
QNX Software Systems Ltd.
175 Terence Matthews Crescent

Ottawa, Ontario, Canada, K2M 1W8
Voice: +1 613 591-0931 1 800 676-0566

Fax: +1 613 591-3579
Email: info@qnx.com
Web: www.qnx.com

Real Time or Real Linux?
A Realistic Alternative

Paul N. Leroux
Technology Analyst

QNX Software Systems Ltd.
paull@qnx.com

Abstract

Designers of embedded systems have become increasingly interested in the Linux operating
system, largely because of its open source model. But, as it turns out, the standard Linux kernel

can’t deliver the hard realtime capabilities such as predictable response times and microsecond
latencies — that a large number of embedded systems demand. Several products have emerged to
fill the Linux realtime gap, with mixed success. For instance, some vendors have taken a dual-
kernel approach that provides a fragile runtime environment for realtime tasks, while forcing
developers to write new drivers and system services — even when equivalent services already
exist for Linux. Meanwhile, others have proposed a “pure” Linux solution that, to be effective,
would require a rewrite of the Linux driver and virtual file system frameworks. In this paper, we
look at an alternate approach — using a POSIX-based RTOS designed specifically for embedded
systems — that not only allows Linux developers to keep their programming model, but also
maintains the key advantages of Linux’s open source model. As an added benefit, this approach
allows embedded developers to enjoy OS services unavailable with either standard Linux or
realtime Linux extensions. To illustrate the viability of this approach, the paper ends with
examples of various Linux applications already ported QNX Neutrino, the POSIX-based RTOS
from QNX Software Systems.

Real Time or Real Linux? A Realistic Alternative

Page 2 Real Time or Real Linux? A Realistic Alternative

Filling the Realtime Gap

For the embedded systems designer, Linux poses a
dilemma. On the one hand, Linux lets the designer
leverage a large pool of developers, a rich legacy
of source code, and industry-standard POSIX APIs.
At the same time, the standard Linux kernel can’t
deliver the “hard” realtime capabilities such as
guaranteed response times and microsecond
latencies — that many embedded devices require.

The reasons for this are rooted in Linux’s general-
purpose architecture. Take process scheduling, for
instance. Rather than use a preemptive priority-
based scheduler, as an RTOS would, Linux
implements a “fairness” policy so that every process
gets a reasonable opportunity to execute. As a result,
high-priority, time-critical processes can’t always
gain immediate access to the CPU. In fact, the OS
will sometimes interrupt a high-priority process to
give a lower-priority process a share of CPU time.

Also, the standard Linux kernel isn’t preemptible.
A high-priority process can never preempt a kernel
call, but must instead wait for the entire call to
complete — even if the call was invoked by the
lowest-priority process in the system. This makes it
difficult, if not impossible, to create a design where
critical events are consistently handled within short
(and predictable) timeframes.

Mind you, it’s wrong to think that this scheduling
model constitutes a deficiency in Linux. The model
does very well, for instance, at achieving the high
overall throughput required by desktop and server
applications. It only falls short when forced into
deterministic environments that it wasn’t designed
for, such as network routers, factory robots, medical
instruments, and continuous media applications.

Be that as it may, several products have emerged
with the aim of filling in Linux’s realtime gap.
Some of these represent the work of commercial
vendors. Others are open-source research projects.
Some are a combination of both. No approach,

however, has emerged as the “standard.” In fact,
some approaches even deviate from the standard
Linux/POSIX programming model.

Real Time Implemented
Outside of Linux

For instance, most vendors provide “realtime Linux”
— note the quotation marks — by running Linux as
a task on top of a realtime kernel (see Figure 1). Any
tasks that require deterministic scheduling also run in
this preemptible kernel, but at a higher priority than
Linux. These tasks can thus preempt Linux whenever
they need to execute and will yield the CPU to Linux
only when their work is done.

Figure 1 — In the dual-kernel model, Linux runs as the
lowest-priority task in a separate realtime kernel.

