numbers.The
function can take up to seven parameters as seen in the prototype.

Risk: Input boxes are commonly misused for password and other types of sensitive
information storage. Sensitive information should never be transmitted from clients

www.syngress.com

V
B

Scrip
t

309_Desk_Ref_VBScript.qxd 10/11/04 4:45 PM Page 578

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBScript 579

to servers via Web page input boxes. In addition, SSL should be implemented when
transferring sensitive data. Lastly, ensure that all user input is fully scrutinized
whereas non-alphanumeric characters are removed where possible.

Note: In general, VBScript functionality is geared for Microsoft operating systems
only.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
script56/html/vtoriVBScript.asp

Impact: Low

LoadPicture
Prototype: LoadPicture(name_of_picture)

Summary: This function is utilized to load a picture with VBScript controls.

Description: The LoadPicture function takes one parameter that is utilized to
house the name of the picture that is to be uploaded to an application.This func-
tion is commonly utilized for Web browser functionality to load pictures to a Web
site. By default, the LoadPicture function supports bitmap, enhanced metafiles,
GIF, icon, JPEG, run-length encoded, and windows metafiles.

Risk: Access controls should be implemented to restrict users from loading files
that are not pictures.Additionally, consider adding or plugging in a malicious con-
tent filter such as that offered by McAfee.These types of anti-virus additions are
becoming more and more popular in the software development industry.

Note: In general VBScript functionality is geared for Microsoft operating systems
only.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
script56/html/vtoriVBScript.asp

Impact: Low

www.syngress.com

V
B

Sc
ri

p
t

309_Desk_Ref_VBScript.qxd 10/11/04 4:45 PM Page 579

TLFeBOOK

580 VBScript • Programmer’s Ultimate Security DeskRef

Now
Prototype: Now

Summary: This function returns the current system time.

Description: The Now function returns the current system’s date and time. Both
of these variables are stored into a single string variable upon execution and no
parameters are necessary to run this function.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Note: In general, VBScript functionality is geared for Microsoft operating systems
only.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
script56/html/vtoriVBScript.asp

Impact: Low

Cross References: Time, Date

Replace
Prototype: Replace

Summary: This function returns a final string after it’s replace with string is
implemented.

Description: The replace function takes six parameters.The first three are
required while the last three are optional additions.The expression parameter
contains the value that you are searching and replacing within, whereas the find is
the string you are looking for, and the replacement is the string that’s going to
replace the find value.The start parameter is utilized if you wish to start
searching at a specific location within a certain string.The count parameter

www.syngress.com

V
B

Scrip
t

309_Desk_Ref_VBScript.qxd 10/11/04 4:45 PM Page 580

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBScript 581

defines how many times a replacement will be made, while compare defines
whether it’s a binary or text-based compare algorithm that should be utilized.

Risk: The replace function is commonly poorly implemented, whereas attackers
obtain the ability to replace data within sensitive files or datastreams. It is critical to
ensure that human users cannot call this function nor pass random variables to the
replace function.

Note: In general, VBScript functionality is geared for Microsoft operating systems
only.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
script56/html/vtoriVBScript.asp

Impact: Low

Rnd
Prototype: Rnd (number)

Summary: This function returns a random number.

Description: The Rnd function returns a quasi-random number generated by an
internal VBScript system function.The (number) parameter that the Rnd function
accepts helps determine what kind of random number is generated.A number less
than zero will use the same seed every time, whereas a number greater than zero
will return the next random number in the sequence.

Risk: As with most standard random functions implemented within the C and
C++ libraries, this function is susceptible to brute force or easily guessed number
generating attacks due to a poor seed algorithm within the backend code.Amongst
numerous other secure random number generating functions, Microsoft .Net has
secure methods for implementing properly seeded numbers. ISAAC, designed by
Bob Jenkins, is a fast cryptographic random number generator is as strong as they
come.Available in multiple languages, ISAAC is a standard for many freeware and
commercial solutions and should be considered the next time a random number is
required within an application.

www.syngress.com

V
B

Sc
ri

p
t

309_Desk_Ref_VBScript.qxd 10/11/04 4:45 PM Page 581

TLFeBOOK

582 VBScript • Programmer’s Ultimate Security DeskRef

Note: In general, VBScript functionality is geared for Microsoft operating systems
only.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
script56/html/vtoriVBScript.asp

Impact: High

ScriptEngineBuildVersion
Prototype: ScriptingEngineBuildVersion

Summary: This function returns the complete build version for the current
scripting engine.