In this dual-kernel model, the realtime kernel
always gets first dibs on hardware interrupts. If an
interrupt is flagged for a realtime task, the kernel
will schedule that task to run. Otherwise, the kernel
will pass the interrupt to Linux for processing. The
nice thing here is that all this work is invisible to
applications running in the Linux environment —
except, of course, for the CPU cycles lost to the
realtime kernel and its tasks. Still, the approach has
several shortcomings:

Realtime Tasks
Linux Kernel

IPC

Hardware

User Applications

Dual-Kernel Model

Realtime Kernel

Real Time or Real Linux? A Realistic Alternative

Real Time or Real Linux? A Realistic Alternative Page 3

Duplicated coding efforts

Tasks running in the realtime kernel can’t make
full use of existing Linux system services — file
systems, networking, and so on. In fact, if a
realtime task calls out to Linux for any service,
it will be subject to the same preemption
problems that prohibit Linux processes from
behaving deterministically.

As a result, new drivers and system services
must be created specifically for the realtime
kernel — even when equivalent services already
exist for Linux. Since few such drivers are
available off the shelf, Linux developers must
typically write them from scratch, using an
unfamiliar API.

Fragile execution environment

Tasks running in the realtime kernel don’t
benefit from the robust MMU-protected
environment that Linux provides for regular,
non-realtime processes. Instead, they run
unprotected in kernel space. Consequently, any
realtime task that contains a common coding
error, such as a corrupt C pointer, can easily
cause a fatal kernel fault. That’s a problem, since
most systems that need real time also demand a
very high degree of reliability.

Limited portability

With the dual-kernel approach, realtime tasks
aren’t Linux processes at all, but threads and
signal handlers written to a small subset of the
POSIX API or, in some cases, a non-standard
API. Moving existing Linux code and
applications to the realtime environment
becomes difficult.

To complicate matters, different implementa-
tions of the dual-kernel approach use different
APIs. Realtime tasks written for one vendor’s
realtime extensions may not run on another’s.
Embedded device manufacturers hoping to

leverage Linux’s widely supported APIs must
instead choose between competing "standards."

No determinism for existing Linux
applications and drivers

Because Linux processes don’t run in the real-
time kernel, they don’t gain any deterministic
behavior. Instead, they continue to be scheduled
according to Linux’s fairness algorithm.

Limited design options

As mentioned, the APIs supported by the
realtime kernel provide only a subset of the
services provided by standard POSIX and Linux
APIs. Hence, developers have fewer design
options than they would with either Linux or a
mature RTOS.

“Pure” Realtime Linux?

Given the shortcomings of the dual-kernel approach,
wouldn’t it be better to make Linux itself realtime?
Apparently, this can’t be too hard to do, since at
least one vendor has claimed they have a pure Linux
kernel capable of supporting applications with
“realtime requirements.” In a nutshell, they made
the kernel preemptible by enabling Linux’s SMP
locking mechanisms to work on a single processor.

This approach has merit, since it allows developers
to use a standard Linux kernel and programming
model. And, like other common approaches to
making Linux more deterministic, such as adding
high-resolution timers, it helps address the low-
latency requirements of reactive, event-driven
systems. Unfortunately, such low-latency patches
don’t address the complexity of most realtime
environments, where realtime tasks span larger time
intervals and have more dependencies on system
services and other processes than do tasks in a
simple event-driven system.

For instance, in systems where realtime tasks
depend on services such as device drivers or file
systems, the problem of priority inversion would

Real Time or Real Linux? A Realistic Alternative

Page 4 Real Time or Real Linux? A Realistic Alternative

have to be addressed within the Linux driver and
virtual file system (VFS) models. This would
effectively require a rewrite of those frameworks —
and of all device drivers and file systems employing
them. Without these modifications, realtime tasks
could experience unpredictable delays when
blocked on a service. As a further problem, most
existing Linux drivers aren’t preemptible. Thus, to
ensure predictability, programmers would also have
to insert preemption points into every driver in the
system — something that few Linux developers
have experience doing.

In any case, it’s unclear which realtime modifica-
tions, if any, will eventually be integrated into the
standard Linux kernel. After all, most Linux-based
systems rely on the kernel’s current approach, which
sacrifices predictability to achieve higher overall
throughput. A more deterministic kernel — with its
attendant reduction in average response times —
may simply be out of step with what most Linux
developers want.

The Best of Both Worlds

The QNX® Neutrino® represents an entirely different
and altogether more viable approach to the problems
we’ve been discussing. Instead of trying to make
developers squeeze predictable response times out
of Linux, QNX Neutrino offers a proven realtime
operating environment that:

• allows Linux developers to keep their existing
APIs and programming model

• addresses the shortcomings of realtime Linux
extensions through a much tougher runtime
model, greater design options, and a unified
environment for realtime and non-realtime
applications

• maintains key benefits associated with Linux’s
open source model, such as easier trouble-
shooting and OS customization — in fact,
QNX Neutrino’s architecture offers distinct
advantages on both counts

Compatible to the core
How well does QNX Neutrino support the Linux
programming model? The answer lies, to a great
degree, in the POSIX APIs adopted by Linux.
Though rooted in Unix practice, these APIs were
defined by the POSIX working groups purely in
terms of “interface,” not “implementation.” Simply
put, the APIs aren’t tied to any OS or OS architec-
ture. As a result, an RTOS can support the same
POSIX APIs as Linux (along with various subtleties
of Linux compatibility) without adopting Linux’s
non-deterministic kernel.

The QNX Neutrino RTOS supplies proof for this
implementation-independent approach: It offers
POSIX-compliant APIs, but implemented on a
realtime, microkernel architecture (see Figure 2).
Importantly, QNX doesn’t implement POSIX as an
add-on layer. Rather, the very core of the QNX
Neutrino RTOS — the QNX microkernel — was
designed from the beginning to support POSIX
realtime facilities, including threads. POSIX, and
hence Linux, compatibility runs deep.

Embedded Linux: a new definition
This issue of API compatibility is taking on surpris-
ing importance as OEMs attempt to use Linux in

Figure 2 — In QNX Neutrino, the microkernel contains
only the most fundamental OS services. All other
services are provided through optional, memory-
protected processes that can be stopped and started
dynamically. To achieve this modularity, QNX Neutrino
uses message passing as the fundamental means of
IPC for the entire system.

QNX Microkernel Model

Message Passing

File
System

Device
Driver

Java
VM

TCP/IP
Manager

POSIX
App

HA
Manager

Microkernel

Real Time or Real Linux? A Realistic Alternative

Real Time or Real Linux? A Realistic Alternative Page 5

their embedded products. Until recently Linux was,
more than anything else, a unified community of
developers creating software for a relatively narrow
range of environments mostly web servers and
workstations based on x86 hardware. This common
focus meant that Linux developers could count on a
variety of benefits: binary compatibility, a consistent
OS kernel, a pool of readily adaptable source code,
and so on.

Unfortunately, no such common focus is possible
in the embedded market, for the simple reason that
embedded systems are so incredibly diverse. Most
are purpose-specific, requiring custom applications,
custom drivers, custom OS services, custom board
designs, and so on. In fact, the consequences of
adapting Linux to this diversity are fast becoming
obvious. Scores of embedded OEMs and developers
are now independently rolling their own Linux
kernels with the result that, instead of one Linux,
many non-standard and incompatible versions exist.
Fragmentation isn't a distant threat; it’s happening
today.1

There is, then, a need for a new lingua franca
among embedded Linux developers a way to
define “embedded Linux” that accommodates the
teeming diversity of the embedded market, while
providing a critical mass of portability and
interoperability. That’s exactly what the Embedded
Linux Consortium (ELC), a vendor-neutral trade
association dedicated to advancing Linux in
embedded markets, is now doing with its soon-to-
be-proposed ELC Platform Specification. This
specification will define embedded Linux in a new
way: as a set of APIs, along with a test suite to
measure conformance.

Truth is, this approach isn’t really new. The POSIX
specification did much the same thing when it

1 Fragmentation raises another issue: lower reliability. A key reason

why standard x86 Linux performs so reliably is that a large com-
munity of developers is continually locating and fixing problems in
the code. That benefit no longer applies when you deploy a custom
Linux kernel supported by only a few developers.

helped save the Unix world from fragmentation. In
fact, the ELC specification will be based on existing
POSIX standards, such as the POSIX 1003.1, which
the QNX Neutrino RTOS supports today. As a result,
the QNX Neutrino RTOS will inherently support
embedded Linux applications, while simultaneously
providing all of the benefits of a true RTOS designed
from the ground up for embedded systems (more on
these benefits later).