Description: In most applications that must determine if a certain scripting
engine is running, they must first detect the engine type then build information of
the engine.The ScriptingEngineBuildVersion function returns the com-
plete build version of the scripting engine to include both the major and minor
version numbers.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Note: In general, VBScript functionality is geared for Microsoft operating systems
only.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
script56/html/vtoriVBScript.asp

Impact: Medium

www.syngress.com

V
B

Scrip
t

309_Desk_Ref_VBScript.qxd 10/11/04 4:45 PM Page 582

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBScript 583

ScriptEngineMajorVersion
Prototype: ScriptingEngineMajorVersion

Summary: This function returns the major version for the current scripting
engine.

Description: In most applications that must determine if a certain scripting
engine is running, they must first detect the engine type then build information of
the engine.The ScriptingEngineMajorVersion function returns the major
build version of the scripting engine.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Note: In general, VBScript functionality is geared for Microsoft operating systems
only.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
script56/html/vtoriVBScript.asp

Impact: Medium

ScriptEngineMinorVersion
Prototype: ScriptingEngineMinorVersion

Summary: This function returns the minor version of the current scripting
engine.

Description: In most applications that must determine if a certain scripting
engine is running, they must first detect the engine type then build information of
the engine.The ScriptingEngineMinorVersion function returns the minor
build version of the scripting engine.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only

www.syngress.com

V
B

Sc
ri

p
t

309_Desk_Ref_VBScript.qxd 10/11/04 4:45 PM Page 583

TLFeBOOK

584 VBScript • Programmer’s Ultimate Security DeskRef

be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Note: In general, VBScript functionality is geared for Microsoft operating systems
only.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
script56/html/vtoriVBScript.asp

Impact: Medium

ScriptingEngine
Prototype: ScriptingEngine

Summary: This function returns a character-based string with the current
scripting language in use.

Description: Microsoft operating systems currently support multiple scripting
engines that can be running dormant in the background.The ScriptEngine
function returns a string detailing what engine is currently being utilized.The three
most common strings returned are Jscript, VBA, or VBScript.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Note: In general, VBScript functionality is geared for Microsoft operating systems
only.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
script56/html/vtoriVBScript.asp

Impact: Medium

www.syngress.com

V
B

Scrip
t

309_Desk_Ref_VBScript.qxd 10/11/04 4:45 PM Page 584

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBScript 585

SetLocale
Prototype: SetLocale(lcid)

Summary: This function is utilized to set the system global locale.

Description: The SetLocale function permits the application end-user to set
the local environment variables. In general, the locale can contain information to
include local user configurations and settings, country, or even keyboard layout.The
returned value is a 32-bit number that can be cross-referenced with Microsoft’s
Locale ID chart.

Risk: Output of this function could be enough to field an educated attack on a vul-
nerable system.This function handles highly sensitive system-specific sensitive infor-
mation that an attacker could leverage during a period of target reconnaissance.This
function should only be utilized if it is absolutely necessary for proper execution of
the application.All analysis for the output of this function should be conducted
securely within the application and never sent across the wire in cleartext.

Note: In general, VBScript functionality is geared for Microsoft operating systems
only.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
script56/html/vsmsclcid.asp,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
script56/html/vtoriVBScript.asp

Impact: High

Cross References: GetLocale

www.syngress.com

V
B

Sc
ri

p
t

309_Desk_Ref_VBScript.qxd 10/11/04 4:45 PM Page 585

TLFeBOOK

586 VBScript • Programmer’s Ultimate Security DeskRef

Time
Prototype: Time

Summary: This function returns the current system’s time.

Description: The Time function does not require any parameters and only
returns the system’s current time as opposed to date and time.The system time is
returned in a single string.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All
analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Note: In general, VBScript functionality is geared for Microsoft operating systems
only.