Inherently Open

Still, Linux compatibility is a red herring if an
RTOS doesn’t also address why most developers
consider Linux in the first place: the benefits of its
open source model. With open source, developers
can analyze the architecture of the OS to better
integrate their own code, adapt OS components to
application-specific demands, and save considerable
time troubleshooting — not only when problems
occur in their own programs, but when a problem
involves unexpected results from underlying OS
code. In short, developers gain a level of vendor
independence and self-sufficiency not possible with
the “black box” model of many commercial OSs.

The QNX Neutrino RTOS offers these benefits
in two ways: 1) by using a highly extensible
microkernel architecture; and 2) by providing
customers with source code for drivers, libraries,
and BSPs, including well-documented driver
development kits for a variety of standard devices.

As a microkernel OS, QNX Neutrino is fundamen-
tally open to customization. Except for a few core
services (e.g. scheduling, timers, interrupt handling)
that reside in kernel space, most OS-level services —
drivers, file systems, protocol stacks, and so on —
exist as user-space applications outside the kernel. As
a result, developing custom drivers and application-
specific OS extensions doesn’t require specialized
kernel debuggers or kernel gurus. In fact, as user-
space programs, OS extensions become as easy to
develop as standard applications, since they can be

Real Time or Real Linux? A Realistic Alternative

Page 6 Real Time or Real Linux? A Realistic Alternative

debugged with standard, source-level tools familiar
to every Linux developer.

Better yet, QNX Neutrino allows applications to
access all drivers and OS services via a single,
consistent form of IPC: synchronous message
passing. This approach offers several advantages.
For instance, because QNX message passing is
synchronous, it automatically coordinates the
execution of communicating programs, thereby
eliminating the need to handcode — and debug —
complex synchronization services in every process
(see Figure 2). Moreover, message passing inherently
simplifies the task of partitioning a complex system
into well-defined building blocks that can be
developed, tested, and maintained individually.
Troubleshooting becomes much easier as a result.

Does this mean, however, that developers must use
proprietary message-passing functions? Not at all.
QNX messaging is implemented so seamlessly that
applications and OS services don’t have to invoke
special functions to exchange messages — the
messages can be sent and received transparently,
using standard POSIX calls. Now, that may sound a
bit like magic, so let’s look at how it works.

In QNX Neutrino, any service-providing program
(e.g. a driver) can “advertise” its services to other
programs by registering a pathname in the pathname
space. Programs can then access those services by

issuing calls such as open(), read(), write(), or lseek()
on the pathname. For instance, the QNX serial-port
driver typically registers the pathname /dev/ser1 to
represent the first serial port. Any application that
needs to access that port simply issues an open() on
/dev/ser1.

So where does the message passing come in? Well,
from the application’s perspective, the open() looks
and behaves like a standard POSIX call; there’s
nothing special about it. But, underneath the hood,
the QNX Neutrino C library converts the call into an
io_open message and forwards the message to the
serial driver. If the application subsequently wished to
write a character to the serial port, a similar sequence
would occur: the client would issue a write(), the C
library would construct an io_write message, and the
message would be sent to the driver.

There’s an interesting and highly beneficial side-
effect here: the exact same message can be sent
from any client application to any service, provided
the service supports that particular function. For
instance, to write a character to a serial port or to put
a character into a disk file, an application would issue
the same write() function in either case; the only
difference would be where the message was sent.
In other words, the application is cleanly decoupled
from the services it relies on. This decoupling
simplifies development since all interactions between
applications and system services can be implemented
using a simple, POSIX-based programming model. It
also eases migration to new designs since applications
don't have to include hardware- or protocol-specific
code.

Two more (short) points about QNX message
passing before we move on. First, developers can
access the QNX messaging framework directly, using
three simple calls: MsgSend(), MsgReceive(), and
MsgReply(). Second, message passing isn’t the only
form of IPC that QNX Neutrino supports. Developers
can, in fact, work with several standard forms of IPC,
including signals, POSIX message queues, shared
memory, pipes, and FIFOs.