Cross References: Date, Now

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
script56/html/vtoriVBScript.asp

Impact: Low

Timer
Prototype: Timer

Summary: This function returns the time that has passed since midnight in sec-
onds.

Description: The Timer function does not require any parameters and returns
the time that has elapsed passed the most recently 12:00 A.M. according to local
system time.The retrieved number is the total number of seconds past midnight.

Risk: This function handles system-specific sensitive information that an attacker
could leverage during a period of target reconnaissance.This function should only
be utilized if it is absolutely necessary for proper execution of the application.All

www.syngress.com

V
B

Scrip
t

309_Desk_Ref_VBScript.qxd 10/11/04 4:45 PM Page 586

TLFeBOOK

Programmer’s Ultimate Security DeskRef • VBScript 587

analysis for the output of this function should be conducted securely within the
application and never sent across the wire in cleartext.

Note: In general, VBScript functionality is geared for Microsoft operating systems
only.

Additional Resources:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/
script56/html/vtoriVBScript.asp

Impact: Low

Cross References: Time, Date, Now

www.syngress.com

V
B

Sc
ri

p
t

309_Desk_Ref_VBScript.qxd 10/11/04 4:45 PM Page 587

TLFeBOOK

309_Desk_Ref_VBScript.qxd 10/11/04 4:45 PM Page 588

TLFeBOOK

Penetration Testing
with Google Hacks
Johnny Long,
Foreword by Ed Skoudis

Google, the most popular search engine worldwide, pro-
vides web surfers with an easy-to-use guide to the Internet,
with web and image searches, language translation, and a
range of features that make web navigation simple enough
for even the novice user. What many users don’t realize is
that the deceptively simple components that make Google
so easy to use are the same features that generously
unlock security flaws for the malicious hacker.
Vulnerabilities in website security can be discovered
through Google hacking, techniques applied to the search
engine by computer criminals, identity thieves, and even
terrorists to uncover secure information. This book beats
Google hackers to the punch, equipping web administra-
tors with penetration testing applications to ensure their site
is invulnerable to a hacker’s search.
ISBN: 1-931836-36-1

Price: $49.95 USA $65.95 CAN

AVAILABLE DEC. 2004
ORDER at
www.syngress.com

Nessus Network Auditing
Jay Beale, Haroon Meer, Roelof
Temmingh, Charl Van Der Walt,
Renaud Deraison

Crackers constantly probe machines looking for both old
and new vulnerabilities. In order to avoid becoming a
casualty of a casual cracker, savvy sys admins audit their
own machines before they’re probed by hostile outsiders
(or even hostile insiders). Nessus is the premier Open
Source vulnerability assessment tool, and was recently
voted the “most popular” open source security tool of any
kind. Nessus Network Auditing is the first book available
on Nessus and it is written by the world’s premier Nessus
developers led by the creator of Nessus, Renaud Deraison.
ISBN: 1-931836-08-6

Price: $49.95 U.S. $69.95 CAN

AVAILABLE NOW!
ORDER at
www.syngress.com

309_DeskRef_BM.qxd 10/12/04 9:16 AM Page 589

TLFeBOOK

Ethereal Packet Sniffing
Angela Orebaugh

Ethereal offers more protocol decoding and reassembly
than any free sniffer out there and ranks well among the
commercial tools. You’ve all used tools like tcpdump or
windump to examine individual packets, but Ethereal
makes it easier to make sense of a stream of ongoing net-
work communications. Ethereal not only makes network
troubleshooting work far easier, but also aids greatly in
network forensics, the art of finding and examining an
attack, by giving a better “big picture” view. Ethereal
Packet Sniffing will show you how to make the most out of
your use of Ethereal.
ISBN: 1-932266-82-8

Price: $49.95 U.S. $77.95 CAN

AVAILABLE NOW
ORDER at
www.syngress.com

Snort 2.1 Intrusion
Detection,
Second Edition
Jay Beale, Brian Caswell, et. al.

“The authors of this Snort 2.1 Intrusion Detection, Second
Edition have produced a book with a simple focus, to
teach you how to use Snort, from the basics of getting
started to advanced rule configuration, they cover all
aspects of using Snort, including basic installation, pre-
processor configuration, and optimization of your Snort
system.”
—Stephen Northcutt
Director of Training & Certification, The SANS Institute
ISBN: 1-931836-04-3

Price: $49.95 U.S. $69.95 CAN

AVAILABLE NOW!
ORDER at
www.syngress.com

309_DeskRef_BM.qxd 10/12/04 9:16 AM Page 590

TLFeBOOK

Microsoft Log
Parser Toolkit
Gabriele Giuseppini
and Mark Burnett

Do you want to find Brute Force Attacks against your
Exchange Server? Would you like to know who is
spamming you? Do you need to monitor the performance
of your IIS Server? Are there intruders out there you would
like to find? Would you like to build user logon reports
from your Windows Server? Would you like working
scripts to automate all of these tasks and many more for
you? If so, “Microsoft Log Parser Toolkit” is the book
for you...
ISBN: 1-932266-52-6

Price: $39.95 USA $57.95 CAN

AVAILABLE DEC. 2004
ORDER at
www.syngress.com

Inside the SPAM Cartel
Spammer X

Authored by a former spammer, this is a methodical, tech-
nically explicit expose of the inner workings of the SPAM
economy. Readers will be shocked by the sophistication
and sheer size of this underworld. "Inside the Spam
Cartel" is a great read for people with even a casual
interest in cyber-crime. In addition, it includes a level of
technical detail that will clearly attract its core audience of
technology junkies and security professionals.
ISBN: 1932266-86-0

Price: $49.95 US 72.95 CAN

AVAILABLE DEC 2004
ORDER at
www.syngress.com

309_DeskRef_BM.qxd 10/12/04 9:16 AM Page 591

TLFeBOOK

The Mezonic Agenda:
Hacking the Presidency

Dr. Herbert H. Thompson and Spyros Nomikos
The Mezonic Agenda: Hacking the Presidency is the first Cyber-Thriller that allows the reader to
“hack along” with both the heroes and villains of this fictional narrative using the accompanying CD
containing real, working versions of all the applications described and exploited in the fictional nar-
rative of the book. The Mezonic Agenda deals with some of the most pressing topics in technology
and computer security today including: reverse engineering, cryptography, buffer overflows, and
steganography. The book tells the tale of criminal hackers attempting to compromise the results of a
presidential election for their own gain.
ISBN: 1-931836-83-3

Price: $34.95 U.S. $50.95 CAN

AVAILABLE NOW!
ORDER at
www.syngress.com

WarDriving: Drive, Detect, Defend
A Guide to Wireless Security
Mark Burnett
The act of driving or walking through urban areas with a wireless-equipped laptop to map protected
and un-protected wireless networks has sparked intense debate amongst lawmakers, security profes-
sionals, and the telecommunications industry. This first ever book on WarDriving is written from the
inside perspective of those who have created the tools that make WarDriving possible.
ISBN: -1932266-65-8

Price: $59.95 US $79.95 CAN

Stealing the Network:
How to Own a Continent
131ah, Russ Rogers, Jay Beale, Joe Grand, Fyodor, FX, Paul Craig,
Timothy Mullen (Thor), Tom Parker, Ryan Russell, Kevin D. Mitnick
The first book in the “Stealing the Network” series was called a “blockbuster” by Wired magazine,
a “refreshing change from more traditional computer books” by Slashdot.org, and “an entertaining
and informative look at the weapons and tactics employed by those who attack and defend digital
systems” by Amazon.com. This follow-on book once again combines a set of fictional stories with
real technology to show readers the danger that lurks in the shadows of the information security
industry... Could hackers take over a continent?
ISBN: 1-931836-05-1

Price: $49.95 US $69.95 CAN

AVAILABLE NOW!
ORDER at
www.syngress.com

Syn•gress (sin-gres): noun, sing. Freedom
from risk or danger; safety. See security.

Syngress: The Definition of a
Serious Security Library

AVAILABLE NOW!
ORDER at
www.syngress.com

309_DeskRef_BM.qxd 10/12/04 9:16 AM Page 592

TLFeBOOK