Figure 3 — QNX message passing simplifies the
synchronization of processes and threads. For instance,
the act of sending a message automatically causes the
sending thread to be blocked and the receiving thread
to be scheduled for execution.

RECEIVE
blocked

READY

SEND
blocked

REPLY
blocked

MsgReply() or
MsgError()

MsgReply() or
MsgError()

MsgReceive()

MsgSend()

MsgSend()
MsgReceive()

Other thread

This thread

Real Time or Real Linux? A Realistic Alternative

Real Time or Real Linux? A Realistic Alternative Page 7

Available source

QNX Neutrino further simplifies troubleshooting
and OS customization by providing customers with
full source code for libraries, drivers, and board-
support packages. Developers can also freely down-
load device driver kits (DDKs) for a variety of device
types, including networking, graphics, input, audio,
and USB. Besides providing source code, the DDKs
include clear, concise documentation and a software
framework that implements all higher-level, device-
independent code in libraries. The only code the
developer has to write is the hardware-specific code
for the chip on their device.

While discussion of source licensing models is
beyond the scope of this article, it’s important to
note that this QNX source code isn’t provided under
the GPL that covers most Linux source. Rather, QNX
Software Systems provides the source under its own
license agreement, which — unlike the GPL — gives
developers the freedom to create derivative works
without having to sacrifice any of their own intellec-
tual property (IP). Put simply, QNX source is free of
the IP issues that prevent many embedded system
manufacturers from using GPL-covered code.

Real(time) Benefits

Implementing POSIX/Linux APIs on a microkernel
architecture also addresses the drawbacks associated
with the realtime extensions discussed earlier:

A tougher runtime model

As a monolithic OS, Linux binds most drivers,
file systems, and protocol stacks to the OS
kernel. Hence a single programming error in any
of these components can cause a fatal kernel
fault. In QNX Neutrino, these components can
all run in separate, memory-protected address
spaces, so it’s very difficult for them to corrupt
the kernel, or each other. QNX Neutrino
therefore provides an environment for realtime
applications that is inherently more robust than
Linux — and certainly much tougher than the

unprotected realtime kernels used in the dual-
kernel approach.

A unified environment

In QNX, the realtime and non-realtime
environments are one and the same. Realtime
applications can take advantage of the full
POSIX API and enjoy full access to system
services — GUIs, file systems, and so on.
By the same token, existing POSIX/Linux
applications can immediately gain deterministic
behavior. And since both realtime and non-
realtime applications are running in the same
message-based environment, IPC between them
is greatly simplified.

Less duplicated effort

As discussed, the dual-kernel approach can
force developers to write custom drivers, using
an unfamiliar API. As in most OS environments,
developing these drivers requires kernel
debugging tools (hard to use), kernel rebuilds
(time-consuming), and kernel programmers
(expensive).

QNX Neutrino addresses this problem in several
ways. First, like any established OS with a large
user base, QNX supports a variety of off-the-
shelf drivers for standard hardware. And, as
we’ve seen, QNX Neutrino runs all drivers in
user space, so they can be developed using
standard source-level tools and techniques.
This job is made all the easier by the QNX
DDKs, which provide documentation, libraries,
headers, and ready-to-customize source for a
variety of drivers.

Additional Microkernel Features

As a microkernel RTOS designed specifically for
the demands of embedded systems, QNX Neutrino
also offers Linux developers features unavailable
with either standard Linux or realtime Linux
extensions. These include:

Real Time or Real Linux? A Realistic Alternative

Page 8 Real Time or Real Linux? A Realistic Alternative

Built-in distributed processing

QNX Neutrino provides an OS service, the
QNX micronetwork, that allows messages to
flow transparently across processor boundaries.
Consequently, any process can, given appro-
priate permissions, access virtually any resource
on any other node, as if that resource were local.

For instance, if an application wishes to send an
open message to a device driver, it doesn’t
matter whether the driver is local or remote: the
application sends the exact same open() call in
either case. If the pathname for the driver is
local, the QNX microkernel will route the
message directly; if the driver is on a remote
node, the QNX micronetwork will transparently
forward the message to that node.

Fault-tolerant networking

Thanks to the network abstraction provided
by QNX message passing, applications can
communicate transparently over redundant
network links: if one link fails, the OS will
automatically reroute traffic over the remaining
links. Network traffic can also be load-balanced
over all available links, resulting in higher
throughput. Again, this service is built-in;
applications require no special networking code.

Smaller memory footprint

Because of the fine-grained scalability of
microkernel architecture, the QNX RTOS can
provide a runtime environment considerably
smaller than Linux — a critical advantage in
high-volume devices such as information
appliances and in-car telematics systems, where
even a $2 reduction in memory costs per unit
can return millions of dollars in profits. In fact,
QNX’s native windowing system, the Photon

microGUI®, also uses a microkernel architec-
ture, so designers can easily “unplug” GUI
services that aren’t required by their memory-
constrained devices.

Consistent, field-tested kernel

Unlike the monolithic Linux kernel, which can
change from embedded system to embedded
system, the QNX microkernel can be used
unmodified across an incredibly diverse range
of products. In fact, there is only one QNX
microkernel binary for each family of supported
CPUs. Developers have the assurance that they’re
using the same microkernel lab-tested at QNX
Software Systems and field-tested in other
customer installations.

A Matter of Synergy

While QNX Neutrino offers a superior platform for
running realtime applications, choosing between it
and Linux doesn’t have to be a mutually exclusive,
either/or proposition. In fact, because the two OSs
share so much common ground, developers can
readily target both OSs, using each where it fits
best. Moreover, QNX supports TCP/IP, NFS, and
even a Linux file system, so it’s easy for a develop-
ment shop that uses a mix of Linux and QNX
workstations to share resources across the two
environments.

In short, Linux and QNX Neutrino do more than
simply coexist. Rather, they give developers the
opportunity to leverage many of the same APIs,
source code, and skill sets across a much wider
spectrum of applications than any operating system
— whether realtime or general-purpose — could do
on its own.

Porting Open Source Programs to QNX Neutrino

Porting Open Source Programs to QNX Neutrino Page 9

Supplement: Porting Open Source Applications to QNX Neutrino

Since QNX Neutrino is a POSIX operating system, you can port most Linux applications and other
open source programs with little effort. In most cases, you simply recompile the source and relink with
QNX Neutrino libraries. System administration, networking, database, and computational programs are
all examples of applications that can be ported this way.

The following table lists a sample of the open source applications that have already been ported to the
QNX Neutrino RTOS. For a more comprehensive list, visit http://www.qnx.com/developer/download.

GCC*
GNU C/C++ compiler

CVS*
Source code versioning control
system

Vim
Vi IMproved, a programmers’
editor; the GUI version (gvim)
has been ported to QNX Photon
microGUI

GNU EMACS
Programmers’ editor

GDB*
GNU debugger

DDD
Graphical debugger that uses
GDB as its back end for
debugging (the GUI is X)

Doxygen
Source code documentation tool

Perl
Scripting language

Python
Scripting language

Ruby
Scripting language

Apache
Web server

Mozilla*
Web browser based on the
Netscape source code

Pine
Email client

Mutt
Email client

Sendmail
Email server

Tin
Newsgroup reader

Samba
Provides seamless access to files,
printers, and other shared
resources on Windows networks

Open SSH/SSL
Secure sockets and shells

Open LDAP
Light weight Directory Access
Protocol

PVM
Distributed processing system

Zebra router
Software for managing TCP/IP-
based routing protocols

The GIMP
GNU Image Manipulation
Program; similar to Photoshop,
uses X as its GUI

Abiword
Word processor

Quake III
Multimedia game

* Only available as part of the free QNX Momentics NC edition, which can be downloaded from http://www.qnx.com/nc.

© 2002, QNX Software Systems Ltd. All rights reserved.
QNX, Momentics, Neutrino, Photon microGUI, and ‘Build a more reliable world’ are registered trademarks in certain jurisdictions, and PhAB, Phindows, and Qnet are trademarks,
of QNX Software Systems Ltd. All other trademarks and trade names belong to their respective owners.

